Symmetric Ciphers for Fully
Homomorphic Encryption

Hakon Thorvaldsen

Master thesis at the University of Bergen, Norway

June 2020

© Copyright Hdkon Thorvaldsen
The material in this publication is protected by copyright law.

Year: 2020
Title: FHE Master thesis at the University of Bergen
Author: Hakon Thorvaldsen

Acknowledgements

I would like to thank my supervisor Havard Raddum for his support, and ability to simplify
and make some of the hard topics included in the thesis understandable. I would also like to
thank the people of Simula@UiB for being there for valuable discussions and providing an
excellent workplace environment.

v

Acknowledgements

Abstract

Fully homomorphic encryption is the latest addition to the world of cryptography. It is a type
of encryption that allows operations to be done on ciphertexts, which is not possible with
traditional encryption. The field has gained a lot of traction since it was first theoretically
proved possible in 2009.

This thesis goes through how fully homomorphic encryption works, from making a some-
what homomorphic encryption scheme, into a fully homomorphic scheme. We also explain
in detail the different aspects required, such as bootstrapping and noise.

Since 2009 several schemes and libraries to optimize homomorphic encryption have been
suggested, so that it one day may be feasible to implement it in regular modern-day appli-
cations. Some libraries target regular developers without an extensive cryptographic back-
ground, so they may still be able to use homomorphic encryption in applications, while others
aim for researchers to implement and discover the possibilities that come with fully homo-
morphic encryption.

With a focus on the use for fully homomorphic encryption within cloud computing, this
thesis focuses on how symmetric ciphers can make fully homomorphic encryption possible,
also for use with small IoT devices. We look at several such ciphers that have been suggested
and focus on the family of stream ciphers called Rasta. We have implemented one variant of
the Rasta cipher using the software library HElib and timed its performance.

vi

Abstract

Contents

Acknowledgements iii
Abstract v
1 Introduction 1
1.1 Cryptography e 1
1.1.1 Classical Ciphers 2

1.1.2 Modern Cryptographic Primitives 3

1.1.3 Digital Signatures 4

1.1.4 Fully Homomorphic Encryption 5

2 Fully Homomorphic Encryption 7
2.1 Homomorphic Encryption 7
2.2 Fully Homomorphic Encryption. 8
221 NOISE . . o v ot e 9

2.2.2 Bootstrapping e e e 10

2.3 Learning With Errors and Ring Learning With Errors 10
24 FHE Schemes 12
241 BGVScheme 12

242 CKKSScheme 13

2.5 FHE Libraries e 15
251 HElb. 15

252 Microsoft SEAL 15

253 PALISADE 15

3 Symmetric Ciphers Designed for FHE 17
3.1 UseCaseScenario v v i v i v it e 17
3.2 Designing Ciphers foruseinFHE 18

33 FLIP . . e 18

34 Kreyvium e e e 20

3.5 LowMC . .« . e 23
35.1 S-boxof LowMC 23

352 LinearLayer e 23

3.6 Rasta e 24
3.6.1 Permutation 25

3,62 Affinelayers 25

3.6.3 Generation of Matrices and Constants 26

viil

CONTENTS

4 Implementing Rasta in HEIib
4.1 Previous Implementations and Variants

4.1.1

4.2 Our Implementation in HElib
Parameters
Initialization in HElib
4.2.3 Affine Layer
4.2.4 x Function
4.3 Timed Performance

4.2.1

422

5 Conclusion

Bibliography

Appendix Source Code

Chapter 1

Introduction

In modern human society, many parts of our lives have become digital. Most of us are walk-
ing around with a pocket computer, and WiFi signals can be found everywhere in urban
areas. Given all this digitization most of our communication is thereby digital. To ensure
that our communication is only read by our intended recipients and that our recipients know
that the message is indeed from us, we need confidentiality, integrity, and authentication.
Confidentiality ensures that the message is secret, while integrity is to ensure that there has
been no tampering of the message after it was sent. Authentication enables us to know that
the sender of the message is whom he or she claims to be. To enable these features of modern
communication, we need cryptography.

1.1 Cryptography

Cryptography is the science of secret writing with the goal of hiding the meaning of a
message [14]. Cryptanalysis is the science of breaking and discovering weaknesses in cryp-
tographic security systems. Together they form the two main branches of the more general
term cryptology. This thesis will focus on the cryptography part of the science and not on
the cryptanalysis.

When we want to send a secret message to someone, we will scramble our message and
provide our recipient with a key so that our message can be unscrambled to a readable mes-
sage, which makes sense to the recipient. This scrambling and unscrambling are called en-
cryption and decryption. It is crucial for security that the key used does not fall into the wrong
hands. Because an adversary with knowledge of the cryptosystem and the key will be able
to decrypt the ciphertext and read the message in its plaintext form.

In general, an encryption scheme is based on two or three algorithms. The first algorithm
encrypts the plaintext into ciphertext. The second, usually closely related, decrypts the ci-
phertext back into plaintext. Furthermore, a third algorithm may be used, depending on the
scheme, to generate different the keys used in the previous algorithms.

Diftferent cryptosystems vary a lot, but all modern cryptosystems follow to some degree
the principles that the Dutch cryptographer Auguste Kerckhoff published in the paper Le
Journal des Sciences Militaires in 1883:

1. The System must be indecipherable, at least in practice if not mathematically.

2 1. Introduction

2. The system must not be required to be secret, and must be able to fall into the hands of
an enemy without inconvenience.

3. The encryption key for the system must be capable of being stored and communicated
without the help of written notes, and to be changed or modified at the will of the
communicating parties

4. The system must be capable of being applied to telegraph.

5. Equipment and documents of the system must be portable, and their usage and function
must not require the gathering or collaboration of several people

6. Lastly, the system must be easy to use and should not be stressful or require the user
to know and comply with a long list of rules.

Not all of the principles are as relevant today, of course, but especially the second prin-
ciple still stands strong. The idea behind this principle is that with a publicly known system,
where all details are public knowledge except for the key, the adversaries still will not be able
to decipher the messages. Hence the security of the scheme should not rely on the obscurity
of the cipher to provide security. Another security technique is called ”security through ob-
scurity”, which relies on the adversary not knowing how the encryption scheme works to
provide security. However, this practice is not recommended and rarely used. Today most
schemes are made public before being deployed in practice so that cryptanalysts may test
and discover weaknesses or flaws of a system before an adversary may.

To ease into some examples of encryption schemes, we will start by explaining a few of
the classical ciphers.

1.1.1 Classical Ciphers

Humans have used cryptography to hide one’s messages from an unwanted reader for thou-
sands of years. Maybe the most famous of the classical ciphers is the Caesar cipher credited
to Julius Caesar(100BC-44BC) as one of the first encryption techniques. It is a very simple
substitution cipher which moves the letters of an alphabet by k£ positions, making the number
of positions £ the key.

A B C D . Y
D E F |G | - | B |C

Figure 1.1: Table showing encryption/decryption of letters in the Latin alphabet, where the
key k = 3.

A plaintext message will have all its characters encrypted with a right or left shift £ times
in the alphabet to get a corresponding ciphertext. For the recipient to decrypt the message,
they would shift the characters of the ciphertext k£ times in the opposite direction from en-
cryption. Hence if we used a left shift of £ = 3 for encryption, we would use a right shift of
k = 3 for decryption.

1.1 Cryptography 3

The biggest flaw of the cipher is its key space. The number of possible keys for the Caesar
cipher is only 25 for the Latin alphabet. Shifting letters more than this is pointless since a
shift of 26 is the same as not shifting at all. This leaves the cipher vulnerable to brute force
attacks on the key. One could imagine trying all different 25 shifts on a small piece of the
ciphertext. Then with pen and paper, it should not take too long to find the key. Another
attack that the cipher is vulnerable to is the letter frequency attack. Given a language, some
letters are used more frequently than others. Within a few tests, we can get a high probability
of figuring out the key by comparing the most frequent letters in the ciphertext to the most
frequent letters in that language.

The Caesar cipher is a substitution cipher that replaces each character in the plaintext with
another in the ciphertext. Another type of cipher is the transposition ciphers. Here, instead of
substituting the characters, they are instead scrambled in some smart way. A classic example
of this would be the Greek Scytale. The entire message was written in one line on a parchment
piece that could be rolled around a cylinder. If the cylinder had the right width, the parchment
would create a meaningful text while wrapped around the cylinder. However, without the
cylinder, it would be hard to determine in what order the letters should be read. So in this
scheme, the width of the cylinder is considered the key k. See Figure 1.2

tlhlel|s|c|y|t
lehasdeh/
clrly|p|t]|eld —k
tlhle |m|lels|s

algle

Figure 1.2: Figure showing how a message could be read of a Scytale.

1.1.2 Modern Cryptographic Primitives

All classic ciphers have in common that they use the same key for both encryption and de-
cryption. Having one key was enough since the only goal of the classical ciphers was con-
fidentiality. This way of encryption and decryption, where there is only one key, is called
symmetric key cryptography. It was not until after World War II and the development of
the modern computer that the cryptography term was expanded to include primitives such as
asymmetric encryption, hash functions, and digital signatures, to mention a few. These prim-
itives are combined to create robust encryption systems to secure modern communication.
Asymmetric cryptography, or public-key cryptography, was publicly introduced in 1976
by Whitfield Diffie, Martin Hellman, and Ralph Merkle. The revolutionary idea behind
asymmetric cryptography is that the key possessed by the person who encrypts the mes-
sage is not required to be secret. The crucial part is that the receiver is the only one able
to decrypt the message with their secret key. For this to work, the receiver needs to have a
public key so that everyone can encrypt messages and send it to the receiver. However, only
the receiver can decrypt the messages using their corresponding secret key. This means that

4 1. Introduction

in an asymmetric cryptography scheme, the keys are pairs of keys that share a mathematical
relationship that is infeasible to solve. Hence why the public key can indeed be public.

The principle behind asymmetric encryption is called the one-way function. a function
f() is a one-way function if:

y = f(x) is easy to compute, and the inverse
r = f~(y) is computationally infeasible.

Two widely used one-way functions are the integer factorization problem and the discrete
logarithm problem.

Asymmetric cryptography makes a wide variety of applications possible over the inter-
net today. Some of these applications would not exist without it, such as digital signatures.
In our modern world, it would not be sufficient with a single encryption algorithm if we
wanted a secure system. So what we do is combine several cryptographic primitives to make
more robust and secure systems. Hence primitives such as digital signatures, hash functions,
MACs, and symmetric and asymmetric cryptography can be viewed as building blocks for
our modern communication systems.

1.1.3 Digital Signatures

Digital signatures are widely used and an essential cryptographic tool used in the modern
world of communication. Digital signature applications range from digital certificates for
secure browsing to the signing of legal contracts and software updates on our computers.
Digital signatures share with handwritten signatures the feature that they provide a method
to assure that a message is authentic. Digital signatures must be based on asymmetric cryp-
tography to work. The Basic idea is that the person who signs the message signs it using their
private key, and the receiver verifies it using the corresponding public key.

Hash Functions

Hash functions are another widely used and an important cryptographic primitive. They com-
pute a short, fixed-length bit string that is a unique representation of a message. In contrast to
traditional cryptographic algorithms, hash functions do not have keys. They are an essential
part of digital signatures and message authentication codes. However, they are also used for
a wide variety of applications, such as storing password hashes or key derivation and is an
essential part of the block-chain technology.

Message Authentication Codes

A message authentication code (MAC) can be viewed as a keyed hash function. In terms of
security functionality, MACs and digital signatures share some properties. Because MACs
also provide message integrity and message authentication, however a difference from digital
signatures is that MACs are symmetric-key schemes and can not provide non-repudiation.
Given that they are based on symmetric primitives, they are faster than digital signatures to
compute.

1.1 Cryptography 5

i
1
Client ! Cloud provider
|
1
Decrypt et
L
1
i
1
Operation i
1
1
! Encrypted
1 Data
i
!
Result ! Homomorphic
N i operation

1
1 p ~
1 .
1
1
1
1
1
1

e
|7.7

‘ Decrypt }4’:

AN e 1
1

Figure 1.3: FHE allows for the cloud to operate on encrypted data.

1.1.4 Fully Homomorphic Encryption

One of the latest forms of encryption is fully homomorphic encryption (FHE). This form
of encryption allows for operations to be done on encrypted data, and when decrypted, the
result is as if the operations were done on unencrypted data. This allows for some exciting
use cases within cloud computing. However, given we are still somewhat in the infancy of
fully homomorphic encryption, it is still being developed for the future. A more detailed
description of how FHE works will be described in chapter 2.

Cloud computing has been mentioned as the primary use case for FHE. In traditional
cloud storage and computation solutions, the cloud has been required to have access to the
unencrypted data or the decryption key to be able to do computations on the customer’s
data. This necessarily exposes the data to the cloud provider. Therefore data privacy relies
on access controls implemented by the cloud provider, and the customers have to trust these.

With FHE we can move this trust over to cryptography. With the use of FHE the cloud
provider will never have access to the unencrypted data they are storing and doing compu-
tations on. We can see in Figure 1.3 that two paths are leading to the same result. The red
arrows show a path where traditional encryption has been used, and the blue path shows
where FHE has been utilized. In traditional encryption (red), the client has to download and
decrypt the data before doing any meaningful operations on the data. Only then can the client
get their result.

Meanwhile, the blue path shows a scenario where the data has been encrypted using FHE.
In this case, the cloud can do homomorphic operations on the data to get an encrypted result,
and the client only needs to download and decrypt this result. Hence the client will not need
to do any of the computations on the data.

1. Introduction

Chapter 2

Fully Homomorphic Encryption

This thesis’s primary focus is on fully homomorphic encryption, a form of encryption that
enables computations on encrypted data. FHE allows for some exciting applications where
we do not have to decrypt the data before working on it, or even better, outsource the work to a
cloud without compromising privacy. There are, however, some limitations on homomorphic
encryption.

The idea of FHE was first introduced in 1978 by Rivest, Adleman, and Dertouzos [17].
In their paper they discuss one of the limitations of standard encryption of data, that all
encrypted data needs to be decrypted before any operations on the data can be performed.
The scientists thought that a solution to the problem existed with functions that allowed
for operations on data without decryption. A working solution was not found until Gentry
found a solution in his 2009 paper [9]. Rivest, Adleman, and Dertouzos write about special
encryption functions that would allow such operations without decryption. In their paper they
are called ”privacy homomorphisms”, today we call them homomorphic encryption schemes.

2.1 Homomorphic Encryption

Since 1978 several schemes have been able to permit operations on encrypted data. However,
the early schemes only allow for either addition or multiplication, and can not handle both.
These schemes are called homomorphic encryption schemes, and allow for either addition
or multiplication, such that when operations are done on encrypted ciphertext the result after
decryption would be the same as if the operations had been done directly on the plaintext.
For example, the unpadded version of RSA is homomorphic with regards to multiplication.
The following list shows how RSA key generation works:

1. Select two large primes p and ¢

2. Calculaten =p-q

3. Calculate ¢p(n) = (p—1)- (¢ —1)

4. Chose an e such that 1 < e < ¢(n) and ged(¢p(n),e) =1

5. Find d such that d-e =1 mod ¢(n)

8 2. Fully Homomorphic Encryption

Here e is the public encryption key and d the private decryption key. The plaintext is
m with corresponding ciphertext c. The public key is the pair (e, n) that anyone can use to
encrypt their message and send it to the recipient. Only the recipient can decrypt with their
private decryption key d. Also, p and ¢ must be kept secret.

Encryption and decryption are done as follows:

Encryption: Enc(m) = m® =c¢ mod n

d

Decryption: Dec(c) = ¢ =m mod n

Let my and ms be two arbitrary plaintexts, with e as the public key and d as the private
key:

Enc(my) - Enc(mg) = mi{-mg = (my -m2)® mod n = Enc(my - ms) (2.1

We can see from equation 2.1 that it does not matter whether we encrypt the plaintext or
not before the multiplication, as the result would be the same. Therefore we can say that the
scheme is homomorphic in terms of multiplication. Let us see what the equation looks like
for addition:

Enc(my) + Enc(msg) = m{ + m§ # (my +m2)® mod n = Enc(my + ms) (2.2)

As we can see, equation 2.2 does not hold, so RSA is homomorphic for multiplication,
but not for addition.

2.2 Fully Homomorphic Encryption

In 2009 Craig Gentry presented the first fully homomorphic encryption scheme that worked
for both addition and multiplication [9], using a lattice-based scheme. Since the scheme could
handle both addition and multiplication, it follows that any operation on the ciphertext would
be the same after decryption as if the operations had been done on the plaintext. This trait
of FHE gives some very interesting use cases where security and privacy are of importance,
like cloud computing.

There was still a significant problem in his scheme. The encryption was very inefficient
and therefore had very little practical use. Since 2009 there have been many improvements
within FHE, such as the BGV cryptosystem, which we will describe in detail in a later section.
The BGV system still has performance issues, but it is closer to a system that has practical use
cases and could bring FHE closer to commercial use. In 2013 the system was implemented
in Halevi and Shoup’s homomorphic encryption library HElib [11].

Users of cloud computing services may have sensitive data that they are reluctant to share
in plaintext with the cloud, such as medical information about patients or business-sensitive
data. The classic approach here would be to encrypt the data before sending it to the cloud,
but this would not make much sense since it would have to be redownloaded and decrypted
before one could operate on the data. Another approach would be to give the cloud access to
the decryption key. The cloud could then operate on the client’s data, but this is only a safe
solution if the client trusts the cloud provider. Here FHE provides an additional option. If
the cloud can operate on the data without decrypting it, one would not compromise security.

2.2 Fully Homomorphic Encryption 9

The cloud provider does not know what the ciphertext in its possession represents. Therefore
FHE will remove the constraint of having to trust the cloud provider, while still being able
to utilize a cloud’s high hardware power to operate on one’s data.

Gentry’s 2009 scheme starts with a somewhat homomorphic encryption scheme. An en-
cryption scheme being somewhat homomorphic means that a limited amount of operations
can be done on the data while still being decrypted correctly. After this limit has been reached,
the decryption would become incorrect. Some schemes are called leveled homomorphic en-
cryption schemes. These are also somewhat homomorphic, but the limit on the number of
operations is a predetermined parameter. Hence a leveled homomorphic encryption scheme
can, in principle, evaluate arbitrary circuits, but the circuit size must be known beforehand.
In contrast, a fully homomorphic scheme can evaluate arbitrary circuits without needing to
know the size of the circuits at the time of system setup.

2.2.1 Noise

The noise of a ciphertext is a random element added while encrypting, and is needed for secu-
rity in all existing schemes. This value increases for every operation done on the ciphertext,
and if it becomes too big, decryption will no longer be correct. Hence why the somewhat
homomorphic encryption scheme of Gentry will not be able to decrypt correctly after a fi-
nite number of operations. To illustrate this, let us look at a simple scheme over the integers
from [19, p. 50-51], which is homomorphic for both multiplication and addition:

1. Pick an odd number £ as the private key

2. Pick a random ¢ and r, where r < vk

The plaintext space in this scheme is only {0, 1}, and the ciphertext ¢ corresponding to a
message m 1s encrypted and decrypted as follows.

Encryption: Enc(m) =c=kq+2r+m
Decryption: Dec(c) =m = (¢ mod k) mod 2

In decryption we reduce the ciphertext modulo £, leaving the remainder 2r 4+ m, as long
as 2r + m < k. The reason for choosing » < /k will become clear below. After reduction
modulo £, the result is again reduced mod 2, leaving only the plaintext, which means that
the ciphertext has been correctly decrypted into the corresponding plaintext. However, this
is not true if the noise of the ciphertext is too great. The noise is represented by 2r in the
equation. So if the noise is greater than k, reducing modulo £ would not necessarily leave us
with the remainder 2r + m. Thus, making decryption impossible.

We now look at why the scheme is homomorphic with respect to both addition and multi-
plication. At the same time, we will learn how the noise grows when using the two operations.
Let my and m, be two plaintext bits with corresponding ciphertexts ¢ and ¢;:

co = kqo + 2rg + myg
a=kq +2r +my

10 2. Fully Homomorphic Encryption

Addition:
co+c1 = k(qo + q1) + 2(ro +71) + (mo + m1) (2.3)

Multiplication:
co - c1 = k(kqoq1 + 2r1qo + maqo + 2roqs + moqa) + 2(2ror1 + mare + mery) + memy (2.4)
When:

ro+11 < k/2
2ror1 + mory + marg <]{5/2

We can see from the addition of ¢y and ¢; that the sum of the ciphertexts correctly encrypts
the sum of the plaintext bits m, and m,. The same is true for the multiplication, where the
product of the ciphertexts correctly encrypts the product of the plaintext bits. Therefore,
we can conclude that this scheme has the homomorphic properties required. When we are
looking at the noise of the scheme, we can notice a difference in the growth of the noise
from the two operations. The term 2(ry + 1) represents the noise added during addition.
The noise term for multiplication is 2(2rgr; + myrg + mery). We see that multiplication is
far more expensive in the terms of growth of noise. Since the noise terms for addition are
only added together, we will get linear growth of noise. After n additions, the noise would be
approximately n - . For multiplication the growth is exponential, and after n multiplications,
we get a noise term of approximately 7.

2.2.2 Bootstrapping

In order to obtain the fully homomorphic property, schemes must be able to reduce the
noise component that compounds with every addition and multiplication. Bootstrapping is
a method in which the scheme runs its decryption circuit to remove the current noise while
adding some new noise from the decryption circuit itself. For this to be fully homomorphic,
the new noise must be smaller than the noise removed to retain the fully homomorphic prop-
erties. Gentry proposed his bootstrapping technique as a solution to this problem. By taking
the decryption algorithm of the encryption scheme and turning it into a circuit with the ci-
phertext and the encryption of the private key as input, the outcome of the circuit would be
a re-encryption of the ciphertext, see Figure 2.1. If this decryption circuit is cheap enough to
evaluate, then our new ciphertext will have less noise than the original. Hence, allowing more
operations on the ciphertexts to be done, giving us the fully homomorphic property. It is then
possible to evaluate any circuit, running the bootstrapping procedure whenever necessary in
the computation.

2.3 Learning With Errors and Ring Learning With Errors

The schemes we will look at later are based upon the Learning with errors (LWE) problem,
which is a quantum robust method in cryptography, meaning that we could avoid quantum
computers from breaking public-key cryptosystems with this method [10]. The problem can
be stated as follows: For the ring Z7, given a secret vector s, we can calculate as many inner
products a-s = bas we want, but we will only learn the value of b distorted by a value e. Here

2.3 Learning With Errors and Ring Learning With Errors 11

C0,€C1,C2,Cay --Cn—1 Ko, k1,ko, k3, ..., k11

C = Cp,C1,C2,C3,C4,y ..., Cpn1

Figure 2.1: An arbitrary decryption circuit with encryptions of the bits of the ciphertext and
corresponding key as input. The output is a re-encryption of the ciphertext, with less noise
than the input.

e is a small error value that is unknown but taken from a known distribution. The problem
comes down to finding s from the known a and b + e values.

ac Z;
(an,alz, ceey CLln) . (81,52, RN ,Sn) = b1 + €1
(@21, a2, ..., a2,) - (S1,52,...,8,) = b2+ €9
(an1, a2,y - - aNg) - (51,82, ..., 8,) = by +en

The problem can be set up as matrix multiplication where matrix A and vector b are
known, as in equation 2.5.

b=A-s—e (2.5)

If there was no error added to the equation, the problem could easily be solved using
Gaussian elimination. Also, the error values e must be quite small as this will make sure that
the problem has a unique solution for s, given enough samples. Hence the added error is what
makes the problem hard. Defined by Oded Regev defined in 2005 [16].

To expand LWE into Ring-LWE, we use polynomials instead of vectors of integers. The
ring we are working with changes from Z!! to Z,[z]/(z* + 1) and the vectors now become
polynomials.

a(x) = ag 2"t + ag_ox® 4+ -+ a1z + ag

Hence the secret vector s from LWE is a secret polynomial s(z) in RLWE. Instead of
finding the inner products, we now need to use polynomial multiplication. The error poly-
nomials e(x) are taken from a special distribution where the roots in the complex numbers
are small. RLWE can then be given as follows:

12 2. Fully Homomorphic Encryption

ai(z) - s(x) = by(x) + eg(x)

ay(z) - s(x) = by(z) + en(2)

The problem is still to find the secret polynomial s(x), given many samples of a;(z) - s(x)
distorted by e;(z).

2.4 FHE Schemes

Since Gentry’s original scheme from 2009, there have been proposed new schemes which are
considerably more efficient than Gentry’s original. Several of these have been implemented
and tested in various libraries. We are going to focus on some of the more popular ones.

2.4.1 BGYV Scheme

The BGV scheme is named after Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan [10],
who published their scheme in 2011. The BGV scheme is implemented in HEIlib and is a
leveled FHE scheme without bootstrapping. Table 2.1 is a description of the user-defined
parameters needed to initialize a BGV scheme in HElib. The BGV scheme is based on the
RLWE problem mentioned in the previous section.

Description \ Parameter
The specific modulus \ m
Plaintext base [default=2] ‘ P
Hensel lifting [default=1] ‘ r
Number of bits of the modulus chain \ bits
Number of columns in the key switching matrices \ c

Table 2.1: User defined parameters of the BGV scheme.

These user defined parameters will define the scheme’s other parameters, such as the
security level, the number of slots s and the size of each element in a slot d. We will only
focus on the field Fs, as the plaintext space only contains the binary values 0 and 1. This
means that the user defined parameter r will always be 1, and p will always be 2.

Slots

In HElib and the BGV scheme the plaintext bits are stored in an array, whose size is deter-
mined by the user defined parameters. The size of this array is the number of slots in the
instantiation of the scheme. It is determined by equation 2.6:

IG0) (2.6)

2.4 FHE Schemes 13

where ¢ is Euler’s ¢ function.

Every position in the array represents a slot, and the elements in each slot can be from
the finite field Fos. An array is used to store the plaintext bits because BGV supports Single
Instruction Multiple Data (SIMD) operations. SIMD allows for encryption on multiple plain-
text bits in a ciphertext object, where the number of encrypted bits in the ciphertext object is
the number of slots. We will use the notation:

C ={(p1,p2: -, 0s)}

To illustrate that our ciphertext object C' encrypts the plaintext bits p;, ps..., ps.
The homomorphic operations are then computed slot wise in the BGV scheme, meaning
that given two ciphertext objects:

C, = {(a17a27~7a8>}
CQ — {(blabQﬂ“’bS)}

Addition and multiplication homomorphically will be:
Cl + 02 = {(a1 &) b], .., Qg b bs)}

Ci xCy={(a1 ®0by,...,a5 ® bs)}

Here @ is the regular bitwise XOR operation and ® is the AND bitwise operation. By
combining the slots property and the slot-wise operations, we can use ciphertext objects
to encrypt multiple bits and perform several operations simultaneously. This is desired as
without this property one would have to encrypt each plaintext bit a,, as, .., a; and by, b, ..., by
into their own ciphertext objects. In BGV one can encrypt them into only two ciphertext
objects and can add and multiply homomorphically on them using only a single operation
Cy + Csy or C x Cy. This property is advantageous when implementing a decryption circuit
homomorphically since operations done during decryption are usually simple and repeated
multiple times. Therefore it is easy to take advantage of the parallelism provided in the BGV
scheme.

2.4.2 CKKS Scheme

The CKKS [5] scheme was published in 2016 by its authors Jung Hee Cheon, Andrey Kim,
Miran Kim, and Yongsoo Song, hereby the abbreviation CKKS. They all have an affiliation
with the Seoul National University in the Republic of Korea. The CKKS scheme is based
upon the BGV scheme, but it supports approximate arithmetic over complex numbers, and in
particular real numbers, as opposed to the BGV scheme which only works over the integers.
A compelling use case for the scheme are cases where the data is not exact or where data is
being sampled and discretized to an approximate value.

The idea behind using approximate arithmetic in the scheme is to allow for approximate
computations within HE. The main idea is that during approximate computations, we can
treat the encryption noise as part of the errors occurring in said computations.

A ciphertext ¢ of a plaintext m will have the following decryption structure, with the
secret key sk:

(¢, sk) =m + e(mod q) 2.7)

14 2. Fully Homomorphic Encryption

BGV CKKS
ey m
® L J \ J
| % I
q q
€2 it
myms B myms
(—X— \
[|
e* [myma], MSB e’ LSB
|)
L ¥ J g
4 -1
rescaling P mimg
e
p g

Figure 2.2: HE multiplication in BGV. HE multiplication and rescaling in CKKS.

In equation 2.7 e is a small error inserted to guarantee the security based on RLWE. Given
that e is small enough in comparison to the message, this noise is not likely to destroy the
significant figures of m, and a new value m’ = m + e can replace the original message m for
approximate arithmetic. Hence m’ is not exactly the same value as m, but since the error e is
small enough, m' is close enough to the original value.

For homomorphic operations, the error in decryption is maintained small compared to
the ciphertext modulus, such that the computational result is still smaller than q. However,
there is still a problem with bit sizes of messages increasing exponentially with the depth of
a circuit without rounding. The researchers behind CKKS, suggest a solution to this problem
that they call rescaling, which manipulates the message in a ciphertext. For a ciphertext ¢
of a plaintext m where (c, sk) = m + e(mod q), the rescaling procedure outputs a ciphertext
|p~t - ¢](mod q/p) which is an encryption of m/p where the noise has size e/p. This proce-
dure reduces the size of the ciphertext modulus and, as a result, removes the error located
in the least significant bits of the message. At the same time the precision of the plaintext is
almost preserved. Figure 2.2 illustrates the procedure and the difference between BGV and
CKKS. This composition of homomorphic operations and rescaling mimics regular approx-
imate arithmetic. As a result, the required ciphertext modulus bit size grows only linearly
with the depth of a circuit, as opposed to exponential.

The CKKS scheme also uses the same technique as the BGV scheme when it comes
to encrypting multiple messages in a single ciphertext and parallel processing using SIMD.
BGV uses a ring of finite characteristic as the plaintext space, with a small error located in a
separated place in the ciphertext modulus inserted for security. In the BGV scheme this error
can be removed after homomorphic operations. Meanwhile, in the CKKSscheme a plaintext
1s a polynomial contained in a cyclotomic ring of characteristic zero, and the small error
resides in the LSBs. This error can not be removed after decryption, but the decrypted value
will be close to the original message.

With the scheme’s ability to handle real numbers, there have been suggestions to apply
it for data science and machine learning.

2.5 FHE Libraries 15

2.5 FHE Libraries

Today several libraries can be used for research within FHE. HEIlib was the first widely
used open-source library, but today we have some alternatives in Microsoft’s SEAL and
PALISADE.

2.5.1 HElib

HElib is an open-source software library that implements homomorphic encryption, launched
in 2013. HEIib implements both the BGV and CKKS schemes mentioned previously. It can
be viewed as an assembly language for Homomorphic encryption because most of the library
is relatively low level, meaning that it provides low-level routines such as set, multiply, add,
shift, etc. It is written in C++ and builds on the Number Theory Library (NTL) and Gnu
MultiPrecicion Library (GMP). HElib is distributed with the Apache 2.0 license.

HEIlib uses leveled HE schemes, meaning that the parameters need to be predetermined
by the user, as mentioned in Section 2.4.1 about BGV. Due to the low-level approach in
HElib, it should be considered mostly as a tool for researchers, but they claim to hopefully
be able to provide higher-leveled features in the future. HEIib initially only implemented the
BGYV scheme, before including support for the CKKS scheme.

2.5.2 Microsoft SEAL

Microsoft SEAL(Simple Encrypted Arithmetic Library) [18] is an easy to use open-source
(MIT-licensed) homomorphic encryption library developed by the Cryptography and Privacy
research group at Microsoft. Microsoft SEAL has support for the CKKS scheme and the BFV
scheme. The latter is more closely related to the BGV scheme as it also works on exact values.
Microsoft SEAL is written in C++ and should be easy to run and compile in many different
environments. They provide easy to understand code examples for software engineers to
enable them to build end-to-end encrypted data storage and computation services.

The developers goal was to make FHE available to everyone and not just the researchers
within the cryptographic field, due to the many complicated mathematical properties of cryp-
tography and FHE. They claim to provide a simple and convenient API with state of the art
performance. They also provide several examples of code snippets to teach the user how to
use the library correctly and securely.

2.5.3 PALISADE

The PALISADE homomorphic encryption software library [15] is a project intended to pro-
vide an efficient implementation of lattice cryptography building blocks and leading homo-
morphic encryption schemes. PALISADE is designed to provide usability, simpler APIs,
modularity and cross-platform support. The library is offered under the 2-clause BSD open-
source license. PALISADE supports the BGV and CKKS schemes previously mentioned,
but also the BFV-scheme. The library is implemented in C++. The project leaders all have
an affiliation to the New Jersey Institute of Technology, but the project has expanded with a
large community of contributors.

16

2. Fully Homomorphic Encryption

The architecture of PALISADE is divided into several layers where each layer provides
a service to the layer above” or makes use of the services provided by the layer "below”.
The stack is divided into the following layers:

1.
2.

Application: All programs that call the PALISADE library services are in this layer.

Encoding: Implementations of methods to encode data.

. Crypto: Implementations of cryptographic protocols.

Lattice Operations: Higher-level lattice-crypto mathematical building blocks.

. Primitive Math: Low-level generic mathematical operations, such as multi-precision

arithmetic implementations.

Chapter 3

Symmetric Ciphers Designed for FHE

In recent years researchers have been developing solutions based on symmetric cryptography
to ease the heavy burden of HE operations. The heavy operations are outsourced to the cloud,
and weaker devices can run cheap symmetric ciphers while still being able to utilize FHE.
In this chapter we are going to take a look at how this is done.

3.1 Use Case Scenario

The schemes previously mentioned in Chapter 2 are quite expensive to run, due to several
factors such as ciphertext expansion from operating on the data. The ciphertext expansion
could be from thousand-fold to million-fold, which obviously will have a considerable effect
on the efficiency of schemes.

Small devices used in the Internet of Things (IoT) will generally not be able to run FHE
schemes on their own. However, with the use of symmetric cryptography, they might be able
to run a symmetric cipher, which is computationally much cheaper. Symmetric encryption
has proved to give strong encryption with lightweight ciphers even for low processing power
devices.

The use case is such that a device will run a symmetric cipher to encrypt the plaintext P
using key K into the ciphertext C' without FHE. The ciphertext C' is sent to the cloud where
the cloud re-encrypts the bits in C using FHE to create C*.

At system setup, the bits in K have been encrypted with FHE and stored in the cloud as
K*. The heavy operation of FHE-encrypting the key K does not need to be done by the same
device that symmetrically encrypts the plaintext without the use of FHE. Both C* and K* are
encrypted using the same public key. With C* and K* the cloud can run the homomorphic
decryption circuit of the symmetric cipher, resulting in data encrypted only by FHE. Since
the cloud now has access to FHE-only encrypted data, it can do operations on the client’s
data. Figure 3.1 illustrates the process.

Since noise gets added during the homomorphic decryption, we need to find symmetric
ciphers that are cheap and efficient for FHE purposes. A scheme that needs to run bootstrap-
ping for evaluating the decryption circuit will not be useful. Instead, the decryption circuit
must have low multiplicative depth. In recent years it has been a research challenge to find
such symmetric ciphers that use few AND gates but are still secure.

In this section we will look at several proposed symmetric ciphers intended to be used
for symmetric FHE encryption.

18 3. Symmetric Ciphers Designed for FHE

K Public key

Symmetric

C —
cipher 4

e
Ke:
‘ Y G =cr et

| Storage

FHE

K*=ki, .. ki i
T Operations

Public key

ki ..ky cf..ch
S S S
Symmetric

\\ decryption ,’/
Circuit

K =k, ..k

Figure 3.1: FHE cloud scenario with symmetric cipher.

3.2 Designing Ciphers for use in FHE

When designing ciphers for use in FHE the decryption circuit of the cipher needs to be ho-
momorphically evaluated. With the use of the noise-based cryptography in FHE schemes,
every operation on homomorphically encrypted data increases the noise. In most schemes
the noise grows fast with the increase of the multiplicative depth of the circuit. Hence the
usual design strategy for these ciphers has been to reduce the multiplicative depth of the de-
cryption circuit. In the following sections we will look at some symmetric ciphers which aim
to make FHE with symmetric ciphers feasible.

3.3 FLIP

FLIP is a family of filter permutators designed as stream ciphers to allow constant and
small(er) noise compared to previous block ciphers and stream ciphers. Block ciphers typi-
cally have been allowing constant but small homomorphic capacity, due to a relatively large
number of rounds leading to significant noise from complex Boolean functions. Stream ci-
phers typically allow for large homomorphic capacity on the first ciphertext blocks. However,
this capacity decreases with the number of ciphertext blocks due to the increasing Boolean
complexity in stream ciphers’ output. The idea is to combine the best of both worlds in a
stream cipher, where the Boolean filter function is applied to a public bit permutation of a
constant key register. In this way the Boolean complexity of the key stream that the cipher
outputs are constant [13].

The general structure of the filter permutators consists of three parts: A register where
the N-bit key K is stored, a bit permutation generator that is parameterized by a pseudo-
random number generator (PRNGQG) initialized with a public IV. The permutation generator
produces an N-bit permutation P; that shuffles the bits right before entering the filtering
function F'. Lastly, the filtering function produces the key stream bits z;, see Figure 3.2. The
filter permutators’ structure can be compared to a filter generator where a permuted key
register replaces the LFSR. The register is no longer updated by an LFSR but by pseudo-

3.3 FLIP 19

PRNG Key Register K

h

Permutation P;
Generator

h 4

h 4

plaintext
ciphertext

Figure 3.2: FLIP, filter permutator basic structure.

random bit permutations. More precisely, at each cycle or bit-output from the filter register,
a pseudo-random permutation is applied to the register, and the permuted key register is
filtered. Finally, encryption with a filter permutator consists of XORing the key stream bits
z; output by the filtering function with the plaintext bits p;, to produce the ciphertext bits ¢;
[8]. To recover the plaintext, the same procedure is simply repeated, and the key stream bits
z; are XORed to the ciphertext bits ¢; to recover the plaintext p;. Every part of the scheme is
public except for the key.

In [13] the authors of the paper specify FLIP as a family of stream ciphers using a feed-
forward secure PRNG based on AES-128. The Knuth Shuffle as the bit permutation generator
[12] and the filter function F' is the N-variable Boolean function defined by the direct sum
of three Boolean functions f1, fs, f3 of respectively ny, ny, ng variables, defined as follows:

fl(IOJ s >$n1—1) - Lnl

f2($n1a e 7xn1+n271) = Q

na
2
fS(Inl-‘rTLQ ----- xn1+n2+n3—1) = Tk
f($07 .. axn1+n2+n3—1) = fl(:EOa oo 7xn1—1) + f2($n17 oo xnl—l—nz—l) + f3(xn1+n2 zn1+n2+n3_1)

Here L, is the linear function in n variables defined as:

n—1

Ln(l‘o, c. ,.len_l) = le

=0

20 3. Symmetric Ciphers Designed for FHE

Xg X1 X2 X3 X4 X5 Xg X7 Xg Xo Xyp X171 X12 X13 X14

Figure 3.3: The circuit for the triangular function 7" with k£ = 5, with 15 variables.

()., 1s a quadratic function in 2n variables defined as:
n—1

Qn(To,. .. Top_1) = g L2iT241-
=0

The k’th triangular function 7} is a @-Variable Boolean function defined as

k i
Tk(xo,...,xk(k;—l)71>: E xj+2§;éf

i=1 j

1

I
=)

When evaluating these functions L, Q, T as a circuit, we can see how the circuit’s mul-
tiplicative depth will be kept quite low. L is linear and has no multiplications at all. @) is
quadratic and thus has multiplication depth 1. The triangular function 7}, has degree % and is
the heaviest one, but its multiplicative depth is only [log, k|. For example, the 5°th triangular
function 75 has 15 variables and multiplicative depth [log, 5] = 3, which we can see from
Figure 3.3.

3.4 Kreyvium

Kreyvium [4] is a symmetric stream cipher published in 2018, based on the cipher Trivium
[6]. Trivium is also a symmetric stream cipher which was recommended by the eSTREAM
project after a five year competition. Due to the small number of non-linear operations in
its transition function, they claim it would be a natural candidate in the HE context. Both
Kreyvium and Trivium can be decomposed into:

* The resynchronization function, Sync, which takes as input the IV and the key (possibly
expanded by some precomputation phase), and outputs some n-bit initial state.

* The transition function ®, which computes the next state of the generator

* The filtering function f, which computes a key stream segment from the current inter-
nal state

3.4 Kreyvium 21

Both the key and IV of Trivium consists of 80 bits each. The internal state of Trivium
consists of 3 registers of sizes 93,84, and 111 bits, respectively, making the entire internal
state 288 bits. The notion of the designers is that the leftmost bit in the 93-bit register is sy, and
the rightmost one is sg3. Of the second register of size 84 the leftmost bit is sg4 and rightmost
s177. The last register of size 111 bits the leftmost bit is s;7g and the rightmost bit is sogs. The
initialization and generation of an N-bit key stream can be described by Algorithm 3.4.

Algorithm 1 Trivium pseudo code
(81,82, .,803) < (Ko, ..., Kr9,0,...,0)
(So4, So5, - - -, S177) IV, ..., IVz9,0,...0)
(S1785 S179, - - -, S2gs) < (0,...,0,1,1,1)
for i =1to 1152+ N do
11 < Ses + So3
Lo < S162 + S177
3 <= S243 + Soss
if 7 > 1152 then
output Zi—1152 < t1 + 19 + 13
end if
b1 <= 11 + So1 - So2 + S171
to < to + S175 * S176 + S264
3 <= 13 + Sage - S2s7 + Seo

(81, S92, ..., 893) < (tg, S1,... ,892)

(894, 595, - -« 8177) <— (tl, S94y - - - 8176)

(31787 S$179y+ - s 8288) A (t2, S178y+ -+ s 8287)
end for

The multiplicative depth grows quite slowly with the number of iterations. Another im-
portant observation is that in the internal state, only the first 80 bits in the first register (the
key bits) are initially encrypted under HE. Consequently, performing hybrid clear text and
encrypted data calculations is possible. With the square brackets denoting encrypted bits, this
is done under the following quite simple rules:

0-[x]=0
1-[z] = [z]
0+ [z]

[z]

In all but the last case, a homomorphic operation is avoided, which is very desirable. This
1s an optimization that allows for an increase in the number of bits that can be generated at
a given multiplicative depth. The relevant quantity in Trivium’s context is the multiplicative
depth of the circuit, which computes N key stream bits from the 80-bit key.

In Trivium, the key stream length N(d) which can be produced from an 80-bit key with
a circuit of multiplicative depth d > 4 is given by 3.1.

p 81 ifd =0 mod 3
N(d) =283 x [3]+ {160 ifd =1 mod 3 3.1)
269 ifd =2 mod 3

22 3. Symmetric Ciphers Designed for FHE

The Kreyvium cipher is very similar to Trivium, except that it accommodates key and IV
sizes of 128 bits instead of 80. It also has a bigger internal state, where two 128-bit registers
have been added to the original 288-bit internal state of Trivium. These extra states hold
the 128-bit secret key and IV, respectively. This newly added part of the state aims to make
both the filtering and transition functions dependent on both key and I'V. More precisely, the
two functions f and ¢ depend on the key and IV bits through the successive outputs of the
two shift-registers K* and /V* initialized by key and IV, respectively. The internal state of
Kreyvium is then composed of five registers of sizes: 93,84, 111, 128, and 128 bits. In total
the internal state has a size of 544 bits. We use the same notation for Kreyvium as we did for
Trivium, with the added registers’ bits denoted as K7, for the leftmost bit and K for the
rightmost one (the output). Likewise, for the IV where IV, is the leftmost bit and IV{ is
the rightmost one (the output). Both of these two added registers rotate independently from
the rest of the "Trivium” part of the cipher. The initialization and generation of an N-bit key
stream are described in Algorithm 3.4.

Algorithm 2 Kreyvium pseudocode
(81,82, vy S03) < (Ko, ..., Kg2)
(894, 595, -+ -5 8177) — (I%, ceey I‘/gg)
(8178, 8179, «- 1y 3288) — (]‘/84, .]‘/127,]_]_, 0)
(Ko7, Koy ooy K§) < (Ko, .., K127)
IV, IVise, s VYY) <= (IVhy, .y IVh07)
fori=0to 1152 + N do
t1 < Sgg + So3
o < S162 + S177
t3 < S243 + Sags + K
if 7 > 1152 then
Output Zi—1152 < t1 + 1o+ 13
end if
t1 < t1 + So1 - S92 + s171 + LV
lo <= to + S175 * S176 + S264
3 <= t3 + Sage - Ses7 + Seo
ty Kg
ts I‘/E)*
(81, 89, .ny 893) — (tg, S1y ey 892)
(894,8957 --.,8177) <« (t17594, ---,8176)
(51787 5179, -~-73288) < <t27 S$1785 +++5 8287)
(Ko7 Kog, -y K 4= (4, Koy, oo, KT)
(IViyr IViigs oo IVE) 4 (b5, IVigs oy TVEY)
end for

As with Trivium, the number of key stream bits generated from a key at a given depth
can be computed. The only difference is that the first register now contains 93 bits instead
of the 80 from Trivium. For a fixed depth d > 4, N(d) is given by:

70 ifd =0mod 3
N(d) = 282 x L%lj + <149 ifd =1mod 3 (3.2)
258 ifd =2mod3

3.5 LowMC 23

3.5 LowMC

LowMC is a family of block ciphers designed with a focus on providing a symmetric-key
primitive with low multiplicative depth and size [2]. The design is motivated for use with
secure multi-party-computation (MPC), fully homomorphic encryption (FHE), and zero-
knowledge proofs (ZK), where the cost of doing linear operations can be considered virtually
free, in comparison to non-linear computations. The different variants of LowMC differ by
choice of the parameters block size n, key size k, and the number of S-boxes per layer, de-
noted by m. They all start with key whitening before the encryption rounds. The rounds are
built the same way for every variant of LowMC. The encryption rounds consist of an S-box
layer, an affine layer and a key addition.

3.5.1 S-box of LowMC

An unusual attribute of the S-box layer of the LowMC ciphers is that the S-boxes do not
have to cover the entire cipher block. So the number of S-boxes m in the S-box layer can
differ for various variants of the LowMC ciphers. There is a trade-off between the number
of S-boxes and the number of rounds due to security reasons. In the S-box layer, the cipher
block goes through m S-boxes with 3 bits per S-box, where bits not going through an S-box
remain unchanged. The S-box contains three multiplications, with a single multiplication in
each output:

S (A,B,C)=A®BaA-C (3.3)
S9(A,B,C)=AeoBaC@®A-B

3.5.2 Linear Layer

In the linear layer of the cipher, each block is multiplied by an n x n matrix, with different
matrices for each round. The only restriction of the matrices is that each matrix has to be
invertible for the decryption phase to work. The matrices should be chosen at random or be
generated using the key stream from the Grain stream cipher [2].

Constant and Key addition

In the encryption phase a constant binary vector of length n is added to the cipher block in
each round. These constants should also be chosen at random. As for key addition, a subkey
of length n will be added to the cipher block at the end of each round. These subkeys are
constructed from the master key of size £ by multiplying the master key by random n x k
matrices.

LowMC Variants

Table 3.5.2 show the parameters of some of the suggested variants of the LowMC cipher.
Several more variants were suggested, but these five were chosen by Martin Albrecht in his

24 3. Symmetric Ciphers Designed for FHE

pU pl pz pn_l
K,— initial key addition

| S-Box -

| linear layer | 8
(2]
3]
S

| constant addition | o

Ki— key addition |

Cp (o5} C2 | . Cn—1

Figure 3.4: Figure showing overall structure of a LowMC cipher.

HEIib implementation of the LowMC ciphers. The two first variants aimed for 80-bit secu-
rity. The third and fourth for 128-bit security parameters, and the last for a 256-bit security
level [1].

Block size n ‘ number of s-box, m \ Key size, k \ # of rounds r

256 | 49 | 80 | 12
128 | 31 | 80 | 12
256 | 63 o128 | 14
196 | 63 o128 | 14
512 | 66 256 | 18

Table 3.1: Some variants of the LowMC cipher.

3.6 Rasta

Rasta [7] is a family of stream ciphers based on a design strategy for symmetric encryp-
tion where the AND depth d is low, while only needing d AND gates per encrypted bit. To
produce a key stream, Rasta applies a permutation with feed-forward, where the input to the
permutation is the secret key K, and the key size matches the block size n of the underlying
family of permutation Py ;. The key stream is generated by using different permutations Py ;

3.6 Rasta 25

Figure 3.5: Structure of the Rasta cipher.

for each encrypted block, which is parameterized by a nonce /N and the block counter i. To
ensure confidentiality for each new encryption a new and unique nonce N is required. The
original key K is added to the output after the rounds of an instance of the Rasta cipher.
Thus the resulting key block is the key stream produced by the cipher. See Figure 3.5 for the
overall structure of Rasta. Note that the authors of Rasta consider the security parameters of
Rasta quite conservative and the suggested parameters could potentially be reduced while
still maintaining adequate security.

3.6.1 Permutation

Rasta’s family of permutations Py ; applies r rounds of different affine layers A; v, and a
non-linear layer y. After r rounds, a final affine layer is applied.

Py;=ArnioxoA_inio---oxoAinioxoAgn, (3.4)

Each affine layer is unique and depends on the nonce N and the block counter i. The
permutations are parameterizable in the number of rounds r, and the block size of the per-
mutation n must be odd because y is not a permutation for an even n.

3.6.2 Affine layers

The affine layer is simply a matrix multiplication of a binary invertible n x n matrix M; y ;
to the cipher block z, followed by the addition of a round constant c¢; ;, as seen in 3.5.

y=Mini zDcjn (3.5)

Non-linear layer

For the non-linear layer, the x transformation previously used in Keccak [3] is applied to the
entire block. This transformation is invertible for any odd number of bits n. For input bits
x; and output bits y;, 0 < ¢ < n, the non-linear layer is defined as in equation 3.6 with all
indices modulo n.

Yi = Ti D Tiyo D Tit1Tiq2 (3.6)

26 3. Symmetric Ciphers Designed for FHE

3.6.3 Generation of Matrices and Constants

The authors of the Rasta paper suggest generating matrices and the round constants using a
pseudo-random generator (PRNG) seeded with r, n, N and i. The output of the PRNG is first
used to generate M y ;. The rows are filled iteratively with the PRNG output while checking
that they are linearly independent. If they are not, a new random row is added and examined,
etc. Afterward, the output of the PRNG is used to create the constants ¢, y; and then the next
matrix M; n,; and so forth. To ensure the security of the permutation, the PRNG must be
cryptographically secure. For instance, it should not be feasible for an attacker to find inputs
to the PRNG for the attacker’s choice of outputs. The PRNG internal state must also be so
substantial that internal collisions within its state will not occur in practice.

Chapter 4

Implementing Rasta in HElib

4.1 Previous Implementations and Variants

In addition to the implementation in [7], there is as far as we know only one other imple-
mentation of the Rasta cipher in HElib. This has been done by researchers from the Ruhr
University Bochum. They are also the ones behind the related Dasta cipher, which we will
mention in the next subsection.

4.1.1 Dasta

Dasta is a variant of Rasta where the same parameters for block length and number of rounds
are used, but the use of randomly generated linear layers is avoided. Instead a bit-permutation
that depends on a nonce is the only variable part of the linear transformation. In Rasta, an
attacker may modify the nonce, but only as an input to a PRNG, so it effectively gives no
control of the resulting linear mappings. Hence the probability of choosing a weak instance
for a desired linear mapping is negligible. Since Dasta removes this PRNG, the attacker may
choose the specific linear layer it wants to use. Therefore the creators of Dasta have to restrict
the choices of possible linear layers to a subset that does not involve any weak instances.

To solve the problem of weak instances, the authors of the paper have chosen a modular
approach of dividing the linear layer into two parts. The two parts are a variable bit permu-
tation and a fixed linear transformation. This approach gives some optimization possibilities
that would not be possible in a regular Rasta variant.

The block-wise key stream generation of Dasta is defined by 4.1.

Bi(k)=LoP.,;oxoLoP,_y;0---oxoLoP;oxoLoPy;+k (4.1)

Here k is the secret key, and 0 < ¢ < D is the block counter with the data limit D =
[#] . L 1s a fixed linear transformation that depends on the Dasta variant. The block counter
i determines a (r + 1)-tuple of bit permutations, which the authors call an instance. The
parameters for block length and number of rounds used in Dasta variants corresponds to the
same variants of Rasta.

The linear transformations are created using a [2n, n, d] code C, with the generator matrix
G = (I,|A), where the linear transformation L = AT, and the linear branch number B = d.

28 4. Implementing Rasta in HElib

4.2 Our Implementation in HElib

4.2.1 Parameters

When implementing Rasta in HEIib, it is required of the developer to use the HEIib class En-
cryptedArray for storing ciphertext objects. For an 80-bit security level, a four-round variant
of Rasta with block length of 327 is suggested. Hence we had to adjust the parameters to get
an EncryptedArray with 327 slots. We did a search for m, such that the equation s = @
gives the exact solution 327, but no such m < 36001 was found. Our solution to this problem
was to find an m such that the number of slots s was slightly bigger than the suggested block
length of 327.

To find such an m, we ran the initialization step of the BGV scheme for all values of m
from 10001 up too 36001. All pairs of slot sizes and m values were stored in a text file if
they met the requirements of having a slot size bigger than 327. We were then able to choose
an m that gave a desired number for the block-length/slot-size.

When m = 30269, the ¢ function gives us s = 329. This means that the implementation
would run with a block length of size 329. The last two slots in the Encrypted array will be
treated as “dummyslots”, only containing the value 0. Then we had to adapt the implemen-
tation, such that these extra slots will not impact any calculations in the cipher.

The remaining user defined parameters of the BGV-scheme was left at their suggested
default values. The plaintext base p = 2, Hensel lift » = 1, number of bits in the modulus
chain bits = 300 and number of columns in the key switching matrix ¢ = 2.

4.2.2 Initialization in HEIlib

When initializing a HElib program we first need to set the previously mentioned user defined
parameters. Then the steps in the list 4.2.2 are required:

» The FHEcontext is initialized using the user defined parameters, giving a HElib in-
stance convenient access to these parameters with access methods and some utility
functions.

* The modulus chain is built by using buildModChain(context, bits, ¢) with the param-
eters bits and ¢ for the amount of bits and columns in the key-switching matrices.

 The secret key is generated with the associated context.

* We compute the key-switching matrices we need based upon the secret key.
» Then we get our public key from the secret key.

» We then get the EncryptedArray of our context object.

 The ciphertext object is created based upon our public key.

* Finally we use our EncryptedArray and public key to encrypt our plaintext into the
ciphertext object.

Then we are able to create our Rasta instance based upon these objects and parameters.
The EncryptedArray is a class used to store plaintexts as mentioned in chapter 2. This pro-
vides us with methods to treat ciphertext objects as regular one-dimensional arrays.

4.2 Our Implementation in HElib 29

Dummyslots

a (—l—\
meorvien [0 e = e

rorare.2> [N N) I

Figure 4.1: Figure showing how we need the rotation function to work.

4.2.3 Affine Layer

For the affine layer in each round of Rasta, the inclusion of dummyslots in the EncryptedAr-
ray object needs to be addressed. So the affine layers’ matrices and constants are created as
size 329 x 329 0-matrices and vectors. Then they are filled with NTL’s PRNG up to a size of
327 x 327, leaving the last two rows and columns as zeroes.

The 327 x 327 part of the matrices are checked for non-singularity by the determinant
function of the mat_GF2 class and stored in the text file if they are non-singular. Since this
procedure is not guaranteed to succeed, our implementation runs by trial and error until it
has created the required amount of matrices. Hence creating the binary non-singular matri-
ces that are required for the affine layer of Rasta. We precompute and store these matrices
and constants in text files, prior to running the Rasta implementation. Then in the initial-
ization phase of the Rasta implementation, the matrices are read in and stored as vectors of
MatMulFull objects for the computations in the affine layer of the different rounds of Rasta.

HElib supports matrix multiplication, by using the built-in matrix multiplication class.
However it is required to create a subclass for the abstract MatMulFull class in order to
make use of the built-in functions for matrix multiplication with a ciphertext object. The
cipher block can then be multiplied with the round matrix and have corresponding round
constants added homomorphically for each round.

4.2.4 y Function

The application of the y function used in Rasta comes with some issues in the implementation
due to the previously mentioned dummyslots. HElib comes with a built-in rotation function,
but this function does not adhere to our use of dummyslots. Hence we were required to make
a modified version that expands upon the built-in rotation function, but where our rotation
function does not rotate the bits into the last slots, i.e. the dummyslots of the array, see Figure
4.1.

We achieve this by making two helper arrays where the first array is an all zeroes array
except for position n — 2. The second array is an all-ones array except for the positions n — 1,
and n — 2 (positions of the dummyslots). We also need a copy ¢ of the Ctxt object c. Now
we first rotate ¢ once so that the first dummyslot holds our value for position 0 in ¢. We
then make the actual copy ¢ and multiply ¢ by the first helper array so that ¢ only holds this

30 4. Implementing Rasta in HElib

n

A
Hetperarray = NN NN e N G G [Ghm [
Helperarrayz = | IS o

Dummyslots

Ctxte= |1 0 1 1 o 1 1 ii

¢t = Rotate(c,1) = 0 i 0 1 1 0 1 ER
¢+ Helperarrayl = [N G Ny ame
Rotate(t,2) = |1 IO O Jor o o o e e

c=cti= 1 1 0 1 . 1 o 1 N

c-HelperArray2 = 1 1 0 1 1 0 1 --

Figure 4.2: Figure showing how rotation is done.

value in position n — 2. Then we rotate ¢ twice, such that the value is in ¢’s first position and
add it together with c. Lastly, we multiply ¢ together with the second helper array to remove
a potential 1 value in the dummyslot of c¢. Note that these multiplications are done with
constants and using HElib’s multByConstant function, which is much cheaper than ordinary
multiplication of ciphertexts. The resulting ¢ will have had its rotation done by one position
as intended. See Figure 4.2 for the exact procedure. Rotations by larger amounts can be done
by repeating this step.

Algorithm 3 custom rotation pseudocode
Input: Ctxt ¢
n = block length
HelperArray, = (0,0,...,0,1,0)
Helper Array, = (1,1,...,1,0,0)
Do:
rotate(c, 1)
Ctatt =c
t =t x HelperArrayl
rotate(t,2)
c=c+t
Return: ¢ x HelperArray2

Multiplication of ciphertexts is a heavy operation in HEIlib. This is why we want to run
all multiplications of the y function in parallel. From the x function 3.6, we can see that
every output bit is only dependent on three neighboring bits. So we make two copies of the
ciphertext ¢ and rotate them once and twice, respectively. Hence we have all the bits required
for the chi function aligned, i.e. the bits z;, x;,1 and x; - are now aligned in their respective
arrays. We are now able to add and multiply in parallel, with only one multiplication required,
see Algorithm 4.

4.3 Timed Performance 31

Algorithm 4 y function pseudocode
Input: Ctxt ¢
templ = ¢
CustomRotate(templ, 1)
temp2 = ¢
CustomRotate(temp?2, 2)
c=c+ temp2

templ = templ X temp?2
Return: ¢ 4 templ

4.3 Timed Performance

Table 4.1 shows the timed result for our implementation of our 4-round, 80-bit security, block
length 327 variant of Rasta. It has been run ten times, where the minimum time, maximum
time and the average time are being displayed. Note that the timings for matrix multiplication,
adding constants and the y function are added together for the functions’ total times.

The same matrices and constants have been used for all tests with an all-one key. In
addition to the computer specs, the randomness of RLWE used in the BGV-scheme can also
affect the results. The source code of the implementation can be found in Appendix 5.

\ Average time (seconds) \ Min. time | Max. time

Total time 314.37 313.93 314.81

BGYV initialization 19.88 18.78 20.05

Read and initialize matrices and constants 7.92 7.91 7.94
Rasta time 286.57 286.20 286.88
Matrix multiplication 270.59 270.26 270.92

Adding constants 0.524 0.523 0.525

Chi function 15.20 15.16 15.27

Table 4.1: Timed results for our Rasta implementation.

Computer spec

Memory 7.6 GiB
Processor Intel® Core™ 15-7200U CPU @ 2.50GHz x 4
OS-type 64-bit Ubuntu 18.04

Table 4.2: Computer specs

In [7] the designers of Rasta also timed their implementation in BGV. It should be noted
that they used a bit-sliced implementation, using the slots to generate several blocks of key
stream in parallel. The advantage of their implementation is that the affine layer consists only
of addition of ciphertexts, and thus they produce many key stream blocks at the same time.
The drawback of this implementation is that the x function must be done serially with 327

32 4. Implementing Rasta in HElib

multiplications. This implementation runs faster, with 110 seconds using 378 BGV-slots, but
it is still interesting to see the trade-off between an easy y layer and an easy affine layer. To
get the best of both worlds, one could choose an affine layer that is easy to evaluate for the
corresponding FHE scheme, when the cipher block allows x to be done in parallel.

Chapter 5

Conclusion

With the introduction of FHE in the last years, new possibilities within privacy and cryptog-
raphy can be achieved in cloud computing and other fields. Where we would have to give
up privacy to the cloud earlier if we wanted the cloud to do any operations on the data for
us, we can now keep our data private and still outsource computations and the heavy duty
operations of FHE to the cloud.

With the publication of several software libraries there are also more possibilities for
developers to learn and use FHE in practice. Microsoft SEAL has stated that they want to
make FHE understandable and usable for developers who do not necessarily have a crypto-
graphic background. Previously FHE libraries were harder to grasp and mainly directed at
researchers who had a good understanding of homomorphic encryption. One such library is
HElib which is described as an assembly language for FHE. This means that FHE is moving
closer to becoming a tool which regular developers can use in applications, and not only as
a research field for the future.

With the development of different symmetric ciphers for use in FHE, there is a steady line
of improvements with new ciphers. Multiplicative depth or AND’s per bit have been reduced,
hence making the ciphers more efficient. With the use of cloud computing weak devices can
run cheap traditional symmetric encryption while outsourcing the heavy computations of
FHE to the cloud, and still keeping confidentiality intact.

For the case of Rasta the security parameters are chosen quite conservatively, so that
performance could potentially be improved with weaker, yet still acceptable security pa-
rameters. Optimizations within schemes, libraries or the ciphers themselves can make them
efficient enough for commercial use.

The biggest time consumer in our implementation of Rasta is in the affine layer, where
matrix multiplications done homomorphically take up the largest chunk of time. Most of
the other phases of the implementation have considerably faster times in comparison. So
improvements on how the affine layer is designed could increase the efficiency of the cipher
drastically. For instance, the x layer in the implementation of [7] is the heaviest operation,
while their implementation only uses ~ 35.1% of our computing time. The FHE scheme in
question should be taken into consideration while designing a symmetric cipher to be used
in tandem with it. It is possible to both have an easy non-linear layer and design the affine
transformation to be equally easy.

For future work it would be interesting to review Dasta and variants of Rasta with weaker
security parameters which may be quicker, yet still retain sufficient security.

34

5. Conclusion

Bibliography

[1]

[6]

[7]

[8]

[9]

[10]

M. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers for mpc
and fhe. Cryptology ePrint Archive, Report 2016/687, 2016. https://eprint.iacr.
org/2016/687. 24

M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers for
mpc and fthe. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 430—454. Springer, 2015. 23

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak. In Annual international
conference on the theory and applications of cryptographic techniques, pages 313-314.
Springer, 2013. 25

A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier, and
R. Sirdey. Stream ciphers: A practical solution for efficient homomorphic-ciphertext
compression. Journal of Cryptology, 31(3):885-916, 2018. 20

J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for arithmetic
of approximate numbers. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 409—437. Springer, 2017. 13

C. De Canniere and B. Preneel. Trivium. In New Stream Cipher Designs, pages 244—
266. Springer, 2008. 20

C. Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G. Leander, E. List, F. Mendel,
and C. Rechberger. Rasta: a cipher with low anddepth and few ands per bit. In Pro-
ceedings of CRYPTO 2018, pages 662—692. Springer, 2018. LNCS 10991. 24, 27, 31,
33

S. Duval, V. Lallemand, and Y. Rotella. Cryptanalysis of the flip family of stream
ciphers. In Annual International Cryptology Conference, pages 457-475. Springer,
2016. 19

C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 169—178, 2009. 7,
8

C. Gentry, Z. Brakerski, and V. Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. Security, 111(111):1-12, 2011. 10, 12

[11] S. Halevi and V. Shoup. Design and implementation of a homomorphic-encryption

library. IBM Research (Manuscript), 6:12—-15,2013. 8

https://eprint.iacr.org/2016/687
https://eprint.iacr.org/2016/687

36 BIBLIOGRAPHY

[12] D. E. Knuth. Art of computer programming, volume 2: Seminumerical algorithms.
Addison-Wesley Professional, 2014. 19

[13] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet. Towards stream ciphers for
efficient the with low-noise ciphertexts. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 311-343. Springer, 2016.
18, 19

[14] C. Paar and J. Pelzl. Understanding cryptography: a textbook for students and practi-
tioners. Springer Science & Business Media, 2009. 1

[15] Y. Polyakov, K. Rohloff, and G. W. Ryan. Palisade lattice cryptography library user
manual. Cybersecurity Research Center, New Jersey Institute oflechnology (NJIT),
Tech. Rep, 2017. 15

[16] O. Regev. The learning with errors problem. Invited survey in CCC, 7:30, 2010. 11

[17] R. L. Rivest, L. Adleman, M. L. Dertouzos, et al. On data banks and privacy homo-
morphisms. Foundations of secure computation, 4(11):169-180, 1978. 7

[18] Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL, Apr. 2020.
Microsoft Research, Redmond, WA. 15

[19] X.Yi, R. Paulet, and E. Bertino. Homomorphic Encryption and Applications. Springer,
2014. 9

https://github.com/Microsoft/SEAL

Appendix Source Code

Source code can be downloaded from https://github. com/Haakonthor/MBackup and run.
HEIlib must be installed in the same folder (or edit Cmakelist.txt to your path). Run the cmake
command: “make” to compile and create executables, when in the folder.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<iostream >

<stdio .h>

<helib /FHE. h>
<helib/EncryptedArray .h>
<helib /matmul . h>
<NTL/BasicThreadPool .h>
”MyMatMulFull . h”
“readConstant . h”
”CyclicRotation chi.h”
<sys/time .h>
<sys/resource .h>
”Rasta 80 327 .h”

//void rasta 327 80(int rounds, vector<long> user_ key ,h vector<vector<lo

int main(int argc, char *argv|[]){

vector<long> test key(329,1);
test _key[328] = O0;

test _key[327] = O0;

/] BHBHBHBH AR HBHBHBHBH AR AR HAH B initializing HEHHHHHHBHBHBHBHBHHHHBHBH
clock t BGVinit begin = clock ();

//BGV Initialization
// Plaintext prime modulus
unsigned long p = 2; // p = 2 (mod 2)
// Cyclotomic polynomial — defines phi(m)
unsigned long m = 30269; // over 10.000 oddetall,
// Hensel lifting (default = 1)
unsigned long r = 1; //stay as one

default: 32109

https://github.com/Haakonthor/MBackup

. Appendix Source Code

// Number of bits of the modulus chain

unsigned long bits = 300; //100-300 , default: 300

// Number of columns of Key—Switching matrix (default = 2 or 3)
unsigned long ¢ = 2; // ¢ = 2,37 default: 2

std :: cout << ”Initialising ,context object...” << std::endl;
// Intialise context

FHEcontext context(m, p, r);

// Modify the context, adding primes to the modulus chain
std :: cout << ”Building_ modulus,chain...” << std::endl;
buildModChain(context, bits, c);

// Print the security level
std :: cout << ”Security:,” << context.securityLevel () << std::endl;

// Secret key management

std :: cout << ”Creating secret key...” << std::endl;

// Create a secret key associated with the context

FHESecKey secret _key(context);

// Generate the secret key

secret_key.GenSecKey ();

std :: cout << ”Generating_key—switching_ matrices...” << std::endl;
// Compute key—switching matrices that we need
addSomelDMatrices(secret_key);

// Public key management
// Set the secret key (upcast: FHESecKey is a subclass of FHEPubKey)
const FHEPubKey& public _key = secret key;

// Get the EncryptedArray of the context
const EncryptedArray& ea = *(context.ea);

// Get the number of slots (phi(m))
long nslots = ea.size ();
std :: cout << ”Number,of slots:” << nslots << std::endl;

// Create a vector of long with nslots elements
//std ::vector<long> ptxt(nslots);
// Create a ciphertext

Ctxt ctxt(public _key);

// Encrypt the plaintext using the public_key
ea.encrypt(ctxt, public key, test key);

39

// Create a pl

aintext for decryption

std :: vector<long> decrypted(nslots);

clock t BGVinit _end = clock ();
/] #HH#HB#HH#DGY end of initzialise HHHH#HBHBHBHHHHBHBHBHHH

clock t read matrix timer start = clock();

//creates a vector of matmulFullexec matrices for use in the
vector <MatMulFullExec> MMFE matrices;

//reads in matrices from different files

MyMatMulFull my MMF matrix0O(ea,
MyMatMulFull my MMF matrixl (ea,
MyMatMulFull my MMF_ matrix2(ea,
MyMatMulFull my MMF_ matrix3 (ea,
MyMatMulFull my MMF matrix4 (ea,

// MyMatMulFull

//converts the
MatMulFullExec
MatMulFullExec
MatMulFullExec
MatMulFullExec
MatMulFullExec

// MatMulFullExec MMFE matrix5 (my MMF matrix5, false);

“matrix329 0.txt”);
“matrix329 1.txt”);
“matrix329 2.txt”);
“matrix329 3 .txt”);
"matrix329 4.txt”);

my MMF matrix5(ea, “matrix329 5.txt”);

MatMulFull objects into MarMulFullExec objects

MMFE matrix0(my MMF_ matrix0 ,
MMFE matrix] (my MMF_ matrix1 ,
MMFE matrix2 (my MMF matrix2 ,
MMFE matrix3 (my MMF matrix3,
MMFE matrix4 (my MMF_ matrix4 ,

false);
false);
false);
false);
false);

//create
//create
//create
//create
//create

//create

affine

the
the
the
the
the

mai
mai
mal
mal
mai

the n

//adds the different matrices to the vector of MatMulFullExec matric

MMFE matrices.
MMFE_ matrices .
MMFE matrices.
MMFE_ matrices .
MMFE matrices.

push_back (MMFE matrix0);
push_back (MMFE matrixl);
push back (MMFE_ matrix2);
push _back (MMFE matrix3);
push back (MMFE_ matrix4);

//MMFE matrices. push_back (MMFE matrix5),

//vector<long> constants = readConstantsFromFile(ea,” constants329 . tx
vector<vector <long>> constants = readConstantsFromFile all(ea, “cons
clock t read matrix timer _end = clock ();

double read matrix time = (double)(read matrix timer _end—-read matrix

/] RABHBHAHARHBHBH AR AR ARH R Initi]Iaze end HHHHAHAHHBHBHBHBHBHBHHH AR AR

cout << ”starting_ Rasta:,” << endl;

40

. Appendix Source Code

// cout
clock t

<< ”"starting Rasta, with key: 7 << test_key << endl; //shows
Rasta start = clock ();

rasta 327 80(4, test key, constants, MMFE matrices, ctxt, ea);

clock t
clock t

Rasta _end = clock ();
total time end = clock ();

//ea.decrypt(ctxt, secret_key , test _key);

//cout << "end decrypted: 7 << endl;
//cout << "end decrypted: 7 << ptxt << endl; //shows decrypted resul
double total time = (double)(total time end —BGVinit _begin)/CLOCKS PE
double 1nitBGV time = (double)(BGVinit end—BGVinit begin)/CLOCKS PE
double rasta time = (double)(Rasta end—Rasta start)/CLOCKS PER SEC;
cout << "timedyresults:” << endl;
cout << ”total time:,” << total time << endl;
cout << 7mitBGV,time:,” << initBGV time << endl;
cout << ”readyinymatrix_ phase timer” << read matrix_time << endl;
cout << rastagtime:”<< rasta time << endl;

return O;

//read constant from file

//also in
#include
#include
#include
#include
#include

cludes cyclicbitshift and chi functions.
<stdio .h>

<vector>

<fstream >

<NTL/ZZ .h>

<NTL/GF2X.h>

NTL_CLIENT

std :: vect
/*
* rea

*/

long
FILE
int 1

or<long> readConstantsFromFile(const EncryptedArray& ea, cons
ds in a single vector of constants from file, obsulete for ou
n = ea.size ();

*fp;
, bb;

41

}

vector<long> constants(n,0);

fp = fopen(fname,”r”);
if(fp == NULL) {cout<<”couldynot,find, ,constants” << endl; exit(0);

for (i=0; i<n; ++i){
fscanf(fp, 7%d”, &bb);
constants[i] = bb;

h
fclose (fp);

return constants;

//test method to read severa lines form a file

std :: vector<std :: vector<long>> readConstantsFromFile all(const Encrypt

/*
* reads in multiple lines of constants and return them as a matrix
*/

long n = ea.size ();
FILE *fp;
int i,j, bb;

vector <long> tempData(n,0);

vector <vector <long>> constants;

constants.resize(n);

for(i=0; i<n; ++i){
constants[i].resize(n);

}

fp = fopen(fname,”r”);
if (fp == NULL) {cout<<”could not,find ,constants” << endl; exit(0);
for (j=0; j<10; ++j){

for (1=0; 1<n; ++1){

fscanf(fp, 7%d”, &bb);
tempData[i] = bb;
}

constants[j] = tempData;

h
fclose (fp);

return constants;

42 . Appendix Source Code

void addConstants (Ctxt &c, const EncryptedArray& ea,

std :: vector <long>

/*

* adding a full array worth of constants to a ciphertext object.
*/

long n = ea.size ();

77X emask;

vector <long> pmask(n, 0);
for(int i=0; i<n; ++i){
pmask[i1] = (constants)[1i];

}

ea.encode (emask ,pmask);

c.addConstant(emask); //using HEIlibs built in function

}

void addKey(Ctxt &c, const EncryptedArray& ea, std::vector<long> key){
*
{" adding a full array worth of constants to a ciphertext object. t
%
lo/ng n = ea.size ();
77X emask;

vector <long> pmask(n, 0);

for(int i=0; i<n; ++i){
pmask[1] = (key)[1];

h

ea.encode (emask ,pmask);

c.addConstant (emask);

void rasta 327 80(int rounds, vector<long> user key,
int 1;
int counter = 0;
double chi time =0;
double matmul time = 0;
double addConst time = 0;
cout << ”starting_ rasta g rounds.” << endl;
for(i = 0; i<rounds; 1++){
cout << ”round:” << 1 << endl;

clock t matmul timer start = clock ();
MMFE_ matrices[1i].mul(c);
clock t matmul timer _end = clock();

vector<vector <lon

matmul time += (double)(matmul timer end—matmul timer_ start)/CLOCE

43

cout << "matrix.mul(c)yended” << endl;

clock t adding const timer start = clock ();
addConstants(c, ea, constants[i1]);
clock t adding const timer_end = clock ();

addConst time += (double)(adding const timer end—adding const_ timz«

cout << 7add,constants_ ended.” << endl;

clock t chi timer start = clock ();
keccak chi(c,ea);
clock t chi_timer_end = clock ();

chi _time += (double)(chi timer end—chi_timer_ start)/CLOCKS PER SE

cout << "keccak,chijended” << endl;
counter = counter + 1;
cout << ”“counter:,” <<counter << endl;
cout << ”lastyroundywithoutykeccaki: " << 1 << endl;

clock t matmul timer start = clock ();

MMFE matrices[counter]. mul(c);

clock t matmul timer _end = clock ();

matmul time += (double)(matmul timer end—matmul timer start)/CLOCKS.

cout << "multiplying,in C,last time” << endl;

clock t adding const timer start = clock();
addConstants(c, ea, constants[counter]);
clock t adding const timer end = clock ();

cout << ”last_addyconstant” << endl;
addKey(c, ea, user key);
cout << ”added key,again” << endl;

//double matmul time = (double)(matmul timer end—matmul timer start
//double addConst time = (double)(adding const timer _end—adding coi
cout <<”matMul timer:” << matmul time << endl;

cout <<”addingConst,timer:” << addConst time << endl;

cout <<”chigtimer:_,” << chi _ time << endl;

// MyMatMulFull
// helper class to create MatMulFull objects to be used for MatMulFulle

44 . Appendix Source Code

#include <stdio.h>
//#include <helib/matmul. h>
NTL CLIENT

class MyMatMulFull : public MatMulFull derived <PA GF2> {
PA_INJECT (PA _GF2)
const EncryptedArray& ea;
vector<vector <RX>> data;

public:
MyMatMulFull (const EncryptedArray& ea, const char *fname): ea(_ea
long n = ea.size ();
RBak bak; bak.save(); ea.getContext().alMod.restoreContext();
FILE *fp;
int i,j, bb;

data.resize(n);
for(i = 0; i <n; ++i){
data[i1].resize(n);

}

fp= fopen(fname,”r”);
if (fp==NULL) {cout<<”could_ not,find_ matrix,” <<fname<<endl; ex
for (1=0;1<n; ++1){
for (j=0;j<n; ++j){
fscanf (fp,”%d”,&bb);
data[i][j] = GF2X(bb);
}
b
fclose (fp);
}

bool get(RX& out, long i, long j) const override {
long n = ea.size ();

if(i>> 0 && i<n && j>= 0 && j<n){
out = data[i][j];
if (IsZero(data[i][j]))
return true;
return false;

}

else {
cout<< ”indices (7 << 1 <<7,7’<< j <<”)outyofyrange (7 <<
exit (0);

}

45

void print(){
int i, j;
long n = ea.size ();

for(i=0; i<n; ++i){
for (j=0; j<n; ++j){
cout << data[i][]j] << ".”;
H
cout << endl;
J

}
const EncryptedArray& getEA() const override {return ea;}

void cyclicBitShift(Ctxt &c ,const EncryptedArray& ea){
// working cyclic bitshift for a encrypted array of size 2 more th

long n = ea.size ();

std :: vector<long> hlArr(n,0);
std :: vector<long> h2Arr(n,1);
h1Arr[n-2] = 1;
h2Arr[n—-1] = 0;
h2Arr[n—-2] = 0;

77X hl; //obejct polynomial over zz used for encoding the long vec
77X h2;

ea.encode(hl, hlArr);

ea.encode(h2, h2Arr);

//HElibs built in rotate function.

ea.rotate(c, 1);

Ctxt t = c;

t. multByConstant(hl); //HEIlib built in multiply constant function

//Ctxt s = t;
ea.rotate(t,2);

c t= t;

c. multByConstant (h2);

void keccak chi(Ctxt &c, const EncryptedArray& ea){

46 . Appendix Source Code

// chi function used in rasta

Ctxt templ = c; //create copies of c
cyclicBitShift (templ, ea);

Ctxt temp2 = templ;
cyclicBitShift (temp2, ea);

c += temp2;
templ *= temp2;
¢ += templ;

// generate NS matrix.cpp
#include <iostream >
#include <NTL/mat GF2.h>
#include <NTL/matrix.h>
#include <NTL/vec vec GF2.h>
#include <vector>

#include <fstream>

#include <stdlib .h>
#include <sys/time.h>
#include <sys/resource.h>

NTL_CLIENT

using namespace std;

//function to take a matrix and write it to a txt file
void writeMatToFile(vector<vector<long>& a, const char *fname){

long n = a.size ();

ofstream myfile;

myfile .open(fname,ios ::app);
int i, j;

for (1=0; 1<n; 1++){
for (j=0;j<n;j++){
myfile << a[i][j] << "u’;
}

myfile << endl;

}

myfile << endl;

47

myfile.close ();

}

//writes the constants to a txt file.
void writeConstToFile(vector<long>& v, const char *fname){
long n = v.size ();
ofstream myfile;
myfile.open(fname, ios::app);
int 1;

for(1=0; i<n; 1++){
myfile << v[i] << 73
}
myfile << endl;
myfile.close ();
}
//pseudo random generation of constants
void generateConstants (vector<long>& v){ //pseudo random generation of
long n = v.size ();
for(int i=0; i< n-2; i++){
long r = rand () %?2;
v[i] = r;

}

//converts a NITL GF2 matrix to a vector of vectors.
void convertGF2 to vec(mat GF2& gf2mat, vector<vector<long>& matrix){
long n = gf2mat.NumRows();
//vector<vector<long>> matrix_y(n, vector<long>(n));
GF2 g;
long a;

for (long 1 = 0; 1 < n; 1++)
{
for(long j = 0; j < n; j++)
{
g = gf2mat. get(i,]);
a = conv<long>(g);
(matrix[1])[j] = a;

48 . Appendix Source Code

void printVecMat(vector<vector<long>> const &matrix){
for (const vector<long> &v : matrix){
for (long x : v)cout << x << ’7;
cout << endl;

}

int main(){

long n = 327;

mat GF2 x;

GF2 d;

double matrix time = O0;

clock t matrix_gen timer_ start = clock ();

vector<vector <long>> myVec(n+2,vector<long>(n+2)); //creates a n+2

vector <long> myConst(n+2,0);
int numOfNSMatrices = 0;
//generate 10 vectors of constants (will only need 4 to 6)

for(int 1 = 0; 1 < 10; 1++){
generateConstants (myConst);

// writeConstToFile (myConst, “constants329.txt”);, //uncomment t

//cout << x << endl;

//creates matrices and checks if they are non—singular , if they ar
for (int 1 = 0; 1 < 100; i++) //set to 100, loop will end when eno

{

random(x,n,n); //NTL creates a random nxn matrix
determinant(d,x); //checks the determinant for the matrix
//x.SetDims (n+2,n+2);
/*
for(long i= 0, i<n—-2; i++){

x.put(i,n—1,0);

x.put(i,n—2,0);
/

for(long j= 0; j<n; j++){
x.put(n—1,j,0);
x.put(n—2,j,0);

P

49

if(d ==1){
numOfNSMatrices += 1;
cout<< ”matrix {7 << 1 << 7},isynonsingular” << endl;
//cout<< x << endl;

convertGF2 to vec(x,myVec);

cout<< ”matrix {7 << 1 << 7} inyconvertet form” << endl;
//printVecMat (myVec),

//writeMatToFile (myVec,” matrices329 . txt”’), //uncomment to

b
if (numOfNSMatrices == 5){ //set to the required amount of matr

cout << ”found_ 5 NS matrices , breaking_ out, of loop” << end
break;

}

clock t matrix gen timer _end = clock();

matrix_time = (double)(matrix gen timer end-matrix_gen timer_ start
cout << "matrixgtimer:,” << matrix_time << endl;

return 0;

	Acknowledgements
	Abstract
	Introduction
	Cryptography
	Classical Ciphers
	Modern Cryptographic Primitives
	Digital Signatures
	Fully Homomorphic Encryption

	Fully Homomorphic Encryption
	Homomorphic Encryption
	Fully Homomorphic Encryption
	Noise
	Bootstrapping

	Learning With Errors and Ring Learning With Errors
	FHE Schemes
	BGV Scheme
	CKKS Scheme

	FHE Libraries
	HElib
	Microsoft SEAL
	PALISADE

	Symmetric Ciphers Designed for FHE
	Use Case Scenario
	Designing Ciphers for use in FHE
	FLIP
	Kreyvium
	LowMC
	S-box of LowMC
	Linear Layer

	Rasta
	Permutation
	Affine layers
	Generation of Matrices and Constants

	Implementing Rasta in HElib
	Previous Implementations and Variants
	Dasta

	Our Implementation in HElib
	Parameters
	Initialization in HElib
	Affine Layer
	 Function

	Timed Performance

	Conclusion
	Bibliography
	Appendix Source Code

