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Abstract

The brain functional connectome forms a relatively stable and idiosyncratic backbone

that can be used for identification or “fingerprinting” of individuals with a high level of

accuracy. While previous cross-sectional evidence has demonstrated increased stability

and distinctiveness of the brain connectome during the course of childhood and ado-

lescence, less is known regarding the longitudinal stability in middle and older age.

Here, we collected structural and resting-state functional MRI data at two time points

separated by 2–3 years in 75 middle-aged and older adults (age 49–80, SD = 6.91 years)

which allowed us to assess the long-term stability of the functional connectome.

We show that the connectome backbone generally remains stable over a 2–3 years

period in middle and older age. Independent of age, cortical volume was associated

with the connectome stability of several canonical resting-state networks, suggesting

that the connectome backbone relates to structural properties of the cortex. More-

over, the individual longitudinal stability of subcortical and default mode networks was

associated with individual differences in cross-sectional and longitudinal measures of

episodic memory performance, providing new evidence for the importance of these

networks in maintaining mnemonic processing in middle and old age. Together, the

findings encourage the use of within-subject connectome stability analyses for under-

standing individual differences in brain function and cognition in aging.
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1 | INTRODUCTION

Recent advances in brain imaging have documented that the functional

organization of the human brain largely complies with a spatiotemporal

hierarchical network structure or “connectome” that remains rela-

tively stable across task and context (Finn et al., 2015; Kaufmann,

Alnaes, Brandt, et al., 2017). The connectome backbone comprises

idiosyncratic features, allowing the identification of individuals much

like a brain-based fingerprint (Finn et al., 2015; Kaufmann, Alnaes,

Doan, et al., 2017; Miranda-Dominguez et al., 2014). Moreover, the

stability or degree of distinctiveness of the connectome has been

associated with individual differences in various traits and conditions.

The short-term stability of the connectome was found to increase

with increasing age in youth and was overall found to be lower in chil-

dren and adolescents with higher levels of common symptoms of

mental disorders (Kaufmann, Alnaes, Doan, et al., 2017), and in adult

patients with severe mental disorders compared to healthy peers
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(Kaufmann et al., 2018). Further, the neural networks contributing the

most to an individual's connectome fingerprint—the frontoparietal and

the default mode networks (DMN)—were also associated with individ-

ual differences in cognitive abilities (Finn et al., 2015). Jointly, these

findings hold great promise for using brain network approaches to

advance our understanding of individual variations in cognition,

behavior, and neuropsychiatric disorders, including an extension to

the study of cognitive aging and neurodegenerative disease.

Alterations in the brain gray and white matter structural and func-

tional connectivity are among the hallmarks of cognitive aging

(Ferreira & Busatto, 2013; Fjell, Westlye, et al., 2009; Westlye et al.,

2010). These age-related decrements in brain connectivity are para-

lleled by decline in numerous cognitive functions, likely related to

impaired communication between brain regions necessary for

maintaining cognitive function (Ferreira & Busatto, 2013; Fjell et al.,

2016; Fjell, Sneve, Grydeland, Storsve, & Walhovd, 2017). Notably,

both cortical and subcortical networks are vulnerable to aging

(Ferreira & Busatto, 2013; Sala-Llonch, Bartres-Faz, & Junque, 2015)

with some networks showing increased and others decreased resting-

state connectivity with increasing age (Buckner, 2004; Mowinckel,

Espeseth, & Westlye, 2012). Moreover, the extent and rate of change

show strong heterogeneity across networks, with frontoparietal and

DMNs, repeatedly identified as the most discriminative of individuals,

being particularly sensitive to the aging process (Sala-Llonch et al.,

2015). Together these findings suggest that alterations in the structural

and functional connectivity of the brain may be related to how well the

individual functional connectome backbone is preserved. Furthermore,

it raises the question whether longitudinal stability of the individual

connectome is sensitive to concurrent cognitive changes in aging.

Although aging brings about decline in numerous cognitive facul-

ties, episodic memory is one of the most studied. Age-related declines

in episodic memory have been reliably identified in both cross-

sectional (Hedden & Gabrieli, 2004; Nyberg, Lovden, Riklund, Lin-

denberger, & Backman, 2012; Ronnlund, Nyberg, Backman, & Nilsson,

2005) and longitudinal (Lundervold, Wollschlager, & Wehling, 2014;

Nyberg, 2017) studies of healthy elderly individuals. Moreover,

impaired episodic memory is a core cognitive symptom of several neu-

rodegenerative disorders, of which Alzheimer disease is the most

studied (Gallagher & Koh, 2011). Such age-related changes in memory

have been related to altered structural and functional connectivity in

prefrontal networks and the DMN (Fjell et al., 2015; Nyberg, 2017;

Salami, Pudas, & Nyberg, 2014; Staffaroni et al., 2018; Westlye,

Lundervold, Rootwelt, Lundervold, & Westlye, 2011) but more

recently also to specific subcortical systems (i.e., the thalamus, amyg-

dala and basal ganglia) (Fjell et al., 2016; Rieckmann, Johnson,

Sperling, Buckner, & Hedden, 2018; Ystad, Eichele, Lundervold, &

Lundervold, 2010). This is not surprising given the centrality of sub-

cortical nuclei, which are connected to virtually all parts of the cortex

(Sah, Faber, Lopez De Armentia, & Power, 2003; Shepherd, 2013),

and that neurotransmitters affecting episodic memory target both cor-

tical and subcortical brain structures (Backman, Nyberg, Lindenberger,

Li, & Farde, 2006). Moreover, the hippocampal subsection of the

DMN and the basal ganglia are conventionally viewed as parallel

learning and memory systems (DeCoteau et al., 2007), which may act

competitively or cooperatively depending on the context. Accordingly,

age-related changes in resting-state functional connectivity of both

systems have been linked to deficits during mnemonic processing

(Rieckmann et al., 2018; Staffaroni et al., 2018), and disorders pre-

dominantly targeting the striatal system have also been associated

with memory impairments already in the earliest stages of the disease

(Solomon et al., 2007).

Episodic memory performance in aging has additionally been linked to

the morphology of the aging brain, including global cortical volume

(Harrison, Weintraub, Mesulam, & Rogalski, 2012), cortical thickness

(Harrison, Maass, Baker, & Jagust, 2018), and hippocampal volume (Ezzati,

Katz, Lipton, Zimmerman, & Lipton, 2016; Ystad et al., 2009). Both a con-

stitutionally larger gray matter volume and a slower rate of gray matter

loss throughout life, may endow individuals with larger gray matter

reserves which may translate into increased capacity to resist age related-

memory decline (Cabeza et al., 2018). Although speculative, it is possible

that this gray matter reserve exert its effect on episodic memory perfor-

mance through an impact on the brain functional connectome (Smith

et al., 2019). As such, indices of brain gray matter volume could be associ-

atedwith both connectome stability and episodicmemory performance.

In the present study, we investigated the longitudinal stability of

the connectome backbone in middle and older age, and how this relates

to changes in episodic memory, hippocampal, and global cortical vol-

ume. We obtained T1-weighted structural and resting-state functional

MRI (rsfMRI) data from 75 middle-aged and older adults (age 49–80,

SD = 6.91 years) at two time-points separated by 2–3 years, and

assessed the longitudinal stability of the whole-brain functional

connectome and a set of subnetworks. We hypothesized that

connectome stability would decrease as a function of increasing age as

well as smaller cortical and hippocampal volume, as a proxy of brain

structural aging. Second, supported by studies linking age-related cogni-

tive decline to structural and functional connectivity, we hypothesized

that weaker connectome stability within subnetworks important for

episodic memory would be associated with a steeper memory decline.

2 | MATERIALS AND METHODS

2.1 | Participants

Healthy volunteers were invited through advertisement to take part in

a longitudinal study on cognitive aging involving extensive neuropsy-

chological testing, MRI, and genotyping. Participants were assessed up

to three times over a period of 6.5 years, of which rsfMRI data were

acquired at Session 2 (MRI1) and Session 3 (MRI2). MRI1 and MRI2 were

separated by 2–3 years (mean = 2.54, SD = ±0.28 years). General exclu-

sion criteria included history of substance abuse, present neurological

or psychiatric disorder or other significant medical conditions. The pro-

tocol was approved by the Regional Committee for Medical and Health

Research Ethics of Southern and Western Norway, and all subjects

gave written informed consent before participation.

The present study included 75 participants who underwent rsfMRI

at MRI1 and MRI2. T1-weighted three-dimensional (3D) images were
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evaluated by an experienced neuroradiologist at inclusion, and the

presence of brain tumors, cysts, recent infarctions or gross regional or

global signal abnormalities lead to exclusion. No participants were

excluded based on the neuroradiological evaluation. Moreover, none

of the included participants was diagnosed with dementia or mild cog-

nitive impairment (Mini Mental State Exam < 24) (Mungas, 1991). For

further participant characteristics, please see Table 1.

2.2 | Neuropsychological assessments

All participants completed an extensive set of neuropsychological tests

at each assessment, and the test scores were evaluated by an experi-

enced neuropsychologist. The battery included tests of executive func-

tions, episodic memory, language, IQ, and mental processing speed.

Episodic memory function was assessed using the Norwegian transla-

tion of the California Verbal Learning Test-Second Version (CVLT-II;

Delis, Kramer, Kaplan, & Ober, 2000). A list of 16 words (List A) was

presented five times. After each presentation, the participant had to

repeat as many words as possible, and a total learning score was

defined from the sum of correct responses across these five presenta-

tions. Upon completing the fifth trial, a new list was presented (List B),

and subjects had to recall the words from List A immediately after List

B (short delay free recall). Approximately 20 min later, subjects were

asked to identify the words from List A again (long delay free recall).

Finally, subjects were presented with a larger list that contained items

from List A, List B as well as other various distracter items, and asked

to identify the 16 items from List A (total recognition discrimination).

The CVLT-II assesses three essential features of episodic memory:

learning, recall and recognition, represented by the variables total

learning, free recall (short and long delay) and total recognition dis-

crimination, respectively. To reduce data dimensionality, we used prin-

cipal component analysis (PCA) to get a robust compound measure of

episodic memory for the combined analyses with the neuroimaging

data. The Kaiser–Meyer–Olkin value exceeded 0.8 and Bartlett's test

of sphericity was highly significant, confirming that the data was suit-

able for PCA. In the sample, PCA captured 86.2% of the variance in

one single component (PC1). Both the mean PC1 across MRI1 and

MRI2 and the individual changes in PC1 from MRI1 and MRI2 were

used for the imaging analyses.

2.3 | MRI acquisition

Whole-brain, T2*-weighted, echo-planar images (TR = 2,000 ms,

TE = 50 ms, flip angle 90�, voxel size 3.75 × 3.75 × 5.0 mm3) were

acquired using a GE Signa Echospeed 1.5 T Scanner (General Electric

Company; Milwaukee, WI) supplied with a standard eight-channel

head coil. A total of 256 volumes (25 axial slices) were acquired, yield-

ing a scan time of approximately 8 min. Participants were instructed

to relax with their eyes closed, to think of nothing in particular, and

not to fall asleep. Cushions and headphones were used to reduce sub-

ject motion and scanner noise. For anatomical comparison purposes,

two T1-weighted 3D inversion recovery-prepared fast spoiled

gradient-recalled series (TR = 9.11 ms, TE = 1.77 ms, flip angle 7�, voxel

size 0.94 × 0.94 × 1.40 mm3) were acquired prior to the functional

imaging. The imaging parameters were identical for both the T2* and

the T1 series at the two time-points. rsfMRI data from MRI1 and MRI2

have been previously published (Hodneland, Ystad, Haasz, Munthe-

Kaas, & Lundervold, 2012; Westlye et al., 2011; Ystad et al., 2010;

M. Ystad et al., 2011); however, none of the studies have included lon-

gitudinal analyses.

2.4 | MRI processing and analysis

T1-weighted 3D MR was processed using the longitudinal pipeline in

FreeSurfer v 5.3 (http://surfer.nmr.mgh.harvard.edu), which enables

fully automated volumetric segmentation of neuroanatomical struc-

tures and longitudinal comparisons. The processing steps included

motion correction and averaging, removal of nonbrain tissue and

automated Talairach transformation. Tessellation of the gray/white

matter boundary together with surface deformation following inten-

sity gradients to optimally place the gray/white/CSF borders allowed

segmentation of cortex as well as subcortical white matter and deep

gray matter structures. All segmented scans were visually inspected.

rsfMRI data were processed using FMRI Expert Analysis Tool

(FEAT), as implemented in FMRIB Software Library (FSL (Smith et al.,

2004; Woolrich et al., 2009), (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)),

and included motion correction, spatial smoothing using a six mm

full-width at half-maximum Gaussian kernel as well as high-pass

temporal filtering (90 s). To minimize the influence of noise

TABLE 1 Means and SD for verbal

episodic memory raw scores and
demographic variables for MRI1
and MRI2

MRI1 MRI2 t-Value p-Value

Age 64.3 (6.9) 66.8 (6.8) 41.24 <.001

Years of education 14.0 (2.9)

Women (%) 65.3

MMSE 28.9 (1.0) 29.1 (1.4) 1.00 .32

IQ 116 (11)

CVLT, total learning 56.7 (10.9) 49.6 (11.3) −8.01 <.001

CVLT, short delay recall 12.3 (2.9) 10.6 (3.6) −5.61 <.001

CVLT, long delay recall 12.9 (2.7) 11.0 (3.4) −6.86 <.001

CVLT, recognition discrimination 3.4 (0.7) 3.0 (0.8) −4.87 <.001

Abbreviations: CVLT, California Verbal Learning Test; MMSE, Mini Mental State Exam.
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(e.g., related to participant motion and vascular artifacts), we applied

FMRIB's independent component analysis-based Xnoisifier (FIX

(Salimi-Khorshidi et al., 2014)), which uses single-session multivari-

ate exploratory linear optimized decomposition into independent

components (MELODIC (Beckmann, DeLuca, Devlin, & Smith,

2005)) to decompose the individual fMRI data sets. Using default

options, components were classified as noise and non-noise vari-

ability, respectively, using a standard training set supplied with FIX.

Components identified as noise and the estimated participant

motion parameters were regressed out of the data, and we manu-

ally inspected the resulting cleaned fMRI data sets.

The fMRI volumes were registered to the participants' skull-

stripped T1-weighted scans using the FMRIB linear image registration

tool (FLIRT, (Jenkinson & Smith, 2001)) implementing boundary-based

registration. The T1-weighted volume was nonlinearly warped to the

Montreal Neurological Institute MNI-152 template using FMRIB's

nonlinear image registration tool (FNIRT (Anderson, Jenkinson, &

Smith, 2007)), and the resulting nonlinear transform was applied to

the rsfMRI data. To control subsequent analyses for data quality and

motion confounds, we utilized quality assurance scripts released by

Roalf et al. (2016) and calculated estimates of temporal signal-to-noise

ratio (tSNR). One estimate of tSNR per subject and run was calculated

by computing voxel-wise mean and SD of the time series (after cor-

recting for linear trends) and averaging the ratio of mean and SD

across voxels in the individual brain mask from FSL FEAT. In addition,

we estimated an individual mean motion parameter by taking the

mean of the relative frame-to-frame displacement (including both

rotation and translation) of the raw data.

2.5 | Individual level fingerprinting using fMRI data

We used a functional whole-brain atlas consisting of 268 regions of

interest (ROIs) (Shen, Tokoglu, Papademetris, & Constable, 2013) and

estimated the pairwise Pearson correlations between all ROIs indepen-

dently for each of the two time points (MRI1 and MRI2). ROIs were

excluded if they were not covered by a minimum of 10% of voxels in all

subjects, leading to the exclusion of 20 ROIs in total (Figure S1,

Supporting Information). The whole-brain connectivity matrix from

each individual at each time point was then transformed into a vector

of size 1 × 30,628 (248 ROIs and 30,628 network links between them).

Next, we computed the connectome stability in line with the approach

by Kaufmann et al. (2018) which involved computing the within-subject

Spearman correlation coefficient between MRI1 and MRI2 networks.

In addition to parcellating the brain into 248 nodes, we also clus-

tered these nodes based on Yeo et al.'s network scheme (Buckner,

Krienen, Castellanos, Diaz, & Yeo, 2011), yielding nine large-scale net-

works (i.e., medial frontal, frontoparietal, default mode, motor, visual

1, visual 2, visual association, cerebellum, subcortical) (Finn et al.,

2015; Kaufmann, Alnaes, Doan, et al., 2017). In line with the whole-

brain analysis, we calculated between time points connectome stabil-

ity scores for each of these nine networks.

TABLE 2 Association between
longitudinal changes in the four different
episodic memory components and
sample characteristics

Estimatea SE Χ2 test p-Value pfdr-Value

Learning

Age −0.37 0.14 6.21 .01 .03

Sexb −9.32 2.04 18.39 <.001 <.001

Session −7.09 0.88 46.83 <.001 <.001

Time between sessions 0.02 0.01 6.04 .01 .05

Short delay recall

Age −0.08 0.04 3.57 .06 .06

Sex −3.17 0.59 24.12 <.001 <.001

Session −1.73 0.31 26.54 <.001 <.001

Time between sessions 0.004 0.003 2.71 .1 .13

Long delay recall

Age −0.09 0.04 4.79 .03 .04

Sex −2.82 0.55 22.44 <.001 <.001

Session −1.85 0.27 36.90 <.001 <.001

Time between sessions 0.006 0.003 4.41 .04 .08

Recognition discrimination

Age −0.02 0.01 5.83 .02 .03

Sex −0.64 0.14 19.21 <.001 <.001

Session −0.35 0.07 20.86 <.001 <.001

Time between sessions 0.001 0.0006 2.24 .13 .14

aThe estimate refers to the beta values obtained from the linear mixed effects models.
bUsing male as a reference.
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2.6 | Statistical analysis

All statistical analyses were performed in R (version 3.5.0; R Develop-

ment Core Team, 2018). Longitudinal analyses modeling the relation-

ship between episodic memory performance and age-, sex, session,

and time between sessions were performed using linear mixed effects

models (lme4 package in R (Bates, Maechler, Bolker, & Walker,

2015)). Separate models were run for each CVLT-II variable

(i.e., learning, short delay free recall, long delay free recall, and

total recognition discrimination). As fixed effects, we entered age
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(mean across MR1 and MR2), sex, session, and time between ses-

sions (without interaction terms) into the model. In addition to

these fixed-effects, the model included subject ID as random fac-

tor, modeling the individual level intercept. p-Values were obtained

by likelihood ratio χ2 tests of the full model with the effect in ques-

tion compared to a model without the effect in question.

Next, we used a general linear model to test for associations

between individual whole-brain connectome stability and age while

controlling for sex, tSNR, mean motion, and time between sessions.

The analysis was repeated for each of the nine subnetworks sepa-

rately, based on studies reporting anatomical differences in the rate

and degree of aging (Buckner, 2004). Beyond chronological age, we

also tested for associations between cortical (defined as CortexVol in

FreeSurfer) or hippocampus volume and connectome stability. As

such, the general linear models were expanded to also include a pre-

dictor for mean (across MRI1 and MRI2) or longitudinal changes in

total cortical or hippocampus volume while additionally controlling

for total intracranial volume (ICV).

To explore the cognitive significance of the whole-brain as well

as the subnetworks temporal stability, we used the PC1 obtained

from the episodic memory compounds. In separate general linear

models we tested for associations between the mean PC1 or

changes (across time) in the PC1 and connectome stability, while

covarying for sex, age, tSNR, mean motion, and time between ses-

sions for each of the nine subnetworks.

To rule out confounding effects of potential extreme values on

our results, we excluded subjects with CVLT-II performance, network

stabilities, cortical volume or hippocampal volume values >|4| SD from

the group mean from the statistical analyses. Throughout the manu-

script, we report uncorrected p-values, with a significance threshold

for all tests determined by the Benjamini–Hochberg false-discovery

rate procedure at q = 0.05. In the figures, the regression lines repre-

sent the association between dependent and independent variables

estimated without covariates.

3 | RESULTS

3.1 | Verbal episodic memory function

Table 1 summarizes the changes in mean scores for all episodic memory

measures, supporting significantly lower performance scores in MRI2.

The contribution of age, sex, and session intervals in predicting individ-

ual longitudinal episodic memory performance were assessed in linear

mixed effect models, with separate models for each of the four CVLT-II

variables. Standard likelihood-ratio χ2 tests revealed that sex and ses-

sion were significant predictors of all four memory components

(Table 2). As such, performance dropped from MRI1 to MRI2, and more

so for males than females. In addition, higher age was associated with

greater decrements of learning, long delay free recall, and total recogni-

tion discrimination (Figure 1).
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3.2 | Longitudinal stability of the connectome and its
association to age

Figure 2 shows the results from the connectome stability analyses.

In line with recent work in a longitudinal sample of youths

(Miranda-Dominguez et al., 2018), the connectome fingerprint

retained relatively stable across 2–3 years (mean Spearman correla-

tions between scans for all subjects: ρ = 0.4, range: 0.15–0.60 for

the full brain connectome). However, the stabilities differed for the vari-

ous subnetworks, with the subcortical and the cerebellar networks hav-

ing lower temporal stability than most cortical networks (Figures 2, S2,

and S3). Figure 3a illustrates the association between connectome stabil-

ity and age (mean across MRI1 and MRI2). The association between age

and whole-brain connectome stability (slope [±SE] = −0.003 ± 0.002,

t69 = −1.57, p = .12) as well as between age and subnetwork con-

nectome stabilities (all p > .05) were subtle and none remained significant

when accounting for multiple comparison.

3.3 | The association between connectome stability
and mean cortical and hippocampal volume

We next investigated if connectome stability was associated with cor-

tical or hippocampal volume by expanding the general linear models

to also include a predictor for mean (across MRI1 and MRI2) or time-

dependent changes in total cortical volume while additionally control-

ling for ICV. Mean cortical volume was positively associated with DMN

(slope = 1.66× 10−6 ± 6.19 × 10−7, t66 = 2.68, p = .009, Figure 3b), subcorti-

cal (slope=1.62× 10−6 ± 5.22× 10−7, t66 = 3.11, p= .003, Figure 3b),medial

prefrontal (slope = 2.31 × 10−6 ± 8.17 × 10−7, t66 = 2.83, p = .006,

Figure 3b), visual association (slope = 2.18 × 10−6 ± 8.91 × 10−7,

t66 = 2.45, p = .02, Figure 3b) and whole-brain (slope = 1.60 ×

10−6 ± 5.32 × 10−7, t66 = 3.01, p = .004, Figure 3b) connectome stability,

indicating higher stability with larger brain cortical volumes. No significant

associations emerged between the network stabilities and longitudinal

changes in cortical volume (all p > .05). Finally, including hippocampal vol-

ume as a predictor in themodels revealed no association betweenmean or

changes in hippocampal volume and connectome stability (all p > .05).

3.4 | The association between connectome stability
and cross-sectional and longitudinal measures of
episodic memory performance

Based on studies linking changes in functional connectivity to episodic

memory decline, we next investigated if episodic memory perfor-

mance was related to longitudinal connectome stability. The analyses

(a)

(b)

F IGURE 3 The association between age or total cortical volume and connectome stability. The gray areas represent the 95% confidence
interval. (a) Associations between connectome stability and age (mean across MRI1 and MRI2) for the whole-brain and the nine subnetworks.
The regression lines represent the association between dependent and independent variables estimated without covariates (fullbrain; r = −.16,
p = .16, medialFrontal; r = −.16, p = .17, frontoParietal; r = −.20, p = .08, defaultMode; r = −.10, p = .42, motor; r = −.05, p = .67, visual1; r = −.14,
p = .23, visual2; r = −.15, p = .19, visualAssoc; r = −.14, p = .24, cerebellum; r = −.03, p = .81, subcortical; r = −.14, p = .23). (b) Associations
between connectome stability and total cortical volume (mean across MRI1 and MRI2) for the whole-brain and the nine subnetworks. The
regression lines represent the association between dependent and independent variables estimated without covariates (fullbrain; r = .30, p = .009,
medialFrontal; r = .16, p = .16, frontoParietal; r = .09, p = .44, defaultMode; r = .25, p = .04, motor; r = .25, p = .03, visual1; r = −.03, p = .83,
visual2; r = .04, p = .72, visualAssoc; r = .19, p = .11, cerebellum; r = .13, p = .29, subcortical; r = .30, p = .009)
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revealed a significant negative association between connectome sta-

bility and mean episodic memory performance (i.e., the mean of PC1

across MRI1 and MRI2) for the subcortical network (slope = −0.05

± 0.02, t68 = −2.92, p = .005, Figure 4a), indicating higher subcortical

network stability with lower mean episodic memory performance.

Similar analyses for the other networks revealed no significant associ-

ations after correcting for multiple comparisons. Furthermore, the

analyses revealed a significant negative association between DMN

stability and change in episodic memory performance, indicating larger

episodic memory decline between MRI1 and MRI2 in individuals with

higher DMN stability (slope = −0.07 ± 0.02, t67 = −3.13, p = .003,

Figure 4b). In addition, there was a nominal significant association

between changes in episodic memory performance and subcortical

network stability (slope = −0.04 ± 0.02, t68 = −2.21, p = .03). Finally,

while mean cortical volume was associated with connectome stability,

general linear models revealed no significant associations (all p > .05)

between mean cortical volume and mean or changes in PC1 while

adjusting for age, sex, ICV and time between sessions.

4 | DISCUSSION

In this study, we tested the long-term stability of the functional

connectome in middle- and older age, and how brain network stability

relates to structural indices of aging and memory performance. In line

with a recent study, we demonstrated relatively high stability of the

connectome over a 2–3 years period (Horien, Shen, Scheinost, & Con-

stable, 2019). While our analyses did not reveal a significant associa-

tion with age, network stability was related to mean cortical volume

across the two time points, suggesting that cortical morphology is

associated with connectome stability. Supporting its relevance to cogni-

tive aging, both cross-sectional and longitudinal measures of episodic

memory were related to longitudinal stability of the DMN and the sub-

cortical networks. The findings encourage the use of connectome sta-

bility for understanding individual differences related to brain aging and

risk of neurodegenerative disease. Furthermore, the observation that

individual variations in episodic memory decline relates to the stability

of subcortical and DMNs provides new evidence for the importance of

these networks in maintaining mnemonic functions in middle and

older age.

Although previous studies have documented that the connectome

individualizes during adolescence to form unique functional connec-

tivity profiles (Kaufmann, Alnaes, Doan, et al., 2017), our knowledge

regarding connectome stability in aging is limited. The high stability

obtained in the present study suggests that the connectome back-

bone may represent a robust trait-like marker also in middle and old

age, in spite of the vast changes in brain structural and functional con-

nectivity associated with increasing age. Despite large efforts in

linking cognitive decline to brain changes in aging, the majority of pre-

vious studies have not been able to separate state- or task-based vari-

ability from static, subject-unique features. The notion that the
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connectome backbone generally remains stable across contexts and

cognitive tasks (Finn et al., 2017; Kaufmann, Alnaes, Brandt, et al.,

2017), and that this stability may also be present in senescence, holds

great promise for using connectome-based approaches to map clini-

cally useful changes of brain functional connections also in middle and

older age.

Although the stability of the connectome backbone was not signif-

icantly associated with age, the stability was related to individual dif-

ferences in cortical volume. Aging is associated with structural

changes of the cerebral cortex as indicated by widespread reductions

in cortical thickness (Fjell, Westlye, et al., 2009) and gray matter vol-

ume (Good et al., 2001; Raz et al., 2005). However, individuals differ

markedly in rate and degree of structural brain changes, and thus

brain structure is relatively well preserved in some individuals into old

age. Such individual differences are likely to be related to numerous

factors, including individual variations in microvasculature (Dey,

Stamenova, Turner, Black, & Levine, 2016) and white matter patholo-

gies (Langen et al., 2017), processes which affect both local and dis-

tant brain connections and thus the connectome backbone. Of note,

previous studies have reported an association between episodic mem-

ory maintenance and global cortical brain volume (Cook et al., 2017;

Harrison et al., 2012). Moreover, we here report that global cortical

volume relates to the connectome stability of medial prefrontal,

DMN, visual association, and subcortical networks suggesting a mech-

anism by which cortical morphology could impact cognition. Thus,

future studies may investigate if the association between cortical

structure and age-related changes in episodic memory is mediated by

the stability of the connectome, with consequences for our under-

standing of numerous neurodegenerative disorders.

The subcortical network had distinct lower stability than the corti-

cal networks. Subcortical brain areas including the striatum, thalamus,

and the hippocampus undergo substantial structural changes in aging

(Bonifazi et al., 2018; Fama & Sullivan, 2015; Fraser, Shaw, & Che-

rbuin, 2015), which is likely to impact connectome stability. Indeed,

less functional specialization including the separation of the striatal

from the medial temporal lobe systems has been reported in aging

(Rieckmann et al., 2018), and these age-related changes may involve

both increased and decreased functional connectivity. In contrast,

sensory cortical areas are more likely to remain differentiated, and

even increase their modularity, as age progress (Geerligs, Renken, Sal-

iasi, Maurits, & Lorist, 2015). In line with this notion, the visual sen-

sory areas obtained the highest stability scores across the 2–3 years

period. Finally, although reduced within-network amplitude and con-

nectivity in the DMN is one of the most replicated findings in aging

(Damoiseaux, 2017; Mowinckel et al., 2012), this network retained

higher stability than other networks, including the cerebellar and the

subcortical networks. Although this finding warrants replication, it

indicates that the age-related changes in the DMN do not surpass the

idiosyncratic patterns in functional connectivity that promotes suc-

cessful identification (Horien et al., 2019).

The finding that the temporal stability of the subcortical network

was inversely related to episodic memory performance may at first

seem counterintuitive. However, increased subcortical network

stability may not necessarily represent better brain maintenance.

Increased network stability may partly reflect or come at the cost of

decreased flexibility, including the task dependent engagement of

cortico-subcortical networks in episodic memory tasks. In line with

this notion, middle aged and older subjects experiencing increased

striatal or hippocampal synchronization during rest, also had dimin-

ished cortical–subcortical connections and poorer memory perfor-

mance in cross-sectional studies (Rieckmann et al., 2018; Salami et al.,

2014). Moreover, the ability of neuronal networks to flexibly adapt in

response to neurodegenerative changes may be a prerequisite for

maintaining cognitive function in older age. As such, the reduced func-

tional specialization and increased internetwork communication of

subcortical structures (Rieckmann et al., 2018) could reflect dimin-

ished ability to flexibly adapt in response to neurodegenerative

changes locally and elsewhere in the brain, which may translate into

impaired episodic memory function. Finally, although individual differ-

ences in connectome stability may to some extent reflect cross-

subject variability in connectivity strength, the stability is also likely to

be influenced by the spatial configuration of the network

(Bijsterbosch et al., 2018; Bijsterbosch, Beckmann, Woolrich, Smith, &

Harrison, 2019). As such, various neurodegenerative events at play

during aging which impact the precise shape, volume, and location of

the subcortical brain regions, may influence episodic memory perfor-

mance through an effect on the subnetwork's functional connectome.

In addition to the subcortical stability, subjects experiencing

greater memory decline also had a more stable DMN during the

2–3 years period. This fits well with evidence that the DMN entails

interacting subsystems that are implicated in episodic memory

(Staffaroni et al., 2018), and that the longitudinal trajectory of DMN

connectivity is associated with changes in episodic memory function

in aging (Staffaroni et al., 2018). Moreover, increased DMN connectiv-

ity has been observed in mild cognitive impairment (Celone et al.,

2006; Gardini et al., 2015; Jin, Pelak, & Cordes, 2012) preceding the

profound reductions in whole-brain connectivity characteristic of

Alzheimer disease. Although speculative, increased DMN stability may

be a required permissive for the spread of pathological proteins, which

eventually leads to aberrant network connectivity (de Haan, Mott, van

Straaten, Scheltens, & Stam, 2012). In line with this heuristic,

increased DMN synchrony over a lifetime is associated with total

amyloid depositions in posterior DMN subsystems (Buckner et al.,

2005). Moreover, the brains of healthy adults experiencing greater

cognitive decline are more likely to harbor pathological proteins,

including amyloid (Farrell et al., 2018). Irrespective of this our

results support the view that memory impairment in old age

depends on simultaneous changes in multiple memory systems as

connectome stability of different subnetworks (DMN, subcortical)

was associated with episodic memory performance (Fjell et al.,

2016). Accordingly, a whole-brain approach may provide a more

holistic approach to memory in aging than the consideration of sin-

gle networks or brain areas.

The vast majority of studies investigating resting-state functional

connectivity in association to age-related memory changes have been

cross sectional. However, these studies do not allow determining
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whether the memory decline precedes the connectivity changes or

the reverse. Among the few longitudinal exceptions, one study

reported that the stability of the DMN was positively related to epi-

sodic memory maintenance in aging (Persson, Pudas, Nilsson, &

Nyberg, 2014). Another study reported that better preservation of

striatal- cortical connectivity over time yielded a more favorable mem-

ory outcome at follow-up testing (Fjell et al., 2016) possibly related to

inhibition of subcortical intranetwork connectivity at rest (Salami

et al., 2014). While these studies investigated how individual

changes in a common template of brain functional organization

relates to episodic memory, they did not explore how age-related

changes in the connectome backbone may affect memory function

in old age. Accordingly, our finding that the stability of the subcorti-

cal and the DMN connectome relates to episodic memory in aging

suggests that individual differences in the organization of subcortical

and DMNs influence how well mnemonic processes are maintained

into old age.

The present study had some limitations. First, we note that the

follow-up time of this study was relatively short, which may not be

sufficient to detect reliable changes in functional connectivity in mid-

dle and older age. Thus, a longer follow-up period may have revealed

a significant association between connectome stability and age. How-

ever, previous studies investigating longitudinal changes in functional

brain connectivity in aging also used a follow-up time of approxi-

mately 3 years (Fjell et al., 2016). Moreover, gray matter atrophy

(Storsve et al., 2014) and changes in diffusion MRI (Sexton et al.,

2014) could be reliably tracked over a 3-year period, and possibly

even shorter (Fjell, Walhovd, et al., 2009). Together, these studies

suggest that a 3-year period is sufficient to detect age-related

changes in functional connectivity. Moreover, we cannot rule out a

practice effect regarding the episodic memory data in our subjects,

which is a limitation in all longitudinal studies of neurocognitive aging.

In the present study, an initial whole-brain approach was utilized,

followed by predefined subnetwork analyses. Although the subnet-

works represent relatively coarse subdivisions of the brain, they do

not exclude parts of the connectome, which is the case in all seed-

based approaches. However, it is still conceivable that a different

parcellation scheme may have yielded different results. Thus, future

work needs to investigate how the subnetwork stabilities change

under different parcellation schemes in order to reveal how the vari-

ous parts of the human functional connectome may show distinct sta-

bility in aging.

In summary, our results suggest that the connectome backbone

remains relatively stable across 2–3 years in middle and older age.

Individual differences in the stability of selected networks were asso-

ciated with cortical volume and memory performance, supporting the

neurocognitive relevance. Future large-scale longitudinal studies

comprising genetics and rich cognitive and biological phenotyping

with connectome-wide stability analyses could bring us closer to a

mechanistic understanding of how age-related changes in neural

events give rise to age-related cognitive decline, ranging from physi-

ological changes to neurodegenerative disease.
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