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Abstract We analyze the response of different ionospheric equivalent current modes to variations in
the interplanetary magnetic field (IMF) components By and Bz. Each mode comprises a fixed spatial
pattern whose amplitude varies in time, identified by a month-by-month empirical orthogonal function
separation of surface measured magnetic field variance. Here we focus on four sets of modes that have
been previously identified as DPY, DP2, NBZ, and DP1. We derive the cross-correlation function of each
mode set with either IMF By or Bz for lags ranging from −10 to +600 mins with respect to the IMF state at
the bow shock nose. For all four sets of modes, the average correlation can be reproduced by a sum of up to
three linear responses to the IMF component, each centered on a different lag. These are interpreted
as the statistical ionospheric responses to magnetopause merging (15- to 20-min lag) and magnetotail
reconnection (60-min lag) and to IMF persistence. Of the mode sets, NBZ and DPY are the most
predictable from a given IMF component, with DP1 (the substorm component) the least predictable. The
proportion of mode variability explained by the IMF increases for the longer lags, thought to indicate
conductivity feedbacks from substorms. In summary, we confirm the postulated physical basis of these
modes and quantify their multiple reconfiguration timescales.

1. Introduction
Electrodynamical coupling between the magnetosphere and the interplanetary magnetic field (IMF) drives
current systems which span near Earth space and which are highly variable on a wide range of spatial and
temporal scales (Dungey, 1961; Schunk & Nagy, 2009). The ionospheric footprints of these current systems
generate noisy magnetic fields, which negatively impact efforts to model the Earth's internal magnetic field
(Finlay et al., 2016; Thébault et al., 2017), and create geomagnetically induced currents which damage power
grids (Beggan et al., 2013). It is desirable to better understand and predict this interconnected system in
order to help mitigate these impacts.

Unfortunately, at present, it is only possible to predict the ionospheric currents (or their associated magnetic
perturbation at ground) with rather low levels of accuracy from measurements of the IMF, particularly on
small spatial scales. This is because while the ionospheric current systems are ultimately driven by distur-
bances happening on the Sun, these systems vary in the extent to which they are driven either directly by the
IMF or by internal magnetospheric processes, and the entire set of current systems is subject to feedbacks
operating within and between the ionosphere and magnetosphere. These feedbacks include the inertia of
neutral winds, changes in ionospheric conductivity from particle precipitation, and the acceleration of elec-
trons by parallel electric fields in the upper ionosphere caused by intense field-aligned currents (Knight &
Parallel electric fields, 1973).

Despite this complexity, it has long since been shown (e.g., Nishida, 1966, 1968b; Obayashi & Nishida,
1968) that the morphology of the external magnetic perturbations comprises a set of large-scale ionospheric
equivalent current systems, each driven by specific components of the IMF. For instance, the two-cell
ionospheric convection vortices (termed Disturbance Polar type 2 or DP2) are strongly driven by the neg-
ative (southward) IMF Bz component (Friis-Christensen & Wilhjelm, 1975; Hairston et al., 2005; Nishida,
1968a). Positive (northward) IMF Bz fluctuations are associated with the NBZ system (Friis-Christensen
et al., 1985; Maezawa, 1976). The IMF By (dawn-dusk) component drives the DPY equivalent current sys-
tem (Friis-Christensen & Wilhjelm, 1975; Friis-Christensen et al., 1985). In addition to these directly driven
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components, there is also the DP1 system, which is associated with the substorm current wedge and hence
is indirectly driven by the IMF (e.g., Morley et al., 2007).

Historically, these DP systems have been identified from many analyses, each based on small amounts of
data. Now, we have access to large quantities of uniform quality data, allowing us to investigate the iono-
sphere in a more objective manner. Here we use the model of the surface external and induced magnetic
field (SEIMF) produced by Shore et al. (2018). The SEIMF model spans 12 years from 1997.0 to 2009.0 and
uses the method of Empirical Orthogonal Functions (EOF) to isolate and identify the individual polar iono-
spheric equivalent current systems. The method, which minimizes the need for assumptions of physical
behavior when assessing large quantities of geophysical data, is described in more detail in the following
section.

The focus of our study is to investigate the nature of the IMF forcing of the ionosphere through its effects on
the geomagnetic field variation. We focus on both the time delay of the ionospheric response and the pro-
portion of the ionospheric equivalent current system variability described by the IMF. This allows us to also
systematically test the hypothesis of Shore et al. (2018) that the dominant patterns of large-scale variability
in the ionospheric equivalent currents are describable as the historic disturbance-polar systems. The delays
in the effects of given IMF components on measurements or indices of the magnetosphere-ionosphere sys-
tem have been studied previously, for example, by Nishida and Maezawa (1971), Meng et al. (1973), Baker
et al. (1981), Bargatze et al. (1985), Browett et al. (2017), and Maggiolo et al. (2017). Our study is the first to
systematically investigate the individual responses of the DP2, DPY, NBZ, and DP1 systems to IMF driving
over the scale of a solar cycle.

In section 2, we describe the data we use to represent the DP2, DPY, NBZ, and DP1 equivalent current
systems and the IMF By and Bz components; in section 3, we describe our method of comparing the response
of the equivalent current systems to the IMF, and in section 4, we present the results of these comparisons.
The significance of our findings are discussed in section 5, and we summarize in section 6.

2. Data
The data we use to represent the individual polar ionospheric equivalent current systems are the spatial and
temporal SEIMF patterns isolated and identified by Shore et al. (2018). The authors applied the EOF method
to individual months of ground-sampled vector magnetic field data from the SuperMAG archive (Gjerloev,
2012). The EOF method decomposes these data into spatiotemporal basis vectors (i.e., patterns defined in
space and time) which collectively describe the majority of the variance of the data. For a given month of
magnetic field data used as input to the EOF method, the output of the EOF decomposition is a series of
independent spatial patterns, each of which has an associated amplitude variation in time (with 5-min res-
olution). A paired spatial and temporal pattern is one basis vector of the EOF decomposition, ranked by its
contribution to the total variance. Shore et al. applied graph theory (Caldarelli, 2007) to the spatial patterns
of the leading six modes in order to identify spatially similar clusters in the basis vectors from 144 sequential
monthly sets of EOF analyses spanning the 12 years from 1997.0 to 2009.0. These spatiotemporal clusters
were considered to be individually dominated by specific equivalent current systems including DP2, DPY,
DP1, and NBZ. Here we test the hypothesis that the clusters of EOF patterns indeed represent those equiv-
alent current systems. We use the Shore et al. model to provide a set of consecutive time series describing
the amplitudes of these equivalent current systems, spanning 144 months across solar cycle 23. The DP2 set
spans the full 144 months, while the other sets are not temporally complete: DPY spans 42 of the full 144
months, DP1 spans 70 months, and NBZ spans 10 months. The reason for this incompleteness is either that
the equivalent current system amplitude is too weak in some months (e.g., DPY is not identified in winter)
or that the equivalent current system's representation in the EOF patterns is not spatially coherent enough
between all months to be fully described by the graph theory process.

Within each month, the product of an EOF spatial pattern and its associated temporal series gives a pre-
diction of the SEIMF variations of a given equivalent current system. Thus, each EOF pattern allows us to
represent a (known) large-scale two-dimensional spatial distribution of vector magnetic perturbation via its
associated 1-D time series of amplitudes.

Starting from the assumption that a perturbation in a given IMF component will produce some (unknown)
spatial perturbation in the ionospheric equivalent currents, we can use the temporal correlation between the
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Figure 1. Mean spatial patterns for the equivalent current systems (a) DPY, (b) DP2, (c) NBZ, and (d) DP1. For each
pattern, the mean is taken across all spatial patterns from each epoch, for which there is a representation of that
equivalent current system in the data set of Shore et al. (2018). The background colored values are those of the
Quasi-Dipole magnetic 𝜃 component, and the vectors are the horizontal magnetic component rotated by 90◦ clockwise
to indicate the direction and relative strength of the equivalent currents (assuming an even distribution of ionospheric
conductivity). The temporal perturbations assessed throughout this study pertain to the sense of these patterns. The
polar bin has no coverage and is shown in gray.

IMF measurements and the EOF time series (associated with a known spatial pattern) to probe the extent
to which the IMF-driven perturbations have that specific spatial form, over a given timespan. This span is
a trade-off between obtaining a large enough range of solar wind conditions and external field variability
while avoiding the introduction of variance from other factors (e.g., seasonal differences). Here we choose
the timespan to be 1 month.

Since the EOF patterns are those which maximize variance, this temporal correlation with the IMF is to be
expected to be reasonably good, and indeed, this has been demonstrated by Shore et al. (2017) and Shore et
al. (2018). The authors also showed that the different EOF patterns—and the individual ionospheric equiv-
alent current systems they were considered to represent—have well-separated characteristic correlations
with the different IMF components. Hence, this temporal correlation assessment can tell us the spatial and
temporal nature of the coupling of individual IMF components with the dominant component systems of
the ionospheric electrodynamics.

To represent the IMF variations, we use 1-min measurements of the IMF strength in the GSM y and
z directions—By and Bz (Hapgood, 1992)—from the National Aeronautics and Space Administration
Advanced Composition Explorer (ACE) spacecraft (Stone et al., 1998) lagged from near the L1 Lagrangian
point to their arrival time at the bow shock nose. In the correlation analysis presented here, we apply addi-
tional lags to the IMF measurements ranging from −10 to +600 min (in 5-min steps up to 150 min and then
10-min steps thereafter), where a positive lag of 𝜏 minutes means that we expect a disturbance measured at
the bow shock to take a further 𝜏 minutes to have an impact in magnetic records taken at the Earth's sur-
face. Following the lagging process, we take 5-min means of the lagged IMF measurements, corresponding
to the epochs of the SEIMF time series within each month. The physical significance of applying these lags
is that we expect the peak temporal correlation to occur at the lag time at which the (unknown) IMF spatial
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perturbation best matches the spatial form of the EOF pattern. Thus, we are assessing the reconfiguration
timescale of the associated equivalent current system.

The spatial and temporal patterns which comprise a given EOF basis vector are sign indeterminate. The basis
vector—which is the product of the spatial and temporal patterns—will always have the same overall sign if
we were to repeat the EOF analysis of a given data set. Yet the component spatial and temporal parts of that
basis vector could individually vary in sign between repeated decompositions of the same data set. Since we
will use the EOF time series here in isolation from their associated spatial patterns, we must force them to
have a consistent sign across all months. After which, their correlations with the solar wind measurements
will be comparable between different monthly epochs. We do this for each equivalent current system as
follows. We take the temporal pattern from a given reference month and correlate the temporal patterns (for
the same equivalent current system) from all other months with it. For each jth month, if the correlation with
the reference month is negative, we reverse the sign of the jth time series, and we also reverse the sign of the
associated jth spatial pattern. Following this, the temporal and spatial patterns for each equivalent current
system will have the same relative sense between all individual months. The mean of the sign-corrected
spatial patterns for the equivalent current systems DPY, DP2, NBZ, and DP1 is shown in Figure 1. These
patterns are the same as those shown in Shore et al. (2018), but their sense (sign) here represents the spatial
distribution of equivalent current for a unit positive temporal perturbation. These relative signs are used
throughout the remainder of this report.

3. Method
We compute the linear Pearson correlation (Press, 1992) between the time series of each equivalent current
system and the (lagged and resampled) IMF By and Bz series, once per lag. The SEIMF models each span one
calendar month plus 1 day either side of the month, and thus, each correlation computation is nominally
based on between 8,640 and 9,504 temporal data point pairs (at 5-min resolution). The patchy coverage in
the ACE measurements will vary the true data count since we ignore epochs where ACE data are missing
(there are no missing temporal data in the SEIMF models).

To contextualize these cross correlations of the solar wind driver and the ionospheric response, we model
the response of each equivalent current system with a scaled, time-shifted version of the autocorrelation of
the driver, as follows. Consider the SEIMF variation Y(t), given by 1-month-long time series of an EOF mode
amplitude, and an interplanetary driver X(t), given by the corresponding IMF By or Bz time series. Now let
us assume that the SEIMF response is in part directly driven by the solar wind driver such that we can write

Y (t) = aX(t − 𝜏a) + W(t), (1)

where a measures the strength of the response to the driver, 𝜏a > 0 is the delay in the response with respect
to the driver, and W is the part of the response that is unrelated to the driver.

The mean of Y is given by

𝜇Y = E[Y ]
= E[aX(t − 𝜏a) + W(t)]
= aE[X(t − 𝜏a)] + E[W(t)]
= aE[X(t)] + E[W(t)]
= a𝜇X + 𝜇W ,

(2)

where E[] denotes the expected value of the quantity in brackets (Ross, 2006), and we have assumed that
X(t) is stationary (i.e., we assume that the mean over a month span is insensitive to shifts in this span of up
to the maximum lag, which is 10 hr).

Now the Pearson cross-correlation coefficient between Y(t) and X(t − 𝜏) is given by

rXY (𝜏) =
CXY (𝜏)
𝜎X𝜎Y

, (3)

where 𝜎X and 𝜎X are the standard deviations of X and Y , respectively, and CXY (𝜏) is the cross-covariance
function given by
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CXY (𝜏) = E[(X(t − 𝜏) − 𝜇X )(Y (t) − 𝜇Y )] = E[X(t − 𝜏)Y (t)] − 𝜇X𝜇Y . (4)

Substituting equations (1) and (2) into equation (4), we get

CXY (𝜏) = E[X(t − 𝜏)Y (t)] − 𝜇X𝜇Y

= E[X(t − 𝜏)aX(t − 𝜏a) + X(t − 𝜏)W(t)] − 𝜇X (a𝜇X + 𝜇W )
= E[aX(t′)X(t′ + 𝜏 − 𝜏a)] − a𝜇2

X + E[X(t − 𝜏)W(t)] − 𝜇X𝜇W

= aCXX (𝜏 − 𝜏a) + CXW (𝜏)
= aCXX (𝜏 − 𝜏a),

(5)

where we have assumed that X and W are independent.

Now substituting equation (1) into the denominator of equation (3), we get

𝜎X𝜎Y =
√

Var(X)Var(aX + W)

=
√

Var(X)[Var(aX) + Var(W)]

=
√

a2𝜎4
X + 𝜎2

X𝜎
2
W

= 𝜎X

√
a2𝜎2

X + 𝜎2
W .

(6)

Finally substituting equations (5) and (6) into equation (3), we get

rXY (𝜏) =
aCXX (𝜏 − 𝜏a)

𝜎X

√
a2𝜎2

X + 𝜎2
W

=

√
a2𝜎2

X

a2𝜎2
X + 𝜎2

W

[
CXX (𝜏 − 𝜏a)

𝜎2
X

]

=
⎛⎜⎜⎝
√

a2𝜎2
X

a2𝜎2
X + 𝜎2

W

⎞⎟⎟⎠ rXX (𝜏 − 𝜏a)

= ArXX (𝜏 − 𝜏a),

(7)

where rXX (𝜏) is the autocorrelation function of the driver X . That is, the cross correlation of the response and
the driver is proportional to the time-shifted autocorrelation function of the driver, where the proportionality
constant is A and the time shift equals 𝜏a. This relates to the familiar statement that the peak value of the
square of the cross-correlation coefficient [rXY (𝜏a)]2 = A2 = a2𝜎2

X∕(a
2𝜎2

X + 𝜎2
W ) measures the proportion of

the total variance explained by the directly driven signal.

Alternatively, we may write A =
√

Sa∕(1 + Sa) where Sa = (a𝜎X )2∕𝜎2
W = A∕(1 − A) is the signal-to-noise

ratio of the first term of the right-hand side of equation (1) with respect to the second term. That is, the ratio
of the directly driven part of the response, aX(t − 𝜏a), to the part that is independent of the driver, W(t).

Now, generally, we would expect the signal-to-noise ratio A and the time delay 𝜏a to vary from 1-month-long
time series to another, in which case the mean cross-correlation coefficient from a number of month-long
analyses is given by

r̄XY (𝜏) =
1
N

N∑
i=1

AirXX (𝜏 − 𝜏ai) ≈
A
N

N∑
i=1

rXX (𝜏 − 𝜏ai), (8)

where we have assumed that A is given by the mean of Ai. This can be understood because for months with
a similar 𝜏ai but different Ai, we expect the approximation in the right-hand side of equation (8) to hold for
that 𝜏ai. Also, we expect that if we were to divide the sum in equation (8) into different subgroups of similar
𝜏ai, then the same approximation would hold for each. When computing equation (8), we pick N = 1, 000𝜏ai
from the normal distribution  (𝜇, 𝜎) with mean 𝜇 and standard deviation 𝜎 (values for these parameters
are given in section 4). The models described in equations (7) and (8) are presented in section 4 to model
the DPY response to IMF By driving.
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Now let us extend the model of equation (1) to include a second driver of the response

Y (t) = aX(t − 𝜏a) + bX(t − 𝜏b) + W(t). (9)

In this case we have that the mean of Y is given by

𝜇Y = E[Y ]
= E[aX(t − 𝜏a) + bX(t − 𝜏b) + W(t)]
= E[aX(t − 𝜏a)] + E[bX(t − 𝜏b)] + E[W(t)]
= aE[X(t − 𝜏a)] + bE[X(t − 𝜏b)] + E[W(t)]
= a𝜇X + b𝜇X + 𝜇W ,

(10)

the cross-covariance function becomes

CXY (𝜏) = E[X(t − 𝜏)Y (t)] − 𝜇X𝜇Y

= E[X(t − 𝜏)aX(t − 𝜏a) + X(t − 𝜏)bX(t − 𝜏b) + X(t − 𝜏)W(t)] − 𝜇X (a𝜇X + b𝜇X + 𝜇W )
= E[aX(t′)X(t′ + 𝜏 − 𝜏a)] − a𝜇2

X + E[bX(t′)X(t′ + 𝜏 − 𝜏b)] − b𝜇2
X + E[X(t − 𝜏)W(t)] − 𝜇X𝜇W

= aCXX (𝜏 − 𝜏a) + bCXX (𝜏 − 𝜏b) + CXW (𝜏)
= aCXX (𝜏 − 𝜏a) + bCXX (𝜏 − 𝜏b),

(11)
and for the denominator of equation 3, we get

𝜎X𝜎Y =
√

Var(X)Var(aX + bX + W)

=
√

Var(X)[Var(aX) + Var(bX) + Var(W)]

=
√

a2𝜎4
X + b2𝜎4

X + 𝜎2
X𝜎

2
W

= 𝜎X

√
(a2 + b2)𝜎2

X + 𝜎2
W .

(12)

Finally substituting equations (11) and (12) into equation (3), we get

rXY (𝜏) =
aCXX (𝜏 − 𝜏a) + bCXX (𝜏 − 𝜏b)

𝜎X

√
(a2 + b2)𝜎2

X + 𝜎2
W

=

√
a2𝜎2

X

(a2 + b2)𝜎2
X + 𝜎2

W

[
CXX (𝜏 − 𝜏a)

𝜎2
X

]
+

√
b2𝜎2

X

(a2 + b2)𝜎2
X + 𝜎2

W

[
CXX (𝜏 − 𝜏b)

𝜎2
X

]

=
⎛⎜⎜⎝
√

a2𝜎2
X

(a2 + b2)𝜎2
X + 𝜎2

W

⎞⎟⎟⎠ rXX (𝜏 − 𝜏a) +
⎛⎜⎜⎝
√

b2𝜎2
X

(a2 + b2)𝜎2
X + 𝜎2

W

⎞⎟⎟⎠ rXX (𝜏 − 𝜏b)

= ArXX (𝜏 − 𝜏a) + BrXX (𝜏 − 𝜏b),

(13)

and the mean cross-correlation coefficient from a number of month-long analyses is given by

r̄XY (𝜏) =
1
N

N∑
i=1

AirXX (𝜏 − 𝜏ai) +
1
N

N∑
i=1

BirXX (𝜏 − 𝜏bi)

≈ A
N

N∑
i=1

rXX (𝜏 − 𝜏ai) +
B
N

N∑
i=1

rXX (𝜏 − 𝜏bi).

(14)

Thus, the cross-correlation coefficient of the response to a driver operating at two different lags is a weighted
sum of the driver's autocorrelation function, which can be generalized to any number of lags. Multire-
sponse models based on equations (13) and (14) are presented in section 4 to model the DP2, DP1, and NBZ
responses to IMF Bz driving.

In what follows, the free parameters have been estimated by trial and error to fit the empirical
cross-correlation function. Each component lag (i.e., 𝜏a and 𝜏b) as first estimated (to about the 5-min res-
olution of the data) from the peaks in the empirical cross-correlation function. Corresponding amplitudes
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(A and B) were chosen to give an approximate fit based on a fixed-𝜏 model (equations (7) and (13)). The
model fit was then improved by using the variable lag model (equations (8) and (14)). Here it was assumed
that the mean lag 𝜇 was equal to 𝜏 of the fixed-𝜏 model and then iterating the allowed variability 𝜎 about
the mean. A more sophisticated fitting method could have been used, but this seemed unnecessary based
on the goodness of fit achieved.

4. Results
In Figures 2a–2d, we show the cross correlation between each month-long time series of a given equivalent
current system and of a given IMF component, for lags varying from −10 to +600 min. Each gray line shows
correlation with lag for a single monthly epoch. The thick red line shows the mean of these correlation
curves taken over all months, illustrating the peak correlation for each equivalent current system. Figures 2e
and 2j show the monthly and mean autocorrelations for IMF By and Bz, respectively, in the same format
as Figures 2a–2d. These mean IMF autocorrelations are used in one-component (equations (7) and (8)),
two-component (equations (13) and (14)), and three-component models to reproduce the mean cross corre-
lations from Figures 2a–2d. In the remainder of this section, we interpret the mean observed and modeled
correlations for each equivalent current system in turn.

4.1. DPY Correlations
In Figure 2f, we compare the mean correlation between IMF By and the DPY system (red line) with two
models based on the IMF By autocorrelation. The green line shows the modeled cross correlation between
the driver and the response for a given single month, based on equation (2), using a fixed A of −0.68 and
a fixed 𝜏a of 20 min. The blue line shows the modeled mean cross correlation based on equation (3), using
the same fixed A and a variable 𝜏a, drawn from a normal distribution with 𝜇 = 20 min and 𝜎 = 10 min. The
latter model fits the data well, and we thus conclude that about A2 ∗ 100 = 46% of the variance of the EOF
amplitude time series from the DPY cluster is explained by IMF By. We infer that the response at 𝜏a = 20 min
is the DPY response to magnetopause reconnection. This imparts an azimuthal stress on newly reconnected
field lines, creating an azimuthal circulation of plasma, and the corresponding antiparallel circulation of
equivalent current shown in Figure 1a (e.g., Friis-Christensen & Wilhjelm, 1975; Tenfjord et al., 2015). The
negative sense of the correlation in Figures 2a and 2f is in agreement with the expectation that duskward
(positive) IMF By causes an eastward DPY circulation, since the associated pattern in Figure 1a shows a
westward circulation.

4.2. DP2 Correlations
In Figure 2g, we compare the mean correlation between IMF Bz and the DP2 system with two models based
on the IMF Bz autocorrelation. The first model (green line) is a two-component model which assumes that
the DP2 response is a weighted superposition of IMF Bz at two different lags. Hence, the cross correlation is
the weighted sum of two evaluations of equation (2), one using a fixed A1 of −0.25 and a fixed 𝜏1 of 20 min
and another using a fixed A2 of−0.53 and a fixed 𝜏2 of 60 min. The second model (blue line) is a superposition
of two evaluations of equation (3), one with A1 = −0.25, 𝜇1 = 20 min, and 𝜎1 = 10 min and the other with
A2 = −0.53, 𝜇2 = 60 min, and 𝜎2 = 30 min. The latter model fits the data well, and thus, we conclude that
A2

1 ∗ 100 = 6.25% of the total variance is described by the first component of the response, A2
2 ∗ 100 = 28.09%

of the total variance is described by the second component, and (A2
1 + A2

2) ∗ 100 = 34.34% of the total
variance is described by the two components combined (i.e., by IMF Bz). We attribute the first of the two
responses at 20-min lag to magnetopause reconnection, the same physical source which describes the DPY
group. The second response at 60-min lag describes the response to nightside reconnection. Together, the
two responses create the two-cell convection pattern shown in Figure 1b (Nishida, 1968a), expected from
the expanding-contracting polar cap model (Lockwood et al., 1990; Lockwood & Cowley, 1992). We could
fit the data equally well with a more parsimonious single response model (A = −0.79, 𝜇 = 40 min, and
𝜎 = 35 min), but since DP2 is driven by both dayside and nightside reconnections, we have a sound physical
motivation to favor the two-component model.

4.3. NBZ Correlations
In Figure 2h, we compare the mean correlation between IMF Bz and the NBZ system with two models
based on the IMF Bz autocorrelation. The first model (green line) is a two-component model based on two
evaluations of equation (2), one using a fixed A1 of 0.58 and a fixed 𝜏1 of 15 min and another using a fixed
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Figure 2. (a–d) Monthly correlations between interplanetary magnetic field (IMF) By or Bz and the time series of
amplitudes for each of the equivalent current systems DPY (a), DP2 (b), NBZ (c), and DP1 (d). Each gray line shows
correlation with lag for a single monthly epoch. The red line shows the mean correlation series, taken across all
monthly epochs for each equivalent current system. The dashed black line is at zero correlation. (e and j) Monthly
autocorrelations of the IMF By (e) and Bz (j) components as a function of lag. Line colors are the same as (a)–(d). (f–i)
The red line is the same as that in the corresponding adjacent panel from (a)–(d), that is, (a) and (f) form a pair. The
green line is the modeled correlation series from equation (2), and the blue line is given by equation (3).
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A2 of −0.63 and a fixed 𝜏2 of 90 min. The second model (blue line) is a superposition of two evaluations of
equation (3), one with A1 = 0.58, 𝜇1 = 15 min, and 𝜎1 = 5 min and the other with A2 = −0.63, 𝜇2 = 90
min, and 𝜎2 = 40 min. This model fits the data well, and we conclude that A2

1 ∗ 100 = 33.64% of the total
variance is described by the first component of the response, A2

2 ∗ 100 = 39.69% of the total variance is
described by the second component, and (A2

1 + A2
2) ∗ 100 = 73.33% of the total variance is described by the

two components combined (i.e., by IMF Bz). Again, we infer that the first of the two responses at 15-min
lag is driven by magnetopause reconnection. Given the spatial sense of the NBZ pattern shown in Figure 1c,
we expect the observed positive correlation between this pattern and the IMF Bz component. It is likely that
this pattern has a slightly faster directly driven response to magnetopause reconnection than observed for
DPY or DP2 because NBZ is physically smaller and thus takes less time to reconfigure. The second of the
two-component responses at 90-min lag implies that some time after the IMF is directed northward, it will
turn southward. At this point the solar wind will drive an ionospheric two-cell convection pattern which
is (somewhat) opposite to the NBZ pattern in Figure 1c, and hence, the cross correlation of NBZ and IMF
Bz can be expected to reverse in sign. The broad peak of the secondary response reflects the very variable
timescale for the IMF Bz component to reverse in sign following an initial northward state.

4.4. DP1 Correlations
In Figure 2i, we compare the mean correlation between IMF Bz and the DP1 system with two models based
on the IMF Bz autocorrelation. The first model (green line) is now a three-component model based on
equation (2), one with fixed A1 of 0.17 and a fixed 𝜏1 of 20 min, another with fixed A2 of −0.19 and a fixed
𝜏2 of 60 min, and the last with fixed A3 of 0.32 and a fixed 𝜏3 of 155 min. The second model (blue line) is
a superposition of three evaluations of equation (3), one with A1 = 0.17, 𝜇1 = 20 min, and 𝜎1 = 8 min,
another with A2 = −0.19, 𝜇2 = 60 min, and 𝜎2 = 15 min, and the last with A3 = 0.32, 𝜇3 = 155 min, and
𝜎3 = 30 min. This model fits the data well, and we conclude that A2

1 ∗ 100 = 2.89% of the total variance
is described by the first component of the response, A2

2 ∗ 100 = 3.61% of the total variance is described by
the second component, A2

3 ∗ 100 = 10.24% of the total variance is described by the third component, and
(A2

1 + A2
2 + A2

3) ∗ 100 = 16.74% of the total variance is described by the three components combined (i.e.,
by IMF Bz). We infer that the first of these three responses (at 20 min) is actually a prompt DP2 response
to magnetopause reconnection. The DP1 is not perfectly isolated in the EOF modes, and the DP1 cluster
still contains some DP2 signal. For instance, away from the expected location of the DP1 westward electro-
jet between 21 MLT and 03 MLT, the SEIMF in the auroral electrojet and polar cap regions in Figure 1d is
spatially similar to that in Figure 1b yet reversed in sign (i.e., the spatial pattern here resembles a negative
DP2 system). This sign reversal is why the prompt response in Figure 2i is a positive correlation, while the
prompt response in Figure 2g is a negative correlation. The second modeled response is the substorm—the
more-negative correlation at 60-min lag is consistent with the DP1 westward electrojet forming at substorm
onset, following a growth phase lasting approximately 1 hr after an IMF Bz southward turning. The fact that
the cross correlation at 60-min lag is not actually negative reflects the overall dominance of the inclusion
of signal from the stronger DP2 pattern. Lastly, the third response possibly reflects the tendency of the sub-
storm to repeat on a 2-hr timescale. The first substorm enhances ionospheric conductivity due to associated
particle precipitation, and so the variance of the response in the second substorm is larger for a given IMF
input.

5. Discussion
The most predictable modes from a given single IMF component are DPY (46% of variance explained) and
NBZ (73% explained). While the NBZ modes would appear to be weakly related to the IMF (peak correlation
∼ 0.2), we find that this is a superposition of two opposing responses at different lag, each more strongly
related to the IMF. DP1 is the least well-explained mode set (at 17%) based on the IMF, which is expected
since it represents the equivalent current response to substorm onset. This is an impulsive response to a
time-integrated property of the IMF and arguably (Freeman & Morley, 2009; Morley et al., 2007) also to an
additional trigger from upstream IMF variations in around half of cases (Milan et al., 2007). It is likely that
more of the variability of the Bz-controlled modes would be explained by a nonlinear function of the solar
wind parameters (e.g., Boynton et al., 2011; Finch & Lockwood, 2007; Newell et al., 2007; Spencer et al.,
2011), but we do not investigate this here.

All four mode sets exhibit a prompt response to magnetopause reconnection. This is the well-known directly
driven response of the electrojets to the IMF (Kamide & Kokubun, 1995). At longer lags, we find that the
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Figure 3. Correlations between interplanetary magnetic field (IMF) Bz and the time series of amplitudes for the DP2
equivalent current system, grouped by (a) season and (b) solar cycle phase according to F10.7. Only the means of the
grouped data are shown.

DP2 and DP1 responses are more strongly correlated to the IMF variations than the initial response, despite
being presumably less directly driven (e.g., Milan et al., 2018; Weimer, 2013). This seems counterintuitive but
can be explained via an ionospheric conductivity feedback. When magnetopause reconnection associated
with the prompt response to the IMF is sustained for tens of minutes, a substorm will likely ensue that will
increase particle precipitation and conductivity in the auroral zone. After this, a unit change in the driver
will cause a larger response in the SEIMF there; hence, the IMF explains more of the SEIMF variability for
DP2 and DP1 perturbations at longer lags. Despite their stronger correlation with the IMF, we do not imply
that the long lag variations are more predictable. Rather, we think that the long lag contributions to the
SEIMF explain more of the total variance because more of the variance comes from after substorm onset,
due to the higher post-onset conductivity. In addition, the variation in the monthly lag is much larger than
for the prompt responses.

Evidence to support the link between ionospheric conductivity and the mode response to the IMF can be
provided by taking subsets of the correlations according to season and solar cycle phase. This cannot be
performed for the DPY, DP1, or NBZ modes, since each is absent from the EOF analysis in some seasons.
However, we can assess how the relationship between the DP2 modes and the IMF Bz component varies
according to season and solar cycle, which we show in Figure 3. Figure 3a shows the data from Figure 2b,
grouped by season. Here we define season as pairs of adjacent months with a single-month gap in-between.
The year is divided as follows: summer (June and July); autumn (September and October); winter (December
and January); and spring (March and April). In Figure 3b, we have divided the data from Figure 2b by solar
cycle phase, where solar low is defined from monthly F10.7 values below 130 fu, solar medium is between 130
and 170 sfu, and solar maximum is greater than 170 sfu. We find that seasons and phases associated with low
ionospheric conductivity show lower mean correlation between the DP2 modes and IMF Bz for both prompt
and indirect responses. Conversely, in summer, when the conductivity is the highest (Figure 3a), we see a
small relative increase in the proportion of the prompt response explained by IMF Bz, consistent with the
conductivity perturbations caused by prior IMF variations being a smaller part of the total conductivity then.

There are a number of other studies which have looked specifically at how the magnetosphere-ionosphere
system responds to the solar wind as a function of lag time. Here we discuss the results we have presented
in the context of these studies.

Other authors have computed EOF analyses (or mathematic equivalents) of geophysical data from the polar
regions and correlated the discovered modes with the IMF as a function of lag (Baker et al., 2003; Milan et al.,
2015; Sun et al., 1998). Baker et al. used auroral ultraviolet brightness and discovered somewhat different
modes to those of Shore et al. (2018), making direct comparison with the results of our study difficult. How-
ever, it is clear that the correlations of the ultraviolet modes with the IMF have their peaks at different
(typically longer) characteristic lags than the modes assessed in this study, with ranges from 5 to 180 min.

The study of Sun et al. (1998) is closest to ours, since their modes are also discovered from ground-based
magnetic data. The authors analyzed the modes from 2 days of data in spring equinox and discovered sim-
ilar relationships between the DP2 and DP1 modes and the IMF as we have reported here. Sun et al. also
indicated that DP2 and DP1 were imperfectly separated in the mode decomposition, as we have found here
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too. The advances of our study are that we have assessed more—and different—current systems (i.e., DPY
and NBZ) over the span of a solar cycle, and we have quantified the proportion of each mode explained by
the IMF, for responses at varying time delays.

Browett et al. (2017) have correlated the IMF By measurements with By measured in the terrestrial mag-
netotail and assessed this relationship as a function of lag time. The authors found multiple peaks in this
correlation, at lags commonly larger than 1 hr, arising from reconnection in an asymmetrically loaded mag-
netotail. We find no systematic (i.e., present in several months) correlation peaks in the relationship between
DPY and IMF By (shown in Figure 2a) at lags greater than 20 min. However, we note that Browett et al.
(2017) found a pronounced control from solar wind speed and IMF Bz sign on the timescale for correlation
between IMF By and magnetotail-measured By. We have not accounted for this behavior here, and nightside
reconnection may account for the deviation between the red and blue lines in Figure 2f between lags of 60
and 240 min. It is possible that subdividing the Shore et al. (2018) data set could reveal a coherent DPY-By
correlation at long lag. Our results for the DPY prompt response are consistent with the study of Tenfjord
et al. (2015), which showed (their Figure 2) that By stress is exerted on the ionosphere for 5–20 min after
reconnection, following which time a “stable” hemispheric asymmetry is attained.

Lastly, we wish to highlight the study of Maggiolo et al. (2017) who have performed a correlation between
geomagnetic indices and solar wind parameters spanning 2000–2010, also as a function of lag. The authors'
most pertinent finding was that of a peak in the correlation between IMF Bz and the AE index at a lag of 35
min. Maggiolo et al. interpreted this delay as a particularly rapid substorm growth phase—we disagree with
this interpretation. Instead, we suggest that the 35-min delay between IMF Bz and the AE index is due to
the superposition of the two responses of the DP2 system to IMF Bz which we found in section 4.2.

Our study has resolved the proportion of the geomagnetic variation which can be described from a given
IMF component variation and how this varies with spatial location and time delay. This localized temporal
behavior is not accounted for in otherwise state-of-the-art models of space weather, for instance, by Weimer
(2013) and Laundal et al. (2018). Both of these models are based on a regression of spherical harmonic
coefficient amplitudes onto an ensemble of solar wind parameters. This technique confers two main short-
comings. First, the same time lag in the response to solar wind driving must be assumed for all locations,
because the spherical harmonics are defined globally. The models apply temporal averaging to mitigate this
assumption, which reduces the temporal precision of their predictions. The Weimer (2013) model applies
25-min smoothing, and the AMPS model (Laundal et al., 2018) applies 20-min smoothing. Second, neither
of these models separates the expected space weather response by magnetic variation type (i.e., by equiva-
lent current system). Our technique here separates the responses of different current systems, and so we do
not require temporal smoothing when describing the localized response. From a practical point of view, our
new findings identify the ionospheric regions which can be best (and worst) predicted from the solar wind.
This new information is crucial to understanding and empirically predicting the space weather impacts of
the connected Sun-Earth environment on Earth systems and infrastructure.

6. Conclusions
We use the EOF reanalysis of ground-based magnetic field perturbations, provided by Shore et al. (2018), to
investigate the response of the ionospheric equivalent current modes DPY, DP2, NBZ, and DP1 to variations
in IMF By and Bz. We quantify the different temporal latencies in these responses and the proportion of the
variance of the modes which is described by the IMF. Thus, we resolve the predictability of the different
equivalent current systems in the context of solar wind conditions.

We find that IMF By accounts for 46% of the DPY mode variability and that IMF Bz accounts for, respectively,
34%, 73%, and 17% of the DP2, NBZ, and DP1 modes. Each of these four sets of modes exhibits a prompt
response to magnetopause reconnection at 15- to 20-min lag, following a perturbation at the Earth's bow
shock nose. The DP2 and DP1 modes show a secondary response driven by magnetotail reconnection at
60-min lag. In addition, the DP1 modes exhibit a third response at 155 min, which may reflect the most com-
mon substorm repeat interval. The NBZ modes exhibit a secondary response at 90 min, which may reflect
the timescale for the IMF to persist in a northward state. For the DP2 and DP1 modes, we find that the IMF
explains more of the variation of the secondary and tertiary responses than the initial prompt response. This
is consistent with substorm-enhanced ionospheric conductivity increasing the equivalent current response
amplitude for a unit input from the IMF driver.
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We confirm the supposition (introduced by Shore et al., 2018) that using graph theory to group geomagnetic
EOF modes into similar patterns can resolve the disturbance-polar equivalent current systems identified
from historic ground magnetic records. We show that these groups of modes each correlate differently with
the IMF driving in terms of the timescale and amplitude of the response, and we quantify the modulation
of the DP2 response according to solar cycle and season. Our results are consistent with the spatial patterns
of the modes and our expectations from established theory. Our improved description of the IMF driving
offers a better understanding of the underlying physics and timescales. This should improve future esti-
mates of solar wind-magnetosphere coupling and of the geoeffectiveness of solar activity, both of which are
challenging issues for describing space weather.
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