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Abstract 

 

Studies report increased risk of congenital heart defects (CHD) in the offspring of mothers with 

diabetes, where high blood glucose levels might confer the risk.  We explored the association 

between intake of sucrose-sweetened soft beverages during pregnancy and risk of CHD.  

Prospective cohort data with 88,514 pregnant women participating in the Norwegian Mother and 

Child Cohort Study was linked with information on infant CHD diagnoses from national health 

registers and the Cardiovascular Diseases in Norway Project. Risk ratios (RRs) were estimated by 

fitting generalized linear models and generalized additive models. 

The prevalence of children with CHD was 12/1,000 in this cohort (1,049/88,514). Among these, 201 

had severe and 848 had non-severe CHD (Patent ductus arteriosus; Valvular pulmonary stenosis; 

Ventricular septal defect; Atrial septal defect). Only non-severe CHD was associated with sucrose-

sweetened soft beverages. The adjusted risk ratios (aRR) for non-severe CHD was 1.30 (95% CI: 1.07-

1.58) for women who consumed 25-70 ml per day and 1.27 (95% CI: 1.06-1.52) for women who 

consumed ≥ 70 ml/d when compared to those drinking ≤ 25 ml/d. Dose-response analyses revealed 

an association between the risk of non-severe CHD and the increasing exposure to sucrose-

sweetened soft beverages, especially for septal defects with aRR = 1.26 (95% CI: 1.07-1.47) per 10-

fold increase in daily intake dose. The findings persisted after adjustment for maternal diabetes or 

after excluding mothers with diabetes (n=19). Fruit juices, cordial beverages and artificial sweeteners 

showed no associations with CHD. The findings suggest that sucrose-sweetened soft beverages may 

affect the CHD risk in offspring.    
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Introduction 

 

Congenital heart defects (CHD) are the most common type of serious birth defects, with a birth  

prevalence of 10/1,000 live births [1, 2]. Both environmental and genetic factors have a role in the 

causal pathway, and it has been suggested that modifiable factors cause nearly 30% of CHDs [3-5]. 

CHD prevention has been hampered by limited understanding of modifiable factors [6, 4].  Risk 

factors such as rubella, retinoic acid, thalidomide, or high alcohol intake have been identified [6-8], 

but are relatively uncommon exposures in many populations.  

Maternal diabetes, a common chronic disease increasing in numbers and significance [9, 10], 

is the best documented risk factor for CHD [11-17]. The teratogenic mechanism is debated. It has 

been suggested that hyperglycemia and diabetic ketoacidosis, a severe complication occurring 

frequently among persons with type 1 diabetes, affect embryonic heart development [18, 19], 

especially for defects arising before the 7th week of gestation during cardiac looping and conotruncal 

septation [16, 9]. However, current studies indicate that women with less severe conditions than 

diabetes mellitus, such as lesser degrees of hyperglycemia, also are at risk of adverse pregnancy 

outcomes [20]. Priest et al. (2015) report that subclinical abnormalities of glucose and insulin 

metabolism among nondiabetic mothers confer the CHD risk [21]. Øyen et al. (2016), support the 

view that glucose plays a role in the causal pathway for CHD risk [14]. They found an 8-fold increase 

in CHD risk among mothers with a pre-pregnancy history of acute diabetes complications. However, 

the CHD risk conferred by maternal pregestational diabetes mellitus has not changed over the last 

decades, and the CHD risk for offspring of mothers with type 1 and type 2 diabetes mellitus did not 

differ, despite different etiologies. High glucose levels in early pregnancy may be responsible for the 

association between CHD and maternal diabetes mellitus. The exact mechanism is unknown, but one 

suggestion is that abnormal glucose levels disrupt the expression of regulatory genes in the embryo, 

resulting in cell death [22]. An alternative hypothesis is that abnormal glucose levels increase the rate 

of significant DNA mutations [23].   

The intake of sucrose, known as table sugar, increased significantly in many parts of the 

world in the decades before the year 2000 (WHO, 2014). In Norway the annual intake was 29 kg per 
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person in 2012 (Norwegian Public Health Report, 2014), where sucrose-sweetened soft beverages 

contribute on average 40% of all added sucrose among children and adolescents [24]. The 

consumption of sucrose-sweetened soft beverages has increased from 9 L per capita per year in 1950 

(whole population) to 100 L at the turn of the century (Norway Brewery and the Softdrinks Union, 

Oslo, Norway, 2007), but by 2014 consumption had declined to 55 L [24]. High consumption of 

sucrose-sweetened soft beverages is associated with maternal risk of obesity, cardiometabolic 

disease [25-27] and having neonates large-for-gestational-age (LGA)[28].  Maternal obesity is a risk 

factor for offspring CHDs [29, 30], and neonates with LGA have higher CHD risk than neonates with 

normal birth weight, independent of maternal diagnosis of diabetes [31]. Taken together, high 

sucrose intake can be a risk factor for infant CHD, as previous studies report an association between 

nondiabetic mothers dietary glycemic intake and different birth defects in offspring [32].  

As less severe degrees of maternal hyperglycemia, with slightly higher-than-normal blood 

glucose levels during early pregnancy was a risk factor for a range of pregnancy and delivery-related 

complications [33, 21], we hypothesized that maternal intake of sucrose-sweetened soft beverages 

during the first trimester would be a risk factor for CHD. We also explored if maternal daily intake of 

artificially sweetened soft beverages or juice and cordial beverages could be a risk factor. As the 

heart forms early in embryogenesis and is largely complete by the second trimester, the 

periconceptional period and the first trimester are the most sensitive periods for modifiable risk 

factors. Our aim is therefore to examine the association between maternal intake of sucrose-

sweetened soft beverages in the first trimester and risk of CHD in offspring, and explore a potential 

dose-response relationship between increased consumption levels and CHD risk.  

 

Materials and methods 

 

Study population and data sources 

This study is a sub-project within the Norwegian Mother and Child Cohort Study (MoBa), conducted 

by the Norwegian Institute of Public Health [34]. MoBa is a pregnancy cohort which invited pregnant 

women in Norway attending routine ultrasound examinations at gestational weeks 16 to 18 from 
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1999 through 2008. 41% of the invited women consented to participate. A total of 88,743 births 

were eligible for this study [35].  

Questionnaires in MoBa were administered from early pregnancy at regular intervals during 

childhood and can be found online at http://www.fhi.no/moba-en. For the purpose of this study, we 

used questionnaire data from gestational week 15 (questionnaire 1, Q1) and weeks 17-22 

(questionnaire 2, Q2). Q1 contains information on maternal lifestyle, background variables, and 

health-related matters while Q2 is a semi-quantitative food frequency questionnaire with 

information on maternal drinking and eating habits during early pregnancy. The present study used 

version 8 of the quality-assured data files made available in 2014. 

Information on the pregnancy and delivery from the Medical Birth Registry of Norway 

(MBRN) is included in the MoBa database. The MBRN is based on antenatal forms and data that are 

mandatorily recorded at the maternity departments after delivery and during the hospital stay [36].  

Clinical information on CHD diagnoses was retrieved from the nationwide research project 

“Congenital Heart Defects in Norway” [37], and includes medical data from four data sources: 1) the 

MBRN, which contains information about all live births and stillbirths in Norway since 1967 [36];  2) 

the Cardiovascular Disease project in Norway (CVDNOR, http://www.cvdnor.no) with information on 

all patients hospitalised for cardiovascular diseases and associated malformations in Norway from 

1994-2009 [12]; 3) the National Hospital's clinical database for children with heart disease (Berte) 

contains information on all children with a heart condition who have been examined by a pediatric 

cardiologist or have received surgery or intervention at the National Hospital since 1992 [38]. The 

National Hospital conducted about 80% of congenital heart surgeries in Norway before 2004 and 

nearly all thereafter [37]; 4) and the Cause of Death Register containing death certificate 

information, including date and cause of death.  

Offspring with CHD in MoBa were identified by linkage, using the personal identification 

number from the Norwegian Population Register. Statistics Norway performed data linkage and de-

identification. 

 

Classification of congenital heart defects 

http://www.fhi.no/moba-en
http://www.cvdnor.no/
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Senior paediatric cardiologists (EL, HH, and Gottfried Greve, Haukeland University Hospital, Bergen, 

Norway) and a clinical geneticist (NØ) classified the cardiac defects and ensured the quality of the 

cardiac registry data. As previously described in detail by Leirgul et al [37], individuals with a heart 

defect have been identified by diagnostic CHD codes (ICD codes and van Mierop codes), and 

classified into embryologically related heart defect phenotypes using a modified version of a 

classification proposed by Botto et al. (2007), and recently used in large population-based cohorts in 

Denmark and Canada  [3, 4, 14]. In the present study we assigned the cardiac defects into severe 

CHD (heterotaxias, conotruncal defects, atrioventricular septal defects, anomalous pulmonary 

venous return, left ventricle outflow tract obstruction, right ventricle outflow tract obstruction) or 

non-severe CHD (patent ductus arteriosus, valvular pulmonary stenosis, ventricular septal defect, 

atrial septum defects, unspecified septal defects, isolated valve defects, other specified heart 

defects, unspecified heart defects) (Table 1) [39]. Additional information on co-morbidity such as 

chromosome aberrations and extracardiac defects was also retrieved by ICD-10 codes and van 

Mierop codes (see Leirgul, 2014) [37]. 

In the MoBa cohort of 88,743 infants, we identified a total number of 1,278 infants with CHD.  

Preterm patent ductus arteriosus (n=155) was not considered as a CHD and infants with chromosome 

aberrations (n=74) were excluded from the data file, leaving us with a study cohort of 88,514 births, 

among them 1,049 offspring with CHD (Figure 1). There were no cases of stillbirths in the CHD group.  

See Table 1 and Figure 1 for more information. 

 

Figure 1 and Table 1 about here 

 

Beverages measures  

In the MoBa Q2, the mothers reported their intake of fruit juice, cordial beverages and soft drink 

beverages since the start of pregnancy. For each beverage item, the respondents reported how many 

glasses they had been drinking, per day, week or month.  Beverages were categorized as sucrose-

sweetened soft beverages (Coca-Cola, Pepsi and other soft beverages with sucrose), artificially-

sweetened soft beverages (Diet Coke, Diet Pepsi, and other light or diet soft beverages), fruit juice 
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(apple and orange) and cordial beverages (concentrated fruit-based syrup mixed with water). We 

defined a glass as 250 ml for all beverages, and we grouped the daily consumption into three 

categories: low (≤25 ml), moderate (25-70 ml) and high (≥ 70 ml) per day. In the analysis, the lowest 

intake group was used as the reference category.  

 

Background variables 

Table 2 and 3 shows the distribution of variables from MBRN and Q1. Gestational age is determined 

by predictions from ultrasound measures, or if this is missing, from the date of the last menstrual 

period. This information, as well as information on parity, maternal age at childbirth (categorized: 

<20 years, 20-24, 25-29, 30-34, 35+), the child’s sex (girl or boy) and birth weight (measured in 

grams), is taken from the MBRN.  

From Q1, with assessment point at gestation week 15, we have information on maternal 

smoking before and during pregnancy (response categories: nonsmoker, occasional smoker, daily 

smoker, dichotomized as ”Nonsmokers” and “Smokers”), pre-pregnancy height and weight and 

maternal educational attainment (less than 12 years, 12 years, 13-16 years, 17 years or more). Pre-

pregnancy height and body weight were used to calculate body mass index (BMI = kg/m2) which was 

categorized as: <20, 20-24, 25-29, 30+.  Further, maternal distress was measured by the SCL-5 from 

Q1, a shortened version of the Hopkins Symptom Checklist shown to correlate strongly with the SCL-

25 index [40]. SCL-5 has five items, with four response categories from 1 = not bothered to 4 = very 

bothered; an item was: ‘Worrying too much about things.’ The index was scored as the mean of the 

item scores, where a mean score less than two is considered within the normal range on the SCL-5. 

The mothers were asked if they exercised once a week or more before pregnancy, and the responses 

were dichotomized as ‘no’ and ‘yes.’ Previous treatment for infertility was dichotomized as ‘no’ and 

‘yes.’ Paternal smoking during the last six months before pregnancy and during pregnancy was 

included and the responses were dichotomized as ‘Nonsmokers’ and ‘Smokers.’ Maternal diabetes 

mellitus is reported in MBRN and Q1 and was categorized as pregestational diabetes treated with 

insulin (type 1) and insulin-independent diabetes (type 2). However, the total cases were so few 

among the mothers with CHD (n=19) that all women with pregestational diabetes were merged into 
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one group in the analyses. We did not consider maternal gestational diabetes as a risk factor for 

offspring CHD, since gestational diabetes develops later in pregnancy and after the fetal heart 

development.  

 

Covariates 

We decided a priori the following covariates that could potentially influence the association between 

maternal soft drink consumption and CHD; year of birth, parity, maternal age at delivery, years of 

education, diabetes, pre-pregnancy body mass index, and smoking before pregnancy. These 

covariates were included in the main analyses.  

 

Analytic strategy  

The association between maternal soft drink consumption and offspring risk of CHD was calculated 

as relative risks (RR) comparing offspring risk of CHD among high-level or medium-level soft drink 

intake with offspring risk of CHD among low-level intake as the reference. The RRs were estimated 

with 95% confidence intervals (CI) using log-link binominal regression models, and also with 

adjustment for the a priori confounders. The distribution of sucrose-sweetened soft beverages intake 

was skewed to the right, with a small subgroup of mothers with a large intake. Therefore, 

consumption of sucrose-sweetened soft beverages was transformed to a log scale continuous 

variable to obtain 1) dose-response curves for adjusted RRs of offspring CHD risk plotted against the 

maternal consumption of sucrose-sweetened soft beverages, and 2) trend analyses, i.e. the change in 

RRs for each 10-fold risk increase in soft drink intake. Log-transforming the intake values stabilizes 

the analyses and enables more precise confidence intervals for RRs at the large intake values. The 

log-transformation reduces undue influence by the highest values on the dose-response analyses. 

For the dose-response analyses we used a generalized additive model (GAM) for binomial outcomes 

with log link, a flexible procedure that allows for nonlinear predictor effects using function 

smoothers such as splines, i.e. piecewise polynomial functions [41].  
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Sensitivity analysis 

In this study, maternal diabetes is a covariate that can act as a confounder or an intermediate factor. 

We conducted a sensitivity analysis to explore the potential effects of maternal diabetes on CHD-risk. 

To capture uncontrolled confounding by maternal diabetes or systematic change of behavior due to 

having diabetes, we did adjust for maternal diabetes as a factor that potentially could influence both 

maternal sucrose consumption and the infant CHD risk in the main analysis (Table 4). In the 

sensitivity analysis we excluded all diabetic mothers in the case group (n=19) and in the cohort-

controls (n=705) to see if that influenced our risk estimates. Further, we explored the association 

between sucrose-sweetened soft beverages during pregnancy and offspring whose mothers had 

maternal diabetes mellitus in the second analysis compared to the controls (see Table 6).  

Foetuses with CHD could have been undiagnosed due to early foetal loss. If high beverage intake 

increases the risk of early losses, CHD cases caused by the high intake may be lost early and thus go 

undetected. Then our estimated relative risks would most likely be attenuated. We therefore 

performed sensitivity analysis to check for associations with sugar exposure, diabetes and risk of 

stillbirths. In our datafile we have 512 cases classified as stillborns (365 died before delivery, 37 died 

during delivery and 110 had unknown time code of death). This case group was our dependent 

variable in the sensitivity analysis. 

 

Results 

 

Characteristics of the Study Population 

In the study population of 88,514 births, the overall daily mean maternal intake of sucrose-

sweetened soft beverages was 86.50 ml  (CI: 85.10-87.91) while the median daily intake was 24.66 

ml. The birth prevalence of CHDs was 12/1,000 live births (1,049 /88,514) after exclusion of preterm 

PDA and chromosomal aberrations. Table 2 compares mothers of children with and without CHD. 

Mothers of children with severe and non-severe CHD did not differ from mothers of children without 

CHD with regard to age, education, smoking, having a partner who smokes, pre-pregnancy BMI, 

infertility treatment, exercise, or psychological distress before pregnancy. Boys were 
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overrepresented among children with severe CHD and underrepresented among children with non-

severe CHD, and children with severe and non-severe CHD had lower birth weight and shorter 

gestational age than controls.  Diabetic women were overrepresented among mothers of children 

with severe CHD. We further explored the characteristics of women according to their daily intake of 

sucrose-sweetened soft beverages before pregnancy week 18, and found no differences on the 

background variables (Table 3).  

 

Table 2 and 3 about here 

 

Sucrose-sweetened soft beverages and infant CHD 

We observed that consumption of sucrose-sweetened soft beverages was associated with CHD 

(moderate: 25-70 ml, aRR = 1.29, 95% CI: 1.08-1.53 and high: ≥ 70 ml, aRR = 1.22, 95% CI: 1.04-1.44). 

We found a positive association between consumption of sucrose-sweetened soft beverages and 

non-severe CHD, when compared to mothers of children without CHD (moderate: 25-70 ml, aRR = 

1.30, 95% CI: 1.07-1.58, high: ≥ 70 ml, aRR = 1.27, 95% CI: 1.06-1.52). Moreover, Table 4 shows a 

significant association between sucrose-sweetened soft beverages and septal defects (moderate: 25-

70 ml, aRR = 1.29, 95% CI: 1.03-1.62, high: ≥ 70 ml, aRR = 1.36, 95% CI: 1.1-1.67). A similar association 

was found for VSD but was only significant when women reported drinking ≥ 70 ml per day (aRR = 

1.40 (95% CI: 1.11-1.76).  Intake of sucrose-sweetened soft beverages was not associated with risk of 

severe CHD (moderate: 25-70 ml, aRR = 1.26, 95% CI: 0.85-1.88, high: ≥ 70 ml, aRR = 1.06, 95% CI: 

0.72-1.55).  

Figure 2 displays dose-response curves obtained from the log-binomial GAMs with adjusted 

RRs.  When we conducted a dose-response analysis for the trend estimation, there was no clear 

trend for severe CHD. The CHD-risk in severe CHD showed no significant increase when the average 

frequency of daily consumption of sucrose-sweetened soft beverages increased. For septal defects 

and VSDs the CHD-risk increased approximately linearly when the average frequency of daily 

consumption of sucrose-sweetened soft beverages increased. For non-severe CHD and ASD there 

was also an apparent increase, although less pronounced. For non-severe CHD, increased 
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consumption during pregnancy did not display any threshold effects; i.e. there was no specific 

amount of exposure of sucrose-sweetened soft beverages that led to a marked increase in CHD-risk. 

Instead, the curve gradually increased at the lowest doses and continued to increase steadily. There 

are some CHD categories where the trend is not obvious; for instance, for non-severe CHD the RRs in 

Table 4 are 1.30 (95% CI: 1.07-1.58) and 1.27(95% CI: 1.06-1.52) for medium and high doses, 

respectively. This is also seen in the corresponding plot for non-severe CHD in Figure 2, where the 

effect seems to level off at around 70ml/d. This indicate that medium doses are enough to trigger the 

risk increase, but additional increase in dose does not result in a further increase in risk. Still, the 

corresponding trend estimates are positive, since the trend is estimated as an overall dose-response, 

going from the lowest levels to the highest. 

 

Table 4 and Figure 2 about here 

 

Other sweetened beverages and infant CHD 

Table 5 shows the association of artificially sweetened soft beverages, apple- and orange juice, 

cordial beverages with each CHD, including adjusted relative risks and 95% confidence intervals for 

each consumption level. In contrast to the finding for sucrose-sweetened soft beverages, we found 

no significant associations with beverages containing less or no sucrose and offspring CHD. 

 

Table 5 about here 

 

The potential confounding effect of maternal pregestational diabetes  

In this cohort, the prevalence of mothers with diabetes mellitus type 1 and 2 was 8/1,000 

(724/88,514).  We identified altogether 19 offspring with CHD whose mother had pregestational 

diabetes (type 1 and 2). Among mothers with diabetes, nine offspring had severe CHD and 10 had 

non-severe CHD. Maternal diabetes had no significant associations with non-severe CHD (RR = 1.55, 

95% CI: 0.89-2.69), however it had a strong positiv association with severe CHD risk in the offspring 

(RR = 4.66, 95% CI: 2.37-9.10). In this sense, maternal diabetes could be an important confounder 
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associated with both sucrose-sweetened soft beverages consumption and CHD-risk. In the sensitivity 

analysis, we excluded all diabetic mothers to see if that influenced our risk estimates. Table 6 shows 

it had no influence on the observed associations. When we excluded all diabetic mothers from the 

main analysis, we found that the risk ratios for CHD in offspring remained unchanged compared to 

our risk estimates from our main analysis (in Table 4) where mothers with diabetes were included. 

Further, we did not find any significant associations between consumption of sucrose-sweetened soft 

beverages during pregnancy and risk of maternal diabetes mellitus (see Table 6). 

Although we did not have information on spontaneous abortions, we investigated whether maternal 

diabetes or consumption of sucrose-sweetened soft beverages were associated with stillbirths. The 

RRs of stillbirths for maternal diabetes compared to no diabetes was 1.42 (95% CI: 0.63-3.18). And, 

The RRs of stillbirths for maternal high-level (≥ 70 ml/day) and medium-level (25-70 ml/day) 

consumption compared to low-level (≤ 25 ml/day) consumption were 0.88 (95% CI: 0.70-1.11) and 

0.98 (95% CI: 0.78-1.26), respectively. These null findings persisted after adjustment.  

 

Table 6 about here 

 

Discussion 

 

To our knowledge, this is the first population-based exploration of the association between intake of 

sucrose-sweetened soft beverages during the first trimester and the offspring risk of CHD. 

We found a slightly increased risk of non-severe CHD among offspring of mothers consuming more 

than 70 ml sucrose-sweetened soft beverages per day compared to mothers consuming less than 25 

ml per day.  Dose-response analysis identified a tendency of increased risk for septal defects when 

the average daily consumption increased. Further, the findings persisted after adjustment for 

potential confounders such as maternal age, year of birth, diabetes mellitus, parity, education, 

smoking and pre-pregnancy BMI. Our results remained unchanged in a sensitivity analysis excluding 

diabetic mothers, supporting a significant positive association between maternal consumption of 

sucrose-sweetened soft beverages and infant risk of non-severe CHD.  



 14 

Interestingly, we did not find significant associations between CHD-risk and other beverages 

such as fruit juice, cordial beverages and artificially sweetened soft beverages.  Artificial sweeteners 

are widely used, and some studies have explored if additives like caramels for coloring, caffeine or 

phosphoric acid could cause adverse effects [27]. However, we did not find any associations between 

CHD risk and beverages containing no sucrose (artificial sweeteners) or for cordial beverages 

containing less sucrose.  

The overall total content of carbohydrates in both juice and sucrose-sweetened soft 

beverages are similar. However, consumption of fruit juice during pregnancy showed no associations 

with offspring CHD. This is in line with previous studies, where it was difficult to provide consistent 

associations between adverse birth effects and fruit juice intake [43, 27]. An essential difference is 

that fruit juice provides vitamins, minerals, fiber and various phenolic compounds [43]. Moreover, 

juice contains fructose naturally, while the added sucrose in the soft beverages is composed of 50:50 

glucose and fructose. An explanation can be that glucose and fructose have different effects on the 

glucose homeostasis [44], where absorbed glucose gives acute spikes in blood glucose level [44], 

while fructose is more gradually converted to glucose, lactate and glycogen in the liver [45]. 

Moreover, there might be a difference in the glycemic load of the diet. Juice is often consumed as 

part of a meal, while sucrose-sweetened soft beverages often are consumed in larger amounts and 

between meals [46], leading to higher glycemic load with greater expected elevation in blood glucose 

and insulin concentration.  Also of relevance, is that juice and sucrose-sweetened soft beverages 

seem to have different associations with different surrogate markers on insulin resistance among 

healthy adults [43].  Compared to fruit juice consumption, adverse effect was only found for sucrose-

sweetened soft beverages, with a positive association with fasting insulin, which is a marker of insulin 

resistance and a risk factor for diabetes type 2. The authors speculate that the absence of adverse 

metabolic effects of fruit juice was due to confounding by lifestyle factors [43].  

In accordance with previous studies [6, 16, 11, 17-19, 7, 12-14], we identified a significant 

association between maternal diabetes mellitus (type 1 and 2) and CHD in offspring. Interestingly, 

there is a tendency in our results that maternal diabetes, as compared to consumption of sucrose-

sweetened soft beverages, has different associations to particular CHD phenotypes: Diabetes was 
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associated with increased risk of severe CHD subtypes, whereas sucrose-sweetened soft beverages 

consumption was slightly associated with non-severe CHD subtypes. Further, the associations 

between sucrose-sweetened soft beverages and non-severe CHD tended to be weaker than the 

associations between maternal diabetes and severe CHD. The explanation of the different effects on 

the CHD subtypes might be that diabetes mellitus is present before conception and consequently is 

more commonly associated with defects of early cardiogenesis such as atrioventricular septal 

defects, heterotaxy and outflow tract anomalies, which are defined as severe CHDs in our study [16, 

9]. Priest (2015) finds a strong association between mid-trimester maternal glucose levels and 

offspring risk of ToF (Tetralogy of Fallot) but not TGA (Transposition of the Great Arteries), both 

severe conotruncal defects. This indicates specific CHD vulnerabilities due to serum glucose levels 

among nondiabetic women. Concurrently, a possible fluctuation in glucose levels due to 

consumption of sucrose-sweetened soft beverages in our study appeared to influence later cardiac 

development, such as ventricular septal defects (VSDs), occurring around pregnancy week 8. Taken 

together, these findings need more investigation, as there may seem to be complex mechanisms and 

different pathways between different CHD-malformations and high glucose-levels when caused by a 

chronic disease such as diabetes mellitus, observed subclinical abnormalities of glucose levels or by 

intake of sucrose-sweetened soft beverages. 

If confirmed in other samples, preferably conducted earlier in pregnancy, these observations 

could have important public health implications for identifying women at risk for carrying offspring 

with CHD. Strict glycaemic control in diabetic women before conception and during pregnancy has 

been reported to reduce the risk of erroneous embryonic development [20, 48], in the same way; it 

is conceivable to reduce the intake of sucrose-sweetened soft beverages to improve glucose 

homeostasis even as early as when women are planning a pregnancy, or often more effective; by 

reducing sugar consumption in the whole population.  

 

Strengths and limitations of study 

Our study has unique features that buttress our findings. It builds on prospective cohort data linked 

to clinical data, ascertained through national health registers with a comprehensive systematic 
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classification of CHDs suited for etiologic studies. The sizable cohort permitted adjustment for 

relevant confounders. However, the study has limitations that might have affected the validity of our 

findings.  

First, mothers’ responses were self-report measures and may be influenced by social 

desirability, underreporting, recall bias and other response biases. A study from Iceland showed that 

food items such as sucrose-sweetened soft beverages and other food items perceived as unhealthy 

were underreported [47]. Considering that the annual consumption of sucrose-sweetened soft 

beverages was about 55 liters per capita in 2014 (i.e. approximately 150 ml per day) [24], one could 

speculate if some of the mothers in our study may have underreported their intake. This can be a 

potential source of misclassification error toward inclusion of heavy drinkers in the lower drinking 

categories. This should lead to a bias toward the null value in the estimate of the effects of intake of 

sucrose-sweetened soft beverages during pregnancy on infant CHD risk. However, the MoBa semi-

quantitative food frequency questionnaire has been validated against a 4-day weighed food diet 

combined with several biomarkers and was shown suitable to detect high and low intakes of energy, 

nutrients, and foods [48]. The lower mean consumption among mothers in MoBa (86.5 ml per day) 

could also reflect that the MoBa cohort is a more healthy selection of the Norwegian population [35].  

 Second, higher intake of sucrose-sweetened soft beverages could be a marker of an overall 

undesirable diet because it tends to cluster with other unhealthy dietary and lifestyle habits such as 

higher intake of saturated and trans fats and food with a high glycemic load [26, 49]. We did adjust 

for various lifestyle factors, and the consistency of our results reduces the likelihood that residual 

confounding by lifestyle is causing the findings. However, residual confounding cannot be ruled out. 

Third, small sample sizes influence statistical power; in particular, small numbers within each cardiac 

phenotype reduce the power to identify associations. We find no evidence of effect of sucrose intake 

on the risk of severe CHD; however, an association cannot entirely be ruled out since the 

corresponding confidence intervals in Table 4 are wide. Fourth, birth prevalence of CHD might be 

underestimated during the last period of the MoBa-study if not all cases were ascertained. However, 

about 94% of most CHDs have been diagnosed within 6 months of age, especially for severe CHD and 

VSD [37, 39]. We acknowledge that ASD could have been underestimated the last period with a 
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median age of diagnosis of 323 days [37]. However, the analyses are adjusted for year of birth. This 

corrects for a possible association between changing beverage intake through the MoBa period and a 

possible reduction in case ascertainment at the end of the period. Finally, to better understand the 

possible link between sucrose-sweetened soft beverages and CHD development, data on maternal 

pregestational glucose levels would have been helpful, and our findings should inspire more detailed 

clinical and experimental studies to explore the possible underlying mechanisms between sucrose-

sweetened soft beverages and offspring CHD-risk.  

 

Conclusion and clinical implications 

In conclusion, we found a modest positive association between maternal consumption of sucrose-

sweetened soft beverages during the first weeks of pregnancy and non-severe CHD in offspring. 

Since the embryological development of the heart is largely completed by the first trimester, there is 

a “time window” where fetuses exposed to modifiable risk factors in utero may be at higher risk for 

CHD. This large cohort study, suited for exploring environmental risk factors, provides the basis for 

larger studies and population-based molecular epidemiological studies on the process underlying 

erroneous embryonic development and prevention of CHDs. Our findings suggest that sucrose-

sweetened soft beverages may affect the CHD risk in offspring. Further studies are needed to 

investigate whether the association is causal. 
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Table 1. Heart defect phenotype in 1,049 children among 88,514 individuals in the Norwegian 
Mother and Child Cohort Study, 2000 to 2009.  

Severe CHD n Non-severe CHD n 

Heterotaxia 11   Patent ductus arteriosus, PDA 89 

Conotruncal defect 79   Valvular pulmonary stenosis, vPS 18 

Atrioventricular septal defect, AVSD 22   Ventricular septal defect, VSD  500 

Anomalous pulmonary venous return, APVR 10   Atrial septal defect, ASD 135 

Left ventricle outflow tract obstruction, 
LVOTO 

64   Unspecified septal defect 6 

Right ventricle outflow tract obstruction, 
RVOTO‡ 

15   Isolated valve defect 50 

    Other specified heart defect† 27 

    Unspecified heart defect‡ 23 

Total* 201  848 

CHD congenital heart defect   
* After excluding preterm PDA (n=155) and chromosome aberrations (n=74) the final CHD-sample consisted of 
1,049 children. 
‡ Except valvular pulmonary stenosis, vPS   
†For example isolated valvular malformations not classified as LVOTO, RVOTO, or venous malformations 
 ‡Not registered with lethal conditions.  
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Table 2. Characteristics of individuals without CHD, with non-severe CHD, and severe CHD among 
88,514 births in the Norwegian Mother and Child Cohort Study, 2000 to 2009. 

‡ P values were calculated using ANOVA for continuous variables and χ2 test for categorical variables. 
† Prevalence per 1.000 births per year of birth 
*Differs significantly from control group 

 Without CHD 
(n = 87,465) 

Non-severe 
CHD (n=848) 

Severe CHD 
(n=201) 

χ2/F p‡ 

 
Mother 

     

Gestational week (mean ± SD) 39.4 ± 2.1 38.6 ± 2.8* 38.3 ± 3.2* 97.9  <.001 
 

Age at child birth, years 
(mean ± SD) 

30.2 ± 4.6 30.2 ± 4.6 29.6 ± 5.0 2.2 .115 

Education   > 12 years (%) 80.8 80.6 76.5 2.7 .265 

Smoking during pregnancy, yes (%) 8.5 8.7 12.0 3.8 .150 

Smoking before pregnancy, yes (%) 28.8 31.5 28.4 3.6 .166 

Pre-pregnancy BMI (mean ± SD)  
 

22.2 ± 7.7 22.4 ± 7.5 21.7 ± 7.6    1.1    .340 

Infertility, yes (%) 9.5 8.9 10.1 0.5 .784 

Exercise before pregnancy 
 ≥ once a week (%) 

78.5 77.2 73.7 3.4 .187 

Psychological distress gestation 
week 18, raw score from 1 - 4  
(mean ± SD) 

1.3 ± 0.4 1.3 ± 0.4 1.3 ± 0.4    1.3   .272 

Diabetes (type 1 or 2), yes (%) 0.8 1.2 4.5* 14.46 <.001 
 
Child 

     

Boys (%) 51.3 47.9* 61.1* 14.1   <.001 
 

Birth weight, g  
(mean ± SD) 

3559 ± 610 3431± 805 * 3233 ± 825*   55.7   <.001 

Year of birth (Prevalence)†:        1999 
2000 
2001 
2002 
2003 
2004 
2005 

   2006 
2007 
2008 
2009 

 0.0 
7.8 

10.2 
9.9 

10.4 
11.1 
9.2 
9.4 

10.6 
7.3 
6.8 

0.0 
1.4 
1.9 
2.3 
2.7 
2.1 
2.5 
1.9 
2.4 
2.1 
2.3 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

 
Father 

     

Smoking during pregnancy, yes (%) 20.6 
 

18.9 24.2 3.6 .164 

Smoking before pregnancy, yes (%) 27.3 
 

26.2 29.3 1.1 .579 
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Table 3. Characteristics of pregnant women by their reported daily intake of sucrose-sweetened soft 
beverages before gestational week 18 for 88,514 births in the Norwegian Mother and Child Cohort 
Study, 2000 to 2009. 

‡ P values were calculated using ANOVA for continuous variables and χ2 test for categorical variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ≤25 ml 
(n=45,281) 

25-70 ml 
(n=18,604) 

≥ 70 ml 
(n=24,629) 

χ2/F p‡ 

Gestational week (mean ± SD) 39.3 ± 2.1 39.4 ± 2.1 39.3 ± 2.0 .130 
.878 

 

Age at child birth 
(mean ± SD) 30.2 ± 4.6 30.1 ± 4.6 30.2 ± 4.7 .775 .461 

Education   > 12 years (%) 80.6 81.0 81.0 2.53 .283 

Smoking during pregnancy, yes (%) 8.6 8.6 8.3 3.80 .150 

Smoking before pregnancy, yes (%) 28.7 28.8 28.9 .155 .925 

Pre-pregnancy BMI (mean ± SD) 22.2 ± 7.6 22.1 ± 7.7 22.2 ± 7.8 .695 .499 

Infertility, yes (%) 9.6 9.3 9.4 1.89 .388 

Exercise before pregnancy 
≥ once a week (%) 78.3 78.8 78.6 2.00 .367 
Psychological distress gestation 
week 18, raw score from 1 - 4 
( mean ± SD) 1.3 ± 0.4 1.3 ± 0.4 1.3 ± 0.4 .055 .946 
Diabetes (type 1 and 2), yes (%) 1.6 1.5 1.6 1.26 .533 
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Table 4. The association between maternal daily intake of sucrose-sweetened soft beverages during 
pregnancy and risk of CHD in offspring for 88,514 births in the Norwegian Mother and Child Cohort 
Study, 2000 to 2009.  

Sucrose-
sweetened soft 
beverages 
(ml/d) 

Total no.  
of births 

CHDs  (n) Prevalence 
CHDs † 

 RR (95% CI)  aRR (95% CI)* 

  All CHDs    
≤25 ml 45,281 497 11.0 1 1 
25-70 ml 18,604 243 13.1 1.19 (1.02, 1.39) 1.29 (1.08, 1.53) 
≥ 70 ml 24,629 309  12.5 1.14 (0.08, 1.23) 1.22 (1.04, 1.44) 
Trend      1.18 (1.04, 1.34) 
  Severe    
≤25 ml 45,281 103 2.3 1 1 
25-70 ml 18,604 42 2.3 0.99 (0.69, 1.42) 1.26 (0.85, 1.88) 
≥ 70 ml 24,629 56  2.3 1.00 (0.72, 1.38)  1.06 (0.72, 1.55)  
Trend      1.19 (0.89, 1.60) 
  Non-severe     
≤25 ml 45,281 394 8.7 1 1 
25-70 ml 18,604 201  10.8 1.24 (1.05, 1.47) 1.30 (1.07, 1.58) 
≥ 70 ml 24,629 253  10.3 1.18 (1.01, 1.38)  1.27 (1.06, 1.52)  

Trend      1.18 (1.02, 1.36) 
  All septal    
≤25 ml 45,281 290 6.4 1 1 
25-70 ml 18,604 152  8.2 1.26 (1.05, 1.51) 1.29 (1.03, 1.62) 
≥ 70 ml 24,629 199  8.1 1.28 (1.05, 1.55)  1.36 (1.11, 1.67)  
Trend      1.26 (1.07, 1.47) 

  ASD    
≤25 ml 45,281 56 1.2 1 1 
25-70 ml 18,604 37  2.0 1.61 (1.06, 2.44) 1.39 (0.84, 2.29) 
≥ 70 ml 24,629 42  1.7 1.38 (0.93, 2.06)  1.31 (0.82, 2.09)  
Trend      1.30 (0.91, 1.86) 
  VSD    
≤25 ml 45,281 230  5.1 1 1 
25-70 ml 18,604 113  6.1 1.20 (0.96, 1.50) 1.26 (0.98, 1.64) 
≥ 70 ml 24,629 157  6.4 1.26 (1.03, 1.53) 1.40 (1.11, 1.76) 
Trend      1.27 (1.06, 1.52) 

† Birth prevalence per 1,000 births (preterm PDA and chromosomal aberrations excluded). 

*Relative risks compared CHD birth prevalences for medium- or high-level intake of beverages with CHD birth 

prevalence for low-level intake of beverages (reference) with adjustment for year of birth, smoking before 

pregnancy, mother’s age, education, parity, diabetes mellitus, and pre-pregnancy BMI. 

Trend is estimated as a linear trend on log-transformed daily intake dose; the stated RRs measure the relative 

risk increase corresponding to a 10-fold increase in daily intake dose. 

CI Confidence Interval; CHD Congenital Heart Defect; ASD Atrial Septal Defect; VSD Ventricular Septal Defect 
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Table 5. The association between maternal daily intake of artificially-sweetened beverages, juice, or 
cordial beverages during pregnancy and risk of CHD in offspring for 88,514 births in the Norwegian 
Mother and Child Cohort Study, 2000 to 2009. 

Exposure (ml/d)  Total no.  
of births 

CHDs (n) Prevalence 
CHDs † 

 RR (95% CI)  aRR (95% CI)* 

Artificially-sweetened 
soft beverages  

  
All CHDs 

   

≤25 ml 46,374 552 11.9 1 1 
25-70 ml 12,324 143 11.6 0.98 (0.81, 1.17) 0.95 (0.77, 1.18) 
≥ 70 ml 29,816 354 11.9 1.00 (0.87, 1.14) 0.96 (0.83, 1.12) 
  Severe    
≤25 ml 46,374 103 2.2 1 1 
25-70 ml 12,324 32 2.6 1.17 (0.79, 1.74) 0.82 (0.57, 1.19) 
≥ 70 ml 29,816 66 2.2 1.00 (0.84, 1.18)  1.05 (0.66, 1.67)  
  Non-severe     
≤25 ml 46,374 449 9.7 1 1 
25-70 ml 12,324 111 9.0 0.93 (0.76, 1.14) 0.93 (0.73, 1.18) 
≥ 70 ml 29,816 288 9.7 1.00 (0.86, 1.16)  1.00 (0.84, 1.18)  
Apple/orange juice   All CHDs    
≤25 ml 19,438 245 12.6 1 1 
25-70 ml 13,221 165 12.5 0.91 (0.78, 1.05) 0.97 (0.77, 1.22) 
≥ 70 ml 55,855 639 11.4 0.99 (0.81, 1.21) 0.94 (0.79, 1.11) 
  Severe    
≤25 ml 19,438 39 2.0 1 1 
25-70 ml 13,221 38 2.9 1.43 (0.92, 2.24) 1.12 (0.66, 1.90) 
≥ 70 ml 55,855 124 2.2 1.11 (0.77, 1.58) 1.03 (0.69, 1.53)  
  Non-severe     
≤25 ml 19,438 206 10.6 1 1 
25-70 ml 13,221 127 9.6 0.90 (0.73, 1.13) 0.94 (0.72, 1.21) 
≥ 70 ml 55,855 515 9.2 0.87 (0.74, 1.02)  0.92 (0.76, 1.11)  
Cordial  All CHDs    
≤25 ml 55,791 643 11.5 1 1 
25-70 ml 13,099 166 12.6 1.10 (0.93, 1.03) 1.11 (0.91, 1.35) 
≥ 70 ml 19,624 240 12.2 1.06 (0.92, 1.23) 1.13 (0.95, 1.33) 
  Severe    
≤25 ml 55,791 129 2.3 1 1 
25-70 ml 13,099 28 2.1 0.93 (0.62, 1.39) 1.18 (0.76, 1.83) 
≥ 70 ml 19,624 44 2.2 0.97 (0.69, 1.37)  1.03 (0.69, 1.53)  
  Non-severe     
≤25 ml 55,791 514 9.2 1 1 
25-70 ml 13,099 138 10.5 1.14 (0.95, 1.38) 1.09 (0.88, 1.37) 
≥ 70 ml 19,624 196 10.0 1.08 (0.92, 1.28)  1.15 (0.95, 1.39)  

† Birth prevalence per 1,000 births (excluding preterm PDA and chromosomal aberrations). 

*Relative risks compared CHD birth prevalences for medium- or high-level intake of beverages with CHD birth 

prevalence for low-level intake of beverages (reference) with adjustment for year of birth, smoking before 

pregnancy, mother’s age, education, parity, diabetes mellitus, and pre-pregnancy BMI. 

CI Confidence Interval; CHD Congenital Heart Defect; ASD Atrial Septal Defect; VSD Ventricular Septal Defect 
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Table 6. The association between of sucrose-sweetened soft beverages during pregnancy and infant 

CHD risk by excluding a total number of 724 mothers with diabetes in the first analysis (A), and the 

association between sucrose-sweetened soft beverages during pregnancy and maternal diabetes 

mellitus as outcome in the second analysis (B).  

Sucrose-sweetened soft 
beverages (ml/d)  

Total no.  
of births 

  Case group (n) RR (95% CI)* 

A) Excluding offspring whose mothers had diabetes mellitus  

  All CHDs  
≤25 ml 44,904 486 1 
25-70 ml 18,463 238 1.19 (1.02, 1.40) 
≥ 70 ml 24,423 306 1.16 (1.00, 1.34) 
  Severe CHDs  
≤25 ml 44,904 97 1 
25-70 ml 18,463 39 0.98 (0.67, 1.42) 
≥ 70 ml 24,423 56 1.06 (0.77, 1.48) 
  Non-severe CHDs  
≤25 ml 44,904 389 1 
25-70 ml 18,463 199 1.25 (1.05, 1.48) 
≥ 70 ml 24,423 250 1.18 (1.01, 1.40) 
  All septal CHDs  
≤25 ml 44,904 285 1 
25-70 ml 18,463 152 1.30 (1.07, 1.58) 
≥ 70 ml 24,423 197 1.27 (1.06, 1.53) 
  ASD  
≤25 ml 44,904 55 1 
25-70 ml 18,463 37 1.64 (1.08, 2.49) 
≥ 70 ml 24,423 42 1.41 (0.94, 2.10) 
  VSD  
≤25 ml 44,904 226 1 
25-70 ml 18,463 113 1.22 (0.97, 1.53) 
≥ 70 ml 24,423 155 1.25 (1.03, 1.55) 

B) Consumption of sucrose-sweetened soft beverages and risk of diabetes mellitus  

  Diabetes  
≤25 ml 45,281 377 1 
25-70 ml 18,604 141 0.91 (0.75, 1.11) 
≥ 70 ml 24,629 206 1.00 (0.85, 1.19) 

*Relative risks compared CHD birth prevalences for medium- or high-level intake of beverages with CHD birth 

prevalence and diabetes prevalence for low-level intake of beverages (reference). 

CI Confidence Interval; CHD Congenital Heart Defect; ASD Atrial Septal Defect; VSD Ventricular Septal Defect 
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