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Abstract. Mathematical models for flow and reactive transport in porous media
often involve non-linear, degenerate parabolic equations. Their solutions have low
regularity, and therefore lower order schemes are used for the numerical approxi-
mation. Here the backward Euler method is combined with a mixed finite element
method, which results in a stable and locally mass-conservative scheme. At each
time step one has to solve a non-linear algebraic system, for which one needs ad-
equate iterative solvers. Finding robust ones is particularly challenging here, since
the problems considered are double degenerate (i.e. two type of degeneracies are
allowed: parabolic-elliptic and parabolic-hyperbolic).

Commonly used schemes, like Newton and Picard, are defined either for non-
degenerate problems, or after regularising the problem in the case of degenerate
ones. Convergence is guaranteed only if the initial guess is sufficiently close to the
solution, which translates into severe restrictions on the time step. Here we discuss
an iterative linearisation scheme which builds on the L-scheme, and does not employ
any regularisation. We prove its rigorous convergence, which is obtained for Hölder
type non-linearities. Finally, we present numerical results confirming the theoretical
ones, and compare the behaviour of the proposed scheme with schemes based on a
regularisation step.

1 Introduction

We consider the following non-linear, degenerate parabolic equation

∂tb(u(t,x))−∇ · (∇u(t,x)) = f(t,x), t ∈ (0, T ],x ∈ Ω, (1)

with given functions b : R → R and f : (0, T ] × Ω → R. Ω is a bounded
domain in Rd, d ∈ {1, 2, 3}, having a Lipschitz continuous boundary ∂Ω and
T is the final time. Initial and boundary conditions (for simplicity the latter
are assumed to be of homogeneous Dirichlet type) complete the problem.

Equation (1) is the transformed Richards equation after applying the
Kirchhoff transformation in the absence of gravity (see e.g. [21]) or a diffu-
sion equation with equilibrium sorption modelled by a Freundlich isotherm.
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Solving (1) is of interest for many applications of societal relevance, like en-
vironmental pollution, CO2 storage or geothermal energy extraction.

A particular feature of (1) is that the problem may become degenerate,
namely change its type from parabolic into elliptic or hyperbolic. One conse-
quence of this is that the solutions typically lack regularity. Here we assume
that b(·) is monotone increasing and Hölder continuous, which means that
two types of degeneracy are allowed in (1). The first is when the derivative of
b(·) vanishes (fast diffusion) and the second when it blows up (slow diffusion).
In particular, here the vanishing of b′(·) may occur on intervals.

Since solutions to degenerate parabolic equations have low regularity (see
[1]), low order discretisation methods are well suited for the numerical approx-
imation of the solution. Here we combine the backward Euler (BE) method
for the time discretisation with the mixed finite element method (MFEM).
For the rigorous convergence analysis of the method we refer to [21] and the
references therein. The resulting is a scheme that is both stable and locally
mass-conservative.

In this paper we discuss iterative solvers for the non-linear algebraic sys-
tems arising at each time step after the complete discretisation of (1). Observe
that although referring specifically to the MFEM approach, the non-linear
solvers presented here can be also applied to other spatial discretisations, like
finite volumes, conforming or discontinuous Galerkin finite elements.

The literature on non-linear solvers for (1) is very extensive, but cov-
ers in particular non-degenerate problems, or the case when b(·) is Lipschitz
continuous. We refer to [4,18] for Newton’s scheme, and to [6] for the mod-
ified Picard scheme. A combination of both is discussed in [12,17]. Also,
the Jäger-Kačur scheme was introduced in [11]. We refer to [20] for the
analysis of the Newton, modified Picard and the Jäger-Kačur schemes for
BE/MFEM discretisations. Recently, in [5] the capillary pressure and the
saturation are expressed both in terms of a new variable, by respecting the
original saturation-capillary pressure dependency. If the new variable is prop-
erly chosen, the Richards equation receives a character that is more suited
for Newton’s scheme, in the sense that all non-linearities are Lipschitz con-
tinuous. We refer to [10] for a review detailing on such aspects.

The scheme analysed here builds on the L-scheme, a robust fixed point
scheme, which does not involve the computations of any derivatives or a reg-
ularisation step. The convergence, proved rigorously in [19,25,27], holds in
the H1 norm and regardless of the initial guess, but is linear. To improve this
convergence, a combination between the L− and Newton schemes was dis-
cussed recently in [13]. By performing first a number of L-scheme iterations,
one obtains an approximation that is close enough to the solution. After a
switch to the Newton iterations, the convergence becomes quadratic.

Compared to the literature cited above, here we adopt a more challenging
setting: b(·) is only Hölder continuous and not necessarily strictly increas-
ing. Whenever b′(·) is unbounded, neither Newton nor Picard schemes can
be applied directly. The common way to overcome this is to regularise b(·)
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(see [14]), e.g. to approximate it by a Lipschitz continuous function bε(·).
Nevertheless, a regularisation will also imply a perturbation of the solution,
which affects the accuracy of the method. Here, we propose an L-scheme
for the degenerate equation (1), which is adapted to the Hölder continuous
non-linearity. The linear convergence of the scheme is proved rigorously, and
its performance is compared with the ones of the standard L- and Newton
schemes, applied for the regularised problems.

The paper is organised as follows. In the next section the fully discrete
variational approximation of (1) is given and the assumptions are stated.
Section 3 discusses different iterative schemes. First the modified L-scheme
together with the convergence proof are given. Then the approach based on
regularisation is discussed, with particular emphasis on the Newton scheme.
Finally, in Section 5 a comprehensive comparison between the L-schemes and
the Newton scheme are presented. The paper is concluded with final remarks.

2 The fully discrete approximation

Throughout this paper we will use common notations in the functional analy-
sis. By Lp(Ω) we mean the p-integrable functions with the norm ‖f‖p :=( ∫

Ω
f(x) dx)1/p, whereas H(div;Ω) := {f ∈ (L2(Ω))d|∇ · f ∈ L2(Ω)}. Fur-

ther, we denote by 〈·, ·〉 the inner product on L2(Ω) and by σ(Ω) the volume
of Ω. Similarly, by H1(Ω) we mean the L2(Ω) functions having the first order
weak derivatives in L2.

To define the discretisation we let Th be a regular decomposition of the
domain Ω (h is the mesh size) and 0 = t0 < t1 < ... < tN = T , N ∈ N, is a
partition of the time interval [0, T ] with constant time step size τ = tk+1−tk,
k ≥ 0. The lowest-order Raviart-Thomas elements (see e.g. [2]) are used for
the discretisation in space. The spaces Wh × Vh ⊂ L2(Ω) × H(div;Ω) are
defined as

Wh := {p ∈ L2(Ω)| p|T (x) = pT ∈ R for all T ∈ Th},
Vh := {q ∈ H(div;Ω)|q|T (x) = aT + bTx,aT ∈ Rd, bT ∈ R for all T ∈ Th}.

The lemma below (see [9]) will be used in the proof of Theorem 4.

Lemma 1. There exists a constant CΩ > 0 not depending on the mesh size
h, such that given an arbitrary wh ∈ Wh there exists vh ∈ Vh, satisfying
∇ · vh = wh and ‖vh‖ ≤ CΩ‖wh‖.

As mentioned, (1) is completed with homogeneous Dirichlet boundary
conditions, and with the initial condition u(0,x) := u0(x), with u0 ∈ L2(Ω).
Furthermore, the source term is f ∈ L2(Ω). We make the following assump-
tions on b(·).

(A1) The function b : R → R, with b(0) = 0, is non-decreasing and Hölder
continuous: there exist Lb > 0 and α ∈ (0, 1] such that

|b(x)− b(y)| ≤ Lb|x− y|α for all x, y ∈ R. (2)
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Remark 2. The case α = 1 corresponds to a Lipschitz continuous b(·), a case
which is relatively well-understood [4,11–13,18–20,25,27]. The case α ∈ (0, 1)
is encountered for the Richards equation under physically relevant parametri-
sations (the van Genuchten curves [15], see Remark 1.1 in [21]). Also, if
Freundlich rates are used for modelling reactive transport, one has b(u) =
u + φ(u), with φ increasing but non-Lipschitz. Then there exists an m ∈ R
such that b′ ≥ m > 0, which simplifies the analysis of the iterative schemes.

Remark 3. Non-linear convection q(·) can be added, however, if being Lip-
schitz continuous. The numerical schemes can be then easily modified to
include such changes: one can deal with such non-linearities by using either
the outcome at the last iteration, or by including this term in the Newton
iteration, depending on the method used. For the ease of presentation, such
cases are not considered here.

In view of the lacking regularity, the solutions to (1) are weak. We refer
to [1,16] for existence and uniqueness results. Also, the equivalence between
the conforming and mixed formulation, for both time continuous and time
discrete problems, is being discussed in [21] (see also [22] for the case of a
two-phase flow model). Such results provide the existence and uniqueness
of a solution for the mixed formulation, and can be used for obtaining the
rigorous convergence of the discretisation. Finally, for each time step, the
backward Euler-MFEM discretisation of (1) reduces to a non-linear, fully
discrete variational problem (n ≥ 1).

Problem Pnh (The non-linear fully discrete problem).
Let un−1h ∈ Wh be given. Find unh ∈ Wh and qnh ∈ Vh such that for any
wh ∈Wh and vh ∈ Vh there holds

〈b(unh)− b(un−1h ), wh〉+ τ〈∇ · qnh, wh〉 = τ〈f, wh〉, (3)

〈qnh,vh〉 − 〈unh,∇ · vh〉 = 0. (4)

Clearly, for n = 1, u0h can be taken as the L2-projection of the initial condition
u0 onto Wh (see also [21]).

Here we assume that a solution to Problem Pnh exists and is unique. For
α = 1, i.e. when b is Lipschitz continuous, Theorem 4 below guarantees that
the iterative scheme (5)–(6) is H1-contractive. This immediately provides
the existence of a solution. For α ∈ (0, 1), the existence can be proved by
using Brouwer’s fixed point theorem (see e.g. Lemma 1.4, p. 140 in [26]).
We refer to [3,7,8,23] for similar results in the context of two-phase porous
media flow models. Finally, since b is monotone, uniqueness can be proved
by comparison.

The main challenge in solving the non-linear Problem Pnh is to con-
struct a linearisation scheme that is converging also for the case when b(·)
is only Hölder continuous, implying that b′(·) may become unbounded. The
scheme is discussed in the section below. Typically, iterative approaches like
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the Newton, (modified) Picard, or the L-schemes are applied to the regu-
larised problem, with a Lipschitz continuous approximation bε replacing b
(see [4,6,13,18,19,24,25]). This will be detailed in Section 4.

3 A robust iterative scheme

Below we define a robust iterative scheme for (3)–(4), which does not involve
regularisation, or computing any derivatives. We let the time step n ≥ 1
be fixed and assume un−1h ∈ Wh be given. Also, let L = 1

δ , where δ > 0
is a small parameter that will be chosen later to guarantee that the error
decreases below a prescribed threshold. With i ∈ N, i > 0 being the iteration
index, the iteration step is introduced through

Problem Pn,ih (The L-scheme).

Let un,i−1h ∈ Wh be given. Find (un,ih ,qn,ih ) ∈ Wh × Vh s.t. for all wh ∈ Wh

and vh ∈ Vh one has

〈L(un,ih − u
n,i−1
h ) + b(un,i−1h ), wh〉+ τ〈∇ · qn,ih , wh〉 = 〈b(un−1h ) + τf, wh〉,(5)

〈qn,ih ,vh〉 − 〈un,ih ,∇ · vh〉 = 0. (6)

As will be seen below, the convergence is obtained without imposing restric-
tions on the initial guess un,0h ∈Wh, but a natural choice is un−1h .

As for Problem Pnh , the uniqueness of a solution for Problem Pn,ih follows

by standard techniques. Specifically, assuming that Problem Pn,ih has two

solution pairs (un,ih,k,q
n,i
h,k) ∈Wh×Vh (k = 1, 2) and with (duh,dqh) denoting

their difference it holds

L〈duh, wh〉+ τ〈∇ · dqh, wh〉 = 0,

〈qh,vh〉 − 〈duh,∇ · vh〉 = 0,

for all wh ∈ Wh and vh ∈ Vh. Taking in the above wh = duh, respectively
vh = τduh, and adding the resulting equations gives

L‖duh‖2 + τ‖qh‖2 = 0, (7)

which immediately implies uniqueness. Moreover, since Problem Pn,ih is linear
and finite dimensional, uniqueness also implies the existence of a solution.

To show the convergence of the scheme we define the errors

en,iu = un,ih − u
n
h, and en,iq = qn,ih − qnh,

where (unh,q
n
h) is the solution pair of Problem Pnh . We use in the next the

elementary (in)equalities, holding for any c, d ≥ 0 and p, q > 1 s.t. 1
p + 1

q = 1

c(c− d) =
1

2

(
c2 − d2 + (c− d)2

)
, and cd ≤ cp

p
+
dq

q
. (8)
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With fixed δ > 0 and n ∈ N, n ≥ 1, let L =
1

δ
and assume un−1h ∈ Wh

known. The main result supporting the convergence is

Theorem 4. Assuming (A1) and α ∈ (0, 1), let i ∈ N, i ≥ 1 and un,i−1h ∈
Wh be given. If (unh,q

n
h) and (un,ih ,qn,ih ) are the solutions of Problems Pnh and

Pn,ih respectively, there holds

‖en,iu ‖2 + τδR(δ, τ)‖en,iq ‖2 ≤ R(δ, τ)‖en,i−1u ‖2 + 2C(α)R(δ, τ)δ
2

1−α . (9)

Here R(δ, τ) =

(
1 +

τδ

C2
Ω

)−1
, CΩ being the constant in Lemma 1, and C(α) =

(1−α)
2

(
Lb(2α)α

) 2
1−α (1 + α)−

1+α
1−ασ(Ω).

Proof. Subtracting (3) and (4) from (5), respectively (6), one gets for all
wh ∈Wh and vh ∈ Vh

〈L(en,iu − en,i−1u ) + b(un,i−1h )− b(unh), wh〉+ τ〈∇ · en,iq , wh〉 = 0, (10)

〈en,iq ,vh〉 − 〈en,iu ,∇ · vh〉 = 0. (11)

By taking wh = en,iu ∈Wh, respectively vh = τen,iq ∈ Vh, adding the resulting
equations and after some algebraic calculations one gets

L

2

(
‖en,iu ‖2 + ‖en,iu − en,i−1u ‖2

)
+ 〈b(un,i−1h )− b(unh), en,i−1u 〉+ τ‖en,iq ‖2

=
L

2
‖en,i−1u ‖2 − 〈b(un,i−1h )− b(unh), en,iu − en,i−1u 〉.

(12)

By (A1), it holds

〈b(un,i−1h )− b(unh), en,i−1u 〉 ≥ L−
1
α

b ‖b(u
n,i−1
h )− b(unh)‖

1+α
α

1+α
α

. (13)

Using now the inequality in (8) with p = 1+α
α , q = 1 +α, c =

|b(un,i−1
h )−b(unh)|

L
1

1+α
b ( 2α

1+α )
α

1+α

and d = L
1

1+α

b ( 2α
1+α )

α
1+α |en,iu − en,i−1u | one gets

|〈b(un,i−1h )− b(unh), en,iu − en,i−1u 〉|

≤ 1

2L
1
α

b

‖b(un,i−1h )− b(unh)‖
1+α
α

1+α
α

+
(2α)αLb

(α+ 1)(α+1)
‖en,iu − en,i−1u ‖1+α1+α.

(14)

From (12), (13) and (14) one obtains

L
2

(
‖en,iu ‖2 + ‖en,iu − en,i−1u ‖2

)
+ 1

2 〈b(u
n,i−1
h )− b(unh), en,i−1u 〉+ τ‖en,iq ‖2

≤ L
2 ‖e

n,i−1
u ‖2 +

(2α)αLb
(α+ 1)(α+1)

‖en,iu − en,i−1u ‖1+α1+α.
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Using again Young’s inequality, but with p = 2
1+α , q = 2

1−α , c = ‖en,iu −
en,i−1u ‖1+α1+α( L

1+α )
1+α
2 σ(Ω)

α−1
2 and d = (2α)αLb

(α+1)(α+1) ( 1+α
L )

1+α
2 σ(Ω)

1−α
2 gives

(2α)αLb
(α+ 1)(α+1)

‖en,iu − en,i−1u ‖1+α1+α

≤ L

2
σ(Ω)

α−1
1+α ‖en,iu − en,i−1u ‖21+α + C(α)L

1+α
α−1

≤ L

2
‖en,iu − en,i−1u ‖2 + C(α)L

1+α
α−1 ,

where C(α) is defined in the formulation of the theorem. Above we used the

inequality ‖f‖1+α ≤ σ(Ω)
1−α

2(1+α) ‖f‖2, valid for any f ∈ L2(Ω) and α ∈ (0, 1]
since Ω is bounded. Now, from the last two estimates it follows that

L

2
‖en,iu ‖2 +

1

2
〈b(un,i−1h )−b(unh), en,i−1u 〉+τ‖en,iq ‖2 ≤

L

2
‖en,i−1u ‖2 +C(α)L

1+α
α−1 .

From (11) and using Lemma 1, a Poincare type inequality ‖en,iu ‖ ≤ CΩ‖en,iq ‖
can be obtained. Using this in the above, since L = 1/δ, one obtains (9).

Remark 5. Observe that since R(δ, τ) < 1 whereas δ has a positive power
in the last term on the right of (9), this theorem gives the convergence of
the scheme. More precisely, for any chosen tolerance TOL, one can chose δ

such that the term 2C(α)δ
2

1−α R(δ,τ)
1−R(δ,τ) <

1
2TOL. Since this is the sum of

the last terms on the right in (9), this can be seen as the total error being
accumulated while iterating in one time step. On the other hand, the first
term in the right is showing how the error is contracted in one iteration. Thus,
choosing i∗ ∈ N large enough s.t. R(δ, τ)i

∗‖en,0u ‖2 ≤ 1
2TOL and applying

(9) successively for i = i∗, i∗ − 1, . . . , 1 one obtains that ‖en,iu ‖2 < TOL.
Nevertheless, the convergence rate is worsened with the decrease of δ, as
R(δ, τ) approaches 1 in this case. From theoretical point of view, this results
in an increased number of iterations for obtaining the desired accuracy. This
is a rather pessimistic interpretation, as the numerical examples studied in
Section 5 indicate that the actual number of iterations is frequently better
than what the theorem guarantees.

Remark 6. If b is Lipschitz continuous, the problem reduces to the one studied
in [13,21]. In fact, for α = 1 the last step in the proof above is superfluous,
and the estimate (9) holds with C(α) = 0. In this case, the iteration is a
contraction, so the convergence is unconditional for any L ≥ Lb, the Lipschitz
constant of b.

Remark 7. Observe that the convergence can be achieved without requiring
that the time step size τ is sufficiently small. In fact, when calculating the

ratio R(δ,τ)
1−R(δ,τ) one sees that τ appears in the denominator, so the larger

it is, the better the convergence of the iterative scheme. Further, the term
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2C(α)δ
2

1−α R(δ,τ)
1−R(δ,τ) is practically small without taking a too small δ. For

example, if α = 0.5, the power of δ in this term becomes 1+α
1−α = 3. Taking

δ = 0.01 (hence L = 100) gives δ
1+α
1−α = 10−6. Also, the number C(α) is small

too. In the situation above, if Lb = 0.5, and σ(Ω) = 1, C(α) ≈ 0.0046.

4 Iterative schemes based on regularisation

As follows from the above, the iterations introduced through Problem Pn,ih

converge also for the case of a Hölder continuous b and do not involve comput-
ing any derivatives. However, the iterations only converge linearly. A natural
question appears: what is the performance of the new scheme in comparison
with the Newton or the L-scheme, but applied for the regularised problems.
To study this aspect we first present below these schemes and discuss their
convergence.

For simplicity we consider the function b : R → R, b(u) = (max{u, 0})α.
Observe that b is not Lipschitz for arguments approaching 0 from above. For
regularising it we let ε > 0 and consider the function bε : R→ R,

bε(u) = αεα−1u+ (1− α)εα,

if u ∈ (0, ε), whereas bε(u) = b(u) everywhere else. Clearly, bε(·) is non-
decreasing, and both bε(·), b′ε(·) are Lipschitz continuous with the Lipschitz
constants Lbε = αεα−1, respectively Lb′ε = α(1− α)εα−2. Moreover, it holds

0 ≤ b(x)− bε(x) ≤ (1− α)α
α

1−α εα.
As before, for given ε > 0 and un−1h,ε ∈Wh (observe the dependency of the

solution on ε), and with i ∈ N, i > 0 being the iteration index, the Newton
iterations for Problem Pnh are defined through

Problem NEWTONn,i
h .

Let un,i−1h,ε ∈ Wh be given. Find (un,ih,ε,q
n,i
h,ε) ∈ Wh × Vh s. t. for all wh ∈ Wh

and vh ∈ Vh

〈bε(un,i−1h,ε ) + b′ε(u
n,i−1
h,ε )(un,ih,ε − u

n,i−1
h,ε ), wh〉

+τ〈∇ · qn,ih,ε, wh〉 = 〈bε(un−1h,ε ) + τf, wh〉, (15)

〈qn,ih,ε,vh〉 − 〈u
n,i
h,ε,∇ · vh〉 = 0. (16)

Remark 8 (Regularised L-scheme). A L-scheme for the regularised prob-
lem is obtained by replacing b′ε(u

n,i−1
h,ε ) with L ≥ 0 in (15). The resulting

scheme is convergent for L ≥ Lbε/2, as proved in [13,19,20]. Moreover, the
convergence holds in H1 and for any initial guess, under very mild restric-
tions on the time step, but it is only linear. It is worth emphasising on the
difference between the L-scheme in Section 3, designed for Hölder continu-
ous non-linearities, and the L-scheme for the regularised problems. In the
former case the errors at each iteration step consist of two components, one
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that is contracted, and another that accumulates. The choice of the L pa-
rameter is driven by these two: first, the accumulated errors should remain
below a threshold 1

2TOL, and second the contracted ones reduce to the same
threshold. For the latter the problem is regularised so that the non-linearities
become Lipschitz continuous, and then the L parameter is taken as Lbε .

Remark 9 (Convergence of the regularised Newton scheme). Two is-
sues concerning the convergence appear in this case. First, the solution uε
of the regularised problem should not be too far from u, the solution to
the original problem. This means that ε should be sufficiently small. On the
other hand, the advantage of the Newton scheme is its quadratic convergence.
Guaranteeing it requires typically a small τ because the scheme is only locally
convergent, so the initial guess of the iteration should not be too far from
the solution and the choice at hand is the solution at the previous time step.
However, τ and ε are correlated. So satisfying both requirements might be
quite challenging, if not impossible in certain computations. If one assumes
additionally that b′ ≥ m > 0, which rules out the fast diffusion case, the suffi-
cient condition for convergence is to choose τ = O(εahd/2), with a depending
on the Hölder exponent (see [20]). In the case b′ ≥ 0, one can further perturb
b so that b′ε is bounded away from 0, e.g. by taking bnewε (u) = εu+bε(u) with
bε(u) given before. Then the convergence is guaranteed for similar constraints,
possibly with a different exponent a.

To summarise, the convergence of Newton’s scheme depends on the choice
of the discretisation and regularisation parameters. Fixing two parameters,
e.g. h and ε, only a sufficiently small τ will guarantee the convergence. Al-
ternatively, for fixed τ and ε, the mesh size can not be too small, and if the
Newton scheme diverges, refining the mesh will not help. In other words, to
achieve a certain accuracy, e.g. by letting ε ↘ 0, the convergence condition
for the Newton scheme might become very restrictive.

5 Numerical examples

In this section we provide numerical examples to illustrate the performance of
the scheme. We use the example mentioned in Section 4, b(u) = max{u, 0}α,
for α = 0.5. The domain is the square Ω = (0, 1)×(0, 1), and the time interval
is t ∈ (0.0, 0.5]. To evaluate the convergence we choose the source term, the
boundary conditions and the initial condition such that the exact solution is

u(t, x, y) = −1

2
+ 16x(1− x) y(1− y)(t+ 0.5). (17)

For the discretisation we consider a 32 × 32 mesh with different time
step sizes τ ∈ {0.05, 0.025, 0.0125}, resulting in 10, 20, respectively 40 time
steps. To differentiate between the errors brought by the discretisation itself
and those related to the iterative solver, we first compute a very accurate
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approximation of the non-linear, fully discrete systems. Specifically, with ∆ui

and ∆qi denoting the difference between two iterates, the reference solution
is the iteration satisfying

‖∆ui‖L2(Ω) + ‖∆qi‖L2(Ω) < 10−8, and
‖∆ui‖L2(Ω)

‖ui‖L2(Ω)
+
‖∆qi‖L2(Ω)

‖qi‖L2(Ω)
< 10−8.

This solution, called below uh, was computed with the L-type scheme in
Section 3 to avoid additional regularisation errors. Having obtained uh we
proceed by testing the three schemes discussed here, the L-scheme in the
framework discussed in Section 3 (called HL), and the two (Newton and L)
in Section 4, involving a regularisation step.

In agreement with the result stated in Theorem 4 we choose an admissible
tolerance TOL to be used as stopping criterion for the different iteration
schemes. Specifically, u?h is accepted as numerical solution if it satisfies ‖u?h−
uh‖L2(Ω) < TOL where uh is the (accurate) solution from above.

We consider different tolerances, namely TOL ∈ {10−3, 10−4, 10−5}. For
the regularisation based schemes, the problem is first regularised by taking
ε ∈ {10−3, 10−4, 10−5}. For the L-scheme we take L = εα−1, the Lipschitz
constant of bε. For the HL-scheme we take L = 1

δ where δ is such that the
condition in Remark 5 on the accumulated error is met.

Table 1 presents the total number of Newton iterations and the corre-
sponding, average number of iterations per time step for given different tol-
erances TOL, regularisation parameters ε and time step sizes τ . Observe that
the parameters TOL and ε should be correlated to avoid that the regular-
isation error becomes dominating. In other words, a smaller TOL requires
a smaller ε for obtaining the convergence. In the same spirit, a smaller τ
requires smaller TOL and ε. For τ = 0.0125, it becomes almost impossible to
obtain solutions within the required accuracy by using the Newton scheme,
as ε has to be very small and then the condition number of the Jacobian
becomes very high. This is evidenced by the appearance of cases where the
Newton scheme did not converge, which are mentioned as nc. In summary,
the Newton scheme fails to converge if either the regularisation parameter ε
is too large for the chosen tolerance TOL, or if ε is too low, which makes the
problem very badly conditioned. Clearly, if convergent, the Newton scheme
requires the least number of iterations among all schemes.

Similar experiments have been performed for the standard L-scheme, ap-
plied after regularising the problem. Recalling bε is Lipschitz, we set L =
Lbε = αεα−1. The actual values are given in Table 2. Table 3 presents the
convergence results. As for the Newton scheme, one needs to correlate the
parameters TOL, ε, and τ . To ensure convergence, if TOL is small ε should
be small enough, otherwise the regularisation error will dominate and the
convergence criterion will not be met. This is the reason why the L scheme,
though unconditionally convergent in theory, is marked as not convergent for
the case ε = 10−3, if TOL = 10−4 or 10−5. Also, observe that L = Lbε blows
up with ε ↘ 0, while the convergence rate approaches 1 if L is large, or τ
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N-iterations per time step
TOL ε τ = 0.05 τ = 0.025 τ = 0.0125
1e−3 1e−3 1.7 1.2 1.2
1e−3 1e−4 1.6 1.3 nc

1e−3 1e−5 1.6 1.3 nc

1e−4 1e−3 2.2 2.1 nc

1e−4 1e−4 2.3 2.4 nc

1e−4 1e−5 2.3 2.3 nc

1e−5 1e−3 nc nc nc

1e−5 1e−4 3.1 3.0 nc

1e−5 1e−5 3.1 3.2 nc

Table 1. Results for the Newton scheme. The scheme does not converge (nc) for
the smallest time step and if ε is not in agreement with TOL.

ε 1e−3 1e−4 1e−5

L 16 50 159
Table 2. L values for the standard L-scheme, obtained for different values of ε.

is small (see [19]). Therefore if ε and τ are small, combined with the finite
precision arithmetic may lead to the divergence of the L-scheme.

This also explains why the number of L-scheme iterations increases dras-
tically with the decrease of the regularisation parameter. Compared to the
Newton scheme, the number of L-iterations is much larger. On the other hand,
the L-scheme is more robust than the Newton scheme, allowing to compute
the solution for small time steps τ or for small regularisation parameters ε.

L-iterations per time step
TOL ε τ = 0.05 τ = 0.025 τ = 0.0125
1e−3 1e−3 30.5 38.9 48.4
1e−3 1e−4 96.9 124.6 155.2
1e−3 1e−5 305.8 394.6 492.8
1e−4 1e−3 47.9 nc nc

1e−4 1e−4 150.5 202.9 273
1e−4 1e−5 475.1 643.7 870.7
1e−5 1e−3 nc nc nc

1e−5 1e−4 204.5 281.5 nc

1e−5 1e−5 645.9 889.1 1247.9

Table 3. Results for the standard L-scheme. The scheme does not converge (nc) if
ε is not in agreement with TOL.

Finally we draw our attention to the HL-scheme, where the parameter L
is chosen as mentioned in Remark 5, depending on TOL. Since the domain
is the unit square one has CΩ = σ(Ω) = 1 and thus R(δ, τ) = (1 + τδ)−1.
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For α = 0.5, to reduce the accumulated errors below 1
2TOL one needs to

take δ < 3
2 (τTOL)

1
3 , while L = 1

δ . The corresponding values are given in
Table 4. Observe that the values of L in this case are similar to the ones for
the standard L scheme, except for the smallest tolerance. Also, the L values
increase for smaller TOL and smaller time steps τ , which was not the case
for the standard L scheme.

L-parameters for the HL-scheme
TOL τ = 0.05 τ = 0.025 τ = 0.0125
1e−3 19 23 29
1e−4 40 50 62
1e−5 84 106 134

Table 4. The L parameters for the HL-scheme, computed for different values of
TOL and τ . The total iteration error is guaranteed below TOL (see Remark 5).

The convergence results are given in Table 5. Since the L parameters
have similar values for both L-type schemes, the number of iterations in both
schemes is comparable whenever the standard L-scheme converges. However,
for the HL-scheme, L can be chosen automatically, based on the required
tolerance TOL and on the time step size τ . This leads to faster convergence
rates, based on the theoretically results. Nevertheless, decreasing the toler-
ance TOL implies an increasing L, which deteriorates the convergence rate.
However, the HL-scheme converged for all combinations of parameters.

HL-iterations per time step
TOL τ = 0.05 τ = 0.025 τ = 0.0125
1e−3 37.0 57.2 89.5
1e−4 120.4 202.5 338.2
1e−5 343.3 596.2 1057.4

Table 5. Results for the standard HL-scheme. The scheme converges for all values
of TOL and all time steps τ .

When comparing the three schemes, it becomes clear that the Newton
scheme requires the least number of iterations whenever it converges. On the
other hand, the Newton scheme was the one which did not converge in the
most of the cases considered here, so it is least robust. Also, the convergence
criterion is not always met for the standard L-scheme due to regularisa-
tion. Both schemes require a regularisation step. Instead, no regularisation is
needed for the HL-scheme. Clearly, it requires more iterations than the New-
ton scheme, but generally less than the standard L-scheme. Most important,
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it displayed a robust behaviour, as it converged in all experiments. In fact,
this convergence can be achieved for any tolerance TOL and time step τ .

It is worth mentioning that, next to the number of iterations, the total
execution time is influenced by two factors: the time for solving the linear
systems at each iteration, and the time for assembling the discretisation ma-
trices. Among all three schemes, the Newton scheme is closest to generate ill
conditioned matrices, if not singular. Therefore the linear solvers are more
expensive than in the case of the L-type schemes. Moreover, the linear system
needs to be reassembled completely every iteration, as the Jacobian depends
on the current iteration, and involves many function evaluations. The L-type
schemes behave better in this respect. For the example presented above, the
emerging linear systems involve the discrete Laplacian and the discretisation
of the identity operator multiplied by L. This not only generates better con-
ditioned matrices, but these matrices remain unchanged for every iteration.
In this case, a solver based on the LU -decomposition is an effective approach,
as this decomposition needs to be performed only once.

6 Conclusion

We discuss iterative schemes for solving the fully discrete non-linear systems
obtained by a backward Euler - lowest order Raviart-Thomas mixed finite
element discretisation of a class of doubly degenerate parabolic problems.
Appearing as models of practical relevance, the non-linear function involved
in the model must be increasing and Hölder continuous, but may remain
constant over intervals. In consequence, two kinds of degeneracy are allowed,
slow and fast diffusion. This leads to fully discrete systems that have singular
Jacobians, which brings difficulties in finding robust iterative solvers.

We present here an approach inspired by the L-scheme, which is suited for
the case of Hölder continuous non-linearities. To apply the Newton scheme or
the standard L-scheme in such a case, one needs to regularise first the prob-
lem, i.e. to approximate the non-linearity by a Lipschitz continuous one. This
step is associated with additional errors. If highly accurate approximations
of the exact, fully discrete solutions are needed, the regularisation step may
be the cause of the fact that the convergence is very slow, if not impossible.
The scheme discussed here makes no use of any regularisation. Instead, the
parameter L is chosen not as the Lipschitz constant of the non-linearity, but
in such a way that the error has a guaranteed decay below any chosen toler-
ance. We provide a rigorous proof for this decay, which also gives a practical
way to choose the parameter L.

We present numerical experiments where we compare the behaviour of
the three schemes: Newton, standard L, and the L-variant proposed here.
As resulting from these experiments, the Newton scheme requires the least
number of iterations, but is also the least robust of all as there were the most
cases where it did not converge. The standard L-scheme is more robust, at
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the expense of a high number of iterations. Also, convergence could not be
achieved in all cases, in particular if the regularisation parameter is not in
agreement with the required tolerance. The new scheme is improving these
aspects: it shows convergence for any required tolerance, and any choice of the
time step size. Nevertheless, an optimisation of the choice of L and possibly
in combination with an optimal linear solver can make the proposed scheme
an effective alternative to the traditional ones.
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