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Abstract

In this thesis we are interested in the problem of identifying point sources

in an advection-diffusion model, given some measurements. By writing the

problem as a minimization problem, we use a non-linear conjugate gradient

method in order to estimate the source location and the corresponding in-

tensity. Several test cases are presented. The primary motivation for this

work is monitoring CO2 storage at deep geological formations, where solid

monitoring tools are imperative for the storage in order to be considered safe.

However, this can also be used in other situations when estimating the source

location of some contamination is of interest.
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Chapter 1

Introduction

Due to the increase in atmospheric carbon dioxide (CO2) concentration, the

earth’s environment has changed. This includes global warming and ocean

acidification ([29]), which have caused some appreciable events, like extreme

weather events ([5]). Preventing such events from worsening and other oc-

curences from happening, such as losses of croral reefs ([23]), reducing CO2

emission is essential.

One promising posibility in order to solve this problem, is Carbon dioxide

Capture and Storage (CCS), which refers to CO2 emission redusing tech-

nologies ([18]). In CCS, CO2 is captured, for example, from large industrial

power plants and stored in deep geological formations. In some countries,

e.g. Japan, such formations are located deep under the seabed ([29]).

There is a risk with CCS of leakages from a storage site ([9]). If a leak

happens, the question is what impact it will have on the marine environment.

One of the main factors here is the deacrease of pH value ([9]). In [9], it is

stated that if the decrease is less than 0.5 pH units, then the impact is

minimal. A larger decrease may also have a minimal impact, but in short

term. In long term, on the other hand, a large decrease in pH has a large

1
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impact. If the decrease is above 1 pH units, then there is a large decrease in

biomass, and this could lead to biomass loss for the macrofauna ([9]). Other

factors, such as salinity and natural seasonal events will also have an impact

on the effect of the leakage ([29, 9]). Therefore monitoring both the reservoir

and its surroundings is important, in order to ensure that the CO2 is safely

stored ([29]). The problem in localizing the source of a leak is an application

of a problem that some authors (e.g. [21]) call a source identification problem.

Source identification problems appares in many branches of science (see

[19] for a list of examples). For example, the authors of [19] studie an it-

erative procedure for the Poisson equation with measurements taken at the

boundary. In [21], the authors propose an iterative method for systems of

advection-diffusion-reaction equations that occur in the atmosphere.

In this thesis we use gradient methods for the source identification prob-

lem. By writing the problem as a PDE-constrained optimization problem,

we minimize an objective function that measures the error between measure-

ments and a model. This could be used to reveal, for example, the origin of

a CO2 leak. In this study we work in R2, but extending the results to R3 is

rather straightforward.

In Chapter 2 we first give a mathematical formulation of the problem

and discuss some necessary mathematical theory. The numerical methods

are discussed in Chapter 3. In Chapter 4 and 5 we present results from

different test cases. Finally, we give some concluding remarks in Chapter 6.



Chapter 2

Mathematical framework

In this chapter, we discuss the mathematical framework to solve the mini-

mization problem. In the first section we give a mathematical formulation of

the problem, while in the two next sections we discuss some mathematical

conditions related to existence of a solution.

2.1 Formulation of the problem

Let Ω ⊂ R2 be a bounded and open domain with boundary ∂Ω and let u be

a concentration of some pollutant, e.g. CO2. The evolution of the concen-

tration is modeled by an advection-diffusion initial-boundary-value problem

(IBVP) ([2, 15]),

∂u

∂t
−D∆u+ w · ∇u = F (x, t), x ∈ Ω, t ≥ 0 (2.1)

u(x, 0) = 0 (2.2)

u|∂Ω = 0, (2.3)

3
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where F is a source function. Here, w = w(x, t) is a divergence free velocity

field, D is a diffusion coefficient, and ∇ and ∆ denote the nabla and Laplace

operators, respectively.

While the initial condition is set to zero and we use homogeneous Dirichlet

boundary condition, note that the IBVP is linear. Hence we could always

add a solution with either a non-zero initial condition or with inhomogeneous

boundary conditions to this problem, and it will not alter the results ([15]).

See [15] for a discussion of initial and boudary conditions for a similar IBVP.

For source identification problems, the source function is on the form

([15, 21])

F =
Ns∑
i=1

aiδ(x− ξi), (2.4)

where ξi is the position of source number i, and ai is the corresponding

source intensity. The total number of sources is denoted Ns. δ(x) is the

2-dimensional Dirac delta-distribution. In [19], however, it is argued that

the source function can be written

F =
Ns∑
i=1

aiΦ(‖x− ξi‖2; εi), (2.5)

where, and for the rest of the thesis, ‖ · ‖2 denotes the Euclidean norm, and

Φ(x; ε) is a cylindrical function, defined as

Φ(x; ε) =

1 0 ≤ ‖x‖2 < ε,

0 ‖x‖2 ≥ ε.

Given a source function, the forward problem is to compute a numerical

solution u. We are interested in the inverse problem of estimating the pa-

rameters in the source function F . That is, find the source positions and

the corresponding intensities such that the distance between measurements,
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denoted u∗m(t), and a numerical solution u is as small as possible. The nu-

merical solution is computed based on the estimated parameters, and the

measurements are taken at position xm ∈ Ω, m = 1, . . . , Nm.

To be more precise, let d be a vector containing all the parameters

{ai, ξi}, i = 1, 2, . . . , Ns. In order to do the estimation, we want to min-

imize the (objective) function

J(u,d) =
1

2

Nm∑
m=1

∫ T

0

(u(xm, t; d)− u∗m(t))2

w2
m

dt, (2.6)

with respect to d. u(x, t; d) is the solution to the advection-diffusion model

(2.1)-(2.3) and wm are given weights.

2.2 Well-posedness

When solving a problem, it is important to know whether the problem has

a solution, if the solution is unique, and if it depends continuously on data.

If a solution satisfies these three conditions, then the problem is well-posed

([2, 28]).

For instance, the IBVP (2.1)-(2.3), with the source function (2.5) is well-

posed in the space L2(Ω) (see Appendix C for a definition of this space).

Indeed, multiply the equation by u and integrate over space (known as the

energy method),∫∫
Ω

uut −Du∆u+ u(w · ∇u) dx =

∫∫
Ω

uFdx,

where dx = dxdy. The first term on the left-hand-side can be written as

∫∫
Ω

uut dx =
1

2

∫∫
Ω

∂(u)2

∂t
dx =

1

2

d

dt
‖u‖2

2,
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where we made use of the fact that the Euclidean norm is induced by the

inner product (u, v) =
∫∫

Ω
uvdx, ‖u‖2

2 = (u, u). For the two next terms we

apply Green’s first identity (see Appendix B) and integration by parts, which

yield ∫∫
Ω

u∆udx =

∫∫
Ω

−∇u · ∇u dx +

∫
∂Ω

u(∇u · n) ds,∫∫
Ω

u(w · ∇u)dx =

∫
∂Ω

uu (w · n) ds−
∫∫

Ω

u(∇ · (uw)) dx.

(n · ∇u is the directional derivative in the outward normal direction and ds

is the element of arc length). After using the identity (B.1), the boundary

condition (2.3), and that the velocity field is divergence free, we obtain∫∫
Ω

u∆udx = −‖∇u‖2
2,

2

∫∫
Ω

u(w · ∇u) dx = 0.

For the integral on the right-hand-side we have∫∫
Ω

uFdx ≤
∫∫

Ω

|uF |dx ≤ ‖u‖2 ‖F‖2 ≤
1

2
‖u‖2

2 +
1

2
‖F‖2

2.

by the Cauchy-Schwarz and Cauchy inequalities ([8]). Thus

1

2

d

dt
‖u‖2

2 = −D‖∇u‖2
2 +

∫∫
Ω

uFdx

≤ 1

2
‖u‖2

2 +
1

2
‖F‖2

2.

By Gronwall’s inequality on differential form ([8]),

‖u(x, T )‖2
2 ≤ eT

∫ T

0

‖F (x, t)‖2
2dt,
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so we have well-posedness, as an IBVP on the form

ut = P (x, t, ∂x)u+ F (x, t), x ∈ Ω, t ≥ 0

u(x, 0) = g(x),

L(t, ∂x)u(·, t)|∂Ω = 0,

where P is a differential operator and L is a operator defining the boundary

conditions, is well-posed if we have the bound

‖u(x, t)‖2
2 ≤ K(t)

(
‖g(x)‖2

2 +

∫ t

0

‖F (x, t)‖2
2dt

)
for a function K independent of g and F ([12, 13]).

As the Dirac delta-distribution is not in L2, the above estimate do not

hold for the source function (2.4). In this situation, existence and uniquness

of a solution could be obtained in the context of source-type solutions ([21]).

See [20] for a definition of a source-type solution. However, to the author’s

knowledge, there are no articles where such a result has been established for

the problem (2.1)-(2.3), with (2.4).

In any case, it is stated in [15] that the IBVP (2.1)-(2.3) with (2.4) does

have a unique solution in the space

L2(0, T ;L2(Ω)) ∩ C(0, T ;H−1(Ω)).

The definitions of the these function spaces is given in Appendix C.

For an inverse problem, there might be no solution, i.e. parameters, and

therefore a mathematical model might not exactly fit the given measurements

([2]). Possible reasons for this are that the inverse problem is an overdeter-

mined system of equations ([27]), or that measurements contain noise ([2]).

Several models, on the other hand, might satisfy the measurements. An
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example could be that the inverse problem is a linear system of equations

with more unknowns than equations ([2]).

Finally, the computations of a solution to an inverse problem can be

unstable ([2, 27]). The instability is related to sensitivity of small changes,

such as rounding error or noise in the measurements, which may lead to huge

errors in the computed solution ([2, 27]).

Tikhonov regularization is one simple tecnique to stabilize the compu-

tations of a solution to an inverse problem ([2]). With this technique, we

assume that there are many solutions that fit the measurements, such that

the residual of the problem is smaller than some ν. Among these solutions,

we select the one with the smallest norm, i.e.

min ‖d‖2 (2.7)

‖J(u,d)− b‖2 < ν

where d is the solution and b is a vector containing the measurements.

The motivation of mimimizing the norm of d, is to find a solution that

both have sufficient information of the problem and a small residual ([2]).

Using the method of Lagrange multipliers (section 2.3), the problem (2.7)

can be rewritten as

min
d

J(u,d) + τ‖d‖2
2,

where τ > 0 is a regularization parameter. The solution of this problem is

a regularized solution, that may however loose fit to the measurements, but

gains solution stability ([2]).
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2.3 Lagrange multipliers and KKT conditions

We want to solve

min
d
J(u,d),

where J is given by (2.6), subject to u being the solution to

∂u

∂t
−D∆u+ w · ∇u = F (x, t), x ∈ Ω, t ≥ 0

u(x, 0) = 0,

u|∂Ω = 0.

This is a constrained optimization problem, and can be solved by the method

of Lagrange multipliers ([1, 2]). The idea of this method is to write the

constrained optimization problem as a function, called the Lagrange function.

Then a solution of the optimization problem can be found by looking for

critical points (points where the gradient vanishes) of this function. The

Lagrange function for the objective function (2.6), subject to the IBVP (2.1)-

(2.3) reads ([24])

L(u,d, λ) =
1

2

Nm∑
m=1

∫ t=T

t=0

∫∫
Ω

(u(x, t; d)− u∗m(t) )2δ(x− xm)

w2
m

dxdt (2.8)

+

∫ t=T

t=0

∫∫
Ω

λ

(
ut −D∆u+ w · ∇u− F

)
dxdt.

Here, λ = λ(x, t) is called a Lagrange multiplier. Note also that we have used

the identity g(x0) =
∫∫

Ω
g(x)δ(x− x0)dx on the objective function (2.6).

However, the method does not guarantee that a solution exists. In order

to know whether a solution, d, exists or not, we need the Karuch-Kuhn-

Tucker (KKT) conditions. These are necessary conditions for existence of

a solution ([3, 25]). The following theorem and two definitions (from [3])
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explain these conditions. Note that the constraints here are functions, not

PDEs. For the case of PDE-constraints, we refer to [10, 16].

Theorem 2.1. Let x∗ be a (local) solution of

min
x

f(x)

subject to hj(x) = 0, j = 1, 2, ...,M1. (2.9)

gi(x) ≤ 0, i = 1, 2, ...,M2

where f , hj and gi are all continuous differentiable functions over Rd. Suppose

that the gradients of the active constraints (i.e. I(x∗) = {i : gi(x∗) = 0}) and

the equality constraints

{∇gi(x∗) : i ∈ I(x∗)} ∪ {∇hj(x∗)}

are linear independent. Then there exist multipliers, called Lagrange multi-

pliers, λj ∈ R and µi ≥ 0 such that

∇f(x∗) +

M1∑
j=1

λj∇hj(x∗) +

M2∑
i=1

µi∇gi(x∗) = 0,

µigi(x∗) = 0, i = 1, 2, . . . , M2.

Definition 2.1 (KKT point). Consider the minimization problem (2.9). A

solution x∗ is called a KKT point if there exist λj ∈ R and µi ≥ 0 such that

∇f(x∗) +

M1∑
j=1

λj∇hj(x∗) +

M2∑
i=1

µi∇gi(x∗) = 0,

µigi(x∗) = 0, i = 1, 2, . . . , M2.
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Definition 2.2 (Regularity). Consider the minimization problem (2.9). A

solution x∗ is called regular if the gradients of the active constraints among the

inequality constraints and of the equality constraints are linear independent.

To illustrate the method of Lagrange multipliers and KKT conditions, we

use an example from [3]. Consider

min
x

x1 + x2

subject to x2
1 + x2

2 = 1

For this example, the gradient of the constraint is ∇(x2
1 +x2

2−1) = 2[x1, x2]T ,

and the set of gradients of active constrains only consists of v = [x1, x2]T .

For this set to be linear dependent both x1 and x2 must be zero, which is not

a solution to the problem. Thus this problem does not have irregular points,

an optimal solution exists and the KKT conditions are necessary.

To find the KKT point, we define the Lagrange function

L(x1, x2, λ) = x1 + x2 + λ(x2
1 + x2

1 − 1),

where λ is the Lagrange multiplier. The KKT conditions are

0 =
∂L

∂x1

= 1 + 2λx1

0 =
∂L

∂x2

= 1 + 2λx2

0 =
∂L

∂λ
= x2

1 + x2
2 − 1

From the first two equations we have x1 = x2 = −1/(2λ). Inserting this into

the third equation gives(
− 1

2λ

)2

+

(
− 1

2λ

)2

= 1,
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which yield λ = ±1/
√

2. Thus we obtain the two KKT points, (1/
√

2, 1/
√

2)

and (−1/
√

2,−1/
√

2). Since 1/
√

2+1/
√

2 =
√

2 and −1/
√

2−1/
√

2 = −
√

2,

it is the latter point that solves the problem. In view of the theorem,

∇f(x∗) + λ∇g(x∗) =

1

1

+
1√
2

− 2√
2

− 2√
2

 =

0

0

 .
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Numerical methods

In this chapter, we discuss the methods used for the numerical computations.

In the first section we look at descent methods, which seek a point where a

function attains its least value. In particular, we look at non-linear conjugate

gradient methods. The second section is about finding suitable step sizes,

and in the last section we find an expression for the derivatives of the function

(2.6) with respect to its parameters.

3.1 Descent methods

We are interested in finding a point x∗ such that an objective function f :

Rd → R is minimized (in this and in the next section we write f as the

objective function, because it is more natural in the context of optimization

(see [25, 22])). To this end, we consider the iteration ([25, 22])

xn+1 = xn + αnpn, n = 0, 1, 2, . . . (3.1)

The idea here is to move from the current point xn to the next point xn+1

by taking a step αn in the direction of pn, such that f(xn+1) < f(xn). This

13
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procedure is repeated until for a sufficiently large n, xn has converged toward

x∗.

The question is to find an appropriate step size and a direction to move

towards. We start by discussing the latter problem. If the (search) direction

pn satisfies

∇f(xn)Tpn < 0 for ∇f(xn) 6= 0, (3.2)

pn = 0 for ∇f(xn) = 0, (3.3)

then it is a descent direction, and (3.1) is a descent method ([25]).

The simplest descent method is the steepest descent method, which corre-

sponds to pn = −∇f(xn). This method always produces a descent direction,

and in the next section we will prove that it is convergent under not so strict

conditions. However analysis done in [22] indicate that this method can

converge slowly.

Some methods that converge faster, are conjugate gradient methods. For

these methods the descent direction is recursively given by ([25])

pn+1 = −∇f(xn+1) + βn+1 pn, (3.4)

where βn+1 is a scalar and p0 = −∇f(x0). Three well-known formulas for

βn+1, due to Fletcher and Reeves (FR), Polak and Ribière (PR) and Dai and

Yuan (DY), are

βFR
n+1 =

‖∇f(xn+1)‖2
2

‖∇f(xn)‖2
2

, (3.5)

βPR
n+1 =

∇f(xn+1)T (∇f(xn+1)−∇f(xn))

‖∇f(xn)‖2
2

, (3.6)

βDY
n+1 =

‖∇f(xn+1)‖2
2

(∇f(xn+1)−∇f(xn))Tpn
, (3.7)
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for n = 0, 1, . . . The fact that these search directions, with the given formulas

for βn+1, are descent directions, depends on the step size, αn. We want to

choose this so that f(xn+1) < f(xn), is not too small and neither too difficult

nor too time consuming to compute. In order to calculate the step size, we

begin by defining the one-dimensional function φ by

φ(α) = f(xn + αpn), (3.8)

where xn and pn are known. Then the step size can be found by minimizing

φ along the line xn + αnpn, and that will solve the problem

Find α = αn which minimizes φ(α) = f(xn + αpn). (3.9)

Methods that solve this problem are referred to as line search methods ([22])

and this is addressed in section 3.2.

3.2 Line search

In the previous section, we saw that the problem of finding the step size in

(3.1) resulted in the one-dimensional minimization problem (3.9). To solve

this problem we can either solve the equation φ′(α) = 0 using root-finding

methods or use derivative-free minimization methods. Regardless of which

method we choose, we will find the exact solution. In this case, we have the

following result from [25]:

Theorem 3.1. If αn in Eq. (3.1) is the exact solution of the problem (3.9),

then

∇f(xn+1)Tpn = 0.

Proof. Let αn be as described. Then φ′(αn) is necessarily equal to 0. But
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we also have, by the chain rule,

φ′(α) =
N∑
i=1

∂

∂xi
f(xn + αpn)pin pin is the i-th entry of pn

= ∇f(xn + αpn)T pn

from which the result follows, after inserting αn and using Eq. (3.1).

This theorem implies that the gradient methods compute a descent di-

rection for the exact solution of (3.9). Indeed, by taking the inner product

between (3.4) and ∇f(xn+1), we obtain

∇f(xn+1)T pn+1 = −‖∇f(xn+1)‖2
2 + βn+1∇f(xn+1)T pn. (3.10)

By the theorem, the second term on the right-hand-side vanishes.

While it is possible to find the exact solution of the problem (3.9), it might

be too computational expensive and even unnecessary to do so. Instead, we

look to find a step size which satisfies the Wolfe conditions ([22]). Such a

step size do not solve (3.9) exactly, but still gives a sufficient decrease, and

is not too time consuming to compute. The standard Wolfe conditions are

f(xn + αn pn) ≤ f(xn) + c1αn∇f(xn)T pn (3.11)

∇f(xn + αn pn)T pn ≥ c2∇f(xn)T pn, (3.12)

where 0 < c1 < c2 < 1. Figure 3.1 illustrates step sizes satisfying (3.11)-

(3.12). The first condition ensures that the function decreases, while the

second condition guarantees that the step size is not too small. Among

the many methods that compute a step size so that it is not too small and

decreases the objective function, is backtracking ([25]). This algorithm starts

with an initial candidate for a step size and decreases it by a scale factor ρ
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(backtrack step) until (3.11) is satisfied. Algorithm 1 presents a pseudocode

of this algorithm.

Figure 3.1: Step sizes satifying the standard Wolfe conditions. The line of sufficient

deacrease is l(α) = f(xn) + c1α∇f(xn) · pn. The picture is taken from [22]

.

Algorithm 1 Backtracking algorithm

Initialize α.

Set ρ and c1.

while f(xn + αn pn) ≥ f(xn) + c1αn∇f(xn)T pn do

α = αρ

end while

Some gradient methods, like the Dai-Yuan method, compute a descent

direction with a step size satisfying the standard Wolfe conditions ([7]). For

others, like Fletcher and Reeves, the condition (3.12) must be replaced by

the stronger condition

|∇f(xn + αn pn)T pn| ≤ c2|∇f(xn)Tpn|, (3.13)
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where now c2 < 1/2, in order to produce a descent direction. The conditions

(3.11)-(3.13) are referred to as the strong Wolfe conditions ([22]). The fol-

lowing result (from [22]) verifies that the Fletcher-Reeves’ method computes

a descent direction.

Lemma 3.1. If the Fletcher-Reeves method is used with a step size αn sat-

isfying the strong Wolfe conditions with 0 < c2 <
1
2
, then pn is a descent

direction which satisfies the two inequalities

− 1

1− c2

≤ ∇f(xn)T pn
‖∇f(xn)‖2

2

≤ 2c2 − 1

1− c2

(3.14)

Proof. First, the function t(x) = (2x−1)/(1−x) is monotonically increasing

on the interval [0, 1/2], with the properties t(0) = −1 and t(1/2) = 0. Hence,

−1 <
2c2 − 1

1− c2

< 0.

Moreover, −1 > −1/(1− c2) since c2 is positive. Thus, the descent condition

∇fTn pn < 0 (we have denoted fn instead of f(xn) for easier notation) follows

immediately once we establish (3.14).

This is done by induction. For n = 0, p0 = −∇f0 and (∇fT0 p0)/‖∇f0‖2
2 =

−1, so both inequalities are satisfied. Assume that (3.14) is satisfied for some

n > 0. Then for n+ 1

∇fTn+1pn+1

‖∇fn+1‖2
2

=
∇fTn+1(−∇fn+1 + βFRn+1pn)

‖∇fn+1‖2
2

= −1 + βFRn+1

∇fTn+1pn
‖∇fn+1‖2

2

= −1 +
∇fTn+1pn
‖∇fn‖2

2

,
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where we have used (3.4) and (3.5). From the second strong Wolfe condition

|∇fTn+1pn| ≤ −c2∇fTn pn,

so

−1 + c2
∇fTn pn
‖∇fn‖2

2

≤
∇fTn+1pn+1

‖∇fn+1‖2
2

≤ −1− c2
∇fTn pn
‖∇fn‖2

2

.

From the induction hypothesis, (∇fTn pn)/‖∇fn‖2
2 > −1/(1 − c2). Inserting

this into the above, we get

−1− c2

1− c2

=
−1

1− c2

≤
∇fTn+1pn+1

‖∇fn+1‖2
2

≤ −1 +
c2

1− c2

=
2c2 − 1

1− c2

which shows that (3.14) hold for n+ 1 as well.

In [11], Gilbert and Nocedal (GN) extended this result to hold for any βn

satisfying |βn| ≤ βFR
n . Moreover, they show that for such a βn one has global

convergence, and suggested the following modification for the Polak-Ribière

method. For n ≥ 1 let

βGN
n =


−βFRn if βPRn < −βFRn ,

βPRn if |βPRn | ≤ βFRn ,

βFRn if βPRn > βFRn .

(3.15)

This choice of βn = βGN
n removes the weaknesses that the Fletcher-Reeves

and Polak-Ribière methods have separately. Conserning the Fletcher-Reeves

method, there is a possibility that the search direction and the gradient

can be almost orthogonal. If we additionally have a subsequent small step

from xn to xn+1, the new search direction is not improved compared to the

previous one. This also motivates the need for restarts, that we will discussed

briefly below. For the Polak-Ribière method, the weakness is that it does not
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always produces a descent direction, even with the strong Wolfe conditions.

For more details, see [11, 22].

In order to prove global convergence of gradient methods, the next result

is the main ingredient.

Theorem 3.2 (Zoutendijk’s theorem, [22]). Consider (3.1), with pn being

a descent direction, and αn being a step size satisfying the standard Wolfe

conditions. Suppose f is bounded below in Rd and is continuous differentiable

in an open set N containing L = {x : f(x) ≤ f(x0)}, where x0 is the initial

guess. Suppose further that ∇f is Lipschitz in N , i.e. there exists a L > 0

such that

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, for all x,y ∈ N .

Then
∞∑
n=0

(cos(θn))2‖∇fn‖2
2 <∞, (3.16)

where θn is the angle between −∇fn and pn.

Proof. From the second standard Wolfe condition, (3.1) and the Lipschitz

continuity, we have the two inequalities

(c2 − 1)∇fTn Pn ≤ (∇fn+1 −∇fn)T pn ≤ αnL‖pn‖2
2,

so
(c2 − 1)∇fTn pn

L‖pn‖2
2

≤ αn.

Inserting this into the first standard Wolfe condition yields

fn+1 ≤ fn − c1
(1− c2)(∇fTn pn)2

L‖pn‖2
2

= fn − c(cos(θn))2‖∇fn‖2
2,
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where the last equality follows from ‖∇fn‖2‖pn‖2 cos(θn) = −∇fTn pn and

defining c = c1(c2 − 1)/L. We continue like this repeatedly for n, n− 1, . . .,

and obtain

f0 − fn+1 ≥ c
n∑
j=0

(cos(θj))
2‖∇fj‖2

2.

By assumption, f is bounded below. Thus f0 − fn+1 is less than a positive

constant, for all n. Hence, letting n→∞ in the above sum gives

∞∑
j=0

(cos(θj))
2‖∇fj‖2

2 <∞

A consequence of this theorem is that for a large n we have, by the n-th

term test ([1]),

(cos(θn))2‖∇fn‖2
2 = 0.

This, in turn, means that either cos(θn) = 0 or ‖∇fn‖2 = 0. For the for-

mer, this implies that ∇fn and pn are orthogonal. For the steepest descent

method, pn and ∇fn are always parallel. Hence it converges towards a point

for which ‖∇fn‖2 = 0. Furthermore we have:

Theorem 3.3 (Convergence of gradient methods with |βn| ≤ βFR
n , [11]).

Consider a gradient method with |βn| ≤ βFR
n and a step size satisfying the

strong Wolfe conditions. Assume f is Lipschitz in N and that L is bounded,

where L and N are from Zoutendijk’s theorem. Then

lim inf
n→∞

‖∇fn‖2 = 0 (3.17)

Proof. Assume the contrary, that is, (3.17) does not hold. Then there exists

a γ > 0 such that

‖∇fn‖2 ≥ γ, (3.18)
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for all large n. Multiply the right inequality of (3.14) by −‖∇fn‖2/‖pn‖2 to

obtain

cos(θn) ≥ 1− 2c2 ‖∇fn‖2

(1− c2) ‖pn‖2

.

Then, by Zoutendijk’s theorem,

∞∑
n=0

‖∇fn‖4
2

‖pn‖2
2

<∞.

By the second strong Wolf condition and (3.14), we have

|∇fTn pn−1| ≤ −c2∇fTn−1pn−1 ≤
c2

1− c2

‖∇fn−1‖2.

Thus, by (3.4) and that |βn| ≤ βFR
n ,

‖pn‖2
2 ≤ ‖∇fn‖2

2 + 2|βn| |∇fTn pn−1|+ (βn)2‖pn−1‖2
2

= ‖∇fn‖2
2 +

2c2

1− c2

|βn| ‖∇fn−1‖2
2 + (βn)2‖pn−1‖2

2

≤
(

1 + c2

1− c2

)
‖∇fn‖2

2 + (βn)2‖pn−1‖2
2.

Denoting c = (1 + c2)/(1 − c2) and applying this relation repeatedly, we

obtain

‖pn‖2
2 ≤ c‖∇fn‖2

2 + (βn)2(c‖∇fn−1‖2
2 + (βn−1)2‖pn−2‖2

2)

= c
(
‖∇fn‖2

2 + (βn)2‖∇fn−1‖2
2

)
+ (βn)2(βn−1)2‖pn−2‖2

2

≤ c

(
‖∇fn‖2

2 + (βn)2
(
‖∇fn−1‖2

2 + (βn−1)2‖∇fn−2‖2
2

))
+ (βn)2(βn−1)2(βn−2)2‖pn−3‖2

2

≤ . . .

≤ c‖∇fn‖4
2

n∑
j=0

1

‖∇fj‖2
2

.
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The last inequality follows from |βn| < βFR
n .

Since f is Lipschitz, we have by the mean value theorem that there is a

M > 0 such that ‖∇f(x)‖2 < M for all x ∈ L. Together with the assumption

that the method has not converged, we thus obtain the bound

‖pn‖2
2 ≤

cM

γ
n,

and hence
∞∑
n=1

1

‖pn‖2
2

≥ γ

cM

∞∑
n=1

1

n
.

However, this implies that

∞∑
n=1

1

n
≤

∞∑
n=1

1

‖pn‖2
2

<∞,

which is not true. Therefore (3.18) does not hold, which means that (3.17)

is verified.

Using the same strategy as in the proof above, one can show that the

Dai-Yuan method also converges towards a point for which

lim inf
n→∞

‖∇fn‖2 = 0,

but the step size is now required to satisfy the standard Wolfe conditions.

For the proof, see [7].

A weakness with these results is that they only guarantee convergence

towards a critical point, but this does not guarantee that the the critical point

actually minimizes the objective function. Moreover, if we have reached a

minimum, there are no indicators that can explain whether this is global or

local.
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The rate of convergence for non-linear conjugate gradient methods is lin-

ear, but by restarting periodically at every k-th step (i.e. setting βk = 0

in (3.4)), the rate of convergence becomes k-step quadratic convergence,

‖xk+n − x∗‖2 = O(‖xn − x∗‖2
2) ([22]). However, in computational prac-

tice, strategies for restarts are based on other considerations than iteration

count ([22]).

3.3 Adjoint method

The last thing to discuss is how to compute of the derivatives of J , with

respect to its parameters. For this we use the adjoint method, introduced in

the 1970s to efficently compute the gradient of functions with respect to its

parameters ([24]).

To derive the adjoint problem, we recall Lagrange function (2.8)

L(u,d, λ) =
1

2

Nm∑
m=1

∫ t=T

t=0

∫∫
Ω

(u(x, t; d)− u∗m(t) )2δ(x− xm)

w2
m

dxdt

+

∫ t=T

t=0

∫∫
Ω

λ

(
ut −D∆u+ w · ∇u− F

)
dxdt.

Using integration by parts we get∫ t=T

t=0

∫∫
Ω

λutdxdt =

∫∫
Ω

(
λu|t=Tt=0 −

∫ t=T

t=0

uλtdt
)
dx,∫ t=T

t=0

∫∫
Ω

λ (w · ∇u) dxdt =

∫ t=T

t=0

∫
∂Ω

uλ (w · n)ds−
∫∫

Ω

u (∇ · (λw))dx dt

= −
∫ t=T

t=0

∫∫
Ω

u (∇ · (λw))dxdt

= −
∫ t=T

t=0

∫∫
Ω

u (w · ∇λ) dxdt,

after using the boundary condition (2.3), the identity (B.1), and that the
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velocity field is divergence free. By Green’s second identity (see Appendix

B), together with the boundary condition (2.3), we have∫∫
Ω

λD∆udx =

∫∫
Ω

uD∆λdx +

∫
∂Ω

Dλ (n · ∇u)ds.

where n · ∇u is the directional derivative in the outward normal direction

and ds is the element of arc length. Then

L =
1

2

Nm∑
m=1

∫ t=T

t=0

∫∫
Ω

(u(x, t)− u∗m(t) )2δ(x− xm)

w2
m

dxdt

−
∫ t=T

t=0

∫∫
Ω

u
(
λt + w · ∇λ+D∆λ

)
dxdt

−
∫ t=T

t=0

∫∫
Ω

λFdxdt

+

∫∫
Ω

λu|t=Tt=0 dx

+

∫
∂Ω

λ (n · ∇u)ds.

By writing (u−u∗m)2 = u2−2uu∗m+(u∗m)2 = u2−2u (u∗m)+(u∗m)2 +u2−u2 =

2u (u− u∗m) + (u∗m)2 − u2, we get

L =
1

2

Nm∑
m=1

∫ t=T

t=0

∫∫
Ω

(
(u∗m(t))2 − (u(x, t))2

)
δ(x− xm)

w2
m

dxdt

+

∫ t=T

t=0

∫∫
Ω

u

(
− λt −w · ∇λ−D∆λ+

Nm∑
m=1

(u− u∗m)δ(x− xm)

w2
m

)
dxdt

−
∫ t=T

t=0

∫∫
Ω

λFdxdt

+

∫∫
Ω

λu|t=Tt=0 dx

+

∫
∂Ω

λ(n · ∇u)ds.
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We choose λ to be the solution to the IBVP

−λt −w · ∇λ−D∆λ+
Nm∑
m=1

(u− u∗m)δ(x− xm)

w2
m

= 0, (3.19)

λ(x, T ) = 0, (3.20)

λ|∂Ω = 0. (3.21)

Thus the Lagrangian simplifies to

L =
1

2

Nm∑
m=1

∫ t=T

t=0

∫∫
Ω

(
(u∗m(t))2 − (u(x, t))2

)
δ(x− xm)

w2
m

dxdt

−
∫ t=T

t=0

∫∫
Ω

λFdxdt (3.22)

=
1

2

Nm∑
m=1

∫ t=T

t=0

∫∫
Ω

(
(u∗m(t))2 − (u(x, t))2

)
δ(x− xm)

w2
m

dxdt

−
∫ t=T

t=0

∫∫
Ω

λ
Ns∑
i=1

aiδ(x− ξi)dxdt (3.23)

=
1

2

Nm∑
m=1

∫ t=T

t=0

(u(xm, t))
2 − (u∗m(t) )2

w2
m

dt

−
∫ t=T

t=0

Ns∑
i=1

aiλ(ξi, t)dt. (3.24)

The IBVP (3.19)-(3.21) is the adjoint problem. Note that this problem

exists for t ∈ [T, 0]. We would like to solve it for [0, T ]. Thus we introduce
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τ = T − t, and get the IBVP

λ̃τ − w̃ · ∇λ̃−D∆λ̃ = −
Nm∑
m=1

(ũ− ũ∗m)δ(x− xm)

w2
m

, (3.25)

λ̃|τ=0 = 0, (3.26)

λ̃|∂Ω = 0, (3.27)

where λ̃(τ) = λ(T − t) etc.

Owing to ∇dL = ∇dJ when the parameters are correct, we find that the

derivatives of the objective function with respect to the parameters are

∂J

∂ai
= −

∫ t=T

t=0

λ̃(ξi, t)dt, i = 1, ..., Ns (3.28)

∂J

∂ξi
= −

∫ t=T

t=0

ai∇λ̃(ξi, t)dt, i = 1, ..., Ns. (3.29)

The computations above are based on the source function (2.4). If we

had used (2.5) instead, then

λF = λ
Ns∑
i=1

aiΦ(‖x− ξi‖2; εi).

Hence the terms in the last sum in (3.23) are replaced by∫∫
Ω

λaiΦ(‖x− ξi‖2; εi)dx ≈ ai

∫∫
‖x−ξi‖2<εi

λ(ξi)dx

= aiλ(ξi)

∫∫
‖x−ξi‖2<εi

dx, (3.30)

for i = 1, 2, . . . , Ns. For the source function (2.5), the intensity is averaged

over the neighbourhood of the source location. That is,

ai = âi

/∫∫
‖x−ξi‖2<εi

dx, (3.31)
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see [26]. Here, âi represents the source intensity and a is the averaged source

intensity. Inserting this into (3.30) yields(
âi

/∫∫
‖x−ξi‖2<εi

dx

)
λ(ξi)

∫∫
‖x−ξi‖2<εi

dx = âiλ(ξi).

It now follows that for the averaged intensity (3.31), it is the numerator, âi,

we seek. Moreover, the derivatives of J with respect to its parameters are

given by (3.28) and (3.29), but with ai replaced by âi.

By the KKT conditions, we must find the sources locations and intensities

such that

0 =
∂L

∂λ
=

∫ t=T

t=0

∫∫
Ω

(
∂u

∂t
−D∆u+ w · ∇u− F

)
dxdt

0 =
∂L

∂u
=

∫ t=T

t=0

∫∫
Ω

(
λ̃τ − w̃ · ∇λ̃−D∆λ̃+

Nm∑
m=1

(ũ− ũ∗m)δ(x− xm)

w2
m

)
dxdt

0 =
∂L

∂ai
= −

∫ t=T

t=0

λ(ξi, t)dt, i = 1, ..., Ns

0 =
∂L

∂ξi
= −

∫ t=T

t=0

ai∇λ(ξi, t)dt, i = 1, ... , Ns

is satisfied.

We have now everything ready for estimating the source locations and

intensities. Algorithm 2 states all the steps.
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Algorithm 2 Gradient method to estimate source location and intensity

Make an initial guess of F

Solve the IBVP (2.1)-(2.3), based on the guess

Solve the adjoint IBVP (3.25)- (3.27)

Initialize p0 = −∇J(x0)

for n = 0, 1, 2, . . . do

Compute αn

xn+1 = xn + αnpn

Solve the IBVP (2.1)-(2.3)

Solve the adjoint IBVP (3.25)- (3.27)

Compute ∇J(xn)

Compute βn+1

pn+1 = −∇J(xn+1) + βn+1pn

end for

In this algorithm, xn contains all the unknown parameters at step n and

∇J(xn) =



−
∫ T

0
λ(ξ1, t)dt

−
∫ T

0
a0∇xλ(ξ1, t)dt

−
∫ T

0
a0∇yλ(ξ1, t)dt

...

−
∫ T

0
λ(ξNm

, t)dt

−
∫ T

0
aNm∇xλ(ξNm

, t)dt

−
∫ T

0
aNm∇yλ(ξNm

, t)dt


.

∇xλ is the first component of the gradient of λ, and similarly, ∇yλ is the

second component.
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Velocity Field in one direction

In this chapter we illustrate algorithm 2 on a few simple cases.

For the first three sections, we consider the simulated concentration plot-

ted in figure 4.1. This could be, for example, a pollutant in water.

Figure 4.1: A snapshot of a concentration at T = 8.

30
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Ω is a 6 × 6 area, discretized with triangles. The largest area of the

triangles is 0.017 [m2]. The true source function is

F = 2δ(x− [−0.5,−1.45]T )

The time interval is [0, 8] [s], with a time step of dt = 0.1. The diffusion

coefficient is set to 10−9 [m2/s] (a value it has in water ([26])). The velocity

field is w = ∇φ, where φ is a velocity potential ([17]), given by the Poisson

problem

∆φ = 0,

φ(bottom) = 0.5, φ(top) = 0, (4.1)

nleft · ∇φ(left) = 0,

nright · ∇φ(right) = 0.

Figure 4.3a displays the velocity field.

We measure at Nm = 30 different locations, marked with the white stars

in figure 4.2a. The coordinates are given in Appendix A. Figure 4.2b depicts

the temporal evolution of the concentration at three different measurement

locations.

The weights (see figure 4.3b) are chosen as wm = std(u∗m) + 3, where

std(u∗m) denotes the standard deviation of u∗m. For backtracking, αn has

been initialized to be 1, with c1 = 10−5 and ρ = 0.5. Additionally with

backtracking, it may happen for some candidate step size, that the next

point xn + αnpn is outside of Ω. In such a case, motivated by the fact that

the scale factor is not required to be the same at every step ([22]), the step

size is scaled by 0.02.
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(a) (b)

Figure 4.2: In (a), the measurement locations are plotted as white stars in Ω. In plot

(b), we see the temporal evolution of the concentration at three different measurement

locations.

To solve the IBVP we use the upwind scheme, with a Crank-Nicolson

scheme in time, in the Python package pyGIMLI ([26]). Simpson’s rule ([27])

is used to evaluate the integrals. The gradient methods we use are GN, DY

(these are listed as recommended methods to use in [22]) and the steepest

descent method (SD).

We restart whenever pTn∇J ≥ 0 (this criterion is taken from [2]), or if

the first Wolfe condition (3.11) has not been satisfied after 15 iterations in

backtracking. We also use Tikhonov regularization, on the form τ‖xn‖2
2,

where the coefficient τ = 0.0005 is the regularization parameter. With such

a regularization, the gradient of J becomes ∇J + 2τxn. Finally, we stop if

we have not converged within 50 iterations or if ‖∇J + 2τxn‖2 is less than

0.005.
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(a) (b)

Figure 4.3: In (a), we have plotted the velocity field, obtained by solving the Poisson

problem (4.1). In (b) we have plotted of the weights used for the computations.

4.1 Fixed position

We begin by identifying the intensity, given that the position is known. This

is actually a linear problem, and can be solved more efficiently by a linear

optimization method rather than by a non-linear method. Nevertheless, this

is a test before we attempt to find both intensity and location of the source.

Using 0 as the initial guess, table 4.1 reports estimated values of the

intensity for GN and DY. Figure 4.4 visualizes the error of the intensity,

defined as |an − atrue|, the objective function and the 2-norm of the gradient

at every iteration on log scale. With 10 as the initial guess, table 4.2 and

figure 4.5 present the same information. For both initial guesses, the values

for SD are almost identical to GN.
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Table 4.1: True value and estimated values of intensity, using GN and DY. The initial

guess is 0.

True GN DY

a 2 1.6679 2.0237

(a)

(b)

(c)

Figure 4.4: Plot of the error |an-atrue| for intensity (plot (a)), of the objective function

(plot (b)) and of the 2-norm of the gradient (plot (c)) on log scale at every iteration. The

position is known. The dotted line in the gradient plot is the stopping tolerance. The

initial guess is 0.
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Table 4.2: True value and estimated values of intensity, using GN and DY. The initial

guess is 10.

True GN DY

a 2 2.2633 2.1864

(a)

(b)

(c)

Figure 4.5: Plot of the error |an-atrue| for intensity (plot (a)), of the objective function

(plot (b)) and of the 2-norm of the gradient (plot (c)) on log scale at every iteration. The

position is known. The dotted line in the gradient plot is the stopping tolerance. The

initial guess is for intensity was 10.
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We can notice the difference between the two methods. With 0 as the

initial guess, DY uses two steps to reach an intensity of 2.02. GN, on the

other hand, has reached after 24 iterations, an intensity with an error approx-

imately at 0.4. Using 10 as the initial guess, GN needs almost 50 iterations

to get the 2-norm of the gradient less than the tolerance, whereas DY only

uses 10 iterations.

The explanation to this is that the gradients are close to each other at

every step. In this situation, GN will always compute a small βGN
n . By

formula (3.4), the new search direction, pn+1, is then essentially the negative

gradient. Since the gradient has a small first entry, we thus have a slow

convergence. For this reason, we do not use GN and SD for the two other

intensity cases (in the case of known position) in this thesis.

DY handles this differently. At the first two approximations, since the

two gradients are close, (∇J1 −∇J0)−1 is large. This, in turn, implies that

p1 also is large. Consequently, we have a large next step. However, by the

formula (3.7), the following step will then be small. This behaviour will

repeat itself, and leads to the ”stair-like” pattern, as illustrated in figure 4.5.

4.2 Fixed intensity

In this section we assume that the intensity is known, making the goal to find

the source position. Figure 4.6 displays the iterations in the domain for all

the three methods. The initial guess is (x, y) = (−0.2,−1.6). The white star

is where the particular method ends up, and the blue star is the true source

position. All three methods converge to the correct triangle. Figure 4.7

shows the corresponding objective function and the 2-norm of the gradient

at each step. Table 4.3 presents the estimated location.
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(a) (b) (c)

Figure 4.6: Iterations in the domain for SD (plot (a)), GN (plot (b)) and DY (plot (c)).

The white star is where the particular method ends up, and the blue star is the correct

source position. The initial guess is (−0.2,−1.6).

(a) (b)

Figure 4.7: Plot of the objective function (plot (a)) and of the 2-norm of the gradient

(plot (b)) on log scale at every iteration. The intensity is known. The dotted line in the

gradient plot is the tolerance. The initial guess is (−0.5,−1.45).
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Table 4.3: True value and estimated values of source location, using SD, GN and DY. The

initial guess is (−0.2,−1.6).

True SD GN DY

(x, y) (-0.5, -1.45) (-0.4489, -1.4825) (-0.5275, -1.4354) (-0.4084, -1.4823)

Starting from (−0.2,−1.2), figure 4.8 shows two situations that will cause

problems when attempting to find the source location. In figure 4.8a, GN

got stuck at (−0.14,−1.29). The same happened for SD. It is not clear why

it happens. Possible reasons could be that the time step should be smaller,

that the triangles should be smaller or that the simulation should have lasted

longer. Another reason could be that the weight is not appropriately chosen,

and ends up being too large or too small. In figure 4.8b, DY ended up at

(−2.49,−0.28) with an almost vanishing gradient. The problem here is that

we obtained a search direction with large entries together with a large step

size.

(a) (b)

Figure 4.8: Two problems finding the source location. In plot (a) GN got stuck, and in

plot (b) DY got pushed far away.
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These problems are unavoidable. Nevertheless, there are some possible

solutions that could partially solve them. Regarding the first problem where

we got stuck, we could resolve this by taking a step in a random direction

and restart. A solution for the second problem could be to choose the initial

step size to be large if the entries in pn are small, and conversely small if the

entries are large. If so, we will not take too large steps. Another solution is

to use a suitable regularization parameter. This could help the gradient not

to vanish at the wrong locations.

4.3 Position and intensity

In this section, we look to find both position and intensity of the source. As

the initial guess, we start at (−0.3,−1.25), with an intensity of 2.3. The

estimated values of source location and intensity are presented in table 4.4.

Figure 4.9 exhibits the iterations in the domain for the three methods, and

figure 4.10 displays the error of intensity, objective function and the 2-norm

of the gradient. The outcome for SD is another example of what we discussed

for DY in the previous section.

Table 4.4: True value and estimated values of intensity and source location, using SD, GN

and DY. The initial guess is 2.3 for intensity and (−0.3,−1.25) for position.

True SD GN DY

a 2 2.1711 2.1591 2.1306

(x,y) ( -0.5, -1.45) (-1.1872, -1.5894) (-0.4779 , -1.4783) (-0.4468, -1.4795)
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(a)

(b) (c)

Figure 4.9: Iterations in the domain for SD (plot (a)), GN (plot (b)), and DY (plot (c)).

Both position and intensity are unknown. The white star is located where the particular

method ends up, and the blue star is the true source position. The initial guess is 2.3 for

intensity and (−0.3,−1.25) for position.
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(a) (b)

(c)

Figure 4.10: Plot of the error |an-atrue| for intensity (plot (a)), of the objective function

(plot (b)) and of the 2-norm of the gradient (plot (c)) on log scale at every iteration. Both

position and intensity are unknown. The dotted line in the gradient plot is the stopping

tolerance. The initial guess is 2.3 for intensity and (−0.3,−1.25) for position.

In real-life problems, measurements always contain some noise ([2]). By

adding white (Gaussian) noise ([4]) with a standard deviation of 2 to the

measurements, the results that we obtained in the various cases are almost

identical.
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Figure 4.11: A snapshot of three simulated concentrations at T = 4.5. The white stars

correspond to the locations of the measurements.

4.4 Several intensities

In this last section of this chapter we look to find several intensities simultane-

ously, knowing the true source positions. In figure 4.11 we have plotted three

concentrations, together with three measurement locations. See Appendix A

for the (x, y)-coordinates. The true source function is

F = 3δ(x− [−1,−2]T ) + 5δ(x− [1,−1.5]T ) + 6δ(x− [0, 0.5]T )

In this section, we simulated to T=4.5 with dt=0.2, and considered (2.6) with

wm=std(u∗m)+1. The regularization parameter was chosen as τ=0.00005, and

we stopped when ‖∇J + 2τxn‖2 < 0.01. The diffusion coefficient is 10−9 and

the velocity field is again the gradient of the velocity potential, which we

obtained by solving (4.1). Using 10, 0 and 5 as initial guesses, the errors,

the objective function and the 2-norm of the gradient are plotted in figure
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4.12. The estimated the values presented in table 4.5.

(a)

(b)

(c)

Figure 4.12: Plot of the errors |an-atrue| of intensities (plot (a)), of the objective function

(plot (b)) and of the 2-norm of the gradient (plot (c)) on log scale at every iteration.

Position was known. In the error plot, the green line corresponds to the lower left concen-

tration, the blue to the lower right concentration and the red to the upper concentration.

The dotted line in the gradient plot is the stopping tolerance. The initial guesses are

10, 0 and 5.
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Table 4.5: True and estimated values of the three intensities, using DY. a1 corresponds

to the lower left concentration, a2 corresponds to the lower right concentration and a3

corresponds to the upper concentration. The initial guesses are 10, 0 and 5.

a1 a2 a3

True 3 5 6

DY 2.9018 5.0795 5.8927
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Time-dependent velocity field

In most cases, a velocity field will change with time. We thus study algorithm

2 with a time-dependent velocity field, obtained as follows. We start by

solving the Poisson problem (4.1), to obtain the same velocity field as plotted

in figure 4.3a. Then at each time step we rotate the velocity field, using the

rotation matrix

W =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 θ =
2πti
T

.

Using this velocity field, we simulate the concentration, plotted in figure

5.1. The white stars are the measurement locations. See Appendix A for

the (x, y)-coordinates. Ω = [−1.5, 1.5] × [−2, 2], discretized with triangles.

The largest area of the triangles is 0.01 [m2]. The concentration starts at the

origin, with an intensity of 10/A(∆). We simulate from t = 0 to t=3 using

dt=0.15 as the time step and setting the diffusion coefficient to 10−9. In this

chapter, we look at the objective function (2.6) with weight wm=10(std(u∗m)+

0.1). The weights are plotted in figure 5.2. τ=0.0003 is the regularization

parameter. The stopping criteria are ‖∇J + 2τxn‖2 < 0.0065, if we have not
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converged after 20 iterations or if we are stuck. Both the restart criteria,

and the gradient methods we test, are the same as in the previous chapter.

For backtracking, the step size is initialized to 1, with c1 = 10−5. The scale

factor is 0.015 if the next point is evaluated to be outside of the domain, and

0.8 otherwise.

Figure 5.1: Snapshot of a concentration with time-dependent velocity field at T = 3. The

white stars are the measurement locations.

Figure 5.2: A plot of the weights used for the computations.
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5.1 Fixed position

Just as in the previous chapter, we start by finding the flux, given that we

know the correct position. Using 60 as the initial guess, we obtain the results

presented in figure 5.3 and table 5.1 with DY.

(a) (b)

(c)

Figure 5.3: Plot of the error |an-atrue| for intensity (plot (a)), of the objective function

(plot (b)) and of the 2-norm of the gradient (plot (c)) on log scale at every iteration.

Position was known. The dotted line in the gradient plot is the stopping tolerance. The

initial guess is 60.
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Table 5.1: True value and estimated value of intensity, using DY. The initial guess is 60.

True DY

a 10 8.5817

5.2 Fixed intensity

We now assume that the intensity is known and look to find the correct

source position. Starting from (x, y) = (0.15,−0.15), the estimated location

found by GN and DY is shown in table 5.2. Figure 5.4 depicted the iterations

in the domain. The blue star is the origin and the white star is where the

method ends up. The values of the Jn and ‖∇J‖2 at each iteration are

displayed in figure 5.5. We have not presented the outcome of SD, as it is

not distinguishable from GN.

If the initial guess had been changed slightly to (0.15,−0.2), then both

SD and GN would get stuck at (0.15,−0.19), while DY converges in three

iterations.

Table 5.2: True value and estimated values of source location, using GN and DY. The

initial guess is (−0.15,−0.15).

True GN DY

(x, y) (0,0) (0.0542, -0.0269) (0.0076, 0.0880)
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(a) (b)

Figure 5.4: Iterations in the domain for GN (plot (a)) and DY (plot (b)). The white

star is located where the particular method ends up, and the blue star is the true source

position. The initial guess is (0.15,−0.15).

(a)

(b)

Figure 5.5: Plot of the objective function (plot (a)) and of the 2-norm of the gradient (plot

(b)) at every iteration on log scale. Intensity was known. The dotted line in the gradient

plot is the tolerance. The initial guess was (0.15,−0.15).
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5.3 Position and intensity

We finally look to find both the intensity and position at the same time.

Starting from the same point as in the previous section, figure 5.6 shows the

iterations for both GN and DY in the domain. Compared to the last section,

they are very similar. The estimated location is also very similar, see table

5.3.

The initial guess for intensity was 10.5, and figure 5.7a depicted the er-

ror for intensity at every step. Table 5.3 displayed the estimated intensity

for both methods. For SD, both the estimated location and intensity are

identical GN.

Values of Jn and ‖∇J‖2 are plotted in figure 5.7b and 5.7c, respectively.

Just like position, they remained almost unchanged compared to the previous

section. All values for SD,

Finally, just as in the preceding chapter, adding white Gaussian noise

with standard deviation 2 to the measurements did not alter much of the

outcome. The result only changed when we attempted to find the source

location for DY, starting from (0.15,−0.2). This time it got stuck.
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(a) GN (b) DY

Figure 5.6: Iterations in the domain for GN (plot (a)) and DY (plot (b)). The white

star is located where the particular method ends up, and the blue star is the true source

position. The initial guess for position was (0.15,−0.15), and 10.5 for intensity.

Table 5.3: True value and estimated values of intensity and source location, using GN and

DY. The initial guess is 10.5 for intensity and (−0.15,−0.15) for position.

True GN DY

a 10 10.4003 10.3204

(x, y) (0, 0) (0.0543, -0.0199) (0.0022, 0.0756)
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(a)

(b)

(c)

Figure 5.7: Plot of the error |an − atrue| for intensity (plot (a)), of the objective function

(plot (b)) and of the 2-norm of the gradient (plot (c)), at every step on log scale. Both

position and intensity were unknown. The dotted line in the gradient plot is the stopping

tolerance. The initial guess for position was (0.15,−0.15), and 10.5 for intensity.
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Conclusion and further work

To summarize the work in this thesis, we have studied a source identification

problem. By writing the problem as a PDE-constraint optimization prob-

lem, we derived the adjoint IBVP (3.25)-(3.27). This IBVP was used to

compute the derivatives of the objective function (2.6) with respect to its

parameters. These derivatives were then applied in a non-linear conjugate

gradient method used to minimize (2.6) in order to estimate the parameters

of a source function.

We used the steepest descent method, the Dai-Yuan method and the

Gilbert-Nocedal method for the minimization on various test cases, using

two different velocity fields. In the case of finding the intensity of the source,

we saw in section 4.1 that the Dai-Yuan method outperformed the other

methods. This was also the case in section 5.2, when we looked to find

the source position. In section 4.2, on the other hand, all three methods

used about the same number of iterations. Finally, we looked to find both

intensity and location of the source in section 4.3 and section 5.3. Here, all

three methods estimated the true location (i.e. triangle), but the intensity

deviated from the true value. The only exception was the steepest descent
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method, which in section 4.3 got pushed far away from the source location.

There are some problems that we have not adressed. One is how to pick

a ”good” initial guess for the gradient methods. A possible solution here,

as suggested in [25] in a general context, is to use the solution obtained by

a direct search method. Another important questions are how to determine

where are the optimal measurement locations, and what are good choices of

regularization and weight.

When using real data, a more suited PDE-solver has to be used. The py-

GIMLI does not handle time-dependent source functions and time-dependent

velocity fields. Moreover, one should scale the independent variables since

gradient methods are poorly scaled ([22]). We used the simplest line search

method. For real data this method could be used, but a more sophisticated

line search method should be considered. Such a method could be found in

chapter 3.5 in [22].

Theoretically, further studies would be to show existence and uniqueness

of solution to the IBVP (2.1)-(2.3) with the source function (2.4) in the sense

of source-type solutions.

Practically, it would be interesting to test some newer gradient methods;

we refer to [14, 6] for an overview and analysis of new gradient methods.

Moreover, comparing the gradient methods to quasi-Newton ([22, 25]) and

Baysian methods ([2]) would be of interest.
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Coordinates for measurement

locations

Table A.1: The coordinates of the measurement locations in figure 4.2a.

x -1.2 -0.75 0.4 -2.15 0.4 0.9

y 0.2 0.75 -1.5 0.0 0.5 0.0

x 0.2 0.0 -1.75 -0.2 -2.2 0.0

y -0.6 1.0 0.7 -1.1 -0.9 -0.1

x -1.3 -0.6 -1.9 -0.5 0.6 1.0

y 1.1 -0.8 -1.7 1.5 -0.9 1.2

x -1.3 0.2 -0.35 -0.35 -0.45 -1.3

y -0.6 1.9 0.45 -0.9 -0.15 2.2

x -2.2 0.0 -0.5 -1.0 -0.8 -0.7

y 1.6 -2.4 -1.3 -2.0 -0.5 -1.1
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Table A.2: The coordinates of the measurement locations in figure 4.11

x -1.0 1.1 0.05

y -1.9 -1.3 0.65

Table A.3: The coordinates of the measurement locations in figure 5.1

x -0.25 -0.05 0.05 0.25

y -0.25 -0.25 -0.25 -0.25

x -0.25 -0.05 0.05 0.25

y -0.05 -0.05 -0.05 -0.05

x -0.25 -0.05 0.05 0.25

y 0.05 0.05 0.05 0.05

x -0.25 -0.05 0.05 0.25

y 0.25 0.25 0.25 0.25
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Linear algebra and vector

calculus

In this Appendix, we give a review of some facts and results from vector

calculus that we have used in the thesis. The information is taken from [1],

[25] and [28].

Let x,y be two real vectors with entries xi, yi, i = 1, 2, . . . , n, respec-

tively. The inner product of x and y is

x · y = xTy = x1y1 + . . . xnyn,

where xT is the transposed of x. The Euclidean norm is the inner product

‖x‖2
2 = xTx.
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For a function f : Rd → R, its the gradient is the d-dimensional vector

∇f =


fx1

fx2
...

fxd

 ,

where the subscripts on f in the bracket are the partial derivatives.

For a (unit) vector u, and a point p, the directional derivative of f in u’s

direction at the point p, is given by

lim
t→0

f(p + tu)− f(p)

t
= u · ∇f(p).

For any pair of functions g, f , Green’s first identity states that∫∫
Ω

∇f · ∇g dx +

∫∫
Ω

f∆g dx =

∫
∂Ω

f (n · ∇g) ds,

where ∂Ω is the boundary of the domain Ω ⊂ R2 and dx = dxdy. n · ∇g is

the directional derivative in the outward normal direction on ∂Ω, and ds is

the element of arc length. ∆ = ∇·∇ is the Laplace operator. Green’s second

identity states that∫∫
Ω

g∆f − f ∆g dx =

∫
∂Ω

g (n · ∇f)− f (n · ∇g) ds,

holds for any pair of functions f, g.

Finally, let f denote a sufficiently smooth vector field. Then we have

∇ · (uf) = ∇u · f + u (∇ · f), (B.1)

for a smooth scalar field u. ∇ · f denotes the divergence of f.
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Function spaces

Definitions of the varoius function spaces in section 2.2. These definitions

taken are from [8].

(i) L2(Ω) consists of functions f : Ω→ R such that

‖f‖2 =
( ∫

Ω

|f |2dx
)1/2

<∞.

(ii) H−1(Ω) is the dual space of the space H1
0 (Ω), the closure of C∞c (Ω) in

the Sobolev space H1(Ω).

(iii) Let X be a real Banach space with norm ‖ · ‖. Then

– L2(0, T ;X) consists of all strongly measurable functions f : [0, T ]→

X, such that

‖f‖L2(0,T ;X) =

(∫ T

0

‖f(t)‖2dt

)1/2

<∞

A function f : [0, T ] → X is strongly measurable if there exist

simple functions sk(t) which converges almost everywhere 0 ≤ t ≤

T to f(t). And
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– C([0 : T ]; Ω) comprises all continuous function f : [0, T ] → X,

with

‖f‖C(0,T ;X) = max
0≤t≤T

‖f(t)‖ <∞.
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