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Abstract

Attempting to model insurance claim data is usually done through fitting
the data to a parametric distribution, irregardless of the time in which the
claims occur. We attempt to view insurance claim data as a time series, and
subsequently fit Markov-switching GARCH-models on the data. The methods
we consider in this thesis are applied to a well-known insurance dataset through
the use of the R-package MSGARCH(Ardia, et al., 2019)[7]. The possible model
specifications, and the applicability of the models to the data are discussed. We
compare the fitted models to some parametric distribution models suggested
in a paper by Eling (2012)[21] on the same dataset. We also consider some tail-
risk measures, and the practical evaluation of the risk measures Value-at-Risk
and Expected Shortfall for the data at hand.
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1 INTRODUCTION

1 Introduction

The foremost objective of this thesis is to attempt to answer the question, "Is it a
good idea to view insurance claims data as a time series, and perform model estima-
tion based on this?" Usually, an actuary will group individual losses by size of loss
and then fit a continuous positive distribution to the data of all the losses (Hewitt
& Lefkowitz, 1979)[37]. So, when modelling insurance losses/claims, the preferred
method it to simply fit the data to some distribution that captures the stylized ef-
fects of insurance claims best, as in Eling (2012) and Vernic (2006)[21][51]. Some
of the more widespread distributions which usually perform model estimation well
are the log-normal-, Gamma- and Weibull-distributions. In general, since insurance
data usually has a very heavy right-tail, distributions that take this detail into con-
sideration usually outperform the models which do not. We see the opportunity to
explore model fitting which takes into consideration the time-aspect of some insur-
ance data, as well as expanding from the single-distribution fits of general literature
to a higher-order, several-state model.
As the distribution of the data in the tail is such an important feature of insurance
data, this thesis has a particular focus on fitting models which are able to describe
the behavior of the tail most accurately.
A method which lets us explore these opportunities is the Markov-switching GARCH-
model specification by Haas (2004)[32], where we decide to treat insurance claims
data as a time series that is allowed to exhibit autoregressive conditional het-
eroskedasticity (ARCH)-effects. This method also opens up the possibility of as-
suming that the data originates from several regimes, where the model is allowed to
behave differently in each of the regimes.
We apply one- and two-regime Markov-switching GARCH models through the R-
package MSGARCH(Ardia et. al, 2019)[7] on both the original and the log of a well-
known dataset of Danish fire-reinsurance. We find that the models which were
generated with a second regime describes the tail of the original insurance data
quite well compared to the simple distribution fits of Eling (2012)[21] on the same
data. However, we find that the general model fits of the Markov-switching models
are competitive, but not better than the best simple distribution fit of Eling (2012).
Another finding is that several of the MSGARCH-models actually outperform all
of the benchmark models when applied to the log of the insurance data, both in
general model fit and for describing the tail risk.

The thesis is constructed as follows: Section (2) contains a general discussion
on time series and their properties. Section (2.2) introduces a variety of different
well-known time series model and their applicability to different data. Section (2.3)
contains a discussion on the differences between a general financial returns time
series and an insurance time series, as well as the eligibility of applying some time
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1 INTRODUCTION

series models to an insurance loss dataset.
In Section (3), the autoregressive conditional heteroskedasticity(ARCH)-models are
presented and discussed. Firstly, in section (3.1), the ARCH model is presented, and
some of its properties are shown. Section (3.2) introduces the GARCH-model, and
how it differs from, and compares to the ARCH-model. This section also presents
the different methods of specifying the structure of the conditional volatility in a
GARCH-model, as well as explaining the possibilities of letting the innovations fol-
low some conditional distribution.
Section (4) finishes the groundwork for MSGARCH-models, as it contains discus-
sion around Markov models. The section contains several Markov-models and their
properties. Section (4.1) contains a discussion on the most simple Markov model,
i.e. the Markov chain, often used as an underlying hidden force to drive some other
process. Section (4.2) extends the discussion the the hidden Markov model (HMM),
and section (4.3) is about the Markov-switching model.
As sections 2 - 4 work as building blocks, section (5) is the culmination of these
building blocks into the Markov-switching GARCH-model. The section explains the
possible specifications of the model, as well as builds the likelihood function, and
explains the procedure behind performing ML-estimation. Section (5.1) contains
some general attributes of the MSGARCH-model, and section (5.2) constructs the
likelihood function and explains the numerical methods used to acquire the starting
values of the ML-estimation. Section (5.3) describes the numerical process behind
the actual ML-estimation. Section (5.4) briefly introduces the model comparison cri-
terion AIC, and section (5.5) explains the h-step ahead prediction of a fitted model.
Section (6) contains a summary of different risk measures, their properties and their
application. Firstly, section (6.1) and section (6.2) contains explanations of some
desirable properties of a risk measure, i.e. coherency and elicitability. Section (6.3)
introduces some univariate risk measures, and section (6.4) introduces some multi-
variate risk measures.
Section (7) marks the start of the empirical section of the thesis, and includes a
presentation of the dataset used, the R-package used and the estimation-process.
Section (7.1) presents the dataset, discusses the applicability of MSGARCH-models
on said dataset, and makes some assumptions on how the models will perform. Sec-
tion (7.2) is an introduction of the R-package MSGARCH, which is the main package
used in the empirical analysis of the thesis. The functions of the package which are
mainly used are also presented. Lastly, section (7.3) contains the estimation and
prediction-process for each model, exemplified by four different specifications which
yield different results. The section ends with a presentation of the results.
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2 TIME SERIES

2 Time Series

Time series analysis has been a topic of much debate and vigorous research through-
out many decades, with applications within areas such as economics, finance, medicine
and insurance. The challenge with time series has mostly been to draw inferences
from said time series, understand the way they evolve over time, and being able
to recreate or replicate the movement in some kind of stochastic model. The main
objective in time series analysis is, in simple terms, to set up a hypothetical model
that is meant to represent the given data, estimate the parameters of said model,
and hopefully use the fitted model to better understand the data. Another impor-
tant objective in this field is prediction ahead of data. Researchers have been using
time series analysis as an essential tool in attempting to forecast values such as
market indices, financial asset prices, hospitalization numbers, monetary insurance
losses from automobile crashes, or something as tangible as the weather. In short, a
time series is a sequence of stochastic variables {Yt}Tt=1 which appear in chronologi-
cal order from earliest to latest. Usually, a time series is evaluated at regular time
intervals, but irregular time intervals are also possible, although it could alter the
interpretation of the results.
In this thesis, we will attempt to model and forecast insurance losses through time
series analysis instead of disregarding the time aspect and applying regular regres-
sion analysis. In general literature, time series analysis is seldom used in order to
fit models that deal with insurance losses, so this thesis attempts to give a fairly
unique perspective on insurance time series. To highlight this point, Figure (1) be-
low shows examples of two time series that look and behave differently, the first (a)
being losses in an insurance dataset, the second (b) being log-returns of a the Swiss
market index (SMI), which is defined as yt = log

(
πt
πt−1

)
, where πt is the price of a

financial asset.

The first thing we notice is that the plot of the SMI seem to be of a more sym-
metrical build, with unconditional mean close to zero, while the insurance data is
absolutely positive, with some very high values scattered through seemingly ran-
domly, and a positive unconditional mean. How this affects the applicability of
some time series models on the insurance data will be a topic in this section. We
will discuss some fundamental ideas of time series data, and also discern the differ-
ence in application of methodology between a financial time series and an insurance
time series.

2.1 Fundamentals of Time Series

In order to develop models for time series, we summarize some of the fundamen-
tals. Let {Yt} be a time series defined on t = 1, 2, . . . , T , which has finite squared
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2.1 Fundamentals of Time Series 2 TIME SERIES

Figure 1: a) Commercial fire losses over the period 1982 to 1996 from the French
Insurance Federation. b) Daily log-returns of the Swiss Market Index(SMI) over the
period 1990 to 2000.

expectation E(Y 2
t ) <∞. The moments of a time series is presented next.

2.1.1 Moments of a Time Series

The mean (2.1), variance (2.2), autocovariance(2.3) and autocorrelation (2.4)-functions
of {Yt} at time t is given as follows (Brockwell & Davis, 2016, section 1.4) [13]:

µt = E(Yt) (2.1)

σ2
t = E

(
(Yt − µt)2

)
(2.2)

cov(Yt+kYt) = E ((Yt+k − µt+k)(Yt − µt)) (2.3)

corr(Yt+kYt) =
cov(Yt+kYt)

cov(YtYt)
(2.4)

Autocovariance and autocorrelation are measures of serial correlation that explain
how a time series observations depend on each of its previous values, called its
lagged values. A significant ACF-value for a given lag k implies that the time series
observation at time t+ k is dependent on its k-lagged value t.

2.1.2 Stationarity

An important assumption in the application of many statistical models is that the
time series is stationary. In general, a time series is stationary if it has similar
statistical properties at time t, Yt as with the "time-shifted" series at time t + h,
Yt+h for all integers h. More formally, a time series is (weakly) stationary if µt is
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2.2 Time Series Models 2 TIME SERIES

independent of t and cov(Yt+kYt) is independent of t for each k. This type of weak
stationarity that only considers independence from t in the first two moments is also
called covariance stationarity, or second-order stationarity. It is not uncommon for
a model to have stationarity ranges for its parameters, which means that the param-
eters need to be within a specific range in order for the model to ensure covariance
stationary. Strict stationarity of a time series happens when (Y1, Y2, . . . , Yn) and
(Y1+k, Y2+k, . . . , Yn+k) have the same joint distribution for all integers k and n > 0

(Brockwell & Davis, 2016, section 1.4)[13]. As long as E(Y 2
t ) < 0, strictly stationary

time series are also weakly stationary, however the opposite is not necessarily true.
Non-stationarity in the second order is found in time series that seem to have a
mean or covariance that is affected by the time of previous lags of the time series. A
process would be non-stationary if there existed e.g. a trend or a constant periodic
influence. As stationarity is a desirable trait in a time series, it is not uncommon
to attempt to remove effects that disturb stationarity, e.g. by removing trend or
seasonality. Figure (2) is an example of a non-stationary time series where a clear
trend and what seems to be a seasonal effect appears.

Figure 2: Example of a non-stationary time series. Amount of births in New York
City from January 1946 to December 1959.

In this thesis, we will not be dealing with time series that exhibit any significant
trend nor seasonality. Nonetheless, ensuring stationarity is an important require-
ment for accuracy in most time series models.

2.2 Time Series Models

In Brockwell & Davis (2016)[13], a time series model is defined as follows:

"A time series model for the observed data {xt} is a specification
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2.2 Time Series Models 2 TIME SERIES

of the joint distributions (or possibly only the means and covariances) of
a sequence of random variables {Xt} of which {xt} is postulated to be a
realization."

2.2.1 Some simple models

Some time series models will be presented here, starting with the simplest one,
I.I.D noise (independent, identically distributed noise). This model is simply a
specification where there is no trend or seasonality, with the observations {Yt} being
random variables that are independent and identically distributed with zero mean
and no dependence between observations at all. This model is not as interesting in
an of itself, but it plays an important role in more advanced models. I.I.D. noise is
denoted here as

{Yt} ∼ I.I.D.(0, σ2) (2.5)

If the observations are uncorrelated variables with zero mean as defined above, but
they are not independent, the time series is called white noise. Both white noise
and I.I.D. noise are stationary time series models because they, by definition, keep
a constant mean and exhibits no serial correlation.

The random walk is another simple time series model which is characterized with
the process taking "steps" randomly towards the positive or negative direction. A
random walk with zero mean is simply the cumulative sum of I.I.D. random variables
with zero mean. Although a random walk has a constant zero mean, it is actually
not weakly stationary because the covariance is time dependent. A one-step-ahead
forecast of a zero mean random walk is therefore defined as Yt = Yt−1 + ηt, where
ηt ∼ I.I.D.(0, σ2)

Similarly to random walks, we also define random walk with drift, which is exactly
the same as a random walk, but with a constant term a pushing the process in either
direction for each observation. For a > 0 the process will have an upward trend, and
for a < 0 the process will have a downward trend. For a = 0, it is simply a random
walk. This process obviously does not have a zero mean, nor is it time-independent,
therefore it is not stationary. A one-step-ahead forecast of a random walk with drift
is defined as Yt = Yt−1 + a+ εt. Fama (1965)[24] argues that the price of a financial
asset follows this exact model. In this case, the price is given by

πt = πt−1 + µt + εt. (2.6)

Here, πt is the price of the financial asset at time t, µt is the conditional mean of
yt, and also the drift term. εt is the random innovation-term with E(εt) = 0 and
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E(εtεt−τ ) = 0 for τ 6= 0. Financial returns at time t are defined as the difference in
the price of the financial asset from time t to time t− 1,

xt = πt − πt−1, (2.7)

which in turn gives us another expression for the returns series xt:

xt = µt + εt. (2.8)

Modeling log-returns plays a very important role in computational finance, as it
allows for direct examination of the conditional variance. This is simply given by:

yt := log(xt) = log
(

πt
πt−1

)
(2.9)

These processes will be much more important later on, as they have some interesting
properties.

2.2.2 Conditional structure models

When we want to impose a specific conditional structure on the mean or the variance
of a time series, we introduce ARMA-models and (G)ARCH -models. In general,
ARMA-models are used when modelling realizations of a random process when one
wishes to impose structure on the conditional mean of a process, while (G)ARCH-
models are used when modelling realizations of a random process when one wishes
to impose structure on the conditional variance. ARMA (Autoregressive Moving
Average) are models used to provide a description of weakly stationary stochastic
processes using two polynomials. These polynomials are the autoregressive(AR),
and the moving-average(MA), both of whom are specified by the number of lags
for which their observations are dependent on (Brockwell & David, 2016, chapter
2)[13]. In order to get an idea of which model to should be used, we look at sample
ACF and sample PACF of the observed data.

We define the sample autocovariance function (sample ACVF, 2.10) and sample
autocorrelation function (sample ACF, 2.11) as follows:

ĉov(Yt+kYt) = n−1

n−|k|∑
t=1

(yt+|k| − ȳ)(yt − ȳ), −n < k < n (2.10)

ĉorr(Yt+kYt) =
ĉov(Yt+kYt)

ĉov(YtYt)
(2.11)

The sample partial autocorrelation function (sample PACF, 2.12) is defined by the
equations

α̂(0) = 1
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2.2 Time Series Models 2 TIME SERIES

α̂(k) = φ̂kk, k ≥ 0 (2.12)

where φ̂kk is the last component of

φ̂k = Γ̂
−1

k ĉov(Yt+kYt) (2.13)

where Γ̂
−1

k = [ĉov(Yt+i−jYt)]
k
i,j=1 is the sample covariance matrix, and

ĉov(Yt+kYt) = [ĉov(Yt+1Yt), ĉov(Yt+2Yt), . . . , ĉov(Yt+kYt)]
ᵀ

(Brockwell & Davis, 2016, section 3.2) [13].

Figure 3: a, c) Sample ACF and PACF of commercial fire losses over the period
1982 to 1996 from the French Insurance Federation. b, d) Sample ACF and PACF
of the daily log-returns of the Swiss Market Index(SMI). Inside the blue dotted lines
indicates the area of non-significance.

Figure (3) shows the sample-ACF and sample-PACF of the examples from Figure
(1). Here, we notice in a) and c) that the the insurance data has a significant (∼0.3)
autocorrelation with its lag-1-value, while it has significant (∼0.3 and ∼ −0.1)
partial autocorrelation-values for both lag-1 and lag-2 that seems to quickly descent
geometrically as the lags increase. This could be an indicator that the insurance
dataset could be fitted with an MA(1)-model (Cryer & Chan, 2008, chapter 6)[19].
Further, we notice that the corresponding ACF and PACF-values for the SMI shows
little to no significance, with the significant values only barely being so. This is
expected for a financial log-returns time series, as they are notoriously difficult to
predict. ACF and PACF-values similar to b) and d) can often be mistaken for a
white noise process because the process seems entirely random when viewing just

13



2.2 Time Series Models 2 TIME SERIES

these values. However, when viewing the plot of the SMI from Figure (1) we do not
believe that the data can be explained by an I.I.D. noise process, since we notice
that there appears to be periods where the volatility is higher than others. This
phenomenon is called volatility clustering, and is indicative of serial correlation in
the squared or absolute values of the time series. When squaring the time series
of the SMI, we obtain the ability to only observe the severity of the returns, and
to disregard the direction. In Figure (4), we plot the ACF and PACF of both our
time series for the squared losses/returns. In b) and d), we notice that there is a
quite significant serial correlation in the SMI, while the fire data a) and c) barely
differs, except for the higher lags being even less significant. In fact, it is quite
nonsensical to consider the squared fire losses because this data is absolute positive,
as the severity of the claim is already the sole focus.

Figure 4: a, c) Sample ACF and PACF of squared commercial fire losses over the
period 1982 to 1996 from the French Insurance Federation. b, d) Sample ACF and
PACF of the squared daily log-returns of the Swiss Market Index(SMI). Inside the
blue dotted lines indicates the area of non-significance.

Since the squared returns admits some significant autocorrelation, this autocor-
relation gives strong evidence against the returns being independent and identically
distributed. In fact, they show evidence for autoregressive conditional heteroskedas-
ticity in the variance structure (Cryer & Chan, 2008, chapter 12)[19], which will
be reviewed in section (3). Another useful test for the appearance of conditional
heteroskedasticity is called the McLeod-Li test (McLeod & Li, 1983) [44]. The
McLeod-Li test is a portmanteau test, which utilizes the characteristic that the sum

14



2.3 Insurance loss time series 2 TIME SERIES

of squares of autocorrelations is approximated by the chi-squared distribution with
K degrees of freedom if residuals are a realization of a I.I.D. or white-noise sequence
(Shin, 2017)[48]. It is given by a statistic

Q∗ML(K) = n(n+ 2)
K∑
k=1

{
ρ̂2
yy

(n− t)

}
, (2.14)

where ρ̂yy is the sample autocorrelation function of the squared values of our observed
value Yt, K is a lagged value and n is the number of observations. We compare
Q∗ML(K) with χ2

1−α(K), which is the (1−α)-percentile of the chi-squared distribution
with K degrees of freedom. If Q∗ML(K) exceeds χ2

1−α(K) for given lag K, we reject
the hypothesis that the autocorrelation at given lag is equal to zero.

Figure 5: McLeod-Li test statistic for the Swiss Market Index (SMI). Above the red
line indicates the area of hypothesis rejection

Figure (5) shows plotted SMI values of the McLeod-Li statistic for max lag =
15, with rejection area above the green dotted line. Here we obviously see that the
McLeod-Li test cannot reject the alternative hypothesis, which is a good indicator
that a model which takes conditional heteroskedasticity into account is suitable in
this situation.

2.3 Insurance loss time series

The objective of this thesis is to model insurance loss data through time series anal-
ysis, and more specifically through Markov-switching GARCH models. This method
is most commonly used on financial time series, so in this section we will discuss the
applicability of this method to insurance data.
As we have discussed, the returns of a financial time series can be expressed as in
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2.3 Insurance loss time series 2 TIME SERIES

Equation 2.8. Harvey & Fernandes (1989)[36] find that insurance claims can be
expressed in the same manner, that being a simple structural time series model that
consists of the µt-term and the random disturbance term εt.

Previously, we have seen that the example fire dataset from France exhibits
serial correlation in the first order, which is something that implies we should at
the very least use an ARMA-model to model the time series. In addition to this,
the application of (G)ARCH-methodology is most reasonable when applied to data
that exhibits conditional variance-heteroskedasticity, and is simpler to implement
for data that has conditional mean zero (Engle, 1982)[23]. In fact, much of the
computational software that can model GARCH-effects assumes a unconditional
mean that is equal to zero. The problem arises when this is not the case, as we
see by the significant ACF and PACF-values from the fire insurance dataset in
Figure (3). In this case, we would fit a ARMA-model to the data and use the
characteristic that the residuals of this model should be without autocorrelation in
the lags, and therefore have conditional mean zero. We then continue to deal with
ARCH-properties on those residuals instead of on the observed time series (Haas,
Mittnik & Paolella, 2004) [32]. If the time series seems to have a constant mean
(i.e. the ACF and PACF-values are insignificant), testing and model fitting can be
applied to the time series in excess of the sample mean. We define yt := xt − x̄ as
the de-meaned time series, where {Xt} is the original time series which has sample
mean x̄. In this case, Equation (2.8) simply becomes

yt = εt. (2.15)

When eliminating the conditional mean from the expression, we are actually left
with only the random innovations term εt, and thus the observations are determined
by how the random innovations behave. This is actually the case for the insurance
time series that will be taken into question in section (7), and throughout the rest
of this thesis we will assume that we are in the zero-mean case.

Another challenge when dealing with insurance loss data is that it is not uncom-
mon for very large shocks to appear, as it is a known property of insurance data that
they tend to have have a heavy tail. Because of this, significant previous lags before
those shocks can end up being less significant than they should be. In order for the
conditional heteroskedastic effects to be more pronounced and the differences in the
data to be smaller, we can do model fitting on the log of the time series in addition
to on the original data. Estimation will be done on both the original data as well
as the log data in section (7).

Insurance time series can be considered special in the way they tend to have a
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2.3 Insurance loss time series 2 TIME SERIES

significant skewness and kurtosis in comparison to a normal distribution.

In order to quantify the skewness and kurtosis of our time series Yt, which are
defined simply as the third and fourth central moment of the time series, we use
sample skewness (Equation 2.16) and sample kurtosis (Equation 2.17):

̂Skewness(Y ) =
1

(1−N)σ̂3

N∑
i=1

(yi − ȳ)3, (2.16)

̂Kurtosis(Y ) =
1

(1−N)σ̂4

N∑
i=1

(yi − ȳ)4, (2.17)

where N is the total amount of observations in the time series, and σ̂ is the sample
standard deviation derived from Equation (2.2).

The skewness, a measure of asymmetry, is very apparent in most insurance loss
data because small-sized claims are usually way more frequent than the medium
and large-sized claims (Lane, 2000) [42]. Financial time series show a lot less of this
apparent asymmetry, and therefore are not as often modeled by skewed distributions
(Brockwell & Davis, 2016, section 7.1) [13]

Market indices and financial return time series in general are leptokurtic (Boller-
slev, 1986)[12], meaning they have a kurtosis in excess of the normal distribution
(> 3). This implies that using the normal distribution as the conditional distribu-
tion for the returns might not yield the best model fit, as these data tend to have
heavier tails than what we find in a normal distribution. Since the same property is
known and present for insurance data, we can see that there might be some overlap
in which conditional distributions has the best fit between financial time series and
insurance time series.

In short, our absolute positive data with large shocks and constant nonzero mean
may not be best suited for (G)ARCH-modelling. Therefore, we expect a better
(G)ARCH model when fitting the de-meaned log of the total losses. Figure (6 a, c)
shows the de-meaned versions of the original French fire data as well as their log. We
have also included the same versions of the insurance data which will be discussed in
section (7), a similar dataset of 2167 Danish fire insurance losses in the period 1980
to 1990 (Figure 6 b, d). We see that the two time series have very similar shapes,
as one would expect with series of similar origin. The largest differences are that
the amount of claims is higher for the French data (9613 observations compared to
2167 observations), the Danish data is scaled to be shown in million DKK instead
of thousand 2007 EUR as in the French data, and that the French data seems to
have more medium-sized losses compared to its small-sized losses than the Danish
data. The main takeaway from this figure is that the de-meaned log versions of the
insurance dataset bear a lot of the same characteristics as the financial time series
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Figure 6: a & b: De-meaned time series plot of French fire losses and Danish fire
losses, respectively. c & d: De-meaned log time series plot of French fire losses and
Danish fire losses, respectively. Note that there are 9613 observations in the French
dataset and only 2167 observations in the Danish dataset

of Figure 1, or at least more similar than the original data would be.

We also notice that there seems to be short periods in both insurance time series
where we see larger claims, sometimes followed or preceded by a relatively large
claim, and sometimes they seem to appear out of nowhere. This fact could imply
that there are two distinct regimes in our time series where the structures of the
volatility can differ for each of those regimes. We therefore wish to see if specify-
ing a model where there are two distinct regimes will improve our fit, by reviewing
Markov-Switching Models (Section 4).

Section (7) will go through the estimation and results of these models on the
Danish Fire dataset. We fit those models for both de-meaned original data as well
as de-meaned log data in order to be able to tell how much the transformation
improves the model fit relative to using regular regression analysis.
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3 ARCH models

In finance, insurance and other fields which involves financial risk, researchers have
always been interested in modelling volatility in order to quantify the risk and price
it. It is, in other words, quite important to attempt to model and predict volatil-
ity of returns, claims, assets, etc. Financial asset returns have been modelled as
independent and identically distributed historically, but financial returns for high
frequency data are actually not independent (Teräsvirta, 2009)[49]. Observations in
such series may still be serially uncorrelated in the first degree, but there might exist
higher-order dependence. This is where ARCH models excel, as the fitted model
parameters are used in order to explain this dependence.
The theory on autoregressive conditional heteroskedasticity was introduced by En-
gle (1982)[23] to model time series data where the variance of the time series is in
the main focus. With the original ARCH-model from Engle, it was possible to start
modelling the variance of time series while assuming that it could vary over time,
hereby the "Conditional" in the ARCH acronym. The first part, autoregressive,
simply means that the time series model uses previous observations in order to ex-
plain current values. Lastly, heteroskedasticity can be present in the time series,
which means that the conditional variance can vary over time.
ARCH-type models are great tools to use use in order to capture properties of a
time series such as nonlinearities and asymmetries in the variance structure.
In this section, several ARCH models will be discussed, including the classic ARCH
and the Generalized Autoregressive Conditional heteroskedastic (GARCH) model,
introduced by Bollerslev (1986)[12]. Some more advanced specifications of the con-
ditional variance will also be introduced, namely tGARCH and gjrGARCH. Lastly,
we will relax the assumption of normality, and consider GARCH-models where the
random innovations can follow more advanced conditional distributions.

3.1 ARCH

The original ARCH-model by Engle (1982)[23] for modelling a random variable yt
was postulated by first declaring that the random variable in question yt is drawn
from the conditional density function f(yt | yt−1), where the value of today is de-
pendent upon the conditioning value yt−1. The conditional expectation E(yt | yt−1)

has been a topic of much discussion, but the conditional variance, Var(yt | yt−1),
also implies that it depends on previous values, which is exactly what Engle’s paper
attempted to model with the introduction of the ARCH model. Engle suggested a
model specification as follows for the zero mean-case:

yt = εt = ηth
1
2
t , (3.1)

ht = α0 + α1y
2
t−1. (3.2)
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This is the ARCH(1)-model, where {ηt} is a sequence of I.I.D. (independent, iden-
tically distributed) random variables with zero mean and unit variance, and ht =

Var(yt | yt−1) = E(y2
t | yt−1) is the conditional variance of yt. αj are constants for

estimation. The sequence ηt is called the standardized innovations, since εt are the
random innovations and h

1
2
t is the conditional standard deviation. This model is

called the ARCH(1)-model since it depends on the one-period lagged value of yt. A
more general ARCH(q)-model is specified as follows, by its conditional variance:

Var(yt | It−1) = ht = α0 +

q∑
j=1

αjy
2
t−j,

where α0 > 0 and αj ≥ 0 for j > 0, and It−1 is the information observed up to
time t− 1. Engle initially assumes normality of the sequence {ηt}, which makes yt
conditionally normal distributed with mean 0 and variance ht,

yt | It−1 ∼ N (0, ht). (3.3)

Since yt in our case has conditional mean zero, yt is a martingale difference sequence,
which can be shown by the law of total expectation:

E(yt) = E (E(yt | It−1)) = E(0) = 0. (3.4)

Furthermore, through again using the law of total expectation in addition to the
already revealed properties of yt, we can show that the observable process yt is not
only a martingale sequence, but shows no serial correlation:

cov(yt+kyt) = E(yt+kyt)− E(yt+k)E(yt) (3.5)

= E(yt+kyt) (3.6)

= E (E(yt+kyt | It+k−1)) (3.7)

= E (ytE(yt+k | It+k−1)) (3.8)

= 0. (3.9)

As we recall, when a process has mean zero and doesn’t show autocorrelation, it
is called white noise, but not necessarily I.I.D. noise. This, as we have seen, and
will continue to see, is an important assumption in applying the methods we will be
using on our data, and is also a common property of financial returns-data, which
is the area where ARCH/GARCH models are mostly used.
The greatest limitation of the ARCH-model lies in the fact that there are more pa-
rameters to estimate with every single additional considered lagged value of yt. The
ARCH(1)-model only uses one single lagged value in order to predict the conditional
variance of the current value. In this case, if there were to incur a shock at time
t, it would only have an effect on the outcome of the next time period. In many
applications, especially financial time series, this is not in line with the empirical
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applications. One would say that an ARCH(1)-model has very low persistence. In-
creasing the amount of considered lagged values , e.g. using an ARCH(q)-model
with large enough q would result in low parsimony and inflexible variance structure
for that model (Teräsvirta, 2008)[49].

3.2 GARCH

The introduction of the GARCH (Generalized autoregressive conditional heteroskeda
-sticity)-model by Bollerslev (1986)[12] is in many ways a fix for the mentioned is-
sues of the ARCH-model. The difference between the classic ARCH-model and the
GARCH-model is that the model’s conditional variance depends on lagged values
of itself, in addition to lagged values of the observed process. Bollerslev defines the
GARCH(1,1)-model as follows:

yt | It−1 ∼ N (0, ht), (3.10)

ht = α0 + α1y
2
t−1 + β1ht−1, (3.11)

ηt =
yt

h
1
2
t

∼ N (0, 1). (3.12)

Here, β1 ≥ 0 is the parameter that scales the lagged value of the conditional variance,
and ηt are the standardized innovations. The GARCH(1,1) is actually a special case
of the ARCH-model, i.e. the ARCH(∞)-model, which helps to understand that the
GARCH-model is a more flexible version of ARCH, but with few parameters. This
equivalence is shown, from Equation (3.11);

ht = α0 + α1y
2
t−1 + β1ht−1.

We replace ht−1 = α0 + α1y
2
t−2 + β1ht−2,

ht = α0 + α1y
2
t−1 + β1

(
α0 + α1y

2
t−2 + β1ht−2

)
= α0(1 + β1) + α1y

2
t−1 + β1α1y

2
t−2 + β2

1ht−2.

We replace ht−2 and get

ht = α0(1 + β1 + β2
1) + α1y

2
t−1 + β1α1y

2
t−2 + β2

1α1y
2
t−3 + β3

1ht−3.

Repeating the above steps for ht−j, j > 2, we get

ht = α0(1 + β1 + β2
1 + β3

1 + . . . ) + α1

∞∑
j=1

(βj−1
1 y2

t−j). (3.13)

This shows that a GARCH(1,1)-model can be written as a combination of parame-
ters α0, α1 and β1 in conjunction with infinite lagged values of our observed process
yt, which is a variation of an ARCH(∞)-model. Obviously, one would prefer the
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Figure 7: Simulated ARCH(1) and GARCH(1,1) time series. α0 = 0.5 for all pro-
cesses, and the other parameters α1, β1 are differing. The simulation was done in
R.

three-parameter GARCH(1,1)-model over directly using an ARCH(∞)-model be-
cause of its improved parsimony.
In Figure 7, we have shown some simulated time series of ARCH(1) and GARCH(1,1)-
specification in order to better visualize the difference in these two models.

In Figure 7 we notice how a) differs from b) in that α1 is much higher in the
latter, making its current conditional variance depend more on the value of the pre-
vious value. We notice that there is very little persistence in b) in the way that
the shocks last a very short time. In a), the α1 is so low that it can be difficult
to differentiate it from a regular white-noise process. c) and d) differ in that d)
has a higher β1 (0.5) and lower α1 (0.1) than c) (0.15 & 0.7, respectively). Due to
small α1 in d), it responds weakly to the last period’s return, but the relatively high
β1 ensures that the shocks decay slowly, making it seem like high volatility-periods
appear very often. There is still a discernible difference between b) and c), since
there is a weak β1-effect in play in c). We can observe this effect by the fact that
the shocks in c) seem to last a bit longer than in b), and one can see some more
pronounced clustering. One last thing to note is that a) and d) may look quite
similar, although this is not because they are equivalent. a) and d) may look the
same because of the high β1 of d), so the duration of the shocks last so long that
they seem to overlap each other and mimic a white-noise process.
Extending the GARCH(1,1)-process to the more general GARCH(p, q), the condi-
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tional variance becomes

ht = α0 +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjht−j, (3.14)

where α0 > 0, αi, βj ≥ 0 to ensure that the conditional variance is strictly positive.
The GARCH(p,q) turns into the classic ARCH(p) if q = 0. We will not be concerned
with the GARCH(p, q)-model where p, q > 1 in this thesis because the GARCH(1,1)-
model is the most popular application of GARCH-models, and a GARCH(1,1) model
does quite well by itself. [49]. The GARCH(p,q)-model is weakly stationary if the
following condition is met: (Bollerslev, 1986) [12]

p∑
i=1

αi +

q∑
j=1

βj < 1 (3.15)

3.2.1 Conditional variance dynamics in GARCH

Since the introduction of the GARCH-model, several other specifications of the con-
ditional variance has come to the surface, with the intent to create models that
catch more of the conditional variance dynamics in time series data. In addition to
the ARCH and GARCH-models already presented, we also consider the gjrGARCH
(Glosten, Jagannathan & Runkle, 1993)[28] and tGARCH (Zakoian, 1994)[54] spec-
ifications, which are four of the specifications available in the R package MSGARCH
(Ardia, Bluteau, Boudt, Catania & Trottier, 2019)[7]. We denote θ as the vector
that contains the parameters which are to be estimated for each model specification.
As we recall, the classic ARCH(1)-model has the following specification for its con-
ditional variance:

ht = α0 + α1y
2
t−1. (3.16)

Here we have θ = {α0, α1}ᵀ. To ensure positivity and covariance stationarity, it is
required that α0 > 0 and 0 ≤ α1 < 1.

We also reacall the GARCH(1, 1)-models conditional variance, defined as:

ht = α0 + α1y
2
t−1 + β1ht−1 (3.17)

Here we have θ = {α0, α1 β1}ᵀ. To ensure positivity, it is required that α0 > 0, α1 ≥
0 and β1 ≥ 0, and covariance stationarity is ensured by taking p = 1, q = 1 of
Equation 3.15, i.e. α1 + β1 < 0.

The gjrGARCH -model presented by Glosten, Jagnnathan & Runkle (1993)[28]
was introduced when the authors realized that the standard GARCH-model may not
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be rich enough to encompass asymmetry in the conditional volatility. The model
they presented as an adjustment to this is the following:

ht = α0 + (α1 + α2I{yt−1 < 0})y2
t−1 + β1ht−1 (3.18)

Here, I(·) is the indicator function which takes the value one when the condition
inside is held, and zero if the condition is not held. In effect, this means that the
conditional variance includes an extra parameter α2 that depends on the previous
squared return y2

t−1 if, and only if, the previous return yt−1 is negative. This means
that α2 is the parameter that controls the degree of asymmetry in the conditional
variance. In this model specification, we have θ = {α0, α1, α2, β1}ᵀ. To ensure posi-
tivity, it is required that α0 > 0, α1 ≥ 0, α2 ≥ 0 and β1 ≥ 0. Covariance stationarity
is ensured by requiring α1 + α2E (η2

t I{ηt < 0}) + β1 < 0.

The tGARCH (threshold GARCH)-model, introduced by Zakoian (1994)[54],
differs from the other specifications because it attempts to model the conditional
standard deviation instead of the conditional variance. The conditional standard
deviation is defined in the tGARCH-model as follows:

h
1
2
t = α0 + (α1I{yt−1 ≥ 0} − α2I{yt−1 < 0})yt−1 + β1h

1
2
t−1. (3.19)

The tGARCH-model is quite similar to the gjrGARCH, with both models attempt-
ing to model asymmetry in the conditional variance. The difference, however, is that
tGARCH includes one parameter to be estimated for negative past values and one
parameter for positive past values. Zakoian argues that this difference allows the
conditional standard deviations to have different reactions to different signs of the
lagged values of the time series. In addition to this, the author has changed the focus
from conditional variance and squared lagged values, to conditional standard devi-
ation and absolute lagged values. The reason for this is motivated by the fact that
David and Carroll (1987) [20] have found that "absolute residuals yield more efficient
variance estimates than squared residuals." Here, we have θ = {α0, α1, α2, β1}ᵀ. Pos-
itivity conditions are α0 > 0, α1 ≥ 0, α2 ≥ 0 and β1 ≥ 0, and stationarity is ensured
by α2

1 + β2
1 − 2β2

1(α1 + α2)E (η2
t I{ηt < 0})− (α2

1 − α2
2)E (η2

t I{ηt < 0}) < 1 (Franq &
Zakoian, 2019)[27].

3.2.2 Conditional Distributions

In the original ARCH-paper by Engle (1982)[23], the author initially assumed that
the innovations εt followed the conditional normal distribution, i.e. εt | It−1 ∼
N (0, ht). However, this specification is not required, and not always satisfactory
when the structure of the observations exhibits non-normal tendencies, e.g. excess
skewness or kurtosis. In this section we will present some conditional distributions of
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the standardized innovations ηt that are available in the R package MSGARCH. We will
be presenting these conditional distributions: normal(norm), Student-t(std), gener-
alized error distribution(ged) as well as the same distributions with the ability to
capture skewness: skew-normal(snorm), skew-Student-t(sstd) and skew-generalized
error distribution(sged). All distributions are standardized to have mean zero and
unit variance, because they are the distributions of the standardized innovations ηt,
and not the observations themselves. We define ζ as the vector that contains the
shape parameters in the conditional distribution.

The standardized normal distribution (norm) has probability density function
(PDF)

fN(η) ≡ 1√
2π
e−

1
2
η2 , η ∈ R (3.20)

There are no additional parameters in a standardized normal distribution, therefore
ζ = [ ]ᵀ

The standardized Student-t (std) has PDF

fT (η; ν) ≡
Γ
(
ν+1

2

)√
(ν − 2)πΓ

(
ν
2

) (1 +
η2

(ν − 2)

)− ν+1
2

, η ∈ R, ν > 0, (3.21)

where Γ(·) is the Gamma function. ν > 2 is required in order to ensure that the
second order moment exists. Student-t distributions bear a lot of similarities to the
normal distribution, but it has a higher capacity to capture kurtosis. The lower ν,
the higher the kurtosis. If ν = ∞, the Student-t distribution is equivalent to the
normal distribution. Here, ζ = [ν]ᵀ

The standardized generalized error distribution (ged) has PDF

fGED(η; ν) ≡ νe−
1
2
| η
λ
|ν

λ2(1+ 1
ν )Γ

(
1
ν

) , η ∈ R, ν > 0, (3.22)

where λ is defined as follows:

λ ≡

(
Γ
(

1
ν

)
4

1
ν Γ
(

3
ν

)) 1
2

ν > 0,

where ν is the shape parameter. This distribution becomes a normal distribution if
ν = 2, a Laplace distribution if ν = 1 and a uniform distribution if ν → ∞. The
GED, like the Student-t, has a large capacity for capturing kurtosis. The difference
between the two lies in the fact that the GED acquires a cusp at its origin when
approximating data with heavy tails, while the Student-t has a smooth peak when
approximating data with heavy tails. Here, ζ = [ν]ᵀ.
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Figure 8: Example PDFs of standardized a) normal, b) Student-t and c) generalized
error distribution for differing ν
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The difference between the standardized distributions is shown graphically in Figure
(8) for different values of ν.

In order to account for possible skewness in these three distributions, a transfor-
mation is necessary. Fernández & Steel (1998) [25] proposed a transformation that
introduces skewness into any distribution that is unimodal and symmetric around 0.
The density that accounts for skewness, and that has been standardized to have zero
mean and unit variance (Lambert & Laurent, 2001)[40], can be written as follows:

fξ(η) =
2σξ
ξ + 1

ξ

f1(ηξ), (3.23)

where ηξ is given by

ηξ ≡

{
1
ξ
(σξη + µξ) if η ≥ −µξ

σξ

ξ(σξη + µξ) if η < −µξ
σξ

.

Here, µξ ≡ M1

(
ξ − 1

ξ

)
, σ2

ξ ≡ (1 − M2
1)
(
ξ2 + 1

ξ2

)
+ 2M2

1 − 1 and M1 ≡
2
∫∞

0
uf1(u)du. Also, ξ > 0 is the skewness parameter which controls the amount

of skewness in the data. If ξ = 1, the distribution is symmetric. For ξ > 1, the
distribution is said to be "right-skewed", and for ξ < 1, the distribution is said to
be "left-skewed". Therefore, f1(·) is the standardized distribution with no skew-
ness. Skew-normal, skew-Student-t and skew-GED distributions have respectively,
ζ = [ξ]ᵀ, ζ = [ν, ξ]ᵀ and ζ = [ν, ξ]ᵀ. Figure (9) shows some example PDFs of skewed
distributions.
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Figure 9: Example PDFs of standardized a) skew-normal, b) skew-Student-t and c)
skew-generalized error distribution for differing ν & ξ
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4 Markov models

We can have a preconception that a system has a set of available states it can find
itself in, like a store being open or closed, or a machine being on, off or broken. If
we assume that the realization of one such future state only depend on the current
state, and not on what happened before, we turn to Markov models. Markov models
are stochastic models used to model systems that change, with the property that the
model is memoryless. These models have been extremely important in the process
of modelling such systems, and can be applied to almost every field of research.
Markov models are usually built on the assumption that our observed variable can
behave differently according to which specific state it is connected to. These states
may or may not be observable, and this generalization provides a lot of flexibility
while modeling. In the case of this thesis, Markov models are applied to a time
series of insurance claims losses. The reasoning behind this is that insurance loss
data are prone to sudden shocks of large losses, and the values of the losses in these
short periods could be assumed to originate from a different unobserved state which
is governed by a Markov chain.
This section provides an introduction to some important Markov models, with spe-
cial attention guided towards the Markov-switching model.

4.1 Markov chain

A Markov chain {St, t = 1, 2, . . . T} is a Markov model, which is characterized by
the property that the probabilities of the current event are determined based on
the state {1, 2, . . . , K} of the previous event. The process St fulfills the Markov
property, formalized as

P(St = st | S1:t−1 = s1:t−1) = P(St = st | St−1 = st−1)

for times t = {1, . . . , T}, where S1:t−1 = (S1, S2, . . . St−1), and the realizations of
those events s1:t−1 = (s1, s2, . . . , st−1). In Figure 10, the dependence structure of a
simple Markov chain is displayed graphically for two time periods.

Here, pi,j = P(St = j | St−1 = i),∀i, j ∈ {1, 2, . . . K} are the transition probabil-
ities, or the probability that we are in state j at time t given that we were in state
i in the previous time t − 1. We denote P as the transition probability matrix for
the matrix process St:

P =

p1,1 . . . p1,K

... . . . ...
pK,1 . . . pK,K

 , 0 < pi,j < 1 ∀ i, j ∈ {1, . . . , K}
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Figure 10: Dependence structure of a Markov chain. Here, {St} is the observable
chain which is shown over two time periods St−1, and the later time St which is
dependent on the previous.

The i’th row of P is the probability density of St given that St−1 = i. Further-
more, it also holds that

∑K
j=1 pi,j = 1 ∀i ∈ {1, 2, . . . , K} which tells us that there

occurs transitions also when the state remains the same. This probability, pi,i, is
called the staying probability. When the pi,i are large in comparison to the other
transition probabilities, the model has highly persistent regimes, which means that
the model will seldom switch regimes, and few transitions occur. In this thesis we
will mainly be focusing on the two-state Markov chain, i.e. K = 2. The transition
probability matrix becomes

P =

[
p1,1 p1,2

p2,1 p2,2

]
=

[
p1,1 1− p1,1

1− p2,2 p2,2

]
,

where we have used the property that p1,1 + p1,2 = 1→ p1,2 = 1− p1,1.

Markov models are useful in a large range of applications where one is interested
in analyzing the behavior of the variables in question for different, categorical states.
This could mean a given market being in different states, like a financial crisis which
is, in general, reflected in the market volatility, or smaller fluctuations could also be
of interest.

4.2 Hidden Markov models

A hidden Markov model (HMM) is a Markov chain observed in noise (Cappé,
Moulines & Rydén, 2005, section 1.1)[17]. The Markov chain {St} is now hid-
den, which means we can not observe the states {St} we find ourselves in. However,
these hidden states govern the distribution of another stochastic process {Yt}, which
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H
ID
D
EN

Figure 11: Dependence structure of a hidden Markov model. Here, {St} is hidden,
and {Yt} is the observable process, which are both shown over two time periods
St−1, and the later time St which is dependent on the previous. In this case, {Yt} is
dependent only on the hidden, "underlying" process

we do observe. Actually, one of the key assumptions of a HMM is that the observed
values Yt are conditionally independent of all other variables given their state vari-
able St, t = 1, 2, . . . , K. {Yt} can follow a distribution, and the parameters of said
distribution will then be decided by the hidden process. In other words, the states
which are hidden to us solely decide how our observable process behaves. Figure
11 is the graphical representation of the dependence structure of a simple hidden
Markov model, with an attempt to highlight the fact that the observed process de-
pends on the outcome of the underlying hidden process. Hidden Markov models are
a very useful tool within fields such as econometrics, time series analysis and com-
putational science because of the many applications in day-to-day life where unseen
states influence the behavior of the values at interest.
One of the simplest specifications of hidden Markov models is the normal hidden
Markov model, which is a model where the conditional distribution of Yt given St fol-
lows a Gaussian distribution. The state-dependent distribution of Yt then becomes

Yt|(St = st) ∼ N
(
µst , σ

2
st

)
,

where µst and σ2
st are the parameters of the normal distribution that corresponds

specifically to the state St = st. The variable in question thus follows a normal dis-
tribution at every time point t, but with the capability of having a changing mean
and variance when the process enters a different state. Yt can also follow different
conditional distributions, depending on the specification.

31



4.3 Markov-switching models 4 MARKOV MODELS

H
ID
D
EN

Figure 12: Dependence structure of a Markov-switching model. Here, {St} is hidden,
and {Yt} is the observable process, which are shown over three time periods. Here,
the Markov chain behaves as normal, while the observed process now is dependent
on its previous values, in addition to being dependent on the state variable

4.3 Markov-switching models

Markov-switching models(MSM) are a generalization of HMMs (Cappé et al., 2005,
section 1.2)[17], and it was first introduced by Hamilton (1989)[33]. The difference
between HMMs and MSMs lie in that the conditional distribution of the observed
process Yt does not only depend on the state St, but also depends on Yt−1, or
additional of the lagged values of {Yt}. The conditional distribution of the observed
process in a Markov-switching model, given the hidden process, could in theory
depend on all previous values of itself, but the dependence on the Markov chain still
upholds the Markov property, i.e.

f(Yt = yt | S1:t = s1:t, Y1:t−1 = y1:t−1) = f(Yt = yt | St = st, Y1:t−1 = y1:t−1) (4.1)

where f(·) would be a generic pdf e.g. the normal distribution, and Y1:t−1 =

(Y1, Y2, . . . , Yt−1).
We now see that the observed values Yt are no longer conditionally independent of
the other variables given the state variable. The dependence structure for MSMs
are shown in Figure 12

The general Markov-switching model specification can be expressed as

Yt | (St = st, It−1) ∼ D
(
µst(Y1:t−1), σ2

st(Y1:t−1), ζst
)
, (4.2)

where It−1 ≡ {Yt − i}, i > 0, is the information observed up to time t− 1.
D
(
µst(Y1:t−1), σ2

st(Y1:t−1), ζst
)
is a continuous distribution with location and scale

parameters µst and σ2
st that are dependent on both the realized state St = st, and

possibly several lagged values of Yt, up to time t− 1. ζst is the vector of additional
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state-dependent shape parameters from section 3.2.2 that may be used, depending
on the distribution in question.
Markov-switching models are used extensively to model financial asset-returns. Fama
(1965)[24] argues that the price of a financial asset follows a random walk with drift,
as discussed in section (2.3), where an expression for the returns time series was
presented as yt = µt + εt. We choose to use this model as an example in order to
understand how regime-switching influences a time series.
After introducing the different regimes from the Markov-switching framework, yt
depends not only on time, but also on the regime variable St. yt then becomes, for
the L = 2 case:

yt =

{
µt,1 + εt,1 if St = 1

µt,2 + εt,2 if St = 2

}
.

Here, µt,st is the time and regime-dependent conditional mean, and εt,st is the
conditional random innovations-term. In the case where the conditional mean is
constant over time for the different regimes, we have argued that we can switch our
focus to a de-meaned version of the time series, and therefore only be concerned
with εt,st . Adapting Equation (2.15) to the two-regime case gives the expression:

yt =

{
εt,1 if St = 1

εt,2 if St = 2

}
,

and consequently, E(yt) = 0 and E(ytyt−τ ) = 0 for τ 6= 0. This is, in other words,
the application of a Markov-switching model to a zero-mean random innovations
term with no serial correlation for the K = 2 case.

In the case where we regard the conditional mean as constantly zero, the Markov-
switching model specification from Equation (4.2) can be simplified to

Yt | (St = st, It−1) ∼ D
(
0, σ2

st(Y1:t−1), ζst
)
. (4.3)

We know from section (3) that when we are interested in modeling a time series
where we impose a specific structure on the conditional variance, letting this con-
ditional variance ht follow a (G)ARCH model is the usual method of approach. In
the next section, we will see how we can include GARCH-models in the Markov-
switching framework.
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5 Markov-switching GARCH

In the previous sections we have discussed (G)ARCH-models and Markov-switching
models separately. The motivation between combining the two comes from charac-
teristic that the GARCH model may overestimate the persistence in variance be-
cause of possible existence of deterministic structural shifts in a model, which may
be neglected (Lamoureux & Lastrapes, 1990)[41]. Consequently, GARCH forecasts
may return too large values in high-volatility periods because a regular GARCH-
model may struggle to adapt to the high persistence of those shocks. Klaassen
(2001)[39] has shown this exact phenomenon in twenty years of daily data on
USD exchange rates vs. GBP, DM and JPY, and therefore suggests combining
the Markov-switching model, originally presented by Hamilton (1989)[33] with the
GARCH-model. We consider the possibility that structural regimes that carry dif-
ferent parameters in each regime may improve a model where we observe sudden
shocks that are followed by short periods of high volatility in the data. We only
see the need for one additional regime in this case, partly because of parsimony
and partly because we have a preconceived notion that data switches between a
low-volatility regime and a high-volatility regime. To show the implementation of
a Markov-switching GARCH model we refer to Figure (13), which illustrates the
log-returns from the Swiss Market Index (left) and the Danish fire insurance losses
(right), with the most likely state-path from some fitted Markov-switching GARCH-
model superimposed on top. The plots were created with the MSGARCH-package in
R.

Figure 13: Swiss Market Index with MSGARCH-states estimated (left). Danish
fire insurance losses with MSGARCH-states estimated(right). The red line is the
most likely state-path which is equal to "0" in state one (low volatility) and "1" in
state two (high volatility).
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We see that the MSGARCH-model is quite good at distinguishing between
volatility regimes in the log-return data, but it seems to also manage to capture
the sudden shocks in the insurance loss dataset quite well without over-estimating
the persistence of said shocks.
Another upside of using Markov-switching GARCH compared to regular GARCH
methodology is that the different regimes are not required to follow the same condi-
tional distribution, or the same conditional variance dynamics. An example of this
would be a time series where observations from regime 1 tend to have more skewed
observations with heavier tails and asymmetry in the conditional volatility, and the
observations in regime 2 come from a less skewed distribution with more symme-
try in the conditional volatility. If this were the case, we can see that it could be
beneficial to fit a Markov-switching model where regime 1 follows a skew-Student-t
distributions and has conditional volatility on the form of gjrGARCH, and regime 2
follows a normal distribution with a regular GARCH specification of the conditional
volatility. The one-regime GARCH-framework would not allow for such flexibility,
and this flexibility is especially apparent when attempting to model the tails of the
predictive distribution, as being able to increase specificity in the high-volatility ar-
eas of a time series could give more accurate predictions in the tail.
In this section, we piece together the fundamental theory from earlier sections in
order to build the Markov-switching GARCH-model and its different possible spec-
ifications. We then construct the likelihood function for estimation purposes, as
well as presenting the Akaike Information Criterion (Akaike, 1998)[6], which will
be used for model comparison. Lastly, we consider h-step-ahead prediction of the
conditional volatility and draws.

5.1 Constructing the MSGARCH

As we have just discussed the reasons for using Markov-switching GARCH in lieu of
the the regular single-regime GARCH, this section aims to put together the pieces
in order for us to have a complete model specification. In this thesis, we will be
implementing MSGARCH in the same manner as in Haas et al. (2004)[32]. This
version has improved capabilities over the original MSGARCH-paper from Gray
(1996)[31], namely that estimation is easier, it has higher analytical tractability,
and the dynamic properties of the conditional variance has higher interpretability.
In general, the MSGARCH needs three components that have been mentioned ear-
lier. These components are the regime-switching probabilities which are defined in
section 4.1, the conditional variance and the conditional distribution of the stan-
dardized GARCH innovations.

The Haas (2004)[32]-specification of the Markov-switching model lets the zero-
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mean time series in question yt satisfy

yt = εt = ηst,th
1
2
st,t (5.1)

where ηst,t is the state and time-dependent standardized innovations, which follow
a conditional distribution on the following form:

ηst,t | (St = st, It−1) =
yt

h
1
2
st,t

| (St = st, It−1)
I.I.D.∼ D(0, 1, ζst). (5.2)

Consequently, the innovations themselves follow a similar conditional distribution
with variance hst,t :

yt | (St = st, It−1) ∼ D(0, hst,t, ζst). (5.3)

hst,t is the conditional variance of the model, It−1 is the observed information in the
time series up until time t− 1 and D(·) denotes a continuous distribution of choice
with mean 0 and additional regime-dependent shape-parameter vector ζst , which
takes on values depending on which distribution D(·) adapts.
We notice that the specification of the model in Equation (5.1) is very similar to
the single-regime (G)ARCH model specification from Equation (3.1), with the only
difference being the that conditional variance hst,t and the standardized innovations
ηst,t are allowed to depend on which regime the time series is in. We also notice that
the expression in Equation (5.2) is also very similar to the distribution specification
from Equation (4.3), with the only difference being that the variance σ2

st of the for-
mer is replaced with the structural conditional variance hst from (G)ARCH-models.

5.1.1 Conditional variance

The conditional variances of the regular Markov-switching ARCH(1) (5.4) and Markov-
switching GARCH(1,1) (5.5) models take the following forms:

hst,t = α0,st + α1,sty
2
t−1, (5.4)

hst,t = α0,st + α1,sty
2
t−1 + β1,sthst,t−1 (5.5)

The regime of the MS-(G)ARCH model determines the parameters α0,st , αi,st and
β1,st for i ∈ Z+. As an example, for a MS-GARCH model with two regimes that
both follow the standard ARCH(1) specification of the conditional variance, there
are only 4 conditional variance parameters to be estimated (α0,1, α0,2, α1,1, α1,1).

A problem of intractability appears when fitting a Markov-switching GARCH
model, and that problem is observed in the hst,t−1-term of Equation (5.5). If we solve
this equation recursively, we notice that the conditional variance hst,t depends on
the full history of the time series, i.e. {yt−1, yt−2, . . . , y0, st, st−1, . . . , s1}. Estimation
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becomes a problem because the number of possible paths of the process will grow
exponentially as t grows. This proves to be a large hindrance in effectively fitting
such a model, as much so that resarch papers by Hamilton & Susmel (1994)[35] and
Cai (1994)[16] confined themselves to ARCH dependencies instead. Gray (1996)[31]
proposed a way to circumvent this problem by claiming that the conditional variance
should, instead of being generated by Equation (5.5), be generated by

hst,t = α0,st + α1,sty
2
t−1 + β1,sth̃t−1, (5.6)

where h̃t−1 is given by

K∑
i=1

ζ̂i,t−1|t−2

(
α0,i + α1,iy

2
t−2 + β1,ih̃t−2

)
. (5.7)

Here, ζ̂t−1|t−2 is a probability vector whose i’th element corresponds to P(St−1 = i |
Θ; Ωt−2). K is the amount of regimes in our model, Ωt is the information gathered
from only the observations up to time t, and Θ is a vector of parameters in the
model. The important thing to notice here, is how hst,t only depends on the history
of the observations Ωt−1, and not on the history of the states. This results in a much
more tractable method of estimating a MSGARCH model.
Haas et al. (2004)[32] argued that this method of circumventing the problem was
insufficient, mostly because of the lack of reasonable interpretation of the GARCH-
parameters. The workaround was to hypothesize K separate GARCH-processes,
whose value of conditional variance hi,t all exist as latent variables at time t, i.e.

hi,t = α0,i + α1,iy
2
t−1 + β1,ihi,t−1, (5.8)

We show that this only depends on the history of the previous observations t−1 by
inverting the expression of the whole vector ht:

ht = α0 +α1y
2
t−1 + β1ht−1 (5.9)

= (I − β1)−1α0 +
∞∑
i=1

β1
i−1α1y

2
t−i (5.10)

Here, β1 = diag(β1,1, β1,2, . . . , β1,K), I
1×K
= diag(1, 1, . . . , 1)ᵀ,

αi = [αi,1, αi,2, . . . , αi,K ]ᵀ and ht = [h1,t, h2,t, . . . , hK,t]
ᵀ

Diagonality of β1 implies, for the j’th element:

hj,t = α0,j(1− β1,j)
−1 + α1,j

∞∑
i=1

βi−1
1,j y

2
t−i. (5.11)

We observe that this equation only depends on the history of the observed values
Ωt−1, and not on the regime-history. The inversion of the preceding expression
is actually very similar to what was done in section (3.2) when showing that a
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GARCH(1,1)-model can be shown to follow a specific type of ARCH(∞)-model
(Equation 3.13). By utilizing this exact property, Haas remarks that the interpre-
tation of the GARCH-parameters α1 and β1 becomes much easier. More precisely,
α1 reflects the magnitude of a shock’s immediate impact on the variance of the next
period, and β1 is a parameter of inertia, which explains the memory in the variance.
The R package that will be mostly used in this thesis, MSGARCH, uses this version of
approximating the conditional variance, which greatly helps in the understanding of
the parameters that are fitted.
We also allow for other specifications of the conditional variance in the Markov-
switching GARCH, as we did in section 3.2.1. There is very little difference between
applying a specific GARCH-structure to a multi-regime GARCH model, than it is
to apply it to a single-regime GARCH model. In fact, the single-regime GARCH
is just a special case of the MSGARCH, where K = 1, and therefore the GARCH-
parameters remain constant through the entire data. The advantage of introducing
regimes, however, is that the different regimes are allowed to follow different speci-
fications of the conditional variance. Table (1) contains an overview of the already
mentioned specifications of the conditional variance that will be estimated in this
thesis.

Conditional volatility models
Model Equation
ARCH hst,t = α0,st + α1,sty

2
t−1

GARCH hst,t = α0,st + α1,sty
2
t−1 + β1,sthst,t−1

gjrGARCH hst,t = α0,st + (α1,st + α2,stI{yt−1 < 0})y2
t−1 + β1,sthst,t−1

tGARCH h
1
2
st,t = α0,st + (α1,stI{yt−1 ≥ 0} − α2,stI{yt−1 < 0})yt−1

+ β1,sth
1
2
st,t−1

Table 1: Overview of specifications of the conditional variance. These specifications
are all available in the R package MSGARCH

5.1.2 Conditional distribution

As we have mentioned in section (3.2.2), we will be presenting distributions for the
standardized innovations, meaning the distributions all have mean zero and unit
variance. The innovations yt, however, are distributed with zero mean and variance
hst,t. For the time being, we consider the case where the standardized innovations
for all regimes follow a normal distribution, i.e. ηst,t

I.I.D.∼ N (0, 1). Here, yt as
mentioned follows a normal distribution with zero mean and variance hst,t, which
can be expressed as follows, in the two-regime case:

yt | (St, It−1) ∼

{
N (0, h1,t), with probability P (St = 1 | It−1)

N (0, h2,t), with probability P (St = 2 | It−1),
(5.12)
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where P (St = j | It−1) is the probability of being in state j given the information
up to time t− 1.
Having one distribution specification for each distinct regime can further extend the
flexibility of our model compared to a single regime GARCH-model. The distribu-
tions from section (3.2.2) are reiterated for the MSGARCH case in Table (2)

Conditional PDFs
Model PDF
Normal fN,st(η) ≡ 1√

2π
e−

1
2
η2 , η ∈ R

Student-t fT,st(η; νst) ≡
Γ
(
νst+1

2

)
√

(νst−2)πΓ(
νst
2 )

(
1 + η2

(νst−2)

)− νst+1

2
, η ∈ R, νst > 0

GED fGED,st(η; νst) ≡
νste

− 1
2 |
η
λ
|νst

λ2

(
1+ 1

νst

)
Γ
(

1
νst

) , η ∈ R, νst > 0

Skew-normal Normal PDF used in Eq. (3.23)
Skew-Student-t Student-t PDF used in Eq. (3.23)
Skew-GED GED PDF used in Eq. (3.23) height

Table 2: Overview of specifications of the conditional distributions. These specifi-
cations are all available in the R package MSGARCH

5.2 Maximum likelihood estimation

We have the fundamental building blocks needed to construct the likelihood func-
tion. Estimation will be done through maximum likelihood estimation (MLE).
The model parameters which we want to estimate are contained in the vector
Θ = [θ1, ζ1, . . . ,θK , ζK ,P], where θj is the vector of GARCH-parameters in regime
j, ζj is the vector of distribution parameters in regime j and P is the transition
probability matrix. The likelihood function is given by:

L(Θ) =
T∏
t=1

f(yt | Θ,Ωt−1), (5.13)

where f(yt | Θ,Ωt−1) is the distribution of the observations given the history of
observations until time t − 1, Ωt−1, and the model parameters Θ. For evaluating
f(yt | Θ,Ωt−1) we consider first the K = 2 case. To obtain the complete conditional
PDF of yt for a MSGARCH, we need to sum together the densities of yt conditional
on being in state j. For current state j = 1, where K = 2 there are two possible
"paths" to consider; one where the previous state was j = 1 and the current state
is j = 1, and one where the previous state was j = 2 and the current state is j = 1.
We therefore need to multiply the probability of being in state j = 1 at time t − 1

by the probability of going from state 1 to 1 in order to get the probability of the
first "path". The second path is acquired by multiplying the probability of being in
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state j = 2 at time t − 1 by the probability of going from state 2 to 1. We do this
for both current states j = 1, 2. We end up with four parts in this K = 2 case:

f(yt | Θ; Ωt−1) = p1,1z1,t−1|t−1f(yt | st = 1,Θ; Ωt−1) +

= p1,2z1,t−1|t−1f(yt | st = 2,Θ; Ωt−1) +

= p2,1z2,t−1|t−1f(yt | st = 1,Θ; Ωt−1) +

= p2,2z2,t−1|t−1f(yt | st = 2,Θ; Ωt−1)

=
2∑
i=1

2∑
j=1

pi,jzi,t−1f(yt | st = j,Θ; Ωt−1)

This can be generalized for the K case: (Ardia et al. 2019a)[7]

f(yt | Θ; Ωt−1) =
K∑
i=1

K∑
j=1

pi,jzi,t−1|t−1f(yt | st = j,Θ; Ωt−1) (5.14)

In both these cases, zi,t|t is the probability of being in state i at time t, conditioned
on the parameter vector and the history of the time series until time t, i.e. P(st = i |
Θ; Ωt). These probabilities are not known, as the states are hidden and we therefore
can not know which regime the process was in at every time point. In reality, these
probabilities are 1 when the process is in state i, and 0 when the process is not
in state i. Since we cannot determine these exact probabilities, we use Hamilton’s
filtered probabilities (Hamilton, 1994, chapter 22)[34], which are derived from a
probabilistic inference that is a generalization of P(st = i | Θ; Ωt). We denote this
inference as ẑi,t|t.
In order to derive this filter, which is the conditional probability of st, we first define
υt as the (K × 1) vector whose j’th element is the density of yt conditioned on st
being in state j at time t. We also define ẑt|t as the (K × 1) vector which contains
our inference of conditional probabilities of being in state j at time t based on the
information up to time t, and 1 is a (K × 1) vector of ones. These three vector are
defined as follows:

υt =


f(yt | st = 1,Θ; Ωt−1)

f(yt | st = 2,Θ; Ωt−1)
...

f(yt | st = K,Θ; Ωt−1)

 , ẑt|t =


P(st = 1 | Θ; Ωt)

P(st = 2 | Θ; Ωt)
...

P(st = K | Θ; Ωt))

 , 1
K×1
=


1

1
...
1


Next, the element-by-element multiplication between ẑt|t−1 and υt is denoted by
the following (K × 1)-vector:
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(ẑt|t−1 � υt) =


P(st = 1 | Θ; Ωt−1)× f(yt | st = 1,Θ; Ωt−1)

P(st = 2 | Θ; Ωt−1)× f(yt | st = 2,Θ; Ωt−1)
...

P(st = K | Θ; Ωt−1)× f(yt | st = K,Θ; Ωt−1)

 , (5.15)

where � symbolizes element-by-element multiplication. This is actually a vector
where the j’th element can be interpreted as the conditional joint density distribu-
tion of yt and st, because of the definition of conditional probability (5.17). The
marginal density of the observations yt is therefore given by summing the K values
of the joint probability density (Equation 5.15), i.e.

f(yt | Θ; Ωt−1) = 1ᵀ(ẑt|t−1 � υt) (5.16)

In order to derive an expression for the conditional probability of st that is
conditioned on times up to time t, i.e. ẑt|t, we use the definition of conditional
probability:

P(A | B) =
P(A ∩B)

P(B)
(5.17)

Here, P(A ∩ B) is given by the j’th element of the conditional joint density distri-
butions of yt and st from Equation (5.15), i.e.

P(st = j | Θ; Ωt−1)× f(yt | st = j,Θ; Ωt−1) (5.18)

= p(yt, st = j | Θ; Ωt−1) (5.19)

and P(B) is expression from Equation (5.16), i.e. the marginal distribution of yt
conditioned on the past observations. P(A | B) is thus the conditional probability
of st, given the parameters Θ, the past observations until time t − 1, yt−1 and the
value of yt. As we can see, this is actually the conditional probability of st given the
parameters and the information of the observed values until time t:

P(A | B) = P(st = j | Θ; yt,Ωt−1) = P(st = j | Θ; Ωt) (5.20)

Equation (5.17) now becomes:

P(st = j | Θ; Ωt) =
p(yt, st = j | Θ; Ωt−1)

1ᵀ(ẑt|t−1 � υt)
. (5.21)

As we recall, the left side of Equation (5.21) is the j’th element of ẑt|t, and the right
side of the equation is the j’th element of (ẑt|t−1 � υt). We can thus recollect the
K elements of the vectors in the above equation, which produces a (K × 1) vector,
which we present:

ẑt|t =
(ẑt|t−1 � υt)

1ᵀ(ẑt|t−1 � υt)
. (5.22)

These filtered probabilities are thus a first-order recursive process, which almost
finishes the definition of our likelihood function (5.13). The ML estimator Θ̂ is
obtained by maximizing the logarithm of Equation (5.13), but first we need to
choose some starting values for the maximum likelihood estimation.
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5.2.1 Choosing starting values

The starting values of the maximum likelihood algorithm will be decided by the
following process, as it has been implemented in MSGARCH:

1. (P): Choosing the transition probabilities by estimating a static version of the
model (hst,t = h̄st) by the Baum-Welch algorithm.

2. (Decoding): Assigning each of the observations to a regime through the Viterbi
algorithm (Viterbi, 1967)[52].

3. (α0,j, α1,j, α2,j, β1,j, νj, ξj): Estimating the the remaining parameters through
Maximum Likelihood estimation, where we fit the model once for each regime
j, independent of the others.

Firstly, the static estimation will be done by the Baum-Welch algorithm, which
is a generalization of the EM-algorithm. The BW-algorithm was introduced through
some papers by Leonard E. Baum and Lloyd R. Welch during the 1960’s and 1970’s.
Cappé et al. (2005, chapter 5)[17] provides an insight in how the algorithm works.
Its objective is to calculate the probability of a given observation sequence yt, which
returns a maximum-likelihood estimate of the the transition probability matrix P,
an initial state probability vector πi and the emissions matrix C of size (K × T )

whose element cj(yi) = P(Yt = yi | St = j) is the probability of observing Yt = yi

from state St = j. We are also able to calculate an estimate for the unconditional
variances σ2

st , which will be used as their starting value.
We set θ = (P,C,π) as the parameter vector which we want to estimate. Initial
values for these parameters could be chosen at random. In our case they are chosen
as follows:

P is chosen by letting the values on the diagonal be equal to 0.9, and the re-
maining values are chosen to be equal to each other, based on the condition that the
row-sums are equal to 1. E.g. for a K = 2 case: p1,1 = p2,2 = 0.9, p1,2 = p2,1 = 0.1.

C is chosen by fitting K normal distributions to the observations yt. Here, the
variances are chosen by multiplying the sample variance of the observations by a
scaling-value which is different for each of the K states. E.g. for a K = 2 case:
σ2

1 = 0.8σ̄2, σ2
2 = 1.2σ̄2 . The probabilities of those normal distributions are used as

emission probabilities.
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π is chosen by the steady-state vector of the transition matrix P. The steady-
state vector is the vector π who satisfies the equation Pπ = π. Another way of
explaining it is that it is an eigenvector of P who is associated to the eigenvalue 1.
This vector is calculated as follows:

π = ((I −P + 1)ᵀ)−11 (5.23)

The Baum-Welch algorithm takes use of forward filtering backward sampling, which
is a smoothing algorithm that computes the posterior marginal distributions of the
states for each of K. The algorithm goes through two methods, one going forward
in time, and one going backwards in time, hence the name.
The forward procedure computes αi(t) = P(Y1 = y1, Y2 = y2, . . . , Yt = yt, St = i | θ),
the joint probability of the observations up to time t and being in state i. Define
the (K × T ) matrix A = [α1,α2, . . . ,αK ]. The values of α are found recursively
by these equations:

αi(1) = πici(y1), (5.24)

αi(t+ 1) = ci(yt+1)
K∑
j=1

αj(t)pj,i (5.25)

The backward procedure computes βi(t) = P(Yt+1 = yt+1, Yt+2 = yt+1, . . . , YT = yt |
St = i, θ), the probability of the remaining yt until the final value T , given that the
process was in state i at time t. Define the (K × T ) matrix B = [β1,β2, . . . ,βK ].
The values of β are found recursively by these equations:

βi(T ) = 1, (5.26)

βi(t) =
K∑
j=1

βj(t+ 1)pi,jcj(yt+1), (5.27)

We can obtain the joint probability of being in state i at time t as well as the
probabilities of the entire history of yt defined as Y = (Y1 = y1, Y2 = y2, . . . , YT = yT )

by simply multiplying the two vectors for state i and time t:

P(St = i, Y1 = y1, Y2 = y2, . . . , YT = yT | θ) = αi(t)βi(t) (5.28)

The marginal probability of the observations Yt over the entire history [1, T ] is
gained by summing the joint probability over all states, i.e.

∑K
j=1 αj(t)βj(t). To

obtain the smoothed probability of being in state i at time t given the full history
of the observations, we utilize Bayes’ rule:
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γi(t) = P(St = i | Y, θ) =
P(St = i, Y | θ)

P(Y | θ)
=

αi(t)βi(t)∑K
j=1 αj(t)βj(t)

, (5.29)

We also want to define the probability of being in state i at time t, and then tran-
sitioning to state j at time t + 1, given the entirety of the observations Y . Similar
to γi(t), we define, by using Bayes’ rule:

δi,j(t) = P(St = i, St+1 = j | Y, θ) =
P(St = i, St+1 = j, Y | θ)

P(Y | θ)
(5.30)

=
αi(t)pi,jβt+1cj(yt+1)∑K

j=1

∑K
l=1 αj(t)pj,lβl(t+ 1)cl(yt+1)

(5.31)

Now, we can update the equation for the transition probability matrix. If we sum
δi,j over t values 1 through T − 1, we get the total expected amount of transitions
between i and j. If we compare these values with the sum of γi from time 1 to time
T − 1, which is the total amount of transitions that start in state i, we naturally
obtain the rates of transitioning between state i and j to the total transitions. This
is the definition of the updated transition probabilities, whose matrix P∗ now has
entries which will be written as follows:

p∗i,j =

∑T−1
t=1 δi,j(t)∑T−1
t=1 γi(t)

, (5.32)

We also define expressions for the sample unconditional mean and variance of
the time series as follows:

µ∗j =

∑T
t=1 (γj(t)yt)∑T
t=1 γj(t)

(5.33)

σ2
j
∗ =

∑T
t=1

(
γj(t)(yt − µ∗j)2

)∑T
t=1 γj(t)

(5.34)

When all these values are calculated, the Baum-Welch algorithm has completed
one iteration. For the next iteration, we recalculate the emission probabilities C by
the same method as when choosing the starting values for the algorithm, i.e. by
fitting K normal distributions to the observations yt vector, although we now use
the updated σ2

j
∗ in the distributions. π is also recalculated in the same way as when

choosing starting values, i.e. by computing the steady-state vector for the updated
transition matrix P∗. The algorithm is repeated iteratively until some tolerance
condition is met.

Next up in the estimation process is decoding through using the Viterbi algo-
rithm. This algorithm is used to find the most likely regime-path our time series
will follow. The Viterbi algorithm returns a (T × 1) vector V = [v1, v2, . . . , vT ] of
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integers that can take values v ∈ K. The input for the algorithm, other than the
amount of states K and the observations Y , is the initial state vector π∗, the tran-
sition probability matrix P∗ and the emission probability matrix C∗, which were all
estimated by the BW-algorithm.

To start the algorithm, two (K×T ) vectors T1[i, j] & T2[i, j] are defined. T1[i, j]

contains the probabilities of the most probable state sequence P(V̂1, V̂2, . . . , V̂j, Y1, Y2,

. . . , Yj) responsible for the first j observations, and where the sequence is in state i
at time j. T2[i, j] contains V̂j−1 extracted from the most likely path until the j’th
observation. We define these values formally as:

T1[i, j] = max
k

(T1[k, j − 1]pk,ici,j) (5.35)

T2[i, j] = argmax
k

(T1[k, j − 1]pk,i) (5.36)

T2[i, j] is called a back-pointer as it extracts which state was used to obtain the
value of T1[i, j]. The starting value for T1[i, 1] is the initial state vector times the
emission probabilities from observation 1, i.e. T1[i, 1] = πici,1.
After recursively determining values of T1[i, j] and T2[i, j] for all values of states
i ∈ [1 : K] and observations j ∈ [1 : T ], we simply define the Viterbi path as the
states belonging to the most likely path determined by T2[i, j].

We now have a vector of the most likely path that our time series follows. The
next part of choosing the starting values involves creating K vectors of the obser-
vations corresponding to each of the K regimes, based on the Viterbi path. These
K vectors of decoded observations are then used to fit the remaining parameters,
i.e. the shape parameters and the (G)ARCH parameters. This ML-estimation is
carried out in the same way as for the ML-estimation of the likelihood function 5.13
in section 5.3, i.e. by the BFGS-algorithm.

The starting values of our parameter-vector Θ is now completely decided, and
we are able to carry out the maximum likelihood estimation. We define this vector
as

0Θ = [0θ1, 0ζ1, . . . , 0θK , 0ζK , 0P] , (5.37)

where 0P only contains (K×K)−K values for pi,j, as each row in the matrix sums
to 1, and thus each row’s K’th value can be found by subtracting the row’s previous
K − 1 values from 1.

5.3 The optimization process

We recall that the likelihood function of our model is given by Equation (5.13):

L(Θ) =
T∏
t=1

f(yt | Θ,Ωt−1).
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Direct maximization of this function is infeasible in most cases as it usually in-
volves high-dimensional integration and is therefore sufficiently complex enough so
that we cannot use simple optimization techniques (Cappé et al., 2005, section
10.1.1)[17]. We therefore choose an iterative optimization method, as these are
generally easier and less computationally demanding to use. The method we are us-
ing for our optimization is called the BFGS(Broyden 1970, Fletcher 1970, Goldfarb
1970, Shanno 1970)[15][26][30][47]-algorithm, which is named after the four people
who first discovered the algorithm. This algorithm belongs to a class of optimization
techniques called quasi-Newton. A regular Newton-method is an optimization tech-
nique which evaluates the Hessian for each iteration. The Hessian H is defined as
the matrix containing the second-order partial derivative of a scalar-valued function.
Quasi-Newton-methods are more computationally cheap and faster to compute than
Newton-methods, as these methods does not require the Hessian to be evaluated for
each iteration, but instead use an approximation of the Hessian based on gradient
evaluations. The basis for the following text is Nocedal & Wright (2006, section
6.1)[45], as it gives a good explanation of the BFGS method.
The function we want to maximize is logL(Θ). As BFGS is mainly used for
minimization problems, we adjust our function to being negative, i.e. M(Θ) :=

−logL(Θ)

The quasi-Newton methods of optimization is of an iterated scheme:

i+1Θ = iΘ− αiH∗i∇M(iΘ), (5.38)

where H∗i is the approximation of the inverse Hessian Hi = [∇2M(iΘ)]−1 at itera-
tion i, ∇M(iΘ) is the gradient of our function and αi is a step-size of the iterations.
We define hk = −H∗i∇M(iΘ) as the search direction of the algorithm, which is a
vector that moves the method closer to the optimized value.
Before we can define the approximation to the Hessian used in the BFGS algorithm,
we define two vectors

si = i+1Θ− iΘ, yi = ∇M(i+1Θ)−∇M(iΘ).

We also note that quasi-Newton methods requires the next approximation matrix
H∗i+1 to satisfy the secant equation:

H∗i+1yi = si (5.39)

In order to uniquely determine H∗i+1 for the updates, we also impose another condi-
tion, which is that among all symmetric matrices which satisfies the secant equation
(Equation 5.39), H∗i+1, is closest to the previous-step matrix H∗i , i.e. we solve the
following:

min
H∗
‖H∗ −H∗i ‖ (5.40)
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subject to H∗ = (H∗)ᵀ. ‖·‖ is the norm of a function. In addition, we require the
approximate inverse Hessian to be positive definite in order for the method to be
conclusive. We can ensure this by imposing another condition, given by

sᵀiyi > 0. (5.41)

As we have these conditions in place, Equation (5.40) has an unique solution given
by: (Nocedal Wright, 2006)[45]

H∗i+1 = (I − ρisiyᵀ
i )H

∗
i (I − ρiyis

ᵀ
i ) + ρisis

ᵀ
i (5.42)

where ρi = (yᵀ
i si)

−1.
To pass the positive definite property over from H∗i to H∗i+1, Quasi-newton methods
utilizes Wolfe line-search that needs to satisfy the Wolfe conditions in order to
determine the step-size αi, which ensures a positive curvature at each iteration, i.e.
Equation (5.41)(Wolfe, 1969)[53]. In Wolfe line-search, the idea is to minimizeM(·)
by solving the sub-problem

min
αi
M(iΘ + αihi). (5.43)

We recall that hi is the search direction at iteration i. So this is the optimization
of i+1Θ as defined in Equation (5.38).The Wolfe conditions, which need to be met
in order to pass on the positive definiteness, are given as follows:

M(iΘ + αihi) ≤M(iΘ) + c1αih
ᵀ
i∇M(iΘ) (5.44)

−hᵀ
i∇M(iΘ + αihi) ≤ −c2h

ᵀ
i∇M(iΘ, (5.45)

for some values 0 < c1 < c2 < 1. Based on these conditions, we can find values for
αi used in the estimation process.

The starting value of our Hessian, H∗0, can be chosen in several ways, e.g. as the
identity matrix, or calculating an approximate Hessian by finite differences at 0Θ.
We are now ready to define the BFGS-algorithm’s iterative scheme:
Algorithm 1: BFGS
Initial values: starting parameter vector 0Θ, convergence tolerance ε > 0 ,
starting inverse Hessian approx. H∗0
i← 0;
while ‖M(iΘ)‖ > ε do

Compute search direction
hi = −H∗i∇M(iΘ)

Decide αi from a line-search satisfying the Wolfe conditions (Eq. 5.44)
Update i+1Θ = iΘ + αihi

Define si = i+1Θ− iΘ

Define yi = ∇M(i+1Θ)−∇M(iΘ).
Compute H∗i+1 by 5.42
i++

end
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Applying this algorithm to our negative log-likelihood yields a fairly fast and
computationally effective estimate for the parameter vector iΘ, and thus we conclude
the optimization process.

5.4 Model comparison

The biggest downside of introducing more regimes in our model is, of course, that
there are more parameters to estimate. A single regime GARCH model that assumes
a normal distribution only has three parameters to be estimated (α0, α1 & β0). A
two-regime gjrGARCH model which follows a skew-Student-t distribution, however,
has 14 parameters to be estimated (α0,1, α0,2, α1,1, α1,2, α2,1, α2,2, β0,1, β0,2, ν1, ν2, ξ1,

ξ2, p1,1 and p2,1). This disparity in number of parameters could be affect our results.
Specifically, more parameters could lead to overfitting, and therefore affecting the
ability of the model to make accurate predictions. In general, the more parameters in
a model, the better the model fits the data it has been fitted on, but the probability
of higher prediction error increases. We need a way to compare our models, and
the Akaike Information Criterion will be our main source of model selection criteria.
AIC is an estimator that admits the sample log-likelihood, as well as the number of
parameters in the model as a penalty. Subsequently, it returns a value which can
be used in comparison with other models. Lower AIC implies a better model fit,
however it must be noted that a better AIC value does not necessarily mean that
the model is better, as there are several other caveats that one needs to consider.
In this thesis, however, AIC will be used as the main basis for comparing models.
AIC is defined as follows, for our case:

AIC = 2z − 2logL(Θ), (5.46)

where z is the number of parameters in the model.

In addition to the goodness-of-fit testing that AIC yields, we also want to esti-
mate some tail risk measures for the data, as these values compared to their empir-
ical counterparts provide some valuable insight on the data. Section (6) proves an
overview of some risk measures and their properties.

5.5 Prediction

An important aspect of this thesis is to be able to simulate an h-step-ahead pre-
diction from the models, as these predictions will be the basis for computing the
Value-at-Risk and Expected Shortfall risk measures. We recall from section 5.2

that we used the Hamilton filter in order to get the filtered probabilities of be-
ing in state i at time t conditioned on the history of the time series until time
t, i.e. zi,t|t = P(st = i | Θ; Ωt). In order to be able to compute h-step ahead
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predictions, we need to define an expression for the prediction probabilities, i.e.
zi,t+1|t = P(st+1 = i | Θ; Ωt), which is the probability of being in state i at time
t+ 1, given the information of the observations until time t, i.e. the one-step-ahead
prediction probabilities. Hamilton (1994, section 22.4)[34] formulates the expression
for this as follows:

ẑt+1|t = Pẑt|t, (5.47)

where ẑt|t is the Hamilton filter-vector from Equation (5.22) and P is the transition
probability matrix.
In order to obtain a prediction for the model at time T + 1 we use the prediction
probabilities in conjunction with random samples of both the states and the inno-
vations. Sampling of the state at time T + 1 is simply the process of extracting a
random state s∗T+1, which is determined based on the prediction probabilities from
Equation (5.47).
Sampling innovations takes a random value from the standardized innovations func-
tion ηst,t, which has its shape parameters determined by the sample state s∗T+1, i.e.
drawing deviations from specification:

ηsT+1,T+1 | (St = s∗T+1, IT ) ∼ D
(

0, 1, ζs∗T+1

)
. (5.48)

Finally, the prediction of the variable in question yt is determined by Equation (5.2),
so the one-step ahead prediction of the model is defined by:

yt | (St = s∗T+1, IT ) ∼ D
(

0, h∗sT+1,T+1, ζs∗T+1

)
, (5.49)

where h∗sT+1,T+1 is random samples of the conditional variance equation, where the
parameters are decided by the sampled state s∗T+1.
This entire process can be repeated as many times as desired, and the resulting
vector of one-step ahead predictions helps us in making valuable observations, and
more specifically allows us to see the effect of conditional variance and how the
state-dependence affects the model. In our case, the resulting vector is used in order
to find the one-step-ahead Value-at-Risk and Expected Shortfall, which we will be
discussing in the next section.
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6 Risk Measures

The theory of measuring risk is a field that has attracted much interest in the fields
of economics, finance, insurance, banking and mathematics. More recent discussion
in these fields has examined how to obtain a more realistic measure of risk when
one takes into consideration the effect of the system which each institution is a part
of, called systemic risk. Risk measures are helpful in many applications, as they are
used for better understanding of data and can assist in financial decision-making.
Some measures are also used in order to quantify a reserve requirement, e.g. the
Basel Committee’s minimum capital requirement function for banks’ credit risk is
based on a risk measure called the Expected Shortfall (ES).
A risk measure ρ has certain advantages when it satisfies some conditions in order
to become coherent or elicitable. Sections (6.1 & 6.2) covers these topics. In section
(6.3), we introduce the univariate risk measures Value-at-Risk and Expected Short-
fall, as well as Entropic VaR (EVar). Section (6.4) covers some multivariate risk
measures, and section (6.5) contains a discussion the applicability of these methods
to insurance data.

6.1 Coherency

A coherent risk measure is a risk measure that satisfies a set of four axioms which re-
flect realistic properties of a risk measure. It is desirable that risk measures behave in
accordance to the properties that corresponds to how risk typically arises. Artzner et
al. (1999)[8] suggested that introducing coherency axioms to a risk measure upholds
this desirable behavior. These properties are monotonicity, subadditivity, positive
homogeneity, and translational invariance. The following is a presentation of these
axioms.
Consider a set G of real-valued functions defined on an appropriate probability
space. Let ρ : G → IR be a functional that is said to be a coherent risk measure if
the stated axioms are satisfied.
Translational invariance ensures that adding (subtracting) a sure amount β to
our initial portfolio X, decreases (increases) the risk measure by β:

ρ(X + β) = ρ(X)− β

Subadditivity is a natural requirement that, when upheld, states that the combined
risk of two portfolios can not exceed the risk of the two portfolios on their own. This
is closely connected with the principle of diversification. For all X1 and X2 ∈ G :

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2)
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Positive homogeneity for a risk measure refers to the risk of a portfolio being
proportional to the size of the portfolio. For all λ ≥ 0 and all X ∈ G :

ρ(λX) = λρ(X)

Monotonicity ensures that portfolios with greater future returns are less risky, or
at least not more risky than portfolios with lesser future returns. For all X1, X2 ∈ G

with X1 ≤ X2:
ρ(X2) ≤ ρ(X1)

6.2 Elicitability

The desirable and realistic behavior of a risk measure was the topic of coherency as
a framework. Being able to score and compare different methods is also of interest.
Elicitability is a mathematical property that finds its roots in decision theory, e.g.
in Savage (1971)[46], however formalized by Gneiting (2011)[29]. A risk measure ρ is
defined as elicitable if it can be defined by an expected scoring function. Elicitabiliy
is a desirable property for risk measures because it is closely connected with the
ability for backtesting, which is the process of periodically comparing forecast risk
measures with realized values of the variable of interest in order to try and assess
the accuracy of the forecasting. A risk measure ρ is called elicitable if there exists a
scoring function S, such that for any F ∈ F , the expected value E[S(x, Y )], where
Y is a random variable that follows distribution F , takes its unique minimum at
x = ρ(F ):

ρ = arg minxE[S(x, Y )]

Gneiting (2011)[29] finds that the ES (expected shortfall) is actually not elicitable,
while VaR (Value at risk) is. This can prove to become an issue when it comes to
attempts at model selection, estimation, forecast comparison and forecast ranking.
Backtesting becomes a more challenging task when the risk measure is non-elicitable,
and strict backtesting is impossible. However it has been shown for different mea-
sures like ES (Acerbi & Szekely, 2014)[1] that approximate backtesting is possible
in many cases.

6.3 Univariate risk measures

A risk measure being univariate means that the risk measure only depends on one
institution’s capital/loss/profit/etc., and is not affected by other exogenous factors.
The VaR (Value at Risk) is a risk measure formalized by Jorion (2000)[38] that,
given a confidence level, returns the minimum loss that can occur in a "worst case
scenario", which is defined by a confidence level τ , τ ∈ [0, 1]. If τ is the confidence
level, VaR corresponds to the 1− τ lower tail level of the distribution of gains/losses
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over a given time horizon. When Y is the random variable for the profit/loss func-
tion, VaR can be calculated by the inverse distribution function:

V aRτ = F−1
Y (1− τ) = ŷτ (6.1)

In the case of this thesis, we are not considering a profit/loss function, but simply
a loss function. In this case, positive values indicate a loss, whereas in the profit/loss
case, a positive value indicates profit. So, for the loss function Y , we define α = 1−τ
as the confidence level for a pure loss function. The definition of VaR then becomes:

V aRα = F−1
Y (α) = ŷα, (6.2)

and the focus is now shifted to the right tail of the realized observations. Figure (14)
shows the α = 0.90 VaR level (5.2847) on a loss function created by a normal distri-
bution with mean 4 and unit variance. For the remainder of section (6), we will be
discussing the VaR for the profit/loss function. VaR has been widely used to express
risk because it is easy to understand - there is only one number to consider, and it
takes into consideration that returns aren’t always distributed normally. However,
VaR does have its limitations. Namely that yields little information about what we
can expect when the losses exceed the VaR, and the fact that it is not a coherent
risk measure, as it is not subadditive. So, VaR does not take into consideration
that diversifying our portfolio usually means that we lower our risk. VaR has been
widely accepted and the most used risk measure for regulatory purposes. The Basel
Accords, which are recommendations on banking regulations issued by the Basel
Committee on Banking Supervision (BCBS), have in their first and second issue
(I and II) used VaR as their preferred risk measure for regulation of banks. This
choice went under much discussion, e.g. Acharya et al. (2017)[4] argued that VaR
was never meant to be used as a regulatory measure in that it doesn’t take into
consideration how the returns of financial institutions in the market react to total
systemic changes.

ES (Expected Shortfall), also called Conditional Value at Risk (CVaR) or Tail
Conditional Expectation (TCE) is a risk measure that is based on the VaR. Contrary
to VaR, ES has the desirable attribute of being coherent, see Acerbi and Tasche
(2002)[2]. ES is, given confidence level τ , the expected value of the profit/loss
function Y truncated below the V aRτ = ŷτ . Define the risk measure

ESτ = E[Y |Y ≤ ŷτ ] (6.3)

Equivalently, for the loss function with confidence level α, the ES is defined as
follows:

ESα = E[Y |Y ≥ ŷα] (6.4)
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Figure 14: VaR for a loss distribution at confidence level α = 0.90. The expectation
over the values of x within the red area is the ESα=0.90

This measure effectively answers the question "What is the expected return in
the (1 − τ)100% of worst cases?". The expectation over the values of x within the
red area is the ESα=0.90

In the latest issue of the Basel Accords, Basel III [10], expected shortfall has taken
the place of VaR as the preferred regulatory risk measure.

EVaR (Entropic Value at Risk) is a measure introduced by Ahmadi-Javid (2012)[5]
that is defined as an upper bound of the VaR and the ES, obtained by means of using
the Chernoff inequality. Ahmadi-Javid (2012)[5] discusses that there is a need for
EVaR because of the lack of coherency (subadditivity) of VaR, as well as the difficulty
to efficiently compute VaR and ES. The chernoff inequality, by Chernoff (1952)[18],
for a constant a and a random variable Y for which the moment-generating function
MY (z) = E(ezY ) exists for all z ∈ R is defined by:

P(Y ≥ a) = P(ezY ≥ eza) ≤ MY (z)

eza
,∀z > 0,

Define τ ≡ MX(z)
eza

and solve for a. with a confidence level τ ∈ [0, 1] :

aY (τ, z) ≡ z−1ln
(
MY (z)

τ

)
Here, for each z > 0, aY (τ, z) is an upper bound for VaR1−τ (Y ). Entropic value at
risk of Y for confidence level τ can now be defined as

EVaRτ (Y ) ≡ inf
z>0
{aY (τ, z)} = inf

z>0

{
z−1ln

(
MY (z)

τ

)}
,

which is the "tightest possible upper bound that can be obtained from the Chernoff
inequality" (Ahmadi-Javid, 2012[5]). Furthermore, he shows that EVaR is an upper
bound for both the VaR and the CVaR, making it a more risk-averse measure than
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the other two, which may make it less desirable to use for institutions that do
not wish to allocate more funds than necessary. However, the fact that EVaR is
computationally tractable in more cases than CVaR, and because it has the desirable
property of being coherent could make it a good contestant to VaR and ES.

6.4 Multivariate Risk Measures

Multivariate risk measures are a widely discussed topic, as they can help better cal-
culate risks, since they take into consideration more than the institution in question.
This can effectively mean that the risk measure takes into consideration J other in-
stitutions, or it might take into consideration how the system(e.g. the market) itself
affects the risk of the institution in question. In this thesis we do not include the
implementation of these multivariate risk measures to data, as this is beyond the
scope of the thesis, and the implementation requires some additional data which we
do not have access to for the insurance loss dataset we are considering. Nevertheless,
some multivariate risk measures are still presented here, as it could, in theory, be
applied to insurance data. Section (6.5) contains a short discussion on this choice.

CoVaR (Conditional Value at Risk) was introduced by Adrian and Brunner-
meier (2016)[50], and measures a single financial institution’s contribution to sys-
temic risk. ∆CoV aR is the difference between the CoVaR conditional on the insti-
tution being in distress and the CoVaR condtional of the institution’s median state.
For two confidence levels τj ∈ (0, 1) for j = 1, 2, CoVaR can be defined implicitly by

P(Yi ≤ CoV aR
τ1|τ2
i|j | Yj = V aRτ1

j ) = τ2

where Yi and Yj are the random variables corresponding to the profit/loss of
institutions i and j, and V aRτ1

j is the "univariate" Value at Risk for institution j.
In some cases, the institution i is instead denoted as a comprehensive index that
corresponds to the whole financial system. We say that there is a 100τ2% chance
that the institution i (or the financial system) is less than the CoV aRτ1|τ2

i|j within a
given time frame, given that the returns of institution j is at its 100τ1% VaR-level.
CoVaR gives us an important edge over VaR because it takes into consideration the
fact that the situations an institution find themselves in often has an effect on other
institutions, and vice versa. This difference allows us to analyze events like financial
crises, where tail-dependency between an institution and its financial system as a
whole is a measure of great interest for historical and predictive analysis. VaR, on
the other hand, focuses on the risk of an individual institution in isolation, and
largely neglects its connection to systemic risk.

Since we have the definition of CoVaR, it is natural to also look at the CoES
(Conditional Expected Shortfall). CoESτ1|τ2i|j is defined as the expected returns for
institution i, conditional on said returns being less than CoV aRτ1|τ2

i|j :
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CoES
τ1|τ2
i|j = E(Yi | Yi ≤ CoV aR

τ1|τ2
i|j )

or as defined in Bernardi, Maruotti & Petrella (2017)[11], the expected return of
institution i conditional on said return being less than its τ2-level VaR, as well as
the return of institution j equalling its "univariate" expected shortfall ESτ1j . The
last condition corresponds to institution j being in distress.

CoES
τ1|τ2
i|j = E(Yi | Yi ≤ V aRi,τ2 , Yj = ESτ1j )

In order for CoVaR and CoES to measure how much of the risk institution j con-
tributes to institution i (or the financial system) when institution j is in distress,
Adrian and Brunnermeier (2016)[50] introduces ∆CoV aR and ∆CoES. These mea-
sures are defined by the difference between the CoVaR (CoES) conditional on insti-
tution j being in distress and the CoVaR (CoES) of institution i conditional on the
institution j being at its median state. Defined by

∆CoV aR
τ1|τ2
i|j = CoV aR

τ1|τ2
i|j − CoV aR

50|τ2
i|j

∆CoES
τ1|τ2
i|j = CoES

τ1|τ2
i|j − CoES50|τ2

i|j

∆CoV aR and ∆CoES are directional, which means that swapping institutions
does not necessarily return the same value, e.g. switching from ∆CoV aR

τ1|τ2
i|j to

∆CoV aR
τ2|τ1
j|i where i is the whole financial system. In this case, the interpretation

of ∆CoV aR is completely different in that the question changes from "How does the
fact that institution j is in economic distress affect the risk of the whole system?"
to "How does it affect institution j’s returns that the whole financial system is in
distress?"

MES (Marginal Expected Shortfall) (Acharya et al. 2017 [4]) was developed as
a way to analyze systemic risk of an economy. By looking at the whole economy’s
returns as a weighted sum of the individual institution’s returns, where each institu-
tion i’s weight ωi holds information about the influence it has over the economy. The
returns of the system Y gets decomposed into the sum of each of the institutions’
returns yi, so that Y =

∑
i ωiyi. From the definition and properties of expected

shortfall we get the ES for the whole sum

ESτ =
∑
i

ωiE[yi | Y ≤ ŷτ ]

and taking the change in overall ES with respect to the weight of each institution
i

MESiτ ≡
∂ESτ
∂ωi

= E[yi | Y ≤ ŷτ ]

55



6.4 Multivariate Risk Measures 6 RISK MEASURES

is called the marginal expected shortfall (MES) of institution i. This mea-
sures the marginal contribution of the institution i to systemic risk. Acharya et
al. (2017)[4] explain that they saw the need for a risk measure that took into con-
sideration effects on systemic risk, particularly because the regulatory precedent at
the time set by the Basel I and II frameworks did not.

Long-run MES (LRMES) was introduced by Acharya, Engle & Richardson (2012)[3]
as the mean of the returns of the institution over a given time (typically six months),
restricted to only the cases where the system index drops below a certain crisis-
threshold C. LRMESi,t is the long-run MES of institution i over a given time
interval h, defined as

LRMESi,t = Et(Yi,t+1:t+h | Ym,t+1:t+h < C)

where Ym,t+1:t+h is the return of the market between times t + 1 and t + h, and
Yi,t+1:t+h is the return of institution i over the same time interval.

SRISK was discussed by Brownlees and Engle (2016)[14], and is defined as the
expected shortfall on the capital of a financial institution conditioned on a systemic
event, which is mostly a prolonged market decline.
Capital shortfall is here, for institution i of N total financial institutions in the
system, defined as the capital reserves the institution needs to hold depending on
its regulation minus the institution’s equity. For time t, capital shortfall is defined
by Brownlees and Engle (2016)[14] as

CSi,t = kAi,t −Wi,t = k(Di,t + Wi,t)−Wi,t

where, for institution i at time t, Wi,t is the market value of equity, Di,t is the
book value of debt, Ai,t is the value of quasi-assets and k is the capital fraction of the
assets that the institution can use, depending on regulatory or prudential decisions.
When this value is positive (there is capital shortfall), the institution is experiencing
financial distress. Finding the expectation of this value given a systemic event is
the aim of SRISK. A systemic event is defined as a total market decline below a
given threshold C over a given time period h, for this risk measure. SRISK is then
defined, first symbolically by Acharya et al. (2012)[3] as

SRISKi,t = Et−1(Capital Shortfalli | Crisis)

and formally as

SRISKi,t = Et(CSi,t+h | Ym,t+1:t+h < C)

= kEt(Di,t+h | Ym,t+1:t+h < C)− (1− k)Et(Wi,t+h | Ym,t+1:t+h < C)
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We assume that the debt remains constant over the given period of incurred
crisis, so Et(Di,t+h | Ym,t+1:t+h < C) = Di,t. It is normal during crises that one
cannot renegotiate debt, and the amount of short-term loans decreases. From this
assumption, it follows that

SRISKi,t = kDi,t − (1− k)Et(Wi,t+h | Ym,t+1:t+h < C)

= kDi,t − (1− k)Wi,tEt
(
Wi,t+h

Wi,t

| Ym,t+1:t+h < C

)
= kDi,t − (1− k)Wi,t(1 + LRMESi,t)

= Wi,t(kLi,t − (1− k)LRMESi,t − 1)

where Li,t is the quasi-leverage ratio Di,t+Wi,t

Wi,t
of institution i at time t.

SRISK differs from other risk measures because it does not only depend on the
volatility, correlation or other moments of equity return for an institution, but it
also depends on the size and degree of leverage the institution holds. It also depends
on the long-run expected shortfall over a given time period conditional on a market
decline. The measure can provide a prediction of the degree of capital shortfall an
institution would experience in the case of a systemic event.

In order to use SRISK as a way to measure total systemic risk for the entire
financial system, we sum the positive values of all individual institutions in the
system’s SRISKs

SRISKt =
N∑
i=1

(SRISKi,t)+.

Sometimes, it is beneficial to look at the share each institutions systemic risk
has on the financial system, which can be defined as the percentage SRISK:

SRISK%i,t =
SRISKi,t

SRISKt

, for SRISKi,t > 0

Brownlees and Engle (2012)[14] argue that SRISK is a superior risk measure to
the MES-framework developed by Acharya et al. (2017)[4] because SRISK can be
estimated without structural assumptions and it does not require the observation of
a realization of a systemic crisis, while MES does. Thus, SRISK improves on MES
in that it can be used for ex-ante analysis.
Another way SRISK differs from many other risk measures is that it does not only
depend on moments of the returns of the institutions in the market, but it also ex-
plicitly takes into consideration exogenous variables about the institutions. Namely,
it depends on the size and the degree of leverage the institutions have on the finan-
cial system.
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MCoVaR Multiple-CoVaR (Bernardi et al. 2017[11]) is a generalization of
CoVaR in that it takes into account interconnections among all market participants,
whereas CoVaR is a pairwise measure that only explains the risk of an institution/the
market conditional on one other institution/the market being in distress. During
financial crisis, it is likely that more than one institution is experiencing instances
of distress. Bernardi et al. (2017)[11] thus saw the need for MCoVaR and MCoES
which takes into consideration that more than one institution can be in distress,
and more than one institution can be at the median state. Here, we have a set
of p total institutions S = {1, 2, . . . , p}, and the set of d institutions in distress is
JD = {j1, j2, . . . , jd} ⊂ dCp−1, d ≤ p−1, where dCp−1 is the set denoting all possible
combinations of p− 1 elements from d. JN = JD is the set of all institutions being
at their median state. We then define the MCoVaRτ1|τ2

i|JD as the multiple CoVaR,
where τj ∈ (0, 1) are confidence levels for j = 1, 2. This can be interpreted as
the value at risk of institution i ∈ S at confidence level τ1, conditional on the set of
distress-institutions JD being at their individual V aRτ2-level, and the set of median-
level-institutions JN being at their median V aR0.5-level. The vector of returns for
the p total institutions is Y = (Y1, Y2, . . . , Yp). The VaR-values corresponding to
institutions being in distress are given by ŷτ2JD = (ŷτ2j1 , ŷ

τ2
j2
, . . . , ŷτ2jd ), and the VaR-

values corresponding to institutions being in their median state are given by ŷ0.5
JN =

(ŷ0.5
d+1, ŷ

0.5
d+2, . . . , ŷ

0.5
p−1). MCoVaR is then defined implicitly by

P(Yi ≤ MCoVaRτ1|τ2
i|JD | YJD = ŷτ2JD ,YJN = ŷ0.5

JN ) = τ1,

for i = 1, 2, . . . , p

Due to the lack of coherency(subadditivity) in VaR and CoVaR, it is natural to
extend the scope of MCoVaR to MCoES. MCoES is defined very similarly, and
can be viewed as a generalization of CoES (Adrian and Brunnermeier, 2016) that
takes the pairwise measure and extends it to include several, or all, institutions
in the market. We wish to define the multivariate expected shortfall that is con-
ditional on the distress-institutions JD being at their marginal distress-ESτ2-level
ψ̂yJD(ŷτ2JD) =

(
ψ̂yj1(ŷ

τ2
j1

), ψ̂yj2(ŷ
τ2
j2

), . . . , ψ̂yjd(ŷ
τ2
jd

)
)
, and the median-institutions being

at their marginal median-ES0.5-level ψ̂yJN (ŷ0.5
JN ) =

(
ψ̂yjd+1

(ŷ0.5
jd+1

), . . . , ψ̂yjp−1(ŷ
0.5
jp−1

)
)
.

The MCoES for institution i = 1, 2, . . . p given confidence level τ1 and returns
Y = (Y1, Y2, . . . , Yp) is then given by

MCoESτ1|τ2i|JD = CoESτ1

(
Yi | YJD = ψ̂yJD(ŷτ2JD),YJN = ψ̂yJN (ŷ0.5

JN )
)
.

The introduction of MCoVaR and MCoES-measures extend the perspective of
systemic risk measures entirely. The risk measures do not only consider how one
institution reacts to a systemic event, or conversely how one institution’s leverage
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affects the degree of a systemic event in the market. Bernardi et al. (2017)[11]
finds that, when combining these measures for all p institutions into an overall
systemic risk indicator that attributes the risk to the individual institutions, the
resulting measure does explains movement during financial crises well when applied
to market participants of the Standard & Poor’s 500 index (S&P500). MCoVaR
and MCoES do not, however, take into consideration other exogenous information
like how SRISK utilizes the size and leverage of the institutions.

6.5 Application to insurance data

In the section covering empirical analysis of data (7), we only consider and compute
the Value at Risk and Expected Shortfall risk measures. There are several reasons
behind this choice. Firstly, we are only considering a single univariate time series,
and the multivariate risk measures can only be computed when there are more similar
institutions, or some measure of the system the institutions belong to, that exhibits
similar data in the same time period as our institution. We still choose to include
the presentation of the different multivariate risk measures, as we can imagine a
case where it would apply to insurance data. For example, imagine a scenario where
we had access to several time series from different insurance companies that contain
losses associated with fire damages, where all data is from the same country over
the same time period. In the case of some large-scale wildfire, we imagine that the
increase of insurance claims paid out by institution i, who is closer to the fire, could
affect the future risk associated with the claims of institution j, who is farther away.
Another reason for not calculating the multivariate risk measures is that the VaR
and ES are the most widely used risk measures, with the simplest interpretation and
generally has the highest applicability. VaR and ES-values are also computed in the
paper of Eling (2012), which gives grounds for comparison of these risk measures.
Lastly, several of the multivariate risk measures are beyond the scope of this thesis
to calculate, as there are no readily available programming-methods available to the
public.
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7 Data & Results

In the theoretical analysis of this thesis, time series models have been introduced,
and the (G)ARCH model has been extended to the more advanced Markov-switching
GARCH model, which is expected to be able to capture more intricate behaviors
in our time series as it is a more flexible method. In particular, we expect the
MSGARCH-extension to be able to capture the behavior of the shocks in the data
better than the single-regime (G)ARCH-model. Introducing the ability to alter
the structure of the conditional volatility, as well as different specifications of the
conditional distribution should further allow us to improve our model fit. In this
section, these claims will be put to the test, as the several possible models will
be applied to a dataset, and then these models will be compared in performance.
We will also be comparing our results with the results of another paper, "Fitting
insurance claims to skewed distributions: Are the skew-normal and skew-student
good models?" by Eling (2012)[21]. Eling’s paper attempts to fit skew-normal and
skew-Student-t distributions to the same dataset which is used in this thesis, and
concludes that the two models are reasonably good models compared to 18 other
benchmark models. Comparison to this paper can give us some valuable insight
into whether or not using Markov-switching GARCH models on insurance datasets
can yield better model fit than simply fitting the data to a distribution. The most
important distinction between the methods applied here and in Eling’s paper is
that Eling’s paper does not take the aspect of time into consideration for fitting
the models, while this thesis views the insurance losses as a time series. Section
7.1 contains a presentation and discussion of our dataset, section 7.2 discusses the
R-package MSGARCH and section 7.3 contains the construction and comparison of the
models.

7.1 Data

The data used in this thesis is comprised of Danish fire reinsurance losses, which
was first presented in Embrechts, Klüppelberg & Mikosch (1997)[22]. In section
(2.3), this dataset was also used in the discussion of insurance time series, and in
this section we will formally introduce it. The dataset consists of several variables
that comprise different parts of the total individual losses. We are only applying our
models to a time series of the total losses. The total losses are 2,167 observations of
individual losses above 1 million Danish kroners (DKK), in the time frame January
3rd 1980 to December 31st 1990. The data is adjusted for inflation in order to
portray 1985 values. The dataset is available through a great deal of R-packages,
including in CASdatasets, where the univariate version of the dataset is named
danishuni. We take a look at the first 6 values of the dataset:
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> head(danishuni)
Date Loss

1 1980-01-03 1.683748
2 1980-01-04 2.093704
3 1980-01-05 1.732581
4 1980-01-07 1.779754
5 1980-01-07 4.612006
6 1980-01-10 8.725274

The first thing we notice is that each entry is one individual claim, and therefore
the Date-variable does not have constant increments between each observation, and
there may even be more than one observation on the same date. This, however,
is not necessarily a problem, as none of the methods presented are severely af-
fected by non-constant time increments. Figure (15) displays the time series of the
data. When discussing the applicability of conditional structure models in section

Figure 15: This figure shows the original Danish fire insurance losses data from
January 3rd 1980 to December 31st 1990

(2.2.2), we recall that there are two major models to be considered, i.e. ARMA and
(G)ARCH. A good pointer for whether we should use ARMA, GARCH or both is to
examine serial correlation for the original data, as well as the log-data. The sample
autocorrelation and sample partial autocorrelation of the original and log data is
shown in Figure (16) This figure shows little evidence, if any, to prove that there
exists serial correlation in the non-squared dataset. We therefore do not believe
that fitting an ARMA-model to our data will significantly improve our model fit.
Recall that the example French insurance dataset from section 2 did, in fact, show
significant serial correlation on the non-squared data. We can therefore not claim
anything about whether or not the general insurance loss time series exerts serial
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Figure 16: a) & b) is the sample ACF and PACF of the original data. c) & d) is
the sample ACF and PACF of the log data. All plots are shown up to 50 lags.

correlation or not. Because of this result for the Danish data, we decide to continue
the discussion on the de-meaned data instead of the original data, as we have only
defined the (G)ARCH models for the zero-mean case for simplicity. Checking for
serial autocorrelation on the squared de-meaned data helps us to see if there exists
conditional heteroskedasticity-effects in the data, and therefore allows us to make
a decision on if (G)ARCH-models are applicable to our situation. We recall that
the McLeod-Li test (Equation 2.14) can give us an idea about the existence of any
ARCH effects in the data. The McLeod-Li test on the danish fire data is displayed
in Figure (17) below.
This figure actually diminishes the probability of the original data having any

heteroskedasticity in the variance, as none of the lags are remotely close to being
significant. The log of the de-meaned data, however, does show that the first two
lags are significant in the test. Therefore, the original data seems to not show much
serial dependence at all, and we do not expect the GARCH-model to give a sig-
nificant improvement over standard regression used in Eling’s paper. The log data
might improve on Eling’s results, though, as some of the ARCH-effects should be
caught by the models. This is the motivation behind using (G)ARCH models for
this dataset, although the motivation is not as strong as we see in most financial
time series, e.g. the SMI-example from Figure (5).

We now shift our focus to the shape of the distribution of the insurance losses,
which is thoroughly discussed in Eling’s paper, and the basis for choosing skewed
models to model the data. Figure (18 c and d) visualises the histograms of the
de-meaned original data, as well as the de-meaned log data.

We see what is usually the case for insurance loss datasets, i.e. a large amount of
small claims, with some large shocks that result in a heavy right tail and negative.
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Figure 17: In this figure, the McLeod-Li test for the original data (a), and the log
data (b) is displayed. The green dotted line indicates the area of significance.

Figure 18: This figure contains a time series representation of the de-meaned Danish
fire reinsurance dataset (original a, log b), and the histogram of the same data
(original c, log d)
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Since the original data is absolutely positive (≥ 1), we obviously observe some
positive skewness in the data. The sample skewness and kurtosis of the data is
checked:

> c(skewness(Total.dm), skewness(log.Total.dm),
kurtosis(Total.dm), kurtosis(log.Total.dm))

[1] 18.736849 1.761092 482.197970 4.179029

Both the original data as well as the log data shows positive skewness, especially for
the original data. We also have that kurtosis is larger than for a normal distribution
(>3) for both, making the distribution leptokurtic. This is again especially the case
for the original data case. These findings, in addition to viewing the example PDFs of
normal, skew-normal, Student-t, skew-Student-T, GED and skew-GED from Figure
(8 & 9), we start to get a sense that non-skewed models are not suitable for fitting
our data. We also do not believe that the skew-normal distribution is able to catch
enough of the kurtosis that the insurance dataset displays. The skew-Student-t and
the skew-GED distributions, however, are expected to reproduce the data much
better.
So far, the applicability of (G)ARCH-models and the conditional distribution herein
has been discussed. The conditional variance structure models that was presented
in section 3.2.1 will all be utilized when fitting our models, and we expect the
gjrGARCH and the tGARCH models to perform the best, simply because they are
both more complex specifications that can account for asymmetry in the conditional
variance. We assume that the time series consists of two distinct regimes, one
which catches the majority of the small claims, and one which catches the shocks.
In addition to this, we will be fitting single-regime GARCH models to examine if
extending to the two-regime (K = 2) case will improve our model fit. This all
culminates into a few questions which we are attempting to answer in the upcoming
sections:

• Are we improving our model by taking into consideration the possible ARCH-
effects of the data?

• What conditional distribution best fits the data?

• What conditional variance structure best fits the data?

• Does model fitting increase results when assuming two distinct regimes?

• Which model can predict the most realistic tail behavior?
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7.2 MSGARCH

The R package MSGARCH1, developed by Ardia, Bluetau, Boudt, Catania & Trot-
tier (2019)[7] will be used to carry out our model specification, model fitting and
prediction. The package is quite comprehensive, as it allows for fitting of Markov-
switching GARCH(1,1) models, as described by Haas (2004)[32], with a large variety
of specifications of the model. The package has no equation for the mean, so having
a de-meaned time series as observation variable is a requirement for a competitive
model fit. Following is an explanation of the main functions which are used:

CreateSpec

CreateSpec(
variance.spec = list(model = c("sGARCH", "sGARCH")),
distribution.spec = list(distribution = c("norm", "norm")),
switch.spec = list(do.mix = FALSE, K = NULL),
constraint.spec = list(fixed = list(), regime.const = NULL),
prior = list(mean = list(), sd = list())

)

This function is used to create the specification which we wish to fit to our model
data. variance.spec contains a vector of K different specifications of the condi-
tional volatility, which can take values "sARCH", "sGARCH", "gjrGARCH, "tGARCH"
and "eGARCH", which we do not use. distribution.spec contains a vector of K dif-
ferent conditional distribution specifications, which can take values "norm", "std",
"ged", "snorm", "sstd" and "sged". The i’th entry of this vector corresponds
to the i’th entry of the variance specification vector. do.mix = FALSE indicates
that we are fitting a Markov-switching model instead of a mixture GARCH model.
constraint.spec is used when we wish to fix, or keep constant, some of the pa-
rameters.

FitML

FitML(spec, data, ctr = list())

This function uses a specification created by CreateSpec in combination with a vec-
tor of the data in order to fit a ML-estimation of the parameter vector, as explained
in sections 5.2 & 5.3. The function returns optimized values of the parameters, the
transition probability matrix, the stable probabilities of being in a given state, the
value of the maximized log-likelihood value and the AIC of the model.

predict

predict(
object,
newdata = NULL,
nahead = 1L,

1 https://CRAN.R-project.org/package=MSGARCH
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do.return.draw = FALSE,
do.cumulative = FALSE,
ctr = list(),
...

)

This is a function that performs h-step-ahead predictions as in section 5.5. object
is the fitted object from FitML, newdata = NULL indicates that we are doing predic-
tions based on the original data and nahead is the amount of steps-ahead predictions
we wish to compute. do.return.draw = FALSE indicates that the function does not
return a value for yT+h, but only returns the conditional volatility hsT+1,T+1. In our
case, we change this to TRUE, as we are interested in predicting one-step-ahead VaR
and ES, which is based on the draws. In the ctr argument we can define the number
n of simulations to be carried out. nsim defaults to 10000.

simulate

simulate(object,
nsim = 1L,
seed = NULL,
nahead = 1L,
nburn = 500L, ...)

This function is only used here for visualization purposes. The function creates n
amounts of h-step ahead simulated paths.

7.3 Model fitting & results

In this section, all the mentioned models are fitted for both original data and log
data. Four of these are used for visualization purposes, while the key values of all
models are compared later in the section. The four example models are:

• the one-regime ARCH with normal distribution

• the two-regime GARCH with Student-t distribution

• the two-regime GARCH with skew-Student-t distribution

• the two-regime tGARCH with skew-GED

Appendix A contains the R code that is used for the two-regime tGARCH model
with skew-GED. Note that the same methods are applied to every other considered
model.
Tables (3 & 4) contains the values of the transition probabilities, the fitted pa-
rameters and the AIC of these four models as they have been fitted through ML-
estimation. We do not display the parameters estimations of all the models, as there
are a too large amount of parameter estimates to feasibly show them.
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ORIGINAL DATA - Comparison of parameters, transition probabilities and AIC
MS1 ARCH NORM MS2 GARCH T MS2 GARCH S-T MS2 tGARCH S-GED

P -

[
0.9298 0.0702

0.9010 0.0990

] [
0.9954 0.0046

0.7966 0.2034

] [
0.9462 0.0538

0.9131 0.0869

]
α0,1 69.7 3.3674 8.9404 0.1074
α1,1 0.0 0.0 0.0 0.0
α2,1 - - - 0.0001
β1,1 - 0.0093 0.7943 0.9627
ν1 - 99.9778 0.0001 0.7083
ξ1 - - 6.4530 38.2273
α0,2 - 137.5088 2211.8726 29.8576
α1,2 - 0.0 0.0025 0.0006
α2,2 - - - 0.0216
β1,2 - 0.9167 0.9474 0.0766
ν2 - 2.1552 2.1001 0.7033
ξ2 - - 0.1808 0.7118
AIC 15425.36 10218.26 7212.48 7172.13

Table 3: Values for the probability matrix, the model parameters and AIC corre-
sponding to the four example models which are fitted to the original data.

LOG DATA - Comparison of parameters, transition probabilities and AIC
MS1 ARCH NORM MS2 GARCH T MS2 GARCH S-T MS2 tGARCH S-GED

P -

[
0.8675 0.1325

0.8815 0.1185

] [
0.9985 0.0015

0.7907 0.2093

] [
0.9576 0.0424

0.0076 0.9924

]
α0,1 0.4994 0.0001 0.0068 0.0075
α1,1 0.0267 0.0007 0.0001 0.0001
α2,1 - - - 0.0580
β1,1 - 0.9988 0.9817 0.9651
ν1 - 99.9633 24.9297 0.9427
ξ1 - - 91.2613 21.9491
α0,2 - 1.8601 108.1350 0.0042
α1,2 - 0.9999 0.0009 0.0019
α2,2 - - - 0.0065
β1,2 - 0.0 0.4792 0.9914
ν2 - 99.6136 2.1001 1.0416
ξ2 - - 88.1383 12.7597
AIC 4701.98 4377.38 3382.93 3140.56

Table 4: Values for the probability matrix, the model parameters and AIC corre-
sponding to the four example models which are fitted to the log data.
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There are many things to examine from these tables. Firstly, the transition
probability matrix is actually quite similar in almost all of the models, i.e. very
high probability of staying in state 1, and a high probability of returning to state 1
when in state 2. This translates well to what we already assumed about the data,
i.e. that the longer periods of low volatility and small claims corresponds to state 1.
State 1 is much more abundant than state 2 which should contain the shocks. The
only deviation is the two-regime tGARCH skew-GED model for the log data, which
has high staying-probability for both states, and especially state 2. The reason be-
hind this is that the volatility regimes are much less apparent in the log data than
they are in the original data, so the models have a more difficult time catching the
regimes. The effect of the shocks are more or less diminished by taking the log of
the data.

For the original data, the conditional volatility intercept α0,2 appears, as ex-
pected, quite high for all the two-state models, since the sudden shocks are dis-
proportionately large compared to the claims in state 1. α1,j, the direct effect of
the previous claim on the conditional volatility, is almost zero for most models. The
models which have smaller α1,j typically have larger β1,j, i.e. the persistence of these
very small effects is high. For the model with high α1,2 (two-regime GARCH T), the
corresponding β1,2 is low, i.e. the persistence of these large effects is low. Both these
kinds of combinations of the parameters α1,j and β1,j can have similar effects in on
end results, i.e. the effect the previous observation has on the conditional volatil-
ity is either quite small, or has quite small persistence. Thus, the applicability of
(G)ARCH models, especially for the original data, will only slightly improve model
fit, as the effects of this addition are small for most models.

The shape parameter νj for these models generally show leptokurtic tendencies.
For the two-regime GARCH with skew-T distribution, ν1 and ν2 are sufficiently
low to not behave like the normal distribution. For the two-regime tGARCH with
skew-GED, ν1 and ν2 are clearly lower than 2 which corresponds to the normal dis-
tribution. ν1 for the two-regime MS2 GARCH student-T distribution on the original
and log data is quite high with values around 99, so these models are fairly close to
normal.

The skewness parameters ξj in the two models with skewed distributions are all
quite high for both regimes, with the exception of ξ2 for both models when estimat-
ing the original data. In these two cases, ν2 is < 1, and therefore exerts left skewness.

The AIC-values reflect mostly what we already assumed; the more complex mod-
els outperform the others, especially the models that admit skewness. There might
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be a slight advantage for the tGARCH skew-GED compared to the GARCH skew-T.
This might be because the insurance data shows evidence of having the "cusp" at
the most frequent values, especially for the original data.

To better understand how well these four different models fit the original data
and the log of the original data, we simulate 500-steps ahead for each model and
combine these 500 values with the last 1000 values of the dataset. Figure (19)
displays these two time series together, which allows us to see if the model has any
big flaws in the specification.

Figure 19: Plot of the 500-step simulation of the eight models (blue) in combination
with the last 1000 observations of the dataset (black)

We can obviously see in the simulation of the original data the importance of
adding skewness-distributions, as the first two model specifications (a - d) does not
capture the skewness at all, and therefore predicts values that are much too low
to fit the data, which originally were all larger than or equal to 1. It seems that
the two-regime GARCH with Student-t distribution outperforms the single-regime
normal distribution quite a lot, as expected. As for the two-regime skewed models,
it may seem that the skew-GED model is better at capturing the size of the shocks,
while it sometimes wrongly predicts the direction of the skewness.
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As another method of graphically comparing the models, we create one-step
ahead predictions and simulate this prediction process 100,000 times, and then vi-
sualize the histograms in conjunction with the histograms of the original data. This
better shows the shape of the distributions in use. Figure (20) contains these his-
tograms for our four example models, where the red histogram corresponds to the
original data.

Figure 20: Histograms of the considered models’ one-step ahead predictions, for
both original and log data. i) and j) in red are the histograms of the original data.
We have set the limits to better view the shape of the predicted values, and thus
some of the values are out of bounds.

Viewing the figure yet again confirms the notion that skewed distributions are
better for our candidate models. The figure leaves out values on the x axis (< −20

& > 70) for the original data and (< −4 & > 7) for the log data, so that it is easier
to scope the shape of the distributions. These histograms, however, does not give a
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V aR.99 Original ES.99 Original V aR.99 Log ES.99 Log
MS1 ARCH NORM 19.82 22.65 1.67 1.90
MS2 GARCH T 15.45 33.03 2.17 2.81
MS2 GARCH S-T 15.95 35.37 1.88 2.49
MS2 tGARCH S-GED 20.68 33.90 2.80 3.59
Empirical 22.66 55.20 2.47 3.03

Table 5: 99% Value-at-Risk and Expected Shortfall-values for the original and
log-fitted models.

good depiction on the effect of having several regimes in the model, as these effects
mostly come into play for the fewer, larger values (i.e. the tail). Instead, taking
these same one-step-ahead predictions and calculating the VaR and ES from these
gives us a better idea on how the tails of the models behave.

The empirical 99% Value-at-Risk for the original and log de-meaned data are
22.66 and 2.47 respectively. The 99% ES-values are 55.20 and 3.03. Naturally, if the
VaR and ES from a predicted model is close to the empirical values, one can assume
that the model has a fairly good tail fit. This is especially the case for VaR and
ES-values with confidence levels close to 1, as these values tend to have much more
inaccuracy, as there are fewer, more volatile values in the end of the tail. Table (5)
contains the relevant values for the four example models.

From what we observe in the table, it seems that none of the models give entirely
bad values for the 99% VaR and ES-approximations. We notice that the single
regime normal distribution has a much too small jump from its VaR-value to its
ES-value. This is expected, since the normal distribution not only doesn’t take
heavier tails into consideration, but it also does not have a second regime that can
catch the more extreme values. The other three models, however, are much better
at catching the effect of the few extreme claims. All models seem to underestimate
the empirical values of the original data, especially for the expected shortfall. Out of
these four models, it seems that the two-regime GARCH skew-T model and the two-
regime tGARCH skew-GED model performs the best, which reflects all the previous
observations we have made so far in this process. This table is extended to include
all candidate models in the next section.
Figure (21) displays all example models’ plotted VaR and ES values for both original
and log data. The x-axis is the confidence levels between 90% and 99.95% for VaR
and ES. The black line represents the empirical values of the VaR and ES for the
varying confidence levels.

On the original data (a and c), we notice that the relative differences between
the example models and the empirical values is not actually that large for all the
models except the single-regime normal-ARCH, which generally underestimates the

71



7.3 Model fitting & results 7 DATA & RESULTS

Figure 21: Value at Risk and Expected Shortfall for various confidence levels.

values at higher confidence levels. Most of the models are quite adequate at being
able to follow the sudden increase in tail risk as the confidence level grows. Another
thing to note is how, for the Expected Shortfall values (c, d), there appears to be a
more significant estimation error than for the VaR values. This is attributed to the
fact that there is much less information in the outer tails of the data, resulting in
less accurate estimation. Appendix B contains these plots for all contending models.
This concludes the process of estimation, prediction and calculation of risk measures
for these four example models. We take a look at the results of all the models below.

7.3.1 Results

Eling (2012)[21] fitted skew-normal and skew-Student-t models on the original data
and the log-data, while this thesis has used the de-meaned versions of these. AIC-
values of Eling’s regression models do not change when shifting the mean of the func-
tions, and therefore those models have here been re-fitted on the de-meaned data,
in order to ease the comparison-process. In addition to the skewed models, Eling
also compared his findings with 18 benchmark models using different distributions.
We will include some of them here, i.e. the exponential(exp)-, chi-squared, cauchy-,
gamma-, normal-, logistic-, log-normal-, Student-t, Weibull-, symmetric/asymmet-
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ric hyperbolic(S-Hyp & A-Hyp)-, symmetric/asymmetric generalized hyberbolic(S-
Ghyp & A-Ghyp)-, symmetric/asymmetric NIG(S-NIG & A-NIG)- and symmet-
ric/asymmetric variance gamma(S-VG & A-VG)- distributions. These different
models have been estimated through the R packages sn (Azzalini, 2020)[9], ghyp
(Luethi & Breymann, 2016)[43] and MASS(base R). As for the models considered in
this thesis, we have fitted one-regime models for each combination of conditional
distributions and conditional volatility specification, and we have fitted all combi-
nations of two-regime models where both regimes are specified the same way, as not
to get hundreds of models. Tables (6, 7, 8 & 9) include all log-likelihood values and
AIC-values for the considered models.
For the original data, our models do not beat the skew-Student-T model of Eling in
model fit. If we recall the discussion of the data in section (7.1), we could not bring
forth any evidence of ARCH-effects in the data, so a simpler skewed model with
fewer parameters will expectedly outperform our models, which are all fitting some
kind of (G)ARCH-effects in addition to the conditional distribution. Adding the
second regime to the model has not done enough to improve the model fit in general
for the original data. Nevertheless, the two-regime models on the original data gen-
erally outperform their single-regime counterparts, if only just slightly. This result
is also reflected in the estimated conditional volatility parameters for the original
data models, as α0,i, α1,j, α2,j and β1,j generally yield insignificant effects, similarly
to how the conditional volatility parameters in the four-model example were quite
insignificant.
For the log of the original data, however, several of the fitted MS-models improve
on the best model of Eling. These models are the one-regime tGARCH with skew-
GED conditional distribution, and several of the two-regime models with skewed
distributions. Notably, the two-regime tGARCH with skew-GED conditional distri-
bution appeared to have the best model fit. In general, the most advanced models
with more parameters did better for the log case, which is not so strange. With a
medium-large dataset and still not a tremendous amount of parameters, the pun-
ishment for choosing a more complex model is not that severe.
We also wish to say something about the shape parameters νj and ξj for the different
models. For both the original and the log data, all the skewed-models actually pro-
vided values larger than 1 for ξ1, which is a good indication that the model has been
able to capture the effect of right-skewness in the main regime. For the models with
two regimes, the values of ξ2 greatly differ between left-skewness and right-skewness.
This is probably because of the small amount of observations which are allocated to
the second regime.
The kurtosis-parameter νj in the specification of the skew-Student-t distributions
for the original data appears to get quite close to 2 for most models and irregard-
less of regime-choice, which signifies that these methods are estimating some quite
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extreme tails in both regimes. Even on the log data, most of the models have quite
low νj-values for the skew-Student-t distributions, as most models appear to have
νj-values around 4, which still signifies quite a heavy tail. As for the skew-GED,
the νj parameter tells a similar story, as the νj-values of the models on the original
data stay around 0.5, and on the log data stay around 1.3, both of which signifies
quite heavy tails, as seen in Figures (8) and (9).

We wish to examine the tail behavior next. Table (10) contains the 99% VaR
and ES-values for all of the contending models, and some select models from Eling
(2012), including the skew-normal and skew-Student-T distributions. Notably, all
of the one-regime MSGARCH-models underestimate the empirical VaR and ES for
the original data, while their two-regime counterparts have, in general, a better fit
at the 99% confidence level. This effect is seen especially for the ES of the original
data, where almost all of the two-regime MSGARCH models outperform any of the
one-regime MSGARCH models, as well any of the models from Eling (2012). Here
we see the clear advantage that Markov-switching models yields when describing
tail behavior for this insurance data, since the additional regime seems to be able to
capture the large shocks in the tail better than through fitting the data to a skewed
model. As we recall, the log data has much less pronounced shocks, and therefore
the effect of adding a second regime to the model seems to barely improve the VaR
and ES estimates compared to the empirical value. Still, the values are quite good
for most of the MSGARCH-models compared to the benchmark models, the skew-
normal and the skew-Student-t. The MSGARCH-models that use skew-Student-T
and skew-GED as their conditional distribution does particularly well.
Visualizing how the models of this thesis and the models of Eling (2012) behave for
90% to 99.95% VaR and ES is done in Appendix B. We can make some remarks
about what is seen in this compilation of plots:

• On the original data, almost all of the benchmark models, as well as almost
all of the one-regime MSGARCH-models, severely underestimate the VaR and
ES at the very end of the tail. The main exception is the Skew-T distribution,
which quite largely overestimates the VaR and ES in the end of the tail. None
of these mentioned models fit the data particularly well. Some of the MS1
skewed models, and most of the MS2 models, however, fits the data much
better, and are a lot better at catching the effect of the large shocks at the
very end of the tail. In particular, the one-regime MSGARCH models with
skew-Student-t distribution, as well as almost all of the two-regime MSGARCH
models with skewed distributions does significantly better than the skew-T and
the rest of the models for the original data.

• On the log data, most of all the models perform much better than on the
original data, since there are more similar observations in the tail. It seems
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that the skew-T, the Weibull, the exponential and the Gamma distribution-
models do particularly well out of the regular model fits. For the MSGARCH-
models, there is a large divide between the models that perform poorly, i.e.
the models fitted with conditional distributions norm, std, ged or snorm,
and the models which perform well, i.e. the models fitted with conditional
distributions sstd or sged. There seems to be not much difference between
the one-regime models and their two-regime counterparts for the log data, but
the two-regime models do seem to perform a little bit better. Some MSGARCH
models perform outstandingly well for the log data, e.g. the one-regime ARCH
model following skew-GED and its two-regime counterpart, and the big winner:
The two-regime GARCH model following the skew-GED.

• It appears that the choice of conditional variance structure does not seem to be
much of a deciding factor for most models. This supports what we discussed
earlier about adding the (G)ARCH-specification only having a slight effect on
the model fit, especially for the original data.

This concludes the presentation of the results.
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7.3 Model fitting & results 7 DATA & RESULTS

VaR0.99 ORIGINAL DATA
K=1 norm std ged snorm sstd sged Skew-norm 20.39
ARCH 19.88 9.21 12.03 15.16 12.56 11.35 Skew-t 4.75
GARCH 19.68 9.07 11.96 15.02 13.59 11.52 Chi-squared 11.52
gjr 18.55 8.94 10.61 12.68 13.59 12.00 Gamma 12.00
t 15.34 9.09 10.70 9.93 14.67 11.51 Normal 19.74
K=2 norm std ged snorm sstd sged Exp 12.27
ARCH 19.47 15.54 12.85 39.31 19.59 13.45 Log-normal 8.21
GARCH NA 15.53 12.85 NA 15.85 11.41 Logistic 6.28
gjr NA 15.58 12.56 14.25 13.35 12.38 Weibull 12.80
t NA 15.54 12.93 40.10 14.30 20.32 Empirical 22.66
VaR0.99 LOG DATA
K=1 norm std ged snorm sstd sged Skew-norm 2.11
ARCH 1.67 1.83 1.81 1.76 2.67 2.47 Skew-t 2.66
GARCH 1.66 1.85 1.80 1.75 2.74 3.10 Chi-squared 6.46
gjr 1.66 1.98 1.86 1.80 3.12 2.95 Gamma 2.83
t 1.67 2.04 1.89 1.79 2.40 2.73 Normal 1.67
K=2 norm std ged snorm sstd sged Exp 2.83
ARCH 2.18 2.10 2.42 3.02 1.78 2.59 Log-normal 40.02
GARCH NA 2.20 1.99 NA 1.89 2.47 Logistic 1.57
gjr NA 2.12 2.47 2.20 2.65 2.66 Weibull 2.68
t NA 2.09 2.01 2.03 2.87 2.80 Empirical 2.47
ES0.99 ORIGINAL DATA
K=1 norm std ged snorm sstd sged Skew-norm 23.23
ARCH 22.81 15.13 16.30 17.66 22.47 15.37 Skew-t 7.39
GARCH 22.40 14.30 16.56 17.81 27.27 15.40 Chi-squared 10.34
gjr 21.21 14.94 14.36 14.91 27.62 16.35 Gamma 13.02
t 17.72 14.46 14.27 11.73 30.74 15.55 Normal 22.59
K=2 norm std ged snorm sstd sged Exp 15.63
ARCH 22.25 36.26 37.50 84.98 30.94 35.49 Log-normal 11.72
GARCH NA 36.55 37.50 NA 34.76 291853.30 Logistic 7.87
gjr NA 35.21 34.16 16.73 27.44 28.15 Weibull 16.43
t NA 36.36 32.41 48.88 28.45 35.40 Empirical 55.20
ES0.99 LOG DATA
K=1 norm std ged snorm sstd sged Skew-norm 2.47
ARCH 1.92 2.47 2.17 2.07 3.91 3.08 Skew-t 3.76
GARCH 1.90 2.47 2.16 2.07 3.89 4.03 Chi-squared 8.32
gjr 1.91 2.61 2.23 2.13 4.81 3.74 Gamma 3.61
t 1.92 2.74 2.26 2.11 3.16 3.41 Normal 1.91
K=2 norm std ged snorm sstd sged Exp 3.62
ARCH 2.9 2.80 2.96 4.31 2.10 3.24 Log-normal 102.53
GARCH NA 2.88 2.60 NA 2.42 3.05 Logistic 1.94
gjr NA 2.77 2.95 2.76 3.68 3.34 Weibull 3.40
t NA 2.73 2.41 2.55 4.09 3.55 Empirical 3.03

Table 10: 99% Value-At-Risk and Expected Shortfall values for all models, in-
cluding select models from Eling (2012). Some models did not converge, and are
therefore "NA".
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8 CONCLUSION

8 Conclusion

This thesis’ main purpose was to examine how a Markov-switching GARCH-framework
would suit a time series of insurance losses, and if this implementation could yield
models which accomplishes two things; beats models which are estimated through
probability distribution fitting, and better describes the right-tail of the loss distri-
bution.
We explained that (G)ARCH-models are not usually applied to insurance time se-
ries, and the fact that insurance losses are not traditionally viewed as a time series
at all. Since the data in consideration is absolute positive, we argued that we could
perform model fitting on the de-meaned version of the data, as there seemed to be
no first-degree serial correlation in the original- or log of the original-data.
When examining the insurance loss data, we found that the sample skewness and
sample kurtosis of the data implied that there was a significant appearance of both
skewness and kurtosis in the original and log data, so we assumed that using a
skewed version of a distribution which fits a shape parameter that alters kurtosis
would result in a better model fit than the converse. The original data seemed like
it had such a heavy tail that somehow adding another regime for capturing the
higher-valued claims could be a good idea.
There was little evidence to back up the hypothesis that there were any conditional
heteroskedasticity in the original data at all. As a consequence of this, changing
the structure of the conditional volatility should not yield much of a difference in
how well the model fit becomes for the original data. We therefore did not expect
the GARCH-component of the MSGARCH-models on the original data to be the
reason for a better model fit. However, the Markov-switching-component of the
MSGARCH-model was shown to be able to capture the effects of large shocks in the
data better, and not overestimate the persistence of said shocks in the original data.
We therefore expected the MSGARCH-models to better describe the right tail of
the data.
For the log of the original data, we performed the McLeod-Li test where we found
that it did exhibit a slight bit of conditional heteroskedasticity. As a result of this,
the GARCH-component of the MSGARCH-model could be the reason for a slight
improvement in the model fit. Since the presence of the large shocks in the original
data was greatly diminished when taking the log of the data, the improvement-effect
of adding more regimes to the models should be reduced for the log data.

The MSGARCH-framework allows for changing of the structure of the condi-
tional volatility, and changing of the conditional distribution of the observed vari-
ables. In total, we considered six conditional distributions and four conditional
volatility structures, for a total of 24 possible model combinations, irregardless of
the amount of regimes in the model. We fitted 24 models for the one-regime case
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8 CONCLUSION

and 24 models for the two-regime case through ML-estimation. The BFGS-algorithm
was used for the optimization process. We also re-fitted the models of Eling (2012)
for the de-meaned data.

After executing the estimation, we found that models which used skewed dis-
tributions with an additional shape parameter improved the model fit significantly
over their non-skewed counterparts. We also found that, for the original data, all
candidate models performed worse than the skew-Student-t model of Eling (2012),
when simply looking at the AIC. This was not unexpected, as there were no evidence
of any conditional heteroskedasticity in the original data. As a consequence of this,
the effect of the different structures of the conditional volatility was very small for
the original data. In addition to this, the MSGARCH-models sometimes wrongly
predicted the "direction" of the skew, and the skew-Student-t of Eling (2012) con-
tained fewer parameters, which improves AIC slightly.
For the log data, several of the MSGARCH-models with skewed distributions im-
proved on the models of Eling (2012), when just looking at the AIC. We attribute
this to the fact that there were some slight conditional heteroskedasticity in the log
de-meaned data. The structure of the conditional volatility seemed to have more
of an effect on the log data, and the tGARCH generally outperformed the other
structural specifications, possibly because of some slight asymmetry in the effect of
previous observations on the conditional volatility.

As for the tail risk measures, the models of Eling (2012) consequently under-
estimated the tail-risk-values at the very far right tail of the original data. The
MSGARCH-models with two regimes severely improved on the tail-risk-values for
confidence levels between 90% and 99.95%. This is as expected, as the second regime
is specifically added to capture the effects of the large shocks, which end up in the far
right tail. For the log-data, the improvement is not as clear, since some of the models
of Eling(2012) perform very well on this data. However, there are still several of the
MSGARCH-models for both the one-regime- and two-regime case which outperform
the best models of Eling (2012). The VaR and ES-values for the one-regime models
for the log data are actually not very different from the two-regime models for the
log data, and one type does not consequently outperform the other. This confirms
our hypothesis that adding a second regime for the log-data is not as significant
for the log-data, since the effect of the large shocks in the data is diminished when
taking the logarithm.

All in all, we note that applying MSGARCH to the de-meaned version of this
insurance time series can, in fact, yield some results that outperform regular prob-
ability distribution fitting. In particular, the application of this method should be
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8 CONCLUSION

considered for insurance time series if one wishes to attain high-accuracy estimation
of tail risk measures, since the addition of additional regimes could increase the
focus on the tail. It is difficult to say if it is a good idea to use Markov-switching
GARCH models on the general insurance loss time series if the aim is to get the best
general model fit, as one cannot be sure that there will exists any (G)ARCH-effects
in an insurance time series. Usually, insurance loss data are not viewed as a time
series, which would suggest that most insurance loss data does not exhibit any kind
of serial correlation.
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Appendices

A R Code

#Creating specifications for the four example models
ms2.t.sg <- CreateSpec(list(model = c("tGARCH", "tGARCH")),

list(distribution = c("sged", "sged")))

#Fitting the models to the de-meaned original and log-data
fitms2.t.sg <- FitML(ms2.t.sg, data = Total.dm)
fitms2.t.sg.log <- FitML(ms2.t.sg, data = log.Total.dm)

#Viewing the models: (some of the information has been removed)
> fitms2.t.sg
Specification type: Markov-switching
Specification name: tGARCH_sged tGARCH_sged
------------------------------------------
Fitted parameters:

Estimate Std. Error
alpha0_1 0.1074 0.0027
alpha1_1 0.0000 0.0000
alpha2_1 0.0001 0.0000
beta_1 0.9627 0.0009
nu_1 0.7083 0.0001
xi_1 38.2273 0.2683
alpha0_2 29.8576 0.2712
alpha1_2 0.0006 0.0000
alpha2_2 0.0216 0.0002
beta_2 0.0766 0.0008
nu_2 0.7003 0.0000
xi_2 0.7118 0.0056
P_1_1 0.9462 0.0009
P_2_1 0.9131 0.0006
------------------------------------------
Transition matrix:

t+1|k=1 t+1|k=2
t|k=1 0.9462 0.0538
t|k=2 0.9131 0.0869
------------------------------------------
LL: -3572.0655
AIC: 7172.131
BIC: 7251.6664
------------------------------------------

> fitms2.t.sg.log
Specification type: Markov-switching
Specification name: tGARCH_sged tGARCH_sged
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------------------------------------------
Fitted parameters:

Estimate Std. Error
alpha0_1 0.0075 0.0001
alpha1_1 0.0001 0.0000
alpha2_1 0.0580 0.0004
beta_1 0.9651 0.0001
nu_1 0.9427 0.0017
xi_1 21.9491 0.6358
alpha0_2 0.0042 0.0002
alpha1_2 0.0019 0.0001
alpha2_2 0.0065 0.0004
beta_2 0.9914 0.00026
nu_2 1.0416 0.0271
xi_2 12.7597 0.3966
P_1_1 0.9576 0.0003
P_2_1 0.0076 0.0015
------------------------------------------
Transition matrix:

t+1|k=1 t+1|k=2
t|k=1 0.9576 0.0424
t|k=2 0.0076 0.9924
------------------------------------------
LL: -1556.2814
AIC: 3140.5629
BIC: 3220.0982
------------------------------------------

#Predicting one-step ahead draws
y.ms2.t.sg <- predict(fitms2.t.sg, nahead = 1,

do.return.draw = TRUE, ctr = list(nsim = 100000))
y.ms2.t.sg.log <- predict(fitms2.t.sg.log, nahead = 1,

do.return.draw = TRUE, ctr = list(nsim = 100000))

#Simulating a 500-step ahead path
y.ms2.t.sg.sim <- simulate(fitms2.t.sg, nahead = 500, nsim = 1)
y.ms2.t.sg.log.sim <- simulate(fitms2.t.sg.log, nahead = 500, nsim = 1)

#Calculating 99% VaR
VaR <- quantile(y.ms2.t.sg$draw[1, ], 0.99)
> VaR

99%
20.69505
VaR.log <- quantile(y.ms2.t.sg.log$draw[1, ], 0.99)
> VaR.log

99%
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2.799733

#Calculating the 99% ES
ES <- mean(y.ms2.t.sg$draw[1, ][y.ms2.t.sg$draw[1, ] > VaR])
> ES
[1] 34.05283
34.05283
ES.log <- mean(y.ms2.t.sg.log$draw[1, ][y.ms2.t.sg.log$draw[1, ] > VaR.log])
> ES.log
[1] 3.604707

B VaR & ES: Plots

In the following pages are plots of the VaR and ES-values for confidence levels be-
tween 90% and 99.95%. Some models did not converge. These areas are intentionally
left blank, in order to preserve the matrix form of the plots. For every plot, the red
line is the VaR or ES corresponding to the empirical value from the original or log
de-meaned data. The next next pages are structured as follows:

• Page 89 - 90: Each of the selected benchmark models and the Skew-normal
and Skew-T from Eling (2012) on the original and log data

• Page 91 - 94: Each of the 24 fitted one-regime models on the original and
log data.

• Page 95 - 98: Each of the 24 fitted two-regime models on the original and
log data
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