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Abstract

Most bilaterian animals excrete toxic metabolites through specialized organs, such as

nephridia and kidneys, which share morphological and functional correspondences. In

contrast, excretion in non-nephrozoans is largely unknown, and therefore the reconstruction

of ancestral excretory mechanisms is problematic. Here, we investigated the excretory

mode of members of the Xenacoelomorpha, the sister group to Nephrozoa, and Cnidaria,

the sister group to Bilateria. By combining gene expression, inhibitor experiments, and

exposure to varying environmental ammonia conditions, we show that both Xenacoelomor-

pha and Cnidaria are able to excrete across digestive-associated tissues. However,

although the cnidarian Nematostella vectensis seems to use diffusion as its main excretory

mode, the two xenacoelomorphs use both active transport and diffusion mechanisms.

Based on these results, we propose that digestive-associated tissues functioned as excre-

tory sites before the evolution of specialized organs in nephrozoans. We conclude that the

emergence of a compact, multiple-layered bilaterian body plan necessitated the evolution of

active transport mechanisms, which were later recruited into the specialized excretory

organs.

Introduction

Excretory organs are specialized organs that remove toxic metabolic waste products and con-

trol water and ion balance in animals based on the principles of ultrafiltration, active transport,

and passive transport/diffusion [1]. They are only present in Nephrozoa (Deuterostomia + Pro-

tostomia) [2] (Fig 1a) and, based on morphological correspondences, can be grouped into two

major architectural units: the protonephridia, only found in Protostomia, and the metanephri-

dia, present in both Deuterostomia and Protostomia [3,4]. Both organs are organized into

functionally similar compartments: the terminal cells of protonephridia and the podocytes

associated to metanephridial systems conduct ultrafiltration, and the tubule and duct cells

modify the filtrate through a series of selective reabsorption and secretion, via passive and

active transport mechanisms [5] (Fig 1b). There exist also other, taxon-specific excretory

organs and excretory sites, which perform either ultrafiltration (such as the nephrocytes of
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insects [6] and the rhogocytes of gastropods [7]) or absorption and secretion (such as the mal-

pighian tubules of various tardigrades, arachnids, and insects [8]; the excretory cells of nema-

todes [9]; the gills of fish, shore crabs, and annelids [10,11]; and the epidermis of planarians

[12]).

Molecular studies have shown that a suite of orthologous genes is involved in the excretory

mechanisms of different nephrozoan species, regardless of whether they possess specialized

excretory organs [9–12,14–31] (see also S1 Table). The passive ammonia transporters Rhesus/

AMTs, the active transporter Na+/K+[NH4
+] ATPase (NKA), the hyperpolarization-activated

cyclic nucleotide-gated K+[NH4
+] channels (HCN), the vacuolar H+-ATPase (v-ATPase sub-

units A and B), members of the alpha-carbonic anhydrase (CA) group, and the water/glycerol/

ammonia channels (aquaporins) are commonly used for excreting ammonia, the most toxic

metabolite (Fig 1c) (summarized in [5,32]). Also, a group of orthologous slit diaphragm struc-

tural components (nephrin/kirre, CD2-associated protein [cd2ap], zonula occludens 1 [zo1],

stomatin/podocin), whose function is associated with the maintenance of the ultrafiltration

apparatus by interacting with the actin cytoskeleton and forming tight junctions [33], is local-

ized at the ultrafiltration site of the podocytes of the rodent kidney [34] (Fig 1b) as well as at

the Drosophila nephrocytes [35] and the rhogocytes of gastropods [7]. Finally, a number of ion

transporters (solute carrier transporters [SLCs]) are spatially expressed in the corresponding

compartments of protonephridia of planarians and metanephridia (e.g., kidneys) of verte-

brates [36–38] (Fig 1b).

The excretory sites and mechanisms in non-nephrozoans, however, are largely unknown. It

is commonly stated that excretion is presumably occurring via diffusion across the body wall

because of the loose (e.g., sponges) or single-epithelial (cnidarians and ctenophores) cellular

organization of these animals [1,39,40] (Fig 1a) (herein stated as “diffusion hypothesis”). Based

on this idea, it was hypothesized that the emergence of the first excretory organs coincided

with the evolution of multilayered, solid parenchymes and increased body sizes because of the

need of more elaborate excretory mechanisms [41,42]. However, because excretion in non-

nephrozoans was never investigated in detail, the ancestral mechanisms of excretion and the

evolutionary origin of excretory organs remain unresolved [1,41–46].

An important animal group for our understanding nephrozoan evolution is their bilaterian

sister group [2,13,47], the Xenacoelomorpha (Xenoturbella + [Nemertodermatida + Acoela]).

These small, worm-like animals exhibit a bilaterally symmetric, multilayered body plan, but

except for a special cell type with a putative excretory function (dermonephridia) [48] that

seems unique to the acoel Paratomella, xenacoelomorphs lack excretory organs and no defined

excretory sites have yet been described. To understand the excretory mechanisms outside

Nephrozoa and gain insights into ancient excretory mechanisms, we therefore investigated the

excretory modes of two xenacoelomorph species and compared our findings with the non-

bilaterian cnidarian Nematostella vectensis.

Results

Most genes involved in excretion in nephrozoa are already present in non-

nephrozoan and non-bilaterian animals

To get an overview of the presence of excretion-related genes in xenacoelomorphs and non-

bilaterian animals, we first searched for the orthologous sequences of 20 nephrozoan candidate

genes in the available transcriptomes and draft genomes of 13 xenacoelomorph species as well

as in representatives of cnidarians, placozoans, and sponges (S1a and S2 Figs). We found that

most of these genes were present in almost all groups with the exceptions of slc5 (a sodium glu-

cose cotransporter), which was only present in Cnidaria and Bilateria, and the ultrafiltration
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component nephrin/kirre, which was only present in Bilateria (S1 Table, S1a Fig). This analysis

also revealed that the last common ancestor of placozoans, cnidarians, and bilaterians already

had at least two paralogs of amts (amt2/3 and am1/4) and one rhesus, with independent dupli-

cations of one or both of these genes in various animal lineages (S2 Fig). To identify potential

excretory sites in xenacoelomorphs, we examined the expression of the entire set of these can-

didate excretion-related genes in the acoel Isodiametra pulchra and the nemertodermatid

Meara stichopi, which differ in their digestive system composition (I. pulchra has a syncytial,

lumenless gut, whereas M. stichopi has an epithelia-lined, cellular gut [49] (S1b Fig).

Fig 1. Traditional diffusion hypothesis, ammonia transport mechanism, and structural and functional correspondences between protonephridial and

metanephridial systems. (a) Illustrated phylogenetic relationship between Nephrozoa, Xenacoelomorpha, and non-bilaterians [13]. Excretory organs or

specialized excretory cells/tissues using active transport and ultrafiltration are so far only reported in the group of Nephrozoa. (b) Cartoon depiction of the

structural components of metanephridia (podocyte, duct, tubule) in comparison to protonephridia (terminal cell, duct, tubule) and summary of the expression

domains of orthologous selected genes in relation to their components. (c) NH3 cellular transport. NH3 is secreted into the lumen fluid via parallel H+ and NH3

transport. This involves passive diffusion through the cell membrane (dashed lines), facilitated diffusion via the Rh, active transport via the NKA, the

hyperpolarization-activated cyclic nucleotide-gated HCN, and AQ as well as the generation of H+ gradient by a v-ATPase and the CA, which transforms CO2 into

H+ and HCO3
−. Vesicular ammonia-trapping mechanism is also illustrated. at, active transport; AQ, aquaporin transporter; CA, carbonic anhydrase; cd2ap,

CD2-associated protein; HCN, K+[NH4+] channel; NH3, ammonia; NKA, Na+/K+[NH4+] ATPase; Rh, Rhesus glycoprotein; slc, solute carrier transporter; ul,

ultrafiltration; v-ATPase, vacuolar H+-ATPase proton pump; zo1, zonula occludens 1. Animal depictions are from phylopic.org and are not copyright protected
(Public Domain Mark 1.0 license).

https://doi.org/10.1371/journal.pbio.3000408.g001
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Genes encoding slit diaphragm–related components and SLCs are

expressed broadly in I. pulchra and M. stichopi
Genes related to ultrafiltration sites (nephrin/kirre, cd2ap, zo1, stomatin/podocin) and SLCs

(slc1, slc4, slc5, slc8, slc9, slc12, slc13, slc26) were broadly expressed within neural (brain and

nerve cords), parenchymal/subepidermal, digestive, and gonadal-associated cells in both ani-

mals (S3 and S4 Figs). A summary of these expression patterns is summarized in Table 1. The

broad expression of ultrafiltration-related components and SLCs in acoelomorphs shows that

they are not part of defined excretory domains, as in nephrozoans, thus suggesting that the

spatial arrangement of these genes resulting in the formation of specialized excretory compart-

ments (e.g., nephridial compartments) took place in the nephrozoan lineage.

The expression of a number of ammonia excretion–related genes and

aquaporins suggests digestive-associated domains as putative excretion

sites in I. pulchra and M. stichopi
Genes involved in ammonia excretion (rhesus/amts, nka, v-ATPase B, ca, hcn) and aquaporins
were mainly demarcating neural, digestive-associated, and other parenchymal/subepidermal

cells, as well as epidermal cells (Fig 2a, S4 and S5 Figs). A summary of these expression patterns

is summarized in Table 1. The expression of ammonia excretion–related genes and aquaporins
shows that these genes do not label demarcated excretory domains. However, because tran-

scripts of the ammonium transporters rhesus, nka, and hcn (only in M. stichopi), the proton

exchanger v-ATPase, as well as a number of cas and aquaporins, were found in association

with the digestion system, the possibility that digestive-associated tissues could act as excretory

sites was raised.

High environmental ammonia exposure indicates a diffusion mechanism in

I. pulchra
To reveal the excretory mechanism in xenacoelomorphs, we conducted high environmental

ammonia (HEA) incubation experiments, as previously performed in a large array of animals

(summarized in [5,50]), using I. pulchra because of its availability in sufficient numbers. We

first measured the pH of incubation mediums with different HEA concentrations (up to 1

mM) and found no difference in pH, which could otherwise have influenced any excretion

rates. We then exposed animals to different HEA concentrations for a short period (2 hours)

and measured the ammonia excretion during the following 2 hours, after bringing them back

into normal conditions, to test excretion via diffusion. The ammonia excretion rates of

exposed animals remained unchanged after exposure to 50 and 100 μM NH4Cl, compared

with the control conditions, but increased gradually after exposure to NH4Cl concentrations

of 200 and 500 μM NH4Cl (Fig 2b). The increase in ammonia excretion rate could be explained

by a concentration-dependent ammonia uptake during the HEA exposure and a subsequent

release in normal conditions. These results suggest that ammonia excretion is concentration-

dependent, which is indicative of a diffusion mechanism.

HEA exposure influences the expression of some excretion-related genes in

I. pulchra
To test for a possible involvement of the excretion-related genes in the excretory mechanism of

xenacoelomorphs, we tested for alteration of mRNA expression levels in chronically HEA-

exposed animals by quantitative relative expression experiments (quantitative PCR [qPCR]) in

I. pulchra. We first exposed animals to 1 mM HEA for 7 days, similar to conditions used in
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Table 1. Summary of expression patterns of excretion-related genes in I. pulchra and M. stichopi.

I. pulchra M. stichopi
nephrin/
kirre

nephrin/kirre1: brain, male gonopore nephrin/kirre1: proximal lateral rows (nerve cords?)

nephrin/kirre2: scattered cells (neurons?) nephrin/kirre2: proximal lateral rows (nerve cords?)

nephrin/kirre3: scattered cells (neurons?) nephrin/kirre3: proximal lateral rows (nerve cords?)

cd2ap scattered cells (neurons?) subepidermal cells, mouth, posterior lateral rows of

cells

zo1 scattered cells (neurons?), mouth, anterior cells

(brain?)

gut-affiliated cells, mouth

stom/pod stom/pod a: brain stom/pod a: subepidermal cells, proximal lateral rows

(nerve cords?)

stom/pod b: digestive syncytium stom/pod b: subepidermal cells, mouth

stom/pod c: brain stom/pod c: subepidermal cells

stom/pod d: subepidermal cells

stom/pod e: proximal lateral rows (nerve cords?)

rhesus anterior cells, gut-affiliated cells, posterior ventral epidermis

hcn brain gut-affiliated cells

amts amt-like: brain epidermis

amt1/4 a: brain, mouth

amt1/4 b: parenchymal cells

amt2/3 a: scattered cells (neurons?)

amt2/3 b: brain, parenchyme

amt2/3 c: scattered cells (neurons?)

nka nka a: gut-wrapping cells gut-affiliated cells

nka b: gut-wrapping cells

v-ATPase B digestive syncytium v-ATPase B1: gut-affiliated cells, proximal lateral

rows (nerve cords?)

v-ATPase B2: gut-affiliated cells, subepidermal cells

alpha-ca ca a: anterior cells, male gonopore, mouth,

parenchymal cells

ca a: gut-affiliated cells

ca b: scattered cells (neurons?) ca b: gut-wrapping cells

ca c: scattered cells (neurons?) ca c: gut-affiliated cells

ca d: anterior cells, parenchymal cells ca d: scattered cells (neurons?), posterior epidermis

ca h: scattered cells (neurons?)

ca x: brain

aqs aq a: brain aq a: proximal lateral rows (nerve cords?)

aq b: digestive syncytium aq b: scattered cells (neurons?)

aq c: gut-wrapping cells, scattered cells

(neurons?)

aq c: proximal lateral rows (nerve cords?)

aq e: parenchymal cells aq d: gut-wrapping cells

aq f: gut-wrapping cells, scattered cells

(neurons?)

aq e: anterior cells, scattered cells (neurons?)

aq g: gut-wrapping cells, female gonads aq f: gut-wrapping cells

slc1 slc1a: brain scattered cells (neurons?)

slc1b: male gonopore

slc1c: brain, male gonopore

slc4 slc4a: anterior cells slc4a: gut-wrapping cells, mouth

slc4b: brain, parenchymal cells slc4b: nerve cords

slc4c: anterior cells, parenchymal cells slc4c: subepidermal cells, female gonads

slc5 slc5a: male gonopore subepidermal cells, posterior lateral rows of cells

slc5b: brain, parenchymal cells

(Continued)
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previous studies (summarized in [5,50]), and measured the ammonia excretion over 2 hours

after bringing the animals into normal conditions. As expected, the ammonia excretion rates

were strongly increased, in line with the short-term HEA-exposure experiments (Fig 2b).

When we tested the expression level of excretion-related genes, we found that the expression of

the passive ammonia transporters rhesus and three amts, as well as the active ammonia trans-

porter nka, altered significantly (Fig 2c). Other differentially expressed genes were four aqua-
porins, the v-ATPase, and three cas (Fig 2c). These results indicate a putative role of these genes

in ammonia excretion and suggest that acoels might not only excrete by diffusion and via pas-

sive transporters (rhesus, amts) but also by an alternative active transport mechanism (nka).

Inhibitor experiments support an active excretion mechanism via NKA

transporter, as well as a passive vesicular transport mode, possibly

mediated by Rhesus transporter

We further tested the involvement of NKA, V-ATPase A/B, and CA proteins in excretion, as

well as a possible involvement of a vesicular transport mechanism, by conducting pharmaco-

logical inhibitor assays in I. pulchra, as previously demonstrated in other animals (summarized

in [5,50]). Inhibition of the CA by azetazolamide did not show any significant change in

ammonia excretion. Inhibition of the V-ATPase by concanamycin C seemed to lead to a

decrease in ammonia excretion, although a 2-tailed t test did not support a significant change.

In contrast, when perturbing the function of NKA with quabain, the ammonia excretion

dropped significantly (Fig 2d), which further supports an active excretion mechanism via

NKA, similar to what is described for many nephrozoans [10–12,14,17,19,20,25–27,31,51–53].

Interference with the vesicular transport using colchicine also led to a significant decrease in

ammonia excretion, indicating a possible vesicular ammonia-trapping excretion mode (Fig

1c), as demonstrated in the midgut epithelium of the tobacco hornworm [26], the gills of the

shore crab [27], and the integument of the nematode [14]. To test whether vesicular transport

might occur through Rhesus transporter as shown in other studies (summarized in [5,50]), we

revealed Rhesus protein localization by immunohistochemistry (Fig 2e). The protein localiza-

tion mimicked the gene expression and revealed, apart from cells at the anterior tip and cells

of the posterior epidermis, individual parenchymal cells affiliated with the digestive syncytium

that extend ventrally. Higher magnification showed that the transporter was present in

Table 1. (Continued)

I. pulchra M. stichopi
slc8 anterior cells gut epithelium, mouth, posterior lateral rows of cells

slc9 mouth proximal lateral rows (nerve cords?)

slc12 slc12a: brain, parenchymal cells slc12a: male gonads, female gonads

slc12b: brain, parenchymal cells slc12b: male gonads

slc13 brain, parenchymal cells slc13b: scattered cells (neurons?)

slc13c: scattered cells (neurons?)

slc13d: scattered cells (neurons?)

slc26 no expression revealed slc26a: female gonads

slc26b: gut-wrapping cells

Abbreviations: amt, ammonia transporter; aq, aquaporin; ca, carbonic anhydrase; cd2ap, CD2-associated protein;

hcn, K+[NH4+] channel; pod, podocin; slc, solute carrier transporter; stom, stomatin; v-ATPase, vacuolar H+-ATPase

proton pump; zo1, zonula occludens 1

https://doi.org/10.1371/journal.pbio.3000408.t001
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Fig 2. Excretion in acoelomorphs. (a) WMISH of rhesus, v-ATPase, nka, and hcn in I. pulchra and M. stichopi. (b) Ammonia excretion rates of I. pulchra before

(Ctrl) and after exposure for 2 hours to 50, 100, 200, and 500 μM and after exposure for 7 days in 1 mM NH4Cl (boxplot). Excretion was measured over 2 hours

following the HEA treatments in at least three independent biological replicates, each divided into two separate samples (six measurements in total). Bold

horizontal bars in boxes indicate the median; lower and upper box borders indicate lower and upper quartile; and whiskers indicate minimum and maximum.

Asterisks label significant changes (p< 0.02 in an unpaired, 2-tailed t test with unequal variance). (c) Quantitative relative expression of rhesus, nka, v-ATPase B,

amts, aq, and ca after 7 days of exposure in HEA (1 mM NH4Cl). Each circle indicates the average of three independent biological replicates, each with four

technical replicates. Error bars indicate minimum and maximum of the biological replicates (averaged technical replicates). A 1-fold change represents no change;

�2 indicates significantly increased expression level;�0.5 indicates significantly decreased expression level (red labels). (d) Effects of different inhibitors on

ammonia excretion rates in I. pulchra (boxplot, with illustration and replicates similar to Fig 2b). The concentrations used were 5 μM Con-C as a v-ATPase A/B

inhibitor, 1 mM azetazolamide as an inhibitor of the CA, 1 mM quabain as an NKA inhibitor, and 2 mM colchicine for inhibiting the microtubule network. Con-C

was diluted in 0.5% DMSO for which we used an appropriate Ctrl with 0.5% DMSO. (e) Protein localization of Rhesus in I. pulchra and M. stichopi. Syncytium and

gut are indicated in gray, and the magenta staining of the lumen in M. stichopi is false-positive staining of the gut content. Fluorescent pictures are projections of

merged confocal stacks. The nervous system is stained green with tyr tubulin. (f) Double fluorescent WMISH of v-ATPase and nka, aq c and nka, v-ATPase and aq
b, and v-ATPase and rhesus in I. pulchra. White areas in the first panel are the result of merged stacks and not of overlapping expression. Nuclei are stained blue

with DAPI. Anterior is to the left. Scale bars are 50 μm for I. pulchra and 100 μm for M. stichopi. Values underlying panels b and d are provided in S6 Table, and

values underlying panel c are provided in S4 Table. amt, ammonia transporter; aq, aquaporin; CA, carbonic anhydrase; Con-C, concanamycin C; Ctrl, control;

DAPI, 4’,6-diamidino-2-phenylindole; ds, digestive syncytium; gwc, gut-wrapping cell; HCN, K+[NH4+] channel; HEA, high environmental ammonia; NKA, Na+/

K+[NH4+] ATPase; Rh, Rhesus glycoprotein; slc, solute carrier transporter; tyr, tyrosinated; v-ATPase, vacuolar H+-ATPase proton pump; WMISH, whole-mount

in situ hybridization.

https://doi.org/10.1371/journal.pbio.3000408.g002
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cytoplasmic vesicles and not on the cellular membrane (Fig 2e). This further indicated the

presence of a vesicular transport mechanism, in which cellular ammonia moves via Rhesus

transporters into vesicles and gets transferred to the membrane through the microtubule net-

work [54] (Fig 1c). The antibody specificity was confirmed by an alignment of the epitope and

the endogenous protein, as a well as a western blot analysis (S6 Fig). Similar vesicular protein

localization was also observed in M. stichopi, suggesting a similar cytoplasmic–vesicular role of

Rhesus transporter in gut-affiliated cells, also in nemertodermatids (Fig 2e). These data further

supported the involvement of NKA and Rhesus transporters in ammonia excretion and also

indicated the presence of a putative vesicular transport mode in I. pulchra.

Double fluorescent whole-mount in situ hybridization of differentially

expressed genes shows similar spatial arrangement in gut-associated

domains in I. pulchra and M. stichopi
To obtain a better resolution and understanding of the relative topology of the differentially

expressed genes, double fluorescent whole-mount in situ hybridization (WMISH) was con-

ducted for v-ATPase, nka, aquaporins b and c, and rhesus (Fig 2f, S4 Fig). Nka and v-ATPase
were expressed in a mutually exclusive manner, with v-ATPase to be restricted in the ventral

region digestive syncytium and nka in an adjacent parenchymal, distal sac-shaped gut-wrap-

ping domain (Fig 2fA, S4C Fig). The expression of nka was not extending to the male gonads

(testes) (S4A Fig). Aquaporin c was coexpressed with nka (Fig 2fB), and aquaporin b was par-

tially overlapping with v-ATPase, with aquaporin b expression extending into the posterior

region of the digestive syncytium (Fig 2fC). Finally, rhesus was partly coexpressed with v-
ATPase in the ventral region of the digestive syncytium (Fig 2fD). Similar coexpression analy-

sis of the orthologous genes was also conducted for M. stichopi and revealed striking similari-

ties in their spatial arrangement to I. pulchra (S4 and S7 Figs). v-ATPase expression was not

overlapping with nka, as v-ATPase was restricted to the gut epithelium and in two proximal

lateral rows of subepidermal cells, whereas nka was limited to cells lining the distal part of the

epithelial branches of the gut extending toward the subepidermis (S4E and S7 Figs). v-ATPase
was partly coexpressed with rhesus in ventral gut-affiliated cells (S7 Fig). Overall, these data

revealed a similar spatial arrangement in gut-associated domains in both animals, which

seems to be unrelated to the presence of an epithelial gut or a syncytium. However, given the

fact that I. pulchra has a lumenless digestive tissue, ammonia is probably accumulated intracel-

lularly in the syncytium before it gets expelled via the mouth, whereas in the case of M. stichopi,
ammonia gets released in the gut lumen.

Taken together, our findings suggest that I. pulchra uses different mechanisms for ammonia

excretion that are also known from nephrozoans; an active ammonia excretion mechanism via

NKA through the digestive system, as suggested by in situ hybridization, and a passive vesicu-

lar transport mechanism likely mediated by Rhesus, through digestive and likely also epider-

mal tissues. Given the commonalities in the expression of the involved genes in both animals,

these excretory mechanisms could be plesiomorphic for acoelomorphs.

HEA experiments suggest a diffusion mechanism also in the cnidarian N.

vectensis
Because our results showed the involvement of active and passive transport mechanisms across

digestive tissues outside Nephrozoa, we also investigated a non-bilaterian species, the cnidar-

ian N. vectensis (S1b Fig), to test whether this excretion mode might also be present outside

Bilateria. The only available excretion studies in cnidarians are few morphological studies,

which suggested that the septa filaments of the anthozoan mesenteries and the radial canals of
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medusozoans could serve as putative excretory sites [55], as well as some isotopic exchange

experiments in Hydra oligactis that have shown that the gastrodermis seems to be involved in

osmoregulation [56]. Moreover, there is evidence that Rh and AMT transporters are generally

involved in ammonium excretion in corals [57], but localization studies that would suggest

excretion sites are missing.

We first tested whether N. vectensis excretes via diffusion by exposing early-juvenile animals

to HEA for 2 hours and measuring their ammonia excretion rates afterward, similar to the

experiments performed with I. pulchra. We found that, also in N. vectensis, ammonia excretion

increased significantly after HEA exposure starting at 200 and 500 μM NH4Cl (Fig 3a). Mea-

surements of the pH of each incubation medium showed that the pH dropped by 0.2 when the

medium contained 500 μM NH4Cl. However, when we measured the excretion of animals

over 2 hours in a medium with an accordingly lowered pH, we found that a difference of 0.2

did not change the excretion rates (S2 Table). Therefore, the increase in ammonia excretion

rates at 200 and 500 μM NH4Cl indicates that ammonia excretion is concentration-dependent,

supporting a diffusion mechanism also in N. vectensis.

Quantitative gene expression and inhibitor experiments indicates an

involvement of passive but not active transport mechanisms in N. vectensis
We then exposed animals to 1 mM HEA for 7 days and tested the expression of the ortholo-

gous genes altered in I. pulchra treatments (rh/amt, nka, v-ATPase B, and ca) by qPCR. As

expected from the short-term HEA-exposure experiment, specimens exposed for 7 days in the

HEA condition showed increased ammonia excretion rates (Fig 3a). In contrast to I. pulchra,

none of the two nka transporters showed a significant change in gene expression in animals

exposed to HEA for 7 days (Fig 3b). However, the expression of the passive transporters rhe-
sus1, rhesus2, amt1/4b, and amt2/3e, as well as v-ATPase, altered significantly (Fig 3b), indicat-

ing the putative involvement of these transporters in excretion of N. vectensis. To test whether

Rhesus acts via a vesicular transport mechanism, we conducted the same pharmacological

experiment as in I. pulchra. Contrary to the results from acoels, we found that inhibition of

vesicular transport did not alter the ammonia excretion (Fig 3c). We also inhibited the excre-

tory function of V-ATPase and CA proteins and found that none of them showed any signifi-

cant change in ammonia excretion rates (Fig 3c). Finally, when we perturbed the function of

NKA, the ammonia excretion rates did not alter (Fig 3c), confirming the qPCR results (Fig 3b)

and further supporting the non-involvement of the NKA transporter in excretion. These

results suggest that the ammonia excretion of N. vectensis is likely mediated by the passive Rhe-

sus and AMT transporters, but neither relies on active transport mechanism mediated by

NKA or on vesicular ammonia-trapping excretion mode.

Gene expression of excretion-related genes reveals the gastrodermis as

excretory site in N. vectensis
To understand whether these genes were expressed in gastrodermal or epidermal cells, we

revealed the spatial expression of rhesus, amts, nka, and v-ATPase B by WMISH in feeding pri-

mary polyps. All genes were mainly demarcating gastrodermal domains, such as the endoder-

mal body wall, the directive mesenteries, septal filaments, and the pharynx (Fig 3d, S8 Fig).

Rhesus 1 was additionally expressed in the tentacular ectoderm (Fig 3dA). Protein localization

of Rh, NKA, and V-ATPase B reflected the transcript expression patterns (Fig 3e, S9 Fig). High

magnification of Rhesus antibody staining further revealed that the transporter was not

expressed in cytoplasmic vesicles, supporting a non-vesicular transport mechanism, in agree-

ment with the inhibitor experiments. Also, it showed that Rhesus was localized in individual
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cells of the tentacular ectoderm with clumped structures at the tentacle surface, which resem-

bled gland cells [58] (Fig 3e). The NKA antibody was localized in endodermal neurons and

individual cells of the mesenteries, likely neural precursors (S9 Fig), thus suggesting a non-

excretory function of this transporter, as indicated already from the qPCR and inhibitor

Fig 3. Excretion in N. vectensis. (a) Ammonia excretion rates of N. vectensis before (Ctrl) and after exposure for 2 hours to 50, 100,

200, and 500 μM and after exposure for 7 days in 1mM NH4Cl (boxplot). Excretion was measured over 2 hours following the HEA

treatments in at least three independent biological replicates, each divided into two separate samples (six measurements in total).

Bold horizontal bars in boxes indicate the median; lower and upper box borders indicate lower and upper quartile; and whiskers

indicate minimum and maximum. Asterisks label significant changes. Significance, p< 0.02 (unpaired t test with unequal variance).

(b) Quantitative relative expression of rhesus, nka, v-ATPase B, amts, and ca after exposure for 7 days in HEA (1 mM NH4Cl). Each

circle represents the average of five independent biological replicates, each with three technical replicates. A 1-fold change represents

no change;�2 indicates increased expression level significantly;�0.5 indicates decreased expression level significantly (red labels).

(c) Effects of different inhibitors on ammonia excretion rates in N. vectensis (boxplot, with illustration and replicates similar to Fig

2d). The concentrations used were 5–15 μM Con-C as a V-ATPase A/B inhibitor, 1–3 mM azetazolamide as an inhibitor of the CA,

1–5 mM quabain as an NKA inhibitor, and 2–10 mM colchicine for inhibiting the microtubule network. Quabain was diluted in

0.5% DMSO, for which we used an appropriate Ctrl with 0.5% DMSO. N = 3 for all treatments. (d) Whole-mount in situ

hybridization of rh 1, rh 2, rh 3, v-ATPase, and amt1/4b in feeding primary polyps. Anterior is to the top. (e) Protein localization of

Rh and v-ATPase in N. vectensis early-juvenile polyps. The muscle filaments are labeled green with phalloidin, and the nervous

system is stained cyan with tyr tubulin. Every picture is a full projection of merged confocal stacks. Nuclei are stained blue with

DAPI. The regions shown are indicated with dashed boxes in the illustrated animal. Values underlying panels a and c are provided in

S6 Table, and values underlying panel b are provided in S4 Table. amt, ammonia transporter; CA, carbonic anhydrase; Con-C,

concanamycin C; Ctrl, control; DAPI, 4’,6-diamidino-2-phenylindole; ebw, endodermal body wall; HEA, high environmental

ammonia; mes, mesenteries; nka, Na+/K+[NH4+] ATPase; ph, pharynx; rh, Rhesus glycoprotein; sf, septal filament; ten, tentacles; tyr,

tyrosinated; v-ATPase, vacuolar H+-ATPase proton pump.

https://doi.org/10.1371/journal.pbio.3000408.g003
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experiments. These data imply that gastrodermis-affiliated domains likely serve as excretory

sites in N. vectensis.

Discussion

Overall, our findings show that acoelomorphs use, in addition to diffusion, active transport

mechanisms, in contrast to what has been previously assumed for non-nephrozoans [1,39,40].

Our results also suggest that excretion takes place across digestive tissues and likely also across

the epidermis, as indicated from the rhesus (both animals) and amt (only in M. stichopi)
expression. N. vectensis also seem to use gastrodermal tissues as excretory sites, but we were

not able to detect any active transport mechanism. However, we do not know whether the

absence of active transport we find in N. vectensis is true for all cnidarians. It has been shown

that differences in morphology and ecology (e.g., size and activity) are related with interspe-

cific differences in excretion rates [59,60]. Therefore, bigger and more active cnidarian species

might require more efficient modes of excretion, such as an active transport, in order to fulfill

their metabolic requirements. Only more studies in other cnidarian species can elucidate this

issue.

Digestive tissues with additional or assigned excretory roles have also been reported in sev-

eral nephrozoans (e.g., vertebrates, annelids, insects, nematodes, tunicates, chaetognaths)

[16,26,31,61–67]. In the light of our results, this excretion mechanism likely reflects an ancient

mechanism, before the evolution of specialized organs, such as nephridia (S10 Fig). The molec-

ular spatial arrangement of the excretion sites in non-nephrozoans, however, is not sharing

topological arrangements with common nephridial domains of nephrozoans (Fig 1b), suggest-

ing that they are evolutionarily unrelated to nephridia. It still remains unclear whether these

domains are multifunctional or consist of specialized excretory subdomains; however, a degree

of cell subfunctionalization seems to be present, as indicated by the localized gene expression

in different groups of gut-wrapping and gut epithelial cells. We can, however, exclude the pres-

ence of ultrafiltration sites, in agreement with previous ultrastructure studies in acoelomorphs

[68], because the homologous essential molecular components of the ultrafiltration sites of

nephridia and nephrocytes are mostly expressed in neural domains in acoelomorphs and are

absent in non-bilaterians (nephrins), suggesting their later recruitment in the nephrozoan fil-

tration apparatus (Fig 4).

Recently, a new study was published suggesting the non-monophyly of Deuterostomia and

a placement of Ambulacraria (Echinodermata + Hemichordata) as the sister group of Nemer-

todermatida + (Acoela + Xenoturbella) [69]. If true, this novel topology has vast consequences

for our understanding of the evolution of all major bilaterian organ systems including the

excretory organs [70]. Based on this phylogeny, either excretory organs have been indepen-

dently evolved in Ambulacraria and (Chordata + Protostomia) or they have been already pres-

ent in the last common ancestor of Bilateria and got lost secondarily in nemertodermatids,

acoels, and Xenoturbella. Ambulacraria possesses a metanephridial type of excretory organ,

which, according to some authors, is independently evolved [43,71]; therefore, excretory

organs of Ambulacraria, Chordata, and Protostomia might not be homologous. In the scenario

of the presence of an excretory organ in the last common ancestor of Bilateria, one would have

to assume a complete reduction of excretory organs in the lineage to Nemertodermatida +

(Acoela + Xenoturbella) without morphological or molecular traces. However, the support val-

ues for the main branches of Bilateria in the [69] study are low, and the study also does not

recover the Xenacoelomorpha as clade. In-depth analyses are necessary to test whether the

new topology is not an artifact that is based on the new approach the study uses for the phylo-

genomic analyses.
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Fig 4. Evolution of excretory mechanisms. Illustration of the proposed direction of fluxes in Cnidaria and Xenacoelomorpha and evolution of active

ammonia transport and ultrafiltration mechanisms. Cnidaria (e.g., N. vectensis) excrete across their intestinal epithelium (and probably across the

epidermis too) via diffusion, whereas in xenacoelomorphs, excretion occurs both via diffusion across the epidermis and gut-associated tissues and via active

transport across gut-associated tissues. Ultrafiltration mechanism originated within Nephrozoa. cu, cuticle; me, mesoglea.

https://doi.org/10.1371/journal.pbio.3000408.g004
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To conclude, our study shows that active transport mechanism and excretion through

digestive tissues predates the evolution of specialized excretory systems. Whether this is based

on a convergent recruitment or reflects an ancestral state for Bilateria remains unclear. How-

ever, if the latter is true, it correlates with the emergence of multilayered body plans and solid

internal parenchymes that separate the body wall from their digestive tract, as seen in xenacoe-

lomorphs and nephrozoans. We thus propose that diffusion mechanisms were the major

excretory modes present in animals with single-layered epithelial organization (Fig 4). The

emergence of more complex, multilayered body plan necessitated an active transport of

excretes, which was later recruited in specific compartments of the complex excretory organs

in the lineage of Nephrozoa.

Methods

No statistical methods were used to predetermine sample size. The experiments were not ran-

domized. The investigators were not blinded to allocation during experiments and outcome

assessment.

Gene cloning and orthology assignment

Putative orthologous sequences of genes of interest were identified by tBLASTx search against

the transcriptome (SRR2681926) of I. pulchra, the transcriptome (SRR2681155) and draft

genome of M. stichopi, and the genome of N. vectensis (http://genome.jgi.doe.gov). Additional

transcriptomes of Xenacoelomorpha species investigated were as follows: Childia submacula-
tum (Acoela) (SRX1534054), Convolutriloba macropyga (Acoela) (SRX1343815), Diopistho-
porus gymnopharyngeus (Acoela) (SRX1534055), Diopisthoporus longitubus (Acoela)

(SRX1534056), Eumecynostomum macrobursalium (Acoela) (SRX1534057), Hofstenia miamia
(Acoela) (PRJNA241459), Ascoparia sp. (Nemertodermatida) (SRX1343822), Nemertoderma
westbladi (Nemertodermatida) (SRX1343819), Sterreria sp. (Nemertodermatida)

(SRX1343821), Xenoturbella bocki (Xenoturbella) (SRX1343818), and Xenoturbella profunda
(Xenoturbella) (SRP064117). Data were deposited in the Dryad repository: https://doi.org/10.

5061/dryad.bq068jr [72].

Sequences for the placozoan Trichoplax adhaerens, the sponge Amphimedon queenslandica,

the ctenophore Mnemiopsis leidy, the protist Capsaspora owczarzaki, the amoeba Dictyostelium
discoideum, and the nephrozoans Homo sapiens. Saccoglossus kowalevskii, Strongylocentrotus
purpuratus, Xenopus laevis, Branchiostoma lanceolatum, Capitella teleta, Crassostrea gigas, Lot-
tia gigantea, Schmidtea mediterranea, Tribolium castaneum, Caenorhabditis elegans, and Dro-
sophila melanogaster were obtained from Uniprot and NCBI public databases. Gene orthology

of genes of interest identified by tBLASTx was tested by reciprocal BLAST against NCBI Gen-

bank and followed by phylogenetic analyses. Amino acid alignments were made with MUS-

CLE [73]. RAxML (version 8.2.9) [74] was used to conduct a maximum-likelihood

phylogenetic analysis. Fragments of the genes of interest were amplified from cDNA of I. pul-
chra, M. stichopi, and N. vectensis by PCR using gene-specific primers. PCR products were

purified and cloned into a pGEM-T Easy vector (Promega, Madison, WI, USA) according to

the manufacturer’s instructions, and the identity of inserts was confirmed by sequencing.

Gene accession numbers of the gene sequences are listed in the S3 Table.

Animal systems

Adult specimens of I. pulchra (Smith & Bush, 1991), M. stichopi Westblad, 1949, and N. vecten-
sis Stephenson, 1935 were kept and handled as previously described [75–78].
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WMISH

Animals were manually collected, fixed, and processed for in situ hybridization as described

[79,80]. Labeled antisense RNA probes were transcribed from linearized DNA using digoxi-

genin-11-UTP (Roche, Basel, Switzerland) or labeled with DNP (Mirus Bio, Madison, WI,

USA) according to the manufacturer’s instructions. For I. pulchra and M. stichopi, colorimetric

WMISH was performed according to the protocol outlined in [79]. For N. vectensis, we fol-

lowed the protocol described by [81]. Double fluorescent in situ hybridization (FISH) was per-

formed as the colorimetric WMISH with the following modifications: after the

posthybridization steps, animals were incubated overnight with peroxidase-conjugated anti-

bodies at 4 ˚C (anti-DIG-POD [Roche, Basel, Switzerland], 1:500 dilution, and anti-DNP [Per-

kin Elmer, Waltham, MA, USA], 1:200 dilution) followed by the amplification of the signal

with fluorophore-conjugated tyramides (1:100 TSA reagent diluents [Perkin Elmer, Waltham,

MA, USA] TSA Plus Cy3 or Cy5 Kit). Residual enzyme activity was inhibited via 45-minute

incubation in 0.1% hydrogen peroxide in PTW followed by four PTW washes prior to addition

and development of the second peroxidase-conjugated antibody [82].

Whole-mount immunohistochemistry

Animals were collected manually, fixed in 4% paraformaldehyde in SW for 50 minutes, washed

3 times in PBT, and incubated in 4% sheep serum in PBT for 30 minutes. The animals were

then incubated with commercially available primary antibodies (anti-RhAG [ab55911] rabbit

polyclonal antibody, dilution 1:50 [Abcam, Cambridge, UK], anti-Na+/K+ ATPase a1 subunit

rat monoclonal antibody, dilution 1:100 [Sigma-Aldrich, St. Louis, MO, USA], and anti-

V-ATPase B1/2 [L-20] goat polyclonal antibody, dilution 1:50 [Santa Cruz Biotechnology, Dal-

las, TX, USA]) overnight at 4 ˚C, washed 5 times in PBT, and followed by incubation in 4%

sheep serum in PBT for 30 minutes. Specimens were then incubated with a secondary antibody

(anti-rabbit-AlexaFluor 555 [Invitrogen, Carlsbad, CA, USA] or anti-rat-AlexaFluor 555 and

anti-goat-AlexaFluor 555) diluted 1:1,000 overnight at 4 ˚C followed by 10 washes in PBT.

Nuclei were stained by incubation of animals in DAPI 1:1,000, and f-actin was stained by incu-

bation in BODIPY-labeled phallacidin (5 U/ml) overnight.

Inhibitor and HEA experiments

For excretion experiments, approximately 300 I. pulchra (the number varied slightly between

the biological replica but was similar in the corresponding controls and treatments) and 10 N.

vectensis were placed into glass vials with 2 ml UV-sterilized natural seawater (1:4 diluted with

distilled water for N. vectensis) containing the appropriate inhibitor or ammonia concentra-

tion. Animals were given 10 minutes to adjust to the medium before the solution was

exchanged with 2 ml of fresh medium with the same appropriate condition. For the inhibitor

experiment, the medium was removed after 2 hours and stored at −80 ˚C for later measure-

ments. Animals from the short-term HEA experiments were incubated for 2 hours, rinsed five

times over 20–30 minutes, and incubated for another 2 hours in fresh medium without addi-

tional ammonia, after which the medium was removed and frozen at −80 ˚C. We tested differ-

ent inhibitor concentrations that were used in previous studies in other invertebrates

[10,12,14,19,27]. The concentrations of 5–15 μM concanamycin C for inhibiting V-ATPase A/

B, 1–3 mM azetazolamide as an inhibitor of the CA, 1–5 mM quabain to inhibit the NKA, and

2–10 mM colchicine for inhibiting the microtubule network were selected, as no other effects

like shrinking or obvious changes in morphology or behavior were observed. After the inhibi-

tor incubations, the animals were washed several times and monitored in normal conditions

for several days to ensure that the inhibitors did not cause any unspecific permanent effects.

Active mode of excretion predates the origin of excretory organs

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000408 July 29, 2019 14 / 22

https://doi.org/10.1371/journal.pbio.3000408


Concanamycin C was diluted in DMSO with a final concentration of 0.5% DMSO per sample,

for which we used an appropriate control with 0.5% DMSO. For the HEA experiments, we

enriched seawater with NH4Cl to the final ammonia concentrations of 50 μM, 100 μM,

200 μM, 500 μM, and 1 mM. We also measured the pH of both incubation mediums (HEA

and control), and we found no difference. All experiments were independently repeated at

least three times at different time points, and each repeat was divided into two samples. The

values are provided in S6 Table.

Determination of ammonia excretion

Ammonia concentrations were measured with an ammonia-sensitive electrode (Orion,

Thermo Scientific, Waltham, MA, USA) according to [52]. Samples were diluted 1:4 with dis-

tilled water to prevent salt precipitation (900 μl sample + 2.7 ml water), and total ammonia was

transformed into gaseous NH3 by adding 54 μl ionic strength adjusting solution (1.36 ml/l tri-

sodiumcitrate dihydrate, 1 M NaOH). Because of the small ammonia concentrations, the elec-

trode-filling solution was diluted to 10% with distilled water, as suggested in the electrode

manual. In control conditions, we determined an average excretion of 44 pmol per adult ani-

mal per hour, although the excretion varied between different biological replicates from differ-

ent generations (minimum 32 pmol/animal/hour, maximum 52 pmol/animal/hour), possibly

because of slightly fluctuating conditions during long-term animal rearing. Solutions with

defined concentrations of NH4Cl for the standard curves were made together with the solu-

tions used in the experiments and stored in a similar way at −80 ˚C. The differences in excre-

tion rates were tested for significance with an unpaired, 2-tailed t test with unequal variance,

and a p-value < 0.02 was seen as significant. Boxplots were created with “R.”

Quantitative gene expression

In total, 100 treated I. pulchra and 5 N. vectensis were collected after 7 days of incubation in

HEA conditions (1 mM NH4Cl) and tested for quantitative gene expression using the

BIORAD CFX96 (Bio-Rad, Hercules, CA, USA) Real-time PCR detection system. ddCt values

were calculated between treated and control animals and converted to fold differences. All

experiments were repeated three to five times with different specimens (three biological repli-

cates for I. pulchra and five biological replicates for N. vectensis), and two to four technical rep-

licates were tested for each biological replicate (four biological replicates for I. pulchra and

three biological replicates for N. vectensis). Fold changes were calculated using polyubiquitin,

actin, and 18S as references for I. pulchra and ATPsynthase and EF1b as references for N. vec-
tensis [83], and a threshold of 2-fold difference was chosen as a significant change. The Ct val-

ues are provided in S4 Table, and the primer sequences used are provided in S5 Table.

Western blot

Whole-animal extracts (50 I. pulchra adults and 5 N. vectensis juveniles) were fractionated by

SDS-PAGE, loaded on Mini-PROTEAN TGX Stain-Free Precast Gels (Bio-Rad, Hercules, CA,

USA), and transferred to a nitrocellulose membrane using a transfer apparatus according to

the manufacturer’s protocols (Bio-Rad, Hercules, CA, USA). After incubation with 5% nonfat

milk in TBST (10 mM Tris, [pH 8.0], 150 mM NaCl, 0.5% Tween 20) for 60 minutes, the mem-

brane was washed once with TBST and incubated with antibodies against Rhesus (1:1,000) and

NKA (1:500) at 4 ˚C for 12 hours. Membranes were washed three times for 10 minutes and

incubated with a 1:5,000 dilution of horseradish peroxidase–conjugated anti-mouse or anti-

rabbit antibodies for 2 hours. Blots were washed with TBST three times and developed with
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the ECL system (Amersham Biosciences, Little Chalfont, UK) according to the manufacturer’s

protocols.

Documentation

Colorimetric WMISH specimens were imaged with a Zeiss AxioCam HRc mounted on a Zeiss

Axioscope A1 equipped with Nomarski optics and processed through Photoshop CS6 (Adobe,

San Jose, CA, USA). Fluorescent-labeled specimens were analyzed with a Leica SP5 confocal

laser microscope (Leica Microsystems, Wetzlar, Germany) and processed by the Fiji software

version 2.0.0-rc-42/1.50d [84]. Figure plates were arranged with Illustrator CS6 (Adobe, San

Jose, CA, USA). Data were deposited in the Dryad repository: https://doi.org/10.5061/dryad.

bq068jr [72].

Supporting information

S1 Fig. Excretion-related gene complement in different animal lineages and outgroups and

animals in this study. (a) Transcriptome and genome mining of excretion-related gene reper-

toire in I. pulchra, H. miamia, C. macropyga, D. longitubus, D. gymnopharyngeus, E. macrobur-
salium, and C. submaculatum as representatives of Acoela; Sterreria sp., Ascoparia sp., M.

stichopi, and N. westbladi as representatives of Nemertodermatida; X. bocki and X. profunda as

representatives of Xenoturbella; N. vectensis as a representative of cnidarians; T. adhaerens as a

representative of placozoans; A. queenslandica as a representative of sponges; and the deutero-

stomes H. sapiens, S. kowalevskii, S. purpuratus, X. laevis, and B. lanceolatum and protostomes

C. teleta, C. gigas, L. gigantea, S. mediterranea, T. castaneum, C. elegans, and D. melanogaster as

representatives of Nephrozoa. Data are based on this study unless stated otherwise. (b) Pictures

of the acoelomorph representatives I. pulchra (scale bar = 50 μm) and M. stichopi (scale

bar = 100 μm) and the cnidarian representative N. vectensis (scale bar = 2 mm). Animal illus-

trations are taken from phylopic.org.

(TIF)

S2 Fig. Orthology analysis. Putative orthologous sequences of genes of interest were

identified by tBLASTx search against the transcriptome (SRR2681926) of I. pulchra, the tran-

scriptome (SRR2681155) and draft genome of M. stichopi, and the genome of N. vectensis
(http://genome.jgi.doe.gov). Additional transcriptomes of Xenacoelomorpha species

investigated were as follows: C. submaculatum (Acoela) (SRX1534054), C. macropyga
(Acoela) (SRX1343815), D. gymnopharyngeus (Acoela) (SRX1534055), D. longitubus
(Acoela) (SRX1534056), E. macrobursalium (Acoela) (SRX1534057), H. miamia (Acoela)

(PRJNA241459), Ascoparia sp. (Nemertodermatida) (SRX1343822), N. westbladi (Nemerto-

dermatida) (SRX1343819), Sterreria sp. (Nemertodermatida) (SRX1343821), X. bocki (Xeno-

turbella) (SRX1343818), and X. profunda (Xenoturbella) (SRP064117). Bayesian phylogenetic

analysis is supporting orthology for genes investigated in this study. Red color refers to Xena-

coelomorpha taxa, and blue color refers to N. vectensis. Bootstrap values are shown when equal

or above 20%. Branches crossed by a double slash were shortened to make figures’ plates more

compact. Names of genes or proteins, if available, follow the name of organism(s); otherwise,

the accession number is written. Asterisks indicate genes with a spatial expression by WMISH.

WMISH, whole-mount in situ hybridization.

(PDF)

S3 Fig. WMISH of ultrafiltration and tubule and duct–related genes in I. pulchra and M.

stichopi. Expression of genes encoding the slit diaphragm components related to ultrafiltration

nephrin/kirre, cd2ap, zo1, and stomatin/podocin, and the SLCs related to excrete modification
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slc1, slc5, and slc13 (proximal tubule) and slc4, slc8, slc9, slc12, and slc26 (distal tubule and

duct) in I. pulchra and M. stichopi. The inset in panel A3 shows a different focal plane of the

indicated domain and in panel E3 shows a different focal plane of the animal. The columns

next to M. stichopi panels show higher magnifications of the indicated domains. Anterior is to

the left. BG indicates background staining. BG, background; cd2ap, CD2-associated protein;

mo, mouth; mg, male gonopore; SLC, solute carrier transporter; st, statocyst; WMISH, whole-

mount in situ hybridization; zo1, zonula occludens 1.

(TIF)

S4 Fig. Double fluorescent WMISH of excretion-related components and molecular mark-

ers of digestive, nervous, and reproductive systems in I. pulchra and M. stichopi. Coexpres-

sion analysis of nka with the reproductive system markers piwi and vasa (A), hcn with the

nervous system marker chaT (B), v-ATPase with the digestive marker plastin in I. pulchra (C),

slc4b with the nervous system marker tyrosinated tubulin (D), and v-ATPase with the digestive

marker plastin in M. stichopi (E). Every picture is a full projection of merged confocal stacks.

Nuclei are stained blue with DAPI. Anterior is to the left. Scale bars are 50 μm for I. pulchra
and 100 μm for M. stichopi. br, brain; chaT, choline acetyltransferase; DAPI, 4’,6-diamidino-

2-phenylindole; ds, digestive syncytium; gwc, gut-wrapping cell; hcn, K+[NH4+] channel; nc,

nerve cord; nka, Na+/K+[NH4+] ATPase; slc, solute carrier transporter; te, testis; v-ATPase,

vacuolar H+-ATPase proton pump; WMISH, whole-mount in situ hybridization.

(TIF)

S5 Fig. WMISH of the ammonia excretion–related genes rh, v-ATPase B, nka, ca, hcn,

amts, and aquaporins in I. pulchra and M. stichopi. The insets in panels B6, C1, and C3 show

different focal planes of the animals. The columns next to M. stichopi panels show higher mag-

nifications of the indicated domains, except of G2‘, which shows a different focal plane of the

animal. The inset in panel G5‘ shows a side view of the animal. Anterior is to the left. amt,
ammonia transporter; ca, carbonic anhydrase; mo, mouth; nka, Na+/K+[NH4+] ATPase; rh,

Rhesus glycoprotein; v-ATPase, vacuolar H+-ATPase proton pump; WMISH, whole-mount in

situ hybridization.

(TIF)

S6 Fig. Western blot of Rhesus in I. pulchra and Rhesus and NKA in N. vectensis. Below

each blot, the sequence alignment of the endogenous protein and the antigen is provided,

highlighted in pink. NKA, Na+/K+[NH4+] ATPase.

(PDF)

S7 Fig. Double fluorescent WMISH of v-ATPase with nka and v-ATPase with rhesus in M.

stichopi. Every picture is a full projection of merged confocal stacks. Nuclei are stained blue

with DAPI. Anterior is to the left. DAPI, 4’,6-diamidino-2-phenylindole; dlr, distal lateral row;

ds, digestive syncytium; gwc, gut-wrapping cell; nka, Na+/K+[NH4+] ATPase; v-ATPase, vacu-

olar H+-ATPase proton pump; WMISH, whole-mount in situ hybridization.

(TIF)

S8 Fig. WMISH of ammonia transporters in N. vectensis. Gene expression of amt2/3a, amt2/
3b, amt2/3c, amt2/3d, and amt1/4a in juvenile polyps. Anterior is to the left. amt, ammonia

transporter; WMISH, whole-mount in situ hybridization.

(TIF)

S9 Fig. WMISH and protein localization of NKA in N. vectensis. Gene expression of nka a
and nka b in juvenile polyps. Anterior is to the left. Protein localization of NKA in N. vectensis
juvenile polyps. The muscle filaments are labeled green with phalloidin, and the nervous
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system is stained cyan with tyrosinated tubulin. Every picture is a full projection of merged

confocal stacks. Nuclei are stained blue with DAPI. The regions shown are indicated with

dashed boxes in the illustrated animal. DAPI, 4’,6-diamidino-2-phenylindole; ebw, endoder-

mal body wall; mes, mesenteries; n, neuron; NKA, Na+/K+[NH4+] ATPase; sf, septal filament;

WMISH, whole-mount in situ hybridization.

(TIF)

S10 Fig. Phylogenetic tree showing the relationship of animal groups in which the role of

gut in excretion has been demonstrated or proposed.

(TIF)

S1 Table. Compilation of excretion-related gene expression/role data for metazoan and

nonmetazoan taxa for genes investigated in this study, when data are available. Data are

based on this study unless stated otherwise. Question marks represent missing data.

(PDF)

S2 Table. N. vectensis excretion in different pH.

(PDF)

S3 Table. Accession numbers and transcript numbers from Xenacoelomorph transcrip-

tomes used in S1 and S2 Figs.

(PDF)

S4 Table. QPCR raw data. QPCR, quantitative PCR.

(PDF)

S5 Table. QPCR primers used in this study. QPCR, quantitative PCR.

(PDF)

S6 Table. Ammonia excretion measurements raw data.

(PDF)
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