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Abstract 

Background: Eutrophication of aquatic biomes and exacerbated climate change effects are 

expected to result in a global increase in harmful cyanobacterial blooms. Cyanotoxins are 

detrimental to animal health, but how they affect the dynamics within ecosystems is still 

mostly unknown. With a host-parasite system acting as a microcosm, I wanted to explore the 

changes in host-parasite dynamics with a cyanotoxin present. 

Methods: In a set of laboratory studies with the copepod-Scistocephalus solidus system, I 

looked at the host-parasite dynamics in the presence of the hepatotoxin microcystin. In four 

different groups (control, toxin-only, infection-only, toxin-infection combined) of individually 

isolated copepods, I examined if mortality increased in the first intermediate host, or if the 

toxin would increase mortality or curb the growth in the parasite. 

Results: While the presence of toxin alone increased copepod mortality significantly, 

microcystin did not exhibit any toxin-parasite interaction leading to increased mortality. 

However, the host’s ability to hinder parasite growth was affected. Since tapeworms 

accumulate environmental toxins, I expected a lower growth rate of the parasites in the toxin 

group, but procercoids from toxin-parasite groups were found to have a significantly larger 

surface area (P.007) than procercoids from the infection-only group.  

Conclusions: The increased growth of parasites in the presence of microcystin, suggests a 

change in the host-parasite dynamic. While host mortality was not significantly affected by 

the parasite infection. Increased procercoid growth points to a rise in pathogen virulence or 

weakened immunity in the host, which could be detrimental in less robust host individuals.  

 

 

 

 

 

 

 

 

 

Frontpage picture: The beginning of a cyanobacterial bloom, up close. Photo by Katrine Åmdal Sundt, 2018.  
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Background 

The work in this thesis was carried out on behalf of the university project Cultivation Project 

of River Mussels for Reintroduction (Kultiveringsprosjekt av elvemusling for gjenutsetting). 

The project is administered under the Department of Biology, University of Bergen, and 

funded by the Norwegian Directorate for Nature Management (Direktoratet for 

naturforvalting) and Lerøy Vest AS. 

The goal of this thesis was to examine the dynamics between host and parasite, and how their 

systems relate to their environment and disrupting factors within it. While not directly 

connected to the freshwater pearl mussels (Margaritifera margaritifera), microcystins seem to 

be harmful to all organisms in aquatic biomes. Gaining a more in-depth knowledge of how 

cyanotoxins affect other organisms inhabiting the same habitat is required for a more holistic 

approach to ecology and ecotoxicology.  

The thesis is equal parts ecotoxicology, parasitology and ecology, and might thus not fit any 

one of these just so. However, I feel the interdisciplinarity of research is another crucial step 

in understanding the "bigger picture" of ecological principles and furthering knowledge in this 

field, so this was also an exercise in juggling the specifics of several fields of research. 
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1 Introduction 

Human interference is affecting nature at an alarming pace and on a staggering scale, 

extensive enough to be known as the sixth mass extinction of the Anthropocene (GSDRC, 

2009; IPBES, 2019). These are some of the contributing factors: fragmentation and loss of 

habitat, the increased spread of invasive species, anthropogenic global warming, nutrient 

depletion or eutrophication, soil and water acidification, and a wide variation of pollution 

agents—from light and noise to soil, water, and air. Having a solid understanding of 

ecological principles will help untangle the interconnected threads that make up a natural 

balance nearing its tipping point.  

One field that has arisen in an effort to monitor the state of ecosystems in the Anthropocene is 

environmental parasitology, which lies within the intersection of ecology, toxicology, and 

classic parasitology. It examines the interactions between pollutants and parasites through an 

ecological lens. The rapid shift in the impacts on anthropogenic nature makes this field more 

relevant than ever, as the overall sensitivity of parasites to toxicants and other environmental 

disturbances makes them excellent indicators for the general state of an ecosystem (Sures et 

al., 2017). Host-parasite systems can also work as microcosms for ecological dynamics on a 

grander scale. This thesis examines one such host-parasite system as the basis of a 

toxicological study of the hepatoxic cyanotoxin. 

Cyanobacteria are free-living, photosynthetic microbes that produce a wide range of toxins, 

which can be detrimental to human, animal, and environmental health (Pandhal et al., 2018). 

There is increasing evidence that the change in global climate directly influences the rate of 

harmful algal and cyanobacterial blooms, commonly referred to as harmful algal blooms 

(HABs) (Gobler, 2020; Visser et al., 2016; Weber et al., 2020). HABs can lead to the 

toxification of waterways and anoxic benthic conditions in rivers and lakes (Havens, 2008). 

The global cyanobacteria occurrence is also proportional with increased eutrophication and 

the exacerbation of climate change effects (Rastogi et al., 2015).  

Among the most common of cyanotoxins are the hepatotoxic microcystins, of which 

microcystin-LR (MC-LR) is the most harmful. MC-LR was thus the toxicant of choice in the 

environmental parasitological study using a well-established host-parasite system—the first 

intermediate stage of the fish tapeworm Schistocephalus solidus life cycle. Such studies 

examine any toxin-infection interactions, as well as the effect on the parasite itself.



2 
 

The goal of this thesis was to examine the effects of the cyanotoxin microcystin on the host-

parasite dynamic of the cyclopoid copepod Macrocyclops albidus and the cestode 

Schistocephalus solidus. By monitoring the mortality of both host and parasite, as well as 

measuring the area of grown parasites, I attempted to test for two possible outcomes:  

1. Whether the combination toxin and an active parasite infection would increase 

mortality in the first intermediate host (Macrocyclops albidus). 

2. Whether the toxin will increase mortality or curb the growth rate in the parasite. 

1.1 Biological Background and Research Organisms 

1.1.1 Host-Parasite System 

Schistocephalus solidus, a freshwater tapeworm, has been used for decades in studies of 

aquatic host-parasite systems, particularly that of its second intermediate host, the 

morphologically diverse three-spined stickleback (Gasterosteus aculeatus) (Barber, 2006; 

Barber and Scharsack, 2010; Scharsack et al., 2007). As S. solidus' first intermediate host, the 

copepod Macrocyclops albidus is also included in this system (Hafer-Hahmann, 2019; 

Wedekind, 1997). Both intermediate hosts are subject to host manipulation by the infective 

stage of the parasite. Infected copepods become more active than uninfected ones, and as 

manoeuvrability decreases, predation pressure from sticklebacks increases as the procercoids 

mature within their host (Hammerschmidt et al., 2009; Wedekind and Milinski, 1996). The 

manipulation in the next intermediate host is even more dramatic, including phenotypic 

changes in predator-response behaviours, as well as a significant loss in swimming ability 

(Grécias et al., 2017), turning the sticklebacks into easy prey for the final host—a piscivorous 

bird. 

In the first intermediate stage of infection, S. solidus' genetic background and M. albidus' 

phenotypic characteristics determine the rate of infection. Two discrete steps have been 

identified as crucial for a successful continuation of the parasite's life cycle (Veen and Kurtz, 

2002):  

1. The establishment phase, in which the hunting ability, appetite, and immunity will 

affect the rate of successful infection. 

2. The growth phase, which is influenced by features in both host and parasite, such as 

morphology and condition of the host, or the intrinsic mortality of the parasite. 

According to Veen and Kurtz, the establishment phase is the most crucial, as the copepod is 

unlikely to be able to eliminate the parasite once it has penetrated the gut wall and entered the 
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haemocoel. A successful establishment hinges on the parasite's ability to overcome (a) 

behavioural resistance in the host, (b) the mechanical and immunological barrier of the gut 

wall, and (c) the innate immunity of the body cavity. 

Males and copepodites continuously show a higher infection rate but also exhibit higher 

overall mortality (Veen and Kurtz, 2002; Wedekind, 1997). This sex-linked infection bias 

does not seem to primarily be a result of hormones, as is observed in many species of 

mammal (Skorping and Jensen, 2004). When one accounts for size and age, what bias there 

is—whether male or female—is explained by resource allocation due to sexual selection with 

hormonal effects playing a lesser role (Sheridan et al., 2000). When controlling for size and 

age, there is nonetheless a significant sex bias in the immune response to helminth infections 

in this particular species of copepod (Wedekind and Jakobsen, 1998).  

The choice is thus one between high infection rates and high mortality, or lower infection 

rates but more copepods surviving until termination of the experiment. Given that copepodite 

stages are hard to identify and difficult to sex, adult females were the "safe" choice in a 

setting which explores chronic pathology. 

1.1.1.1 Schistocephalus solidus 

Helminths are a polyphyletic group of parasitic worms defined by certain morphological and 

life history traits. Those that are not free-living tend towards endoparasitism, and all share the 

general body plan of a worm. Thus, "helminth" is used interchangeably with "parasitic 

worm". The group is polyphyletic and consists of members from several phyla: Annelida 

(segmented worms), Platyhelminthes (flatworms), Nematoda (roundworms), and 

Acanthocephala (thorny-headed worms). The total number of helminth species has been 

estimated to be between 75,000 and 300,000 (Dobson et al., 2008). Cestodes (class Cestoda), 

or tapeworms, belong to the phylum of Plathyhelmintes, and all of the c. 8,000 species are 

endoparasites in their adult stage (Gibson et al., 2014). Highly complex life cycles are typical 

among tapeworms, and many species require more than one intermediate host before a 

definite vertebrate host can complete the cycle.  

The diphyllobothrid cestode (fish tapeworm) Schistocephalus solidus has a life cycle that 

includes an arthropod and a fish as intermediate hosts, and birds or mammals as definite hosts 

(Fig. 1). It has been found to mature in over 40 types of piscivorous waterfowl, but also  
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Figure 1. Life cycle and stages of Schistocephalus solidus. Starting at a) S. solidus eggs are 

released into the environment in bird droppings. Triggered by sunlight the eggs develop into b) 

free-living and motile coracidia ingested by a copepod intermediate host. In the copepod gut, 

the coracidium sheds its outer coat, bores into the copepod haemocoel, and matures into c) a 

procercoid. If the infected copepod is ingested by a three-spined stickleback (Gasterosteus 

aculeatus) the procercoid develops into the final larval stage, d) a plerocercoid. If the fish is 

eaten by the final host, a bird, adults parasites breed in the avian intestine and release new eggs 

into the environment along with the excrement. 

Adaptation of schematic of life cycle (1) drawn by Claus Wedekind, 2005. Photos of individual 

stages (2) a) – b) Per Johan Jakobsen, c) Kristin Lian Aa, 2019 d) Jarle Tryti Noreide 2016. 

Images used with permission or distributed under a CC BY-SA 3.0 licence 
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pigeons, rodents, and aquatic mammals, such as otters (Clarke, 1953; Hoberg et al., 1997; 

McCaig and Hopkins, 1963). Development of plerocercoids in the final host is temperature-

dependent, with somatic growth having a peak efficiency near 23 °C and secondary 

maturation with an optimum of near 40 °C (Sinha and Hopkins, 1967). 

S. solidus' natural range is limited by that of its most common second intermediate host, the 

three-spined stickleback (Gasterosteus aculeatus) (Poulin et al., 2011). Three-spined 

sticklebacks thrive in the Northern hemisphere, in circumarctic and temperate freshwater 

lakes or coastal waters. In Greenland, Eurasia, North America, North-Africa, and in Eastern 

Asia north of Japan (Page et al., 1991, 663p.). However, S. solidus is not able to cope with the 

increased salinity of marine ecosystems, and only inhabits the body of freshwater and 

anadromous populations of stickleback (Barber, 2006).   

S. solidus does not exhibit stenoxenous preference before the plerocercoid stage and can 

infect a wide range of freshwater adult and sub-adult cyclopoid copepods, including 

Macrocyclops albidus (Hahn et al., 2019; Wedekind, 1997) (Fig. 2). However, while the 

parasite can infect other fish for its second intermediate host, it is highly adapted to its local 

variation of three-spined stickleback (Henrich et al., 2013). 

Paraphrasing Aristotle's On the Generation of Animals, it is said that "[…] the business of 

most animals is to reproduce"—which parasitic worms excel at to an extraordinary degree. 

Helminths divide most of their bodily resources into matters of sex, and as simultaneous 

hermaphrodites, S. solidus employs a mixed-mating system (Christen and Milinski, 2003). 

Parasite loads greater than one (1) individual unlocks the option of mutual cross-fertilization 

(outcrossing), while single individuals will resort to self-fertilization (autogamy). 

 

Figure 2. Lateral view of adult female Macrocyclops albidus. Microscopy by Kristin Lian Aa, 2019. 

150 µm 
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During outcrossing, S. solidus can also breed with siblings (incrossing) if no other mates are 

available. Incrossing results in inbreeding depression over time and is less advantageous than 

non-incestuous cross-fertilization. However, any type of cross-fertilization is more beneficial 

than autogamy due to the lack of genetic variation (Schjørring, 2004; Schjørring and Jäger, 

2007). 

With phylum Cestodas' unique life histories come unique terminology. The cycle starts with 

Schistocephalus eggs hatching into coracidia. A coracidium represents a hexacanth larva 

enclosed by embryonic envelopes, which are parts of the embryo itself (Conn and Swiderski, 

2008). In most cestodes, this structure is non-motile, and the hexacanth larva is enclosed by 

two embryonic envelopes. However, in some families, Schistocephalus among these, there is 

only the inner envelope covered in cilia. 

The coracidia are free-swimming, and the embryo metabolizes granules of phospholipids and 

polysaccharides anaerobically to propel themselves through the water in random motions. At 

temperatures of 5-8 °C, coracidia from S. solidus are alive and motile for up to 120 hours 

(Dubinina 1966 cited by Smyth and McManus, 1989). Because the hatching of the coracidia 

is triggered by light of wavelengths mimicking visible sunlight in shallow waters (495-570 

nm), I chose white LED aquarium lamps to trigger this response. 

Hexacanth larva are named such because of a ring of six (three pairs) hooks associated with 

contractile cell bodies (myocytons) (Basyoni and Rizk, 2016). These articulated hooks work 

in conjunction with secretions from a penetration gland to invade the abdominal cavity of 

their first intermediate host by boring through the midgut wall (He et al., 2017). Once inside 

the copepod abdominal cavity, the hexacanth matures into a procercoid, which is regarded as 

the first true larval stage in many cestodes (Fig. 3).  

Procercoids are characterized by a cercomer (caudal appendage) and a protective tegument 

(Jakobsen et al., 2012; Pospekhova and Regel, 2013). The latter allows the procercoids to pass 

unscathed through the acidic digestive enzymes of their second intermediate host, and only 

shed this when exposed to fish bile (Marwaha et al., 2013).  

S. solidus procercoids are functionally mature when the cercomer appears, usually 9-11 days 

post-infection (Benesh and Hafer, 2012). The larva will continue to grow exponentially until 

day 30 in room temperature, at which point it reaches its asymptotic size (Hammerschmidt 

and Kurtz, 2009, p. 15).  
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Because of this, I chose to terminate the experiments between day 11 and day 30.  I also chose 

to study the S. solidus system because it has an extensive catalogue of prior research and it is 

one of the few tapeworms that can easily be made to breed in vitro (Weinreich et al., 2014). 

  

Figure 3. Mature Schistocephalus solidus procercoids with intact and lost cercomers. Twin and 

solo infections dissected from haemocoel of adult female Macrocyclips albidus. Microscopy by Kristin 

Lian Aa, 2019. 

 

   

150 µm 150 µm 
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1.1.1.2  Parasite Ecology and Environmental Parasitology 

The tremendous influence parasites have on their ecosystems causes both bottom-up and top-

down cascades, shaping the life history of their hosts (Cable et al., 2017). This life history 

theory addresses the "life schedule" for an organism, from birth to death, as well as how 

natural selection has shaped the organism's fecundity, longevity, survival, age of sexual 

maturity, and reproductive strategy (Kochin et al., 2010). Environmental parasitology 

examines the interaction between parasites and their environment. Parasites can be both 

accumulation indicators and "pollution sinks" in that endoparasites, in particular, are very 

sensitive to the effects of xenobiotics (Sures et al., 2017). Incidentally, intestinal parasites 

acting as pollution sinks seem to provide the host with a barrier of protection towards 

environmental stress. Helminths can accumulate heavy metals from the host's internal 

environment and end up with concentrations several times higher than that of their host's 

tissues (Hassan et al., 2018; Teimoori et al., 2014).  

Studies examining how temperature influences fitness trade-offs in the S. solidus system, 

suggest that increasing environmental temperatures promote the parasite rather than the host 

(Franke et al., 2017). Heatwaves associated with global warming have also been shown to 

immunocompromise the intermediate host in this system (Dittmar et al., 2014). How, then 

will the changes in toxic algal blooms affect these interactions?  

Like environmental parasitology, the field of ecological immunology has seen a rapid 

development during the past 20 years. As an interdisciplinary field of research, it views an 

individual's immune response as being subject to optimization by the ecological situation in 

which an animal lives (Schulenburg et al., 2009). Rather than looking at the precise molecular 

mechanisms of immunity, it aims to understand immunological variance in the light of 

evolution and ecology (Schmid-Hempel, 2009).  

While the effects of parasitism on the individual can be detrimental, a hallmark of a healthy 

ecosystem is a rich parasite community (Hudson et al., 2006). Parasites, both macro and 

micro, are prone to rapid evolution. The speed at which parasites evolve and adapt to their 

surroundings might lead to the beginning or end of epidemics (Duffy et al., 2009), or a co-

evolutionary arm's race with their host—a principle dubbed "the Red Queen hypothesis", first 

proposed by Leigh Van Valen in 1973 (Holmgren et al., 2017). This evolutionary hypothesis 

is named after a character in Lewis Carroll's 1871 novel, Through the Looking-Glass, in 

which the protagonist, Alice, races with the Red Queen. No matter how fast Alice runs, she 



9 
 

doesn't move forward, but neither does the Red Queen. When Alice asks why, the Queen 

explains that " […] it takes all the running you can do, to keep in the same place" (Carroll, 

1871). 

Fish tapeworms have a broad host range (euryxenous) to species from several genera of 

cyclopoid copepod at the coracidium-procercoid stage (Scholz et al., 2019). Even species that 

were previously thought of as having a narrow host range (stenoxenous), such as 

Bothriocephalus claviceps, have since been shown to infect a wide range of species (Scholz, 

1997). The fitness of helminths depends on the probability of reaching its ultimate host. This 

thesis sought to examine how toxins would affect this relationship, and whether the host, 

parasite or both would have a decrease in respective fitness. 

1.1.2 Cyanobacteria 

Cyanobacteria is an ancient phylum of photosynthetic prokaryotes that emerged somewhere 

between 3.6 ± 0.2 billion years ago (Garcia-Pichel et al., 2019). Although most reports and 

literature on cyanobacteria deal with temperate freshwater, they are found in a variety of 

environments, ranging from temperate streams and rivers, Arctic and Antarctic polar deserts 

(Friedmann, 1980) (Wierzchos et al., 2006), icy alkaline lakes, and hot springs (Glaring et al., 

2015; Krienitz et al., 2003; Mohamed, 2008). Several species exhibit extremophile tendencies 

but do not, as a group, thrive in acidic waters with pH values lower than 5 (Rampelotto, 

2013). Precursors to cyanobacteria likely caused the onset of one of the most notable 

evolutionary events—the Great Oxidation Event (GOE) of 2.46 to 2.43 billion years ago 

(Garcia-Pichel et al., 2019; Gumsley et al., 2017). Here, oxygen from primary photosynthetic 

producers reformed the anoxic, CO2-dominated atmosphere and paved the way for oxygen-

dependent life. This simultaneously caused the Earth's first mass extinction, in which primary 

production by anaerobic bacteria collapsed with the rise in atmospheric oxygen (Hodgskiss et 

al., 2019). The Boring Billion (1800 to 800 Ma) following the GOE saw cyanobacteria as the 

dominant lifeform before eukaryotic cells started showing up in the fossil record (Brasier and 

Lindsay, 1998; Mukherjee et al., 2018). 

Cyanobacteria also played a starring role in Lynn Margulis' 1967 endosymbiosis theory, later 

dubbed "symbiogenesis", in which she propositioned that eukaryotic life had its origin in 

prokaryotic mutualism, born from either predation or parasitism (Sagan, 1967). 

Symbiogenesis resulted in eukaryotic metabolism and the precursors to multicellular life, the 

main component of which is the integration of proteobacteria and cyanobacteria, preceding 
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the eukaryotic organelles, which we now know as mitochondria and chloroplasts, respectively 

(Esposti, 2014; Falcón et al., 2010). Some genera of cyanobacteria form dense colonies in 

many aquatic environments (Fig. 4). When these colonies of picoplanktonic or filamentous 

bacteria grow large enough to constitute a bloom, they can be detrimental to ecosystems and 

human health (Huisman et al., 2018).  

The chief harm in such blooms are toxins released into the environment, outcompeting 

phytoplankton, blocking sunlight for aquatic plants, or by creating dense, smothering mats of 

dead bacteria that sink and cause hypoxic or anoxic benthic conditions (Bartoli et al., 2018). 

This group of cyanobacteria are known as "bloom-forming harmful cyanobacteria" 

(CyanoHABs) (Paerl, 2014). 

 

 

Figure 4. Masked lapwing (Vanellus miles) wading in a Microcystis aeruginosa outbreak on the southwest side 

of Lake Albert, Australia. M. aeruginosa is one of several genera of microcystin-producing cyanobacteria that 

can cause harmful algal blooms (HABs). Photograph by Bidgee, 2018 distributed under a CC BY-SA 3.0 

licence.  
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1.1.3 Cyanotoxins and Harmful Algal Blooms (HABs) 

As Charles Darwin put it in The Origin of Species, "[…] from so simple a beginning, endless 

forms most beautiful and most wonderful," The evolutionary playground that is multicellular 

life might, in turn, have pushed cyanobacteria as a group into a more diverse bouquet of 

extant morphotypes, leaving us with thousands of species of extremely well-adapted microbes 

(Schirrmeister et al., 2015). As of 2013, there were 2,698 species of cyanobacteria described, 

with the group containing an estimated 6,280 species in total (Nabout et al., 2013). This 

diversification has led to a spectacular array of noxious strategies to combat competition. 

While some cyanobacteria are relatively harmless, even beneficial as a foundation for 

fertilizer and biofuels (Singh et al., 2016), many genera are known for producing bioactive 

compounds that will poison the well of their aquatic environment. These compounds are 

known as "cyanotoxins" and will burst forth as the cell wall breaks down in the dead 

bacterium.  

Cyanotoxins provide a stunning array of harmful consequences for the organisms that happen 

to ingest them. They can enter the food net and bioaccumulate from low trophic organisms, 

leading to second-hand human ingestion (Ferrão-Filho and Kozlowsky-Suzuki, 2011). 

Secondary poisoning by toxins from algae or cyanobacteria in mussels is often called 

"shellfish poisoning" (Ballot et al., 2010; Gibble et al., 2016). These pathologies can range 

from acute to chronic and harm several different organs and organ systems (Dittmann et al., 

2013). 

Hepatotoxins include microcystins, nodularins, and cylindrospermopsins. Neurotoxins include 

anatoxin-a and saxitoxins, dermatotoxins and cytotoxins the lyngbatoxin-a and aplysiatoxins, 

besides a great many lipopolysaccharides found in or on the bacterial cell that function as 

endotoxins (Huisman et al., 2005, p. 11-12). 

1.1.4 Nutrients and Hydrology 

Commercial fertilizers come with an NPK ratio listed on the back of the container which 

refers to nitrogen (N), phosphorous (P) and potassium (K), given as stochiometric values of 

crucial nutrients in relation to one other. In most cases (i.e. Liebig's law of the minimum), 

such as environments supporting photosynthetic life, one of these elements will be a limiting 

factor (Taylor and Terry, 1984). That is to say: the element of which there is a shortage will 

first stop further growth of a specific organism, regardless of how much of the two others are 
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added. Nitrogen and phosphorous are often required in more substantial quantities due to 

various cellular processes (chiefly in the formation of ATP, amino acids, and nucleic acids) 

requiring a larger relative amount. Thus, excessive N or P lead to eutrophic conditions with an 

increased amount of chlorophyll-a—an indicator of phytoplankton activity (Lürling et al., 

2017).  

These conditions are exacerbated when nutrients accumulate in the sediments of shallow 

bodies of water, such as lakes and reservoirs. Sedimentation of phosphorous and nitrogen 

provides a store of nutrients, which becomes available occasionally throughout the season. 

Phosphorous is released due to oxygen depletion, often as a consequence of microbial 

hypoxia or anoxia (Hupfer and Lewandowski, 2008). Storms, flooding, or other disturbances 

might release nutrients trapped in sediment, as will the seasonal spring and fall turnovers 

(Jeke and Zvomuya, 2018; Paerl, 2017; Reynolds and Davies, 2001). These nutrients get into 

waterways through several pathways, the most common of which are industrial and 

agricultural runoff (Pelley, 2016), wastewater (Vasconcelos and Pereira, 2001), and land 

clearing and deforestation (Bastida et al., 2015). 

Other sources only found a weak correlation between these factors and cyanobacteria 

abundance, stating that eutrophication should not be regarded as a regulating factor (Okogwu 

and Ugwumba, 2009). Instead, temperature pH and dissolved oxygen were shown to be more 

important in the increase of cyanobacteria proliferation (Sinden and Sinang, 2016). Rising 

global temperatures also become more relevant as the mean optimum growth temperatures for 

both cyanobacteria and green algae is between 20 °C and 30 °C (Konopka and Brock, 1978; 

Lürling et al., 2013). However, in boreal lakes, the threshold for total phosphorous (TP) 

seems to be the limiting factor, with the most substantial decrease in cyanobacterial biomass 

occurring at P concentrations below 50 µg l−1 (Vuorio et al., 2019). It is also suggested that 

the N/P relationship is more important than an abundance of P itself (Mellios et al., 2020), 

with low nitrogen-to-phosphorus ratios being predictors of blooms and increased 

cyanobacterial activity.  

This all points to a complex interplay of factors that might vary significantly both 

geographically and climatically. pH is also a direct impact of blooms, with proliferation 

limited by pH levels that are too high and hardly affected by projected decreases (Hinners et 

al., 2015). Increased photosynthetic activity leads to enhanced absorption of CO2 and an 

increase in water pH (Paerl and Paul, 2012). The productivity of phytoplankton is inversely 
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proportional to water pH, which leads to a window of cyanobacterial domination before they, 

too, die off as water pH rises and resources are depleted (Sinden and Sinang, 2016).  

The Antarctic has seen a mean temperature increase by 0.5 °C per decade since the 1960s 

(Turner et al., 2005), while the Arctic is heating up three times as fast as the global mean 

(Bintanja, 2018), leading to permafrost warming and melting at a global scale (Biskaborn et 

al., 2019). With these changes comes an increase in local rainfall and atmospheric 

temperatures, which in turn cause an increase in extreme weather, such as heavy rainfall, 

increased storm severity, and floods (Kleinteich et al., 2012; Marsooli et al., 2019; Paerl and 

Paul, 2012). Increase in concentrations of atmospheric CO2 and elevated UV fluxes will also 

affect the proliferation of cyanobacteria (Bláha et al., 2009).  

These conditions will vary with genera and local conditions, and synergies between them can 

affect the dynamics of blooms (Rastogi et al., 2015). There has been an increase in HABs 

since the 1980s (Hinners et al., 2015), and with rising temperatures, an increase in storms and 

floods following climate change. This combination of warmer waters, water eutrophication, 

and disturbances will most likely lead to a rise in conditions favoured by cyanobacteria 

(Gobler, 2020; Kleinteich et al., 2012).  

Cyanobacteria's general adaptivity and ability to prevail in complex stressor regiments have 

made predicting their bloom hydrology a challenge. However, machine learning tools have 

shown great promise after being used to predict with more than 95% accuracy the severity of 

harmful blooms and categorize the risk levels in lakes based on water depth and levels of 

nitrogen and chlorophyll a (Mellios et al., 2020). 

1.2 Chemical Background and Toxicology of Microcystins 

Microcystins (or cyanoginosins) are cyclic heptapeptides. A cyclic peptide is any compound 

in which a polypeptide chain of the molecular structure contains a circular sequence. Out of 

all cyanotoxins, microcystins are the most commonly recorded, with 63% of all toxin reports 

globally (Svirčev et al., 2019). Cyclic peptides occur naturally in animals, plants, and 

bacteria, and show anti-microbial properties and remarkable biological stability (Craik, 2006). 

These compounds can withstand the hydrolytic activity of digestion, which eliminates an 

essential first line of defense against potentially harmful biological compounds surviving the 

route through the human digestive tract, allowing the cyclic peptides to reach the liver. 
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Microcystins are monocyclic, meaning that there is only the one circular sequence. There are 

111 congeners (structural variants) that have been described as of 2020 (Ballot et al., 2020; 

Welker and von Döhren, 2006), and with biochemical transformation variants, there are likely 

over 300 MCs (Bouaïcha et al., 2019). The microcystin ring sequence is formed by six amino 

acids (AA), four of which are non-protein AAs and two of which are protein AAs. A side 

chain is formed by a non-protein AA called ADDA (3-amino-9-methoxy-2,6,8-trimethyl-10-

phenyldeca-4,6-dienoic acid) (Fig. 5) The ADDA sidechain is present in all congeners and is 

used to quantify the presence of microcystins, regardless of the structural variant (Ballot et al., 

2020).  

 

Figure 5. Molecular structure of microcystin-LA together with a schematic of the general structure of 

possible microcystin peptides. Microcystin-LA differs from microcystin-LR with the substitution of alanine in 

place of the arginine. ADDA (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid) represents a 

non-protein amino acid side chain present in all microcystin congeners. Molecular structure from Botes et al., 

1984 adapted with added schematic by Welker and von Döhren, 2006. 
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Microcystin-Leucine Arginine (MC-LR) is both one of the most common and the most toxic 

of the microcystins. For this, most toxicological studies on microcystins involve MC-LR, and 

which is used to describe the worst-case scenarios of HABs. Structurally, positions 1, 3, and 7 

contain D-Leu, D-Asp, and Dha. At positions 2 and 4, L-Leu and L-Arg are located, which 

leaves position 5 and 6 for Adda and D-Glu, respectively (Bouaïcha et al., 2019). 

MC-LR has both genotoxic and cytotoxic effects (Ding et al., 1999; Herrera et al., 2018; 

Nong et al., 2007). It induces reactive oxygen species (ROS) and lipid peroxidation 

formation, leading to DNA strand breaks and cytoskeletal disruption and apoptosis in 

vertebrate hepatocytes (Jiang et al., 2013; Nong et al., 2007).  

In general, microcystins can bind to the catalytic subunit of protein phosphatase 2A (PP2A), 

which inhibits the action of this enzyme (Liang et al., 2011), though the exact mechanisms of 

binding and its effects are not fully understood. Still, through this pathway, MC-LR can alter 

the microtubule post-translational modifications, which disrupt the cytoskeleton and 

contributes to its cytotoxicity. In vertebrates, the consequent on inhibition of PP1A and PP2A 

causes massive hepatic haemorrhage (Dawson, 1998). MC-LR also leads to an upregulation in 

the expression of CYP2E1 mRNA, which might be a potential source responsible for ROS 

formation (Nong et al., 2007). 

It is not unheard of for toxin levels in HABs to surpass extreme levels of 40,000 µg/L 

(Mathys and Surholt, 2004). While this is detrimental to the greater aquatic invertebrate 

community, crustaceans generally seem to exhibit a high tolerance toward the effects of 

microcystin (Bownik, 2013; Ger et al., 2016; Samdal et al., 2020) by either avoiding grazing 

on cyanobacteria or having a natural tolerance to the toxin.  

In toxicity studies, 0.14 mg/L of MC-LR was required before chronic effects manifested in 

two species of copepod (Ger et al., 2009). However, the effects seem to be somewhat species-

dependent (Lawton et al., 1995; Zhang et al., 2019) and the experiment set out to mimic levels 

realistic to the environment in question. For this reason, I chose 350 µg/L as a level of MC-

LR that would produce sub-chronic effects, even if the true levels turned out to be somewhat 

lower. 
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1.3 Experimental Design 

Milinski, 1997, proposed a list of "seven deadly sins" associated with behavioural study 

design. The study design, as outlined in the following Materials and Methods, strives to 

avoid these pitfalls and create a solid foundation for empiricism. Chief in any scientific 

experiment is the avoidance of bias, defined as the "[unfair] inclination or prejudice for or 

against a group", or in the case of scientific testing, the inclination to confirm, rather than 

falsify one's hypothesis.  

Of course, true objectivity is nigh impossible as long as human beings are the ones to carry 

out the experiments and analyze the data. Perhaps sometimes the best one can manage is to be 

conscious of one's own biases, identify them, and try to mitigate them through a structurally 

sound experiment.  

The list of "sins" in its entirety paraphrased from the 1997 publication is as follows: 

1. Unjustified conclusions drawn from correlational data  

2. Data are not independent (pseudoreplication)  

3. Treatments confounded by time and sequence effects  

4. No efforts made to avoid observer bias 

5. Potential artefacts arise when animals not accustomed to experimental procedures 

6. Unsuitable controls 

7. An attempt to "prove" the null hypothesis with small samples 

In these experiments, randomization of the placement of copepods, as well as times of feeding 

and water change, was implemented to avoid edge effects and unconscious bias. In order to 

mitigate the number of artefacts, copepods were allowed to breed for several generation 

cycles before being utilized. The culture water was inoculated using dead vegetation from the 

same location as the copepods.  

Pseudoreplication is the act of using inference statistics on an (artificially) inflated number of 

samples or replicates, or in terms of statistical analyses (ANOVA), when the error term does 

not fit the proposed hypothesis (Hurlbert, 1984). To avoid non-independent data, each 

copepod was isolated from the rest and treated exactly like its cohort in each group. 

Small samples are always a problem when using statistical inference, so there is still a balance 

between the ideal sample size and resources available. To increase the chance for adequate 
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data in infection groups, the group sizes are uneven to mitigate the potential loss of data 

points if the infection rate was 50% or lower. 

A truism dubbed Harvard's law is likely to make an appearance in any behavioural design. 

This "law" states that: "Under carefully controlled experimental circumstances, an animal will 

behave as it damned well pleases.", and while tongue-in-cheek, spontaneous behaviour is 

nonetheless a genuine factor that can affect the results in most animal studies (Maye et al., 

2007). One can do little to weed out spontaneous behaviour in a tapeworm or minute 

crustacean, but one can endeavour to adhere to empirical rigidity. 
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2 Materials and Methods  

2.1 Field Probe and First Experiment (E1) 

Animals for E1 were wild-caught and kept in laboratory conditions until use. 

Lake Skogseidvatnet (60°13′ N, 5°53′ E) in Fusa, Norway, has previously been a reliable 

source of sticklebacks (Gasterosteus aculeatus) utilized in research due to their consistently 

high parasite loads (Fossås, 2013, Kalbe et al., 2016). A field probe of the area on June 28, 

2018, showed expected conditions, and plerocercoids of the cestode Schistocephalus solidus 

removed from hosts on July 3, 2018, were successfully made to breed. Matured eggs 

harvested from the pilot on June 6, 2018, successfully hatched into coracidia when triggered 

by radiation from 495-570 nm white LED aquarium lamps overnight. An excursion on June 

26, 2019, yielded more infected sticklebacks, the plerocercoids of which were utilized in the 

first experiment conducted during July of 2019.  

Sticklebacks were caught in the field using an electrofishing device and kept in aquariums in 

the lab until euthanasia and dissection. The fish were euthanized with an overdose of eugenol 

(>1500 µL/L) solved in 70% ethanol (Strykowski and Schech, 2015, Davis et al., 2015) as per 

the regulation concerning the use of animals for scientific purpose § 16 on humane euthanasia 

of laboratory animals. Before dissection, the sticklebacks were also washed in 75% ethanol to 

reduce bacterial contamination. 

2.1.1 Host and Parasite Cultures 

S. solidus was cultured in vitro based on methodology originating with Smyth, 1946-1954, 

and modified by Wedekind, 1997. Plerocercoids harvested from stickleback abdomens were 

immediately eased into medium-moist Visking tubing in pairs. The tubing was further filled 

with culture medium consisting of Minimum Essential Medium with Earle's salts, L-

glutamine, with 25 mm HEPES-buffer and 6 g of D-glucose. Antibiotics (40 mg/ml 

gentamicin) was added to this mixture to prevent bacterial growth.  

Tubes were then tied and suspended in sterilized 250 ml bottles filled with the same medium 

solution. The bottles were kept in a water bath for three days at a constant 40 °C to mimic the 

conditions of avian intestines. Eggs are denser than water and gather at the bottom of the 

tubing, clearly visible as black, grainy patches. Post breeding, worms were extracted, and the 

eggs harvested. To remove fouling, the eggs were rinsed with tap water. After maturing for 21 

days at 18 °C, they were put into storage at 4 °C to prolong longevity, according to Scharsack 
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et al., 2007. Eggs were stored in light-proof plastic containers filled with fresh tap water until 

use. Eggs from at least five clutches were mixed to randomize the results of the copepod 

infection. 

Macrocyclops albidus were caught in 15 cm x 60 cm simple plankton nets (70 µm mesh) in 

the central pond of Nygårdsparken city park (60° 22'54.9 "N 5° 19'49.8 "E) on July 21, 2018. 

After two weeks, the culture was filtered through stages of sieves of decreasing mesh size in 

order to separate the wild-caught F1 adults (500-100 µm) from F2 nauplii (70-20 µm) and 

other planktonic organisms. F2 nauplii where then put into separate tanks to encourage culture 

homogeneity and to make sure individuals used in the experiment were similarly 

preconditioned. 

Copepods were kept in culture, and later in wells according to Veen and Kurtz, 2002. Aquaria 

sat in room temperature (18 °C) and contained ciliate inoculated freshwater in which the 

copepods could develop naturally throughout the experiment. Adult females without egg sacs 

were selected before the experiment and maintained in 2 mL wells in 13 x 24 ELISA plates. 

Laboratory light was kept on between 9 AM and 7 PM with an otherwise dark room to mimic 

photoperiod under fluorescent light conditions. The placement of the ELISA plates was 

rotated randomly every day to avoid any light-related edge-effects in the wells. Copepods that 

expired prior to termination of the experiment were fixated in osmotic 4% formalin to be 

dissected later according to the protocol of Haney and Hall, 1973.  

Each well containing a single copepod fed one live Artemia rinsed in tap water every two 

days throughout the experiment. Water was changed every third day, and mortality logged 

twice per day, morning and evening. A copepod was considered deceased when the animal 

did not respond at all to disturbances in the water. A total of four groups of copepods were 

used in a 2 x 2 matrix: control, infection-only, toxin-only, and combined toxin and infection. 

The experiment contained a total of 312 copepods divided into a 1:3 ratio between non-

infection and infection groups. As such: control (39), single toxin (39), single infection (117), 

combined toxin and infection (117). 

In order to avoid systematic differences between groups, copepods were infected one by one. 

Each copepod in infection groups was fed two motile coracidia on day 10. The parasites were 

then allowed to develop for 18 days, at which the experiment was terminated, and copepods 

euthanized and dissected. 
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2.2 The Second Experiment (E2) 

Heavy rainfall during the summer of 2019 led to severe flooding of Lake Skogseidvatnet, 

which prevented sticklebacks from being caught for E2 in October 2019. Because of this, the 

University of Münster donated eggs from two families of S. solidus. These were bred and 

matured according to the methodology outline above. Both lineages hail from Hörsteller Aa 

(52° 17'31.2 "N 7°36'47.0"E), a brook in Hörstel, Germany.  

Descendants of the E1 copepods were also utilized in E2, and the regiment of feeding, toxin 

concentration, and water change remained the same. The total number of copepods and the 

number in each group was also identical to that of E2. The previous F2 culture was filtered 

and separated with sieves like in E1 once more before the start of E2. Environmental culture 

conditions were otherwise similar, except for E2 copepods being mass-fed live Artemia 

nauplii once a week one month prior to E2. The number of parasites was reduced to one 

coracidium per well on day nine, and copepods were euthanized and processed like in E1 but 

on days 13 and 14 post-infection. 

2.3 Extraction of Microcystin and Toxin Sampling 

Microcystins were extracted from cultures of Microcystis aeruginosa (NIVA-CYA 160/1), 

which is sustained by Z8 medium. Cells from the culture were harvested through centrifuging, 

and then freeze-dried, after which the dried mass was stored frozen. Before each experiment, 

the dry mass was resuspended in 1L ultrapure water and set on a magnetic stirrer for 2 hours. 

After stirring, particles were settled by centrifugation at 3,000 rcf, and the supernatant finally 

filtered over GF/F filters. The main toxin variant in this solution is Microcystin-LR. 

 

The concentration of total microcystin is measured through an indirect competitive-ELISA 

immune assay with an Abraxis Microcystins-ADDA ELISA kit (Product No. 520011). 

Samples were thinned and measured on microplates (MultiScan FC from Thermo Scientific) 

at a wavelength of 450 nm. The kit includes standards for calibrations of the response curve.  

As the kit has a measuring range of 0-5 µg/L, it was necessary to dilute the concentrated stock 

microcystin solution up to 3-4000 X to obtain reasonable concentration estimates. The stock 

solution was then used to obtain desired concentrations (350 µg/L) by diluting in tap water for 

each water exchange during the experiments.  

Small water samples were taken at intervals from two wells in each experiment, to track the 

microcystin concentrations. These 1-2 mL samples were taken in small glass vials, and frozen 
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immediately. After the termination of each experiment, these samples were analyzed using the 

same ADDA Elisa kit as above. Samples were diluted 150X in ultra-pure water to get within 

the measuring range of the kit. 

2.4 Image Processing and Statistical Analysis 

After euthanasia, copepods from infection groups were dissected on moist microscopy slides 

with microdissection tools (Item no. RS-6061, RS-6063, RS-6067) under a Leica MZ95 high-

performance stereomicroscope. Any slides containing procercoids were transferred to a Leica 

M-125 encoded stereo microscope and photographed at 10x magnification. Photographs were 

processed in ImageJ, which was used to trace the outline of each procercoid and calculate 

surface area.  

For all statistical analyses, the open source programming language R was used with the 

following packages installed: tidyverse (ggplot2), survminer, survival, ggpubr, magrittr, 

svglite. The mean area of both groups was compared using a t-test and a one-way ANOVA. 

Survival analysis was used to plot mortality curves and predict the day of death of all four 

copepod groups.  

See Appendix 1 for R codes for all analyses, and Appendix 2 for copepod mortality in E1 and 

E2, and parasite abundance and procercoid area data in E1. 
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3 Results 

3.1 Experiment 1 (E1) 

Procercoids from combination group were found to have a significantly larger surface area 

(P=.007) than procercoids from the infection group in both t-test and one-way ANOVA. The 

mean of the surface area of the toxin-infection combination group was 0.041 mm2, while the 

infection-only group had a mean of 0.036 mm2 (Fig. 6).  

 

Figure 6. Boxplot of the surface area (mm2) in E1 combination and infection group. Whiskers represent the 

spread of the size in the procercoids. 

In the survival analysis, there was also a significant difference in mortality between the toxin-

infection combination group and the control (P<.001) and parasite (P=.002), but not between 

the two toxin groups (Fig. 7). Mortality in the infection-only group was significantly higher 

(P<.001) than that of the control group. 

The scale parameter 8.22, being larger than 1, indicates that the slope of the hazard increases 

with age in this study, i.e. instantaneous risk of death increases. The survival prediction 

analysis determined the day of death of the control group to be on average 90. For the 

infection, toxin and combination group these were 34, 31, and 30 respectively.  
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Figure 7. Survival analysis mortality curve for the four copepod groups in Experiment 1 (E1). The 

intercept (dashed line) has been added to show the curves in relation to the day of infection (10). 

During dissection, 63 out of a possible 234 gave a total infection rate of 27% based on 

available data. Infections in copepods that were deceased prior to the termination of the 

experiment were left ambiguous. Separated into groups, the infection-only group had a 

slightly lower rate (25%) than that of the combination group at 29%. The two groups had an 

equal number (7) of observed twin infections, although it is impossible to say how many of 

the lost data points represented infection-related mortality, to say nothing of the twin or single 

nature of these. 

Water levels of microcystins in toxin groups were measured over three days at the end of the 

experiment. Measurements hovered between 250-500 µg/L for values that weren't too great to 

be measured accurately by the test kit (Fig. 8). 
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Figure 8. Representation of microcystin levels in toxin groups in Experiment 1. Measurements based on 

separate sample wells containing a single copepod. 

3.2 Experiment 2 (E2) 

 

Figure 9. Survival analysis mortality curve for the four copepod groups in Experiment 2 (E2). The 

intercept (dashed line) has been added to show the curves in relation to the day of infection (9). 
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Despite promising hatching rates (>50%) and highly motile coracidia, only one procercoid 

(from the combination group) could be identified upon the termination of the second 

experiment (E2). Unlike in E1, copepods from parasite groups were also dissected throughout 

instead of being preserved in formalin for later analysis.  

At no point was the physical presence of S. solidus procercoids detected. While there was a 

significant difference in mortality between control and the combination group (P=.001), and 

combination and infection (P<.001). There was no significant difference in mortality between 

the two toxin groups (Fig. 9) or between infection and control. 

The survival prediction analysis determined the day of death in the control group to be day 86 

on average. For the infection, toxin and combination groups, the days of death were 51, 34, 

and 28, respectively. The toxin is thus seen to be a more significant cause for mortality than 

parasitism alone, and no interaction effects between toxin and parasite could be detected. 

Unlike in E1, water levels of microcystins in toxin groups were measured every day from start 

to finish. Measurements hovered between 200-325 µg/L for most of the period, except for the 

three days of the last feeding-water change-cycle, upon which it dipped dramatically below 15 

µg/L (Fig. 10). 

 

Figure 10. Representation of microcystin levels in toxin groups of Experiment 2. Measurements based on 

separate sample wells containing a single copepod. Error bars represent standard error. 
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4 Discussion 

While no significant difference could be detected in the survival analyses between parasite 

and the combination group, the parasite seemed to hurt the survival of the host when 

compared to the control. This was expected, as, like most parasites with complex life cycles, 

diphyllobothrids lower the fitness of their intermediate hosts (Benesh and Hafer, 2012; 

Lievens et al., 2018).  

Interestingly, the parasites in the combination group had a significantly larger surface area 

than those in the infection-only group. This difference might be an artefact of small sample 

size or inconsistencies in harvesting data. However, if not an artefact of small sample size, 

this effect could be due to differences in resource allocation with the toxin present. 

Unfortunately, only one set of area data became available, since the second experiment (E2) 

failed to provide enough mature procercoids for study.  

There are several problems with small sample sizes and statistical inference methods, the 

chief of which being the low statistical power of the sample, but also low reproductivity, false 

positives, and an inflated rate of discovery and effect size estimation (Button et al., 2013; 

Colquhoun, 2014; Forstmeier et al., 2017). However, the total number of copepods (312) was 

deemed adequate after studies with similar a methodology (Hafer and Milinski, 2015) used 

numbers not much higher (744) divided on a whole team of researchers. 

4.1 Concentrations of Microcystin 

Measuring the exact concentration of microcystins in the toxin groups of E1 and E2 was 

difficult. Easier with E2, in which the sample number was increased, but still not without 

limitations. In spite of the dilution of the samples, several measurements were actually above 

the measuring range and had to be disregarded.  

There are a wide variety of methods available to detect the presence of microcystins and other 

cyanotoxins. Among these are bioassays, antibody or enzyme-based assays, or liquid 

chromatography and other chemical analyses (Lawton et al., 1995; Mathys and Surholt, 2004; 

Shamsollahi et al., 2015). For rough estimates in natural environments, real-time PCR assays 

of chlorophyll-a have also been used to indicate toxin levels in harmful blooms (Mathys and 

Surholt, 2004). The standard method for analysis of microcystins is high-performance liquid 

chromatography (HPLC). However, HPLC is costly, time-consuming, and requires 

specialized equipment. For this reason, the method used to measure microcystin 
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concentrations was the Abraxis Microcystins-ADDA ELISA, which is routinely used to 

estimate microcystin levels also in Norwegian freshwater monitoring. This kit has some 

limitations as it is designed mainly to determine water safety. The method does not 

differentiate between microcystin congeners or exclude nodularins (cyclic pentapeptides). It 

is even suggested in the kit protocol that positive samples should be confirmed with more 

conventional methods. 

During E2, a biofilm started to form on the inside of the stock solution bottle with the 

microcystin concentrate. The bottle had been frozen until use, and the nature of the biofilm 

was not qualified, but it likely contained sulfur bacteria as the solution started to smell 

unmistakably of hydrogen sulfide gas (H2S). The odour was faint but pervasive, and the 

solution was centrifuged and resuspended to clear it for impurities. Microcystin-levels during 

this time remained steady until the solution was filtered through a 0.45 μm polyethersulfone 

(PES) membrane filter. This last step completely cleared the concentrate for biofilm, but the 

levels of toxin also dropped dramatically (Fig. 10). This surprising turn of events, fortunately, 

happened during the last three days of the experiment.  

Aerosolized microcystin particles measure between 1-30 μm and microcystin solved in water 

is not known to form micelles or aggregates (Cheng et al., 2007). In theory, the toxin 

concentration should have remained similar before and after filtering. The reason for the drop 

might have been because the toxin molecule was covalently bound to cysteine residues of 

proteins (Zilliges et al., 2011). The toxin could also have been trapped in porous particles 

large enough to be caught in the PES filter. Overall, the toxin levels were well above what is 

considered high in a natural system.  

There were several faults with the first experiment (E1) that I attempted to avoid in E2. The 

main issue with E1 is the likely loss of crucial data points. Copepods that expired before the 

termination of the experiments, where fixated in osmotic 4% formalin to be dissected later, 

when equipment and training became available.  

Limnologists have implemented the protocol of utilizing 4% sucrose-formalin to fixate and 

preserve morphological detail in zooplankton samples since the 1970s (Haney and Hall, 

1973). While the exoskeleton was preserved perfectly, its content had run together into a 

fuzzy, brown substance, and no signs of parasites were apparent. It is unknown whether this 

was because the parasite had left the dying host, failed to establish, the host died before the 

growth phase, or because the procercoid too had been degraded. The standard for soft tissue 
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preservation among histologists is 10% neutral buffered formalin (NBF) (Matsuda et al., 

2011), and perhaps this method would have made plankton samples more viable for dissection 

as well.  

To detect the presence of parasites in degraded samples, one could, in theory, use quantitative 

PCR (qPCR) to measure differential RNA expression in some genes from fresh or snap-

frozen and pooled samples (Pawluk et al., 2018). RNA extraction of snap-frozen samples 

could also possibly have worked on single copepods, even if tiny tissue samples can be 

problematic (Grinstein et al., 2018). Looking at protein or enzyme activity, or other markers 

for oxidative stress, such as the presence of reactive oxygen species (ROS) or ROS tissue 

damage, would be very difficult, if not impossible with the small sample size that the fixated 

copepods provided (Berg et al., 2014).  

The pooling of individuals might have been possible, but the cost of these procedures would 

have run over budget. Because of these difficulties, it was decided it would be prudent to run 

an improved version of the experiment once more. However, while E2 shaped up to be a more 

streamlined experiment overall, procercoids failed to develop in all but one copepod in an 

infection group. 

4.2 Lack of Procercoids in E2 

Due to severe flooding and poor weather conditions, S. solidus breeding stock could not be 

obtained in time from our usual source of Lake Skogseidvatnet (60°13′ N, 5°53′ E) in Fusa, 

Norway. As a backup, eggs from two families of laboratory-bred parasites were used instead. 

Both lineages hail from Hörsteller Aa (52°17'31.2"N 7°36'47.0"E), a brook in Hörstel, 

Germany. Previous laboratory studies using this lineage had an infection rate of 50% for C4 

and C5 copepods, and an infection rate of up to 80% for C3 and earlier stages (Scharsack, 

personal communication, May 2020). The observed hatching rate of these eggs in E2 was c. 

50%, if not more, and the coracidia were motile, indicating successful hatching and 48 hours 

viability at 18 °C (Smyth and McManus, p. 199, 1989).  

The method for infection was also the same as for E1, and copepods were observed to grab 

and ingest the coracidium put into their well immediately. It remains a mystery why all but 

one copepod in the infection groups failed to show any signs of an active infection. As stated, 

the mortality in the infection-only group was significantly higher than that of the control 

group, so the parasite likely had some negative effect on the host's fitness. However, chemical 
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or molecular immune parameters were not measured during this experiment. Various methods 

outlined above were discussed with Jörn Peter Scharsack and Joachim Kurtz of the University 

of Münster, but time and financial limitations made these impractical. 

Naturally, parasite prevalence varies greatly with season and habitat, as well as between and 

within host populations. For example, in two Eucyclops serrulatus populations from Northern 

Germany, the parasite prevalence ranged from 0-3% (Becker, 2004). In Scottish populations 

of a possible S. solidus host, the copepod Cyclops strenuus, the prevalence of its fish 

tapeworm (Diphyllobothrium spp.) showed a seasonal variation in prevalence of 0.5-35% 

between August and October (Pasternak et al., 1995). Strains of S. solidus varies in how 

virulent they are in the second intermediate host (Ritter et al., 2017), but no studies showing 

how establishment differs between populations of copepod species.  

Kalbe et al., 2016 found that the infection phenotype of the parasite-stickleback-system of S. 

solidus was dependent on both variability within host and parasite populations, but not the 

interaction between them. The Norwegian parasites (also from Lake Skogseidsvatnet) showed 

higher infectivity than their German counterparts, and Norwegian sticklebacks had a higher 

parasite resistance overall. The three critical stages of infection outcome as proposed by van 

der Veen and Kurtz, 2002, identifies an establishment phase (ingestion), gut penetration, and 

growth phase. The latter two are both likely candidates for why the parasite failed to manifest. 

During the gut penetration phase, larger host individuals are protected mechanically from 

infection based on tissue thickness.  

The peritrophic matrix (PM) is a chitinous membrane secreted by the cells in the arthropod 

midgut, which protects the gut wall from abrasions and mechanical damage. Parasites that 

have a growth stage in the haemocoel, need to penetrate this layer (Miller and Lehane, 1993). 

The PM is thicker in species of free-living copepods, and proportionally thicker in larger 

individuals (Yoshikoshi and Kô, 1988). Thus, this might provide an additional barrier against 

tissue invasion from parasites. PM degradation is associated with reduction of growth and 

survival (Minoo Sajjadian and Hosseininaveh, 2015). Copepods in E2 might have been well-

nourished and large enough for S. solidus to properly penetrate the gut wall, but still be left 

with debilitating damage to the gut tissue after the phase two was attempted. This would 

account for the increase in mortality in the infection-only group versus control. Copepods are 

unable to eliminate parasites once they have penetrated into the haemocoel, possibly due to 

immune suppression or biochemical camouflage (Loker, 1994). 



30 
 

4.3 E1 and E2 Culture Differences 

While the E1 and E2 copepods came from the same culture, they were treated somewhat 

differently prior to the experiments. The E1 copepods lived mainly on ciliates and other 

protozoans present in the inoculated water. The culture after E1 was maintained similarly but 

also got a supplement of live Artemia nauplii once a week in the months prior to E2. This 

would result in a more thorough inoculation by facilitating bacterial growth from Artemia that 

were not preyed upon. It would also provide copepods with a nutritional boost that would 

result in higher female fecundity, which would end in least three new egg sacs after being 

isolated from the rest of the population in E2.  

Both eggs and the copepods had stores of reddish lipid droplets, most likely esterified 

astaxanthin, a carotenoid pigment (Gilchrist et al., 1960). Astaxanthin (both free and 

esterified) has been shown to protect against oxidative stress from UV radiation and 

xenobiotics (Caramujo et al., 2012; Moeller et al., 2005). More recent research has suggested 

that carotenoid-accumulation in body tissues also has an immunorestorative effect in 

crustaceans (Weaver et al., 2018). It is likely that this might have affected the general 

receptiveness to all infections, including macroparasites.  

Astaxanthin accumulation might also have been a result of parasite manipulation of the host, 

as pigment changes serve to make intermediate hosts more conspicuous to the final or nest 

intermediate host. S. solidus host manipulation is well-known in both intermediates (Hafer 

and Benesh, 2015; Scharsack et al., 2007). However, to date, there have been no published 

studies that also show pigment manipulation, such as how Bakker et al., 1997 described 

parasite-induced changes in colour in another crustacean prey of the stickleback. 

Both virulence and the chances of establishing an infection increases with the number of 

coracidia administered intermediate hosts of S. solidus (Heins et al., 2019; Wedekind, 1997). 

Because of the possibility of a higher infection rate and a more dramatic parasite-toxin-

interaction, two coracidia was given to each copepod in the infection groups of E1. However, 

while twin infections were counted in E1, procercoids from confirmed double infections were 

excluded from area measurements since intraspecies competition leads to proportionally 

smaller parasites and single-worm infections seem to be the norm in this host-parasite system 

(Wedekind, 1997). Administering exactly two coracidia is also manually a more difficult task 

than isolating one. For E2, it was thus decided to risk a slightly lower infection rate to remove 

a variable and gain a larger number of viable data points for the area measurements. 
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In insects, evidence of adaptive or specific mechanisms is suspected though not confirmed, 

though poorly understood and might also be a "loitering" innate response (Cooper and 

Eleftherianos, 2017). In crustaceans, adaptive immune responses have yet to be detected 

(Vazquez et al., 2009) and host-parasite interactions in copepods seem largely based on innate 

immunity (Kurtz, 2007). Kurtz and Franz, 2003, were able to show that while copepods 

infected by S. solidus cannot reject the parasite once established, their innate immunity does 

limit the growth of the procercoid. According to Scharsack et al., 2007, both host and parasite 

suffer from reduced to no reproduction during infection.  

However, most E1 and E2 copepods were seen to produce new egg sacs post-infection. This 

was especially apparent in the E2 cohort, in which some females sustained as many as two 

new clutches post-infection. No differences were observed in any of the groups, although the 

exact number of clutches wasn't logged for all individuals due to the rapid rate at which they 

developed and started the cycle anew. 

It is possible that parasites in E2 could have failed to develop due to troubles penetrating the 

gut wall, a more robust host immune system due to astaxanthin accumulation, acute 

microcystin toxicity, seasonal variation, host compatibility, or a combination thereof. It is 

unlikely to be changed by resource depletion in the host after the parasite had established 

itself, especially since E2 copepods were very well-fed and had continued fecundity 

throughout the experiment.  

As suggested by Franz and Kurtz, 2002, there is no effect of the S. solidus infection on the 

muscles or storage lipids of its copepod host. Rather than direct host-manipulation, the 

physical condition of the host would be a more likely cause of altered host behaviour (Hafer 

and Benesh, 2015). Something that was also touched upon by Michaud et al., 2006, who 

found that multiple infections far exceeds the energetic requirement of a single procercoid. 

4.4 Parasite-Microcystin Synergies 

In E1, procercoids from the combination group were shown to have a significantly larger 

surface area than parasites from the infection-only group. Given this is not an artefact of small 

sample sizes, this might be indicative of an infection-toxin synergy. If the toxin affects the 

host, it will also have an effect on the parasite inhabiting it—the question is, how?  

It is in the parasite's best interest for the host to survive for long enough for the parasite to 

reach the next stage in its life cycle. Virulence is typically defined as the severity of 
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pathogenicity, or the organism’s ability to inflict damage (Pirofski and Casadevall, 2012). 

There are several evolutionary factors influencing virulence. A common trade-off is between 

fecundity and longevity in both parasite and host (Frank, 1996). It was believed for some time 

that a parasite’s virulence was ever decreasing during a species’ evolutionary timeline, and 

that severe infections were the mark of novel pathogens. This is because it was thought that 

infections leading to the disability or death of the host would also be harmful and unwanted to 

any parasite inhabiting it. Pathogens would thus evolve towards avirulence, or mutualism 

(Alizon et al., 2009).  

This avirulence hypothesis was later replaced by a new model of explanation in the 1980s. 

Anderson and May (1982) and Ewald (1983) challenged the previous model by pointing out 

that a pathogen that is too restrained, will eventually lose out to eventual competition, such as 

a more aggressive strain. What was dubbed the "trade-off hypothesis" represents somewhat of 

a paradigm shift in the world of parasitology and epidemiology. The trade-off hypothesis 

would later be modified to include other life history traits and mechanisms (Alizon et al., 

2009). We now operate with models of optimal virulence—the knife edge of virulence and 

avirulence on which a parasite balances in order to maximize its own reproductive success 

(Bull and Lauring, 2014).  

The prevalence of virulence is also expected to relate to host stamina. Once established, the 

copepod cannot get rid of the parasite, but they can still regulate parasite growth (Benesh and 

Hafer, 2012; Scharsack et al., 2007). So, when potent toxins like microcystin is present in the 

environment, this might lower the capacity of an already weakened copepod to regulate this 

system. The well-fed and robust E2 copepods might thus have been better at fighting off 

infection early on, or prevent growth, even with the toxin present. 

As previously mentioned, helminths act as pollution sinks for several types of xenobiotics, 

including heavy metals and persistent organic pollutants (POPs) (Hassan et al., 2018; Le et 

al., 2014; Teimoori et al., 2014). Palikova et al., 2013 were able to show that the 

diphyllobothrid Khawia sinsensis can also accumulate microcystins in a similar manner to 

that of other pollutants. The effects of the toxin on the parasite, or how it affects host-parasite 

dynamics is still unknown, and it is unfortunate that these findings are, as of yet, singular due 

to lack of research in this area. 

Because procercoid and plerocercoid growth in intermediate hosts may affect the transmission 

rate and adult size, larval development is conditionally optimized (Michaud et al., 2006). In 
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general, procercoid growth is density-dependent, with maximum natural growth occurring in 

infection-onlys (Dupont and Gabrion, 1987). The development of procercoids appears to be 

independent of the life-stage of the copepod host, but nauplii and copepodites are more 

readily infected (Oliver and Boyd 1969 cited by Smyth and McManus, 1989). However, while 

procercoids commonly develop to a larger total size in adult females, they are proportionally 

larger compared to the size of adult male hosts (Wedekind et al., 2000). 

In vitro studies mimicking the internal environment of copepods found that procercoids could 

grow longer than their largest intermediate hosts (1.5 mm) when unencumbered by 

mechanical and immunological factors (Jakobsen et al., 2012). Environmental contaminants 

such as polychlorinated biphenyls (PCBs) produce immunosuppressive effects which 

facilitate infections by the trematode Anguillicola crassus in eels (Anguilla spp.). In the 

roach (Rutilus rutilus), endocrine disruption due to chemical activity is exasperated by fish 

tapeworms, such as Ligula intestinalis (Sures, 2006). In invertebrates, this interaction was 

also demonstrated with how molluscs’ response to pathogens changes with the presence of 

environmental contaminants (Morley, 2010).  

Global and local changes in climatic conditions affect both bioavailability and toxic effects of 

pollutants (Schiedek et al., 2007), as well as host susceptibility and parasite development and 

transmission (Harvell et al., 2002). This change in environmental stressors could affect both 

host-parasite dynamics as well as the biology of parasite populations (Morley et al., 2006). 

Toxicant-parasite interactions on lower trophic levels might lead to bottom-up effects in 

which higher-trophic organisms, or the entire ecosystem, would be affected. 

5 Conclusions 

After two studies, neither hypothesis on the effects of microcystin on the copepod-

Schistocephalus-system could be fully supported by the data. Microcystin did however prove 

to increase mortality significantly in both toxin-only and toxin-infection combination groups. 

This might point to a toxin-parasite interaction in which the host’s immune system is 

weakened by the toxin and accidentally turns the infection more virulent. Based on how 

increasing environmental temperatures promote S. solidus fitness and growth (Franke et al., 

2017) one can also surmise that an increase in environmental toxins could also change the 

host-parasite dynamics.  

The parasites in the combined toxin-infection group also grew larger than the procercoids of 

the infection-only group. The immune response of the host most likely hindered the growth of 
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the parasites in the infection only groups. As the parasites themselves seem to be equally 

infectious and vital in both groups, this effect could be attributed to a weakening of the host’s 

immune system, leading to increased parasite growth. 

Toxin-infection interactions did not show any significant effect on the mortality of the host or 

the parasite. This was unexpected, as microcystin has shown to have detrimental effects on all 

trophic levels in aquatic ecosystems. Likely, Macrocyclops albidus is able to cope well with 

high concentrations of microcystin, and further research might look at more extreme 

concentrations to uncover more dramatic synergies.  

Given more resources I would also have liked to study the immunological parameters of both 

host and parasite using biomolecular methods. This would give me additional insight into the 

host-parasite relationship and its interaction with environmental factors. 
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