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Abstract
A subset T ⊆ V (G) of vertices of a graph G is said to be cyclable if G has a cycle C containing
every vertex of T , and for a positive integer k, a graph G is k-cyclable if every subset of vertices of
G of size at most k is cyclable. The Terminal Cyclability problem asks, given a graph G and a
set T of vertices, whether T is cyclable, and the k-Cyclability problem asks, given a graph G and
a positive integer k, whether G is k-cyclable. These problems are generalizations of the classical
Hamiltonian Cycle problem. We initiate the study of these problems for graph classes that admit
polynomial algorithms for Hamiltonian Cycle. We show that Terminal Cyclability can be
solved in linear time for interval graphs, bipartite permutation graphs and cographs. Moreover, we
construct certifying algorithms that either produce a solution, that is, a cycle, or output a graph
separator that certifies a no-answer. We use these results to show that k-Cyclability can be solved
in polynomial time when restricted to the aforementioned graph classes.
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1 Introduction

A subset T ⊆ V (G) of vertices of a graph G is said to be cyclable if G has a cycle C containing
every vertex of T . In this case, C is said to cover T . We assume that a single element set is
cyclable. For a positive integer k, a graph G is k-cyclable if every set T of size at most k is
cyclable. The cyclablity of G, denoted cyc(G), is the maximum k such that G is k-cyclable.
We consider the following generalizations of the classical Hamiltonian Cycle problem.

Input: A graph G and a nonempty set T ⊆ V (G) of terminals.
Task: Decide whether T is cyclable.

Terminal Cyclability

Input: A graph G and a positive integer k.
Task: Decide whether G is k-cyclable.

k-Cyclability
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16:2 Cyclability in Graph Classes

The investigation of Terminal Cyclability and k-Cyclability started in the 1960s with
the pioneer work of Dirac [18] who proved that, for each k ≥ 2, every k-connected graph
is k-cyclable. Since then, a number of related results have been obtained and the majority
of them follow the line of research of Dirac [18]: to give sufficient conditions for a graph G
to be k-cyclable or for a given subset T ⊆ V (G) to be cyclable; we refer the reader to the
survey paper of Gould [22] for results of this type.

From the computational complexity viewpoint, both Terminal Cyclability and k-
Cyclability are at least as hard as the Hamiltonian Cycle problem, which is well-known
to be NP-complete [19]. Positive results can be found in the Parameterized Complexity
framework (we refer to the recent book of Cygan et al. [12] for an introduction to the
field). For instance, by the celebrated results of Robertson and Seymour [29] about the
Disjoint Paths problem, Terminal Cyclability is fixed-parameter tractable (FPT)
when parameterized by |T |. So far, the best known FPT (randomized) algorithm is due to
Björklund, Husfeldt and Taslaman [3]. Golovach et. al. [20] also proved that deciding if G is
k-cyclable is co-W[1]-hard for split graphs and that k-Cyclability is FPT on planar graphs
when parameterized by k.

There is also a long history of research on Hamiltonian Cycle and related problems
for the classes of cographs, bipartite permutation graphs, interval graphs and some of their
superclasses (see [5, 7, 8, 11, 13, 14, 15, 16, 23, 24, 26, 28] and the bibliography therein).

A lot of this research is connected with the conjecture of Chvátal [9]; see the survey
of Bauer, Broersma and Schmeichel [2] for the statement, history and details around the
conjecture. Let c(G) denote the number of connected components of a graph G, Chvátal [9]
observed that if there exists a vertex separator S of a graph G such that c(G − S) > |S|,
then G has no Hamiltonian cycle. Hence, the condition that c(G− S) ≤ |S| holds for every
separator of a graph G is a necessary Hamiltonicity condition. For interval graphs, bipartite
permutation graphs and cographs that are connected and have at least three vertices, this
condition turns out to be also be sufficient [11, 13, 15]. Motivated by this necessary condition,
Jung [25] defined the scattering number of a noncomplete graph G as

sc(G) = max{c(G− S)− |S| | S is a separator of G}, (1)

and the set S∗ for which the maximum in (1) is achieved is called a scattering set. For a
complete graph G, sc(G) = −∞. For the class of cocomparability graphs G with at least three
vertices (that is a superclass of the classes of interval graphs and permutation graphs), the
following two dualities were established in [15]. Firstly, it is shown that G has a Hamiltonian
cycle if and only if sc(G) ≤ 0 and, secondly, that the set of vertices of G can be covered by
at most k vertex-disjoint paths if and only if sc(G) ≤ k.

From these equivalences, one can construct certifying polynomial time algorithms for
Hamiltonian Path and Hamiltonian Cycle problems. Note that a certifying algorithm
outputs, together with a solution, a certificate that demonstrates the correctness of the
solution that can be verified independently. Typically, the size of a certificate should be
small with respect to the input size and the verification algorithm should be simple. The
main advantage of certifying algorithms over standard ones is that their implementations
are a great deal more reliable and can be used without knowing the code; see the survey
papers [1, 27] for an introduction to certifying algorithms. The certifying algorithms for
Hamiltonian Path and Hamiltonian Cycle either output a Hamiltonian path or a
Hamiltonian cycle, or produce a separator that certifies a no-answer [10, 15, 11, 7].

We continue the study of Terminal Cyclability and k-Cyclability from a complexity
viewpoint by first showing that analogous dualities hold for these problems on interval graphs,
bipartite permutation graphs and cographs (see Section 2 for the formal definitions of these
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graph classes). We will then show how to construct, from these dualities, polynomial time
algorithms for Terminal Cyclability and k-Cyclability on these graph classes, which
are also certifying algorithms in the case of Terminal Cyclability. In fact, for Terminal
Cyclability we will consider a slightly more general problem. To be more precise, let G
be a graph and let T ⊆ V (G) such that T is not a clique. Let cT (G) denote the number of
connected components of G containing some vertex of T and say that a subset S ⊆ V (G) is
a T -separator of G if cT (G− S) ≥ 2. The T -scattering number of G is given by

scT (G) = max{cT (G− S)− |S| | S is a T -separator}, (2)

and the set S∗ for which the maximum in (2) is achieved is called a T -scattering set. A cycle
or a family of vertex-disjoint paths containing the vertices of T is said to be a T -cycle-segment
cover. The size of a T -cycle-segment cover is defined to be zero if it is a cycle and to be
the number of paths in the family otherwise. The T -cycle-segment cover number, denoted
segG(T ), is the minimum size of a T -cycle-segment cover.

As one of our main contributions, we will show that if G is an interval graph, a bipartite
permutation graph or a cograph and T is not a clique, then segG(T ) ≤ r if and only if
scT (G) ≤ r. This, in turn, will allow us to solve in polynomial (linear) time the following
decision problem that generalizes Hamiltonian Cycle and Path Cover.

Input: A graph G, a nonempty set T ⊆ V (G) of terminals and a nonnegative
integer r.

Task: Decide whether segG(T ) ≤ r.

Cycle Segment Cover

Moreover, our algorithms for each graph class either produce a solution, that is, a T -cycle-
segment cover, or return a T -separator S∗ such that cT (G− S∗)− |S∗| > r that certifies a
no-answer (unless T is a 2-clique and is not cyclable in G, which is the only case when there
exists no T -separator S∗ that certifies a no-answer – in this case, it suffices to check whether
T induces a bridge in G). More formally, we will establish the following theorem.

I Theorem 1. There is an algorithm that, given an instance (G,T, r) of Cycle Segment
Cover, where G is an interval graph, a bipartite permutation graph or a cograph and T is
not a 2-clique, either finds a T -cycle segment cover of size at most r or a T -separator with
cT (G− S∗)− |S∗| > r that certifies a no-answer in O(|V (G)|+ |E(G)|) time.

In fact, for cographs we have a slightly better result: the algorithm runs in time O(|V (G)|)
if the cotree of G is given (see Section 5 for the definition). We then use these results to
solve k-Cyclability for interval graphs, bipartite permutation graphs and cographs.

I Theorem 2. For a graph G that is an interval graph, a bipartite permutation graph or a
cograph, k-Cyclability can be solved in time O(|V (G)|3).

In proving Theorem 2, the following definition will be essential. For a positive integer k,
we define the k-scattering number of a graph G as

sck(G) = max{c(G− S)− |S| | S is a separator of G s.t. |S| ≤ k − 1}, (3)

and sck(G) = −∞ if it has no separator of size at most k − 1 (we assume that the empty set
is a separator of a disconnected graph).

ISAAC 2019



16:4 Cyclability in Graph Classes

To prove Theorem 2, we first show that if G is an interval graph, a bipartite permutation
graph or a cograph and k is a positive integer, then G is k-cyclable if and only if sck(G) ≤ 0.
Our approach for solving k-Cyclability for interval graphs and cographs then consists of
constructing polynomial time algorithms that compute the k-scattering number for these
graph classes for all k ∈ {1, . . . , |V (G)|} in cubic time. For bipartite permutation graphs, we
use a different approach that gives a better running time.

The extended abstract is organized as follows. In Section 3, we sketch our algorithm for
Cycle Segment Cover for interval graphs and describe how to solve k-Cyclability for
interval graphs. In Sections 4 and 5, we very briefly discuss our afore-mentioned results for,
respectively, bipartite permutation graphs and cographs. We conclude the paper in Section 6
with some open problems. Due to space constraints, the details of most proofs are omitted.

2 Preliminaries

We consider only finite undirected simple graphs and follow the standard graph theoretic
notation and terminology (see, e.g., [17]). We use n to denote the number of vertices and m
the number of edges of the considered graphs unless it creates confusion. We say that a graph
G is an interval graph if there is a family I of closed intervals of the line (called interval
model or representation) such that G is isomorphic to the intersection graph of I. A graph
G is a permutation graph if there is an ordering v1, . . . , vn of its vertices and a permutation
π : {1, . . . , n} → {1, . . . , n} such that for 1 ≤ i < j ≤ n, vi and vj are adjacent in G if and
only of π(i) > π(j). A graph is a bipartite permutation graph if it is both a bipartite graph
and a permutation graph. A graph is a cograph if it has no induced subgraph isomorphic to
the path on four vertices. We refer to [6, 21] for detailed introductions to these graph classes.

It is convenient to dispense with easy instances of our problems. An instance (G,T, r)
of Cycle Segment Cover, where T is a clique, is a yes-instance, unless |T | = 2, r = 0
and T induces a bridge in G. Similarly, an instance (G, k) of k-Cyclability, where G is a
complete graph, is a yes-instance unless |V (G)| = 2 and k = 2.
I Remark 3. In the sequel, we assume that G is not complete and T is not a clique.

3 Interval graphs

In this section, we prove Theorems 1 and 2 for interval graphs. Our algorithms use a specific
interval representation of the input graph. A clique path of a graph G is a sequence of cliques
C1, . . . , Cs of G such that
(i) C1 ∪ . . . ∪ Cs = V (G),
(ii) for all uv ∈ E(G), there is i ∈ {1, . . . , s} such that u, v ∈ Ci,
(iii) for all v ∈ V (G), if v ∈ Ci∩Cj for some 1 ≤ i < j ≤ s, then v ∈ Ch for all h ∈ {i, . . . , j}.

It is usually assumed in the definition of a clique path (see, e.g., [6, 21]) that C1, . . . , Cs

are maximal cliques of G. Here, we relax the standard definition and do not require the
cliques to be inclusion-wise maximal so that some cliques may be identical or empty. It is
well-known [6, 21] that a graph is an interval graph if and only if it has a clique path. The
classical recognition algorithm for interval graphs of Booth and Lueker [4] constructs a clique
path in time O(n+m). As we intend to design an O(n+m)-time algorithm, we can assume
from now on that the input graph is given with its clique path.

For a vertex v ∈ V (G), we let `v = min{i ∈ {1, . . . , s} | v ∈ Ci} and rv = max{i ∈
{1, . . . , s} | v ∈ Ci}. We say that `v and rv are the left bound and right bound of v respectively.
Notice that the intervals [`v, rv] of the real line for v ∈ V (G) form an interval representation
of G. For 1 ≤ i ≤ j ≤ s, we denote Ci,j = ∪j

h=iCh.
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We use the following well-known observation about separators of interval graphs that
results from the definition of a clique path (see, e.g., [6, 21]).

I Observation 4. Let G be a connected interval graph with a clique path C1, . . . , Cs. If
X = C1,i \ Ci+1 6= ∅ and Y = Ci+1,s \ Ci 6= ∅ for some i ∈ {1, . . . , s− 1}, then Ci ∩ Ci+1 is
a separator of G such that X and Y are in distinct components of G− (Ci ∩ Ci+1).

In Subsection 3.1 we solve Cycle Segment Cover for interval graphs. In Subsection 3.2,
we show how to compute the k-scattering number for interval graphs and use this result to
solve k-Cyclability.

3.1 Algorithm for Terminal Cyclability and Cycle Segment Cover
In this subsection, we describe our algorithms for Terminal Cyclability and Cycle
Segment Cover. More formally, we prove the following theorem.

I Theorem 5. There is an algorithm that, given an instance (G,T ) of Terminal Cyc-
lability where G is an interval graph and T is not a 2-clique, finds either a cycle of G
covering T or a T -separator S∗ with cT (G−S∗)− |S∗| > 0 that certifies a no-answer in time
O(n+m).

The next part of the subsection contains a sketch of the proof of Theorem 5. We construct
an algorithm that tries to find a cycle of a graph G that covers T . If it fails, we use the
information obtained by the algorithm to construct a T -separator. The algorithm is inspired
by the algorithm for finding a Hamiltonian cycle in interval graphs of Keil [26]. For us, it
is more convenient to use a tailored variant of the algorithm from [7] for a more general
problem as this allows us to use some results of [7] as black boxes. For this, we need some
auxiliary results.

Let G be an interval graph given together with its clique path C1, . . . , Cs, and let
T ⊆ V (G) such that T is not a clique (see Remark 3). If G has at least two distinct connected
components containing vertices of T , then G has no cycle covering T and the algorithm
returns S∗ = ∅. We can thus assume that the vertices of T are in the same connected
component, so we can discard the other components if they exist. Clearly, all this can be
done in linear time. So we can safely assume, from now on, that G is connected.

Our algorithm (Algorithm 1 below) scans the clique path of G from the leftmost clique to
the rightmost and selects vertices from these cliques depending on their bounds. In order to
break ties between a subset of vertices having the same right bound (Lines 4 and 9) or the
same left bound (Line 14), we use a pre-decided arbitrary total order π on the vertices of G
and always select the leftmost vertex in the subset with respect to π. Let p = min{rv | v ∈ T}
and q = max{`v | v ∈ T}. Let wb be the minimum vertex of T with respect to π such that
rwb

= p. Analogously, let we be the maximum vertex of T with respect to π such that
`we = q. Since T is not a clique, it follows that p < q, wb 6= we and wbwe 6∈ E(G).

Algorithm 1 tries to construct two (wb, we)-paths P1 and P2 that are internally vertex-
disjoint such that T ⊆ V (P1) ∪ V (P2). If the algorithm succeeds, then the concatenation of
P1 and P2 is a cycle covering T . Initially, P1 = P2 = wb. Afterwards, the algorithm attaches
new vertices to one of the end-vertex of the two paths, which we call the extremity of the
path. For each Pi, the initial extremity of Pi is wb and whenever we append a new vertex to
the path, this vertex becomes the new extremity. It is easy to prove the following property.

I Lemma 6. If Algorithm 1 returns P1 and P2, then P1 and P2 are internally vertex-disjoint
(wb, we)-paths that contain all the vertices of T .

ISAAC 2019



16:6 Cyclability in Graph Classes

Algorithm 1 An algorithm for interval graphs that finds two internally vertex-disjoint
(wb, we)-paths P1 and P2 such that T ⊆ V (P1) ∪ V (P2).

1 begin
2 let P1 = P2 = wb;
3 for t = p to q − 1 do
4 choose Pi ∈ {P1, P2} such that the extremity of Pi has the leftmost right

bound;
5 attach the vertices x ∈ T \ (V (P1) ∪ V (P2)) s.t. rx = t to Pi;
6 for i = 1, 2 do
7 if the extremity of Pi has right bound at most t then
8 if the subset of vertices y ∈ (Ct ∩Ct+1) \ (V (P1)∪ V (P2)) is not empty
9 then extend Pi by attaching such a y having the leftmost right

bound;
10 else report that T is not cyclable and quit;
11 end
12 end
13 end
14 attach the vertices x ∈ T \ {we} s.t. lx = q to P1, then attach we to P1 and P2;
15 return P1 and P2;
16 end

Our next aim is to show that if Algorithm 1 reports that T is not cyclable, then there
is a T -separator S∗ such that cT (G− S∗) > |S∗|. The main observation that we shall use
to construct the set S∗ is that for T = V (G), Algorithm 1 is precisely an algorithm for
finding a Hamiltonian cycle in an interval graph. Our algorithm can be interpreted, to a
large extent, as a variant of Keil’s algorithm [26] or of Algorithm 1 of Broersma et al. [7]
(the main difference between our algorithm and theirs is that our algorithm does not try to
include, in the constructed paths, all vertices that it encounters). In particular, in [7] an
explicit construction is given of a separator S of G such that c(G − S) > |S| for the case
when G has no Hamiltonian cycle. We adapt their approach by first altering our graph so as
to allow the use of some of their results. The rest of our arguments are related to the ones in
[7] but have their own features and are more than just a variation.

Assume that Algorithm 1 stops at Line 10 for t = t∗. Note that from the range of
variation of t in the main loop (Line 3), we have t∗ < q. Denote by P ∗1 and P ∗2 the paths
constructed by the algorithm before it quits. We require some additional notations from [7].

For real numbers a ≤ b, [a, b] = {x ∈ R | a ≤ x ≤ b}, [a, b) = {x ∈ R | a ≤ x < b}, and
(a, b) = {x ∈ R | a < x < b}. If vertex u has been processed by the algorithm and attached
to a path at some step t of the for loop at Lines 3–13, we say that u has been activated at
time au = t. We define awb

= p. If u is activated and a vertex v has been attached to u at
some step t′ ≥ t of the for loop, we say that u has been deactivated at time du = t′. Thus,
`u ≤ au ≤ du ≤ ru and u is said to be free, active or depleted on, respectively, the intervals
[`u, au), [au, du) and [du, ru]. Note that some of these intervals may be empty. Whenever we
say that u is free (respectively, active or depleted) on an interval I of the real line, this means
that I ⊆ [`u, au) (respectively, I ⊆ [au, du) or I ⊆ [du, ru]). We also say that v ∈ V (P ∗i ) for
i ∈ {1, 2} is a descendant of u ∈ V (P ∗i ) if v was attached to P ∗i after u and that v is the last
descendant on an interval I if v is the last vertex attached to P ∗i at steps t ∈ I of the for
loop at Lines 3–13. A vertex v is said to be renounced if it is missed by the algorithm, that
is, `v ≤ t∗ and v /∈ V (P ∗1 ) ∪ V (P ∗2 ). The set of renounced vertices is denoted by R.
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Let G∗ = G−R, and let T ∗ = V (G) \R. For i ∈ {1, . . . , s}, denote C∗i = Ci \R. Clearly,
C∗1 , . . . , C

∗
s is a clique path of G∗. Recall that for 1 ≤ i ≤ j ≤ s, C∗i,j =

⋃j
h=i C

∗
h.

The description of Algorithm 1, with tie-breaking order π, implies the following property.

I Lemma 7. Algorithm 1 for the instance (G∗, T ∗) of Terminal Cyclability, with
tie-breaking order π, quits at Line 10 and constructs the paths P ∗1 and P ∗2 .

As mentioned above, the fact that our Algorithm 1 for (G∗, T ∗) works along the same
lines as Algorithm 1 of [7] will allow us to use the following Lemma 2.2 of [7].

I Lemma 8 ([7]). Let t ∈ {p, . . . , q − 1} such that Algorithm 1 with input (G∗, T ∗) either
finishes iteration t of the for loop at Lines 3–13 or terminates at Line 10 within iteration t.
If there is at least one depleted vertex on the interval (t, t+ 1), then there exists an integer t′
such that p ≤ t′ < t with the following properties:
(i) (C∗t′+1,t \ (C∗t′ ∪ C∗t+1)) 6= ∅,
(ii) there exists a unique vertex u ∈ C∗t′ ∩ C∗t+1 such that u is active on (t′, t′ + 1) and u is

depleted on (t, t+ 1),
(iii) all vertices that are active on (t, t+1) are also active on (t′, t′+1), with the only possible

exception of the last descendant v of u on (t′, t+ 1) which may be free on (t′, t′ + 1),
(iv) all vertices that are depleted on (t, t+ 1) are also depleted on (t′, t′ + 1), except u which

is active on (t′, t′ + 1),
(v) all vertices that are active on (t′, t′ + 1) are also active on (t, t+ 1), except u which is

depleted on (t, t+ 1), and
(vi) all vertices that are free on (t′, t′ + 1) are also free on (t, t+ 1), with the only possible

exception of v if it is active on (t, t+ 1).

For our purposes, we need one additional property (vii), stated by Lemma 9 below, which
can be proved to be satisfied by the minimum t′ satisfying properties (i)-(vi) of Lemma 8.

I Lemma 9. Let t ∈ {p, . . . , q− 1} such that Algorithm 1 with input (G∗, T ∗) either finishes
iteration t of the for loop at Lines 3–13 or terminates at Line 10 within iteration t. If there
is at least one depleted vertex on the interval (t, t+ 1), then there exists an integer t′ < t that
satisfies the conditions (i)–(vi) and the following property:
(vii) there is x ∈ V (G∗) such that ax = t′ and x is active during (t′, t′ + 1).

We now use Lemma 9 to construct the following decreasing sequence t1, t2, . . . of positive
integers. We set t1 = t∗. Then we construct ti+1 from the already constructed ti as follows.
If, for t = ti, there is at least one depleted vertex on (t, t + 1), then find t′ < t such that
the conditions (i)–(vii) of Lemmas 8 and 9 are satisfied and set ti+1 = t′. We stop the
construction if there is no depleted vertex on (t, t+ 1) for t = ti. Clearly, the constructed
sequence is finite and we denote it by t1, . . . , tk, with k being its number of elements.

For i ∈ {1, . . . , k}, we define Si = C∗ti
∩C∗ti+1 and S∗ = ∪k

i=1Si. We require the following
crucial property of S∗ that was shown in the proof of Theorem 2.1 of [7].

I Lemma 10 ([7]). The set S∗ is a separator of G∗ and c(G∗ − S∗) ≥ k + 1 > |S∗|.

From Lemma 10, we establish an essential result for the proof of Theorem 5.

I Lemma 11. The set S∗ is a T -separator in G and cT (G− S∗) > |S∗|.

Mindful of Lemma 10, Lemma 11 intuitively states that the set R of renounced vertices of
G does not play an important role in finding a T -separator of G whose removal “maximises”
the number of resulting components containing some member of T .

ISAAC 2019



16:8 Cyclability in Graph Classes

Proof. We use the second inequality of Lemma 10 (k + 1 > |S∗|) and we prove in addition
that cT (G−S∗) ≥ k+1. To this purpose, we define subsets Xi with 0 ≤ i ≤ k (see below) for
which we show that each Xi has a non-empty intersection with T (Claim 12) and the sets Xi

are separated by S∗ in G (Claim 13). Let Xk = C∗1,tk
\C∗tk+1, Xj = C∗tj+1+1,tj

\(C∗tj+1
∪C∗tj+1)

for j ∈ {1, . . . , k − 1} and X0 = C∗t1+1,s \ C∗t1
. We have two claims.

B Claim 12. For all i such that 0 ≤ i ≤ k, Xi ∩ T 6= ∅.

Let us first argue that wb ∈ Xk and we ∈ X0. As the main loop of Algorithm 1 (Lines 3–
13) starts iterating with t = p, there is no depleted vertex on (t, t + 1) for t < p. Hence
tk ≥ p and given that wb ∈ Cp \ Cp+1 it follows that wb ∈ C∗p \ C∗p+1. In other words,
wb ∈ C∗1,p \C∗p+1 and so wb ∈ Xk. Similarly, we ∈ Cq \Cq−1 = C∗q \C∗q−1 since t∗ < q, which
implies that we ∈ C∗q,s \ C∗q−1 and so we ∈ X0.

Now fix some i ∈ {1, . . . , k− 1}. By construction of the sequence t1, . . . , tk the conditions
(i)–(vii) of Lemmas 9 are satisfied with t = ti and t′ = ti+1. By (ii), there is a vertex
u ∈ C∗ti+1

∩ C∗ti+1 that is active on (ti+1, ti+1 + 1) and depleted on (ti, ti + 1). This means
that ti+1 + 1 ≤ du ≤ ti and ru ≥ ti + 1. From these bounds, some vertex x must have been
attached to the path with extremity u at time t = du in Line 5 of Algorithm 1 and so, again
by the algorithm, must be a member of T with rx = du < ti + 1.

If we can show that x ∈ Xi = C∗ti+1+1,ti
\ (C∗ti+1

∪ C∗ti+1), then the claim follows. Since
rx < ti + 1, x is not the last descendant of u on (ti+1, ti + 1) and is not free on (ti, ti + 1).
Hence, by (vi), x is also not free on (ti+1, ti+1 + 1). Therefore, ti+1 < `x ≤ rx < ti + 1 and
hence x /∈ C∗ti+1

∪ C∗ti+1. This means that x ∈ Xi and the claim is proved.

B Claim 13. For all distinct i, j ∈ {0, . . . , k} and every x ∈ Xi and y ∈ Xj , x and y are in
distinct components of G− S∗.

It suffices to show that for every z ∈ R there is i ∈ {0, . . . , k} such that ti+1 + 1 ≤
`z ≤ rz ≤ ti, where we assume that t0 = s and tk+1 = 0. Indeed, this implies that for all
i ∈ {1, . . . , k}, Cti

∩ Cti+1 ⊆ S∗ and the claim then follows from Observation 4.
Suppose, towards a contradiction, that there is some z ∈ R and some i ∈ {1, . . . , k} with

the property that `z ≤ ti < rz, and assume without loss of generality that i is minimum
with respect to these conditions. We first show that i > 1. Indeed, if i = 1 then `z ≤ t1 = t∗

and rz > t∗. But as z is a member of R, it follows that z ∈ (Ct∗ ∩Ct∗+1) \ (V (P1) ∪ V (P2)),
which is empty since the condition at Line 8 failed at time t = t∗ and Algorithm 1 quit at
Line 10, a contradiction.

Therefore i > 1. Recall in this case that ti was constructed from t = ti−1 by choosing
ti < t such that for t′ = ti the conditions (i)–(vii) of Lemmas 8 and 9 hold. To finish off the
proof of the claim, we will show that `z ≤ ti ≤ ti−1 < rz, giving the final contradiction since,
by the minimality of i, there is no z ∈ R with `z ≤ ti−1 < rz.

We already know that `z ≤ ti ≤ ti−1. By (vii), there is x ∈ V (G∗) such that ax = ti and
x is active on (ti, ti + 1). By (ii) and (v), x is either active or depleted on (ti−1, ti−1 + 1). In
either case, rx ≥ ti−1 + 1 > ti. Given that ax = ti (that is, x was attached to some path at
the ti-th iteration of the for loop of Algorithm 1 at Lines 3–13) and rx > ti, it follows that
x was attached to some path at Line 9 of Algorithm 1. Hence, the right bound of x is less
than or equal to that of z, which implies rz ≥ ti−1 + 1 and the claim is proved.

From Claims 12 and 13, it follows that cT (G−S∗) ≥ k+1 and consequently cT (G−S∗) ≥
|S∗| from the second inequality of Lemma 10. J

We are now ready to complete the sketch of the proof of Theorem 5.
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Proof sketch of Theorem 5. As mentioned earlier, we can assume that G is connected. We
can also assume that we can compute in O(n+m) time a clique path C1, . . . , Cs of G, where
each clique is inclusion maximal (by the algorithm of Booth and Lueker [4]), so s ≤ n. We
also compute the left bound and right bound `v and rv of each vertex v ∈ V (G), which
allows us to find the vertices wb and we in time O(n). Also in time O(n), we construct the
list L consisting of the right bounds of the elements of T \ {wb, we} in increasing order.

Next, we run Algorithm 1. At each iteration t of the for loop, Algorithm 1 only needs to
decide whether the path under consideration should be extended (at Line 5 and/or Line 9),
after which we also need to determine which vertex of G is to be attached to the extremity
of this path. Now, given that a path is extended only if the right bound of its extremity
(condition at Line 7) or of some vertex of T (condition at Line 5) is precisely t, the first
computation takes constant time with the list L at hand and hence O(n) time in total.
Moreover, whenever a path is to be extended, we scan the vertices of Ct ⊆ NG(v). As
we never extend more than once a path with the same extremity, this takes in total time
O(

∑
v∈V dG(v)) = O(m). Thus, Algorithm 1 runs in O(n+m) time. Now, if Algorithm 1

finishes at Line 15 and outputs two paths P1 and P2, then we are done by Lemma 6.
Otherwise, Algorithm 1 finishes at Line 10, so we work backwards through the algorithm in
order to construct the sequence t1, . . . , tk and the set S∗ =

⋃k
i=1 Si that certifies a negative

answer. With a careful implementation, this can be done in O(n+m) time as well. J

I Remark 14. To avoid any misunderstanding, the assumption that the cliques of the clique
path of G in the proof of Theorem 5 are maximal is crucial for the running time analysis.
But it is also necessary to prove Lemmas 6–11 without this maximality assumption, since the
cliques C∗1 , . . . , C∗s of the graph G∗ (obtained from G by the removal of the set of renounced
vertices) are not necessarily maximal. In other words, it is essential to start off with an
input graph whose clique path consists of maximal cliques but to also prove statements that
concern interval graphs whose clique path may contain non-maximal cliques.

To solve Cycle Segment Cover, we require a folklore observation (see, e.g., [13]).

I Observation 15. Let G be a graph, T ⊆ V (G) and k be a positive integer. If G′ is obtained
from G by adding k universal vertices to G, then scT (G) ≤ k if and only if scT (G′) ≤ 0.

Combining this observation with a careful analysis of the running time of the previous
algorithm applied to G′ instead of G, we obtain the following result.

I Theorem 16. There is an algorithm that, given an instance (G,T, r) of Cycle Segment
Cover, where G is an interval graph and T is not a 2-clique, finds either a cycle or a family
of at most r paths that cover T or a T -separator S∗ with cT (G− S∗)− |S∗| > r that certifies
a no-answer in time O(n+m).

3.2 k-Cyclability for interval graphs
In this subsection we prove Theorem 2 for interval graphs. From Theorem 5 and from the
definition of sck(G), an interval graph G with at least three vertices is k-cyclable if and only
if sck(G) ≤ 0. So to solve k-Cyclability on interval graphs, it is sufficient to construct a
polynomial algorithm that computes the k-scattering number of G for any k ≤ n− 1. The
only remaining task will consist in finding the largest integer k such that sck(G) ≤ 0. We
use the following lemma.
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I Lemma 17. Let G be an interval graph, let C1, . . . , Cs be a clique path of G, where
C1, . . . , Cs are pairwise-distinct maximal cliques of G, and let S be a separator of G. Then,

there exist 1 ≤ t1 < . . . < tr < s such that S′ =
r⋃

i=1
(Cti
∩ Cti+1) (4)

and S′ ⊆ S and S′ is a separator of G such that c(G− S′) ≥ c(G− S).

Informally, the above lemma states that, in computing the k-scattering number, one can
restrict their attention to a subset of separators, namely these separators that satisfy (4),
which we call canonical separators. Thus, Lemma 17 implies that, for an interval graph G,
sck(G) can be equivalently defined as

sck(G) = max{c(G− S)− |S| | S is a canonical separator of G s.t. |S| ≤ k − 1}. (5)

To solve k-Cyclability, our algorithm computes canonical separators via a dynamic
programming scheme on the given clique path C1, . . . , Cs of a non-complete interval graph.

I Theorem 18. For a non-complete interval graph G, one can solve k-Cyclability and
compute the scattering numbers sck(G) for all k ∈ {1, . . . , n− 1} in time O(n3).

4 Bipartite permutation graphs

In this section we briefly sketch our results for Cycle Segment Cover and k-Cyclability
on bipartite permutation graphs. Let G = (V1, V2, E) a bipartite graph. Let σ1 = 〈u1, . . . , up〉
and σ2 = 〈v1, . . . , vq〉 be orderings of, respectively, V1 and V2. It is said that (σ1, σ2) is a
strong ordering of G if for every 1 ≤ i < i′ ≤ p and 1 ≤ j′ < j ≤ q, if uivj , ui′vj′ ∈ E(G),
then uivj′ , ui′vj ∈ E(G). Spinrad, Brandstädt and Stewart [30] showed that (1) a bipartite
graph is a permutation graph if and only if it has a strong ordering and that (2) in any such
ordering, for every v ∈ V (G), the vertices of NG(v) are consecutive either in σ1 or in σ2.
Using this and other results from [30], we prove the following theorem.

I Theorem 19. There is an algorithm that, given an instance (G,T, r) of Cycle Segment
Cover, where G is a bipartite permutation graph and T is not a 2-clique, finds either a cycle
or a family of at most r paths that cover T or a T -separator S∗ with cT (G− S∗)− |S∗| > r

that certifies a no-answer in time O(n+m).

To prove Theorem 19, we first establish the stronger fact that in a connected bipartite
permutation graph G, if T ⊆ V (G) is not cyclable (and not a 2-clique) then there is a T -
separator S∗ with the property cT (G− S∗)− |S∗| > 0 such that S∗ is formed by consecutive
vertices with respect to the strong ordering of either V1 or V2. We use this fact to construct a
certifying algorithm for Terminal Cyclability and then, finally, generalize this algorithm
to Cycle Segment Cover. Note that, unlike for interval graphs, we cannot use an analogue
of Observation 15 for bipartite permutation graphs because the class of bipartite permutation
graphs is not closed under adding a universal vertex.

For k-Cyclability, we first show that a connected bipartite permutation graph G =
(V1, V2, E) with at least three vertices is k-cyclable if and only if all the subsets T satisfying
the following property are cyclable: T ⊆ Vi for some i ∈ {1, 2}, the vertices of T are
consecutive in σi and |T | = min{|Vi|, k}. Using this equivalence, we test the k-cyclability
of G by running the T -cyclability algorithm for each subset T of terminals satisfying the
aforementioned property. As the number of such subsets T is O(n), we obtain the following
theorem, which implies Theorem 2 for bipartite permutation graphs (notice the slightly
better running time, namely O(nm) instead of O(n3)).
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I Theorem 20. k-Cyclability can be solved in time O(nm) on bipartite permutation
graphs.

Notice that, unlike our approach for solving k-Cyclability on interval graphs, we solve
k-Cyclability on bipartite permutation graphs G without determining sck(G).

5 Cographs

In this section, we briefly sketch our results for Cycle Segment Cover and k-Cyclability
on cographs.

Let G1 and G2 be two vertex-disjoint graphs. The union operation creates the disjoint
union G1 +G2 of G1 and G2, that is, the graph with vertex set V (G1) ∪ V (G2) and edge
set E(G1) ∪E(G2). The join operation adds an edge between every vertex of G1 and every
vertex of G2. Cographs can be characterized as those graphs that can be generated from
K1 by a sequence of join and union operations. This gives each cograph G a nice tree
representation, called the cotree of G, whose leaves are the vertices of G and whose internal
nodes represent the join and union operations used in the construction of G.

Our algorithm for Cycle Segment Cover of a cograph G is built using dynamic
programming bottom-up along the cotree of G.

I Theorem 21. There is an algorithm that, given an instance (G,T, r) of Cycle Segment
Cover where G is a cograph given by its cotree and T is not a 2-clique, finds either a T -cycle
segment cover of size at most r or a T -separator with cT (G− S∗)− |S∗| > r that certifies a
no-answer in O(n) time.

We solve k-Cyclability for cographs just as we did for interval graphs by determining
all the scattering numbers sck(G) for k ∈ {1, . . . , n}, again using a bottom-up dynamic
programming scheme along the cotree of G.

I Theorem 22. For a non-complete cograph G, the scattering numbers sck(G) for all
k ∈ {1, . . . , n} can be computed and k-Cyclability can be solved in time O(n3).

6 Conclusion

In summary, we design certifying linear-time algorithms to solve Cycle Segment Cover,
which is a generalization of Hamiltonian Cycle, for interval graphs, bipartite permutation
graphs and cographs. We also use these results to show that k-Cyclability as well can be
solved in polynomial time when restricted to these graph classes.

A natural open question is to consider the aforementioned problems for other graph
classes. In particular, what can be said about the class of cocomparability graphs (see [6, 21]
for the formal definition and properties of this class)? For instance, it is proved by Deogun,
Kratsch and Steiner [15] that a cocomparability graph G with at least three vertices has a
Hamiltonian cycle if and only if sc(G) ≤ 0. They also proved that the set of vertices of G
can be covered by at most k vertex-disjoint paths if and only if sc(G) ≤ k. This indicates
that the class of cocomparability graphs is a natural candidate for Cycle Segment Cover
and k-Cyclability. Still, we do not see how to extend the results of [15] to our settings.

Another interesting question is about the complexity of Terminal Cyclability. It is
easy to see that the problem is in ΠP

2 . Golovach et al. conjectured in [20] that Terminal
Cyclability is ΠP

2 -complete. The conjecture is still open.
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