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Abstract

Conserved Noncoding Elements (CNEs) are elements exhibiting extreme noncoding conser-

vation in Metazoan genomes. They cluster around developmental genes and act as long-

range enhancers, yet nothing that we know about their function explains the observed con-

servation levels. Clusters of CNEs coincide with topologically associating domains (TADs),

indicating ancient origins and stability of TAD locations. This has suggested further hypothe-

ses about the still elusive origin of CNEs, and has provided a comparative genomics-based

method of estimating the position of TADs around developmentally regulated genes in

genomes where chromatin conformation capture data is missing. To enable researchers in

gene regulation and chromatin biology to start deciphering this phenomenon, we developed

CNEr, a R/Bioconductor toolkit for large-scale identification of CNEs and for studying their

genomic properties. We apply CNEr to two novel genome comparisons—fruit fly vs tsetse fly,

and two sea urchin genomes—and report novel insights gained from their analysis. We also

show how to reveal interesting characteristics of CNEs by coupling CNEr with existing Bio-

conductor packages. CNEr is available at Bioconductor (https://bioconductor.org/packages/

CNEr/) and maintained at github (https://github.com/ge11232002/CNEr).

This is a PLOS Computational Biology Software paper.

Introduction

Conserved Noncoding Elements (CNEs) are a pervasive class of extremely conserved elements

that cluster around genes with roles in development and differentiation in Metazoa [1,2].

While many have been shown to act as long-range developmental enhancers [3,4], the source

of their extreme conservation remains unexplained [5,6]. The need to maintain arrays of
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CNEs in cis to the genes they regulate has led to their spatial arrangement into clusters termed

Genomic Regulatory Blocks (GRBs) [7,8]. The role of those clusters in genome organisation is

suggested by recent findings demonstrating that ancient metazoan clusters of extreme noncod-

ing conservation coincide with topologically associating domains (TADs) [9,10].

Numerous recent studies highlight and seek to elucidate the importance of functional non-

coding regions, most recently by employing the CRISPR-Cas9 based techniques to locate and

dissect elements that affect gene expression and phenotype/disease—associated processes [11–

13]. Prioritizing target loci of interest for interrogating the function of their regulatory context

will be one of the major focuses of functional genomics studies, as has been shown in the case

of the POU5F1 locus [14], and of NF1, NF2 and CUL3 genes [15]. A more recent study demon-

strated the association of CNEs with the cognate genes in fetal brain development in the rat

lineage [16]. CNEs and the regulatory landscapes defined by their clusters serve as excellent

candidates for such studies [3,17,18].

A handful of CNE resources exist, mainly databases, which contain already pre-computed

clusters of CNEs. These databases are static and mostly not updated. A summary of these

resources is available in the review by Polychronopoulos et al. [6]. To our knowledge, there are

only two tools available for the identification of conserved elements: PHAST [19] and CNE-

Finder [20]. The former relies on multiple sequence alignments, the preparation of which can

be tedious and computationally intensive, unless available at UCSC website. PHAST derives

"conserved" and "non-conserved" states from a two-state phylogenetic hidden Markov model

(phylo-HMM), a space-time probabilistic model that considers both the nucleotide substitu-

tion of each base in the genome sequence through evolution and the transition from one base

to the next. A comparison of CNEs identified by PHAST and CNEr on human is available in

S1 Text. The latter produces CNEs based on a k-mer technique for computing maximal exact

matches thus finding CNEs without the requirement of whole-genome alignments or indices.

Neither of them comes with a comprehensive, easy-to-follow suite of tools tailored to the inte-

grated exploration of CNEs from end-to-end: from identification to quality control and visual-

isation. Our package couples those processes together, enabling the user to harness the support

and wealth of packages available through the Bioconductor infrastructure. CNEr is specifically

designed for efficient identification of CNEs using user-specified thresholds, and it performs

equally well across vertebrates, invertebrates or plants. To study the evolutionary dynamics of

these elements and their relationship to the genes around which they cluster, it is essential to

be able to both produce and explore genome-wide sets of CNEs for a large number of species

comparisons in a dedicated workflow, each with multiple length and conservation thresholds.

The CNEr package aims to detect CNEs and visualise them along the genome under a uni-

fied framework. For performance reasons, the implementation of CNE detection and corre-

sponding I/O functions are primarily written as C extensions to R. We have used CNEr to

produce sets of CNEs by scanning pairwise whole-genome net alignments (See details in

"Overview of CNEr workflow" section below) with multiple reference species, each with two

different window sizes and a range of minimum identity thresholds, available at http://ancora.

genereg.net/downloads. In this work, we demonstrate the application of CNEr to the investiga-

tion of noncoding conservation between fruit fly Drosophila and tsetse fly Glossina—the two

species at the evolutionary separation not previously investigated in insects [7]—and between

two species of sea urchins. This has enabled us to observe some properties of GRB target genes

shared across Metazoa. In a previous study, we showed that more distant comparisons in Dip-

tera (between Drosophila and mosquitoes) failed to identify CNEs [7]. On the other hand, the

conservation level across different species of the Drosophila genus is comparable to that across

placental mammals. By comparing Drosophila to Glossina, we wanted to explore the evolution-

ary divergence comparable to human vs. fish in another lineage and establish whether it is the
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same functional class of genes that is accompanied by CNEs featuring such a deep level of con-

servation. In the case of sea urchins, we wanted to investigate a lineage at an intermediate dis-

tance to vertebrates—closer than insects, more distant than the early branching chordates—in

order to establish the continuum of GRBs across Metazoa. We present a series of downstream

analyses of the newly identified CNEs, identifying their characteristic sequence features in

invertebrates and functional classes of genes whose loci they span.

Design and implementation

Overview of CNEr workflow

CNEr provides the functionality of large-scale identification and advanced visualisation of

CNEs based on our previous strategies of detecting CNEs [7,8,21] as shown in Fig 1. CNEr
scans the whole genome pairwise net alignment, which can be downloaded from UCSC or

generated by the CNEr pipeline, for conserved elements. Various quality controls of the align-

ments are provided. The composition of the aligned bases can be used for tuning parameters

during pairwise alignment (S1 Fig). More closely related species are expected to give higher

rates of matched bases. The syntenic dotplot of the alignments (S2 Fig) quickly shows the syn-

tenic regions between two assemblies.

Considering the different extent of evolutionary divergence and sequence similarity

between assemblies, we typically use the identity thresholds of 70% to 100% identity over a

scanning window of 30 bp or 50 bp. Known annotations of exons and repeats are compiled

from sources such as UCSC [22] and Ensembl [23] for common genomes, and elements over-

lapping with these regions are typically skipped during the scanning. Genome annotation

pipelines, such as MAKER [24], can be used to create annotations for new genome assemblies.

Net alignments only keep the best match for each region in the reference genome. This is

not acceptable when one of the aligned genomes underwent one or more whole genome dupli-

cations, leading to legitimate deviations from 1:1 orthology for many CNEs. To eliminate the

bias of the choice of reference genome in the alignment and to capture duplicated CNEs dur-

ing whole genome duplication (WGD), we scan two sets of net alignments by using each of the

two compared genomes as reference in turn. This strategy performs well when comparing spe-

cies with different numbers of WGD rounds, such as tetrapod vertebrates against teleost fish

[25], or common carp [26] against other teleost fish. In such cases, some of the identified CNE

pairs from two rounds of screening do overlap on both assemblies, and hence are merged into

one CNE pair. As the last step, we align the CNEs back to the two respective genomes using

BLAT [27] and discard the ones with high number of hits. The remaining elements are consid-

ered to be a reliable set of CNEs.

CNEr provides a quick overview of the genomic distribution of CNEs along chromosomes.

In S3 Fig, each CNE between human and mouse is plotted relative to each human chromo-

some (x-axis). We plot the cumulative number of CNEs over chromosomal positions. A CNE

cluster is represented as a sharp increase of height in y-axis with small change in x-axis. For

visualisation of CNEs in any genome browser, CNEr can export the CNE coordinates in BED

file format and CNE density (measured by the percentage of area covered by CNEs within a

smoothing window) in bedGraph and bigWig formats. Since running the whole pipeline of

CNE detection can be time-consuming, we also implemented a storage and query system with

SQLite as backend. Based on the visualisation capability of the Gviz package [28], CNEr can

produce publication-quality horizon plots of CNE density along with other genomic annota-

tions (see Methods and Data). Examples of the horizon plots are given in the following

sections.

CNEr: A toolkit for exploring extreme noncoding conservation
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CNEr package implementation

CNEr is a Bioconductor package developed in R statistical environment, distributed under the

GPL-2 licence for CNEr code, and UCSC Kent’s licence for Jim Kent’s C source code it builds

on [22]. Although CNEr supports compilation for both 32-bit and 64-bit systems across multi-

ple platforms, it has limited functionality on the Windows platform due to the lack of the

external sequence alignment software BLAT [27], which is required in the pipeline.

Overview of whole genome pairwise alignment pipeline

UCSC Genome Informatics (http://hgdownload.soe.ucsc.edu/downloads.html) provides the

pairwise alignments between many popular species. However, there is a frequent need to

Fig 1. CNEr workflow. (A) A typical pipeline of identification and visualisation of CNEs. (B) Illustration of scanning an alignment for CNEs. The scanning

window moves along the alignment for conserved regions. The exons and repeats regions are skipped during the scanning by default.

https://doi.org/10.1371/journal.pcbi.1006940.g001
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produce pairwise alignments for novel genome assemblies for new species, or using specific

assembly versions when they are not available from UCSC. This pipeline mostly requires exter-

nal sequence aligners and UCSC Kent’s utilities [22], and provides well-tested parameters for

species with a varying degree of evolutionary divergence. In brief, first a sequence alignment

software, LASTZ [29] or LAST [30], is used to find the similar regions between two repeat-

masked genomes. Then, if two neighbouring alignments are close enough in the genome, they

are joined into one fragment. During the alignment, every genomic fragment can match sev-

eral others, and the longest one is kept. Finally, blocks of alignments are grouped into stretches

of synteny and form the so called "net" alignments in Axt format [31]. CNEr comes with a

vignette to demonstrate the whole pipeline. The produced Axt alignment can be manipulated

in R as the Axt class, which is extended from GRangePairs class defined in CNEr (see S2 Text).

Overview of the Axt scanning algorithm

The Axt alignment scanning algorithm constitutes the central part of this package for the iden-

tification of conserved noncoding elements. Due to the massive manipulation of characters,

we implemented this algorithm purely in C for performance reasons; it is available to the R

environment through R’s C interface. The minimal input is the Axt alignment and the ranges

to filter out, i.e., the coding and/or repeat masked regions.

The Axt screening algorithm proceeds as in S1 Algorithm. First, the Axt alignment is con-

verted into a linked Axt data structure as implemented in Jim Kent’s UCSC source code [22].

The filtering ranges are encoded into a hash table, where keys are the chromosome/sequences

names and values are pointers to the linked lists of coordinate ranges. We then iterate over the

linked Axt alignments. For each alignment, we use a running window to scan the alignment

with a step size of 1 bp. Each base is searched against the filtering hash table and matched

bases are skipped. All segments above the identity threshold are kept. The overlapping seg-

ments are merged into larger pieces. This procedure produces a set of CNEs conserved

between the two aligned genome assemblies.

CNEr visualisation capability

Instead of using the standard density plot for CNE density (as implemented in e.g. the Ancora

browser), we introduce the horizon plot with the aim to increase the dynamic range of CNE

density visualisation. The horizon plot provides a way of visualising CNE density over several

orders of magnitude, and eliminates the need for multiple standard density tracks at different

thresholds along the genomic coordinates. Instead, a relatively low conservation threshold is

used, and multiple overlaid sections of the horizon plots will reveal peaks with different con-

servation density (see Fig 2A and Fig 2B in horizon plot, Fig 2C and Fig 2D in Ancora

browser). We expand the functionality of "horizonplot" in latticeExtra package and integrate it

into Gviz [28], which is the plot engine used in CNEr.

Results

CNEr use case I: Drosophila-Glossina CNEs

Here we demonstrate the application of CNEr to the analysis of Tsetse Fly (Glossina morsitans)
CNEs and their putative target genes. Glossina is the sole vector of African trypanosomiasis

("sleeping sickness"), and it mediates transmission of the disease during feeding on blood. It

has been shown previously [7] that, while there are tens of thousands of CNEs detected across

different Drosophila species, there are almost no highly conserved elements found between

Drosophila and malaria mosquito Anopheles gambiae or other mosquitos. Glossina and

CNEr: A toolkit for exploring extreme noncoding conservation
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Drosophila are much closer to each other than either of them is to mosquitos, having a com-

mon ancestor that has diverged around 60.3 Mya (S4 Fig). With the recently available assembly

and gene annotation of Glossina [32] (see S3 Text), we were able to identify clusters of CNEs

between these two species (see S4 Text for CNE clusters boundary identification). The clusters

correspond to a subset of clusters defined by the CNEs derived from comparisons of different

Drosophila species. A further investigation of gene functions, which are retained or missing in

Glossina, was carried out by comparison with the Drosophila clusters.

A summary of CNEs detected between Glossina and Drosophila is given in Fig 3. As

expected, fewer CNEs are detected from the comparison between Glossina and Drosophila
than between any two Drosophila species, since Glossina is an outgroup to the Drosophila/

Sophophora family. A closer examination of the CNE density plot in Ancora browser [33]

revealed many missing clusters of CNEs relative to CNE density across Drosophila species,

especially at a more stringent threshold. We wanted to find out if the missing and retained

CNE clusters differ with respect to the functional categories of the genes they span. In the fol-

lowing analysis, the CNEs that are conserved for more than 70% over 30 bp are considered.

The most deeply conserved vertebrate CNEs are usually associated with genes involved in

transcriptional regulation or development (trans-dev) functions [21]. Due to high divergence

Fig 2. Horizon plot of CNE density around key developmental genes along D. melanogaster as reference. (A) H15 and mid genes are spanned by arrays of CNEs.

Despite the much lower CNE density from D. melanogaster and Glossina, a CNE cluster boundary shows up that is consistent with CNEs from other Drosophila
species. (B) The CNE cluster around ct gene is missing in the comparison of D. melanogaster and Glossina since no CNEs are detected. This implies that this region

undergoes a higher CNE turnover rate. (C, D) The same loci as in (A, B) are shown on the Ancora browser in order to compare the normal CNE density plot with the

horizon plot. Notations: ensGene, Ensembl gene track; Glossina 21/30, G. morsitans 70% identity over 30 bp; droAna2 49/50, D. ananassae 98% identity over 50 bp; dp3

48/50, D. pseudoobscura 96% identity over 50 bp; droMoj2 48/50, D. mojavensis 96% identity over 50 bp; droVir2 48/50, D. virilis 96% identity over 50 bp.

https://doi.org/10.1371/journal.pcbi.1006940.g002
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between Drosophila and Glossina, the regions with detectable CNE arrays tend to be of low

CNE turnover, i.e. the process of sequence divergence and loss of ancestral CNEs is slow. If the

same functional subset of genes is surrounded by low-turnover CNE clusters as in vertebrates,

the encompassed genes will more likely be essential key developmental genes [5]. Indeed, Dro-
sophila genes associated with (i.e. nearest to) Glossina vs. Drosophila CNEs are also associated

with trans-dev terms (Fig 4A). Development, including organ, system and tissue development,

appears at the majority of the top Gene Ontology (GO) terms. The other highly significant GO

terms include biological regulation, regulation of cellular process and cell differentiation. CNE

clusters can span regions of tens to hundreds of kilobases around the actual target gene, which

is on average shorter than the equivalent spans in vertebrate genomes. This is in agreement

with our recent observation [9] that CNE clusters and the GRBs they define (and, by extension,

the underlying TADs) expand and shrink roughly in proportion to genome size. The H15 and

mid locus (Fig 2A) is one of the biggest CNE clusters retained between Glossina and Drosoph-
ila. The H15 and mid genes encode the T-box family proteins involved in heart development

[34]. Although the CNE density between Drosophila and Glossina is much lower than that

across the Drosophila genus, it clearly marks the CNE cluster boundaries of this locus, contain-

ing 67 CNEs at the 70% identity over 30 bp threshold. This confirms our observation from

Fig 3. The number of CNEs between D. melanogaster and several other species, including G. morsitans. 70% over 30 bp, 80% over 30 bp, 90% over 30 bp in vs.

D. ananassae, 70% over 30 bp in vs. D. pseudoobscura are not counted due to the threshold being too low for close species.

https://doi.org/10.1371/journal.pcbi.1006940.g003

CNEr: A toolkit for exploring extreme noncoding conservation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006940 August 26, 2019 7 / 16

https://doi.org/10.1371/journal.pcbi.1006940.g003
https://doi.org/10.1371/journal.pcbi.1006940


vertebrates that CNE cluster boundaries are conserved across long evolutionary period [9],

and that by extension the corresponding boundaries of TADs in fly genomes show a high

degree of conservation. For the 40 largest retained CNE clusters, we provide a comprehensive

Fig 4. Over-represented GO biological process terms ranked by GeneRatio. The gene ratio is defined as the number of genes associated with the term in our

selected genes divided by the number number of selected genes. The universe for over-representation test is all Drosophila with GO annotations. The p-values

are adjusted using "BH" (Benjamini-Hochberg) correction and the cutoff is 0.05. The visualisation is done by clusterProfiler [35]. (A) GO enrichment for genes

nearest to Drosophila and Glossina CNEs. (B) GO enrichment for genes in the missing CNEs clusters compared between Drosophila and Glossina.

https://doi.org/10.1371/journal.pcbi.1006940.g004

Fig 5. Cumulative distribution function of the changes of CNE number. For a 40kb window around each orthologous gene pair between human and

Drosophila, we calculate the reduction of the number of CNEs for human (# of CNEs from human-mouse comparison minus # of CNEs from human-zebrafish

comparison) and Drosophila (# of CNEs from D. melanogaster vs. D. ananassae comparison minus # of CNEs from D. melanogaster vs. Glossina) as reference. The

axon guidance genes significantly show a higher degree of CNE number reduction, compared with the other genes (p< 1e-5, Kolmogorov-Smirnov one-sided

test).

https://doi.org/10.1371/journal.pcbi.1006940.g005
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list of CNE cluster coordinates, the target genes, the protein domains and the number of asso-

ciated CNEs (S1 Table). As we can see, the majority of the target genes have Homeobox, Fork-
head or C2H2 Zn finger domains, just like the genes spanned by the most conserved CNE

clusters in vertebrates.

Some other regions have strong clusters of CNEs conserved among Drosophila species,

however, the CNE cluster between Drosophila and Glossina is absent. The ct locus (Fig 2B),

encoding the cut transcription factor, is one of the best representative cases. Ct plays roles in

the later stages of development, controlling axon guidance and branching in the development

of the nervous system, as well as in the specification of several organ structures such as Malpi-

ghian tubules [36]. In order to locate the CNE clusters missing from Drosophila vs. Glossina
comparison, we use the CNE clusters detected in D. melanogaster vs. D. ananassae comparison

as reference and compare them with the aforementioned retained CNE clusters. The genes

within those missing CNE clusters are highly enriched for axon guidance and neuronal devel-

opment (Fig 4B). We then examine the CNE turnover rate (the rate of replacing old CNEs) of

the 216 human genes that are associated with the axon guidance term (GO:0007411), with

both human and Drosophila as reference. The turnover rate is calculated as the reduction of

the number of CNEs between two sets of CNEs. For human reference, we choose the CNE set

of human vs. mouse and human vs. zebrafish, while D. melanogaster vs. D. ananassae and D.

melanogaster vs. Glossina are chosen for Drosophila reference. As shown in Fig 5, the axon

guidance genes have significantly higher turnover rate than the other genes (p< 1e-5, Kolmo-

gorov-Smirnov one-sided test) in both human and Drosophila lineages. This parallels the

results of the analysis of human CNEs, where clusters of CNEs conserved only across mam-

mals are enriched for axon guidance and other cell adhesion proteins involved in multicellular

processes, as opposed to the most deeply conserved CNEs which are overwhelmingly found

around genes for transcription factors involved in early development [37].

CNEr use case II: Sea urchin CNEs

In this section we apply CNEr to the comparison of highly fragmented genome assemblies of

two sea urchin species: Strongylocentrotus purpuratus and Lytechinus variegatus (see S3 Text).

The purpose of this analysis is twofold. First, we want to demonstrate how well CNEr is able to

call CNEs and their clusters in the case of highly fragmented draft genomes: the ability to per-

form this analysis on draft genome assemblies would show that our approach can be applied to

a large number of available genomes, most of which haven’t been assembled past the draft

stage and are likely to remain in that state. Second, we want to ask if a third lineage, evolution-

arily closer to vertebrates than insects but still lacking any shared CNEs with vertebrates,

would exhibit the same patterns of noncoding conservation. This could provide a hint towards

CNEs’ universal presence in Metazoa, in addition to providing an informative additional data-

set for comparative studies of genomic regulatory blocks.

S. purpuratus is a popular model organism in cell and developmental biology. S. purpuratus
and L. variegatus have a divergence time of 50 Mya [38] and moderate rates of sequence diver-

gence, which makes them ideal for comparative genomics studies of regulatory elements. We

identify 18,025 CNEs with threshold of 100% identity over 50 bp window. Despite the highly

fragmented assemblies, we could clearly detect 808 prominent CNE clusters.

An especially interesting observation is the largest cluster we detected, at the Meis gene

locus (Fig 6). The CNE density clearly marks the boundaries of the CNE cluster. In Metazoa,

Meis, one of the most well-known homeobox genes, is involved in normal development and

cell differentiation. Tetrapod vertebrates have three Meis orthologs as a result of two rounds of

whole genome duplication. The CNE cluster around Meis2 (one of three Meis paralogs arisen

CNEr: A toolkit for exploring extreme noncoding conservation
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by two WGD rounds at the root of vertebrates) is the largest such cluster in vertebrates [21].

Remarkably, the cluster of CNEs around Drosophila’s Meis ortholog, hth (homothorax), was

also found the largest CNE cluster in the D. melanogaster genome [7]. It is currently unknown

why the largest clusters of deeply conserved CNEs are found around the same gene in three

different metazoan lineages, even though none of the CNEs from either lineage has any

sequence similarities to CNEs in the other two. The most plausible explanation is that the

ancestral Meis (hth) locus was already the largest such locus in the ancestral genome, and that

CNE turnover maintained the size of the cluster through all the changes leading to three sepa-

rate current lineage-specific sets of CNEs.

CNEr reveals interesting sequence features characteristic of

ultraconservation

It has been shown that vertebrate nonexonic CNEs are enriched in the TAATTA hexanucleo-

tide motif, which is an extended recognition site for the homeodomain DNA-binding module

[39]. With CNEr, we can easily verify the existence of TAATTA motif in CNEs of invertebrate

species. In S5A Fig, we consider CNEs identified by CNEr that are conserved between D. mela-
nogaster and D. virilis over 98% for more than 50 nucleotides and plot them by increasing

width using heatmaps package (https://bioconductor.org/packages/heatmaps/). The first two

heatmaps confirm that CNEs are enriched in AT inside but exhibit a marked depletion of AT

at their borders, consistent with what is known about their biology in vertebrates [40]. Further-

more, the TAATTA motif is also enriched in insect CNEs, in which the motif seems to be

extended further by flanking A/T nucleotides. When the flanking A/T (W) in the search motf

is replaced with G/C (S), the heatmap pattern disappears. We ask whether this is a general

property of CNEs in Metazoa and, using CNEr, proceed to the identification of CNEs that are

conserved between (a) C. elegans and C. briggsae at 100% for more than 30 nucleotides (worm

CNEs, see S5B Fig), (b) L. variegatus and S. purpuratus at 100% for more than 50 nucleotides

(sea urchin CNEs, see S5C Fig). We observe that the same pattern does not hold in those cases,

i.e. it appears like enrichment of CNEs in TAATTA is not a universal phenomenon but is

found only in insect and vertebrate elements. Our pipeline is a powerful tool for studying the

question of how and when this TAATTA-enrichments originated, as well as a multitude of

related questions.

Fig 6. Horizon plot of CNE density at Meis loci on sea urchin Strongylocentrotus purpuratus. The density plots of

CNEs detected at similarity threshold 96% (48/50), 98% (49/50) and 100% (50/50) over 50 bp sliding window, in

Lytechinus variegatus comparison, are shown in three horizon plot tracks. The boundaries of CNE clusters from

various thresholds are mutually consistent.

https://doi.org/10.1371/journal.pcbi.1006940.g006
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Downstream overlap analysis of CNEs reveals that they are highly enriched

in stem-cell regulatory elements

Finally, we demonstrate the utility of CNEr for general hypothesis generation about CNEs by

identifying elements highly conserved (>98% identity over 50 bp) between human and

chicken and performing global and pairwise overlap enrichment analyses against various

Fig 7. Pairwise overlap analysis of CNEs demonstrates association with (A) Sox2, (B) Pou5f1 and (C) Nanog
binding regions. In all three cases, permutation tests with 1000 permutations of CNEs are shown. The number of

overlaps of the randomized regions with the test regions of interest (in this case, Sox2, POU5F1 and Nanog) are

depicted in grey. Those overlaps of the randomized regions cluster around the black bar that represents the mean. In

green, the number of overlaps of the actual regions (CNEs in this case) with the test regions is shown and is proved to

be much larger than expected in all cases. The red line denotes the significance limit.

https://doi.org/10.1371/journal.pcbi.1006940.g007
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genomic features using the R/Bioconductor packages LOLA [41] and regioneR [42], respec-

tively. LOLA allows for enrichment analysis of genomic intervals using a core reference data-

base assembled from various resources of genomic data, while regioneR permits cross-

validation of the findings through pairwise overlap analyses. As evident from inspection of S2

Table and Fig 7, both packages converge to the conclusion that the identified CNEs between

human and chicken are significantly enriched in Sox2 (Fig 7A) and Pou5f1 (Fig 7B) binding

sites. Sox2 and Pou5f1, in concert with Nanog (Fig 7C), are believed to play key roles in main-

taining pluripotency. This finding comes in accordance with previous reports suggesting that

several CNEs are enriched in classical octamer motifs recognized by developmental

homeobox transcription factors [43], and is intuitively understandable since the proteins

encoded by genes surrounded by the most conserved CNEs control the earliest cellular com-

mitment events of ES cells (reviewed in [6]). Nonetheless, this is the first time that such an

association of the most deeply conserved CNEs with key pluripotency elements is reported in

the literature, and we anticipate that more associations of this kind will be revealed in the

future by coupling CNEr with other R/Bioconductor packages.

Availability and future directions

The CNEr package with self-contained UCSC Kent’s utility source code is available at Biocon-

ductor release branch http://bioconductor.org/packages/CNEr/. Active development and bug

reports is hosted on github https://github.com/ge11232002/CNEr/. Currently BLAT is the only

supported aligner for identifying repeats. Other high performance short read aligners that run

in parallel, such as Bowtie1/2 and BWA, are desired for large set of CNEs. Furthermore, inte-

gration of GRB identification approach and GRB target gene prediction is planned for future

development.
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S1 Text. A comparison of CNEs identified by PHAST and CNEr on human.
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S4 Text. GRB boundaries identification.

(PDF)

S1 Fig. The heatmap shows the percentage of matched bases in the Axt alignments. This

can be useful for examining the quality of Axt alignments, especially from the whole genome

pairwise alignment pipeline in CNEr package. The left panel has higher rates of matches than

right panel since the divergence of human and mouse is much smaller than that between

human and zebrafish.

(EPS)

S2 Fig. The syntenic plot of alignment blocks between chr1, chr2 of human and chr1, chr2

of mouse. This plot is mostly used for tuning the parameters during whole genome pairwise

alignment to get better alignments. It can also show ancient duplications for the alignment of a

sequence against itself.
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S3 Fig. The distribution of CNEs along the 6 biggest chromosomes in human genome.

Each CNE is plotted as a dot with the position in chromosome as x-axis. A sharp increase in y-

axis represents a CNE cluster.

(EPS)

S4 Fig. The species tree of Drosophila, Glossina and mosquitos. The phylogenetic tree is

constructed based on the data on last common ancestors from TimeTree (Hedges et al.,

2006). The genome of the malaria mosquito A. gambiae is highly divergent from Drosophila
family and unsuitable for comparative genomics study, while G. morsitans is much closer.

(EPS)

S5 Fig. Sequence heatmaps of CNEs in different lineages. (A) D. melanogaster and D. virilis

(B) C. elegans and C. briggsae (C) L. variegatus and S. purpuratus. The CNEs are ranked by

decreasing CNE width.

(TIFF)

S1 Table. A list of the most prominent CNE clusters detected between Drosophila and

Glossina.

(XLSX)

S2 Table. Overlap analysis of CNEs. Global overlap analysis of CNEs against multiple

genomic features using LOLA reveals that they overlap with Nanog, Sox2 and POU5F1

binding regions. This table is the output of runLOLA algorithm sorted by FDR. All top hits

include important factors associated with pluripotency. userSet: all CNEs conserved between

human and chicken over 98% identity for more than 50 bp. collection: all elements in CODEX

database. universe: all active DNase I hypersensitive sites.

(XLSX)

S1 Algorithm. The algorithm of scanning Axt alignment.

(PDF)

S1 Code. The source code of CNEr package and all the scripts to reproduce the figures in

the manuscript.

(ZIP)
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