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Abstract The Lifelog Search Challenge (LSC) is an international content retrieval competition that evaluates search for

personal lifelog data. At the LSC, content-based search is performed over a multi-modal dataset, continuously recorded by

a lifelogger over 27 days, consisting of multimedia content, biometric data, human activity data, and information activities

data. In this work, we report on the first LSC that took place in Yokohama, Japan in 2018 as a special workshop at ACM

International Conference on Multimedia Retrieval 2018 (ICMR 2018). We describe the general idea of this challenge, sum-

marise the participating search systems as well as the evaluation procedure, and analyse the search performance of the teams

in various aspects. We try to identify reasons why some systems performed better than others and provide an outlook as well

as open issues for upcoming iterations of the challenge.
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1. Introduction

Technological progress over the last decade and the

ready availability of low-cost sensors means that indi-

viduals can now capture detailed traces of their life

experience, which are commonly referred to as lifel-

ogs. Initially, driven by a desire for self-knowledge

to enhance personal health and wellness1), a range of

novel life-experience sensors, such as wearable cameras,

or audio recording devices, can now passively generate

continuous archives of multimodal life experience data

in a process called lifelogging. In this work, we as-

sume a definition of lifelogging as introduced by Dodge
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and Kitchen2) which refers to the gathering of ‘a uni-

fied digital record of the totality of an individual’s ex-

periences, captured multimodally through digital sen-

sors and stored permanently as a personal multimedia

archive’. Such sensors can include wearable camera or

audio sensors to capture everyday activities from the

point-of-view of the wearer, biometric sensors for phys-

ical markers of the body, activity sensors for human

movement, contextual sensors (e.g. GPS) for context

logging, informational sensors (e.g. software) to cap-

ture information accesses, and potentially many others.

These multimodal datasets pose new challenges for our

existing approaches to multimedia information organi-

sation and retrieval3).

It is our belief that the current generation of multi-

modal information retrieval systems are not designed to

operate effectively with such lifelog archives, which are

deeply multimodal, continuous and potentially error-

laden3). In the spirit of Memex4), it is our conjecture

that a lifelog, if it is to be useful to the individual,

must be ‘continuously extended, it must be stored, and

above all it must be consulted ’. Such lifelog consulta-

tion is likely to require both ad-hoc and interactive re-

trieval mechanisms to support a wide variety of lifelog

use-cases, as outlined in both5) and 3). While we note

significant efforts being made through various vehicles,
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such as NTCIR6) and ImageCLEF7), to support off-line

ad-hoc search tasks, until the Lifelog Search Challenge

(LSC∗) in 2018, there was no dedicated benchmark-

ing effort for interactive lifelog search. We know from

previous efforts for conventional text and multimedia

retrieval that such open collaborative benchmarking

efforts contribute significantly to advances in domain

knowledge8).

In this work, we highlight advances in the state-

of-the-art for interactive lifelog retrieval by collating

and reviewing the six interactive retrieval systems de-

veloped for the first collaborative benchmarking exer-

cise for lifelog information retrieval (LSC 2018), which

took place at the ACM ICMR 2018 conference in Yoko-

hama, Japan in June 2018. The main contribution of

this paper is therefore, an comparative review of the

performance of six different interactive lifelog retrieval

systems on the only dataset ever designed for interac-

tive lifelog retrieval9) and introducing a novel interac-

tive benchmarking experiment and comparative scoring

model.

2. Related Research Activities

The field of information retrieval has a long history

of benchmarking exercises in which numerous systems

and techniques to solve specific retrieval challenges are

compared against each other by using the same test col-

lections openly and cooperatively. Typically this works

by participants developing systems, evaluating them

over test collections and then (after-the-fact) coming to-

gether for an open comparison of system performance.

This is best exemplified by the test collection methodol-

ogy employed by large-scale international efforts, such

as TREC10), CLEF11), NTCIR12) and in the multime-

dia field, efforts such as ImageCLEF13) or MediaEval14).

A summary of these activities and their challenges can

been found at15).

2. 1 Interactive Benchmarking Exercises

However, most of these efforts do not focus on bench-

marking interactive retrieval systems. One related ef-

fort that does, however, is the the Video Browser Show-

down (VBS16)), which is an annual international video

search competition with the goal to evaluate the state-

of-the-art performance of interactive video retrieval sys-

tems on a large shared dataset of video data. It has been

held as a special session at the International Conference

∗ LSC2018 - http://lsc.dcu.ie) - Last visited March 2019.

on Multimedia Modeling (MMM), annually since 2012.

In this competition several teams work in front of a

shared screen and try to solve a given set of retrieval

tasks as fast as possible. The tasks are issued and scored

by the VBS server, which evaluates the search time and

correctness of each submission and computes a score for

the team. The whole competition consists of expert and

novice sessions, where for the latter, volunteers from the

conference audience work with the tools of the experts.

The final score is computed as an average over all ses-

sions.

While lifelog retrieval is different from video retrieval,

which is the focus of the VBS, both topics have a lot

of similarities. Both lifelog archives, and digital video

archives are forms of multimodal data archive with tem-

porally organised large datasets (more details can be

found in17)). Whereas video archives typically con-

tain curated and non-errorsome data in two modali-

ties, lifelog datasets are genuinely multimodal by na-

ture, with the strong potential for errors, missing or

misaligned data. Consequently, the LSC Challenge,

discussed in this paper, is modeled on the successful

VBS, though with different aims, dataset and informa-

tion needs.

2. 2 Interactive Lifelog Retrieval Systems

While there are numerous data organisation and re-

trieval systems designed for lifelog data, in this dis-

cussion we focus on interactive systems (i.e. more

than query/submit pairs) for multimodal lifelog data

archives. The seminal MyLifeBits18) project at Mi-

crosoft produced, what is generally regarded as the first

interactive lifelog retrieval system, which was based on

a database indexing and retrieval metaphor. Lee et

al.19) went beyond the database metaphor by develop-

ing an interactive event-organised lifelog browsing in-

terface for visual lifelog data that segmented days into

events, based on analysis of visual and sensor data,

and linked events together in a single diary-style inter-

face. More recently, the LEMoRe20) system, an inter-

active lifelog retrieval engine, developed in the context

of the Lifelog Semantic Access Task (LSAT) of the the

NTCIR-12 challenge, integrated classical image descrip-

tors with high-level semantic concepts and was powered

by a graphical user interface that uses natural language

processing to process a user’s query.

While all of these are good examples of interactive

lifelog retrieval systems, until LSC 2018, it was not

possible to draw any performance comparisons between
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them. Each of them operated on different (or propri-

etary) datasets. The LEMoRe system was the only one

to index a reusable and publicly available test collec-

tion, though no other interactive retrieval engine was

available for comparison at that time. Hence, the im-

portance of the LSC 2018, the first opportunity to

benchmark approaches to interactive lifelog retrieval,

which attracted seven participating groups, although

only six actually competed the evaluation, which are

described in this paper.

3. LSC 2018 - The Search Challenge

As stated, the LSC 2018 took place during ACM

ICMR 2018, in Yokohama, Japan. The LSC was a pub-

lic competition during which all attendees at the con-

ference were welcome to attend the event and observe

the competition. LSC 2018 employed the LSC dataset,

which we will now briefly introduce.

3. 1 LSC Dataset

The LSC dataset was a 27-day multimodal lifelog

dataset gathered by one individual who wore multi-

ple sensors and utilised smartphone and computer soft-

ware to capture a continuous 24/7 lifelog. Details of

the dataset and a description of the methodology em-

ployed in the construction of the dataset is described

elsewhere9). The lifelog data was temporally aligned

to UTC time (Coordinated Universal Time) and in or-

der to maintain privacy of the lifelogger and bystanders

in the data, all visual content was filtered firstly by

the lifelogger themselves and then by a trusted expert,

to remove any potentially embarrassing or problematic

data. This data was then enhanced by the addition of

various forms of metadata before all user identifiable

content (e.g. faces, name badges, addresses) was re-

moved and the collection made available for download.

In summary, the dataset consists of:

• Multimedia Content. Wearable camera images

(1024 x 768 resolution) were gathered at a frequency of

about two images per minute (from breakfast to sleep).

Accompanying the wearable camera images were a set

of concept annotations generated by the Microsoft cog-

nitive services (computer vision API)21). Additionally, a

timestamped record of music listening activities sourced

from Last.FM∗ was also included.

• Biometric Data. Human biometrics, such as heart

rate, galvanic skin response, calorie burn and steps,

∗ Last.FM http://last.fm - Last Visited March 2019

on a per-minute basis were included in addition to

daily blood pressure and blood glucose levels (manually

recorded every morning before breakfast) and weekly

cholesterol and uric acid levels.

• Human Activity Data. Physical activities on a per-

minute basis (e.g. walking, running, standing), a loca-

tion log of locations visited, along with a time-stamped

diet-log of all food consumed drinks taken.

• Information Activities Data. Using the Loggerman

app22), the information creation and consumption ac-

tivities on a per minute basis, which were organised

into blacklist-filtered and alphabetically sorted docu-

ment vectors representing every minute.

This dataset was represented as a set of JPG images and

an XML file with metadata entries for every minute.

The data is available for download (after signing-up for

access) from the LSC website.

3. 2 Topics & Relevance Judgements

In over to facilitate interactive retrieval and compet-

itive benchmarking in a live setting, a novel set of tem-

porally enhanced queries were generated by the lifelog-

ger who gathered the dataset. Each topic was created

by the lifelogger selecting a memorable and interesting

event that had occurred during the time period covered

by the test collection. In total there were six devel-

opment topics, six test topics for experts (system de-

velopers), and twelve test topics for novice users, who

were not knowledgeable about the collection or how the

systems worked. Only the development topics were re-

leased before the competition.

These queries were textual (e.g. ‘find when I was

in a Norwegian furniture store’), but they were con-

structed to provide additional contextual information

(i.e., get easier) every thirty seconds (e.g. ‘I was look-

ing at chairs’, ‘It was a Monday afternoon’). The topics

were temporally extended through six iterations during

the live search challenge, with each iteration lasting for

30 seconds and providing increasing levels of contex-

tual data to assist the searcher. With six iterations in

total, this resulted in total time allocation of three min-

utes per topic. Examples of the topics are shown in the

Task Presentation section below.

Relevance judgements were generated manually by

the lifelogger. There could be one or more relevant

items in the collection, where relevant items could span

multiple separate events or happenings. In this case, if

a user of an interactive system found any one of the rel-

evant items from any event, then the search is deemed
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Fig. 1 LSC2018 Competition showing the teams and the live scoreboard

to be successful. For the LSC collection, an item was

assumed to be an image from the wearable camera.

3. 3 Scoring in the Interactive Search Chal-

lenge

During the search challenge, participating teams were

asked to submit a relevant item to a host server when a

potentially relevant item from the collection was found

by the participant. The host server maintained a count-

down clock and actively evaluated submissions against

the groundtruth. Throughout the competition, an over-

all score was maintained for each team, which was the

summation of the scores of the topics that had been

processed up until that point. For each topic, a score

was given based on the time taken to find the relevant

content and the number of incorrect items previously

submitted by that team to the host server during that

topic. Full details of the scoring equation are given in

the section ‘Evaluation of System Performance’ below.

4. Participating Teams

In 2018, six participating teams took part in the

live search challenge. These teams had all indexed the

dataset prior to attending the workshop and then dur-

ing the interactive search challenge, both expert and

novice users took part in evaluating the performance of

the six systems. For the challenge, each participant was

given a desk with a clear view of a large screen which

showed the topics, the time remaining on each topic,

as well as the current and overall scores of each team.

The physical configuration of the challenge can be seen

in Figure 1.

We explore the results in more detail in a later sec-

tion, but firstly we highlight the six approaches taken

by the participating teams.

Fig. 2 liveXplore Interactive Interface from AAU

4. 1 AAU: liveXplore at the Lifelog Search

Challenge 2018

The successful employment of the web technologies-

based diveXplore system23) by Alpen-Adria-Universität

Klagenfurt (AAU) at past iterations of the annual

Video Browser Showdown led to the development of

liveXplore24), a system modification serving as a lifel-

ogging data browser by focusing on visual exploration

and retrieval as well as metadata filtering. Since the ap-

plication is developed for processing video scenes, LSC

image sequences were converted to video using a con-

stant frame rate. Pre-calculated semantic shot segmen-

tation enabled clustering of similar images to coherent

scenes and the creation of the main interface, which

presented the user with an adjustable multi-level fea-

ture map grouping together similar shots according to

machine learning descriptors or handcrafted features.

Additionally to providing shot-specific similarity search

based on these features, liveXplore specifically offered
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Fig. 3 The LIFER Retrieval Interface from DCU

the possibility of exploring individual lifelog day sum-

maries as chronologically ordered galleries as well as

videos in an overlay view enriched with metadata infor-

mation. Finally, in order to search the data according to

metadata information the system featured a filter view

that allowed users to mix and match temporal, location-

or activity-based and machine learning concept oriented

filtering. The liveXplore interface is shown in Figure 2.

While filtering options such as the selection of day-

time, weekday, activity, named location and provided

machine learning concepts proved to be very useful for

finding correct scenes, others were identified as less use-

ful: heart rate, skin temperature as well as exact geolo-

cation. This, of course, can be attributed to the current

rather small dataset magnitude and variety, thus, po-

tentially making these options relevant for future LSC

iterations, likely to exhibit more data from several dif-

ferent sources. Future liveXplore versions will comprise

further promising filtering options, specifically focusing

on non-metadata related exploration.

4. 2 DCU: LIFER, An Interactive Lifelog Re-

trieval System

Dublin City University (DCU) took part with a

first generation interactive lifelog search engine called

LIFER25), a system that allows a user to retrieve the

moments from the personal life archives in a fast and ef-

ficient manner. The LIFER system was designed to as-

sist a user in examining their life experience to gain in-

sights into their activities and lifestyle. LIFER was de-

veloped to index only the locations, concepts, time, and

activities from the provided dataset, which were the fea-

tures that the developers felt would provide most ben-

efits in an interactive setting. This data was converted

Fig. 4 The UPC-DCU Interactive Retrieval Interface

into feature vectors over every minute. These feature

vectors were hierarchically grouped into event nodes.

The retrieval is then performed by collected moments

(in this task, images) that matched with the queried

criteria and presenting them on screen in a ranked list

with associated metadata, as shown in Figure 3. Select-

ing any image allows it to be submitted to the server

for judgement.

Queries were submitted as sets of facets relating to

date / time, biometrics, activities, locations, visual con-

cepts and music consumed. These facets were merged

to generate feature vectors for similarity ranking.

4. 3 UPC-DCU: Interactive Lifelog Image

Browser

The Interactive Lifelog Browser developed by Univer-

sitat Politecnica de Catalunya (UPC) in collaboration

with Dublin City University (DCU), was a novel re-

trieval engine based on three core considerations: (1)

the development of a multi-faceted query interface, (2)

the inclusion of a trusted retrieval engine, and (3) the

novel presentation of a ranked list of results26).

Borrowing from the standard WWW-interface for

faceted search systems (e.g. hotel booking or fight

booking), the interface was designed with two sections,

as shown in Figure 4. On the left side the query panel

is displayed which contains the faceted and free-text

query elements. On the right side is the result display

panel. The faceted search components included Day-of-

the-Week selector, Calendar selector, moment-of-the-

day selector (time of day), Place selector and Heart-

rate.

The ranking engine indexed every minute as the re-

trievable unit using the commonly used TF-IDF rank-

ing methodology. The free text search implements stan-

dard enhancements, such as stopword removal and term

stemming for the English language. This ranked list

from the free-text search is filtered by the other data
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Fig. 5 UU-DCU Virtual Reality Interface showing the query and browsing mechanisms

facets, such as time of day, day of week, or location.

The result is a ranked list of filtered moments for pre-

sentation to the user. In order to provide the user with

some context of a ranked moment, the previous two

images and the following two images contribute (on a

sliding scale) to the overall score of the main image. Se-

lecting an image allows it to be submitted to the server

for judgement.

4. 4 UU-DCU: Virtual Reality Lifelog Ex-

plorer

The virtual reality lifelog explorer developed for the

LSC in a collaboration between University of Utrecht

(UU) and Dublin City University (DCU) has two com-

ponents, each of which needed to be optimised for a VR

environment27). The querying component was a virtual

interface designed to provide a quick and efficient means

for a user to generate a filter query within the VR sys-

tem. This gesture-based querying interface consisted

of two sub-menus, one for selecting lifelog concepts of

interest and the second for selecting the temporal as-

pect of the query (e.g. hours of the day or days of the

week). Only these two sources of evidence were used in

the VR Explorer. A contact-based approach was em-

ployed, which utilised a direct form of interaction where

the user must physically touch the interface elements

with their controllers, which required a drumstick-like

appendage protruding from the head of each controller

in the VR environment (see Figure 5, left-side). Tactile

feedback was provided through the hand-controllers to

signify hitting the buttons.

After a filter query is submitted to the system, the

querying interface disappeared, and the user was pre-

sented with the highest-ranked filtered images in de-

creasing rank order, in a left-to-right organised result

wall. The ranking was based on a combination of con-

cept relevance and the time of capture (maintaining the

temporal organisation of the data), where concept rele-

vance took precedence over the temporal arrangement.

Any image displayed on the VR ranked list could be

selected for further exploration by pointing the user’s

controller at it and pressing a button (see Figure 5,

right-side). This showed additional metadata about

the image such as the specific capture date and time

and what concepts have been detected. Other filtering

options were also made available along with this meta-

data. For example, the user had the option of viewing

all the images captured before and after the target im-

age within a specific timespan. Upon finding a poten-

tially relevant image, the user could submit it to the

LSC server for validation and scoring.

4. 5 VNU-HCM: Semantic Concepts Fusion

Retrieval

The group from the University of Science and Uni-

versity of Information Technology (Vietnam National

University-Ho Chi Minh city) developed a pioneering

lifelog retrieval system that integrated recent achieve-

ments in computer vision for place and scene attribute

analysis, object detection and localization, and activ-

ity detection using image captioning28)29). This system

can be highlighted according to the three main novel ad-

vancements: (1) Visual Clustering for Images: indepen-

dent images are organised into visual shots, sequences of

similar images, based on visual information, then visu-

ally similar sequences are linked to a scene using visual

retrieval with Bag-of-Word framework, (2) Concept Ex-

traction: the system extracts the location of as well as

the scene attributes of an image and create a textual

caption of the image for indexing, (3) Augmented Data
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Fig. 6 VNU-HCM Interactive Retrieval System

Processing: besides visual information, lifelogging data

also contain useful augmented data, such as biometrics,

blood pressure, blood sugar level, text data of computer

activities, etc. Indices were created for such augmented

data in an indexing process.

The system provided four groups of search features

corresponding to four different groups of query crite-

ria: (1) Temporal criteria: a user can specify the date

and time, time span, or period (morning, afternoon,

etc), (2) Scene criteria: a user can specify a query on

scene categories (hotel, restaurant, lobby, etc) or scene

attributes (open area, camping, sunbathing, etc), (3)

Entity and Action criteria: a user can specify a query

on the existence of entities, or actions/activities, (4)

Extra criteria: a user can define a query on biometrics

data, computer usage information, etc.

The overall interface allowed the user to integrate all

of these core techniques in one comprehensive system,

as shown in Figure 6 with the query panel on the left

and the result panel on the right.

4. 6 SIRET: VIRET - An Interactive Lifelog

Search Engine

After a successful participation at the Video Browser

Showdown 2018 (1st place), the SIRET team from

Charles University, Prague, participated also at the

Lifelog search challenge with an updated version of the

VIRET system30). The objective of the participation

was to inspect the performance of a purely content-

based video retrieval tool for Lifelog data. The tool did

not consider provided lifelog specific modalities (e.g., lo-

cations or heart rate). Since the tool relies on sequences

of extracted video frames, the transition to the visual

Lifelog repository was straightforward. Every day from

the collection was treated as one ‘video’ represented by

the lifelog images, extended by selected images/frames

extracted from provided short videos. For each image,

Fig. 7 The VIRET Lifelog Retrieval Tool from SIRET

automatic annotations were obtained from a retrained

GoogleNet (with an own set of 1,390 ImageNet labels).

In addition, a colour signature for sketch-based search

and deep feature vector from the original GoogleNet

were extracted. Based on the automatically extracted

features, users could provide three types of query in-

put (keywords, colour sketch and example images) that

could be further combined by a late fusion strategy.

More specifically, each modality could be used to define

a subset of top relevant images and the intersection of

all constructed subsets was returned as the result. The

final result list was sorted by selected modalities and

displayed in the presentation panel. The VIRET tool

supported two types of result presentation – classical

grid with images sorted by relevance and a result list

enhanced with nearby temporal context for each top

matching frame. Whereas the grid with more images

is useful for exploration phase of the search with fre-

quent query reformulation actions, the temporal con-

text view helps with inspection of promising (visually

similar) candidates. To inspect a temporal context in

the grid, users can display all images from the corre-

sponding day in the bottom panel. In addition, the

mouse wheel can be used to quickly inspect the tempo-

ral context of each displayed image (the images change

in the grid cell). Even though the tool performed rela-

tively well (the overall third place), it turned out that

the additional Lifelog modalities would be important

for effective filtering. Therefore, we plan to incorporate

the modalities in the future versions of the VIRET tool.

The VIRET interface is shown in Figure 7.

4. 7 Comparison of System Features

Table 1 shows a basic comparison between features

implemented in each system. Some features were ex-

pected to provide obvious utility to developers, such as

the facet filters which were employed in some form by
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Table 1 Summary of the Features used by all six Participating Systems)

Feature AAU DCU UPC-DCU UU-DCU VNUHCM-US VIRET

Facet Filters Y Y Y Y Y Y

Event/Scene Organisation Y Y N N Y Y

Visual Clustering Y N N N Y N

Novel Ranked List Visualisation Y N Y Y N Y

Enhanced Visual Analytics Y N N N Y Y

Integration of Biometric Data Y Y N N Y N

Non-textual/faceted Querying Mechanism Y N N N Y Y

Based on Existing Video Search Tool Y N N N N Y

all systems. Most systems also incorporated some form

of event/scene organisation in the user interface, as well

as producing a novel form of ranked list in response to

a user information need. Interestingly, only half of the

systems actually implemented biometric filters as part

of the query process. Finally, we note that two of the

systems (liveXplore and VIRET - two of the top three

ranked systems) were based on existing video brows-

ing/retrieval systems, which were refined to work with

lifelog data.

5. Evaluation of System Performance

To better understand the evaluation procedure of the

LSC challenge, we describe how tasks are presented and

how novice and expert users differ. The expert users

would typically be the system developers themselves,

while novice users are recruited from the audience of

the conference and are expected not to be familiar with

any internal details of the system. We assume that ex-

perts would be faster than novices who had not seen

the system before the challenge. Integrating novices

into the competition is important because it supports

the goal of the LSC, which is to foster research into

user-friendly lifelog search systems. This goal is also

the reason why at LSC 2018 we tested more tasks with

novice users than with experts.

5. 1 The LSC Server

Similar to the Video Browser Showdown (VBS)31)

the Lifelog Search Challenge uses a dedicated server

software on-site (the LSC Server) to present task de-

scriptions and evaluate submissions on-the-fly. When-

ever a team submitted an answer to the HTTP-based

server, it would immediately respond with an indica-

tion whether the submission was correct or not. Fur-

thermore, it would also display the evaluation results

(correct or wrong; topic scores and overall scores) on

a scoreboard, such that other teams and the audience

will be notified when some team has found/submitted

a segment for verification and be aware of the overall

scores of the teams.

5. 2 Calculating Scores

At LSC 2018 we issued 18 temporal queries Q that

were separated into 6 expert and 12 novice tasks (Q =

{E∪N}). The participants were required to solve these

queries as fast and accurately as possible, as they got

points for each task dependent on the required search

time and the number of wrong submissions.

As shown in Equation 1, for every team t the task

score St
q of a task q is computed based on the maximum

achievable points Aq for that task (we used Aq = 100

for every task), the search time τ tq required by the team

to solve the task, the number of wrong submissions for

the task ωq, and the maximum provided search time Tq

for the task (which varied among experts and novices,

as described below). This scoring is designed such that

the score linearly decreases from the maximum to half

of the points over the allowed search time (and will be

zero in worst case).

Therefore, if a task will count 100 points and a team is

able to find the correct segment in the last second with-

out any wrong submissions, it will still get 50 points.

However, for every wrong submission the basis for this

linear decrease will lower to 90 percent of the current

basis, such that for the same situation but with two

wrong submissions, the team will only get 31 points

(and with five wrong submissions only 9.05 points).

Thus, it is quite important to verify the correctness of

the retrieved segment before submitting it to the LSC

server for scoring.

St
q = max(0, Aq ·

Tq · 0.9ωq − 0.5 · τ tq
Tq

) (1)

The preliminary team score for the expert session St
E

and the novice session St
N is computed as the sum of

all task scores in the session, as given in Equations 2

and 3.

St
E =

E∑

q

Sq (2)
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Fig. 8 Images of Expert Task E01

Fig. 9 Images of Expert Task E05

St
N =

N∑

q

Sq (3)

Finally, the maximum team score per session (ME

and MN ) is determined and used to normalise all pre-

liminary team scores of each session to compute the

final points P t for each team:

P t =
St
E

ME
+

St
N

MN
(4)

This way we end up with an achievable maximum of

200 points as the final result for a team that scored best

in both expert and novice sessions.

5. 3 Task Presentation

Tasks (textual descriptions) are projected onto a

large screen by the LSC Server. Each task is repre-

sented by the temporal query, which is textual in na-

ture and incrementally refined after every 30 seconds.

For example, the first expert task at LSC 2018 started

with “I was in a Norwegian furniture store in a shop-

ping mall...”. After 30 seconds the query description

was extended with “...where I was looking at chairs.”.

After one minute even more details were added (“There

is a large ’SALE’ or ’SALG’ sign in the store.”) and af-

ter 30 more seconds some specific time information was

presented: “It is a Monday afternoon.”. This scheme of

incrementally extending the query is repeated exactly

five times until the full query was available (i.e., the last

extension was provided after two minutes and 30 sec-

onds). This is true for both the expert and the novice

tasks.

5. 4 Expert Tasks at LSC2018

Overall, at LSC2018 six tasks had to be solved by the

experts, who got a time limit of only three minutes (180

seconds). In the following list you can see the final text

Fig. 10 Images of Novice Task N01

Fig. 11 Images of Novice Task N05

of two example expert tasks and the first few images of

the ground truth from the life logger (Figure 8-9):

E01 . “I was in a Norwegian furniture store in a shop-

ping mall where I was looking at chairs. There is a

large’SALE’ or ’SALG’ sign in the store. It is a Mon-

day afternoon. I went to the store by bus and I took a

bus to a restaurant after I finished in the mall.” For

examples, see Figure 8.

E05 “I was waiting for the train in Dublin city after

walking to the station from a sushi restaurant where I

had dinner and beer by candlelight. It was on a Tuesday

night and I ate in a restaurant called Yamamori.” For

examples, see Figure 9.

5. 5 Novice Tasks at LSC2018

For novice users twelve tasks had to be solved, each

with a time limit of five minutes (300 seconds). Please

note that we used the same number of query refine-

ments, i.e., after 02:30 no more extensions to the query

were presented, but the participants had more time to

find the relevant content. In the following list you can

see two example topics from the novice tasks, including

images of the ground truth data (Figure 10-11).

N01 “There was a large picture of a man carrying a

box of tomatoes beside a child on a bicycle. I was having

Saturday morning Coffee in Costa Coffee with a friend,

the first in September. After coffee I drove home and

played with my phone. Coffee began about 8am and fin-

ished about 9:35am.” For examples, see Figure 10.

N05 “I was playing a vintage car-racing game on my

laptop in a hotel after flying to Norway. I played a num-

ber of different types of vintage computer game before

and after the car-racing game. It was in the evening on

a Saturday in a Clarion airport hotel. I took a bus to the

hotel from the airport.” For examples, see Figure 11.
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Fig. 12 Number of correct/wrong submissions per team

and user across all tasks.

5. 6 Number of Correct/Wrong Submissions

In order to analyse the performance of the teams, we

will inspect their submissions first. Figure 12 shows the

number of correct and wrong submissions over all tasks,

separated into expert and novice groupings. As can be

seen, no team could solve every task in the expert ses-

sion, but AAU, SIRET, and UU-DCU solved four out

of six (actually no team could solve the very first task

shown above - E01). Among these three teams SIRET

and UU-DCU had a similar number of wrong submis-

sions (3 vs. 4), while AAU submitted about twice as

many wrong ones (i.e., 8). UPC-DCU and VNU could

only solve one expert task, but VNU submitted a lot of

wrong submissions (i.e., 16), which would have reduced

their scores significantly.

When looking at the novice session, we can see that

AAU and UU-DCU could solve almost all twelve tasks

(11 vs. 10), while DCU, UPC-DCU, and VNU could

only solve a few (4, 2, and 1). It is also apparent that

AAU had significantly less wrong submissions – in re-

lation to the correct submissions – than in the expert

session (only 3/14 vs. 8/12), while for UPC-DCU and

SIRET this relation was significantly higher (15/17 and

10/17 vs. 1/2 and 3/7). We believe that this was caused

by variability in the ability and expertise of the novice

users.

In total over both sessions, AAU solved most tasks

(15 out of 18) and VNU solved least (only 2 out of 18).

However, in order to determine the best team we also

need to look at the search time, which is analysed in

the next section.
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Fig. 13 Distribution of search times for correct submis-

sions over all tasks per team and user type.

5. 7 Search Time

Figure 13 presents a box-plot for the search time (in

seconds) over all tasks for all teams. In general we can

observe that the novices required more time to find the

correct scene and also had a larger variation than ex-

perts, but they were also required to solve twice as many

tasks. However, this general observation is not true for

SIRET, for who we can see a similar search time for

experts and novices (actually, the median search time

of novices is even lower than the one of experts). This

suggests that the SIRET interface is intuitive for both

novices and experts alike. Additionally, Figure 14 shows

the search time of a correct submission per task and

team (over all eighteen tasks). This figure again demon-

strates the higher task solving performance of AAU and

UU-DCU, who could solve almost all tasks. AAU even

solved more than UU-DCU (15 vs. 14), but UU-DCU

was much more efficient in terms of search time – which

is also the reason why they could finally win the com-

petition. DCU and UPC-DCU could only solve a few

tasks and required a relatively long time to find the

relevant content. SIRET is somewhat in-between and

VNU unfortunately could solve only two tasks, but with

a good search time when their system performed well.

5. 8 Total Score/Points Calculation

As discussed above, the winner of the LSC compe-

tition is determined by normalizing the scores of both

sessions to the maximum score of each session. Fig-

ure 15 shows the result of this normalisation. UU-DCU

achieved the best score in the expert session and got

100 points (followed by SIRET and AAU with 90.56
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Fig. 14 Correct submission times per team and task (Expert and Novice).

and 85.84 points). In the novice session the situation

was similar but with a different winner: AAU got 100

points for the best score and was followed by UU-DCU

and SIRET with 89.06 and 67.54 points. Thus, the

overall winner of the LSC2018 competition is UU-DCU

with a total of 189.06 points. There was a significant

gap to the bottom ranked three teams. Later observa-

tion suggested that, although these systems used similar

indexed data, their performance was hampered by other

issues, such as system performance in a competition en-

vironment, or errors in the system implementation.

6. Discussion

With only six participants, and given that this is the

first time to run the Lifelog Search Challenge, it is dif-

ficult to identify clear reasons as to why one system

outperforms all others. However we can make some

observations. The top three performing systems (UU-

DCU, AAU and SIRET) were all able to utilise existing

retrieval systems that had been developed to address

other tasks and challenges, thereby reducing the poten-

tial for technical difficulties. It is no surprise therefore

that all three of these systems performed well with no

technical problems. AAU and SIRET were based on ex-

isting systems that have successfully competed in, and

won at the Video Browser Showdown16) in recent years.

UU-DCU which performed marginally better overall

than AAU was based on an existing lifelog browsing

system developed over a number of years previously.

Examining the results (15) in critical detail, the dif-

ference in the scores between UU-DCU and AAU were

marginal, though it is notable that AAU performed bet-

ter in the novice task, which is likely a more fair reflec-

tion of actual system performance, when the expert user

has been removed from the evaluation.

There is one final point that should be noted, given

the short duration of the dataset (27 days) and the

fact that the dataset was released to participants many

months in advance of the competition, there is always

the potential for an expert user, who is familiar with the

dataset to gain an advantage over other users. However,

it is likely that any potential learning effect would have

been the same overall participants; thus it is not under-

stood if this had any impact on system performance.

In terms of the relative performance of experts and

novices, the differences in performance between both

types of user is clearly illustrated in Figure 16. Ex-

pert users typically found relevant content faster than

novice users across all topics. Novices took significantly

longer than the expert users. However, these observa-

tions need to be considered with a little caution, since

novices solved twice as many tasks than experts.

It is not clear whether the inclusion of biometric

metadata and other activity data sources helps much

in the interactive retrieval process. As shown in Table

1, only three of the systems integrated such data into

their ranking processes, but there is no clear indication
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Fig. 15 Total score of teams by user (normalized).

as to whether this data helped or hindered the process.

Finally, in terms of complexity of system design,

the three systems (DCU, UU-DCU, and UPC-DCU)

all integrated only the provided dataset and metadata

and developed their retrieval systems over this data.

SIRET, AAU, and VNU-HCM, on the other hand, have

applied some enhancements to the dataset based on

their experience with video retrieval. This insight sug-

gests that the techniques shown to be effective in com-

petitions such as the VBS did not transfer readily to the

LSC dataset. It appears that indexing lifelog data will

require the development of multimodal lifelog-specific

toolkits to enhance performance beyond a baseline level

which all three top-performing teams have met in the

first LSC. Future editions of the LSC will shed more

light on such issues and bring the community closer to

a consensus on how best to support an individual to

interactively locate data from massive multimodal lifel-

ogs, which is a topic that the LSC organisers consider

to be an increasingly important research topic as soci-

ety edges closer to an era in which large-scale personal

lifelogs becomes the norm, rather than the exception.

7. Conclusions and Future Plans

In this paper, we presented an overview of the first

Lifelog Search Challenge (LSC 2018), that was organ-

ised at ACM ICMR 2018, in Yokohama, Japan. Six

participating teams took place in the competition, each

of which developed and utilised an interactive lifelog

search engine. In this first edition of the LSC, we note

that there was a clear distinction between the three

top performing teams and those that ranked less highly.

The best performing teams had re-purposed existing in-
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Fig. 16 Distribution of task score for correct submis-

sions over all tasks per team and user.

teractive retrieval systems to operate with multimodal

lifelog data, two of which had applied additional mul-

timedia analytics tools to extract additional metadata.

As to be expected after the first LSC challenge, a good

baseline approach for interactive lifelog retrieval is not

yet clearly defined, but it appears as if a well tested

interactive system, placing significant emphasis on the

visual element of lifelog data is a good starting point.

The second LSC (2019) will take place at ICMR 2019

in Ottawa, Canada (using the same dataset as LSC

2018) and a third is planned for ICMR 2020 in Dublin,

Ireland. The organisers anticipate that clear retrieval

strategies will emerge over the coming years as more

LSC challenges are run.
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