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Technical terms and abbreviations 

 

Technical terms 

Apoptosis “Ordered” programmed cell death in multicellular organisms 

Necroptosis  “Messy” or inflammatory programmed cell death 

Arcsinh  A hyperbolic arcsine function for the transformation of 

cytometry data, which allows for the transformation of negative 

raw values, and for linear-type data display for values around 

zero within the so-called scale argument 

 

Abbreviations 

ACPA   Anti-citrullinated peptide/protein antibodies 

ACR   American College of Rheumatology 

ADAb or ADA Anti-drug antibody 

ADL   Adalimumab, a therapeutic human antibody against TNF 

Akt   Protein kinase B 

BAb   Binding antibody 

Bc   B cell(s), express CD19 and CD20 

BM   Bone marrow 

bDMARD  biologic disease-modifying antirheumatic drug(s) 

CD   Cluster of differentiation 

CD120a, CD120b Tumor necrosis factor receptors 1 and 2, syn. TNFR1, TNFR2 

CITRUS  Cluster identification, characterization, and regression algorithm 

cM   classical monocyte(s), express CD14 

CPT  Cell preparation tube, BD Vacutainer® CPT™, containing Na-

citrate, no heparin 

CRD   Cysteine-rich domain 

CRP   C-reactive protein, a marker of inflammation 

CyTOF  Cytometry by time-of-flight, mass cytometry 
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CZP  Certolizumab pegol, a therapeutic PEGylated fab-fragment 

against TNF 

Dc   Dendritic cell(s), express CD123 and/or CD11c and/or HLA-DR 

DD   Death Domain 

DMARD  Disease-modifying antirheumatic drug(s) 

DNA   Deoxyribonucleic acid 

ELISA  Enzyme-linked immunosorbent assay 

ESR   Erythrocyte sedimentation rate, a marker of inflammation 

ETN   Etanercept, a recombinant therapeutic receptor binding TNF 

EULAR  European League Against Rheumatism 

GC   Glucocorticosteroids, e.g. prednisolone 

GLM   Golimumab, a therapeutic human antibody against TNF 

GM-CSF  Granulocyte-macrophage colony-stimulating factor 

INF   Interferon alpha 

IFX   Infliximab, a therapeutic chimeric antibody against TNF 

JIA   Juvenile idiopathic arthritis 

kDa   kilo-Dalton (unit for molecular mass) 

LPS   Lipopolysaccharide 

LT   Lymphotoxin, syn. tumor necrosis factor beta (TNF-ß) 

M  Monocyte(s), express CD14 and/or CD16 and/or CD11c 

Mab, -mab  monoclonal antibody 

mDc   myeloid dendritic cell(s), express CD11c and HLA-DR 

MS   Multiple sclerosis or mass spectrometry 

MTX   Methotrexate 

Nab   Neutralizing antibody 

NKc   Natural killer cell(s), express CD56 

NK Tc  Natural killer T cell(s), express CD3, CD8, CD16 

OMIP   Optimized multicolor immunophenotyping panel 

PBL   Peripheral blood leukocytes (including granulocyte populations) 

PBMC  Peripheral blood mononuclear cells (excluding granulocyte 

populations) 
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pDc plasmacytoid dendritic cell(s), express CD123 and HLA-DR 

PFA Paraformaldehyde, a fixative 

RA   Rheumatoid arthritis 

RF   Rheumatoid factor 

RGA   Reporter-gene assay 

sDMARD  synthetic disease-modifying antirheumatic drug(s) 

SMD   Small molecule drug(s) 

SOP(s)  Standard operating procedure(s) 

SPADE  Spanning-tree Progression Analysis of Density-normalized 

events 

sTNF   soluble tumor necrosis factor (trimer) 

TACE   tumor necrosis factor (alpha) converting enzyme 

Tc   T cell(s), T lymphocyte(s), express CD3 and CD4 or CD8 

tDMARD  targeted disease modifying anti-rheumatic drug 

tmTNF  transmembrane tumor necrosis factor (trimer) 

TNF   Tumor necrosis factor, syn. tumor necrosis factor alpha (TNF) 

TNFi   Tumor necrosis factor inhibitors 

TNFR1, TNFR2 Tumor necrosis factor receptors 1 and 2, syn. CD120a, CD120b 

TNFRSF  Tumor necrosis factor receptor superfamily 

TNFSF  Tumor necrosis factor superfamily  

TOF   Time-of-flight, see CyTOF 

TRAF   TNF receptor associated factors 

tSNE   t-stochastic neighbor embedding 

viSNE   Visualization of t-stochastic neighbor embedding 
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Abstract 

 

Introduction Rheumatoid arthritis (RA) is a chronic inflammatory disease, 

characterized by synovial inflammation that, if not treated early and efficiently, 

causes joint damage. The proinflammatory cytokine tumor necrosis factor (TNF) 

plays a central role in the pathogenesis of RA and is the target of treatment with TNF 

inhibitors. TNF inhibitors are generally effective and well-tolerated. However, up to 

one-third of patients are primary non-responders, and responses in up to one-third of 

initial responders abate over time. Currently, there are no predictive biomarkers for 

treatment with TNF inhibitors. TNF inhibitor drug levels and anti-drug antibodies 

(ADAb) are indicative of secondary treatment responses, but these markers are not 

standardized for clinical application. Previous studies have indicated the potential of 

single-cell profiling by flow or mass cytometry for patient stratification in RA and in 

other autoimmune conditions. Distinct signaling patterns have been found in 

leukocytes of RA patients before and during treatment with TNF inhibitors in 

exploratory and proof-of-principle studies. 

The aim of this thesis was to explore and compare existing markers for TNF inhibitor 

drug responses, to set up a methodological background for mass cytometry 

experiments and finally to explore signaling signatures in immune cell subsets from 

RA patients compared to healthy individuals, with an emphasis on TNF signaling. 

Material, methods and results First, we explored existing assays for TNF inhibitor 

drug levels and for ADAb in sera from 107 patients with inflammatory diseases 

treated with the TNF inhibitor infliximab. We found that the assays measured on 

different scales and that the agreement between quantitative results was limited. 

However, inter-assay differences could partially be overcome by assay-individualized 

translations of quantities into categories, which is also necessary for meaningful 

clinical application (paper 1). Second, we established a basis for mass cytometry 

experiments, including the extensive collection of biobank material and patient data. 
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Methodological work in the design and titration of antibody panels for mass 

cytometry was carried out to provide a hierarchical titration method for complex mass 

cytometry panels, which takes in account abundancies, sources of signal spillover and 

non-specific antibody binding (paper 2). Last, we explored signaling patterns in 

heterogeneous immune cells from 20 newly diagnosed RA patients and from 20 

healthy donors, with a focus on TNF signaling. In an automated data analysis 

pipeline, 18 of 20 RA patients and 17 of 20 healthy donors were correctly classified 

based on their signaling patterns (paper 3). 

Conclusion RA is a heterogeneous disease with a plethora of treatment options, and 

patients might profit from more exact classification and stratification. This thesis 

highlights the lack of classification and stratification markers, and shows, how single 

cell profiling by mass cytometry may contribute to the search for such markers. 

Methodological aspects such as antibody panel design and approaches for the 

analysis of high-dimensional data are emphasized. The core results of the thesis show 

that newly diagnosed RA patients can be classified correctly with relatively high 

precision based on signaling patterns in single cells, when compared to healthy 

donors. 

The mass cytometry platform adds many dimensions to “cytomics” of heterogenous 

cell suspensions and tissues. While studies on malignancies as well as physiology and 

development of the immune system dominate the field, rheumatic diseases are 

currently relatively underrepresented. The door for further and deeper study of 

rheumatic diseases and signaling far beyond the TNF pathway is wide open. 
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Introduction and methods 

 

1. Rheumatoid arthritis and tumor necrosis factor 

Rheumatoid arthritis (RA) is a chronic autoimmune, inflammatory disease. Synovitis 

in small- and medium-sized joints is the hallmark of RA, causing the typical 

symptoms of inflammation in affected areas – calor, rubor, dolor, tumor, functio 

laesa – and, if not treated early and efficiently, joint damage and destruction. RA 

affects women more frequently than men (3:1), with a peak prevalence at around 65 

years of age and a total prevalence of about 0.5-1% in developed countries [1]. RA is 

considered to be a multifactorial disease with genetic/hereditary, environmental and 

infectious risk factors.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: ACR/EULAR 2010 criteria 

for rheumatoid arthritis. 

RF=Rheumatoid Factor 

ACPA=Anti-Citrullinated 

Peptide/Protein Antibodies 

CRP=C-Reactive Protein 

ESR=Erythrocyte Sedimentation Rate. 

 

ACR/EULAR 2010 criteria for rheumatoid arthritis 

Joint involvement      (0-5) 

1. One medium-to-large joint    (0) 

2. Two to ten medium-to-large joints    (1) 

3. One to three small joints (large joints not counted)  (3) 

4. Four to ten small joints (large joints not counted)  (4) 

5. More than ten small joints (at least 1 small joint)  (5) 

Serology      (0-3) 

1. Negative RF and negative ACPA   (0) 

2. Low positive RF or low positive ACPA  (2) 

3. High positive RF or high positive ACPA  (3) 

Acute-phase reactants     (0-1) 

1. Normal CRP and normal ESR   (0) 

2. Abnormal CRP or abnormal ESR   (1) 

Duration of symptoms     (0-1) 

1. Less than six weeks    (0) 

2. Six weeks or more    (1) 

Points are shown in parenthesis. Cut-point for rheumatoid arthritis six 

points or more. Patients can also be classified as having rheumatoid 

arthritis if they have (a) typical erosions, (b) long-standing disease 

previously satisfying the classification criteria. 
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The diagnosis “rheumatoid arthritis” describes a collection of disease phenotypes 

rather than a single specific disease entity. This is reflected by the American College 

of Rheumatology/European League Against Rheumatism 2010 criteria for RA (Table 

1), which point to the “typical” RA patient with multiple inflamed small joints, 

positive rheumatoid factor (RF) and/or autoantibodies against citrullinated proteins 

(ACPA), elevated acute-phase reactants and a certain duration of symptoms. On the 

other hand these criteria allow for the same diagnosis in a rather wide range of 

patients, e.g. for patients without small-joint affection, without RF/ACPA or without 

elevated acute-phase reactants [2]. 

 

A curing treatment for RA does not exist. There are, however, promising attempts at 

more causal therapeutic approaches, e.g. through targeting dendritic cells in order to 

induce long-lasting immune tolerance in patients [3]. “Treat to target” is the major 

treatment principle for RA, in which the most common treatment target would be 

either remission or low disease activity. Empiric RA treatment usually starts with 

glucocorticosteroids (GC) combined with one or several synthetic disease-modifying 

antirheumatic drugs (sDMARD), e.g. methotrexate. Second-line treatments in case of 

adverse events or lack of therapeutic response are biologic disease-modifying 

antirheumatic drugs (bDMARD) and, more recently, small-molecule drugs (SMD), 

also referred to as targeted DMARD (tDMARD) [4]. 

One of the most central players in the pathogenesis of RA – and of several other 

autoimmune, inflammatory diseases – is the pro-inflammatory cytokine “tumor 

necrosis factor” (TNF). 

 

1.1. A brief history of tumor necrosis factor 

Since the end of the 19th century, cancer scientists explored the phenomenon of 

“hemorrhagic necrosis” – the ability of bacterial endotoxins to induce regression of 

malignant tumors [5]. At that time, one of several synonyms for bacterial endotoxins 

was “tumor-necrotizing toxin”, reflecting the early assumption that bacterial 
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endotoxins featured direct tumor-necrotizing abilities [6]. This assumption was 

shown to be wrong when Carswell et al. in 1975 demonstrated that endotoxin-treated 

mice developed a serum factor, which induced tumor necrosis after injection into 

sarcoma-transplanted, endotoxin-free mice. They called this factor the “tumor 

necrosis factor” [7]. Direct evidence for a macrophage-derived cytotoxic cytokine 

and details about its biochemical structure were provided by Aggarwal et al. in 1985. 

They called this cytokine TNF alpha to separate it from Carswell’s more undefined 

“tumor necrosis factor” and to distinguish it from its sibling-cytokine lymphotoxin 

(LT), then named TNF-beta. It has later been suggested that the terms TNF and LT 

should be used for the sake of simplicity and to avoid confusion [8]. The work of 

Aggarwal et al. was paralleled by research of Beutler et. al in 1985, who reported on 

a cytokine called cachectin, which subsequently was shown to be identical with TNF 

[9-11]. The systemic effects attributed to cachectin alias TNF – fever, shock and 

catabolism/cachexia – made it clear that the cytokine could not be used as a universal 

systemic therapeutic for all kinds of cancer tumors [12]. Shortly after the discovery of 

TNF/cachectin and LT, their genes were cloned, which revealed that TNF and LT 

were part of one gene family, the TNF superfamily [13, 14].  

 

1.2. TNF, its receptors and their superfamilies 

TNF is produced predominantly by activated macrophages, lymphocytes, natural 

killer cells and granulocyte populations, and – upon certain stimuli – also by several 

tissue cell types. TNF is a protein with a molecular mass of about 17kDa in its 

monomeric form and an isoelectric point of 5.3. It contains one disulfide bridge based 

on two cysteines [9]. In vivo, TNF is expressed as a transmembrane type II protein 

trimer (tmTNF), which can be cleaved as soluble TNF (sTNF) by the help of TNF 

alpha converting enzyme (TACE or ADAM17) [15]. The differentiation between 

tmTNF and sTNF has several important implications for the function and regulation 

of TNF. First of all, it allows for TNF signaling through direct cell-to-cell contact as 

well as remote effects by circulating sTNF. Secondly, tmTNF has been shown to be 
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capable of reverse signaling. In reverse signaling, the ligand – tmTNF – functions as 

a receptor itself, altering the state of the cell it is anchored to when binding a cognate 

TNF receptor on a target cell [16]. Thirdly, only tmTNF is able to fully activate TNF 

receptor 2, one of the two TNF receptors [17]. TNF is a member of the TNF 

superfamily (TNFSF), a group of 19 ligands sharing homologies in DNA sequences 

and functionality regarding their role in both cell survival and cell death [18, 19]. 

Virtually all ligands of the TNF superfamily share pro-inflammatory features, often 

based on similar signaling pathways. 

The cognate counterpart to the TNF superfamily ligands is the TNF receptor 

superfamily (TNFRSF), consisting of 29 receptors. Receptors from the TNF receptor 

superfamily are type I transmembrane proteins and contain typically a varying 

number of cysteine-rich domains (CRD) extracellularly. Of intracellular features, the 

death domains (DD) and TNF receptor associated factors (TRAF) should be 

mentioned. TNF itself has two cognate receptors, TNF receptor 1 and TNF receptor 2 

(TNFR1, TNFR2 or, following the cluster of differentiation nomenclature, CD120a 

and CD120b). While TNFR1 is present on almost all human cells, TNFR2 is 

predominantly expressed on immune cells [20]. “Ligand passing” between the two 

different TNF receptors, possibly through the formation of TNF receptor 

heterocomplexes, may contribute to the regulation of TNF responsiveness of a cell 

[21]. 

 

1.3. TNF signaling 

The most characteristic effects of TNF signaling have been described as “live or let 

die” [22]. Depending on setting and cell type, TNF can prompt a more pro-

inflammatory behavior with increased proliferation, differentiation and survival in the 

target cell or induce apoptosis/necroptosis (Figure 1). TNFR1 – as opposed to 

TNFR2 – contains an intracellular death domain, which can induce cell death through 

caspases. The pro-apoptotic properties of TNFR2 are weaker due to the lack of death 

domains. Apoptosis is, however, not the most common outcome for TNF signaling 
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through neither TNFR1 nor TNFR2.  Both receptors are strong activators of the 

canonical NFkB (nuclear factor kappa-light-chain-enhancer of activated B cells) 

pathway. Upon dual phosphorylation and degradation of the IkBa (inhibitor of kappa-

light-chain-enhancer in B cells, alpha), NFkB is translocated into the nucleus of the 

cell and induces NFkB-sensitive genes, which – depending on cell type, status and 

cofactors – results in cell proliferation and differentiation with subsequent stimulatory 

effects on immune activation and inflammation. Gene products from canonical NFkB 

signaling also prevent the initiation of apoptosis by inhibiting the prolonged 

activation of Jun-N-terminal kinases (JNK) and caspases [23]. TNF furthermore 

induces mitogen-activated protein kinases (MAPK), JNK and phosphatidylinositol 3-

kinases (PI3K), all of which can interact with the NFkB pathway and all of which, 

under given circumstances, can protect the cell from pro-apoptotic effects of TNF 

[19, 20, 24]. 

 

Figure 1: TNF signaling. Soluble TNF (sTNF) and transmembranous TNF (tmTNF) binding the TNF 

receptors (TNFR1+2), which contain cysteine-rich domains (CRD). TNFR1 contains also an intracellular death 

domain (DD). Yellow: a choice of signaling pathways and epitopes which are relevant for this thesis.  
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2. Tumor necrosis factor inhibitors (TNFi) 

Due to its pivotal role in inflammatory diseases, TNF has early been recognized as a 

target for therapeutic intervention [25-28]. One of the first therapeutic antibodies 

following Köhler and Milstein’s groundbreaking work in the production of 

monoclonal antibodies, was the chimeric anti-TNF-antibody “cA2”, called infliximab 

after commercialization [29, 30]. Of today, millions of patients have received and do 

receive treatment with TNF inhibitors (TNFi): infliximab and its biosimilar siblings, 

the fully human antibodies adalimumab with biosimilars and golimumab, the 

PEGylated humanized antibody (Fab’-) fragment certolizumab pegol and the 

recombinant TNF receptor p75 fusion protein etanercept with biosimilars (Figure 2). 

The widespread use of TNF inhibitors in the treatment of inflammatory conditions 

has resulted in a need to address three tightly connected issues regarding this group of 

drugs: costs, side effects and treatment responses: 

Costs. TNF inhibitors are costly biopharmaceuticals. After their introduction in 

Norway in the end of the 1990s, expenses for TNF inhibitors have grown almost 

every year to about 2.6 billion NOK/317 million USD in 2016 [31]. Similar 

developments have been seen in other Western countries, setting up societal resources 

against the needs of the individual. Pharmacoeconomic considerations and the  

complex issue of cost effectiveness of TNF inhibitors have been addressed in several 

studies [32-34].  

Adverse events. Side effects and adverse events are not uncommon in the treatment 

with TNF inhibitors and can be caused by the drug directly (e.g. hypersensitivity 

reactions) or indirectly by drug effects (e.g. infections). The term “biotoxicity” 

describes the spectrum of unwanted reactions to biopharmaceuticals, ranging from 

immunostimulation over immunogenicity, immune deviation and cross reactivity to 

non-immunological based reactions [35]. Hence, screening for pre-existing infectious 

conditions and tight monitoring for biotoxicity have become part of daily clinical 

routine and are of continued research interest [36-39].  
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Treatment responses. Because of the issues of cost and adverse events, the efficient 

evaluation of TNFi treatment responses has become more and more important. 

Clinical tools such as disease activity scores combined with markers of inflammation 

(C-reactive protein and erythrocyte sedimentation rate) are applied in daily clinical 

practice, and tremendous efforts have been made to identify and establish more 

specific and also predictive (bio)markers of TNF inhibitor effects [40-43]. 

 

Figure 2: TNF inhibitors. The five TNF inhibitors, their structure and composition (left). Prevalence of anti-

drug antibodies (ADAb) in percent (red), based on meta-analytic data [44]. The antibodies adalimumab, 

golimumab and infliximab are IgG1 antibodies with a strong complement activating capability and high affinity 

to Fc receptors on phagocytic cells. Composition of an IgG1 antibody, and the three challenges connected to 

the use of TNF inhibitors (right). 
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3. Response and non-response to tumor necrosis factor 
inhibitors 

For the majority of RA patients treated with a TNF inhibitor, the treatment 

contributes to a significant reduction of inflammation and long-term damage, and to 

an improvement in quality of life [45]. However, a significant number of patients 

experience insufficient therapeutic responses. Up to one third of RA patients are 

primary non-responders – they do not respond to TNF inhibitors at all [2, 46]. While 

primary non-response in some patients may simply be caused by insufficient drug 

levels, it has also been suggested that disease mechanisms in a subgroup of patients 

are linked to TNF signaling to a lesser degree, resulting in reduced TNF inhibitor 

responses [47]. Of patients who primarily respond to treatment, another third 

experience abating responses over time – a so-called secondary loss of response or 

secondary non-response. Most cases of secondary non-response are attributed to 

immunogenic features of the biologic drug with subsequent neutralization of the drug 

through the host’s immune system. Although drug immunogenicity is the only 

identified cause of secondary non-response, not all cases are attributable to the 

immunogenic features of the drug [48]. 

 

3.1. Drug immunogenicity 

Drug immunogenicity as a cause of secondary non-response and, not least, of side 

effects and adverse events, is a well-known problem of biopharmaceuticals such as 

monoclonal antibodies, recombinant proteins, cytokines and hormones [49]. 

Throughout the history of treatment with biopharmaceuticals, there have been many 

examples of immunogenicity-caused loss of response and adverse events. Prominent 

examples are total red cell aplasia under treatment with recombinant erythropoietin 

due to immunogenic reactions against both supplied and self-produced erythropoietin 

in patients with chronic renal failure and renal anemia, or relapses in patients with 

multiple sclerosis due to the development of anti-drug antibodies against the 

therapeutic cytokine interferon-ß [49-51]. For TNF inhibitors, immunogenicity was 
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suspected and identified as a cause of secondary loss of response already in early 

clinical trials on the first TNF inhibitor, cA2/infliximab [52, 53].  

Many factors contribute to or influence the immunogenic potential of a drug. These 

can be divided into drug-related and patient-related factors. Drug-related factors 

range from manufacturing processes, biochemical composition and size to 

formulation of the drug, while patient-related factors include patient age, gender, 

weight and genetics, individual drug dose and way of admission as well as type of 

disease, disease states and co-medication [49, 54-56]. Immunogenicity is a type ß 

immunotoxic reaction, also characterized as a delayed hypersensitivity reaction to the 

drug. T cell-dependent and T cell-independent pathways have been suggested as 

causes of immunogenicity. In both pathways, the biologic drug is detected by 

antigen-presenting cells, such as dendritic cells or naïve B cells. B cells can develop 

directly into plasma cells excreting specific IgM and, to a lesser degree IgG (T cell-

independent). In T cell-dependent cases, antigen-presenting cells will activate T cells, 

which then prime B cells to develop into plasma cells with predominant production of 

IgG anti-drug antibodies (ADAb) [49, 54].  

In a meta-analysis including over 14.000 patients, the overall prevalence of ADAb in 

patients treated with a TNF inhibitor was 12.7% and reduced the odds for treatment 

response by 67%, while at the same time increasing the odds (OR 3.25) for 

injection/infusion-related adverse events [44]. The prevalence of ADAb separately 

specified for each TNF inhibitor is given in figure 2. 

Several primary and meta-analytic studies have shown that concomitant use of 

synthetic disease-modifying antirheumatic drugs (sDMARD), such as e.g. 

methotrexate together with a TNF inhibitor, reduces the odds for ADAb formation 

and immunogenic reactions significantly [44, 57, 58]. 
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3.2. Current biomarkers for TNF inhibitor treatment responses 

Up to one-third of RA-patients are primary non-responders to TNF inhibitors. 

Predictive (bio)markers for TNF inhibitor responses could spare these patients for the 

time spent on try-and-fail and potential adverse events, as well as the society for 

unnecessary drug expenses. The spectrum of predictive candidate (bio)markers 

includes early radiographic findings, smoking exposure, markers of inflammation, 

expression of autoantibodies and a long list of different genotypes. Radiographic 

findings and autoantibodies such as RF/ACPA are routinely applied mostly for 

diagnostic purposes and to make more general statements about expected disease 

severity and needed treatment intensity. Autoantibodies may have a certain relevance 

as biomarkers for the choice of B-cell depleting therapy (rituximab) and the CTLA-4 

co-stimulation inhibitor abatacept [59]. Yet, a recent systematic review on biomarkers 

concluded that none of the studied predictors added value to clinical decision-making 

regarding treatment with TNF inhibitors or other biologic drugs [40].  

On the other hand, monitoring (bio)markers for TNF inhibitor responses after 

treatment initiation do exist and are currently applied in clinical practice: drug levels 

and anti-drug antibodies (ADAb). 

3.2.1. Drug levels 

TNF inhibitor serum levels reflect the pharmacokinetics of the drug and are again 

influenced by drug-related factors (way of admission, frequency, dose, formulation, 

drug storage) and patient-related factors (gender, weight, comorbidity, comedication). 

Many different assays – commercial and non-commercial – are available to measure 

drug levels, for the most immunoassays such as enzyme immunoassays (EIA), 

enzyme-linked immunosorbent assays (ELISA) and radio-immunoassays (RIA) [47]. 

A more functional approach is chosen in reporter gene assays (RGA), where levels of 

functionally available drug are measured by the help of a TNF-sensitive reporter gene 

cell line [60].  

An important issue about drug levels is the time point of measurement, especially for 

TNF inhibitors with long dosing intervals. For drugs administered with intervals over 
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2 weeks, drug levels should therefore be measured as “trough” levels, at the very end 

of the administration interval, right before the next administration.  

3.2.2. Anti-drug antibodies (ADAb) 

Similar modalities exist for the detection and quantification of ADAb, both 

immunoassays and reporter-gene assays (Figure 3). However, quantities of ADAb 

are not measured in standardized units, and direct inter-assay comparisons of ADAb-

titers are therefore not possible. Two important characteristics have to be considered 

for the understanding and interpretation of ADAb assays: drug-tolerance and assay 

functionality. 

 

Figure 3: Bridging ELISA and RGA for the detection of ADAb. Figures adapted from Bendtzen [47].  

 

Drug-tolerance: in the presence of the drug, ADAb will be bound to the drug and 

therefore “invisible” for many detection assays. Only excess ADAb after saturation of 

active drug will be detected by these “drug-sensitive” assays. Consequently, in a 

clinical setting ADAb assays are usually only carried out, if drug levels are very low. 

The problem of drug-ADAb interference can partially be overcome by dissociation 

1. TNF inhibitor binds TNF 1. ADAb binds TNF inhibitor

4. Substrate + enzyme = color reaction

1. TNF inhibitor in the
solid phase of the assay

ADAb = "bridging" = color reaction

No ADAb = no "bridging" = no color reaction

ADAb = free TNF = luminescence

No ADAb = no free TNF = no luminescence

2. Patient serum containing
anti-drug antibody: "bridging"

3. TNF inhibitor tagged with an enzyme
in the detection phase of the assay

NFkB

2. TNF cannot bind TNFR 2. Free TNF binds TNFR

3. No signaling from the TNFR

4. No luminesence 4. Luminescence

Firefly luciferase
reporter gene

ELISA RGA

3. Signaling from the TNFR
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steps, where drug and ADAb are separated e.g. by acid dissociation. The clinical 

relevance of very low levels of drug antibodies is uncertain, and high-sensitive 

ADAb-detection to this point mostly of scientific interest [61]. For clinical purposes 

the primary question will be whether drug levels are sufficient, and ADAb detection 

will only be relevant in the case of low drug levels [62].  

 

Assay functionality: not all ADAb necessarily hamper the functioning of the drug. 

One can therefore differentiate ADAb further into binding and neutralizing 

antibodies. Binding antibodies (BAb) bind the drug either at functionally unimportant 

sites or with low affinity, while neutralizing antibodies (NAb) bind the drug in ways 

which functionally neutralize the drug. Certain assays, e.g. solid-phase assays, will 

therefore detect ADAb with high sensitivity but low specificity for neutralizing 

abilities, while functional assays, such as reporter-gene assays, specifically detect 

neutralizing antibodies [60, 63, 64].  

3.2.3. Challenges to drug levels and ADAb as clinical biomarkers 

Drug levels are quantified in standardized units, allowing for direct inter-assay 

comparisons of test results. However, despite good correlations between different 

assays, the inter-assay agreement (= true absolute accordance) has been shown to be 

less satisfying [65-68]. In other words, although applying standardized units, the 

assays are not standardized, and a test result of e.g. 1 µg/mL may be considered 

“therapeutic” in one assay, while “sub-therapeutic” in another assay. Official 

recommendations for drug levels one can consider “therapeutic” or “non-therapeutic” 

do not exist, leaving the decision to the individual clinician based on experience.  

In ADAb assays, manufacturers usually provide a cut-off for “positive” and 

“negative”, but the result will still have to be read on the background of the 

underlying method. Although drug-tolerant assays will detect ADAb with higher 

sensitivity, the clinical value of detecting low levels of ADAb is uncertain [61]. 

Differences in the ADAb-detecting sensitivity of different assays have led to wide 

ranges for the presence of ADAb to different TNF inhibitors. For example, for 

infliximab ADAb were present in 5% of patients in one study compared to 61% in 
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another [69, 70]. Most recently, panels of ADAb against infliximab and adalimumab 

with different binding characteristics have been developed [71]. This approach may 

contribute to a higher degree of assay standardization in the future. 

In a clinical setting, direct comparisons of test results from different assays and 

interchangeable use of different modalities on the same patient/drug/ treatment course 

should currently be avoided. 

It has been discussed how far drug levels alone are sufficient markers for patient-

tailored treatment, because – independently of the presence of ADAb – drug levels 

within a therapeutic range can be considered sufficient, while drug levels below 

therapeutic range can be considered insufficient. Others have argued, however, that 

ADAb are necessary to decide on further treatment: dose escalation in case of low 

drug titers and negative ADAb versus switching to a different drug in case of low 

drug titers combined with ADAb. The presence of ADAb at an early stage of 

treatment may also be predictive for treatment responses at later stages [72]. 

Clinicians who want to be guided in their treatment decisions by drug levels and 

ADAb, have to become “specialists” on the applied assay, define which drug levels to 

consider as “therapeutic” and consider drug-tolerance and assay functionality and 

make sure that they test their patients at the right moment in the treatment interval.  

In summary, drug level and ADAb measurements have been shown to correlate with 

treatment responses, they are cost-effective and clinically relevant [73-75], but leave 

room for misinterpretation due to different and not-standardized methodologies and 

recommendations, resulting in misguidance rather than guidance. Drug level and 

ADAb measurements may allow for a certain prediction of treatment responses 

within an ongoing treatment course [72]. But they cannot be used as tools of 

prediction before treatment with TNF inhibiting or other treatment strategies. 
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4. Identification of candidate biomarkers for TNF inhibitor 
responses by mass cytometry 

 

4.1. Patient immune cells as reporters? 

The reporter-gene assay discussed in the previous chapter reports TNF “activity” with 

the help of a genetically modified cell line. But can a patient’s own cells be reporters 

of TNF activity?  

The role of immune cell profiling in treatment stratification in rheumatic diseases was 

previously discussed by Ermann et al. [76], who also reviewed different 

methodological approaches for that purpose. Based on the role of TNF in RA, one 

expects higher TNF signaling activity in a majority of patients with active 

inflammatory disease, while patients successfully treated with a TNF inhibitor should 

express lower TNF signaling activity. Likewise, untreated RA patients with strong 

TNF signaling activity should be more likely to respond to treatment with a TNF 

inhibitor than those with initially low TNF signaling activity. Previous studies in flow 

and mass cytometry have indicated that RA patients indeed may express TNF 

signaling signatures, which differ from those of healthy individuals and patients with 

osteoarthritis [77, 78]. However, which signaling markers in which immune cell 

subsets are the best reporters for TNF signaling activity, and which methods are 

promising in the search for such candidate biomarkers? Can in-vitro stimulation of 

cells from patients and healthy donors with TNF contribute to an accentuation of pre-

existing TNF profiles? 

 

4.2. Introduction to mass cytometry 

Mass cytometry was introduced in 2005 and commercialized from 2009, with the 

primary goal of satisfying the growing demand for “width and depth”: the need to 

analyze large heterogeneous cell populations with a simultaneous read-out of multiple 
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parameters on a single cell level [79-81]. For the past decades, flow cytometry was 

the platform that filled the gap between these needs. The basic principles are the same 

for flow and mass cytometry: cellular epitopes are marked, usually with tagged 

antibodies as probes, and read out sequentially on a single cell basis. In flow 

cytometry, antibodies are tagged with fluorophores and read out in an optical system 

based on lasers and light spectra. Thus, flow cytometry has certain limitations 

concerning the total number of simultaneous markers, and complex compensation 

strategies have to be applied to handle spectral overlap. The problems of light 

spectrum limitations and spectral overlap are partially overcome by newer 

technologies such as “brilliant” dyes and spectral analyzers, but panels still rarely 

exceed 15-18 markers in flow cytometry, although panels of 30-40 markers 

technically are within reach [82]. Major advantages of flow cytometry are 

longstanding experience with almost unlimited access to validated antibodies, the 

collection of light scattering properties of a cell, the high throughput of cells, the 

recovery of (live) cells, allowing for cell sorting and subsequent analysis and, last but 

not least, the relatively low total cost.  

Mass cytometry is a recent and developing technology. In mass cytometry, single 

cells are profiled applying metal-tagged antibodies against extra- and intracellular 

epitopes with a read-out in a mass spectroscopy time-of-flight chamber (Figure 4). A 

limited, but growing range of ready-made metal-tagged antibodies are currently 

commercially available, other antibodies have to be metal-conjugated and validated 

by the user. The method contains no optical system and scatter properties of cells are 

therefore not collected. In preparation for read-out in the time-of-flight chamber, cells 

are ionized and therefore lost for further analysis or cell sorting. The cell throughput 

is lower than in flow cytometry and the total application cost higher. However, there 

are some major advantages to mass cytometry, mostly due to the use of rare earth 

metals (lanthanides) as probes and a mass spectroscopy time-of-flight chamber as 

detector. Metal isotopes used in mass cytometry have low natural abundancies and 

background “noise” is therefore much lower in mass compared to flow cytometry. 

Channel spillover is much lower than spectral overlap in flow cytometry and can be 

handled with thorough panel design and titration (see chapter 4.3.2.).  
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Figure 4: Workflow mass cytometry. Figure adapted from Bendall et al. [83]. Cells are marked with metal-

tagged antibodies for extra- and intracellular epitopes (A). Droplets including single cells are formed in a 

nebulizer (B) and injected into argon-plasma, where single cells are atomized and ionized (C). Ions from the 

resulting ion-cloud are separated by size into smaller “debris” and reporter ions (D). The latter are measured in 

a mass spectrometry time-of-flight chamber (E-F). Collected data are stored as .FCS files (G) and ready for 

subsequent analysis. 

 

In a mass cytometry experiment, usually some mass channels will be occupied for 

quality control such as standardization and normalization, e.g. the use of 

normalization beads [84]. Additionally, simultaneous measurements on samples from 

different donors, different conditions or the introduction of a reference sample require 

mass channels for multiplexing/ barcoding, where sample identities are specified 
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through unique combinations of e.g. six palladium isotopes 102Pd, 104Pd, 105Pd, 106Pd, 

108Pd, 110Pd or addition of a CD45 marker [85, 86]. 

 

4.3. Analysis of high-dimensional data 

Mass cytometry data is high-dimensional. In each sample, up to millions of events are 

acquired, and each event carries individual data on multiple markers. Data analysis by 

traditional biaxial plotting in a hierarchical manner is not feasible for data sets of >20 

markers per cell. For 20 markers, this would result in 190 plots to be analyzed, 30 

markers would result in 435 plots for analysis. Two-dimensional gating is more likely 

to result in known cell populations, allowing comparisons with traditional flow 

cytometry data, but also more likely to oversee rarer or unknown cell populations 

defined by more atypical and unknown combinations of phenotyping markers.  

A normal workflow in the analysis of mass cytometry data on immune cells will 

include: 

1. a data clean-up with removal of doublets and debris 

2. the definition of cell subsets based on phenotyping markers 

3. analysis of functional markers within those cell subsets, in combination with 

clinical data 

Several algorithms have been developed to cluster, embed and visualize multi-

dimensional cytometry data as an alternative to traditional gating. In the case of a 

dataset with several individuals, data can be clustered/embedded simultaneously for 

all individuals. This approach is timesaving and provides a good general overview 

over e.g. a population, but not all algorithms can handle sets with millions of events 

from bigger cohorts. Also, differences in the co-expression of markers used for 

clustering/embedding, may lead to blurriness and a lower resolution at least for 

certain cell subsets. A more time-consuming approach would be to do 

clustering/embedding on datasets from each individual, providing a high resolution 

even for small cell subsets.  
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4.3.1. SPADE 

SPADE (Spanning-tree Progression Analysis of Density-normalized Events) is a 

clustering algorithm, which seeks to provide a 2-dimensional visualization of high-

dimensional data, usually based on phenotyping markers [87]. Single-cell resolution 

is here lost due to clustering. The SPADE algorithm performs a density-dependent 

down-sampling to avoid an underrepresentation of rarer cell types. This is followed 

by clustering of data of similar phenotypes and visualization in a spanning tree 

construction representing the original dimensionality of the data. The spanning tree of 

clusters can be overlaid with colors, e.g. indicating the fold change of a functional 

marker in each cluster (exemplary data shown in Figure 5). 

4.3.2. tSNE/viSNE 

The primary purpose of tSNE (t-distributed Stochastic Neighbor Embedding) is – 

similar to SPADE – to provide a visualization of high-dimensional data in two 

dimensions, but – in opposite to SPADE – with a preserved single cell resolution 

[88]. In cytometry, often an adaptation to tSNE, viSNE is used (visualization of t-

distributed Stochastic Neighbor Embedding). After an optional step of down-

sampling, high-dimensional data is sorted by t-distributed stochastic neighbor 

embedding and spread out in two dimensions (tSNE1, tSNE2), retaining as much as 

possible of the high-dimensional information for each event. Resulting biaxial scatter 

plots are called viSNE maps. viSNE maps are typically based on the expression of 

phenotyping markers. In a further step, color overlays representing the expression of 

functional markers can be made (exemplary data shown in Figure 5). 

4.3.3. CITRUS 

The CITRUS algorithm (Cluster identification, characterization, and regression) 

combines clustering and regression modeling to identify correlative or predictive 

markers for differences between two or more cohorts of individuals [89]. Although 

not primarily designed for the evaluation of paired samples – e.g. from the same 

patients before and after a certain treatment – the algorithm is applied for this purpose 

as well. 
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Figure 5: Examples of viSNE (left) and SPADE (right) on 50.000 PBMC from one RA patient (own data), 

gated into cell subsets (upper). The same plots and population distributions with color-overlay for the 

expression of p-p38 in unstimulated (mid) and TNF stimulated PBMC (lower).  
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CITRUS does not include a data clean-up, which has to be performed manually 

before feeding data for analysis. The algorithm contains an optional down-sampling 

step, in which cell numbers can be adjusted so that individuals are represented with 

equal amounts of cells. All cells are then clustered after phenotypes, and clusters can 

be analyzed either by differences in abundance based on phenotyping markers or by 

differences in the median expression of functional markers. Both correlative and 

predictive models can be applied, the latter with cross validation. 

4.3.4. NM2B 

Individualized analysis workflow “NM2B”. For the analysis of data for paper 3 we 

developed an individualized algorithm to fit better the underlying data and research 

question. This algorithm covers all steps from data clean-up, through finding cell 

types to classification of patients versus healthy donors utilizing data from both 

unstimulated and TNF-stimulated conditions.  

The approach for data clean-up is based on a talk and follow-up publications by 

Bruce Bagwell, where he describes the use of the parameters "Event_length", 

"Center", "Offset", "Width", "Residual", "191Ir_DNA1", "193Ir_DNA2" as markers 

for identifying live single cells [90, 91]. Bagwell gates manually on a tSNE plot for 

identifying cell populations. Since clustering on a tSNE plot is in general not 

recommended, a different approach is applied in this algorithm, where cells are 

clustered based on these markers directly in the 7-dimensional space. Mean-variance 

scaling for each of the markers is used in order to get comparable features. A 

Gaussian mixture model of two multidimensional Gaussian distributions by 

expectation maximization is then applied and used for clustering.  

Our approach for finding cell types is based on splitting the dataset up into many 

small clusters and then combining such small homogeneous clusters into meta-

clusters. All data is arcsinh-transformed with a cofactor of 5 as suggested by Qui 

[92]. Farthest-point sampling is a fast algorithm to cluster cells by beginning with an 

initial point and then selecting the point that is farthest away from the closest of all 

previously selected points until one has the desired number of clusters. These selected 
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points are then considered as the cluster centers and all remaining points are assigned 

to the closest cluster center. This procedure can be shown to approximate k-means 

clustering. When splitting the data into enough clusters in this way, this results in 

relatively small homogeneous clusters.  

For classification, a set of classification markers (“functional markers”) is defined. 

For each meta-cluster the median and 90% quantile of each of the functional markers 

for all basal cells is calculated. In addition, arcsinh ratios of the expression of 

functional markers in stimulated and basal cells are calculated. Three models are 

tested, based on either only basal variables (basal), or only arcsinh ratios between 

stimulated and basal variables (ratio) or both basal and arcsinh ratios (combined). A 

logistic lasso regression model with automatic variable selection is fitted, using 

double leave-one-out cross validation. The algorithm reports cross-validation 

accuracy, area under the ROC curve (AUC), and all non-zero coefficients. 
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Objectives 

 

The clinical challenge we are facing is a lack of reliable biomarkers for patient 

classification and stratification in RA. 

Objectives of the work underlying this thesis were: 

1. To explore and compare existing markers for TNF inhibitor drug 

monitoring. For that purpose, we compared three existing assays for the 

measurement of drug trough levels and anti-drug antibodies on serum samples 

from 107 patients (Paper 1). 

2. To collect patient material and data, and to set up a methodological 

background for mass cytometry experiments. For that purpose, PBMC from 

RA patients and healthy donors were cryopreserved, and clinical data were 

collected. A smaller set of quality control experiments were performed, 

addressing signaling responses in PBMC, depending on bench-time before 

cryopreservation, culturing time after cryopreservation and TNF cytokine 

titrations in order to establish adequate stimulation time and dose for TNF (all 

unpublished data). An antibody panel for mass cytometry experiments on cells 

from RA patients and healthy donors was designed and titrated. A hierarchical 

panel titration methodology based on a backbone panels and individual 

subpanels was established and published (Paper 2). 

3. To explore immune cell subsets for signaling signatures in RA patients 

compared to healthy individuals, with a primary focus on TNF signaling. 

For that purpose, we compared signaling signatures in unstimulated and TNF 

stimulated PBMC from 20 newly diagnosed RA patients and from 20 healthy 

donors (Paper 3). 
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Results 

 

1. Exploration and comparison of existing markers for 

TNF inhibitor drug monitoring (paper 1) 

Immunogenicity is a frequent cause of secondary non-response to TNF inhibitors. 

Drug level measurement and detection of ADAb have been shown to be cost-

effective and clinically relevant, and a large number of assays are available for 

 

 

 

 

 

 

 

 

 

 

Table 2: Patients. Patient 

characteristics, diagnoses, 

medication and co-

medication. 

 

these purposes. It is, however, difficult to compare assays and translate results into 

clinical meaningful information due to different methodological approaches and a 

lack of assay standardization.  

Number of patients 

Female/male 

107 

53/54 

Mean patient age (min-max) 51 years (16-86) 

Diagnoses, number of patients (% of total) 

Rheumatoid arthritis 

Spondyloarthritis (excl. psoriatic arthritis) 

Psoriatic arthritis 

Juvenile idiopathic arthritis 

Psoriasis 

Others 

 

37 (34.6) 

18 (16.8) 

17 (15.9) 

9 (8.4) 

23 (21.5) 

3 (2.8) 

Mean disease duration (min-max) 19 years (2-50) 

Medication, infliximab (IFX) 

IFX-Remicade (%) 

IFX-Remsima (%) 

Median treatment duration (min-max) 

Mean IFX dose (min-max) 

Mean IFX dose rheumatology (min-max) 

Mean IFX dose dermatology (min-max) 

Mean IFX interval (min-max) 

 

94 (88) 

13 (12) 

70 months (0-158) 

4.5 mg/kg (2.1-10.4) 

3.8 mg/kg (2.1-7.3) 

6.4 mg/kg (4.5-10.4) 

7.5 weeks (4-17) 

Co-medication 

Methotrexate  

Other DMARD 

 

Prednisolone 

 

76 patients  

2 sulfasalazine, 1 

leflunomide, 1 azathioprine 

8 patients 
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Figure 6: Agreement between assays for drug levels. Bland–Altman plots demonstrating agreement between 

IFX levels determined using different techniques. The average result from all three assays for one patient 

sample (x-axis) is plotted against the difference between the two assays compared (y-axis) for  

A: ELISA versus RGA,  

B: RGA versus IFMA, and  

C: IFMA versus ELISA.  

The difference is 0 in case of total agreement; increasing distance from 0 indicates an increasing disagreement 

between the two compared assays. 

A

B

C
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To explore and compare existing markers of TNF inhibitor drug monitoring, we 

analyzed infliximab drug levels and antidrug antibodies in 107 patient samples (table 

2) using ELISA and RGA, as previously described (Figure 3). Additionally, 

immunofluorometric assays (IFMA, in-house method at Oslo University Hospital) 

were carried out as described in [93]. 

The three assays were in better agreement at lower IFX levels and in poorer 

agreement for higher levels. No samples with an average IFX level <10 mg/L were 

outside the limits of agreement, which were narrowest for ELISA versus IFMA. The  

RGA resulted in systematically lower IFX levels than the ELISA, whereas the IFMA 

resulted in higher levels than the ELISA (Figure 6A-C).  

 

Figure 7: Agreement between assays for ADAb. Venn diagrams illustrating agreement for categorical results 

in ELISA, IFMA and RGA.  

A: Percentages of samples which end up in the same categories for IFX levels in all assays (center) and in two 

assays (sides). I: therapeutic range of 3-8 mg/L for all assays; II: therapeutic range of 1.5-12 mg/L for all 

assays; and III: individualized ranges of RGA 1-9 mg/L, ELISA 2-10 mg/L and IFMA 3-11 mg/L  

B: The number of ADA-positive patient samples (of the total of 107) are shown as follows: four samples were 

detected as positive all assays, 1 sample was positive in the RGA and the IFMA, 12 samples were positive only 

by IFMA. Removal of all ‘low-positive’ samples from IFMA resulted in one positive sample only detected by 

the IFMA and an overall agreement on the outcome of 98% of samples. 

 

A B
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We evaluated several therapeutic drug ranges (Figure 7A). Application of two fixed 

therapeutic ranges for all three assays (one narrower, one wider) resulted in low rates 

of agreement for about 50% of the patient samples, whereas an individual adaptation 

of categories to each assay improved the rate of agreement to 74% of all patient 

samples. For all categories, agreement rates were significantly higher between ELISA 

and IFMA than ELISA and RGA or IFMA and RGA. 

Of the 107 patient samples, four were IFX ADAb positive in the ELISA (≥5 AU/mL). 

The same four samples were found to be positive for ADAb by the RGA, as was one 

additional sample that was just below the threshold in the ELISA (4.7 AU/mL). The 

IFMA identified a total of 17 ADAb-positive samples, 11 of which fell into the 

category ‘low positive’ (10-30 AU/L). The remaining six samples included the 

ADAb-positive samples from ELISA and RGA. One patient, who was classified as 

IFX ADAb-positive in all three assays, was treated with biosimilar IFX Remsima®. 

Agreement for categorical results for ADAb from all three assays is presented in 

Figure 7B.  

In conclusion, we found that TNF inhibitor monitoring assays measure on different 

scales and that the agreement between quantitative results is limited. However, inter-

assay differences could partially be overcome by assay-individualized translations of 

quantities into categories, which is also necessary for a meaningful clinical 

application. Our data demonstrate that assays should not be used interchangeably, and 

that direct comparisons of quantitative drug levels obtained with different assays 

should be avoided. 
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2. Collection of patient material and data, and set-up of 

a methodological background for mass cytometry 

experiments (unpublished and paper 2) 

 

2.1. Collection and storage of cells 

Two common methods for the collection and storage of immune cells from peripheral 

blood have been used in the work underlying this thesis. After venipuncture, blood 

can undergo density gradient centrifugation, which separates red blood cells, platelets 

and granulocytes from the reminder of white blood cells (predominantly lymphocyte, 

monocyte, dendritic cell and natural killer cell lineages). The latter, the so-called 

peripheral blood mononuclear cells (PBMC), are then cryopreserved “alive” either in 

liquid nitrogen or in an ultra-deep freezer at around -150 °C. Alternatively, whole 

blood undergoes immediate fixation. Before or after storage at -80 °C, erythrocytes 

are removed by lysis, resulting in the so-called peripheral blood cells (PBL). The 

same techniques as described for PBMC and PBL can be applied to bone marrow 

(BM). 

 

2.2. Quality control and TNF titration 

In smaller sets of quality control experiments, we addressed questions regarding 

signaling responses in PBMC. First, we explored the impact of bench-time before 

cryopreservation on signaling in PBMC. Blood was drawn from three healthy donors, 

and half of the material was cryopreserved immediately, while the other half was kept 

in cell preparation tubes (CPT™) after density centrifugation at room temperature 

and cryopreserved on the next day (bench-times up to 24 hours are acceptable 

following the manufacturer). After thawing, all samples were analyzed 

simultaneously regarding the expression of functional markers with and without TNF 

stimulation. We found that basal signaling for some markers as well as responses to 

TNF stimulation were weaker, while cisplatin, a marker for cell death, was increased  
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Figure 8: QC experiments.  

A: Exemplary data from bench-time experiments. Expression of functional markers in specific cell subsets 

(means, N=3) for PBMCs processed on the day of sample acquisition (day0) or after one day of bench-time 

(day1). 

B: Exemplary data from resting time experiments, showing the expression of functional markers in specific cell 

subsets (N=1), when rested after thawing for 2 hours (2h), 4 hours (4h) or overnight (ON).  
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Figure 8: QC experiments.  

C: TNF titration experiments on exemplary cell subsets and functional markers for TNF dose with a fixed 

stimulation time of 15 minutes (upper) and TNF time with a fixed stimulation dose of 50 ng (lower). 

in PBMC with long bench-time compared to those cryopreserved immediately. We 

concluded that only PBMC which had been cryopreserved on the same day of sample 

acquisition could be used for signaling studies (exemplary data shown in Figure 8A). 

Second, we explored the effects of different resting times after cryopreservation on 

signaling in PBMC. For that purpose, PBMC from two healthy donors were thawed, 

followed by resting for either two hours, four hours or overnight. All samples were 

analyzed simultaneously regarding the expression of functional markers without and 

with TNF stimulation. We concluded that a resting time of four hours provided the 

best conditions regarding signaling responses and cell death (exemplary data shown 

in Figure 8B). Third, TNF dose and time titrations were performed to establish 

optimal stimulation conditions, resulting in TNF doses of 50 ng/mL and TNF 

stimulation times of 12-13 minutes for optimal signaling responses (exemplary data 

shown in Figure 8C). 
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2.3. Panel design and antibody titration 

Antibody panels for mass cytometry face three basic challenges: (1) non-specific 

antibody binding, which is an issue for any antibody-based assay, (2) signal spillover, 

which can be especially problematic in combination with (3) variations in sensitivity 

throughout the mass spectrum of the cytometer.  

Although signal spillover from one mass channel to one or several other mass 

channels does not reach the same dimensions as spectral overlap in flow cytometry 

and although “compensation” as known from flow cytometry is unnecessary in mass 

cytometry, there are good reasons for thorough panel design and the use of pre-

titrated antibodies. Mass cytometry has a lower sensitivity compared to flow 

cytometry, which is of concern especially for markers with low abundancy such as 

e.g. intracellular phospho-epitopes [94]. For these markers, even smaller amounts of 

signal spillover can be relevant. Besides non-specific antibody staining as an issue 

related to all antibody-based immunoassays, there are several known sources of 

signal spillover in mass cytometry. First, there can be spillover of isotopes from one 

mass channel into the adjacent +1 mass channel, e.g. from Sm149 to Nd150. Signal 

spillover is also stronger between different isotopes of the same metal. As an 

example, seven isotopes of the lanthanide neodymium are used in mass cytometry 

(Nd142, 143, 144, 145, 146, 148, 150), and spillover is more likely between these. A 

third source of spillover arises through oxidation of metal isotopes. One oxygen-atom 

has a molecular mass of 16; oxidation of a metal isotope will therefore result in 

spillover in the +16 channel. Oxidized Nd142 will followingly be detected as Gd158. 

In panel design, markers of expected lower abundancy will therefore preferably be 

placed (1) in the middle of the mass range due to highest sensitivity of the detector in 

that range and (2) in channels with expected low spillover, especially from highly 

abundant markers (+1, +16 or isotope spillover). A free online tool 

(http://www.dvssciences.com/mydvs/) and instruction manual 

(http://www.dvssciences.com/mydvs/Maxpar_Panel-Designer_ug_100-

9557A2_150925.pdf) for panel design is offered by Fluidigm for registered users. 
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Figure 9: Antibody titration exemplified on the phenotyping marker CD4 145Nd (A) and the functional 

marker p-NFkB 166Er (B). Concatenated files and tables listing 75th percentiles of dual count expression for 

each antibody concentration (100x, 200x, 400x, 800x, 1600x). The tables list covers also channels of potential 

spillover (+16 not shown due to irrelevance for the actual panel). Red boxes indicate chosen antibody 

concentrations. As a reference, marker expression and tolerance as measured by the vendor Fluidigm are listed 

(green background). 

75th percentile

100x 200x 400x Fluidigm 800x 1600x

Nd Caspase3 142Nd 0 0 0 0 0

CD4 145Nd 193 138 93,3 70 57 31,5

+1, Nd CD8a 146Nd 2,91 1,55 1,34 0 0

Nd CD16 148Nd 0 0 0 0 0

Tolerance 38,6 27,6 18,66 14 11,4 6,3

75th percentile

100x 200x 400x Fluidigm 800x 1600x

-1 CD120a 165Ho 0 0 0 0 0

p-NFκB unstim166Er 11,6 9,33 7,46 7 6,16 5,14

p-NFκB stim166Er 84,4 83,7 70,3 55,9 43,5

Ratio 7,275862 8,971061 9,423592 9,074675 8,463035

+1/Er p-cJun 167Er 0,2 0,18 0 0 0

Tolerance 2,32 1,866 1,492 1 1,232 1,028

Purpose Target Metal

Purpose Target Metal

A

B
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Primary antibody panels were designed for QC experiments and the main experiment 

(Paper 3, Figure 9). These panels were partially based on immune phenotyping 

panels offered by the vendor Fluidigm. In parallel, we worked on a hierarchical panel 

titration method for more complex mass cytometry panels (Paper 2), as presented in 

the following. 

 

2.4. Hierarchical approach to panel titration 

We developed a hierarchical approach for mass cytometry panel titration – 

exemplified on peripheral blood (PB) and bone marrow (BM) cells – which is 

suitable for complex mass cytometry panels and takes into account both spillover and 

non-specific binding of antibodies. In each titration step, channels which potentially 

may receive spillover (±1 Da, +16 Da and channels detecting isotope impurities) 

were kept empty. The optimal titer for each antibody was approximated by balancing 

the ability to discern positive from negative cells with the amount of spillover 

generated in other mass channels. In titration step 1, a simpler backbone panel was 

titrated and optimized to provide a wide hematopoietic background (Figure 10A). On 

the background of this backbone panel, subpanels consisting of further surface 

antibodies for deeper characterization (for example CD45RO expression on CD4 Tc) 

were added in titration step 2 (Figure 10B). A singular SPADE clustering was 

performed on the entire data set including all titrations (6.4x10^6 single cells) to 

manually identify cell subsets based on the backbone panel (Figure 10C). The signal 

from the titrated antibodies was then measured separately in each of the cell subsets, 

plotted in heatmaps and displayed side-by-side as a function of antibody dilution. 

Antibody titers were evaluated based on their expression on relevant cell subsets, e.g. 

CD45RO on T helper cells (Figure 10D). In a third titration step, markers for 

signaling were added to cells after ex-vivo stimulation with GM-CSF, IFN, LPS –

included an unstimulated control – with a rich phenotypic background consisting of 

panels from both titration step 1 and 2 (Figure 10E).   
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Figure 10: Workflow for hierarchical antibody titration and panel design.  

A: Titration step 1: backbone panel providing a wide hematological background 

B: Titration step 2: deeper characterization of cell subsets by addition of further surface markers  

C: SPADE on cells across all titrations using the backbone panel for clustering  

D: Exemplary data for the marker CD45RO, titrated on the relevant cell subset of T helper cells  

E: Titration step 3: signaling panel titration after stimulation with GM-CSF, LPS and IFN (left). Example of         

spillover from 171Yb pERK into 172Yb (right). 
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3. Exploration of immune cell subsets for signaling 

signatures in RA patients compared to healthy 

individuals, with a primary focus on TNF signaling 

(paper 3). 

The pro-inflammatory cytokine tumor necrosis factor (TNF) plays a central role in 

the pathogenesis of rheumatoid arthritis (RA), and TNF inhibitors constitute an 

efficient treatment against inflammatory activity in RA. The objective of this study 

was to use unbiased methods to identify signaling patterns in immune cell 

populations from RA patients with an emphasis on TNF signaling. We employed 

mass cytometry (CyTOF) with a panel of 13 phenotyping and 10 functional markers 

to compare signaling signatures in unstimulated and TNF-stimulated peripheral blood 

mononuclear cells (PBMC) from 20 newly diagnosed, untreated RA patients and 20 

healthy donors. The resulting high-dimensional data were analyzed in three 

independent analysis pipelines, characterized by differences in both data clean-up, 

identification of cell subsets/clustering and statistical approaches.  

In analysis pipeline 1 (NM2B algorithm), single-cell data from all 40 individuals 

were clustered and meta-clustered, and different numbers of clusters and meta-

clusters were tested. The model used provided the best translation of meta-clusters 

into common immune cell subsets. Results presented here are based on 49 clusters 

and 12 meta-clusters; the latter include one B cell meta-cluster (4.3%), four of T cells 

(75.3%), two of natural killer cells (5%), one of classical monocytes (5.7%), three of 

myeloid dendritic cells (8.8%) and one of plasmacytoid dendritic cells (1%). 

Phenotyping markers are differentially expressed in the meta-clusters (Figure 11A); 

differences in expression of phenotyping markers in healthy donors vs. RA patients 

were not significant. 

A regression model based on both basal expression of functional markers and arcsinh 

ratios (“combined model”) provided the best predictive TNF signaling patterns for 

healthy donors and RA patients. In this model seven functional markers (IkBa, 
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CD120b, CD86, p-cJun, p-NFkB, p-p38, and p-Akt) in five cell subsets (memory 

CD4 Tc, two mDc subsets (HLA-DR+CD14low and HLA-DRhigh CD14-), naïve CD4 

Tc (CD11clow), and cM) were identified as predictive markers (Figure 11B). 

Applying these markers, the combined model correctly classified 18 of 20 RA 

patients and 17 of 20 healthy donors (Figure 11C). Principle component analysis 

(PCA) of features identified by the Lasso-regression showed a good separation of HD 

vs. RA in the combined (Figure 11D) and basal model, but to a lesser degree in the 

ratio model. 

 

Figure 11A-B: Results NM2B algorithm. 

A: Heatmap over the expression of phenotyping markers in 12 meta-clusters (columns). Meta-clusters were 

identified as B cells (Bc), CD4+ T cells (CD4 Tc), CD8+ T cells (CD8 Tc), natural killer cells (NKc), classical 

monocytes (cM), myeloid dendritic cells (mDc), and plasmacytoid dendritic cells (pDc). Relative abundance is 

given for each cell subset in percent. 

B: Results from Lasso regression: predictive features (functional markers and cell subsets) and their 

contribution to the classification of healthy donors (HD) and RA patients (RA). Only nonzero coefficients are 

shown. Coefficients for CD86 and p-cJun are based on ratios and therefore inverted compared to CITRUS and 

manual comparisons of basal marker expression. 
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Figure 11C-D: Results NM2B algorithm. 

C: Cross-validation accuracy for all three NM2B analyses (“basal,” “ratio,” and “combined”), with area-under-

the-curve (AUC) values for ROC analysis. 

D: Principle component analysis (PCA) of features identified by Lasso-regression (combined model) for the 

classification of RA patients and healthy donors. 

 

In analysis pipeline 2 (CITRUS algorithm), we performed four repetitive CITRUS 

analyses of basal expression of functional markers. p-p38, IkBa, p-cJun, p- NFkB, 

and CD86 were identified as predictive markers by CITRUS, with memory CD4+ T 

cells being the most relevant cell subset for both p-p38, IkBa, and p-cJun, while 

clusters within myeloid dendritic cell subets (mDc) and classical monocytes (cM) 

were the most relevant for p-NFkB and CD86. There was not always a clear 

distinction between mDc and cM in hierarchical clustering in CITRUS, and both 

these cell subsets were relevant for the markers p-NFkB and CD86 (Figure 11E). 

Compared to the NM2B and manual analysis, there were slight differences in the 

weighting of cell subsets for p-cJun. In four CITRUS analyses, memory CD4 Tc were 

the primary cell subset of interest for p-cJun, whereas automated analysis pointed to 

naïve CD4 Tc as the most significant cell subset. In manual analysis, p-cJun 

expression was significantly different between HD and RA in both naïve and memory 

CD4 Tc.  
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Figure 11E: Results from CITRUS and manual analysis 

E: Cluster identification, characterization, and regression algorithm (CITRUS) and non-parametric testing 

(Manual). CITRUS results are presented in boxplots, as provided by the algorithm. Results from manual 

analysis are presented in scatter dot plots. Medians (CITRUS) and 75th percentiles (manual) are plotted for 

each RA patient (blue) and healthy donor (red); median, and upper and lower quartile. Asterisks indicate level 

of significance without correction for multiple comparisons (***p < 0.001, ****p < 0.0001).  
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Analysis pipeline 3 (manual analysis) generally confirmed results from regression 

data modeling (Figure 11E). For the p-NFkB, regression tools had suggested 

significant differences in myeloid dendritic cell and classical monocyte subsets. 

However, in non-parametric testing, p-NFkB expression was not significantly 

different in myeloid dendritic cell and classical monocyte subsets of healthy donors 

vs. RA patients, while being significantly different in memory CD4 Tc. 

In conclusion, all three analysis pipelines identified p-p38, IkBa, p-cJun, p-NFkB, 

and CD86 in cells of both the innate arm (myeloid dendritic cells and classical 

monocytes) and the adaptive arm (memory CD4 Tc) of the immune system as 

markers for differentiation between RA patients and healthy donors. Inclusion of the 

markers p-Akt and CD120b resulted in the correct classification of 18 of 20 RA 

patients and 17 of 20 healthy donors in regression modeling based on a combined 

model of basal and TNF-induced signal. Expression patterns in a set of functional 

markers and specific immune cell subsets were distinct in RA patients compared to 

healthy individuals. These signatures may support studies of disease pathogenesis, 

provide candidate markers for response, and non-response to TNF inhibitor treatment, 

and aid the identification of future therapeutic targets. 
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Discussion 

RA is a heterogeneous disease with a plethora of treatment options, and patients will 

profit from more exact classification and stratification. The work presented here 

highlights the current lack of classification and stratification markers and shows how 

single cell profiling by mass cytometry may contribute to the search for such markers. 

Methodological aspects such as antibody panel design and approaches for the 

analysis of high-dimensional data are emphasized.  

 

1. Existing markers for TNF inhibitor drug monitoring  

We first compared existing assays for TNF drug levels and ADAb and found that 

TNF inhibitor monitoring assays measure on different scales and that the agreement 

between quantitative results is limited. Inter-assay differences could partially be 

overcome by assay-individualized translations of quantities into categories, which is 

also necessary for a meaningful clinical application. 

The comparability of assays for TNF inhibitor drug levels and ADAb has been 

addressed in several previous studies. Vande Castele et al. [68] compared results from 

three ELISAs for IFX levels and ADAb. They found acceptable correlations, but 

limited agreement between the ELISAs, and concluded that there was a need for a 

standardization of drug monitoring assays. Steenholdt et al. [66] compared ELISA, 

radioimmunoassay and RGA for IFX levels and ADAb, and an enzyme immunoassay 

for IFX ADAb. They concluded that it was necessary to establish clinically relevant 

categories for each assay as a consequence of disagreement between assays for 

quantitative results. 

Bloem et al. [61] compared several modalities to induce drug-tolerance in ADAb 

assays for the TNF inhibitor adalimumab. An acid-dissociation radioimmunoassay 

was found to be most sensitive for the detection of low levels of ADAb, resulting in a 
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large fraction of ADA-positive patients. The clinical significance of low titers of 

ADAb is, however, still unknown. 

The presence of ADAb against the TNF inhibitor adalimumab at an early stage in the 

course of treatment has been suggested as a predictor for reduced response rates [72]. 

For some patients, low ADAb-titers may indicate the beginning of a clinically 

relevant immunogenic response, whereas other patients might be permanent or 

transient producers of low amounts of ADAb without clinical relevance. It has also 

been proposed that most patients exposed to biologics such as TNF inhibitors will 

react with some ADAb production, especially in the first phase of treatment, with yet- 

unknown clinical consequences [95]. 

Our data demonstrate that assays for drug levels and ADAb should not be used 

interchangeably, and that direct comparisons of quantitative drug levels obtained with 

different assays should be avoided. We and others have shown that even though drug 

monitoring by means of drug titer and ADAb measurement are implemented in 

clinical routine, there are unresolved questions and issues related to them. 

 

2. Methodological background for mass cytometry 

studies 

We set up a methodological background for mass cytometry studies including the 

collection, handling and stimulation of cells, and panel design.  

 

2.1. Collection and storage of cells 

Both PBMC and PBL (including bone marrow cells) were collected and used for 

studies included in this thesis. The most important differences between PBMC and 

PBL are (1) the ability to interfere with cells after storing, which only is possible in 

“live” cryopreserved PBMC, and (2) the conservation of granulocyte populations, 
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which only is given for PBL due to the loss of granulocytes in density centrifugation 

in PBMC (Table 3). The loss of granulocytes can be an advantage since the presence 

of large amounts of granulocytes can stand in the way for analysis of rarer immune 

cell subsets. Granulocyte subsets can also be a source of non-specific staining 

artefacts due to their content of eosinophil granules [96]. On the other hand, 

granulocytes as an important part and interactor of the innate immune system will be 

missing in the analysis of PBMC. Limited data in a concept study have been pointing 

at granulocytes as a population of interest regarding TNF signaling, supported by 

other data showing that granulocytes express high levels of TNF receptors [78, 97]. 

Table 3: Comparison Peripheral Blood Mononuclear Cells (PBMC) and Peripheral Blood Cells (PBL). 

Advantages and disadvantages to the different ways of cell collection and storage. 

A cryopreserved cell can be considered chemically and biologically extremely stable. 

However, depending on the osmotic tolerance of a cell, the toxicity of 

cryoprotectants, chilling and intracellular ice-formation, the processes around 

cryopreservation expose immune cells for stress and interfere with physiological 

patterns [98], especially with regards to rapid and more short-lived signaling 

pathways. Head-to-head comparisons between PBMC and PBL from the same donor 

regarding phenotypes and functional markers in immune cells are currently lacking. 

PBMC PBL 

Do not contain granulocyte populations Do contain granulocyte populations 

Cells are exposed to about 30 min of centrifugation 

and the process of cryopreservation 

Whole blood can be fixed immediately and while still 

being on body temperature 

Cells can be cultured under standardized conditions 

after storage/freezing 

Any interference with cells, e.g. cytokine stimulation, 

has to happen before fixation and storage 

Density gradient centrifugation removes red blood 

cells, granulocytes and platelets. Additional steps of 

cell lysis are not necessary 

Before analysis, red blood cells have to be removed by 

lysis, either before or after storage. 

A viability stain must be part of analysis to sort out 

dead or compromised cells  

All cells can be considered “live cells” until the moment 

of fixation and a viability stain is not necessary, if cells 

haven’t been exposed to more extensive perturbation 

before fixation 



 53 

For PBMC, factors of major concern are bench-time before cryopreservation, method 

and protocol for cell isolation, and resting time after thawing. In a set of quality 

control experiments, we addressed these concerns, and adapted our protocols to 

reduce variation and optimize signaling responses. 

Limited data is available for comparisons between different live cell isolation 

techniques (Ficoll, CPT™ and SepMate™), showing similar performances for all 

techniques with slight advantages for CPT™ and SepMate™ in one study [99, 100]. 

Immediate fixation of immune cells in their physiological environment including 

stable body temperature and serum factors as performed for PBL, will reflect best in-

vivo conditions, especially with regards to faster processes such as intracellular 

signaling and epitope phosphorylation. Depending on the question and project at 

hand, careful considerations should be taken in selecting collection SOPs. 

 

2.2. Panel titration 

Mass cytometry allows for simultaneous measurement of more than 50 parameters 

per single cell, including extra- and intracellular markers, barcodes, normalization 

beads etc. [85, 86, 94]. Compared to a flow cytometer, a mass cytometer has a 

narrower dynamic range, and a certain amount of spillover between channels has to 

be accepted. Spillover compensation is routinely applied to raw data in flow 

cytometry. For mass cytometry, tools for spillover compensation have been 

developed and suggested, but are currently not part of routine practice [101, 102]. In 

flow cytometry, signaling intensities of fluorescent dyes can vary largely, and 

markers of expected low abundance/intensity can be strategically conjugated to dyes 

of higher signaling intensity to provide a sufficient resolution. In mass cytometry, 

signaling intensities between different metal isotopes are fairly equal and certain 

amounts of spillover may have to be accepted to achieve the necessary resolution for 

markers of low abundance [81]. Signal spillover together with sources of non-specific 

antibody binding to secondary and low-affinity epitopes have to be taken into account 

in panel design and titration in mass cytometry. Due to the complexity of mass 
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cytometry panels, panel design and titration demand a deep understanding and 

extensive work. 

Insufficient panel design and titration (bad data in) can result in signals and 

populations that do not exist or oversee existing epitopes and populations (bad data 

out). In Paper 2, we presented a pragmatic hierarchical approach to panel design and 

titration based on PBL and BM stained with a backbone panel to resolve more 

common cell populations with the help of the clustering algorithm SPADE, and 

different sub-panels for the titration of additional antibodies for deeper phenotyping 

and signaling. The same approach can be adapted to other cell types, both in 

suspension and tissue. 

 

3. Signaling signatures in RA patients 

We explored immune cell subsets for signaling signatures in RA patients compared to 

healthy individuals, with a primary focus on TNF signaling. Both B cell and T cell 

compartments have been investigated extensively in low-dimensional studies on 

patients with different rheumatic diseases [103, 104]. However, only few high-

dimensional flow and mass cytometry studies have been published on classification 

and stratification of rheumatic patients. In two mass cytometry studies, O’Gorman et 

al. addressed chemokine and cytokine signatures in systemic and juvenile systemic 

lupus erythematosus [105]. They found that both newly diagnosed SLE patients and 

healthy donors had specific chemokine signatures especially in CD14high monocytes, 

and identified patient specific cytokine signatures in pediatric SLE, which could be 

evoked in cells from healthy donors upon patient-plasma exposure and disrupted by 

JAK1/JAK2 inhibition [106]. In the field of rheumatoid arthritis, Galligan et al. 

explored signaling patterns in a bigger, but rather inhomogeneous cohort of RA-

patients by phospho-flow and found elevated levels of several phosphorylated 

epitopes in CD4 T cells in RA patients compared to healthy donors [77]. In a proof-

of-principle-study on a single RA patient and one healthy donor, Nair et al. 

demonstrated that a complex mass cytometry setup may distinguish between health 
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and disease and may be able to detect changes after TNF inhibitor treatment [78]. 

Due to the illustrational character of their study, differences in signaling were not 

quantified, but both p-p38 and p-NFkB were differentiating markers in several cell 

subsets. 

Very recently, Wang et al. used mass cytometry and next-generation sequencing to 

explore the B cell compartment of 16 patients with rheumatoid arthritis [107]. They 

found significant differences in naïve and memory B cell subsets of RA patients 

compared to healthy donors, including higher levels of serum IgA and IgM, 

indicating that B cell tolerance is altered in patients with RA compared to healthy 

donors. Next-generation sequencing revealed an Ig class switch in ACPA-positive 

RA patients towards fewer IgA+ B cells and significantly lower levels of somatic 

hypermutations in RA patients.  

Leong et al. studied 20 patients with juvenile idiopathic arthritis (JIA), who were 

good responders to anti-TNF and taken off treatment for 8 months. They identified a 

CD3+CD4+CD45RA-TNF+ T cell subset, which was elevated prior to therapy 

withdrawal in those JIA patients who relapsed after therapy withdrawal [108]. In the 

same study, transcriptomic profiling showed persistent dysregulations in pathways for 

T cell receptor-, apoptosis-, TNF-, NFkB- and MAPK-signaling in both relapse and 

remission patients compared to healthy donors, suggesting that such profiles may be 

used for the prediction of treatment responses rather than for the prediction of relapse 

after treatment discontinuation. 

 

3.1. Limitations 

There are currently limitations regarding the size and complexity of reasonable and 

feasible mass cytometry experiments. To identify differences between “healthy” and 

“sick”, representative cohorts of both groups are required. However, the number of 

simultaneously applicable barcodes, parallel handling of all samples, read-out time on 

the mass cytometer, and analysis of multi-dimensional data on millions of events set 
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currently limits on cohort sizes. For future studies with more samples, it is important 

to assure that results are robust across different cytometry runs, e.g., through the use 

of reference samples. 

The core experiment of this thesis was the first major mass cytometry experiment 

carried out in Bergen, and the applied panel reflects both limited availability of metal-

conjugated antibodies, and limited knowledge and experience in our group at the time 

of panel design.  

PBMC were chosen as reporters of “RA-specific patterns” due to the possibility of 

simultaneous and standardized cell culturing and cytokine intervention after storing. 

For the purpose of characterization of cell states including fast and sensitive signaling 

pathways, we would retrospectively prefer the use of PBL, possibly combined with a 

strategy to reduce the total amount of granulocytes. Solutions such as SmartTubes™ 

offer new ways in the standardized collection of PBL including cytokine stimulation 

by adding fixed amounts of lyophilized cytokine to the tubes. Such solutions were not 

available when we started sample collection for our biobank. 

We have studied signaling patterns in RA patients and healthy donors. Therefore, 

statements on the specificity of observed “RA patterns” compared to other 

inflammatory disorders cannot be made. Other TNF driven diseases, e.g. the 

spondylarthritides (SpA) or inflammatory bowel diseases (IBD), would be most 

suited for a comparison with RA patients with regards to TNF signaling and 

treatment responses to TNF inhibitors. Both RA, SpA and IBD share the TNF-

associated inflammatory outcome, while differing significantly in underlying 

pathophysiology.  
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Conclusion and future perspective 

Cells, their functional status and behavior, and their cellular and non-cellular 

surroundings play a critical role in health and disease. Single cells from cell 

suspensions or tissue have been of extensive scientific interest ever since the first 

microscopic evidence of cells by Robert Hooke in 1665 [109]. Cells interact through 

direct cell-to-cell-contact or indirectly through messengers such as cytokines, 

chemokines, hormones, growth factors and antibodies. It has been and still is a 

challenge to grasp the wider picture of cytomes, heterogenous sets of cells that are 

functionally connected, such as blood cells or cancer tissue, while preserving a single 

cell resolution. Mass cytometry is another step in the direction of high-dimensional 

understanding of cytomes, both in suspension and in tissues. The abilities of mass 

cytometry have been demonstrated in a number of key studies on cells in suspension 

[110, 111] and tissues [112]. 

The pathophysiology of RA as well as the story of TNF – from the understanding of 

the role of TNF health and disease to the development of TNF inhibiting treatment – 

illustrate how central cytomics are. Our understanding of the complexity of biology, 

however, is currently largely built on studies, which due to technical limitations have 

contributed bits and pieces rather than providing a greater picture of biological 

processes. 

Here, we illustrate the clinical challenge of precise diagnosis and patient stratification 

in RA and demonstrate ways of meeting the challenge with mass cytometry and tools 

for the analysis of high-dimensional data. The results of this thesis show that newly 

diagnosed RA patients can be classified correctly with relatively high precision based 

on signaling patterns in single cells, when compared to healthy donors. However, this 

thesis cannot offer a “comprehensive understanding of RA or TNF signaling” for the 

above-mentioned reasons related to material, cohorts and technicalities.  

Other diseases with heavy involvement of TNF and standard application of TNF 

inhibitors are diseases from the family of spondylarthritides (e.g. psoriatic arthritis, 

ankylosing spondylitis) and from the family of inflammatory bowel diseases (Crohn’s 
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disease, ulcerative colitis). We do not have material from newly diagnosed patients 

with these diagnoses at our disposal. However, we did collect an extensive material 

of PBMC from both RA and spondylarthritis (both psoriatic arthritis and ankylosing 

spondylitis) patients before and after initiation of TNF inhibitor treatment, which may 

enable us to explore signaling differences between cohorts as well as signaling 

differences between responders and non-responders to TNF inhibiting treatment. 

The NordStar study, a recent international multicenter study on RA and patient 

stratification [113, 114], has provided us with the possibility of sample collection in 

patients randomized to treatment with either synthetic DMARD, TNF inhibitor, IL-6 

inhibitor or CD80/86 co-stimulation inhibitor. Here, we collected PBL in 

SmartTubes™ with an unstimulated, a TNF stimulated and an IL-6 stimulated tube 

per patient before and 3 months after treatment initiation, and additional samples in 

case of treatment failure due to non-response or adverse events. Knowledge gained 

from our own study (paper 3) and the aforementioned studies by Wang et al. and 

Leong et al. [107, 108] may contribute to set up an interesting mass cytometry panel 

covering aspects of TNF and IL-6 signaling as well as T and B cell alterations before 

and under ongoing treatment. 

Immune cells from peripheral blood may be sufficient reporters of drug responses, 

and may give a certain insight in the pathophysiology of RA. However, the primary 

site of inflammation in RA are joints and synovial tissue. We have started to collect 

cells from synovial fluid from RA patients in parallel with PBL from the same 

patients in a more recent project. Currently, no tissue mass cytometry studies have 

been undertaken on synovium sections, but a few studies on dissociated cells from 

synovial tissue [115-117]. After the advent of imaging mass cytometry [112] and its 

commercialization, analysis of synovial tissue sections on an image mass cytometer 

would be another interesting high-dimensional, single cell approach to the 

pathophysiology of RA. However, a standardized collection of synovial tissue from a 

well-sorted cohort of e.g. newly diagnosed RA patients has substantial practical and 

ethical implications due to the primary affection of small joints and the invasiveness 

of the procedure for sample taking.  
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We have made big efforts in standardized sample collection, established SOPs for all 

steps in complex mass cytometry experiments and gained experience in the handling 

and analysis of high-dimensional data. With this we hope to be able to contribute 

further to knowledge and future clinical applications. 
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Abstract

Immunogenicity is a frequent cause of secondary non-response to tumour necrosis
factor (TNF) inhibitors. Drug level measurement and detection of antidrug
antibodies have been shown to be cost effective and clinically relevant, and a large
number of assays are available for these purposes. It is, however, difficult to
compare assays and translate results into clinical meaningful information due to
different methodological approaches and a lack of assay standardization. We have
analysed infliximab drug levels and antidrug antibodies in 107 patient samples
using enzyme-linked immunoassays (ELISA), immunofluorometric assays
(IFMA) and reporter-gene assays (RGA). The RGA gave the lowest results for
drug levels, whereas the IFMA detected the highest number of antidrug antibody
positive sera. Applying individualized therapeutic ranges to each assay resulted
in agreement among all three assays in 74% of samples for drug levels and 98%
of samples for antidrug antibodies. We found that TNF inhibitor monitoring
assays measure on different scales and that the agreement between quantitative
results is limited. However, interassay differences can partially be overcome by
assay-individualized translations of quantities into categories, which also is
necessary for a meaningful clinical application. Our data demonstrate that assays
should not be used interchangeably and that direct comparison of quantitative
drug levels obtained with different assays should be avoided.

Introduction

Tumour necrosis factor (TNF) inhibitors are widely used
for treatment of inflammatory joint, skin and bowel
diseases [1–3]. TNF inhibitors have immunogenic proper-
ties that can be the cause of secondary non-response and
injection- or infusion-related side effects [4–6]. The clinical
implications of TNF inhibitor immunogenicity are com-
plex due to disease heterogeneity, different treatment and
dosing regimens and co-medications. Furthermore, not all
cases of secondary non-response are due to the immuno-
genic properties of the drug [7].

A large number of assays are available to identify
patients with immunogenic reactions to TNF inhibitors,
usually by means of drug level measurement and detection
of antidrug antibodies (ADA) [7–10]. TNF inhibitor drug
monitoring has been shown to be cost effective and
clinically relevant [9, 11]. In a recent meta-analysis

covering over 14,000 patients, ADAs were present in
12.7% of patients treated with a TNF inhibitor, and the
presence of ADA was found to reduce the odds of drug
response by 67% [12]. In the same study, the presence of
ADA was shown to increase the risk of reaction at injection
or infusion sites (OR 3.25), whereas co-medication with
other immunosuppressants was shown to reduce the odds
for ADA production by 74%.

TNF inhibitor drug monitoring assays employ a
variety of methodological approaches. Assays for drug
levels, as opposed to ADA assays, employ standardized
units and can therefore be compared directly. Several
studies have found acceptable interassay correlations.
However, interassay agreement, that is, the true accor-
dance between the results of two or more assays was less
satisfying [13–15]. Clinicians and clinical laboratories are
often provided with a number of cut-offs, ranges, limits
and concentrations, but not with clinical reference ranges

� 2017 The Foundation for the Scandinavian Journal of Immunology 165

HUMAN IMMUNO LOG Y doi: 10.1111/sji.12572
..................................................................................................................................................................



for drug levels. Thus, clinicians have to determine
themselves the drug levels to consider as ‘therapeutic’ or
‘non-therapeutic’.

ADA assays, on the other hand, do not have standard-
ized units as results are presented in arbitrary units (AU) or
AU/mL. Therefore, a direct comparison between assays is
only possible if ADA quantities are transformed into
categories such as ‘negative’ or ‘positive’. For ADA, both
quantity and quality of the identified antibody depend on
the applied assay methodology. The quantity of detected
ADA is affected by the drug-tolerance of an assay. Many
assays do not detect ADA bound to the drug; they are
drug-sensitive. Some drug-tolerant assays overcome this
problem, for example by dissociation of ADA from the
drug. Assays also vary in their abilities to distinguish
biologically functional from non-functional ADA. Func-
tional assays detect only ADAs that neutralize the function
of the drug (neutralizing antibodies, NAb). Non-func-
tional assays detect ADA binding to the drug (binding
antibodies, BAb) and, thus, detect antibodies that do not
affect the drug functionally. Being solely confronted with a
‘positive’ result of an ADA assay, without information
about quantity or quality of the identified ADA, the
clinician will not be able to decide relevance for the
patient.

In this study, we illustrate the issue of lacking scales
and categories by comparing three assays for infliximab
(IFX) drug levels and three assays for IFX ADA. Our data
demonstrate that direct comparison of quantitative drug
levels obtained with different assays should be avoided. We
found, however, that interassay differences can partially be
overcome by assay-individualized translations of quantities
into categories.

Materials and methods

Patients and serum samples. One hundred and seven patients
treated with IFX at the Departments of Rheumatology
(n = 78) and Dermatology (n = 29) at the Haukeland
University Hospital, Bergen, Norway participated in this
observational cross-sectional study. Serum samples were
collected and analysed between April 2014 and May 2015.
A serum sample from each patient was collected at a
randomly selected infusion appointment just prior to the
IFX infusion. All patients gave written informed consent
for biobank inclusion at the Departments of Rheumatology
and Dermatology (regional ethics committee approvals
2012/1689 and 2014/1373).

Assays. Methods, thresholds and ranges of assays for IFX
levels and IFX ADA are given in Table 1. IFX serum levels
were measured with a capture enzyme-linked immunosor-
bent assay (ELISA; Promonitor�-IFX), whereas a bridging
ELISA (anti-IFX/Orion Diagnostica) was used for the
detection and quantification of IFX ADA. Automated
immunofluorometric assays (IFMAs) were performed on the
AutoDELFIA� immunoassay platform. Briefly, the method
measures drug levels using a target-based assay with TNF
on solid phase; the active drug in the patient sample binds
TNF and is detected with a europium-labelled tracer that
binds the Fc-domain on the drug. Sera with IFX levels
<10 mg/L were analysed for IFX ADA using an IFMA that
detects only antibodies binding to the TNF-binding site of
the drug. Infliximab and infliximab NAb reporter-gene
assays (RGAs; iLite�/Biomonitor) are based on an immor-
talized and modified erythroleukemic cell line using the
same biological principle for both IFX and ADA quantifi-
cation. TNF binding to its cognate receptor at the cell

Table 1 Methods, thresholds and ranges of assays for IFX levels and IFX ADA.

ELISA IFMA RGA

IFX levels

Method Capture ELISA Target-based assay: TNF on solid phase, the

drug-containing patient-serum in the liquid

phase and a tracer binding the drug

Based on a reporter cell line: TNF

signalling induces expression of firefly

luciferase

Manufacturer provided

categories and therapeutic

ranges

<0.035 lg/mL: Negative <1 mg/L: Negative <0.65 lg/mL: Negative

≥0.035 lg/mL: Positive ≥1 mg/L: Positive ≥0.65 lg/mL: Positive

0.035-1.5 lg/mL:

Subtherapeutic

2–12 mg/L: Wide therapeutic range No therapeutic ranges provided

>1.5 lg/mL: Therapeutic 3–8 mg/L: Narrow therapeutic range

IFX ADA

Method Bridging ELISA Immunofluorometric assay: detects only

antibodies against the TNF-binding site

of the drug

Based on a reporter cell line: TNF

signalling induces expression of firefly

luciferase

Manufacturer provided

categories

≤5 AU/L: Negative <10 AU/L: Negative Positive and negative are defined by an

internal threshold>5 AU/L: Positive 10–30 AU/L: Low-positive

30–80 AU/L: Positive

>80 AU/L: High-positive

IFX, infliximab; ADA, antidrug antibodies; ELISA, enzyme-linked immunosorbent assay; IFMA, immunofluorometric assay; RGA, reporter-gene assay;

AU, arbitrary units.
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surface activates intracellularly the transcription factor
NFjB, resulting in expression of firefly luciferase. TNF
signalling activity is quantified by detection of firefly
luciferase luminescence. The assay uses Renilla lumines-
cence for normalization. Serum with IFX levels below the
lowest reported concentration of 0.65 lg/mL was analysed
further for the presence of IFX NAb. The reporter-gene
assay is a drug-sensitive and functional assay [16].

Data collection and statistical analysis. All clinical data
were obtained from the hospital files, the Norwegian
Arthritis Registry (NorArtritt) and the local quality
registry at the Department of Dermatology. Statistical
analysis was performed using the statistics package SPSS
(version 22, IBM). Agreement in quantitative results from
the three assays for IFX levels was assessed and visualized in
Bland–Altman plots [17]. In these plots, the average of
results from all three assays for one patient sample is plotted
on the x-axis against the difference between the two assays
of interest on the y-axis. If two assays are in complete
agreement, the data will fall along a horizontal line through
zero, whereas disagreement will result in a distribution
above or below that line. A deviation of the mean difference
away from 0 that is not attributable to extreme outliers
indicates that there is a systematic difference between
assays. The effects of transformation from quantitative to
qualitative and categorical data on interassay agreement are
displayed in Venn diagrams. Agreement in quantitative
results for IFX ADA could not be assessed due to arbitrary
units for antibodies. Interassay agreement after transforma-
tion of quantitative data into the categories negative and
positive is presented in Venn diagrams.

There are no numerical values for good or poor
agreement; based on the underlying question the observer
must decide whether the degree of agreement is satisfying
or not.

Results

Patients and treatment

One hundred and seven patients (53 females and 54 males)
were included; mean age and disease duration were
51 years and 19 years, respectively. Ninety-four patients
were treated with IFX-Remicade� (Janssen Biologics), and
13 patients were treated with IFX-Remsima� (Celltrion).
Patient characteristics, diagnoses, treatment and co-
medication details are given in Table 2.

Infliximab drug levels

The three assays were in better agreement at lower IFX
levels and poorer for higher levels. No samples with an
average IFX level <10 mg/L were outside the limits of
agreement, which were narrowest for ELISA versus IFMA.
The RGA resulted in systematically lower IFX levels than

the ELISA, whereas the IFMA resulted in higher levels
than the ELISA. Analysis of agreement among quantitative
results from all three assays is presented in Figure 1A–C.

We evaluated several therapeutic drug ranges as shown
in Figure 2A. Application of two fixed therapeutic ranges
for all three assays (one narrower, one wider), resulted in
low rates of agreement for about 50% of the patient
samples, whereas an individual adaptation of categories to
each assay improved the rate of agreement to 74% of all
patient samples. For all categories, agreement rates were
significantly higher between ELISA and IFMA than ELISA
and RGA or IFMA and RGA.

Infliximab antidrug antibodies (IFX ADA)

Of the 107 patient samples, four were IFX ADA positive in
the ELISA (≥5 AU/mL). The same four samples were found
to be positive for ADA by the RGA as was one additional
sample that was just below the threshold in the ELISA (4.7
AU/mL). The IFMA identified a total of 17 ADA-positive
samples, 11 of which fell into the category ‘low positive’
(10-30 AU/L). The remaining six samples included the
ADA-positive samples from ELISA and RGA. One patient,
who was classified as IFX ADA positive in all three assays,
was treated with Remsima�.

IFX was detected in only one of the ADA-positive
samples at a low concentration (1.7 mg/L) by the IFMA. All
of the other ADA-positive samples had IFX levels below
threshold in all assays. Agreement for categorical results for
ADA from all three assays is presented in Figure 2B.

Table 2 Patient characteristics, diagnoses, medication and

co-medication.

Number of patients 107

Female/male 53/54

Mean patient age (min-max) 51 years (16–86)
Diagnoses, number of patients (% of total)

Rheumatoid arthritis 37 (34.6)

Spondyloarthritis (excl. psoriatic arthritis) 18 (16.8)

Psoriatic arthritis 17 (15.9)

Juvenile idiopathic arthritis 9 (8.4)

Psoriasis 23 (21.5)

Others 3 (2.8)

Mean disease duration (min-max) 19 years (2–50)
Medication, infliximab (IFX)

IFX-Remicade (%) 94 (88)

IFX-Remsima (%) 13 (12)

Median treatment duration (min-max) 70 months (0–158)
Mean IFX dose (min-max) 4.5 mg/kg (2.1–10.4)
Mean IFX dose rheumatology (min-max) 3.8 mg/kg (2.1–7.3)
Mean IFX dose dermatology (min-max) 6.4 mg/kg (4.5–10.4)
Mean IFX interval (min-max) 7.5 weeks (4–17)

Co-medication

Methotrexate 76 patients

Other disease-modifying antirheumatic drugs 2 sulfasalazine,

1 leflunomide,

1 azathioprine

Prednisolone 8 patients
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Discussion

For IFX drug levels, we found agreement between ELISA
and IFMA of 80% or higher, depending on the applied
therapeutic range. Quantitatively, the IFMA resulted in
higher drug levels, and the RGA resulted in lower drug
levels. For IFX ADA, the ELISA classified four samples as
ADA positive, RGA classified five as positive and the
IFMA identified 17 positive samples. For both IFX levels
and IFX ADA, adaptation of categories such as ‘therapeu-
tic’ or ‘positive’ to each assay resulted in comparable

performances of all assays with agreement rates of 74%
(IFX levels) and 98% (IFX ADA), respectively. We did not
include testing for repeatability as all assays undergo such
evaluation in their validation process. Intra and
between-day variations can influence the results especially
for the detection of ADA, as was shown in an assay
comparison reported by Steenholdt et al. [13].

In this study, we focused on assay methodology for
clinical interpretation. For clinical decision-making, the
individual clinical setting provides most relevant longitu-
dinal information [7, 8, 18]. The issue of scales and

Figure 1 Bland–Altman plots demonstrating

agreement between IFX levels determined

using different techniques. The average result

from all three assays for one patient sample (x-

axis) is plotted against the difference between

the two assays compared (y-axis) for A: ELISA

versus RGA, B: RGA versus IFMA, and C:

IFMA versus ELISA. The difference is 0 in case

of total agreement; increasing distance from 0

indicates an increasing disagreement between

the two compared assays.
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categories is not only important for the clinical application
of assay results but also for the understanding of variations
presented in studies on TNF inhibitor immunogenicity.
Especially for the detection of ADA, there is a wide range
of prevalence, which is related to the use of particular assays
and interpretation of data. For example, the reported
prevalence of IFX ADA was 5% in one study and 61% in
another [4, 19].

The comparability of assays for TNF inhibitor drug
levels and ADA has been addressed in several previous
studies. Vande Castele et al.[15] compared results from
three ELISAs for IFX levels and ADA. They found
acceptable correlations, but limited agreement between
the ELISAs, and concluded that there was a need for a
standardization of drug monitoring assays. Steenholdt
et al.[13] compared ELISA, radioimmunoassay and RGA
for IFX levels and ADA, and an enzyme immunoassay for
IFX ADA. They concluded that it was necessary to establish
clinically relevant categories for each assay as a consequence
of disagreement between assays for quantitative results.

Bloem et al.[20] compared several modalities to induce
drug-tolerance in ADA assays for the TNF inhibitor
adalimumab. An acid-dissociation radioimmunoassay was
found to be most sensitive for the detection of low levels of
ADA, resulting in a large fraction of ADA-positive
patients. The clinical significance of low titres of ADA
is, however, still unknown.

The presence of ADA against adalimumab at an early
stage in the course of treatment has been suggested as a
predictor for reduced response rates [21]. For some patients,
low ADA-titres may indicate the beginning of a clinically
relevant immunogenic response, whereas other patients
might be permanent or transient producers of low amounts
of ADA without clinical relevance. It has also been
proposed that most patients exposed to biologics such as
TNF inhibitors will react with some ADA production,

especially in the first phase of treatment, with yet-
unknown clinical consequences [22].

We found that TNF inhibitor monitoring assays
measure on different scales and that the agreement
between the assays is limited. However, interassay
differences can be overcome by an assay-individualized
translation of quantities into categories, which also are
necessary for meaningful clinical application. In order to
be able to handle the issue of scales and categories and
to translate results into clinically meaningful informa-
tion, manufacturers and clinical laboratories should not
offer TNF inhibitor drug monitoring assays without
providing guiding categories and information on the
assay method, especially on drug-tolerance and assay
functionality for ADA detection. ADA values could be
categorized as negative, low level and high level and
drug levels with a therapeutic range. Clinicians making
use of these data should have a general understanding of
the assay methods to be able to interpret and implement
results. Furthermore, clinicians should avoid using assays
interchangeably and should not attempt to directly
compare quantitative drug levels between assays.
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Titrating Complex Mass Cytometry Panels
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� Abstract
We describe here a simple and efficient antibody titration approach for cell-surface
markers and intracellular cell signaling targets for mass cytometry. The iterative
approach builds upon a well-characterized backbone panel of antibodies and analy-
sis using bioinformatic tools such as SPADE. Healthy peripheral blood and bone
marrow cells are stained with a pre-optimized “backbone” antibody panel in addi-
tion to the progressively diluted (titrated) antibodies. Clustering based on the back-
bone panel enables the titration of each antibody against a rich hematopoietic
background and assures that nonspecific binding and signal spillover can be quan-
tified accurately. Using a slightly expanded backbone panel, antibodies quantifying
changes in transcription factors and phosphorylated antigens are titrated on ex vivo
stimulated cells to optimize sensitivity and evaluate baseline expression. Based on
this information, complex panels of antibodies can be thoroughly optimized for use
on healthy whole blood and bone marrow and are easily adaptable to the investiga-
tion of samples from for example clinical studies. © 2019 The Authors. Cytometry Part A

published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.

� Key terms
mass cytometry; panel design; antibody titration; whole blood; bone marrow; CyTOF;
phosphoflow

MASS cytometry enables the simultaneous measurement of over 40 antigens on sin-
gle cells using metal isotope conjugated antibodies, generating highly complex
datasets with minimal experimental artifacts (1–3). As the number of antibodies
used to investigate biologically heterogeneous cells increases, so do the demands for
an efficient and thorough approach to determine optimal antibody titers. In addition
to undesirable signal arising from nonspecific antibody binding, which is an issue in
all types of antibody-based assays, three sources of signal spillover exist in mass
cytometry (4,5): signal overlap of highly abundant metal isotopes into adjacent mass
channels (�1 Da), isotope oxidation (+16 Da), and isotopic impurities in the metal
isotopes. Although technical approaches to deal with similar experimental artifacts
have been well established for conventional flow cytometry (6), mass cytometry has
unique requirements (7).

The predictable patterns of signal spillover in mass cytometry are not routinely
compensated, as is commonplace in conventional flow cytometry. Although such
compensation tools have been developed (8), signal spillover can be significantly
reduced by lowering the signal intensities (linearly dependent) and/or by carefully
designing antibody panels (9). The former may not allow for sufficient distance
between the biologically positive and dim/negative populations, and the latter may
introduce unwanted/unnecessary noise in the data. In contrast to conventional flow
cytometry the range of “brightness” observed across the mass range of purified metal
isotope tags is fairly equal (1,10). Thus, the choice of isotope may not always provide
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the staining characteristics needed to capture the biological
diversity within the mass cytometers dynamic range, without
accepting signal spillover to some degree. Antibody binding to
secondary and low affinity epitopes must also be evaluated.
This might be a challenging process as the combinatorial possi-
bilities of marker expression quickly exceeds our understanding
of the human immune system with increasing numbers of
markers. Lastly, we emphasize that determination of optimized
antibody titer is application-specific and is not necessarily trans-
ferrable between different biological samples, processing proto-
cols, laboratories, or antibody lots. In addition, we have also
observed a variation in the stability of metal conjugated anti-
bodies, potentially changing the optimal titer over time. Taken
together, the construction of large antibody panels for mass
cytometry is an extremely time consuming, laborious, and
demanding undertaking, necessitating an efficient and straight-
forward approach.

MATERIALS AND METHODS

Subjects and Samples

Peripheral blood (PB) and Bone marrow (BM) samples
were obtained from healthy individuals who provided written
informed consent (local ethical committee approval 2012/2247).
PB and BM were collected in the presence of heparin. The leu-
kocytes were fixed and erythrocytes lysed using Lyse/Fix buffer
(BD Biosciences) within 1 h, and samples were stored at −80�C
in physiological saline.

Ex Vivo Stimulation of Peripheral Blood and Bone

Marrow

Freshly collected PB and BM from one healthy donor
were stimulated ex vivo with IFN-α (100 ng/ml, 15 min),
GM-CSF (100 ng/ml, 15 min), LPS (10 μg/ml, 15 min), or left
untreated. PB and BM cells were fixed, and erythrocytes lysed
using the BD Lyse/Fix reagent as above.

Barcoding and Antibody Staining

Fixed leukocytes from PB and BM were barcoded (3)
using the Fluidigm 20-plex metal barcoding kit according to
manufacturer’s protocol. All antibodies used in this study were
either purchased pre-conjugated from Fluidigm or were conju-
gated in-house using the X8 MaxPar conjugation kits
according to manufacturer’s protocol (Online Tables 1–3). See
the online materials for detailed protocols. Briefly, aliquots of
1.5 × 106 cells were first pretreated with heparin (100 IU/ml,
20 min) (11) and then stained with mastermixes of backbone
antibody panel mixed with twofold serially diluted panel of
antibodies to be titrated in a total staining volume of 50 μl
(30 min, room temperature). The dilution of most antibodies
started at the concentration recommended by the manufacturer
(1 μl antibody per 100 μl cell suspension containing 3 × 106

cells). However, for some antibodies, a pre-dilution was neces-
sary before a twofold titration was possible. For instance, the
163Dy-CD56 was diluted by a factor of 10× (Online Fig. 8)
before the twofold dilution shown in Supplemental Figure 2.
Cells to be stained with intracellular signal transduction

antibodies were permeabilized for 10 min on ice with methanol
(−20�C, 100%), treated with heparin (100 IU/ml, 20 min) and
subsequently stained with progressively titrated (five twofold
dilutions) intracellular antibodies (30 min, room temperature).
To enable the identification of cells, the DNA was labeled with
iridium-191/193 by incubation in 0.1 nM Ir-nucleic acid inter-
calator (Fluidigm) diluted in MaxPar PBS containing 4% PFA
(Alfa Aesar, 16% PFA, methanol-free) overnight at 4�C. Cells
that were not permeabilized with methanol (cell surface only)
were labeled with iridium-191/193 by incubating with Ir-nucleic
acid intercalator (0.1 nM) diluted in MaxPar Fix/perm buffer
(Fluidigm) overnight at 4�C. Immediately before sample acquisi-
tion, cells were washed in MaxPar cell staining buffer and Max-
Par water (both from Fluidigm) and left pelleted until analysis on
the Helios mass cytometer (Fluidigm). The cells were re-
suspended in MaxPar water supplemented with a 1:10 dilution of
the EQ Four Element calibration beads (Fluidigm). The acquisi-
tion rate was kept below 400 cells per second to limit the number
of acquired cell doublets.

Data Analysis

Machine drift in the data was normalized using the
Fluidigm bead normalizer. Cell debris and doublets were
manually removed by gating on event length and DNA (Ir-
191/193). The Fluidigm barcode de-convolution tool was used
for de-barcoding samples. The histogram overlay illustrations
were made, and SPADE (12) analysis was performed, in
cytobank.org. Sample concatenation and gating was per-
formed in FlowJo (FLOWJO, LLC). For gated populations,
the 75th percentile of the dual count in each mass channel
was exported for statistics. The heat maps were made using
Morpheus (https://software.broadinstitute.org/morpheus/).

RESULTS AND DISCUSSION

A graphical illustration of our approach is presented in
Figure 1, and a more detailed description is given in the
Online Materials. All reagents used in this work can be found
in Online Tables 1–3. A backbone panel (Online Table 4) of
carefully selected antibodies was established as basis to evalu-
ate the titration of additional antibodies in titration step
1. Titration data for the backbone panel is shown in Figure 1a
and Online Figure 1a. The optimal titer for each antibody
(red gate) was approximated by contrasting the ability to
securely discern positive from negative cells against signal
spillover into other mass channels. For example, low-level spill-
over of 2–3 dual counts of 145Nd-CD4 signal into 146Nd-CD8
can be accepted, as long as co-expression of CD8 is not of bio-
logic interest. In titration step 2, after optimization of the back-
bone panel, sample aliquots of metal barcoded (3) and paired
PB and BM from two healthy donors were stained with the
backbone panel and serially diluted mastermixes of the three
“titration panels” (Online Table 6) containing additional cell
surface antibodies (Fig. 1b). In these titration panels, all chan-
nels theoretically receiving spillover from the included markers
were kept empty. For example, 144Nd-CD38 and 148Nd-CD16
were placed in different titration panels. We used the SPADE

2 Titrating Complex Mass Cytometry Panels
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Figure 1. (a) A backbone panel was titrated using PB and BM from two healthy donors. The .fcs files were concatenated to visualize immune

staining as a function of antibody concentration and to enable efficient gating of positive cells. The expression of the titrated antigen and all

spillovers (�1 Da, +16 Da and channels detecting isotopic impurities) was calculated for the gated cells plotted (75th %-ile dual counts). Optimal

titer (red gate) was chosen by balancing the ability to discern positive from negative cells with the amount of signal overlap generated in other

mass channels. (b) Additional cell surface antibodies to be titrated were subdivided into titration panels. Here, all channels receiving spillover

were unused in each panel. Cell sample aliquots were stained with the titrated backbone panel and serially diluted mastermixes of the titration

panels. (c) A single SPADE clustering was performed to efficiently identify cell subsets in the entire data set. The clustering was based solely on

the backbone panel, and cell subsets manually identified. (d) The signal from the titrated antibodies were measured in each of the cell subsets

and plotted as a heat map. The data was in selected cell subsets concatenated, and the expression of the titrated antigen and all spillovers

calculated for the gated population, as above. The exact staining pattern on a relevant cell subset (i.e., CD45RO expression on T helper cells)

could now also be evaluated in addition to signal spillover (i.e., CD45RO expression on monocytes) and panel design. The red gate indicates the

chosen antibody titer. The relative abundance of positive cells in the parent cell subset as a function of antibody concentration was also

calculated. (e) PB and BM from one healthy donor were stimulated ex vivo with GM-CSF (100 ng/ml, 15 min), IFN-α (100 ng/ml, 15 min) or LPS

(10 μg/ml, 15 min) or left untreated. The antibodies to be titrated were split into two titration panels, as above. Cells were stained with backbone

panel and serially diluted titration panels, and cell subsets identified using SPADE. The phosphorylation level (75th %-ile) was measured in each

population, for all intracellular antibodies and all channels theoretically receiving spillover. Drug-induced changes in phosphorylation levels were

calculated (Δarcsinh relative to ctrl) and plotted as a function of antibody dilution. Lastly, the signal spillover generated by induction of signaling

into the emptymass channel was evaluated. Red boxes indicate optimal dilutions of antibodies. Color scales indicate Δarcsinh relative to control.



clustering algorithm (12) in Cytobank.org to identify common
cell subsets across all files in the experiment based on backbone
antigen expression (Fig. 1c and Online Fig. 2). This clustering
provided a rich immune-phenotypic background on which the
titration of the additional antibodies could be evaluated
(Fig. 1d and Online Fig. 1b–d). In addition to evaluating signal
spillover using the cell population with the highest expression
(e.g., CD45RO on monocytes) as in step 1, this also allowed for
the exact evaluation of the staining pattern in a biologically
relevant cell subset (e.g., T helper cells). In this way, staining
characteristics can be seen across a wider hematological back-
ground, altogether further refining the approximation of opti-
mal titers (indicated in red boxes). In titration step 3, we
evaluated antibodies specific for intracellular cell signaling and
transcription factors. A metal barcoded pool of ex vivo stimu-
lated PB and BM (IFN-α [100 ng/ml, 15 min], GM-CSF
[100 ng/ml, 15 min], LPS [10 μg/ml, 15 min]) was stained
with a combined backbone panel based on titration steps 1 and
2, and progressively diluted titration panels as described above
(Online Table 8). After SPADE clustering on surface antigen
expression as above (Online Figs. 3 and 4), we calculated the
stimulation-induced change in cell signaling (Δarcsinh relative

to control) for all cell subsets (Fig. 1e and Online Fig. 5). Of
note, in our experiment the Δarcsinh after both GM-CSF and
LPS stimulation increased for p-p38 Y180/T182 in monocytes
(CD14+) with increasing dilution of the antibody. Likely, sur-
plus antibody created an increased background, thus masking
a drug-induced regulation in signal transduction after stimula-
tion. This emphasizes the importance of selecting optimal anti-
body titers using appropriate biological controls. Furthermore,
we assessed the signal spillover as a function of drug-induced
alterations in cell signaling. For example, after GM-CSF stimu-
lation, we could measure spillover signal into the empty 172Yb
channel induced by high phosphorylation levels of pERK1/2
Y202/T204 (171Yb) in the myeloid dendritic cell population
(mDCs, CD11c+HLA-DR+). This spillover decreased as a
function of antibody titration (Fig. 1e, right panel). The final
choice of antibody titers was done by minimizing signal spill-
over and optimal resolution between positive/stimulated and
negative/baseline. We validated our approach by testing the
titrated panel (Table 1 and Online Table 1 and 2) on three
additional healthy donor PB samples. The staining patterns of
both cell surface markers and intracellular signal transduction
targets in these additional samples reproduced the antibody

Table 1. Antibody panel. (See online Tables 1–4, 6, and 8 in the online materials for more details)

SPECIFICITY CLONE ISOTOPE PURPOSE

CD45 HI30 89 Y Pan leukocytes
CD66b G10F5 141 Pr Neutrophils
Cleaved caspase 3 D3E9 142 Nd Apoptosis
CD38 HIT2 144 Nd Activation
CD4 RPA-T4 145 Nd T helper cells
CD8a RPA-T8 146 Nd Cytotoxic T cells
CD20 2H7 147 Sm B cells
CD16 3G8 148 Nd Neutrophils and subsets of NK and monocytes
CD25 2A3 149 Sm Basophils, Tregs, and activated T helper cells
pSTAT5 Y694 47 150 Nd Signal transduction
CD123 6H6 151 Eu Basophils, mDC, and pDC
pSTAT1 Y701 58D6 153 Eu Signal transduction
p-p38 T180/Y182 D3F9 156 Gd Signal transduction
pSTAT3 Y705 4/P-STAT3 158 Gd Signal transduction
CD11c Bu15 159 Tb Monocytes and mDC
CD14 M5E2 160 Gd Monocytes
CD181 (IL-8RA) B1 161 Dy Neutrophils
FoxP3 PCH101 162 Dy Tregs
CD56 NCAM 16.2 163 Dy NK cells
CD45RO UCHL1 165 Ho Naïve/memory T cells
CD34 581 166 Er Hematopoietic stem/progenitor cell
CD1c (BDCA-1) L161 167 Er Subsets of mDC and B cells
CD335 (NKp46) 9E2 169 Tm NK cells
CD3 UCHT1 170 Er T cells
pERK 1/2 T202/Y204 D1314.E4 171 Yb Signal transduction
HLA-DR L243 174 Yb Activation, DCs, monocytes, and B cells
CD184 (CXCR4) 12G5 175 Lu Basophils
pCREB S133 87G3 176 Yb Signal transduction
CD11b Mac-1 209 Bi Granulocytes, monocytes NK cells, and DCs

mDC; myeloid dendritic cell; pDC, plasmacytoid dendritic cell; NK, natural killer; Tregs, regulatory T cells.
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titration results, highlighting the usefulness of our approach
(See online materials and Online Figs. 6 and 7).

In summary, we outline here a conceptual framework
where we highlight the usefulness of performing iterative anti-
body titration on cells stained with a backbone panel. We
found SPADE to be an excellent tool for automated cell cluster-
ing based on the backbone panel. SPADE enabled clustering of
cells in a dataset consisting of more than 6 million cells into a
single SPADE tree. Using bioinformatic tools, this approach is
efficient and straightforward and provides a deeper characteri-
zation of each antibody’s performance, which is necessary for
the demanding task of panel design for mass cytometry assays.
Although we have demonstrated the titration of antibodies on
healthy PB and BM in this work, this approach can easily be
adapted to other sample types for mass cytometry.
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Rheumatoid arthritis (RA) is a chronic autoimmune, inflammatory disease, characterized

by synovitis in small- and medium-sized joints and, if not treated early and efficiently, joint

damage, and destruction. RA is a heterogeneous disease with a plethora of treatment

options. The pro-inflammatory cytokine tumor necrosis factor (TNF) plays a central role

in the pathogenesis of RA, and TNF inhibitors effectively repress inflammatory activity

in RA. Currently, treatment decisions are primarily based on empirics and economic

considerations. However, the considerable interpatient variability in response to treatment

is a challenge. Markers for a more exact patient classification and stratification are

lacking. The objective of this study was to identify markers in immune cell populations

that distinguish RA patients from healthy donors with an emphasis on TNF signaling.

We employed mass cytometry (CyTOF) with a panel of 13 phenotyping and 10

functional markers to explore signaling in unstimulated and TNF-stimulated peripheral

blood mononuclear cells from 20 newly diagnosed, untreated RA patients and 20

healthy donors. The resulting high-dimensional data were analyzed in three independent

analysis pipelines, characterized by differences in both data clean-up, identification of

cell subsets/clustering and statistical approaches. All three analysis pipelines identified

p-p38, IkBa, p-cJun, p-NFkB, and CD86 in cells of both the innate arm (myeloid dendritic

cells and classical monocytes) and the adaptive arm (memory CD4+ T cells) of the

immune system as markers for differentiation between RA patients and healthy donors.

Inclusion of the markers p-Akt and CD120b resulted in the correct classification of 18 of

20 RA patients and 17 of 20 healthy donors in regression modeling based on a combined

model of basal and TNF-induced signal. Expression patterns in a set of functional markers

and specific immune cell subsets were distinct in RA patients compared to healthy

individuals. These signatures may support studies of disease pathogenesis, provide

candidate markers for response, and non-response to TNF inhibitor treatment, and aid

the identification of future therapeutic targets.

Keywords: rheumatoid arthritis, patient stratification, tumor necrosis factor, tumor necrosis factor inhibitors,mass

cytometry
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune
disease characterized by synovial inflammation that, if
not treated early and efficiently, causes joint damage. The
pro-inflammatory cytokine tumor necrosis factor (TNF)
plays a central role in the pathogenesis of RA and is the
target of treatment with TNF inhibitors. TNF inhibitors are
generally effective and well-tolerated (1, 2); however, up
to one-third of patients are primary non-responders, and
responses in up to one-third of initial responders abate over
time (3, 4).

Currently, only a few markers for diagnostic and stratification
purposes are used in daily clinical practice in patients with
RA. Anti-citrullinated peptide antibodies are a highly disease-
specific biomarker with an impact mostly on diagnosis and
classification (5). TNF inhibitor drug levels and anti-drug
antibodies are indicative of treatment responses; however, these
markers are not standardized for clinical application (3, 6,
7). Several candidate biomarkers for prediction of treatment
responses have been suggested based on gene, cytokine, and
immune cell profiles, but none have added significant value to
patient stratification in a clinical setting (8). Previous studies
have indicated the potential of single-cell profiling by flow or
mass cytometry in patient stratification in RA and in other
autoimmune conditions (9, 10). Distinct signaling patterns
have been found in RA patients before and during treatment
with TNF inhibitors in exploratory and proof-of-principle
studies (11, 12).

We hypothesize that signaling patterns in RA are distinct
from those of healthy donors. The unbiased identification of
RA-specific signaling patterns in immune cell subsets before
treatment may improve diagnosis, therapeutic stratification,
and monitoring, and may also facilitate studies of disease
pathogenesis and the development of drugs that target
dysfunctional pathways with high precision.

In this study, we used mass cytometry to explore signaling
responses to TNF in single immune cells of RA patients and
healthy donors. In mass cytometry metal-tagged antibodies serve
as markers with a read-out in a mass spectrometry time-of-flight
chamber (13). Using mass cytometry, up to 50 markers can be
simultaneously analyzed with single cell resolution with relatively
little signal overlap and very low background noise (14, 15). Here
we used a panel of 13 phenotyping and 10 functional markers for
an in-depth characterization of peripheral blood mononuclear
cells (PBMCs) from patients and controls with and without
stimulation with TNF. Based on results from three different
analysis pipelines, we suggest a smaller set of phenotyping and
functional markers, which strongly correlate with disease status
for future use in e.g., flow cytometry.

MATERIALS AND METHODS

In-depth information on material, methods and results is
provided in the Supplementary Material in the same order and
with the same headings/sub-headings as in the main article.

Healthy Donors and RA Patients
Twenty healthy donors (HD, 4 male, 16 female, ages 39–67) and
20 RA patients (4 male, 16 female, ages 31–76) were included in
this study (Table 1). All RA patients were included at the time
of diagnosis and fulfilled the ACR/EULAR 2010 criteria for RA.
None of the patients had received synthetic or biologic disease-
modifying anti-rheumatic drugs, but five had been prescribed
low to moderate dosages of prednisolone by their general
practitioners prior to the first consultation with a rheumatologist.
Despite ongoing prednisolone-treatment at inclusion (range 2.5–
15mg), these patients had high disease activity with a mean
disease activity score (DAS28) of 6.1 (range 5.4–7).

All donors and patients gave written informed consent for
inclusion into the Norwegian Arthritis Registry (NorArtritt)
and the Research Biobank for Rheumatic Diseases in Western
Norway (approval REK 2012/1689). Utilization of registry data
and biobankmaterial for this study was approved by the Regional
Ethics Committee (approval REK 2014/317).

Peripheral Blood Mononuclear Cells

(PBMCs)
PBMCs were chosen due to the possibility of culturing and
application of standardized and simultaneous conditions (such
as e.g., cytokine stimulation) after cryo-preservation.

PBMCs were harvested by density gradient centrifugation
(BD Vacutainer R© CPTTM Mononuclear Cell Preparation Tube—
Sodium Citrate), processed for cryo-preservation within 4 h and
stored in liquid nitrogen in 50% hematopoietic cell medium (X-
VIVOTM, Lonza), 42.5% freezing medium (ProFreezeTM, Lonza),
and 7.5% dimethyl sulfoxide (Sigma-Aldrich).

TABLE 1 | Patient and healthy donor characteristics.

Healthy donors (HD)

Female/male 16/4

Median age (range) 49 (34–67) years

RA patients (RA)

Female/male 16/4

Median age (range) 63.5 (31–76)

Disease characteristics

RF+ 14

ACPA+ 11

RF+ ACPA+ 9

RF- ACPA- 4

Mean DAS28 (range) 5.37 (3–7.6)

Mean DAS28–CRP (range) 4.86 (2.5–7.2)

Mean CRP (range) 25.3 (1–156)

Mean ESR (range) 36.6 (6–104)

Medication

Prednisolone 5 of 20 patients

Prednisolone daily dose 2.5-15mg (2.5, 2.5, 12.5, 12.5, 15mg)

RF, rheumatoid factor; ACPA, anti-citrullinated peptide antibodies; DAS28, disease activity

score with 28 joint count; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate.
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Antibody Panel
All antibodies used in this study (Table 2) were titrated on
PBMCs from one healthy donor. Titrations were performed
on unstimulated PBMCs and cells stimulated with TNF and
phorbol myristate acetate (PMA) for optimization of pathway
activationmarkers. The antibodies against CD120a, CD120b, and
p-cJun were conjugated to metals in our laboratory (conjugation
kits and protocols by Fluidigm), all other antibodies were pre-
conjugated (Fluidigm).

Thirteen markers were applied to define common PBMC
subsets; these were used in both automated clustering and

TABLE 2 | Antibody panel with epitopes, antibody clones, conjugated metals, and

target cell populations or signaling pathways.

Epitope Clone Metal Target/Function Abbrev.

PHENOTYPING

CD20 2H7 147Sm B lymphocytes Bc

CD3 UCHT1 170Er T lymphocytes

CD4 RPA-T4 145Nd CD4+ T lymphocytes CD4 Tc

CD8a RPA-T8 146Nd CD8+ T lymphocytes CD8 Tc

CD45RA HI100 169Tm Naïve/effector vs.

memory

Naïve,

mem

CD56 NCAM16.2 176Yb Natural killer cells NKc

CD16 3G8 148Nd NK T cells NK Tc

CD14 M5E2 160Gd Classical monocytes cM

CD61 VI-PL2 209Bi Monocytes cM

CD11c Bu15 159Tb Myeloid dendritic cells mDc

CD123

(IL-3R)

6H6 151Eu Plasmacytoid dendritic

cells

pDc

HLA-DR L243 174Yb MHCII, antigen

presentation

CD45 HI30 89Y Leukocyte Common

Antigen

FUNCTIONAL

Cleaved

Caspase 3

D3E9 142Nd Apoptotic signaling Caspase3

p-p38

[T180/Y182]

D3F9 156Gd MAPK pathway p-p38

p-Erk1/2

[T202/Y204]*

D13.14.4E 171Yb MAPK pathway p-Erk

p-Akt

[S473]

D9E 152Sm PI3K-Akt pathway p-Akt

p-cJun

[S73]**

D47G9 167Er SAPK/JNK signaling p-cJun

p-NFkB

p65 [S529]

K10-895.12.50 166Er NFkB canonical

pathway

p-NFkB

IkBa L35A5 164Dy with IkBa degradation IkBa

CD120a** MABTNFR1-B1 155Gd TNF receptor 1 TNFR1

CD120b** hTNR-M1 165Ho TNF receptor 2 TNFR2

CD86 IT2.2 150Nd Regulation of T cell

activity

CD86

*p-Erk1/2 was omitted from the panel after TNF titration experiments, since TNF

stimulation did not alter p-Erk1/2 expression.

**Metal-conjugation carried out at our laboratory (all other antibodies were purchased pre-

conjugated).

manual gating. Functional markers for TNF signaling were
the cleaved caspase 3 as a marker for apoptosis signaling; p-
p38 [T180/Y182] and p-Erk1/2 [T202/Y204] as markers for the
MAPK-pathway activation; IkBa and p-NFkB p65 [S529] for
the NFkB canonical pathway; p-Akt [S473] for the PI3K-Akt
pathway; and p-cJun [S73] for the SAPK/JNK signaling pathway.
CD86 was added as a marker of T cell regulation and analyzed
as functional marker, although signaling through this pathway is
not directly related to TNF.

Treatment with PMA resulted in significant increases in
Erk1/2 phosphorylation, whereas TNF treatment did not have
significant effects on Erk1/2 phosphorylation. This marker was
therefore omitted from experiments after panel titration.

Experimental Workflow
Cryopreserved PBMCs were thawed, rapidly transferred to warm
X-VIVOTM containing a nuclease (Benzonase R© Nuclease, Merck
Millipore, 25 U/mL), followed by centrifugation and resting in X-
VIVOTM for 4 h at 37◦C, 5%CO2. The resting time was optimized
in set-up experiments (data not shown). Viability staining was
performed according to the manufacturer’s instructions with
Cell-IDTM cisplatin (Fluidigm). PBMCs from each individual
were split into two aliquots; one was not stimulated, and
the other was stimulated with 50 ng/mL TNF for 12min.
Stimulation time and dose had been defined after a series of
TNF time and dose titrations. Cells in both samples were fixed
in proteomic stabilizer (Smart Tubes Inc.) for 10min and stored
at −80◦C until barcoding and staining. All cells were barcoded
simultaneously with 20-plex Cell-IDTM barcoding kits (Fluidigm)
as recommended by the manufacturer. After pooling, surface
staining, methanol-permeabilization, and intracellular staining
were carried out. PBMCs were then stained with MaxPar DNA
intercalator overnight (Fluidigm) and analyzed the following
day on a Helios mass cytometer (Fluidigm) after addition
of normalization beads (Fluidigm). Raw FCS-files were bead-
normalized, concatenated, and debarcoded with software tools
from Fluidigm before subsequent analysis.

Data Analysis Workflow
Three independent analysis pipelines were performed to test and
share different approaches as well as to validate our in-house
NM2B algorithm (pipeline 1).

Pipeline 1: NM2B Algorithm
This algorithm consisted of three main steps: preprocessing (A),
finding cell types (B) and classification (C).

A. Preprocessing: We fitted a mixture of two Gaussian
distributions to mean-variance scaled “Event_length,”
“Center,” “Offset,” “Width,” “Residual,” “191Ir_DNA1,”
“193Ir_DNA2” markers for cleanup and discarded
data belonging to the smaller cluster as doublets and
debris (16, 17).

B. Finding cell types: We used the following phenotyping
markers to detect cell types: “147Sm_CD20,” “170Er_CD3,”
“145Nd_CD4,” “146Nd_CD8a,” “169Tm_CD45RA,”
“176Yb_CD56,” “148Nd_CD16,” “160Gd_CD14,”
“209Bi_CD61,” “159Tb_CD11c,” “151Eu_CD123,” and
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“174Yb_HLA-DR.” We performed farthest point sampling to
find 49 clusters. Farthest point sampling is an approximation
to k-means clustering, which can be calculated for large
datasets. Clusters of size less than 1/100,000 of the total data
size were discarded. We then employed complete linkage
meta-clustering of the farthest points with 15 meta-clusters
and discarded all meta-clusters of less than 0.5% of the total
data size. The final 12 meta-clusters contained a total of
18,374,011 cell events (Supplementary Figure 3).

C. Classification: We used the following functional markers
as features for classification of individuals as patients or
controls: “142Nd_Caspase3,” “156Gd_p-p38,” “152Sm_p-
Akt,” “167Er_p-cJun,” “166Er_p-NFkB,” “164Dy_IkBa,”
“155Gd_CD120a,” “165Ho_CD120b,” “150Nd_CD86.”
For each meta-cluster we calculated the median and 90%
quantile of each of the functional markers for all basal
cells. In addition, we calculated the arcsinh ratios of
the expression of functional markers in stimulated and
basal cells. We tested three models, based on either only
basal variables (basal), or only arcsinh ratios between
stimulated and basal variables (ratio) or both basal and
arcsinh ratios (combined). We fitted a logistic lasso
regression model, that is a logistic regression model with
automatic variable selection, using double leave-one-out
cross validation. For details of how double leave-one-
out cross-validation was performed we refer to the
Supplementary Material. We report cross-validation
accuracy, area under the ROC curve (AUC), and all
non-zero coefficients.

Pipeline 2: CITRUS Algorithm
Normalized, concatenated and debarcoded files were imported in
Cytobank for downstream analysis (18). Data were cleaned for
doublets, debris and dead cells by biaxial gating and analyzed
with the cluster identification, characterization, and regression
tool CITRUS in cytobank.org, applying the predictive regression
model Nearest Shrunken Centroid/PAMR (19). CITRUS was run
on the same data set, but with independent downsampling, with
3 repetitions.

Pipeline 3: Manual Analysis
Normalized, concatenated, and debarcoded files were imported
in Cytobank. Data were cleaned for doublets, debris, and
dead cells by biaxial gating. viSNE analysis based on t-
distributed stochastic neighbor embedding was performed for
each donor and patient after downsampling to 50,000 cell
events per individual and condition (20), and cell subsets
were gated on individual viSNE plots (Supplementary Figure 6).
Expression of functional markers was compared in all cell
subsets, both unstimulated and TNF-stimulated, by applying
non-parametric Mann-Whitney U tests using GraphPad prism
version 7.0c for Mac OS X. A correction for multiple
comparisons was not conducted due to the explorative character
of this study.

RESULTS

Pipeline 1: NM2B Algorithm
Single-cell data from all 40 individuals were clustered and meta-
clustered, and different numbers of clusters and meta-clusters
were tested. The model used provided the best translation of
meta-clusters into common immune cell subsets. The numbers
of clusters andmeta-clusters influenced cross-validation accuracy
for the classification of RA patients and healthy donors, but when
higher numbers of meta-clusters were used, the results were more
difficult to interpret with regards to common cell subsets (data
not shown).

Results presented here are based on 49 clusters and 12
meta-clusters; the latter include one B cell meta-cluster (4.3%),
four of T cells (75.3%), two of natural killer cells (5%),
one of classical monocytes (5.7%), three of myeloid dendritic
cells (8.8%) and one of plasmacytoid dendritic cells (1%).
Phenotyping markers are differentially expressed in the meta-
clusters (Figure 1A); differences in expression of phenotyping
markers in healthy donors vs. RA patients were not significant
(Supplementary Figure 10).

A regression model based on both basal expression of
functional markers and arcsinh ratios (“combined model”)
provided the best predictive TNF signaling patterns for healthy
donors and RA patients. In this model seven functional
markers (IkBa, CD120b, CD86, p-cJun, p-NFkB, p-p38,
and p-Akt) in five cell subsets (memory CD4+ T cells,
CD11c+HLA-DR+CD14lowCD61low myeloid dendritic cells,
naïve CD4+CD45RA+CD11clow T cells, classical monocytes,
and CD11chighHLA-DRhighCD61low myeloid dendritic cells)
were identified as predictive markers (Figure 1B). Applying
these markers, the combined model correctly classified 18
of 20 RA patients and 17 of 20 healthy donors (Figure 1C).
The two patients who were not classified correctly were both
females older than 67 years with high disease activity (DAS28
5.3/6.4). One was seronegative and one was being treated with
prednisolone at 12.5mg per day. Principle component analysis
(PCA) of features identified by the Lasso-regression showed a
good separation of HD vs. RA in the combined (Figure 1D)
and basal model, but to a lesser degree in the ratio model
(Supplementary Figures 7–9).

Pipeline 2: CITRUS Algorithm
We performed four repetitive CITRUS analyses of basal
expression of functional markers. p-p38, IkBa, p-cJun, p-
NFkB, and CD86 were identified as predictive markers by
CITRUS, with memory CD4+ T cells being the most relevant
cell subset for both p-p38, IkBa, and p-cJun, while clusters
within myeloid dendritic cell subets (mDc) and classical
monocytes (cM) were the most relevant for p-NFkB and CD86
(Supplementary Figure 11 and Supplementary Table 10).
There was not always a clear distinction between myeloid
dendritic cells and classical monocytes in hierarchical
clustering in CITRUS, and both these cell subsets were
relevant for the markers p-NFkB and CD86 (Figure 1E and
Supplementary Table 10).
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cytometry revealed cell type specific differences in RA patients
compared to healthy donors of the same gender and with similar
ages. Applying predictive regression models, we found that
the basal expression of p-p38 and IkBa in memory CD4+ T
cells, p-cJun in naïve, and memory CD4+ T cells, and p-NFkB
and CD86 in myeloid dendritic cells and classical monocytes
differentiated between healthy donors and RA patients. We want
to emphasize the explorative character of our study and the role
of mass cytometry in this setting. Mass cytometry and related
analysis tools are currently not used in routine clinical practice.
However, in this study we suggest a smaller set of markers for
the distinction between HD and RA. These markers could make
our approach applicable and feasible in future research e.g., on
a flow cytometry platform. Our data indicate that phenotyping
markers CD4, CD45RA, CD11c for the identification of CD4+

T cell subsets and myeloid dendritic cells, and p-p38, IkBa, p-
cJun, p-NFkB, and CD86 as relevant functional markers could
be used to analyze unstimulated PBMCs by flow cytometry for
diagnosis and stratification in RA.

Studies of signaling pathways in arthritis are often limited to
one or two distinct cell subsets and a few functional markers
and are frequently carried out in animal arthritis models.
Comprehensive investigation of signaling in immune cell subsets
in patients and healthy individuals has been challenging due
to technical limitations. High-dimensional mass cytometry can
fill a gap as it enables the simultaneous investigation of many
markers in millions of heterogeneous cells with a single-cell
resolution. Our study utilized a total of 34 channels (including
barcoding and beads) and only partially exploited the potential
of the technology.

In an analysis of a single RA patient and one healthy
donor Nair et al. demonstrated that a complex mass cytometry
setup distinguished between health and disease and was able
to detect changes after TNF inhibitor treatment (12). Due
to the illustrational character of their study, differences in
signaling were not quantified, but both p-p38 and p-NFkB were
differentiating markers in several cell subsets. Their data pointed
to granulocytes as a cell population altered by TNF pathway
activation. In support of this, another study had previously
shown that granulocytes express high levels of TNF receptors
(21). Unfortunately, our study did not include granulocytes as
we studied PBMCs. PBMCs were selected to provide a detailed
insight into non-granulocyte white blood cell populations,
allowing for simultaneous stimulation of cells from the entire
cohort under standardized conditions after cryo-preservation.

The use of cryo-preserved PBMCs introduces several potential
contributors to variation, and deprives cells from their individual
surroundings by the removal of plasma (22–26). We reduced
variation through stringent use of standard operating procedures
for the handling of live cells from the time of collection to
cryo-preservation to resting and stimulation. Moreover, the
experimental steps were conducted simultaneously on cells
from all donors whenever feasible. However, for future study
we would recommend the use of peripheral blood leukocytes
with immediate fixation after sample acquisition from patient
and donor.

Galligan et al. performed a phospho-flow analysis on PBMCs
on a less homogeneous RA population than our cohort. The
Galligan et al. cohort included RA patients at different disease
stages treated with different medications and patients with
osteoarthritis and healthy donors (11). In agreement with our
results, they found elevated levels of several phospho-epitopes in
CD4+ T cell subsets in RA patients compared to healthy donors,
and, to a lesser degree, to osteoarthritis patients. Interestingly,
there were not significant differences in p38 phosphorylation
levels between RA patients and healthy controls in the Galligan
et al. study. Unfortunately, markers for the canonical NFkB-
signaling pathway were not included.

To identify differences between “healthy” and “sick”
representative cohorts of both groups are required. However, the
number of simultaneously applicable barcodes, parallel handling
of all samples, read-out time on the mass cytometer, and analysis
of multi-dimensional data on millions of events set currently
limits on cohort sizes. Based on a total of 40 individuals, our
study is primarily of explorative character. Our cohorts were
sex-matched. We aimed to achieve an age match between
patients and healthy donors, although immune status has been
shown to be rather stable over time in healthy adults (27). Our
experimental setup allowed for a high degree of simultaneous
analysis, running 80 samples (20HD+20RA in two conditions)
at the same time. For future studies with more samples, it
is important to assure that results are robust across different
cytometry runs, e.g., through the use of a reference sample.

We only included newly diagnosed patients, in whom disease-
related immune status was unaffected by immune-modulatory
or immune-suppressive treatment with the exception of low-
to-moderate dosages of prednisolone in five of the 20 patients.
While prednisolone treatment may introduce an unwanted
heterogeneity, this reflects the real-life situation at rheumatology
outpatient clinics, with some patients being referred after pre-
treatment. In a sub-group analysis with CITRUS we couldn’t
identify factors that differentiated prednisolone-treated from
prednisolone-naïve patients.

RA is an inflammatory condition, and untreated patients are
expected to express signs of inflammation on a cellular level
compared to healthy donors. In our RA cohort, 15 patients had
elevated levels of CRP, including all five patients treated with
prednisolone. The higher levels of markers known to be involved
in inflammatory signaling pathways, such as the canonical NFkB
and the MAPK signaling pathways, in patients compared to
healthy donors in this cohort was, therefore, not a surprise. We
did not include patients with different inflammatory conditions
in our study, hence the specificity of the observed signaling
signatures for RA compared to other inflammatory conditions is
not known. For future studies, cohorts with other TNF-driven
conditions such as e.g., inflammatory bowel diseases should be
added as disease controls.

That CD86 was consistently expressed to a lesser degree on
classical monocytes and myeloid dendritic cells of RA patients
compared to healthy donors is likely relevant to the pathogenesis
of RA. CD86 is highly expressed on antigen-presenting cells in
synovial fluid and synovia of RA patients, whereas CD28, the T
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cell counterpart of CD86, is expressed at lower levels in patients
with active RA compared to healthy donors (28).

In conclusion, this study provided insight into TNF-mediated
signaling patterns, which are distinct for RA patients compared
to healthy individuals. A comprehensive understanding of
signaling signaturesmay facilitatemore accurate diagnosis, better
stratification of patients to guide treatment decisions, and the
identification of candidate treatment targets in RA patients.

DATA AVAILABILITY

The datasets for this study (normalized, concatenated,
debarcoded, and after removal of events compromised by
injector clogging can be found in the Flow Repository https://
flowrepository.org/, experiment-ID FR-FCM-Z24N.

ETHICS STATEMENT

All donors and patients gave written informed consent for
inclusion into the Norwegian Arthritis Registry (NorArtritt)
and the Research Biobank for Rheumatic Diseases in Western
Norway (approval REK 2012/1689). Utilization of registry data
and biobankmaterial for this study was approved by the Regional
Ethics Committee (approval REK 2014/317).

AUTHOR’S NOTE

A summary of this work was presented in poster form at
Cyto2018 in Prague, abstract B13 156.

AUTHOR CONTRIBUTIONS

All authors have contributed to manuscript review. LB has
contributed with experiment design, collection of samples

and clinical data, cytokine and antibody titration, all
laboratory work, data analysis pipeline 1 and 2, manuscript
writing. S-EG has contributed to cytokine and antibody
titrations, followed critically through especially the data
analysis part of this study. NB and MB have contributed
with data analysis pipeline 3 and manuscript writing. GB
has contributed with laboratory work, ciritical follow-up
through all stages of this study. AS has contributed with
initial experiments for TNF stimulation and background
work on TNF receptors/TNF receptor antibodies. CG has
contributed to experiment design and facilitated collection of
samples and clinical data. CV has contributed to experiment
design and facilitated sample collection, laboratory work,
and mass cytometry experiments. SG has contributed to
experiment design and critical supervision throughout all parts
of this study.

FUNDING

This work was supported by the Center for Personalized
Immunotherapy/the Western Norwegian Health authorities,
research grant HV340029.

ACKNOWLEDGMENTS

The authors want to thank all patients and healthy donors for
their contributions to this work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2019.01488/full#supplementary-material

REFERENCES

1. Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet. (2009)

373:659–72. doi: 10.1016/s0140-6736(09)60008-8

2. Scott DL, Wolfe F, Huizinga TWJ. Rheumatoid arthritis. Lancet. (2010)

376:1094–108. doi: 10.1016/s0140-6736(10)60826-4

3. Bendtzen K. Personalized medicine: theranostics (therapeutics diagnostics)

essential for rational use of tumor necrosis factor-alpha antagonists. Discov

Med. (2013) 15:201–11.

4. Singh JA, Christensen R, Wells GA, Suarez-Almazor ME, Buchbinder R,

Lopez-Olivo MA, et al. A network meta-analysis of randomized controlled

trials of biologics for rheumatoid arthritis: a Cochrane overview. Can Med

Assoc J. (2009) 181:787–96. doi: 10.1503/cmaj.091391

5. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO,

III, et al. 2010 rheumatoid arthritis classification criteria: an american

college of rheumatology/european league against rheumatism collaborative

initiative. Ann Rheum Diseases. (2010) 69:1580–8. doi: 10.1136/ard.2010.

138461

6. Bader LI, Solberg SM, Kaada SH, Bolstad N, Warren DJ, Gavasso S,

et al. Assays for infliximab drug levels and antibodies: a matter of

scales and categories. Scand J Immunol. (2017) 86:165–70. doi: 10.1111/sji.

12572

7. Steenholdt C, Brynskov J, Thomsen OO, Munck LK, Fallingborg J,

Christensen LA, et al. Individualised therapy is more cost-effective than

dose intensification in patients with Crohn’s disease who lose response

to anti-TNF treatment: a randomised, controlled trial. Gut. (2013).

doi: 10.1136/gutjnl-2013-305279

8. Cuppen BV, Welsing PM, Sprengers JJ, Bijlsma JW, Marijnissen AC, van

Laar JM, et al. Personalized biological treatment for rheumatoid arthritis: a

systematic review with a focus on clinical applicability. Rheumatology. (2016)

55:826–39. doi: 10.1093/rheumatology/kev421

9. Ermann J, Rao DA, Teslovich NC, Brenner MB, Raychaudhuri S.

Immune cell profiling to guide therapeutic decisions in rheumatic

diseases. Nat Rev Rheumatol. (2015) 11:541–51. doi: 10.1038/nrrheum.20

15.71

10. Gavasso S, Gjertsen B, Anderssen E, Myhr K, Vedeler C. Immunogenic effects

of recombinant interferon-beta therapy disrupt the JAK/STAT pathway in

primary immune cells from patients with multiple sclerosis.Multiple Sclerosis.

(2012) 18:1116–24. doi: 10.1177/1352458511434066

11. Galligan CL, Siebert JC, Siminovitch KA, Keystone EC, Bykerk V, Perez

OD, et al. Multiparameter phospho-flow analysis of lymphocytes in

early rheumatoid arthritis: implications for diagnosis and monitoring

drug therapy. PLoS ONE. (2009) 4:e6703. doi: 10.1371/journal.pone.000

6703

Frontiers in Immunology | www.frontiersin.org 7 July 2019 | Volume 10 | Article 1488



Bader et al. Candidate Markers in RA

12. Nair N, Mei HE, Chen SY, Hale M, Nolan GP, Maecker HT, et al.

Mass cytometry as a platform for the discovery of cellular biomarkers to

guide effective rheumatic disease therapy. Arthritis Res Ther. (2015) 17:127.

doi: 10.1186%2Fs13075-015-0644-z

13. Ornatsky O, Baranov VI, Bandura DR, Tanner SD, Dick J. Multiple

cellular antigen detection by ICP-MS. J Immunol Methods. (2006) 308:68–76.

doi: 10.1016/j.jim.2005.09.020

14. Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik MA, Tanner S. Highly

multiparametric analysis by mass cytometry. J Immunol Methods. (2010)

361:1–20. doi: 10.1016/j.jim.2010.07.002

15. Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell.

(2016) 165:780–91. doi: 10.1016/j.cell.2016.04.019

16. Bagwell B. A New Analytic Approach for Live Singlet

Identification. (2017). Available online at: https://www.fluidigm.com/

articles/mass-cyto-summit-videos?mkt__tok=eyJpIjoiT0RVeU5ERTBNbU5o

WW1GbSIsInQiOiJ4U3NDdUZjbVoyRCt6UThrWXg4b3M3RUNick5ZK0l

sekJZQzU3VFZyU0QwYW5UaHdaQUxwbDh3ZHJzbTRcLzg3MlhIWkh5b

EFDMUdWSFk0NWpiTmhueGVXQ3IzQzI4K0Q5a015cGM1bFdrVHl2elp

NY2JGUERqb2I3MEk0RW9FemgifQ%3D%3D#bagwell (accessed June 09,

2017).

17. Fluidigm. Maxpar Human Immune Monitoring Panel Kit Validation

Studies. (2018).

18. Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication

of flow cytometry experiments. Curr Protocols Cytometry. (2010) Chapter

10:Unit10.7. doi: 10.1002/0471142956.cy1017s53

19. Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Automated

identification of stratifying signatures in cellular subpopulations.

Proc Natl Acad Sci USA. (2014) 111:E2770–7. doi: 10.1073/pnas.1408

792111

20. Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, et al.

viSNE enables visualization of high dimensional single-cell data and reveals

phenotypic heterogeneity of leukemia. Nat Biotechnol. (2013) 31:545–52.

doi: 10.1038/nbt.2594

21. Liu C, Tang J. Expression levels of tumor necrosis factor-α and the

corresponding receptors are correlated with trauma severity. Oncol Lett.

(2014) 8:2747–51. doi: 10.3892/ol.2014.2575

22. CorkumCP, Ings DP, Burgess C, Karwowska S, KrollW,Michalak TI. Immune

cell subsets and their gene expression profiles from human PBMC isolated by

Vacutainer Cell Preparation Tube (CPT) and standard density gradient. BMC

Immunol. (2015) 16:48. doi: 10.1186/s12865-015-0113-0

23. Grievink HW, Luisman T, Kluft C, Moerland M, Malone KE. Comparison

of three isolation techniques for human peripheral blood mononuclear cells:

cell recovery and viability, population composition, and cell functionality.

Biopreserv Biobank. (2016) 14:410–5. doi: 10.1089/bio.2015.0104

24. Kadic E, Moniz RJ, Huo Y, Chi A, Kariv I. Effect of cryopreservation

on delineation of immune cell subpopulations in tumor specimens as

determinated by multiparametric single cell mass cytometry analysis. BMC

Immunol. (2017) 18:6. doi: 10.1186/s12865-017-0192-1

25. Lemieux J, Jobin C, Simard C, Neron S. A global look into humanT cell subsets

before and after cryopreservation using multiparametric flow cytometry and

two-dimensional visualization analysis. J Immunol Methods. (2016) 434:73–

82. doi: 10.1016/j.jim.2016.04.010

26. Rahmanian N, Bozorgmehr M, Torabi M, Akbari A, Zarnani AH. Cell

separation: potentials and pitfalls. Preparat Biochem Biotechnol. (2017) 47:38–

51. doi: 10.1080/10826068.2016.1163579

27. Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol.

(2017) 17:21–9. doi: 10.1038/nri.2016.125

28. Sfikakis PP, Via CS. Expression of CD28, CTLA4, CD80, and CD86

molecules in patients with autoimmune rheumatic diseases: implications for

immunotherapy. Clin Immunol Immunopathol. (1997) 83:195–8.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Bader, Gullaksen, Blaser, Brun, Bringeland, Sulen, Gjesdal,

Vedeler and Gavasso. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 8 July 2019 | Volume 10 | Article 1488



 95 

Contents 

Scientific environment ............................................................................................... 3 

Acknowledgements .................................................................................................... 4 

Technical terms and abbreviations .......................................................................... 6 

List of publications ..................................................................................................... 9 

Abstract ...................................................................................................................... 10 

Introduction and methods ....................................................................................... 12 

1. Rheumatoid arthritis and tumor necrosis factor ................................. 12 

1.1. A brief history of tumor necrosis factor ............................................... 13 

1.2. TNF, its receptors and their superfamilies ......................................... 14 

1.3. TNF signaling ...................................................................................... 15 

2. Tumor necrosis factor inhibitors (TNFi) .............................................. 17 

3. Response and non-response to tumor necrosis factor inhibitors ...... 19 

3.1. Drug immunogenicity .......................................................................... 19 

3.2. Current biomarkers for TNF inhibitor treatment responses ............... 21 

3.2.1. Drug levels........................................................................................... 21 

3.2.2. Anti-drug antibodies (ADAb) ............................................................... 22 

3.2.3. Challenges to drug levels and ADAb as clinical biomarkers ............. 23 

4. Identification of candidate biomarkers for TNF inhibitor responses by 

mass cytometry ................................................................................... 25 

4.1. Patient immune cells as reporters? .................................................... 25 

4.2. Introduction to mass cytometry ........................................................... 25 

4.3. Analysis of high-dimensional data ...................................................... 28 

4.3.1. SPADE ................................................................................................ 29 

4.3.2. tSNE/viSNE ......................................................................................... 29 

4.3.3. CITRUS ............................................................................................... 29 

4.3.4. NM2B ................................................................................................... 31 

Objectives .................................................................................................................. 33 

Results ........................................................................................................................ 34 



 96 

1. Exploration and comparison of existing markers for TNF inhibitor drug 

monitoring (paper 1) ........................................................................... 34 

2. Collection of patient material and data, and set-up of a 

methodological background for mass cytometry experiments 

(unpublished and paper 2) ................................................................. 38 

2.1. Collection and storage of cells ........................................................... 38 

2.2. Quality control and TNF titration......................................................... 38 

2.3. Panel design and antibody titration .................................................... 41 

2.4. Hierarchical approach to panel titration ............................................. 43 

3. Exploration of immune cell subsets for signaling signatures in RA 

patients compared to healthy individuals, with a primary focus on 

TNF signaling (paper 3). .................................................................... 45 

Discussion ................................................................................................................. 50 

1. Existing markers for TNF inhibitor drug monitoring ........................... 50 

2. Methodological background for mass cytometry studies ................... 51 

2.1. Collection and storage of cells ........................................................... 51 

2.2. Panel titration ...................................................................................... 53 

3. Signaling signatures in RA patients ................................................... 54 

3.1. Limitations ........................................................................................... 55 

Conclusion and future perspective ........................................................................ 57 

References ................................................................................................................. 60 

Papers 1-3 .................................................................................................................. 68 

Contents ..................................................................................................................... 95 

 



Graphic design: Com
m

unication Division, UiB  /  Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230856031 (print)
9788230852309 (PDF)


	155473 Lucius Bader_v2.1_Elektronisk
	155473 Lucius Bader_v2.1_innmat
	155473 Lucius Bader_v2.1Elektronsk_bakside

