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Abstract

Aims: To investigate the possible brain signatures in irritable bowel syndrome in terms
of microstructural tissue changes assessed with fractional anisotropy (FA) measurements
in targeted brain regions at group and subject levels.

Methods and material: Anatomical T1- and diffusion weighted brain MRI from
15 IBS patients (38.6 ± 12.4 years) and 15 HC (35.8 ± 12.4 years) were used in the
analysis. Image segmentation and extraction of FA values from target regions insula,
thalamus and pallidum for region wise analysis at a group level was conducted using
state-of-the-art software. Different machine learning models were used for subject level
classification based on median FA values from the target regions.

Main results: Median FA values were lower in IBS group compared to HC group
for all three bilateral target regions, but statistical significance was found in bilateral
insula and pallidum regions (p<0.0001). Highest accuracy, precision and recall score
for subject classification obtained by machine learning was 64.6%, 64.8% and 69.5%
respectively.

Conclusion: Results indicates a presence of white matter changes in target regions,
and a small, but significant difference between IBS versus HC at group level in bilateral
insula and pallidum regions. Machine learning models were moderately successful in
subject level prediction of IBS using median FA values from the targeted brain regions.

Keywords: Irritable bowel syndrome, IBS, quantitative image biomarkers, mag-
netic resonance imaging, MRI, diffusion MRI, DTI, Artificial Intelligence, AI, machine
learning
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Sammendrag

Formål: Å undersøke mulige "hjerne-signaturer" ved irritabel tarm-syndrom (IBS)
knyttet til mikrostrukturelle vevsendringer, uttrykt ved fraksjonell anisotropi (FA)-
verdier, i spesifikke hjerneregioner på gruppe- og individnivå.

Metode og materiale: Anatomiske T1- og diffusjonsvektede MR-bilder av hjer-
nen fra 15 IBS pasienter (38.6 ± 12.4 år) og 15 friske frivillige (HC) (35.8 ± 12.4 år)
ble brukt i analysen. Bildesegmentering og ekstraksjon av FA-verdier fra målregionene
på gruppenivå ble utført ved bruk av "state-of-the-art" programvare. Ulike maskin-
læringsmodeller ble brukt for klassifisering på individnivå basert på median FA-verdier
fra måleregionene.

Hovedresultat: Median FA-verdier var lavere hos IBS pasienter sammenlignet
med HC i de tre spesifikke bilaterale målregionene, men statistisk signifikans ble funnet
i bilaterale insula- og pallidumregioner (p<0.0001). Høyest nøyaktighetsscore (accuracy
score), presisjonsscore (precision score) og tilbakekalling (recall score) i klassifikasjon
på individnivå oppnådd av maskinlæringsmodellene var henholdsvis 64.6%, 64.8% og
69.5%.

Konklusjon: Indikasjoner på endringer i hvit substans i målområdene, og en
liten, men signifikant forskjell mellom IBS og HC på gruppenivå i bilaterale insula-
og pallidumregioner. Maskinlæringsmodellene klarte å klassifisere IBS ved bruk av
median FA-verdier i målregionene med moderat suksess.

Nøkkelord: Irritabel tarm syndrom, IBS, bildebaserte biomarkører, magnetreso-
nanstomografi, MR, diffusjonsavbildning, DTI, kunstig intelligens, KI, maskinlæring.
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Chapter 1

The interdisciplinary context of the
work

With a focus on brain imaging this thesis addresses the brain-gut axis (Fig. 1.1), the
irritable bowel syndrome (IBS) being a prevalent functional gastrointestinal disorder
world wide, and the possible brain signatures of this disease in terms of microstructural
tissue changes detectable by non-invasive magnetic resonance imaging techniques
combined with advanced image analysis, tissue segmentation, and machine learning.

Fig. 1.1: The brain-gut axis, its many interconnected pathways, and its role in many disease processes
including the irritable bowel syndrome (IBS). Adapted from Arzani et al. [2020] distributed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0)

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


4 The interdisciplinary context of the work

The thesis, which from my perspective can be characterized as integrative, quanti-
tative radiography, incorporates several disciplines and technologies. It is divided into
a Theory part (Part II) and an Experimental part (Part III). In Part II the theoretical
background for project is described. Initially, the irritable bowel syndrome (IBS) is
presented (Chapter 2), including its clinical expression and the diagnostic criteria for
the disease, its surprisingly high prevalence and impact on society, and possible disease
mechanisms related to the microbial communities in the gut and the brain-gut axis,
i.e. microbiota-brain-gut-axis. Next, I provide a short description of the principles of
magnetic resonance imaging (Chapter 3) and the different MRI modalities of which
diffusion MRI is the most important in my thesis. I also touch upon functional MRI
as it is highly relevant to the IBS disease, and finally the increasingly popular Brain
Imaging Data Structure (BIDS) used to represent all the imaging, demographic and
questionnaire data in a compact and efficient way, suitable for comprehensive data
analysis and machine learning. In Chapter 4 I introduce the concepts of quantitative
imaging and imaging biomarkers, influencing the experimental part of the thesis. In
relation to imaging biomarkers I also introduce image segmentation as an important
component for obtaining region of interest (ROI) derived biomarkers. In my experi-
mental work I have used fractional anisotropy (FA, a unit-less value between 0 and 1)
derived from diffusion MRI as a quantitative biomarker, often interpreted as a proxy
for "tissue microstructure". FA is explained in Section 3.2 and put into the context of
imaging biomarker in Section 4.2. Based on literature and previous studies, IBS seems
to be related to specific networks and regions in the brain, e.g. the salience network
and the insula. In Section 4.3 the concepts of brain connectivity and brain networks are
introduced. These are related to networks of physical (structural) connections between
populations of neurons ("nodes") in the brain, revealed by diffusion MRI, on one side,
and networks characterized by purely informational (functional) connectivity, revealed
by functional MRI and pairwise inter-node similarity analysis of voxel time-courses.

A major methodological part of the thesis is related to machine learning (ML) and
artificial intelligence - using ML models trained from data to predict IBS patients
versus healthy controls based on their "brain signatures" (distribution of FA values in
target regions). Chapter 5 provides a short introduction to AI and machine learning,
including artificial neural networks (in contrast to biological neural networks previously
explained) and deep learning that seems to introduce a new era in medical imaging and
also in radiography. Finally, in Chapter 6, the brain networks and structures relevant
in IBS are presented, and the aims and hypotheses for the experimental part are stated
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in Chapter 7. This connects and motivates the wide range of topics described in the
theory part of my thesis with the more focused research questions and study conducted
in the experimental part.

A note on Radiographers and Artificial Intelligence

"Adoption of AI in medical imaging and radiation therapy requires radiographers
and radiological technologists to adapt their imaging and treatment practices to
ensure new technology is being implemented, used and regulated appropriately,
based on high quality research evidence, maximising benefits to their patient".
[ISRRT and EFRS, 2020].

This quote from the joint statement of International Society of Radiographers and Radiological
Technologists (ISRRT) and European Federation of Radiographer Societies (EFRS) shows
the European and international attention towards artificial intelligence for radiographers in
the field of medical imaging.

Some additions for curriculum development in the European Qualifications Framework
(EQF) for radiographers are suggested by ISRRT and EFRS. It is suggested that radiographers
should be involved in both piloting and research of algorithms prior to clinical implementation,
and also understand how the algorithms arrive at the decisions. This involves to understand
the probability errors within these decisions to be able to effectively communicate the finding
to the patients. Radiographers should also "embrace, adopt and adapt technology, ensuring
that practice is evidence based and based on the patient" [ISRRT and EFRS, 2020].

The conclusion from ISRRT and EFRS states that an active role in planning, development,
implementation, use and validations of AI application must be assumed by radiographers.
"The optimal integration of AI into medical safety, clinical imaging and radiation therapy
can only be achieved through appropriate education of the current and future workforce and
the active engagement of radiographers and radiologic technologists in AI advancements going
forwards" [ISRRT and EFRS, 2020].

Most of the experimental work in this thesis has been conducted with the use of Jupyter

Notebooks, an interactive environment for the development and testing of scripts in the
Python programming language. All code developed in the project is stored and maintained on
GitHub (https://github.com/arvidl/viola-ibs-imaging), being the major source code
repository for software development and distribution world wide, supporting open science
and reproducible research. In the experimental part of the thesis I have made use of this code
and modified the notebooks according to my needs in collaboration with my main supervisor.

https://github.com/arvidl/viola-ibs-imaging
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Theoretical Background





Chapter 2

Irritable bowel syndrome - IBS

2.1 Definitions and criteria

Irritable Bowel Syndrome (IBS) is a common medical disorder across the world and can
be defined as "chronic functional disorder of the gastrointestinal system" [Canavan et al.,
2014a]. IBS is thought to affect between 10-20% of the population globally, depending
on the criteria used [Canavan et al., 2014b]. What has been termed "functional
gastrointestinal disorders", commonly referred to as FGID are now also called disorders
of gut-brain interaction (DGBI) [Mayer et al., 2019; Schmulson and Drossman, 2017].
As reported by Schmulson and Drossman [2017], the definition of DGBIs is "a group of
disorders classified by GI symptoms related to any combination of motility disturbances,
visceral hypersensitivity, altered mucosal and immune function, gut microbiota, and/or
central nervous system processing". The symptoms of IBS are generally characterized
by abdominal pain, a change in bowel habits with constipation, diarrhea or
both [Canavan et al., 2014a]. According to Quigley [2018] it is considered to be the
most common in adolescent and young adult females.

As a disorder IBS is not new, but the acceptance of IBS as a "real disorder" that
can be potentially incapacitating is new. Previously, IBS patients could be dismissed as
"neurotic" and was encouraged to "get their act together". The new recognition of the
impact of IBS on a personal and societal level, research in this field have been progressed
both scientifically and clinically [Quigley, 2018]. Traditionally, the diagnosis of IBS
was set when no obvious structural or biochemical abnormalities were found. In recent
years, however, researchers have suggested that there are distinct pathophysiological
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disturbances that may account for the symptoms. Evidence that IBS is not likely to
be one single disease or a psychiatric/somatosensory disorder is also emerging [Ford
et al., 2017].

Patients with IBS are commonly subtyped by their predominant bowel habits;
Diarrhea-predominant (IBS-D), constipation-predominant (IBS-C) and a mixture of
both (IBS-M) [Weaver et al., 2016].

There has been different diagnosis criteria through the years, the two most recently
being Rome III (2006-2016) and Rome IV (from May 2016). [Schmulson and Dross-
man, 2017]. The criteria from both Rome III and Rome IV are shown in the table below.

Rome III Rome IV

Recurrent abdominal pain or discom-
fort at least 3 days/month in the last
3 months associated with two or more
of the following criteria:

Recurrent abdominal pain on av-
erage at least 1 day/week in the
last 3 months associated with two
or more of the following criteria:

1. Improvement with defecation 1. Related to defecation
2. Onset associated with a change
in frequency of stool

2. Associated with a change in
frequency of stool

3. Onset with a change in form (ap-
pearance) of stool

3. Associated with a change in
form (appearance) of stool

Table 2.1: Comparison of Rome III and Rome IV criteria. [Aziz et al., 2018]

2.2 Socioeconomic impact of IBS

Approximately 30% of people with IBS symptoms will consult physicians for their
symptoms. Although there has not been observed increased mortality in patients with
IBS, the quality of life (QOL) is greatly reduced. It is suggested that patients with
IBS account for approximately 20% of the outpatient clinic time in gastroenterology
globally [Canavan et al., 2014b]. A cross-sectional population-based survey conducted
in Norway in 2001 shows that 51% of 30-year olds and 79% of 75- year olds with
IBS had sought medical help for their symptoms. The same study also suggests that
different comorbid symptoms and disorders also need to be considered when measuring
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the impact of IBS on people’s lives and on community costs. Some of these symptoms
or disorders are fibromyalgia, chronic fatigue, musculoskeletal problems and mood
disorders and were found to be two to three times higher in patients with IBS than
people without IBS [Vandvik et al., 2006]. A substantial economic cost, both for
patients and society can be related to IBS. This can include sick leave from work,
hospitalization, medical consultations, pharmacological medications and diagnostic
tests [Tack et al., 2019]. In the study by Drossman et al. [2009] with 1966 respondents
reporting impaired health status and poor health-related quality of life (HRQoL) it is
shown that the IBS patients are willing to give up 25% of their remaining life, averaging
15 years, to become symptom free.

2.3 Microbiota-brain-gut axis in IBS

Since IBS is a disorder of gut-brain interaction - DGBI, there is an increasing un-
derstanding that the brain-gut axis plays an essential role in IBS. The brain-gut axis
can be defined as "a bidirectional channel of communication between the "big
brain" (i.e. the central nervous system - CNS) in the cranium and the
"little brain" (i.e. the enteric nervous system - ENS)" [Quigley, 2018] (see also
Fig. 1.1). The role of the brain-gut axis is to both monitor and integrate gut functions
as well as to link cognitive and emotional centers of the brain with peripheral intestinal
functions and mechanisms. These functions and mechanisms can be immune activation,
intestinal permeability, enteric reflexes, and enteroendocrine signaling [Carabotti et al.,
2015]. The afferent visceral signals travels from the gut to the brain through spinal and
vagal pathways, while the efferent signals are conveyed mainly through the autonomic
nervous system and hypothalamic-pituitary-adrenal (HPA) axis. [Kano et al., 2018]
The concept of the brain-gut axis was first introduced to describe the central and
peripheral effects of gut-brain peptides such as cholecystokinin and bombesin which
was implicated in disorders like anorexia nervosa. With further description of the
function and morphology of the enteric nervous system, it became clear that it shares
many features other than the certain peptides with the central nervous system (CNS)
[Quigley, 2018].

According to Mukhtar et al. [2019], the bidirectional communication occurs through
a number of different neuronal pathways. The communication is modified by different
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anatomical and environmental factors such as the endocrine system, the autonomic
nervous system (ANS), the limbic system, and the HPA axis.

The gut microbiota consists of "a diverse population of mainly prokaryotes that
are expected to have a symbiotic relationship with the human host" [Marques et al.,
2016]. The main body of these prokaryotes are anaerobic and they belong to a few
abundant bacterial phyla: Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes
and Verrucomicrobiota. Over 90% of the human gut microbiota is constituted by the
Firmicutes and Bacteriodetes phyla that accomodate the most abundant species. The
gut is almost sterile at birth, but during the first days of life the gut of a human
being is rapidly colonized and this is affected by different factors such as antibiotic
therapy, mode of delivery and type of feeding. The microbiome of the gut is relatively
stable in an adult human, even though it develops rapidly in both complexity and
diversity the few years of life. Despite the relatively stable microbiome, it still may
be modified by different factors such as pharmaceutical treatments that target the
activity, stability and composition of the microbiota, food components and major
dietary changes [Marques et al., 2016].

Recently, the gut microbiota has gained increasing recognition in influencing key
physiological processes which also includes the gastrointestinal function [Mungovan
and Ratcliffe, 2016]. Therefore the microbiota is considered a key player in the brain-
gut axis, i.e the microbiota-brain-gut axis [Mukhtar et al., 2019]. According to
Quigley [2018], microbiota was first suggested to be a factor in IBS by the observation
of IBS-development anew after an acute enteric viral, bacterial or parasitic infection.

As stated in Marques et al. [2016] it is now generally accepted that a dysregulation
along the microbiota-brain-gut axis is present in IBS, which is shown by the high
prevalence of psychological comorbidities and an increased visceral hypersensitivity in
IBS patients. These psychological comorbidities may be anxiety and depression among
others [Marques et al., 2016].



Chapter 3

Magnetic Resonance Imaging -
MRI

Magnetic Resonance Imaging (MRI) 1 is a non-invasive medical imaging technique that
uses powerful magnets to produce a strong magnetic field, usually between 1.5 and
7 Tesla (T). MRI exploits the abundance of hydrogen atoms in the human body and
their nuclear spins. The hydrogen atoms are primarily found in water and lipids which
the body contains a lot of. The external static magnetic field, called B0, forces the
hydrogen protons in the body to align with the magnetic field. The intrinsic angular
momentum, commonly called spin, of the hydrogen nucleus precesses at the Larmor
frequency when in a magnetic field. The Larmor equation states that the precession
frequency of the nuclear magnetic moment is directly proportional to the product of
the gyromagnetic ratio and the strength of the magnetic field which is shown by the
following equation:

ω0 = γB0

The gyromagnetic ratio γ is a constant which is 42.58 MHz/T for the hydrogen nucleus.
A short radio frequency (RF) pulse at the Larmor frequency is applied to excite the
hydrogen nuclei, which in turn results in a rotation of the net magnetization away
from B0; the excited protons will absorb the energy from the RF pulse and resonate.
The magnetic field B0 is in the longitudinal direction of the MRI, the z-direction, and
the magnetization vectors corresponds to the planes of the MRI. The longitudinal

1A detailed description of MRI, especially the physics behind it, is beyond the scope of this work
and therefore this chapter will only deal with the matter in the most superficial way.



14 Magnetic Resonance Imaging - MRI

direction has the magnetization vector Mz and the transverse direction’s magnetization
vector Mxy. After the excitement of the hydrogen nuclei by the RF pulse, the protons
return to equilibrium with a rate determined by the time constant, T1. This is also
called longitudinal relaxation or spin-lattice relaxation. While returning to equilibrium,
the protons release the energy received from the RF pulse. The relaxation process
gives an electromagnetic signal which can be read by a receiver coil. There is also a
transverse relaxation, T2 relaxation, that happens simultaneously as T1 and describes
the dephasing of protons that occur in the transverse Mxy plane [Brown et al., 2014].

3.1 Multimodal Magnetic Resonance Imaging

Multimodal imaging is a methodological approach where several acquisition methods
and physical principles are applied together to provide complimentary information on
both the structure and the function of tissue or organ of interest, in our case the human
brain [Mayer et al., 2019]. The term multimodal MRI is commonly used when
combining structural or anatomical MRI (aMRI), functional MRI (fMRI), diffusion
MRI (dMRI) and in some cases perfusion imaging (pMRI) or magnetic resonance
spectroscopy (MRS), or even spectroscopic MR imaging (MRSI). By incorporating
multiple informative MRI modalities and perform joint analysis (e.g. by co-registration),
one gets more information to utilize than by a single MRI modality alone, or by analysing
the various acquisitions separately Hao et al. [2013].

3.2 Diffusion MRI - dMRI

It has long been known that MR has the capability to both image and measure
molecular (water) diffusion. This principle has a wide range of applications, from
cancer and stroke to the assessment of white matter microstructure and reconstruction
of fiber tracts in the living brain.

3.2.1 Diffusion weighted image acquisition

The image contrast in diffusion weighted imaging (DWI, or dMRI) of the brain is
based on the differences in the magnitude and directional preferences of water diffusion
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between voxels or tissue regions. Diffusion represents Brownian motion, the random
thermal movement (displacement) of molecules [Douek et al., 1991; Huisman, 2010].
Diffusion MRI measures the dephasing of proton spins in the presence of a spatially-
varying magnetic field gradients defined by the diffusion weighted pulse sequence
[Winston, 2012]. The first description of DWI sequences was done as early as 1965
by Stejskal and Tanner [Stejskal and Tanner, 1965], but was not in use in the clinical
routines until the mid-1980s because of the hardware and software requirements
[Huisman, 2010].

In a DW image of the brain, areas such as the ventricles have higher diffusivity
because of the presence of cerebrospinal fluid (CSF) and this results in increased
dephasing, signal loss, and a darker region in the image. The ventricles are also
examples of isotropic diffusion areas. Isotropic areas have similar diffusion properties
in every direction, and the recorded signal is not dependent on the applied direction of
the gradient used for the diffusion sensitization. Areas where the structure of the tissue
favors water movement in a particular direction (e.g. tissues consisting of elongated
fiber structures) will be characterised by different diffusion coefficients in different
directions. The signal attenuation is thus a reflection of the diffusion properties
and local tissue organization in the direction of the applied diffusion sensitization
gradient. Such tissue regions where water diffusion are direction-dependent are called
anisotropic areas [Grusso and Wheeler-Kingshott, 2018]. Because of the anisotropy
and the restriction of water diffusion in complex systems like living tissue, the term
"apparent diffusion coefficient" (ADC) is more commonly used, because the value of the
diffusion coefficient is very dependent on the choice of diffusion weighting, ultimately
the b-factor, and the diffusion direction [Grusso and Wheeler-Kingshott, 2018]. To
characterize (Gaussian) diffusion where displacements of water molecules per unit time
are different in different directions, the diffusion tensor (DT) model is typically used
[Jones, 2009] and is voxel-wise estimated (fitted) from the diffusion measurements in
different directions (where at least 6 directions are necessary, see below).

3.2.2 Diffusion tensor reconstruction and derived metrics

The 3 × 3 matrix (D) shown below characterizes the diffusion tensor and water
displacement along six intrinsic directions:
Dxx, Dyy, Dzz, Dxy(= Dyx), Dxz(= Dzx), Dyz(= Dzy), being the components in the
symmetric D matrix.
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D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz



Diffusion tensor imaging has been said to have revolutionized the field of white
matter mapping, by taking advantage of macroscopic geometrical arrangement of the
white matter fiber bundles in the brain [Assaf and Pasternak, 2008].

Diffusion tensor imaging (DTI) enables the analysis of the geometric three-dimensional
shape of the diffusion tensor, determined by the components of D. In tissues like
white matter in the brain, "the apparent (scalar) diffusivity of water depends on the
angle between the fiber-tract axis and the applied magnetic field gradient" [Basser et al.,
1994]. When the diffusion-sensitizing gradient is parallel to the direction of the fibers
the apparent diffusivity is largest, and the apparent diffusivity is smallest when the
diffusion-sensitizing gradient is perpendicular to the fibers [Basser et al., 1994; Douek
et al., 1991]. Therefore, along the axon in the cytoskeleton there is a relatively large
ADC, and perpendicular to the length of an axon the bi-lipid cell membranes limit
diffusion, meaning the ADC is smaller [Winston, 2012]. In a simplified view, the
ADC is the scalar of isotropic diffusion, and fractional anisotropy (FA) is the scalar of
anisotropic diffusion.

The diffusion tensor of white- or gray matter should be considered mathematically
and physically as a three-dimensional structure with three principal diffusivities, the
eigenvalues, λ1, λ2 and λ3, associated with three mutually perpendicular principal
directions, the eigenvectors, denoted as ε1, ε2 and ε3 [Huisman, 2010]. These eigenvalues
are sorted according to their size, i.e. λ1 ≥ λ2 ≥ λ3 and the components of the
eigenvector corresponding to the largest eigenvalue, i.e. ε1 = (εx

1 , εy
1, εz

1) define the
so-called principal diffusion direction in that particular voxel. The shape of the diffusion
probabilities in the voxel, i.e. any configuration from fully isotropic to fully anisotropic
diffusion, is determined by the size relationships between λ1, λ2 and λ3.

Axial diffusivity (AD) describes the diffusing waters’ mean diffusion coefficient
parallel to the tract in the voxel of interest, or rate of diffusion along the diffusion
main axis. Mathematically it is expressed as:

AD = λ1
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Radial diffusivity (RD) describes the diffusion rate in the transverse axis [Soares
et al., 2013; Winklewski et al., 2018].

RD = λ2 + λ3

2

The average value of the diffusion coefficients over a voxel is the mean diffusivity
(MD) and can be expressed as:

MD = λ1 + λ2 + λ3

3

The fractional anisotropy (FA) value is diffusion characteristic often used in
analysis of diffusion images [Alexander et al., 2007; Baliyan et al., 2016]. Mathematically
it is expressed as:

FA =

√√√√1
2

(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ2
1 + λ2

2 + λ2
3

One can describe FA (0 ≤FA≤ 1) as "a normalised, dimensionless index that
measures the properties of anisotropy of the diffusion tensor" [Grusso and Wheeler-
Kingshott, 2018], and we see that if λ1 = λ2 = λ3, we have FA= 0 (isotropic diffusion).
FA gives information on how noticeable the directional dependence of the diffusion
process is. If the FA values are low, it implies that the diffusion along all directions are
similar. High FA values implies a directional dependence such that the diffusion occurs
preferentially along one dominant direction, i.e. ε1 [Grusso and Wheeler-Kingshott,
2018]. FA has become the most widely used index or metric in DTI brain research,
because of its sensitivity to both the presence and integrity of white matter fibers
[Assaf and Pasternak, 2008]. A high FA value in white matter is often interpreted as
a more intact fiber organization, and FA measurements taken to reflect changes in
tissue microstructure due to diabetes and gastrointestinal symptoms has been studied
and discussed in Frøkjær et al. [2013]. In addition to FA, MD can also be used to
characterize microstructural properties and the integrity of different brain structures,
especially in white matter [Giannelli et al., 2010].
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3.3 Functional Magnetic Resonance Imaging - fMRI

Even though this thesis does not focus on functional MRI, this technique has been
used to investigate various DGBIs including IBS.

When neurons in the brain are activated, an increase of blood flow is delivered
through capillaries close by these neurons. This makes an increase in the level of
oxygenated blood in the area where the neurons are activated, resulting in a change in
terms of the relative levels of oxyhemoglobin and deoxyhemoglobin. This change can
be detected in MRI by exploiting the differential magnetic susceptibility [Han et al.,
2018]. This is called the Blood Oxygenation Level Dependent (BOLD) contrast
and is often used to provide in vivo real-time maps of blood oxygenation in the brain 2

[Ogawa et al., 1990]. Both task-based fMRI and resting state fMRI (rs-fMRI) have
been extensively used for functional connectivity research by exploring the level of
co-activation of rs-fMRI time-series between spatially distributed, but functionally
linked brain regions [van den Heuvel and Hulshoff Pol, 2010].

3.4 The Brain Imaging Data Structure - BIDS

Open sharing of research data has been proposed as a way to address issues of
reproducibility in neuroimaging studies [Borghi and Van Gulick, 2018; Koslow, 2000].
For sharing and reusing data, it initially requires a consensus on how to organize the
data, so as to avoid misunderstandings and possible causes of errors [Gorgolewski et al.,
2016]. The Brain Imaging Data Structure (BIDS) was therefore developed as a
standard for the organization of neuroimaging and behavioral data, so researchers can
ensure the data can be navigated, assessed and reproduced by collaborators and others
[Borghi and Van Gulick, 2018; Gorgolewski et al., 2016]. The image files in BIDS are
converted from the Digital Imaging and COmmunication in Medicine (DICOM) file
format to Neuroimaging Informatics Technology Initiative (NIfTI) file format, because
it is the largest commonality across different neuroimaging software. The metadata
found in the DICOM files is stored in JavaScript Object Notation (JSON) file in
BIDS, which has the same filename as the NIfTI file. Other metadata can be found in
tab-separated value (TSV) files and comma-separated value (CSV) files.

2This simplified explanation serves first and foremost as a reminder.



Chapter 4

Quantitative Imaging and Image
Biomarkers

Quantitative imaging (QI) is a term used to refer to both the extraction and the
use of statistical/numerical features from medical images [Abramson et al., 2015].
The research field of QI includes the development, optimization, standardization and
application of imaging acquisition protocols (anatomical, functional and molecular
acquisition protocols). It also includes data analyses, reporting structures and display
methods, and in addition it includes the validation of QI results against the relevant
clinical and biological data [Abramson et al., 2015]. The Radiological Society of
North America organizes the Quantitative Imaging Biomarkers Alliance (QIBA) which
formally has defined what a QI biomarker is, and the definition is as follows:

"An objective characteristic derived from an in vivo image measured on a ratio or
interval scale as indicators of normal biological processes, pathogenic processes, or a
response to a therapeutic intervention" [Abramson et al., 2015; Kessler et al., 2014;
Sullivan et al., 2015].

Quantitative image biomarkers (QIB) are based on mathematical definitions, and
the calculation of QIB can be automated to enable high-throughput analyses. Image
biomarkers characterise the contents of an image, often in regions of an image. The
contents might be volume, mean intesity or cortical thickness. Often, the term feature
is used instead of image biomarker, because of the historically close relationship to the
field of computer vision [Zwanenburg et al., 2019]. To derive features from images, a
sequence of image processing operations is required to be performed. Image processing
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can be performed in a number of different ways, using a wide variety of processing
schemes. However, the Image Biomarker Standardisation Initiative (IBSI) designed a
general processing scheme for feature calculation that describes the different steps in
image processing [Zwanenburg et al., 2019].

Fig. 4.1: General image processing scheme designed by IBSI [Zwanenburg et al., 2019] (Fig. 2.1).
Creative Commons (CC BY 4.0) licensed.
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For a quantitative imaging biomarker to be considered as such, it is recommended
that the measurand must be on a ratio or interval scale. A ratio variable is a variable
for which (i) there is a clear definition of zero and (ii) the ratio of two values can be
meaningfully interpreted [Sullivan et al., 2015]. A "clear definition of zero" means in this
case that zero indicates that no signal intensity is present from the feature being mea-
sured. Interval variables are measures (i) for which the difference between two values
is meaningful, but the ratio of two values are not, and (ii) for which the scales do not
have a meaningful zero. The centigrade Celsius and the Fahrenheit temperature scales
are examples of scales that do not have a "meaningful zero", because a temperature mea-
surement of zero does not mean that the entity has no heat energy [Sullivan et al., 2015].
In imaging, the Hounsfield scale used in context of X-ray computed tomography (CT)
has no meaningful zero, because by definition the zero in Hounsfield scale is the density
of water and therefore a substance that measure zero Hounsfield units have some density.

According to Abramson et al. [2015], there is potential for both increased precision
and standardization in the interpretation of images by using QI, not only in research
but also in clinical settings. Increased diagnostic accuracy and increased automation
of data reporting are potential gains from the growth of QI, as well as decreased
subjectivity and variability of the image analysis. A more robust association of imaging
findings with other clinical and biological parameters and the large-scale attempts of
linking phenotypic imaging patterns with the genomic profile are also a potential gain
from the use of QI.

There are also challenges for developing QIBs and the key challenges according to
Abramson et al. [2015] are:

• Analytical validation

• Qualification

• Utilization

Analytical validation involves "demonstration of the accuracy, precision, and
feasibility of biomarker measurement". The analytical validation process includes
the generation of data on limits of quantification, limits of detection and reference
normal values, and also the inclusion of assessing reproducibility and repeatability.
Reproducibility can be defined as "the agreement between successive measurements
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made with varying conditions, such as location or operator" and the repeatability
can be defined as "the agreement between successive measurements made under the
same conditions". These latter two needs to be specified by the appropriate statistical
parameters which can include the intraclass correlation coefficient (ICC) , kappa
or weighted kappa, the confidence interval (CI) of the mean, or the more general
Krippendorff’s alpha.

Qualification involves "demonstrating that a biomarker is associated with a clinical
endpoint". The goal of this process is to establish the ability of the QIB to serve as
a measurable indicator of a pathologic process, biological process or response to an
intervention, in accordance with the definition of a QIB.

Finally, utilization involves "the assessment of biomarker performance in the
specific context of its proposed use". Depending on the clinical- or research setting,
the requirements and performance threshold for a QI biomarker may be distinctly
different. The utilization challenge also includes the practical issues of incorporating
the biomarker into routine workflows, where the point is that the biomarker has to be
extracted and reported both efficiently and at a reasonable cost for biomarker adoption
and translation into standard clinical practice. (The previous definitions are stated
according to [Abramson et al., 2015]).

4.1 The role of image segmentation

Segmentation of medical images is an important step in the search for image-based
biomarkers and in quantitative image analysis in general. The goal of image segmenta-
tion is to partition an image into a set of regions of similar attributes. The regions are
homogeneous and not overlapping each other, and examples of the attributes might
be intensity in the image, texture, or shape [Despotović et al., 2015; Lundervold and
Lundervold, 2019]. Image analysis in the feature-based paradigm relies on the definition
of region of interest (ROI), because the ROI is used to define the region where the
features are calculated. Depending on the objective of a study, the ROI can be e.g. a
tumor volume or an anatomical region. An ROI can be defined manually by an expert
or (semi-) automatically using algorithms [Zwanenburg et al., 2019].
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4.2 FA as a quantitative imaging biomarker

Fractional anisotropy (FA), derived from dMRI measurements and defined previously,
is a measure that is sensitive to many different tissue properties such as myelination,
axonal density and ordering. It is, however, not very specific to any of these properties
[Jones et al., 2013; Szczepankiewicz et al., 2015]. FA has been used as a marker in DTI
studies of brain development, aging, neurological and neurodegenerative diseases (e.g.
multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS)). FA has been found to
be reduced in different neurodegenerative diseases and the reduction has been linked
to axonal degeneration, breakdown of myelin and decreased white matter integrity
[Timmers et al., 2016]. In several studies of Parkinson’s disease (PD), the FA parameter
has been used to distinguish between patients with PD and HC, where patients with
PD exhibited consistently lower FA values in different anatomical brain regions [Andica
et al., 2019]. In studies of patients with ALS and patients with Huntington’s disease,
FA was also able to distinguish between the patients and HCs [Li et al., 2012; Liu
et al., 2016]. Flores-Alvarez et al. [2019] used FA as a biomarker regarding overall
survival for patients with glioblastoma and concluded that in the immediate zone of
peritumoral edema, FA depicted a significant association with the overall survival for
the glioblastoma patients. Relevant to our study, changes in regional FA values due to
diabetes and gastrointestinal symptoms has been reported and discussed in Frøkjær
et al. [2013], as well as in patients with chronic pancreatitis [Frøkjær et al., 2011].

4.3 Brain connectivity - brain networks

The research field of brain connectivity has grown rapidly over the last decades.
According to Pawela and Biswal [2011], the research of brain connectivity started with
the man considered to be the founder of modern neuroscience; Santiago Ramón y Cajal
and his detailed illustrations of the connections at the cellular level. Connectivity
research nowadays is different from the previous static brain mapping, and is now
concerned with the anatomical pathways, functional communication and interactions
between the units of the CNS. With the use of MRI, the units focused on can not be
on the micro scale (single neuron scale), because of the limited spatial and temporal
resolution of current MRI technology. However, MRI and whole brain examinations
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has demonstrated to be very useful at the macro (region) scale to reveal large-scale
structural and functional connectivity in the living brain, both in health and disease.

The neurons in the brain has been considered to form complicated networks for a long
time. An increasing number of studies, both empirical and theoretical, approach the
human brain and its function from a network perspective [Sporns, 2013]. Technological
advancements and developments, especially in noninvasive neuroimaging like MRI have
given new opportunities for studying the structure and function of the human brain.
Network measures have the potential to become objective diagnostic markers, as well
as markers of effectiveness of either psychological or pharmaceutical therapies [Honey
and Bullmore, 2004; Sporns, 2011].

4.3.1 Structural connectivity

To understand a complex system, like the brain, we need knowledge about the elemen-
tary components of the system and knowledge about how these components interact
with each other is needed as well. Sporns [2013] defines structural connectivity
as descriptions of "anatomical connections linking a set of neural elements". At the
scale of the human brain, these connections generally refer to "white matter projections
linking cortical and subcortical regions." In human brains, this is usually measured as
sets of undirected links. The structural networks of the human brain are also called the
human connectome, and there have been several attempts to map these networks at
the scale of brain regions. This have been done using diffusion MRI, more specifically
diffusion tensor imaging [Bullmore and Sporns, 2009]. The measures from structural
MRI (aMRI) can also reveal differences and variations in both volume and surface area
of specific structures in the brain, and it can be used to infer structural connectivity.
According to Sporns [2011], correlations in the volume or thickness of gray matter
between two cortical brain areas have been shown to be associated with the presence
of a fiber tract linking these areas. This is usually measured on brain data sets from
multiple participants [Sporns, 2011].

4.3.2 Functional connectivity

Functional connectivity describes patterns of statistical dependence among neural
elements generally derived from time series observations [Sporns, 2013]. In the world of
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MRI, the time series data is derived with the technique of functional MRI (fMRI). The
presence of a statistical relationship between neural elements is often viewed as a sign of
functional coupling, but it is important to remember that this does not imply a causal
coupling. Because of the high time dependency of functional connectivity, changes in a
functional network can happen in a matter of tens or hundreds of milliseconds based on
the continual modulation of sensory stimuli and task context, and the low sampling rate
of fMRI (1-2 s per time frame) can not show this fast dynamics [Sporns, 2013]. However,
slow dynamics representing e.g. resting state networks in the brain, can be captured
by fMRI and with whole-brain coverage. Such (resting state) fMRI examinations
of the IBS brain versus HCs performed before, during and after acute or long-term
interventions (e.g. visceral pain provocation, psychotherapy, or low FODMAP diet)
is an important methodology to study disorders of the gut-brain interaction such as
IBS, but is outside the scope of the experimental work conducted and reported in this
thesis due to time and resource constraints.





Chapter 5

Artificial Intelligence and Machine
Learning

Artificial intelligence (AI) as a term is used when a device, typically a computer,
mimics cognitive functions. These functions may be learning and problem solving
[Pesapane et al., 2018]. Another definition is that "AI refers to a field of computer
science dedicated to the creation of systems performing tasks that usually require
human intelligence, branching off into different techniques" [Pesapane et al., 2018].

5.1 Machine learning

(ML) is a subfield of AI and includes approaches that allow computers to learn from
experience. The experience in this case is are provided by training data, where the goal
is to train the machine learning model make accurate predictions and from there be able
to make generalized predictions on new and unseen data [Lundervold and Lundervold,
2019]. Machine learning is used in many different aspects in the modern society,
amongst these are transcription of speech into text, predict activity of potential drug
molecules, identify objects in images and reconstructing brain circuits [LeCun et al.,
2015]. Lee et al. [2017] defines machine learning as "a set of methods that automatically
detect patterns in data, and then utilize the uncovered patterns to predict future data
or enable decision making under uncertain conditions" [Lee et al., 2017]. There are
different forms of machine learning, often categorized according to how the models
uses the input data in the training phase. The three most common described forms
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are reinforcement learning, unsupervised learning and supervised learning, with the
latter being the most common form of machine learning systems [LeCun et al., 2015;
Lundervold and Lundervold, 2019; Raschka, 2015]. In supervised learning the computer
is given a set of annotated/labeled data with the goal of producing correct labels on new
and unseen sets of data based on "rules" discovered in the labeled data set [Lundervold
and Lundervold, 2019]. A supervised learning task with discrete class labels is called a
classification task. The goal of classification is to predict the categorical class labels for
new, unseen data based on the past observations. A binary classification task is when
a machine learning algorithm learns sets of rules to classify the new data into one class
of only two possible classes. Distinguishing between spam and non-spam e-mail is an
example of a binary classification task [Raschka, 2015].

5.2 Artificial Neural Networks

Artificial neural networks (ANN) was introduced already in the 1950s and is one of the
most famous machine learning models [Lundervold and Lundervold, 2019]. Guresen
and Kayakutlu [2011] points to the common character of ANN definitions in literature
which is the comparison of ANNs with biological neural networks.

Biological Neural Networks Artificial Neural Networks
Stimulus Input
Receptors Input Layer
Neural Net Processing Layer
Neuron Processing Element
Effectors Output Layer
Response Output and an entry

Table 5.1: Similarities between biological neural networks and ANNs. From Guresen and Kayakutlu
[2011]

Neural networks are composed by a number of neurons - connected computational
units, that are arranged in layers. The input layer is where the data enters the
network, and this layer is followed by one or more hidden layers where the data is
transformed before it ends up at the output layer where the neural network’s predictions
are produced [Lundervold and Lundervold, 2019]. The basic form of artificial neural
networks are called feedforward neural networks and is described in detail in Goodfellow
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et al. [2016], Chapt. 6. ANNs are often pictured as a network of nodes, as seen in the
Fig. 5.1.

Fig. 5.1: Artificial neural network. Figure from Lundervold and Lundervold [2019] (Fig.1). Creative
Commons (CC BY 4.0) licensed.

5.2.1 Deep Learning

Deep learning (DL) methods are representation-learning methods, which means a set
of methods that allows a machine to use the raw data and automatically discover the
representations needed for either detection or classification while bypassing the step of
manually designing features from the raw data [LeCun et al., 2015; Lundervold and
Lundervold, 2019]. Further, these representation learning methods have multiple levels
of representation which are obtained by making simple, non-linear modules that alters
the representation at one level, the first being the raw input, into another representation
at a higher, more abstract level [LeCun et al., 2015]. The automatically learning of
representations is called feature learning and it is the most common characteristic of
deep learning methods, and also the main difference between deep learning and other
“classic” machine learning approaches [Lundervold and Lundervold, 2019].

According to LeCun et al. [2015] deep learning is solving problems that has been
major challenges for the AI community for years, and has proven especially good at
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discovering structures of intricacy in high-dimensional data which therefore is used for
not only science or research purposes, but also in domains of business and government.

DL in Medical Imaging - Convolutional Neural Networks

What triggered the interest of using deep learning in medical imaging was convolutional
neural networks called “CNNs” or “ConvNets” [LeCun et al., 2015; Lundervold and
Lundervold, 2019]. As stated in LeCun et al. [2015] CNNs “are designed to process
data that come in the form of multiple arrays [. . . ]. Many data modalities are in
the form of multiple arrays: 1D for signals and sequences, including language; 2D
for images or audio spectrograms; and 3D for video or volumetric images” [LeCun
et al., 2015]. The CNN is aimed at preserving the spatial relationships in the data
[Lundervold and Lundervold, 2019], which is important when CNN is used in medical
imaging. According to LeCun et al. [2015] there are four key concepts behind CNNs
that take advantage of the natural signals’ properties: use of many layers, pooling,
local connections and shared weights. As already mentioned, the input into a CNN is
arranged in a grid structure, and this is then fed through the layers that will preserve
the spatial relationships. Each of the layer operations is operating on a small region of
the previous layer. The training of a CNN is typically done using backpropagation and
gradient descent [Lundervold and Lundervold, 2019].

Architecture of a typical CNN

The architecture is structured as a series of stages, where the first few stages are
made up of two types of layers; convolutional layers and pooling layers [LeCun et al.,
2015]. Lundervold and Lundervold [2019] describe the architecture/building blocks of
a CNN similarly; "A CNN has multiple layers of convolutions and activations, often
interspersed with pooling layers". The primary purpose of a convolutional layer is to
detect distinctive local motif-like edges, lines and other visual elements [Lee et al., 2017].
The activation layers are usually rectified linear unit (ReLU) layers, with the purpose
of introducing non-linearity to a system that has been computing linear operations
during the convolutional layers [Goodfellow et al., 2016; Nair, V. and Hinton, G., 2010].
ReLU’s has achieved better results as activation layers, than the previously most used
sigmoid and hyperbolic tangent functions [Pereira et al., 2016]. The feature maps
produced by feeding data through the convolutional layer(s), are pooled in a pooling
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layer. Small grid regions is used as input, and single numbers is produced for each
region. This single number is usually computed by max-pooling or average pooling
[Lundervold and Lundervold, 2019].

Batch normalization are layers usually put after activation layers to produce
normalized activation maps. This is done by subtracting the mean and dividing by the
standard deviation for each training batch. The reason for doing this is to make the
network periodically change its activations to zero mean and unit standard deviation
as the training batch reaches these layers. This works as a regularizer for the network,
makes it less dependent on careful parameter initialization and also speeds up the
training process [Lundervold and Lundervold, 2019]. It is also explained by Ioffe
and Szegedy [2015], that normalizing layer inputs addresses the problem of internal
covariate shift, which is explained as follows; The distribution of each layer’s inputs
changes during training, when the parameters of the previous layers change. This slows
down the speed of training by requiring lower learning rates and meticulous parameter
initialization. This again makes it hard to train models with saturating nonlinearities.
Batch normalization makes it possible to use much higher learning rates and requires
less carefulness in the initialization [Ioffe and Szegedy, 2015].

Dropout regularization is used to reduce overfitting, which can be a problem in
deep neural networks. Dropout is a technique used to randomly drop units and their
connections from the neural network during training to prevent too much co-adaption
[Srivastava et al., 2014].





Chapter 6

Brain networks and structures
relevant in IBS

Previous research in the field of IBS brain networks using neuroimaging modalities has
shown some relevant regions and networks where there are deviations between patients
with IBS and healthy controls. In the review article by Mayer et al. [2019] brain
networks that has shown abnormalities are compiled and described. These networks are
the default mode (DMN), central autonomic control, sensorimotor processing, salience
detection, emotional arousal and central executive network [Mayer et al., 2019].

The default mode network includes the medial frontal cortex, posterior cingulate
or retrosplenial cortex, precuneus, inferior parietal cortex, lateral temporal cortex
and hippocampal formation and the functions of this network are monitoring internal
thoughts, external goals and future planning, self-awareness and episodic memory.
Studies has shown that the alterations this network in IBS patients are higher amygdala
and dorsal anterior insula (INS) functional connectivities within DMN in hypersensitive
IBS [Mayer et al., 2019].

The central autonomic network consists of control centres in the pontine-medulla,
the central nucleus of the amygdala and several cortical regions (including the anterior
INS, ACC and prefrontal and motor regions). This network has central control
and modulation of the autonomic nervous system as well as regulation of endocrine,
cardiovascular, respiratory and digestive activities during affective, cognitive, and
motor tasks and sensations. Alterations in corticotropin releasing factor (CRF), CRF
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receptor 1 and the norepinephrine-adrenergic receptor signalling system has been shown
in IBS patiens [Mayer et al., 2019].

The thalamus, basal ganglia, sensorimotor cortex and posterior INS are the central
brain regions in the sensorimotor network. The functions of this network are central
processing and modulation of somatic and visceral sensory information. By using
imaging modalities several alterations in IBS patients have been shown, amongst
them are widespread microstructural white matter changes, greater grey matter in the
posterior insula correlated with symptom duration and greater volume and cortical
thickness, correlated with symptom severity in female IBS [Mayer et al., 2019].

The dorsal anterior cingulate cortex (ACC) and anterior INS comprise the salience
network. The functions are to respond to subjective expectation or experience of
either interoceptive or exteroceptive stimulus and coordination of the appropriate
affective, behavioural, attentional and visceral responses to the aforementioned stimulus.
Alterations in IBS patients are greater engagement of anterior INS and anterior
midcingulate cortex in response to both expected and actual rectal distention, increased
central, affective and emotional-arousal processes and enhanced visceral stimulus
perception. In male IBS there is a greater pain-related response in the INS, while in
female IBS the pain-related response in greater in the ACC [Mayer et al., 2019].

The emotional arousal network consists of amygdala, hypothalamus, hippocampus,
posterior ACC and subgenual cingulate (sgACC). The functions of this network are
being activated by real or perceived disruption of homeostastis and the generation of
rapid feedback inhibition of amygdala, thereby limiting network activity in magnitude
and duration and also the related activity in the central autonomic network [Mayer
et al., 2019]. The emotional arousal network is an important link between the central
autonomic network and the salience network to targets in the periphery such as immune
system, the microbiota of the gut and the gastrointestinal tract in general [Mayer et al.,
2015]. In female IBS there is seen an increased responsiveness to delivered and expected
visceral stimuli and also greater emotional-arousal reactivity and altered connectivity.
Alterations seen in IBS patients in general is a decrease in inhibitory feedback loop
that also is seen in healthy controls who has lowered central serotonin levels by acute
tryptophan depletion [Mayer et al., 2019].

The lateral prefrontal cortices and posterior parietal cortex are the brain regions
that make up the central executive network. This network is activated during tasks
that involved executive functions such as working memory, planning, attention and
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response selection. According to Mayer et al. [2019] it is also often coactivated with
regions of the salience network. Alterations in IBS patients are deficient activation of
inhibitory cortical regions that are involved in downregulation of pain and emotion
and also attention during experience and expectation of GI stimuli. Another alteration
is a strong negative association between grey matter density and the cortical thickness
of the dorsolateral profrontal cortex and pain catastrophising [Mayer et al., 2019].

6.1 DTI in IBS brain

Previous studies with DTI of the brain in patients with IBS and healthy controls (HCs)
has shown differences in fractional anisotropy in specific areas of the brain. Ellingson
et al. [2013] found that IBS patients had substantially lower FA values in parts of the
basal ganglia, specifically the putamen and globus pallidus. The globus pallidus of IBS
patients also showed significantly lower mean diffusity (MD) compared to HCs. Lower
FA values was also observed in the thalamus, somatosensory regions (both primary and
secondary) and motor regions. That patients with IBS has lower FA values in thalamic
regions, basal ganglia and sensorimotor association and integration regions compared
to HC is also supported by Labus et al. [2019]. Higher FA values was observed in IBS
patients in prefrontal white matter regions.

In a study by Chen et al. [2011] of female patients with IBS, reduced FA was found
in white matter regions associated with pain perception. Higher mean FA values was
found in the fornix and the external capsule next to the right posterior insula.

6.2 Specific brain regions related to IBS

As the key node of the salience network, the insula is suggested responsible for the
collection, integration and processing of interoceptive stimulus, which includes visceral
pain perception, as well as cognitive and emotional pain modulation [Bednarska, 2019;
Uddin et al., 2017]. As previously mentioned in section 6, the insula is a part of
different networks that relates to IBS in addition to the salience network. The different
anatomical parts of insula are a part of the sensorimotor, default mode and central
autonomic network which indicates its importance and it has been reported as the
most consistently activated brain region in studies using somatic pain stimuli [Mayer
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et al., 2009]. Uddin [2015] also describes insular involvement in the different networks.
Activation of the insula regions was seen across IBS groups in the quantitative meta-
analysis by Tillisch et al. [2011]. Insula responses to painful rectal stimuli have also
been shown in relation to IBS [Kano et al., 2020; Larsson et al., 2011; Yuan et al.,
2003]. The pallidum is a part of the basal ganglia, a group of subcortical nuclei that
lays at the base of the forebrain and top of the midbrain. The basal ganglia have been
implicated in interpretation and modulation of both acute and chronic pain [Ellingson
et al., 2013], as part of the sensorimotor network along with e.g. insula and thalamus
[Mayer et al., 2019]. Pallidum is referred to as a region of interest in IBS and other
pain related disorders [Gracely et al., 2002; Kano et al., 2020]. Thalamus has also
been used to show differences between IBS and HC, and activation of thalamus regions
in IBS patients has been found in several fMRI-studies [Larsson et al., 2011; Tillisch
et al., 2011; Yuan et al., 2003].



Chapter 7

Research questions and hypotheses
for the experimental work

This thesis aims to explore if and how the DTI- derived metric FA value can be used as
a biomarker to detect group differences between subjects with IBS and HCs in targeted
regions of the brain related to IBS. A secondary aim is to explore machine learning as
a tool to predict whether a subject is IBS or HC based on brain DTI data.

7.1 Is tissue microstructure assessed with FA mea-
surements in target brain regions different in
patients with IBS versus healthy controls at a
group level?

The research hypothesis is that it is possible to distinguish between IBS patients and
HCs based on FA values derived from DTI data and using machine learning. This
gives the following null hypothesis: H0 : IBSFA = HCFA
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7.2 How well (according accuracy, precision and
recall) can we predict at a subject level an IBS
brain versus a healthy control brain using FA-
based brain signatures and machine learning
models?

This is the other research question we address in this thesis, and is methodologically
linked to personalized medicine and the machine learning technologies explained in
Chapter 5. These research questions (7.1 and 7.2) are the subject for the following
Experimental part of the thesis.



Part III

Experimental work





Chapter 8

Materials and methods

The materials was collected as part of a pilot project that led to a NFR FRIMEDBIO-
funded project called "Brain-Gut Microbiota Interaction in Irritable Bowel Syndrome:
A multidimentional Approach" (https://www.braingut.no). The work on this thesis
has been done in collaboration with Mohn Medical Imaging and Visualization Centre
(https://mmiv.no) and The Norwegian National Center for Functional Gastrointestinal
Disorders, Department of Medicine, Haukeland University Hospital.

8.1 Participants

15 IBS patients (11 females and 4 males) clinically diagnosed with IBS according to
the Rome III criteria by a gastroenterologist, and 15 HC (10 females and 5 males)
participated in the study. The mean age of IBS patients was 38.6 ± 12.4 years, while
the mean age of HC was 35.8 ± 13.2 years. No functional gastrointestinal disorder was
present in the HCs. None of the participants reported any psychiatric illnesses. The
study was approved by the regional ethics committee of Western Norway, and all the
participants signed a written consent before participating in the study. All participants
were fasting for at least four hours before the experiment was conducted. A plot of the
participants’ age and gender demographics can be seen in Fig. 8.1.

https://www.braingut.no
https://mmiv.no


42 Materials and methods

Fig. 8.1: Age and gender demographics of the 15 HCs and 15 IBS patients

8.2 MRI protocol

Of the more comprehensive original MRI protocol, the following two sequences are the
focus in this thesis.

Brain MRI was acquired using a GE Signa HDxt 3T with a standard 8-channel
head coil. First, a localizer was performed before a structural 3D T1-weighted (T1w)
gradient-echo sequence was acquired. TR = 7.76 ms, TE = 2.95 ms, TI = 500 ms,
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flip angle = 14°, matrix = 256 × 256, FOV = 256 × 256 mm2 and 188 1.0 mm thick
sagittal slices. The diffusion data was collected using a single-shot spin echo diffusion
sensitized echo-planar imaging (EPI) sequence. TR = 14000 ms, TE = 92.9 ms, flip
angle = 90°, matrix = 128 × 128; 50 axial slices; voxel size 1.72 × 1.72 × 2.4 mm3. In
total, 36 volumes was collected in this sequence; 6 volumes without diffusion weighting
(b = 0 s/mm2) and 30 volumes with diffusion weighting (b = 1000 s/mm2).

8.3 File formats and file management

Since MRI scanners store the data in DICOM format, the images were converted to the
NIfTI file format, which is used for scientific imaging analysis, visualization and process-
ing. [Li et al., 2016]. The conversion to NIfTI file format was accompanied with a JSON
file and was performed using the Python library dcm2niix. A "bug" in the software re-
quired an extra step for converting slice timing from milliseconds to seconds. The NIfTI
files were organized into the Brain Imaging Data Structure (BIDS) directory structure
for ease of automating processing pipelines [Gorgolewski et al., 2016]. The BIDS-
validator available from https://github.com/bids-standard/bids-validator was
used to make sure the formatting was correct.

8.4 Anatomical segmentation of the brain

As previously mentioned in section 4.1, anatomical segmentation is a key step for
analysing medical images. Anatomical 3D T1w images was first processed through
the FSL-based general pipeline, fsl-anat, that includes brain-extraction, tissue-type
segmentation and subcortical structural segmentation. The images were reoriented
to the standard (MNI) orientation and automatically cropped, before a bias-field
correction was performed. Registration to standard space, brain-extraction, tissue-type
segmentation and subcortical structure segmentation were then performed using the
pipeline.

FreeSurfer v6.0.0 (FreeSurfer), a documented and freely available brain segmentation
tool [Reuter et al., 2012], was also used for parcellation and segmentation of the brain.
Two of FreeSurfers default atlases were used; the Desikan-Killiany-atlas [Desikan et al.,
2006] and the Destrieux-atlas [Destrieux et al., 2010], where the former is "coarser" and

https://github.com/bids-standard/bids-validator
http://surfer.nmr.mgh.harvard.edu
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the latter is "finer", thereby analysis at two different levels of granularity is possible. In
context of segmentation, an atlas is the combination of an image and a trusted reference
segmentation, where the reference segmentations are generated by experts following
an already established delineation protocol [Yaakub et al., 2020]. After running the
subject data through FreeSurfer, the data needed to be converted from FreeSurfer
space back to native space. The native space conversion was tested on one subject
using the bias-corrected image from the FSL-pipeline as target image before the native
space conversion was run on all subjects using the same method.

a) b) c)

Fig. 8.2: FreeSurfer segmentation showing left and right insula (green) and left and right pallidum
(blue) in one of the subjects. a) Axial view. b) Sagittal view. c) Coronal view. The segmented
thalamus region is not shown in this image.

8.5 Diffusion Imaging analysis

DIPY, Diffusion Imaging in Python, a free and open source software that focuses on
diffusion MRI was used on the diffusion weighted images. A NIfTI-file containing
the diffusion weighted data and two text-files that contains the b-values (bval) and
b-vectors (bvec) are necessary for the usage of DIPY.

A preliminary exploration of the first subject and session was done using DIPY,
checking that the data corresponded with the dMRI protocol. The middle axial slice
was visualized with and without diffusion weighting as seen in Fig. 8.3
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Fig. 8.3: First subject and session, slice 25/50, without (left) and with (right) diffusion weighting.
Note the numbering of the diffusion-sensitizing direction (dir), the b-values (bval), and the gradient
directions in scanner coordinate system (bvec).

The non-diffusion weighted data (S0) was then extracted from the subjects for later
to be able to perform an affine registration in combination with the 3D T1w images.
Image registration methods are widely used in medical imaging research and the basic
task is to align two images, meaning to spatially reshape one image to match the
other [Jenkinson, 2006]. In this case, the diffusion images was spatially reshaped to
match the T1w images, to allow features from both sets of images to be utilized in the
analysis. An affine registration function was made, where the mean S0 image was used
as a target image. To transform the moving image toward the static image, each voxel
in the image space (i, j, k) was mapped to world (scanner) coordinates (x, z, y). When
applying the affine transform to the world coordinates, we got the (x′, y′, z′) in world
coordinates of the moving images. These coordinates were finally mapped to the voxel
coordinates (i′, j′, k′) in the moving image. The affine registration function was first
tested on one subject, before running on all subjects.

8.5.1 Reconstruction of the diffusion tensor

The diffusion tensor model is based, as already mentioned in Chapter 3.2.2, on the
work of Basser et al. [1994].
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After a preliminary exploration of the first subject, broadcasting in NumPy was
used to obtain the brain-masked 4D DWI data. Broadcasting is used to treat arrays of
different shapes when doing arithmetic operations, since element-to-element operations
are not possible if the dimensions of two arrays are dissimilar. DIPYs TensorModel
was used and the fit method called to the mask data. The TensorFit object created
by the fit method contains the fitting parameters used to generate tensor statistics. A
function for the tensor features fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD), radial diffusivity (RD) and a colormap (RGB) was defined. These
tensor features were tested and then run on all subjects.

8.6 DTI-derived metrics in segmented ROIs

The co-registered white matter parcellation from the FreeSurfer segmentation for a
given subject and session, lays the foundation for DTI feature extraction for a given
anatomical region. Each region is given a unique number in FreeSurfer, which is found
in the FreeSurfer look-up-table (LUT). The parameters for the function are the input
directory, subject ID and session, ROI-name in the white matter parcelation and the
corresponding ROI-number that is found in FreeSurfer LUT. This returns the measure
names, in this case the list of DTI-derived features; FA, MD, AD and RD, the measure
number which is the number of voxels in the 3D ROI region and measure value; the
feature values of each feature i in the list of DTI-derived features. This function was
tested on white matter left hemisphere insula (wm-lh-insula) on one subject first,
before being run on all subjects and the chosen ROIs. Based on literature and previous
research, the selected ROIs used in the analysis is given in Tab. 8.1 below.

Anatomical region Label number Label name

Insula (left hemisphere) 3035 wm-lh-insula
Insula (right hemisphere) 4035 wm-rh-insula
Thalamus (left hemisphere) 10 Left-Thalamus-Proper
Thalamus (right hemisphere) 49 Right-Thalamus-Proper
Pallidum (left hemisphere) 13 Left-Pallidum
Pallidum (right hemisphere) 52 Right-Pallidum

Table 8.1: Selected white matter regions with label number and label name from FreeSurfer LUT.
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As previously mentioned, BIDS directory structure was used for organizing the
neuroimaging files and this makes it possible to further utilize the Python package
pybids for querying and navigating datasets. By using the tab-separated values-file
(.tsv-file) of participants, the subjects was split into two groups; HC and IBS. This
made it possible to make a group-wise concatenation of ROI-based DTI-metrics. The
FA values and median FA values in the six different ROIs were obtained for the HC
group first and then for the IBS group. The distribution of these FA values are shown
in Figs. 9.1, 9.2 and 9.3.

8.7 Permutation testing of group differences

A permutation test is a statistical technique, and the idea was introduced in the 1930s
by R.A. Fisher. As permutation tests are highly compute-intensive, the increasing
power of modern computers now makes permutation tests practical to use routinely
[Efron and Tibshirani, 1994]. The main application of permutation tests is to a two-
sample problem, where two independent random samples, say z and y are drawn from
possibly different probability distributions, e.g. IBSFA and HCFA. In our context the
two-sample problem can be described as:

IBSFA → z = {z1, z2, . . . , zn} and HCFA → y = {y1, y2, . . . , ym}

where we are interested in testing the null hypothesis H0 : IBSFA = HCFA. If H0 is
true it means that there is no difference in the median FA values of the IBS group and
the HC group. The permutation test is therefore useful to explore if it is likely that a
slight difference between median FA values can happen by chance.

If the null hypothesis is true and there is no FA difference between HCs and IBS
patients, both the group of HCs and the group of IBS patients can be considered to
be samples from the same larger population. Therefore the FA values can be pooled
together into one large group before shuffling and then split into two groups equal in
size as before shuffling. Both groups now contain the same number of FA values as
before the shuffle, but they are now a random mix of values from each original group.
This was done to our data first, and the median was chosen as a desired return since
the median FA values was already obtained. To get a large range of values and better
statistics, the shuffling procedure was done 10000 times in the permutation test. By
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using the inputs of the ROI name and ROI number according to the FreeSurfer LUT,
and running 10000 permutations in a loop, the outputs of our function (implemented
in Python) were: theta_hat, diffCount and p_hat_perm, for which

• theta_hat - the observed difference: median(HCFA) - median(IBSFA).

• diffCount - number of permutation occurrences for which a permuted difference
in medians is larger than the observed difference in medians, and

• p_hat_perm - permutation test probability P of observing the difference me-
dian(HCFA) - median(IBSFA).

The results of the permutation tests for median FA differences in two groups and for
each of the ROIs, compared with the observed difference in median FA between IBSFA

and HCFA are shown in Chapter 9.

8.8 Machine learning

8.8.1 Feature extraction

The main goal of supervised learning is to use labeled training data to learn a model
to make predictions about new, unseen data [Raschka, 2015]. To accomplish this, the
data we have has to be split into a training set and a test set. The training set is used
to train and optimize the machine learning model, while the test set is used to evaluate
the model.

A group-wise subject extraction of ROI-based FA features was made. The selected
features used in the model were the 50th percentile (median) FA value within each of
the four ROIs: left and right insula regions and left and rigt pallidum regions in both
HC-group and IBS-group, resulting in two separate data sets. These two data sets
were then concatenated, giving 30 individuals or instances each assigned four features,
i.e. a 30 × 4 data matrix, denoted X. The corresponding 30 × 1 vector of labels or
class belongings (IBS or HC) was denoted y.
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8.8.2 Classification and performance measures

Scikit-learn open source machine learning library [Pedregosa et al., 2011] was
primarily used for the supervised learning. The python package XGBoost (eXtreme
Gradient Boosting) was also included in the machine learning process. Four different
classification algorithms were trained and used for prediction, and three different
performance metrics were applied in a k-fold cross-validation scheme, splitting the
data into a training set and a test set in each fold. A mean performance score (metric)
for each machine learning algorithm was accumulated across the folds, using three
different metrics: accuracy, precision, and recall. Accuracy score is defined as

Accuracy = Number of correct predictions
Total number of predictions made

The mean precision scores for the four algorithms were also calculated to examine
the precision of the predictions:

Precision = True positives
True positives + False positives

The mean recall score was calculated to examine the models’ accuracy on the actual
positive (IBS) class, i.e.

Recall = True positives
True positives + False negatives

.

The algorithms used for training and prediction were

• Logistic regression (LG)
• XGBoost (XGB)
• Decision Tree Classifier (Classification and regression trees (CART))
• Random Forest Classifier (RF)

The train_test_split function from scikit-learn was used in the cross-validation
loop, and the test_size was set to 0.25, meaning 25% of the samples were used for
testing the algorithms, while 75% was used for training. We also applied stratification
on the labels, making sure that the proportion of IBS instances and HC instances in
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the original data set was kept balanced in the train and test splitting procedure. In
our case, the randomized splitting procedure produced at each iteration a training set
of 22 subjects, and test set of 8 subjects with about equal proportions of IBS and HCs.
See Section 8.8.3 for implementation details. The four different algorithms were run N
times (i.e. k = N in the k-fold cross-validation), with different values of N ’s as seen in
Tab. 8.2.

N (in N -fold cross-validation)
10 50 70 100 150 200

Table 8.2: Number of times (N) the different algorithms were run with a random splitting of the
data into a training set and a test set at each iteration.

We report results for N = 100 telling that the process of training and testing was
executed 100 times for each algorithm to create the different models. Also, a confusion
matrix was made for each machine learning algorithm to evaluate the performance
and types of mis-classifications of the predictive algorithms, visualized in Fig. 9.16 and
Fig. 9.17.
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8.8.3 The Jupyter notebook used for classification
# https://github.com/arvidl/viola-ibs-imaging/blob/master/notebooks
# my3_12-dti-fa-feature-extraction-and-classification.ipynb Viola Hansen / Arvid Lundervold

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from xgboost import XGBClassifier # pip install xgboost
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score

a = [], a_p = [], a_r = []
b = [], b_p = [], b_r = []
c = [], c_p = [], c_r = []
d = [], d_p = [], d_r = []

N = 100
for i in range(N):

X_train, X_test, y_train, y_test = train_test_split(X, yy, test_size=0.25, stratify=yy, random_state=i)
if i == 0:

print(f’Training data: {X_train.shape}\nTest data: {X_test.shape}’)

print(i, ’y_train:’, y_train)

lg = LogisticRegression(random_state=i)
lg_fit = lg.fit(X_train, y_train)
y_pred_lg = lg.predict(X_test)
a = np.append(a, accuracy_score(y_test, y_pred_lg))
a_p = np.append(a_p, precision_score(y_test, y_pred_lg))
a_r = np.append(a_r, recall_score(y_test, y_pred_lg))

xgb = XGBClassifier(random_state=i, base_score=0.5, objective=’binary:logistic’, booster = ’gbtree’)
xgb_fit = xgb.fit(X_train, y_train)
y_pred_xgb = xgb.predict(X_test)
b = np.append(b, accuracy_score(y_test, y_pred_xgb))
b_p = np.append(b_p, precision_score(y_test, y_pred_xgb))
b_r = np.append(b_r, recall_score(y_test, y_pred_xgb))

cart = DecisionTreeClassifier(random_state=i)
cart_fit = cart.fit(X_train, y_train)
y_pred_cart = cart.predict(X_test)
c = np.append(c, accuracy_score(y_test, y_pred_cart))
c_p = np.append(c_p, precision_score(y_test, y_pred_cart))
c_r = np.append(c_r, recall_score(y_test, y_pred_cart))

rf = RandomForestClassifier(random_state=i)
rf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)
d = np.append(d,accuracy_score(y_test, y_pred_rf))
d_p = np.append(d_p, precision_score(y_test, y_pred_rf))
d_r = np.append(d_r, recall_score(y_test, y_pred_rf))

print(i, ’y_test:’, y_test)
print(i, ’y_lg :’, list(y_pred_lg))
print(i, ’y_xgb :’, list(y_pred_xgb))
print(i, ’y_cart:’, list(y_pred_cart))
print(i, ’y_rf :’, list(y_pred_rf))

print(’\n Mean accuracy across n=%d train_test_split: \n LR (XGB) [CART] {RandomForest} classifications: %.3f (%.3f) [%.3f] {%.3f}’
% (N, np.mean(a), np.mean(b), np.mean(c), np.mean(d)))

print(’\n Mean precision across n=%d train_test_split: \n LR (XGB) [CART] {RandomForest} classifications: %.3f (%.3f) [%.3f] {%.3f}’
% (N, np.mean(a_p), np.mean(b_p), np.mean(c_p), np.mean(d_p)))

print(’\n Mean recall across n=%d train_test_split: \n LR (XGB) [CART] {RandomForest} classifications: %.3f (%.3f) [%.3f] {%.3f}’
% (N, np.mean(a_r), np.mean(b_r), np.mean(c_r), np.mean(d_r)))
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8.8.4 Feature importance

To assess which of the features that was most important to distinguish between IBS
and HC, feature importance was calculated for each of the models CART, RF and
XGBoost. The results of this can be seen in Figs. 9.18, 9.20 and 9.21. A graph showing
the decision tree structure of the CART model applied to the split of data at the last
(100th) iteration was also made for visualization purposes.

Permutation importance was also applied to inspect and assess which features
that were important for the prediction, given a classification algorithm (e.g. CART,
RF, or XGB) and a metric (accuracy). The idea behind this data-driven approach is
to measure the decrease in model accuracy when randomly shuffling the values of each
feature separately multiple times, assuming that permutation of an important feature
has a larger effect on model accuracy performance than for less important features.
For this we used the ELI5 Python library and the sklearn.permutation_importance
with standard number (n_iter = 5) of random shuffle iterations. The permutation
importances for the features in the three different classifiers are shown in Fig. 9.22.



Chapter 9

Experimental results

9.1 Results of group and ROI-wise feature analysis

A median FA value of 0.425 in IBS patients and a median FA value of 0.443 in HCs is
seen in the left insula (wm-lh-insula) region. In the right insula region (wm-rh-insula)
a median FA value of 0.415 in IBS patients and a median FA value of 0.431 in HCs is
seen.

Fig. 9.1: FA values in insula regions of HC and IBS
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Fig. 9.2: FA values in pallidum regions of HC and IBS

A slightly lower FA value in IBS patients compared to HCs can also be observed in
both left and right pallidum regions, as visualized in Fig. 9.2 above. Left hemisphere
pallidum region had a median FA value of 0.375 in HC and 0.352 in IBS, while the
right hemisphere pallidum region’s FA values were 0.390 in HC and 0.349 in IBS. FA
values in the thalamus regions shows only a minimal difference, with median FA-value
of 0.331 and 0.322 in HC for left and right thalamus regions respectively, and 0.330
and 0.321 in IBS patients as seen in Fig. 9.3. A summary of the median FA values for
each region and group can be seen in Table 9.1
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Fig. 9.3: FA values in thalamus regions of HC and IBS

Anatomical region median FA value IBS median FA value HC

Insula (left) 0.425 0.443
Insula (right) 0.415 0.431
Thalamus (left) 0.330 0.331
Thalamus (right) 0.321 0.322
Pallidum (left) 0.352 0.375
Pallidum (right) 0.349 0.390

Table 9.1: An overview of median FA values in the targeted ROIs in IBS patients and HC.

The distribution of FA values in HC and IBS within the different regions can be
visualized to get a preliminary insight to how the FA values in the two groups compare
to each other. This is depicted in Fig. 9.4 through Fig. 9.9.
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Fig. 9.4: Distributions of FA values in left hemisphere insula region of HC and IBS patients
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Fig. 9.5: Distribution of FA values in right hemisphere insula region of HC and IBS patients

Fig. 9.6: Distributions of FA values in left thalamus region of HC and IBS patients
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Fig. 9.7: Distributions of FA values in right thalamus region of HC and IBS patients

Fig. 9.8: Distribution of FA values in left pallidum region of HC and IBS patients
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Fig. 9.9: Distributions of FA values in right pallidum region of HC and IBS patients

9.2 Group differences in FA-value distributions and
permutation testing

The results of the permutation testing on left hemisphere insula region shows an observed
difference in median FA values between the HC and IBS of 0.0187 (theta_hat). The
diffCount was 0, showing that none of the permuted medians was larger than the
observed median, which gave p < 0.0001 (= 1 / number of permutations) indicating a
statistical significant finding, assuming a significance level α = 0.01. This is illustrated
in Fig. 9.10.
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Fig. 9.10: Permutation testing analysis for FA within the "wm-lh-insula" region

Permutation testing on right insula region resulted in a theta_hat of 0.0163,
diffCount of 0 giving a p < 0.0001 shown in Fig. 9.11.
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Fig. 9.11: Permutation testing analysis for FA within the "wm-rh-insula" region

The permutation testing on left (Fig. 9.12) and right (Fig. 9.13) thalamus regions
returned a theta_hat of 0.0011 and 0.0016, respectively. The diffCount for left
thalamus region was 2495, which is visualized as the gray areas to the right of the
vertical line in Fig. 9.12. For the right thalamus region, the diffCount was 1612. This
shows that a at considerably number of times (i.e. diffCount), the permutation gave
a median difference that was larger than the observed median. Accordingly, the p-value
of left and right thalamus region was p = 0.2496 and p = 0.1613 respectively, indicating
that these findings were not statistically significant, given our significance level.
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Fig. 9.12: Permutation testing analysis for FA within the "Left-Thalamus-Proper" region

Fig. 9.13: Permutation testing analysis for FA within the "Right-Thalamus-Proper" region

The next two figures show the results of permutation testing on left and right
pallidum regions. Left pallidum shows an observed difference in median FA values
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between the HC and IBS (theta_hat) of 0.0233, and the diffCount was 0. Thus,
the p-value was reported to be p < 0.0001. The theta_hat for right pallidum regions
was 0.0409, and similarly to left pallidum regions, had a diffCount of 0, giving a
p < 0.0001. These results are show in Figs. 9.14 and 9.15 below.

Fig. 9.14: Permutation testing analysis for FA within the "Left-Pallidum" region
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Fig. 9.15: Permutation testing analysis for FA within the "Right-Pallidum" region

9.3 Classification performance

An overview of the different N’s used for train_test_split and the mean accuracy
score for each N and different algorithms is shown in Tab. 9.2.

N LogReg XGBoost CART RF
10 0.562 0.562 0.713 0.700
50 0.555 0.545 0.640 0.642
70 0.557 0.541 0.634 0.629
100 0.551 0.566 0.646 0.627
150 0.557 0.566 0.637 0.621
200 0.553 0.562 0.629 0.619

Table 9.2: Accuracy performance score of the four different algorithms and its dependency of N
(number of folds in the cross-validation procedure).
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With N = 100, a classification accuracy of 0.646 (64.6%) and 0.627 (62.7%) was
achieved for CART and RF models respectively. For XGBoost and Logistic Regression
the classification accuracy was slightly lower than CART and RF across the different
N used.

The precision score for N = 100 in logistic regression, XGBoost, CART and RF
was 0.596, 0.551, 0.648 and 0.647 respectively.

The recall score for N = 100 in logistic regression, XGBoost, CART and RF was
0.477, 0.662, 0.695, 0.627 respectively.

To get a better understanding and evaluation of the classification accuracy, the
confusion matrices was computed for all four models. In Fig. 9.16, the confusion
matrices for the different decision trees is shown. The visualization shows that the
three different decision tree classifiers predicts the same number of correct labels for
the two different groups when the models are applied to the test set. The logistic
regression classifier classified the test samples a little bit differently than the decision
tree classifiers, and this is shown in the confusion matrix in Fig. 9.17. However, it is
important to note that the confusion matrices shows only the last run of each of the
algorithms.

Fig. 9.16: Confusion matrix for a) CART, b) XGBoost and c) Random Forest.
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Fig. 9.17: Confusion matrix for logistic regression.

The feature importance assessment for the CART-model and Random Forest-model
yielded slightly different results. In CART, the feature with the highest relative
importance was the median FA value of left pallidum region (FA_13_p50), with a
value of 0.41. The median FA value of right pallidum (FA_52_p50) was the second
most important with a relative importance of 0.38. Left insula region’s median FA
value (FA_3035_p50) had a relative importance of 0.21, while the right insula region’s
median FA value (FA_4035_p50) was of no relative importance for the CART, giving a
value of 0.0. This is visualized in figure 9.18. Figure 9.19 shows the feature importances
in a decision tree structure. Important note in the decision tree is that it is the
visualization of the last run algorithm, number 100 out of 100.

Fig. 9.18: Graphical visualization of the feature importances in the CART model.
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Fig. 9.19: Tree visualization of the feature importances in the CART model.

In the Random Forest model, the feature importance assessment is shown as a
graph in Fig. 9.20. From the highest relative importance to lowest relative importance,
the values were 0.32 for right pallidum region, 0.31 for left pallidum region, 0.20 for
right insula region and 0.16 for left insula region.
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Fig. 9.20: Graphical visualization of the feature importances in the Random Forest model.

The feature importances in XGBoost model shows that the FA values of left pallidum
region (FA_13_p50) was the most important feature in distinguishing between HC
and IBS by far.
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Fig. 9.21: Graphical visualization of the feature importances in the XGBoost model.

Based on the combined feature importances, the FA values of left and right pallidum
regions seems to be the most important features in distinguishing between IBS and
HC.

The results of the permutation importance for the three different classifiers shown
in the three lists in Fig. 9.22. The feature at the top of each models’ list has the
highest importance, and the features are listed in order of decreased importance for
prediction. The first number in each row shows the reduction in the performance of
the model when that specific feature is shuffled. These results indicates that the FA
values of the right pallidum region is the most important feature used in the prediction
for all three different models. The second most important feature was FA values in
left pallidum region for all three models. The FA values of the two insula regions were
calculated as least important for the model performance in all models, though slightly
more important for the Random Forest and XGBoost models compared to CART.

(a) CART (b) RF (c) XGBoost

Fig. 9.22: Permutation importance for three different classifiers (CART, RF, XGBoost).
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Discussion

Due to the close dependency between the Results and the Methods used to obtain
them, it was found most appropriate for the author to discuss these sections together.

The findings of decreased median FA values in the bilateral insula and pallidum
regions in IBS compared to HC indicates the presence of microstructural tissue changes
in these regions. In the study performed by Ellingson et al. [2013], they found
substantially lower FA values in IBS patients compared to HC in the globus pallidus.
Mayer et al. [2019] pointed out that lower FA values in globus pallidus were also found
in female IBS patients, which can indicate that the sex of the subject might influence
the measured FA values. In the data used in this thesis there were participants of
both sexes, but a considerable higher number of females (11 IBS, 10 HC) than males
(4 IBS, 5 HC). It is plausible that this has influenced the results. However, the IBS
diagnosis is considered to be most common in females [Quigley, 2018], thus indicating
the representativeness of the samples.

The permutation testing analysis gave several statistical significant findings. The
number of observations that is equal to or more extreme than the initial observation
divided by the total number of permutation observations gives the p-value. In left and
right insula and pallidum regions, the p-value of p < 0.0001 shows that the probability
of H0 being true is less than 0.01%. This can be interpreted as an indication of changes
in white matter integrity in IBS compared to HC at group level. As previously described,
IBS is associated with abdominal pain [Aziz et al., 2018; Canavan et al., 2014a] and
both the insula and pallidum regions have been implicated in the interpretation and
modulation of pain [Ellingson et al., 2013; Mayer et al., 2019] so it might be that the
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IBS leads to the lower FA values in the IBS patients. An important consideration
when looking at the findings however, is that even though the FA metric has a high
sensitivity for diffusion to both the presence and integrity of white matter, it might
be slightly confounded by the partial volume effect since a voxel can contain water
from different types of tissue. There is a possibility that there can be other reasons for
the lower FA values found in the IBS patients, since other pain related disorders can
also cause lower FA values in insula and pallidum [Gracely et al., 2002; Kano et al.,
2020]. As FA often is used as a measure of white matter integrity, other factors and
conditions that results in a loss of white matter integrity might also result in lower
FA values. This can be factors such as aging or neurological and neurodegenerative
diseases [Timmers et al., 2016].

Frøkjær et al. [2011] found decreased mean FA values in the anterior insula bilater-
ally in patients suffering from chronic pancreatitis with abdominal pain (p<0.0001)
compared with HC, which supports the importance of the gut-brain axis and abdominal
pain related white matter integrity changes in the insula regions. When considering
that the brain and its connectivity can be viewed as a network, to approach the findings
in this thesis from a network perspective is also relevant. The statistical significant
decreased median FA values might suggest that damage to white matter integrity may
influence the regulation of networks, especially the sensorimotor- and salience networks
that already have been connected to IBS Labus et al. [2019]; Mayer et al. [2019].

Ellingson et al. [2013] found that IBS patients had substantially lower FA values
in the thalamus regions, while in our analysis there was only a minimal difference
between the FA values in the thalamus regions for HC and IBS. As visualized in the
figures 9.4 to 9.9, the distribution of FA values for HC and IBS overlaps to great
extent, indicating that the FA values of the two groups are largely similar. This is not
surprising when considering all the similarities in the two groups, since the goal is that
only the presence of IBS should be influencing the FA values. Despite the findings
of Ellingson et al. [2013], the median FA values in the thalamus regions in our study
did not discriminate well between HC and IBS at group level. This might be due to a
number of reasons. One explanation might be the difference in the number of subjects
in the study of Ellingson et al. [2013] compared to ours. Ellingson et al. [2013] had
IBS=33 and HC=93, more than twice the number of IBS patients compared to this
study. Another reason could be the difference in the methodological approach to the
DTI data.
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With the small sample size available in this study, the permutation testing was
used to increase the internal validity.

The difference in median FA values in insula and pallidum regions between HC
and IBS at a group level, suggested that these features might be used to discriminate
between subjects with IBS and HC. When using these features to make predictions
about new data, in this case to use the features to classify in a test set whether a subject
was in the IBS group or HC group, the moderate accuracy, precision and recall of the
machine learning models show that this is not easy.The highest accuracy score of 64.6%
was obtained using CART-model, which may be described as moderately successful.
As seen in Labus et al. [2019], supervised learning has been used on structural brain
imaging data using morphometric features to discriminate IBS versus HC with a
predictive accuracy of 70%. This led to the statement that it is not sufficient for
diagnosis, but that it underscores the presence of brain alterations in IBS and the
utility of data-driven analyses such as machine learning. Although the scores alone are
not sufficient for diagnosis, our results still gives an indication that the features and
target regions are relevant for classification of IBS versus HC.

Results also gave an insight into which of the features that was most successful in
discriminating between IBS and HC. In this thesis study, the median FA values in the
pallidum region had the highest importance for the classification, while the FA values
in insula regions had lower importance. Given the prominent role insula regions has in
the processing and perception of visceral pain [Bednarska, 2019; Mayer et al., 2019;
Ruffle et al., 2017], one might have had the expectation that the importance of this
feature should have had more positive impact in the classification. The underlying
reasons for this lower importance can be due to a number of reasons pertaining to e.g.
methodological choices or the limited sample size.

The inclusion of rs-fMRI data and/or symptom scores for analysis might also have
improved the three performance metrics, however this would have meant the inclusion
of other features due to the nature of the data. This was not done on account of the
time and resource contstraints. Also, if a higher number of IBS patients and HCs was
included in the study, it would have given the machine learning model more data to
learn from and possibly make predictions with higher accuracy.

On that note, classification accuracy works well as a score when the number of
samples in each class are equal. If the classes had been unbalanced, for example if the
model was trained on a training set where 80% of samples belonged to IBS class and
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20% of the training samples belonging to HC class, the model could get an accuracy
score of 80% if it just predicted "IBS" on all samples in the test set. In this case, an
accuracy score of 80% would not necessarily mean that the model is good, because
when applied to a balanced test set with 50% in each class, the accuracy score would
drop to 50% and imply that the model is just "guessing" and has not actually learned
from the true labels. When reviewing the training- and test sets used in this thesis
it becomes apparent that the test set contained four subject with IBS and four HC
subjects, meaning that the model was trained on 11 subjects from each group. An
accuracy score better than 50% indicates that the model actually has learned from the
true labels. This is because of the stratification applied to the labels as described in
section 8.8.2.

When it comes to the supervised machine learning algorithms, the purpose of
splitting the available data into training set and test set is to prevent the model from
making the methodological mistake of both learning and predicting on the same data.
If the data set is not split into a training set and a test set, the model would be able to
just repeat the labels it has already seen, thus resulting in a perfect score. The model
would have learned the data "by heart", and can therefore make a perfect prediction of
whether the patients belongs to one group or the other. This is called overfitting and
is not useful for a machine learning model because it would make it unable to make
useful predictions on new and unseen data. Another way to describe overfitting is that
if the researcher works too hard to find the best fit to the training data, the risk is
that "noise" is fitted in the training data by memorizing anomalies instead of learning
a general predictive rule [Dietterich, 1995].

To get better accuracy and/or precision score, manual tuning of the machine
learning algorithms’ settings, called hyperparameters, might have yielded better results
for the different models. The danger of tuning these settings is that there is a danger
of overfitting the model to the data, because it is possible to tune the parameters of
the model until an optimal performance of the model is reached by what is called "data
leakage" from the training set to the test set. If this happens, the metrics would not
reflect generalization performance. To avoid this while training the models in this
thesis, the hyperparameters was set at ’default’.

As visualized in the confusion matrices in Fig. 9.16, the trained machine learning
models did not make 100% correct classifications of HC and IBS. Theses models
predicted that two out of eight subjects in the test set belonged to the IBS group, while
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they in fact belonged to HC group, i.e. "false negative". On the other hand, the same
three models did not predict that any of the HCs belonged to the IBS group, i.e. "false
positives". But as mentioned previously, it is important to note that the confusion
matrices is a visualization of one out of the N = 100 predictions. The recall quantifies
the number of positive class predictions made out of all positive class examples in the
dataset, and the CART model’s recall score of 0.695 shows that 69.5% of the actual
IBS patients were detected.

Another methodological aspect that might have influenced the results is the image
processing steps followed in our study. As described by Zwanenburg et al. [2019] the
image processing steps that leads to image biomarker calculations can be performed in
a number of different ways. Choosing differently in some of the steps might have given
other results, e.g. feature calculation (see Fig. 4.1) on other ROIs than the insula,
pallidum and thalamus. Choices regarding which ML models to use could also have an
impact on the outcome, as there are several different models available (e.g. artificial
neural networks) for classification tasks.

Finally, as there is no specific test that can diagnose IBS, the ROME III criteria
was used to diagnose IBS in patients in the sample used in the study. There might
therefore be a possibility that the IBS sample is insufficiently charaterized or with
difference in symptom severity that could influence the outcome. However, the lack of
specific tests for IBS is one of the reasons for searching for image biomarkers.

Future perspectives

One methodological aspect related to future image-based biomarkers research could be
the application of deep learning methods (see section 5.2.1 for reference). Since deep
learning methods allows a machine to use the raw data for automatical discovery of
the representations needed for classification, the step of manually designing features
from the raw data is bypassed. This could possibly eliminate the problem of choosing
suboptimal features for training. Deep learning methods, especially CNNs that are
designed to process data that come in the form of multiple arrays, such as 3D for video
or volumetric images, can also be used for prediction and classification, in addition to
fast and accurate image segmentation.
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The use of multimodal brain imaging analyses is still promising, and combining
different features in different brain regions and networks with computational methods
and machine learning could be pursued in the search for quantitative image-based
biomarkers in IBS.

It has become apparent that there is a need for multidisciplinary effort in the
endeavour to establish biomarkers for IBS. Medical- and neuroscience skills, combined
with technical-, imaging-, computing-, and statistical skills and techniques could provide
new insights into the multifaceted disorder that is IBS.
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Conclusion

The aims of the experimental part of this thesis were (i) to investigate if tissue
microstructure assessed with fractional anisotropy (FA) measurements in target brain
regions is different in patients with IBS versus HC at a group level, and (ii) how
accurate it can be predicted whether a subject is IBS or HC using FA-based brain
signatures and machine learning models. As the median FA values in the targeted
regions were found to be lower in IBS patients than HC, it indicates a loss of white
matter integrity in these regions. Median FA values in the insula and pallidum regions
were found to be statistically significant (p < 0.0001).On a group level, these FA values
can be used to detect differences and discriminate between IBS and HC. The white
matter changes in the targeted regions supports the implication of the brain-gut-axis
in IBS, but further research is needed to understand the mechanisms that leads to
these changes in white matter.

The machine learning models highest accuracy score of 64.8%, precision score of
64.6% and recall score 69.5% can be considered as moderately successful, since the
predictions are clearly better than "chance level". However, it indicates that the features
used might not be best suited for classification at subject level. Further research into
quantitative imaging biomarkers should be pursued to enable prediction of IBS at
subject levels, e.g. by incorporating information such as quantitative network properties
derived from the resting state fMRI recordings that was part of the MRI examination
protocol.
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