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Abstract A standard practice used in the industry to discretizing the gravity term in the two-phase
Darcy flow equations is to apply an upwind strategy. In this paper, we show that this can give a persistent
unphysical flux field and an incorrect pressure distribution. As a solution to this problem, we present a
new consistent discretization of flow, termed Gravitationally Consistent Multipoint Flux Approximation
(GCMPFA), which is valid for both single- and two-phase flows. The discretization is based on the idea that
the gravitational term in the flow equations is treated as part of the discrete flux operator and not as a
right-hand side. Here, the traditional formulation representing pressure as a potential is extended to the
case including gravity by introducing an additional set of right-hand side to the local linear system solved
in the MPFA construction, thus obtaining an expression of the fluxes in terms of jumps in cell-center
gravities. Numerical examples showing the convergence of the method are provided for both single- and
two-phase flows. For two-phase flow, we show how our new method is capable of eliminating the
unphysical fluxes arising when using a standard upwind scheme, thus converging to the correct pressure
distribution.

1. Introduction
There exist several methods for solving numerically the single-phase and multiphase flow equations in
porous media. Popular mass conservative schemes that can handle anisotropic permeability and/or grids
that are not K-orthogonal include Mixed Finite Elements (Arbogast et al., 2007; Kim et al., 2007), Multipoint
Flux Approximation (MPFA) (Aavatsmark, 2002; Aavatsmark et al., 1994, 1996, 1998a, 1998b, 2007, 2008;
Edwards & Rogers, 1994, 1998; Edwards, 2000, 2002), and Multipoint Flux Mixed Finite Element (MFMFE)
(Arrarás & Portero, 2019; Brezzi et al., 1985; Wheeler & Yotov, 2006; Wheeler et al., 2012) methods.

In this work, we discuss MPFA methods. MPFA is a control volume method introduced independently
by two different research groups in 1994 (Aavatsmark et al., 1994; Edwards & Rogers, 1994). The two
approaches differ on the choice of geometrical points and control volume grids. Here, we only consider
the so-called O-method developed by Aavatsmark and coworkers. They first introduced MPFA for general
quadrilateral grids in Aavatsmark et al. (1994) and Aavatsmark et al. (1996) and then extended the method
to triangular and polygonal grids in Aavatsmark et al. (1998a, 1998b). The reader can refer to Aavatsmark
(2002) for an excellent review on MPFA methods for quadrilateral grids and to Aavatsmark et al. (2007) for a
numerical investigation on its convergence properties. The convergence properties of MPFA have also been
investigated for general quadrilateral grids in Eigestad and Klausen (2005), Klausen and Winther (2006a),
and Klausen and Winther (2006b) and for unstructured triangular grids in Bause et al. (2010). In particu-
lar, using a specific numerical quadrature, the MPFA and MFMFE methods were shown to be equivalent
(Klausen & Winther, 2006a). A somewhat simpler MPFA variant is the so-called L-method by Aavatsmark
et al. (2008). Finally, when the MPFA method is applied to multiphase flow, a monotone scheme is desirable.
Local criteria which ensure monotonicity for general control volume methods on heterogeneous media are
given in Nordbotten et al. (2007).

MFMFE methods were introduced for incompressible Darcy flow problems on triangular and convex quadri-
laterals in Wheeler and Yotov (2006) using the lowest order Brezzi-Douglas-Marini spaces (Brezzi et al.,
1985). Extensions to slightly compressible flow and multiphase flow are presented in Arrarás and Portero
(2019) and Wheeler et al. (2012), respectively.

The common feature of all these methods is the treatment of the gravity term in the Darcy flow equations.
The traditional approach has been to represent the pressure as a potential and let the discretization consider
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only deviations from the potential, by ignoring gravity effects in the discretization. Gravity is only considered
in the model equations in Arrarás and Portero (2019) and Wheeler et al. (2012), yet it is disregarded in the
numerical examples reported therein.

However, this approach is inconsistent when the gravity term in the Darcy flow equation is inhomoge-
neous, as caused for example by two-phase effects, density variations, stepwise variations of permeability,
and certain variants of vertically averaged models for CO2 storage (Nordbotten & Celia, 2011). While for
single-phase flow MPFA can handle discontinuities in the fluid potential caused by, for example, smooth
variations of permeability from cell to cell, in two-phase flow discontinuities also arise due to presence and
absence of a mobile phase, and this kind of discontinuities can create unphysical fluxes, for example, in the
case of a fluid-fluid interface at conditions of vertical equilibrium (see Aavatsmark et al. (1994) for a dis-
cussion on this). Here, we show that a standard treatment of the gravity term based on an upwind strategy
in the multiphase Darcy flow equations leads to the creation of a persistent unphysical flux field, even in
absence of any external forces, and gives an incorrect pressure distribution.

An aim of this paper is therefore to develop a consistent discretization of the porous media flow equations
in the presence of gravity which amends this crucial shortcoming. To do so, we treat the gravity term as part
of the discrete flux operator and derive an expression of the fluxes in terms of jumps in cell-center gravities.
The paper is organized as follows. First, we introduce the governing equations of single- and two-phase flow
in porous media in section 2. Then, a standard discretization of the gravity term, and a discussion on its
limitations, is presented in section 3. Our new consistent discretization of the flow equations in the presence
of gravity is presented for single- and two-phase flow in sections 4 and 5, respectively. Numerical examples
are provided in both sections. Finally, concluding remarks are given in section 6.

2. Governing Equations
2.1. Single-Phase Flow
Incompressible single-phase Darcy flow in nondeformable porous media is governed by the following
equation:

∇ · [−K(∇p + g)] = 𝜓, (1)

where p is pressure, K is the (generally heterogeneous) absolute permeability tensor divided by fluid viscos-
ity, g represents gravitational forces (density times acceleration due to gravity vector), which is a function of
space, and 𝜓 is a source term. We emphasize that equation (1) represents incorporation of Darcy's law into
a mass conservation equation.

2.2. Two-Phase Flow
The Darcy formulation given by equation (1) is extended to incompressible immiscible two-phase flow as
follows:

𝜙
𝜕s𝛼
𝜕t

− ∇ · [𝜆𝛼K(∇p𝛼 + g𝛼)] = 𝜓𝛼, (2)

where 𝜙 is porosity, t is time, s𝛼 is the phase saturation associated with phase 𝛼 = 1, 2, and 𝜆𝛼 is the phase
mobility, which is an increasing function of s𝛼 . In equation (2), K represents the absolute permeability tensor,
as fluid viscosity is incorporated into 𝜆𝛼 . Introducing the total quantities 𝜁Σ =

∑
𝛼𝜁𝛼 , and in absence of

capillary pressure, that is, p1 = p2 = p, summing equation (2) yields

−∇ · [K(𝜆Σ∇p + GΣ)] = 𝜓Σ, (3)

where GΣ =
∑
𝛼(𝜆𝛼g𝛼). The phase fluxes q𝛼 can then be expressed in terms of the total flux q𝛴 through the

fractional flow function 𝜑𝛼 = 𝜆𝛼∕𝜆𝛴 in the following manner:

q1 = 𝜑1[qΣ + 𝜆2K(g2 − g1)],
q2 = 𝜑2[qΣ − 𝜆1K(g2 − g1)].

(4)

Choosing one saturation as primary variable, say, for example, s2 = s, equation (2) is reformulated in terms
of total flux as

𝜙
𝜕s
𝜕t

+ ∇ · {𝜑2[qΣ − 𝜆1K(g2 − g1)]} = 𝜓2. (5)

Equations (3)–(5) form a system of two equations for two unknowns (s and p).
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3. Standard Discretization of Flow
Solution of equation (1) using control volume methods involves the computation of the flux fk through some
surface 𝜕k of the control volume, defined as

𝑓k = ∫
𝜕k

n · K(∇p + g)dS, (6)

where n is the unit normal vector to the surface. Likewise, for two-phase flow, from equation (3) one has
the total flux

𝑓Σ,k = ∫
𝜕k

n · K(𝜆Σ∇p + GΣ)dS. (7)

3.1. Traditional Potential Formulation for Single-Phase Flow
Representing the pressure as a potential h, and ignoring gravity effects in the discretization, calculation of
the flux in equation (6) reduces to the solution of the integral

𝑓k = ∫
𝜕k

n · K∇hdS. (8)

3.1.1. One-Dimensional Problems
For one-dimensional problems, the flux over the surface between two neighbor cells 1 and 2, f12, is
approximated by a two-point stencil (see Figure 1 left) as follows:

𝑓12 = T12(h1 − h2), (9)

where T12 is the transmissibility of the surface which is calculated as harmonic average of the cell
transmissibilities, that is,

T12 = 2
T−1

1 + T−1
2
. (10)

The cell transmissibilities are defined as Ti = Ki∕Δxi, i = 1, 2, where Δxi is the length of cell i.
3.1.2. Multidimensional Problems
For multidimensional problems, the flux is approximated using the MPFA method as

𝑓k = ∫
𝜕k

n · K∇hdS ≈
∑

i
(tk,ihi), (11)

where the coefficients tk,i are called transmissibility coefficients. Calculation of the transmissibility coeffi-
cients works as follows. A dual grid is created by connecting the cell centers with the face centers. In this
manner, each cell is partitioned into subcells (three and four in triangular and quadrilateral grids and six
and eight in tetrahedral and hexahedral grids, respectively) and each face is subdivided into subfaces (two in
2-D grids, four in 3-D grids). Subcells are then grouped together to form an interaction region surrounding
each node (see Figure 1 right). Then, the following principles are applied:

1. Potential is assumed to be linear in each subcell.
2. Flux continuity is enforced at the subfaces.
3. Potential continuity is enforced at single points on the subfaces, called continuity points.

There is a whole class of MPFA methods for such grids, depending on the choice of the location of the
continuity points. Here we only consider the O-method described by Aavatsmark (2002). Principles (1) and
(3) imply that for a subface k with adjacent subcells j1 and j2, one has

h𝑗1 + ∇h𝑗1 · d𝑗1k = h𝑗2 + ∇h𝑗2 · d𝑗2k, (12)

where ∇h is the subcell gradients and d is the distance between the continuity point and the cell centers.
For flux continuity, principle (2) is written

nk · K𝑗1
∇h𝑗1 = nk · K𝑗2

∇h𝑗2 , (13)
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Figure 1. (left) One-dimensional (two points) stencil for flux calculation. (right) Multipoint stencil (six points) for
calculation of flux f12. Black circles are cell centers, red squares are interaction regions central points, and blue
diamonds are continuity points, that is, face midpoints in the MPFA O-method. Calculation of the flux is done by
summing the contributions from the two interaction regions (dashed lines) centered at points P and Q.

where nk is the normal vector of the face and K𝑗i
is the permeability with respect to cells j1 and j2. Collecting

all equations (12)–(13) for each interaction region, a local linear system is recovered of the following form:

⎡⎢⎢⎣
G 0
D I±
0 I

⎤⎥⎥⎦
[
∇h
h

]
=
⎡⎢⎢⎣

0
0
I

⎤⎥⎥⎦ . (14)

The first row represents flux balance (13) and involves only the subcell potential gradients. The matrix G
contains the discretized Darcy's law, that is, the n ·K products on a subcell level. The second row gives point-
wise potential continuity (12) over cell faces. Matrix D contains the distances d, while matrix I± contains
±1 coefficients depending on which side the cell is relative to the face normal vector. The third row together
with the right-hand side enforces a unit potential in one cell after another. Equation (14) can be inverted to
compute the subcell potential gradients dh as functions of the cell-center potentials, effectively computing
basis functions for the discretization. Hence, from solving equation (14) we obtain the transmissibility coef-
ficients of the potential-to flux maps, denoted as 𝜔k,i, which represent the contribution of cell i to the flux
across the sub-face k. To obtain the full face coefficients tk,i, we sum over the subfaces l of face k

tk,i =
∑

l
𝜔l,i. (15)

The discretized flux across the face is then given by equation (11).

3.2. Standard Discretization of Single-Phase Flow
3.2.1. One-Dimensional Problems
In one-dimensional problems, we have seen that, in absence of gravity, the face transmissibility is calculated
as harmonic average of the transmissibilities of the adjacent cells. If gravity is present, assuming that the
pressure p is linear and gravitational forces g are constant within each cell, the flux continuity is given by

−K1

(
p̄ − p1

Δx1∕2
+ g1

)
= −K2

(
p2 − p̄
Δx2∕2

+ g2

)
, (16)

where p̄ is the pressure at the interface between the two cells. Introducing the cell transmissibilities, equation
(16) can be solved for p̄ to get

p̄ =
T1p1 + T2p2 + (T2Δx2g2 − T1Δx1g1)∕2

T1 + T2
. (17)

Inserting this expression back into, say, the left-hand side of equation (16) gives the flux expression in
presence of gravity as

𝑓12 = −
2T1T2

T1 + T2

[
(p2 − p1) +

Δx1g1 + Δx2g2

2

]
= T12

[
(p1 − p2) −

Δx1g1 + Δx2g2

2

]
. (18)

Equation (18) shows that for the pressure term the harmonic average of the cell transmissibilities is
retrieved, whence the flux due to gravity is given by the product between the harmonic average of the cell
transmissibilities times the arithmetic average of the cell gravitational forces.
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3.2.2. Multidimensional Problems
Calculation of the full flux in the presence of gravity in equation (6) involves the computation of the term

gk = ∫
𝜕k

n · K∇gdS. (19)

When this term is treated as a right-hand side in equation (1), a standard discretization approach is to extend
the result of equation (18) to the multidimensional case and use the harmonic average of the cell permeabil-
ity tensors. Defining dj = |xk − xj|, the distance between the center of face k, xk, and the center of cell j, xj,
where j is either of the two cells j1 and j2 with mutual face k, the flux due to gravity is then computed as

gk ≈ nk · ⟨K⟩kgk, (20)

where the operator ⟨K⟩k denotes the d-weighted harmonic average of the permeability tensors between the
two cells j1 and j2

⟨K⟩k = (d𝑗1 K−1
𝑗1

+ d𝑗2 K−1
𝑗2
)−1, (21)

and gk is the weighted arithmetic average of the cell gravity vectors

gk = d𝑗1 g𝑗1 + d𝑗2 g𝑗2 . (22)

The full flux in the presence of gravity is then given by

𝑓k ≈
∑

i
(tk,ipi) + gk, (23)

where the transmissibilities coefficients tk,i are calculated as described in section 3.1.2.

3.3. Standard Discretization of Two-Phase Flow
3.3.1. Numerical Method
Solution of equations 3–(5) is done using the Implicit Pressure Explicit Saturation scheme (Chen et al., 2006).
Starting from a known saturation sn, the Implicit Pressure Explicit Saturation scheme works as follows:

1. The pressure pn is calculated implicitly by solving (3) and the total flux qn
Σ is reconstructed from pn.

2. The saturation is advanced in time explicitly from (5) as

𝜙
sn+1 − sn

Δt
= −∇ · {𝜑n

2 [q
n
Σ − 𝜆

n
1 K(g2 − g1)]} + 𝜓2. (24)

Calculation of the face mobilities in equation (24) is done using the method outlined in Moortgat et al.
(2011). The method works as follows:

1. First, we pick the phase for which the phase flux has the same sign of the total flux. This is the heaviest
phase when (q𝛴 · n)(Kg · n) > 0 or the lightest phase when (q𝛴 · n)(Kg · n) < 0. This sign determines the
first upwind phase mobility 𝜆𝛼1

.
2. For the other phase, we have two options. As a first guess, we assume that the second phase has the same

sign as the first phase and the total flux and take the upwind mobility 𝜆𝛼2
accordingly.

3. We can now evaluate the phase fluxes using equation (4) and check consistency. If the guessed sign is
retrieved, then the process is complete, otherwise the opposite upwind choice for 𝜆𝛼2

is made in step (2).

When the total flux is zero, the upwind directions can be determined explicitly. A standard discretization of
the total flux in equation (7) is then obtained by applying the traditional MPFA construction to the pressure
term and an upwind scheme to the gravity term as follows (Enchéry et al., 2002):

𝑓Σ,k ≈ 𝜆Σ,k
∑

i
(tk,ipi) + nk · ⟨K⟩k(𝜆1,kg1 + 𝜆2,kg2). (25)

However, a discretization of such a kind on rough grids is prone to creating unphysical fluxes, as illustrated
in the following section.
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Figure 2. Initial and boundary conditions and values of permeability multiplier for test 3.3.2. In particular, no flow
boundary conditions are assigned to all boundaries, that is, q𝛴 = q1 = q2 = 0. Blue is the heaviest phase (s2 = 1); green
is the lightest phase (s2 = 0).

3.3.2. Numerical Example
Let us consider the case of a system composed by two incompressible fluids trying to reach vertical equilib-
rium conditions in absence of any external forces. The two fluids have same viscosity equal to 1.0e−3 Pa·s,
the gravity vector g is directed downward along the vertical direction, porosity 𝜙 is equal to 0.2, and the
permeability tensor K is heterogenous with four layers of different permeabilities, that is, K = aiKI, with
K = 1Da and values of ai reported in Figure 2. No-flow boundary conditions are assigned to all boundaries,
that is, q𝛴 = q1 = q2 = 0. Initially, a horizontal interface is considered, with the upper region fully satu-
rated with the heaviest phase (𝜌2 = 1000 kg/m3) and the lower region fully saturated with the lightest phase
(𝜌1 = 100 kg/m3). Computations are carried out on quadrilateral randomly perturbed grids with five levels
of refinement, that is, N = 4, 8, 16, 32, 64 number of cells per side. In virtue of equation (4), counter current
flow between the two phases should thus establish, leading eventually to conditions of vertical equilibrium.
However, numerical simulations using equation (25) indicate that a persistent spurious flux fields originate

Figure 3. Time evolution of cell saturations of the heaviest phase and total fluxes at cell faces for test 3.3.2 with N = 8.

STARNONI ET AL. 10,110
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Figure 4. Errors in saturation and pressure and maximum total flux as a
function of time for test 3.3.2 with N = 8. Continuous line: maximum total
flux (with units of m/s). Dashed line: error in saturation. Dashed-dotted
line: error in pressure.

(see Figure 3). After some oscillations, the system yet reaches a stable
configuration; however, the computed pressure field is far from vertical
equilibrium. This is clearly shown in Figure 4, displaying the time evolu-
tion of the errors in pressure and saturation and the maximum total flux.
The errors in pressure and saturation are computed using the following
L2 metrics:

𝜀 =

√∑
iΔi(𝜓i − 𝜓i,exact)2√∑

iΔi𝜓
2
i,exact

, (26)

where 𝜓 is the computed variable, Δ is the element volume, and the
exact variables are the ones measured at vertical equilibrium conditions.
As Figure 4 clearly shows, the saturation converges to the equilibrium
conditions; however, the nonvanishing total flux prevents the pressure to
converge to vertical equilibrium conditions. This is because of the incon-
sistent discretization of the gravity term in the pressure equation, while
a standard upwind scheme is sufficient for the transport equation. Nev-
ertheless, the standard upwind scheme converges to the exact pressure
field with refinement of the grid (first-order convergence; see Figure 5).

In the following sections, we present a consistent discretization of the
flow equations in the presence of gravity, which is capable of eliminating
this unphysical flux field and thus gives the correct pressure field.

4. Gravitationally Consistent Discretization of Single-Phase Flow
4.1. Numerical Method
For multidimensional problems, a consistent treatment of gravitational forces can be achieved by a more
nuanced approach to the local flux balancing within the local construction of the discretization scheme. In
the presence of a gravitational field, equation (13) is extended to read

nk · K𝑗1
(∇p𝑗1 + g𝑗1 ) = nk · K𝑗2

(∇p𝑗2 + g𝑗2 ), (27)

Figure 5. Convergence of pressure for test 3.3.2. Blue solid line: error in
pressure. Red dashed line: linear convergence.

where g represents gravitational forces in the cells. We make the observa-
tion that jumps in the gravitational forces over the subfaces, [[nk · Kg]]k,
will act as a flux imbalance and thus induce an additional pressure gradi-
ent in the subcells. To extend the MPFA formulation to equation (27), we
introduce an additional set of right-hand side functions, which applies
nonzero conditions to the first row of (14). These additional right-hand
side functions thus solve

⎡⎢⎢⎣
G 0
D I±
0 I

⎤⎥⎥⎦
[

dp
p

]
=
⎡⎢⎢⎣

I
0
0

⎤⎥⎥⎦ . (28)

We now slightly reformulate equation (11) by considering fk,j, which is the
flux in absence of gravity across a subface k as evaluated in cell j (where j is
either of the two cells j1 and j2 with mutual face k). The extended version
of (11) is written for completeness as

𝑓k,𝑗 = ∫
𝜕kΔ𝑗

Tr𝜕kΔ𝑗K∇pdS ≈
∑

i
(𝜔k,𝑗,ipi). (29)

We make the note that the integral which is approximated is now stated
slightly more precisely, in the sense that the integration volume Δj from
which the boundary integral appears is explicit. Also, for the two cells j1
and j2 where fk,j is defined, it is clear from equation (14) that 𝑓k,𝑗1 = 𝑓k,𝑗2
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and therefore 𝜔k,𝑗1 ,i = 𝜔k,𝑗2 ,i = 𝜔k,i. The transmissibility coefficients of the pressure-to-flux maps in absence
of gravity, 𝜔k,i, for the subface k, are then obtained by solving (14).

Similarly, let us denote the coefficients from (28) as 𝜈k,j,l, which represent the flux across l due to a flux
imbalance at k, as evaluated in cell j. We quickly note from equation (28) that for l ≠ k, then as above
𝜈k,𝑗1 ,i = 𝜈k,𝑗2 ,i. However, this will not be the case for k = l, due to the flux imbalance, indeed in this case

𝜈k,𝑗1 ,i = −𝜈k,𝑗2 ,i. (30)

We then obtain the full flux in the presence of gravity as

𝑓k,𝑗 = ∫
𝜕kΔ𝑗

Tr𝜕kΔ𝑗K(∇p + g)dS ≈
∑

i
(𝜔k,𝑗,ipi) +

∑
l
(𝜈k,𝑗,l[[nl · Kg]]l) + |𝜕k|nk · K𝑗g𝑗 . (31)

It is noted that due to equation (30), it follows that as expected 𝑓k,𝑗1 = 𝑓k,𝑗2 . Thus, the second subscript can
be omitted as soon as a convention is chosen for what side the flux evaluation should be considered on.
Therefore, one can make equation (31) symmetric by taking the mean of the two sides, that is,

𝑓k ≈
∑

i
(𝜔k,ipi) +

∑
i
(�̄�k,l[[nl · Kg]]l) +

1
2
|𝜕k|nk · (K𝑗1

g𝑗1 + K𝑗2
g𝑗2 ), (32)

where

�̄�k,l =
1
2
(𝜈k,𝑗1 ,l + 𝜈k,𝑗2 ,l). (33)

Finally, we note that we can represent the K-weighted jump operator over l in terms of vector coefficients
μ̌l,𝑗 as

[[nl · Kg]]l =
∑
𝑗

μ̌l,𝑗 · g𝑗 (34)

and the mean of the cell gravities in terms of the coefficients μ̄k,𝑗 as

1
2
|𝜕k|nk · (K𝑗1

g𝑗1 + K𝑗2
g𝑗2 ) =

∑
𝑗

μ̄k,𝑗 · g𝑗 . (35)

With this in mind, we obtain the compound coefficients

ηk,𝑗 = μ̄k,𝑗 +
∑

l
�̄�k,lμ̌l,𝑗 ; (36)

therefore, equation (32) can be written only in terms of cell-center sums as

𝑓k =
∑

i
(𝜔k,ipi + ηk,i · gi). (37)

We term this approach Gravitationally Consistent Multipoint Flux Approximation (GCMPFA).

4.2. Numerical Examples
4.2.1. Problem Formulation
In these examples, incompressible flow in a unit square domain is considered. The domain has a disconti-
nuity line of equation rx + sy = 𝛿, where 0 ≤ r, s, 𝛿 ≤ 1 and r + s = 1. Gravitational forces are given as a
linear combination of two contributions, namely, a step function across the discontinuity line H(x, y) which
is normal to the discontinuity line, and a smooth function P(x, y), as follows:

g = a1H(x, 𝑦) + a2P(x, 𝑦). (38)

In the latter equation, a1 and a2 are two constants and, given the unit vectors ex and ey, H(x, y) and P(x, y)
have the following form:

H(x, 𝑦) = − h(x, 𝑦)√
r2 + s2

(rex + se𝑦),

P(x, 𝑦) = cos(x) cos(𝑦)ex − sin(x) sin(𝑦)e𝑦,
(39)
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Figure 6. Grids used in the numerical tests, with discontinuity line in red.

with

h(x, 𝑦) =
{

h1 F > 𝛿

h2 F ≤ 𝛿
. (40)

To test the convergence properties of the method, we choose an analytical solution such that

g = −∇p, (41)

so that zero normal flux conditions hold everywhere. The method is tested on different grids, namely, quadri-
lateral and triangular h-perturbed grids with horizontal discontinuity line (r = 0; see Figures 6a and 6b,
respectively) and one regularly perturbed grid with an arbitrary discontinuity line (r = 0.7; see Figure 6c)
𝛿 = 0.5 for all grids. Boundary conditions are of Neumann type at the top and bottom boundaries and of
Dirichlet type at the left and right boundaries. Zero normal flux and pressure equal to the analytical solution
are assigned to the respective boundaries. Finally, a unit homogeneous nondiagonal permeability tensor,
with transverse component Kt = 0.1, is used.

To test the implementation, four cases are considered, depending on the values assigned to the coefficients ai
in equation (38) (see Table 1). In the first test, piecewise constant gravitational forces are considered (a2 = 0).
For this test, the GCMPFA method is expected to be exact. In the second test, there is no jump discontinuity,
and gravitational forces are represented as a smooth field (a1 = 0). Tests 3 and 4 have gravitational forces
given by linear combination of H(x, y) and P(x, y) with different weighting coefficients. Finally, we make
a comparison between our GCMPFA method given by equation (37) and the standard method given by
equation (23).
4.2.2. Convergence Results
In the reported results, we consider errors using the following L2 metrics

𝜀p =

√∑
i
Δi(pi − pi,exact)2

√∑
iΔip2

i,exact

, (42)

𝜀q =
√∑

i
𝜕2

k,i(qi − qi,exact)2. (43)

For the convergence study, all simulations are run on a personal Desktop using Porepy (Keilegavlen et al.,
2019), an open-source software framework for flow and transport in deformable fractured porous media

Table 1
Values of Weighting Coefficients Used in the Computations

Test a1 a2

1 1 0
2 0 1
3 1 1
4 1 100
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Table 2
Error 𝜀p on the Finest Grid (256 × 256) and Its Asymptotic Convergence Rate Op, for All Tests and for Different Methods

Quadrilaterals Triangles r = 0.7
GCMPFA Standard GCMPFA Standard GCMPFA Standard

Test 𝜀p Op 𝜀p Op 𝜀p Op 𝜀p Op 𝜀p Op 𝜀p Op

1 1e−14 / 1e−5 1.6 2e−14 / 2e−5 1.4 3e−14 / 2e−6 1.9
2 7e−7 2.0 7e−7 1.9 5e−7 2.0 5e−7 2.0 9e−8 2.0 1e−7 2.0
3 2e−7 2.0 1e−5 1.6 1e−7 2.0 2e−5 1.4 8e−8 2.0 2e−6 2.0
4 2e−6 2.0 2e−6 2.1 1e−6 2.0 2e−6 1.9 2e−6 2.0 2e−6 2.0

developed within the Porous Media Group at the Department of Mathematics, University of Bergen. The full
study contains 4×3×7×2 = 168 computations, the results of which are summarized in Tables 2 and 3. Table 2
shows the results for the error 𝜀p and its asymptotic convergence rate Op, while Table 3 shows the results for
the error 𝜀q and its asymptotic convergence rate Oq. As expected, when gravitational forces are piecewise
constant (Test 1), the GCMPFA method is exact to working precision for both pressure and fluxes, while a
standard treatment of the gravity term leads to a discretization error. We remark that the two approaches
coincide if the grid is K-orthogonal. It is also noted that for this test, the convergence rate for pressure of
the standard method for the h-perturbed grids is generally worse than the second order usually obtained
using traditional MPFA methods without gravity. The standard method recovers second-order convergence
for Test 2. In this case, the two methods behave similarly. The superiority of the GCMPFA method over the
standard method is clearly highlighted when the gravity field is a smooth discontinuous function (Tests 3 and
4). In this case, the GCMPFA method always retains second-order convergence for both pressure and fluxes,
independently of the magnitude of the weighting coefficients ai. Conversely, the standard method always
shows a reduction in convergence rate for fluxes Oq to 1.5 and only achieves second-order convergence for
pressure when the magnitude of the smooth part is much greater than that of the discontinuous part, that
is, when a2 ≫ a1 (Test 4). We summarize the results of Tables 2 and 3 heuristically as follows.

• For h-perturbed grids, the GCMPFA method exhibits a numerical convergence following

Op = Oq = a2h2. (44)

• For h-perturbed grids, the standard method exhibits a numerical convergence following

Op = a1h1.5 + a2h2,

Oq = a1h1.5 + 𝜏a2h2,
(45)

where 𝜏 is equal to 1 if a1 = 0 and is equal to 0 otherwise.

We remark that the results presented in equations (44) and (45) are based solely on the tests considered
here, as the framework for proving convergence of MPFA methods without assuming smoothness of the
permeability coefficient typically does not yield convergence rates, since a priori knowledge of the regularity
of the solution cannot be assumed (Agelas & Masson, 2008).

Table 3
Error 𝜀q on the Finest Grid (256 × 256), and Its Asymptotic Convergence Rate Oq, for All Tests and for Different Methods

Quadrilaterals Triangles r = 0.7
GCMPFA Standard GCMPFA Standard GCMPFA Standard

Test 𝜀q Oq 𝜀q Oq 𝜀q Oq 𝜀q Oq 𝜀q Oq 𝜀q Oq

1 5e−15 / 1e−4 1.4 1e−14 / 3e−4 1.6 1e−14 / 4e−4 1.5
2 3e−7 2.0 3e−7 2.0 1e−7 2.0 3e−7 2.0 4e−9 3.0 6e−8 2.5
3 3e−7 2.0 1e−4 1.4 1e−7 2.0 3e−4 1.6 4e−9 3.0 4e−4 1.5
4 3e−5 2.0 1e−4 1.5 1e−5 2.0 3e−4 1.6 4e−7 3.0 4e−4 1.5
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Figure 7. Time evolution of cell saturations of the heaviest phase and total fluxes at cell faces obtained with the
GCMPFA method for test 5.2 with N = 8.

5. Gravitationally Consistent Discretization of Two-Phase Flow
5.1. Numerical Method
A consistent discretization of the gravity term for two-phase flow is done by extending the flux formulation
given by equation (31) to the total flux in the following manner:

𝑓Σ,k ≈
∑

i
(𝜔Σ,k,ipi) +

∑
l
(𝜈k,𝑗,l[[nl · KGΣ]]l) + |𝜕k|nk · K𝑗GΣ,𝑗 . (46)

In terms of cell-center sums only, equation (46) is written

𝑓Σ,k =
∑

i
(𝜔Σ,k,ipi + ηk,i · gi), (47)

which is the two-phase counterpart of equation (37). The remaining part of the algorithm works as illustrated
in section 3.3.1.

5.2. Numerical Example
We consider the same example of section 3.3.2, and we test whether the new GCMPFA discretization given
by equation (47) is capable of eliminating the spurious flux field arising when using the standard upwind
method given by equation (25). Figure 7 shows the time evolution of the cell saturations of the heaviest phase
obtained using the GCMPFA method. Comparing Figure 7 to the same figure obtained using the stadard
upwind method (see Figure 3), two things can be noted. First, the spurious flux field vanishes once the two
fluids approach their equlibrium configuration, that is, for t > 1 × 105 s (subfigure (e) onward). Second,
countercurrent flow is more uniformly distributed, that is, no oscillating saturations are observed at the
near-interface region (compare subfigures (d)–(g)). Figure 8 shows the errors in saturation and pressure and
the maximum total flux as a function of time for the two methods for N = 64. As the figure clearly shows,
as opposite to the standard method, the GCMPFA method is capable of eliminating the spurious flux field
(see Figure 8c), and thus, the pressure converges to conditions of vertical equilibrium (see Figure 8b). The
saturation is not substantially affected by the different solution methods for the pressure equation; however,
it shows faster convergence with the GCMPFA method (see Figure 8a).
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Figure 8. Error in saturation (a), error in pressure (b), and maximum total flux (c) as a function of time for the two
methods for test 5.2 with N = 64.
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6. Conclusions
We presented a novel consistent discretization of flow for inhomogeneous gravitational fields, valid for
both single- and two-phase flows. The discretization is based on the idea that the gravity term is treated
as part of the discrete flux operator and not as a right-hand side. This is achieved by introducing an addi-
tional set of right-hand side to the local linear system solved in the MPFA construction, thus obtaining an
expression of the fluxes in terms of jumps in cell-center gravities. We provided numerical examples show-
ing the convergence of the method. For single-phase flow, the examples indicate that for rough grids we
have a general second-order convergence of the scheme in terms of both pressure and fluxes. This is in con-
trast to the standard discretization approach for the gravity term using the harmonic average of the cell
permeability tensors. For this latter discretization, second-order convergence is reduced when the gravity
undergoes stepwise variations from cell to cell. Finally, we provided numerical evidence that, in contrast
to the standard upwind strategy used in the industry, the GCMPFA is capable of equilibrating a system of
two incompressible fluids in absence of any external forces. This is particularly useful in reservoir simu-
lations applications when vertical equilibrium conditions are sought as initial conditions. We conclude by
remarking that, although the numerical examples presented here are two-dimensional, our method is gen-
eral to multidimensional problems. Besides, extension to three-phase models is straightforward. Extensions
to other variants of MPFA methods (such as the L-method) or to slightly compressible flow are also possible,
but they are not addressed here.

References

Aavatsmark, I. (2002). An introduction to multipoint flux approximations for quadrilateral grids. Computational Geosciences, 6(3-4),
405–432.

Aavatsmark, I., Barkve, T., Bøe, Ø., & Mannseth, T. (1994). Discretization on non-orthogonal, curvilinear grids for multi-phase flow. In
Ecmor iv-4th european conference on the mathematics of oil recovery.

Aavatsmark, Ivar, Barkve, T., Bøe, Ø., & Mannseth, T. (1996). Discretization on non-orthogonal, quadrilateral grids for inhomogeneous,
anisotropic media. Journal of computational physics, 127(1), 2–14.

Aavatsmark, I., Barkve, T., Bøe, O, & Mannseth, T. (1998a). Discretization on unstructured grids for inhomogeneous, anisotropic media.
part i: Derivation of the methods. SIAM Journal on Scientific Computing, 19(5), 1700–1716.

Aavatsmark, I., Barkve, T., Bøe, O, & Mannseth, T. (1998b). Discretization on unstructured grids for inhomogeneous, anisotropic media.
part II: Discussion and numerical results. SIAM Journal on Scientific Computing, 19(5), 1717–1736.

Aavatsmark, I., Eigestad, G. T., Klausen, R. A., Wheeler, M. F., & Yotov, I. (2007). Convergence of a symmetric MPFA method on
quadrilateral grids. Computational Geosciences, 11(4), 333–345.

Aavatsmark, I., Eigestad, G. T., Mallison, B. T., & Nordbotten, J. M. (2008). A compact multipoint flux approximation method with improved
robustness. Numerical Methods for Partial Differential Equations: An International Journal, 24(5), 1329–1360.

Agelas, L., & Masson, R. (2008). Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on
general meshes. Comptes rendus de l'Académie des Sciences, 346, 1007–1012.

Arbogast, T., Pencheva, G., Wheeler, M. F., & Yotov, I. (2007). A multiscale mortar mixed finite element method. Multiscale Modeling &
Simulation, 6(1), 319–346.

Arrarás, A., & Portero, L. (2019). Multipoint flux mixed finite element methods for slightly compressible flow in porous media. Computers
& Mathematics with Applications, 77(6), 1437–1452.

Bause, M., Hoffmann, J., & Knabner, P. (2010). First-order convergence of multi-point flux approximation on triangular grids and
comparison with mixed finite element methods. Numerische Mathematik, 116(1), 1–29.

Brezzi, F., Douglas, J., & Marini, L. D. (1985). Two families of mixed finite elements for second order elliptic problems. Numerische
Mathematik, 47(2), 217–235.

Chen, Z., Huan, G., & Ma, Y. (2006). Computational methods for multiphase flows in porous media (Vol. 2). SIAM.
Edwards, M. G. (2000). M-matrix flux splitting for general full tensor discretization operators on structured and unstructured grids. Journal

of Computational Physics, 160(1), 1–28.
Edwards, M. G. (2002). Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids. Computational

Geosciences, 6(3-4), 433–452.
Edwards, M. G., & Rogers, C. F. (1994). A flux continuous scheme for the full tensor pressure equation. In Ecmor iv-4th european conference

on the mathematics of oil recovery.
Edwards, M. G., & Rogers, C. F. (1998). Finite volume discretization with imposed flux continuity for the general tensor pressure equation.

Computational geosciences, 2(4), 259–290.
Eigestad, G. T., & Klausen, R. A. (2005). On the convergence of the multi-point flux approximation O-method: Numerical experiments for

discontinuous permeability. Numerical Methods for Partial Differential Equations: An International Journal, 21(6), 1079–1098.
Enchéry, G, Masson, R., Wolf, S., & Eymard, R. (2002). Mathematical and numerical study of an industrial scheme for two-phase flows in

porous media under gravity. Computational Methods in Applied Mathematics, 2(4), 325–353.
Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., & Berre, I. (2019). Porepy: An open-source software for

simulation of multiphysics processes in fractured porous media. arXiv preprint arXiv:1908.09869.
Kim, M.-Y., Park, E.-J., Thomas, S. G., & Wheeler, M. F. (2007). A multiscale mortar mixed finite element method for slightly compressible

flows in porous media. Journal of the Korean Mathematical Society, 44(5), 1103–1119.
Klausen, R. A., & Winther, R. (2006a). Convergence of multipoint flux approximations on quadrilateral grids. Numerical Methods for Partial

Differential Equations: An International Journal, 22(6), 1438–1454.

Acknowledgments
This work forms part of Norwegian
Research Council Project 250223. Data
are available online (https://doi.org/
10.5281/zenodo.3413545.).

STARNONI ET AL. 10,117

https://doi.org/10.5281/zenodo.3413545.
https://doi.org/10.5281/zenodo.3413545.


Water Resources Research 10.1029/2019WR025384

Klausen, R. A., & Winther, R. (2006b). Robust convergence of multi point flux approximation on rough grids. Numerische Mathematik,
104(3), 317–337.

Moortgat, J., Sun, S., & Firoozabadi, A. (2011). Compositional modeling of three-phase flow with gravity using higher-order finite element
methods. Water Resources Research, 47(5).

Nordbotten, J. M., Aavatsmark, I., & Eigestad, G. T. (2007). Monotonicity of control volume methods. Numerische Mathematik, 106(2),
255–288.

Nordbotten, J. M., & Celia, M. A. (2011). Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation. John Wiley & Sons.
Wheeler, M. F., Xue, G., & Yotov, I. (2012). Accurate cell-centered discretizations for modeling multiphase flow in porous media on general

hexahedral and simplicial grids. SPE Journal, 17(03), 779–793.
Wheeler, M. F, & Yotov, I. (2006). A multipoint flux mixed finite element method. SIAM Journal on Numerical Analysis, 44(5), 2082–2106.

STARNONI ET AL. 10,118


	Abstract


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


