
Synthesizing Skin Lesion Images Using
Generative Adversarial Networks

A case study

Sondre Fossen-Romsaas

Adrian Storm-Johannessen

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and Physics,
Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

June 29, 2020

Acknowledgements

We would like to thank the Mohn Medical Imaging and Visualization Centre
(MMIV) at Haukeland University Hospital for giving us the best work environ-
ment possible, while working with our master thesis. A special thanks to the
ML group at MMIV for hosting meetings with many interesting and exciting
discussions.

We would also like to thank PhD candidate Sathiesh Kaliyugarasan at MMIV
and our co-student Sivert Stavland for many educational discussions around the
topic Deep Learning, and making this period a lot of fun.

Finally, a special thanks to our supervisor Dr. Alexander Selvikv̊ag Lunder-
vold for introducing us to all of this. His great commitment and enthusiastic
help have given us a lot of motivation to give our best during this period.

Abstract

According to the World Health Organization cancer is the second leading cause
of death globally [1], and the most common cancer in the world is skin cancer [2].

To get a skin cancer diagnosis, a patient will usually mention their concern
to a doctor. The doctor will then refer the patient to a dermatologist, who takes
a closer look to determine whether the lesion is abnormal and in need of further
inspection. If it’s abnormal, the next step is usually a biopsy of the lesion for
further testing in a laboratory. The test results determine the final diagnosis.

The dermatologist uses an array of different techniques and tools to examine
the lesion, one of which is often a dermoscope. A dermoscope is a handheld
device that makes it possible to see structures in the skin that normally are
invisible to the naked eye. Nowadays dermoscopes are usually equipped with
a camera, allowing the physician to digitally store images of the lesion. This
makes it easier to get a second opinion. Either from another physician, or in
the interest of this thesis, from some state-of-the-art automated skin cancer
detection system, i.e. computer-aided diagnosis (CAD).

The idea of having CAD tools act as second opinions has become more
plausible than ever, with the recent improvements in machine learning (ML)
seen in the last decade. Most importantly, the last years developments within
the sub-fields of neural network (NN), deep learning (DL), and computer vision.
This have caused plenty of new startups, companies, software, and applications
for medical image analysis. In the subject of skin cancer, there has been a great
deal of activity around the field of machine learning, ranging from simple mobile
applications to comprehensive research into clinical utility.

In 2017, Andre Esteva et al. published a paper which showed that machine
learning models can perform at the level of dermatologists [3]. In 2018, H. A.
Haenssel et al. constructed a convolutional neural network that in most cases
outperformed 58 dermatologist. They claimed that any physicians, regardless
of experience, may benefit from including a machine learning model in their
evaluation [4].

A main reason for the success of neural networks is their ability to auto-
matically extract useful features from data (representation learning). Data can
also be said to be the methods greatest weakness: the performance of the model
becomes extremely dependent on the quantity and quality of the data its being
fed. The problem of acquiring high-quality data is particularly challenging when
working with medical data. Because of the highly restrictive privacy protection
of sensitive patient data, the resources needed for correctly labeling it, and the
highly imbalanced nature of medical data, the process of collecting medical data
is both difficult and expensive.

In this thesis, we will try to reduce the problem of low amounts of data

in machine learning by artificially creating more data using generative mod-
els, more specifically Generative Adversarial Network (GAN). We will create
synthetic images of skin lesions, expanding the original data set. In addition
to generating visually accurate synthetic data, our goal is to improve machine
learning models by adding synthetic training data.

Figure 1: Examples of synthetic images of skin lesions generated by our models.

Table of contents

1 Introduction 1

1.1 Machine learning and generative adversarial networks in medicine 1
1.2 Skin Cancer . 3

1.2.1 Common Types . 3
1.2.2 Diagnosis . 3

1.3 Machine Learning and Skin Cancer 4
1.4 Research question and main contributions of thesis 5
1.5 Related work . 5

I Background 8

2 Artificial Neural Networks 9

2.1 Building a Neural Network . 10
2.1.1 The Artificial Neuron . 10
2.1.2 Activation Functions . 11
2.1.3 Network Architecture . 14

2.2 Training a Neural Network . 15
2.2.1 Cost Function . 15
2.2.2 The idea of Gradient Descent 15
2.2.3 Backpropagation . 17
2.2.4 Learning Rates . 18
2.2.5 Feature Scaling . 19
2.2.6 Overfitting and Underfitting 20
2.2.7 Bias and variance . 21
2.2.8 Optimizing Gradient Descent 22
2.2.9 Regularization . 24
2.2.10 1cycle policy and cyclic momentum 26

2.3 Evaluate a Neural Network . 28
2.3.1 Accuracy . 28
2.3.2 Recall . 28
2.3.3 Precision . 29
2.3.4 Model Evaluation in Real World 29

3 Convolutional Neural Networks 30

3.1 Layers . 31
3.1.1 Convolutional layer . 31

3.1.2 Pooling Layer . 31
3.1.3 Fully Connected Layer . 32

3.2 Three illustrative examples of CNN architectures 33
3.2.1 AlexNet . 33
3.2.2 ResNet . 33
3.2.3 Unet and image segmenation 34

4 Generative Adversarial Networks 36

4.1 Generative adversarial networks 36
4.2 Conditional Image Synthesis with Auxiliary Classifier GANs . . . 37

4.2.1 Conditional generative adversarial networks 38
4.2.2 Auxiliary Classifier GAN 38

4.3 Image-to-image translation with Cycle-Consistent Generative Ad-
versarial Networks . 39

4.4 Other GAN models . 40

II Experiments 42

5 Introduction to Experiments 43

5.1 Introduction . 43
5.2 Methods and Materials . 44

5.2.1 Data . 44
5.2.2 Frameworks . 44
5.2.3 Models . 45

5.3 Experiments . 45

6 Generating Images From Noise 46

6.1 Introduction . 46
6.2 Methods and materials . 47

6.2.1 Dataset . 47
6.2.2 Models . 47
6.2.3 Experiment pipeline . 48

6.3 Experimental setup . 48
6.4 Evaluation setup . 49
6.5 Experimental results . 49

7 Generating Images From Other Classes 51

7.1 Introduction . 51
7.2 Methods and materials . 51

7.2.1 Data . 51
7.2.2 Models . 51
7.2.3 Experiment pipeline . 52

7.3 Experimental setup . 52
7.4 Evaluation setup . 53
7.5 Experimental results . 53

8 Discussion 55

8.1 Results . 55
8.2 Challenges with GAN . 55

8.2.1 Failure to converge . 55
8.2.2 Mode collapse . 56
8.2.3 Need for data . 56
8.2.4 Difficult to evaluate . 57
8.2.5 Is GAN the way to go for data augmentation? 57

8.3 Our approach . 57
8.4 Further work . 58
8.5 Conclusion . 59

References 60

List of Figures

1 Generated skin lesion images .

1.1 State-of-the-art StyleGAN2 images 1
1.2 Number of published GAN papers 2

2.1 An illustration of an Artificial Neuron 10
2.2 Step function . 11
2.3 Sigmoid and Tanh . 12
2.4 ReLu and Leaky ReLu . 13
2.5 ANN architecture . 14
2.6 Gradient descent . 16
2.7 Gradient descent on a function with two variables 17
2.8 Cost function . 17
2.9 Learning rate impact on gradien descent. Too high learning rate 19
2.10 Learning rate impact on gradien descent. Too low and optimal

learning rate . 19
2.11 The effect of feature scaling on gradient descent 20
2.12 Overfitting and underfitting . 21
2.13 Bias and variance . 21
2.14 Bias-variance tradeoff . 22
2.15 Data augmentation . 25
2.16 Early stopping . 25
2.17 Dropout . 26
2.18 1cycle policy and cycle momentum 27
2.19 Improved 1cycle policy and cycle momentum 27
2.20 True positive, true negative, false positive and false negative . . . 28

3.1 CNN architecture . 30
3.2 Convolution . 32
3.3 Max pooling . 32
3.4 Residual Block . 33
3.5 Loss surface of a ResNet with and without skip connections . . . 34
3.6 Examples of training data for segmentation 35
3.7 U-Net architecture . 35

4.1 Pseudo code for GAN . 37
4.2 GAN, CGAN, ACGAN architecture 39
4.3 Adversarial Loss and Cycle-Consistensy Loss 40

6.1 ACGAN. Experiment 1 . 47

6.2 CycleGAN. Experiment 1 . 48
6.3 Pipleine for experiment 1 . 48
6.4 Images from the ISIC 2019 data-set. Experiment 1 49
6.5 Images generated using the ACGAN model. Experiment 1 50
6.6 Images generated using the CycleGAN model. Experiment 1 . . 50

7.1 Experimental pipeline for experiment 2 53
7.2 Generated images. Experiment 2 54

8.1 Early attempt on generating images 56
8.2 CGAN and BigGAN . 58

List of Tables

4.1 Influential GAN models . 41

6.1 Data in experiment 1 . 47
6.2 Results experiment 1 . 50

7.1 Data in experiment 2 . 52
7.2 Results experiment 2 . 54

Chapter 1

Introduction

1.1 Machine learning and generative adversarial
networks in medicine

All the breakthroughs in machine learning, and deep learning the last years,
have resulted in a lot of work for developing CAD tools in medicine, and medical
imaging in particular [5]. Take for example the field of dermatology, a lot of
scientific work have shown that a state-of-the art machine learning model is at
least at the same level as a dermatologist [3, 4, 6, 7]. Another example of this
is detection of diabetic retinopathy in photographs of retinal fundus [8, 9, 10].
If this is discovered, it is possible to reduce vision loss and prevent blindness for
diabetic patients. The research within this domain have come far, and the tool
IDx-DR is developed and able to detect diabetic retinopathy without human
interaction. This is actually FDA-approved and used at hospitals in USA.

In recent years generative adversarial networks (GAN) have shown impres-
sive work in generating realistic looking images e.g. BigGAN [11], StyleGAN2 [12]
and LOGAN [13]. Today, generative models can produce synthetic images that
are almost impossible to differentiate from real images (Fig. 1.1).

Figure 1.1: Images of generated faces produced with NVIDIA’s state-of-the-art GAN
model StyleGAN2 [12]. This figure is published under Nvidia Source Code License-NC.
For more information see: https://github.com/NVlabs/stylegan2/blob/master/

LICENSE.txt

Yann LeCun, the director of Facebook AI, professor at NYU, recipient of
the 2018 Turing Award, and a prominent figure in deep learning, has called
GANs and adversarial training “the most interesting idea in the last 10 years in
machine learning”.

1

https://github.com/NVlabs/stylegan2/blob/master/LICENSE.txt
https://github.com/NVlabs/stylegan2/blob/master/LICENSE.txt

The extreme popularity of GANs is reflected in the exponential growth of
published papers about GANs, see Figure 1.2. A major reason for the interest
in synthesizing images using GANs is the never ending challenge of data hungry
models in machine learning. By generating your own synthetic data, one can
potentially partially solve this problem in many cases.

Figure 1.2: Cumulative number of named GAN papers by month from 2014 to
September of 2018. This figure is published under the MIT License. For more in-
formation see: https://github.com/hindupuravinash/the-gan-zoo/blob/master/

LICENSE

This is particularly relevant for the field of medical imaging, where synthetic
images could help mitigate some of the distinct problems they are faced with.
One set of such problems are those related to the protections of patient privacy.
Privacy protection is a real concern when medical images are distributed, but
synthetically generated images are not related to any particular person, meaning
that there are no privacy to protect. Another problem is data imbalance. Which
is to say that it can be difficult to collect a data set where all diseases are equally
represented. This happens because some diseases are rarer then others. This
would no longer be as problematic if one could generate an unlimited amount
of synthetic samples for those cases that are poorly represented.

The task of classifying skin lesions is a case in point. To use supervised
machine learning models, sufficient high-quality training data is needed, but
the issue of privacy protected data and data imbalance makes successful devel-
opment of high-performing models challenging. In our work, we have taken a
deeper look into skin cancer, and tried to generate realistic looking images of
skin lesions.

2

https://github.com/hindupuravinash/the-gan-zoo/blob/master/LICENSE
https://github.com/hindupuravinash/the-gan-zoo/blob/master/LICENSE

1.2 Skin Cancer

The growth of abnormal cells in the outer layer of the skin (epidermis) causes
skin cancer. The underlying mutation of cells is in most cases triggered by DNA
damage to the skin, caused by UV rays from the sun or from tanning machines.
The type of skin cancer is determined by the type of cell the cancer evolves
from [14, 15].

1.2.1 Common Types

The three most common types of skin cancer are basal cell carcinoma (BCC),
squamous cell carcinoma (SCC), and melanoma [14]. The BCC and SCC is
often named with the common term nonmelanoma

Cancer that starts from the basal cell is BCC, the most common of all types
of skin cancer. This type of cancer does not have the ability to spread to other
parts of the body, making it harmless in most cases. The SCC, on the other
hand, has the ability to arise from the squamous cell and spread through the
body. If it is not treated correctly, this type of tumor can be life threatening [15].

Melanoma only occurs in 4% of the cases where skin cancer is diagnosed, but
it is the most aggressive type. It is responsible for 75% of all deaths related to
skin cancer [16]. In 2015 it was over 350 000 cases of melanoma, where almost 60
000 resulted in deaths [17]. Additionally, reports are suggesting that the number
of cases involving melanoma of the skin is increasing. In the report “Cancer in
Norway 2016”, published in 2017, they reported a 20% increase in melanoma
skin cancer in both men and women when comparing the data collected from
2012-2016 with data from 2007-2011 [18]. Although, if melanoma is detected in
an early stage, when there are no signs that the cancer has spread beyond its
starting point, the 5-year survival rate is as much as 98%. That is why detecting
melanoma in an early stage is crucial for the patients chance of survival.

1.2.2 Diagnosis

To get a diagnosis for melanoma a clinical assessment is made to conclude
whether the nevus is suspect, and if removal is warranted [19]. The assessment
is often done using the ABCDE-criteria in combination with Dermatoscopy.

The ABCDE’s

The ABCDE-criteria is a guide for finding common features in melanoma [20].

A Asymmetry. One half of
the lesion is unlike the other
half.

B Border. Border irregularity

C Color. Varying colors.

D Diameter. Melanomas usu-
ally have a diameter larger
than 6mm

E Evolution. The lesion is
evolving or changing.

Before the introduction of the ABCD(E)-
criteria in the 1980s (the E was not added
until 2004), the assessment was made by look-
ing at macroscopic features, such as ulcera-
tion and bleeding, which usually appears in
the later stages of melanoma [21]. The use
of ABCDE-criteria made it easier to detect
melanoma earlier [21]. This was an impor-
tant development for reducing the risk of the
cancer spreading to other parts of the body
and for reducing the death rate [22].

3

Dermatoscopy

Dermatoscopy is a diagnostic aid used to evaluate skin lesions and to investigate
possible melanoma. It involves using a dermatoscope, which makes it possible to
see skin structures that are hard to see with the naked eye [19]. A dermatoscope
is a handheld microscope (usually with a 10x zoom) and a light source, being
either polarized or unpolarized. The different polarizations are used to highlight
different information in the skin structure. When using polarized light the
dermatoscope does not have to be in contact with the patient, reducing the risk
for the infection to spread. Some dermatoscopes can be connected to a camera
for documentation.

The technique is not used to diagnose melanoma, but is rather one of many
ways of determining whether melanoma is plausible, thus deciding whether or
not further testing is needed. The next step usually is a histopathological ex-
amination, based on which diagnosis is made.

The added use of dermatoscopy, in comparison to using the naked eye, has
increased the detection of melanoma from 60% to 80% [23]. Several studies
have also shown an increase in accuracy after just one day of dermatoscopy
training [24].

1.3 Machine Learning and Skin Cancer

The production of images using dermoscopy has opened a path for computer
vision as a tool to classify an image to a specific type of skin lesion. There
has been a lot of research on this topic, especially after deep learning made its
huge impact on computer vision in the early 2010’s. Since 2016, The Interna-
tional Skin Imaging Collaboration (ISIC) has organized a yearly competition for
segmentation and classification on their dermoscopy image data set [17]. To-
day the classification performance of state-of-the-art machine learning models
trained on dermoscopic images is at the level of dermatologists [3? , 7].

A main driver for the use of machine learning is the potential to improve
efficiency in the work of a dermatologist, resulting in reduced costs, and to
create diagnostic support systems that can be used in situations where expert
dermatologists are in short supply. In general, the high number of patients
with skin lesions are too much for certified dermatologists to handle. The in-
creasing case-load of non-melanoma skin cancer has led to an increase in the
responsibility of the primary care physicians (PCP) to implement the skin can-
cer screening [25]. However, many studies have shown that dermoscopy depends
on experienced examiners to increase the diagnostic accuracy [23, 26, 27, 28].
In a study done on dermatologists (MDs) with 9,5 years of median experience
and PCP’s back in January and February 2010 and August to December 2012,
the number needed to biopsy was found to be lower for the experienced derma-
tologists. When a PCP’s needed 4,55 biopsied lesions to find a person with skin
cancer, the MD’s only needed 2.82 [25]. Another study from 2018 showed that
dermatologists and general physicians agreed on the diagnosis in only 38,9%
of the patients [29]. Since many studies have concluded that a state-of-the-art
machine learning model performs at least at the same level as a dermatolo-
gist, an automated classification model have the potential to be a useful aid for
physicians tasked to do skin lesion evaluations.

4

1.4 Research question and main contributions
of thesis

Our main aim in this thesis is to use Generative Adversarial Networks to syn-
thesise realistic-looking dermoscopic images of skin lesions. using the ISIC data
set. Ideally, these generated images are of such a good quality that they can be
used in the training of neural networks. More precisely, we investigate whether
these fake images can be used alongside the original training data to increase
the performance of classification models. This can be done by generating data
to enlarge smaller data sets, or by generating more samples of some specific
class to even out unbalanced data sets.

The hope is to use these enlarged data sets to train more robust and stable
models, that are less prone to errors and are in general more reliable. Having a
reliable model opens the door to create even better automated systems for skin
cancer detection.

In this work we have explored different approaches to generate as realistic
looking images as possible. This has led us through an array of different tech-
nologies within deep learning and generative adversarial networks. The thesis is
focused on the investigation of the methods we have concluded to be the most
promising for this task, and the technologies behind them.

The product of this work is a result of exploration in new approaches and in-
spiration we’ve gathered from other researcher’s work. We end the introduction
with a quick overview of related work inspiring our approach, and also related
work in the broader field of generative adversarial networks and medical image
synthesis.

1.5 Related work

Generative adversarial networks have many potential practical uses in medical
imaging. The paper [30] provides a review of generative adversarial networks in
medical imaging, and give a run-down of the main applications, some of which
are:

• Reconstruction: Here GAN models where used to remove unwanted noise
and artifacts from images. It is for example used to remove the noise in
low-dose CT acquisition in [31] or to improve the quality and speed for
MRI in [32, 33].

• Segmentation: Here GANs are used to improve segmentation scores by
applying the discriminator as a sort of shape regulator [34].

• Classification: Here components from the generator and discriminator in
a GAN model can be used for feature extraction, or one can use the
discriminator as a classifier directly.

• Abnormality detection: GANs can be used to detect abnormality by utiliz-
ing the discriminator. During training the discriminator learns the proba-
bility distributions of the images. For example, if the images used during
training is of normal pathology, an abnormal image will fall out of this
distribution and be flagged as abnormal.

5

The applications above shows some of the different use cases for GANs in med-
ical imaging. But for the purposes of this thesis the most relevant applications
are those dealing with image synthesis, especially in the context of data augmen-
tation. Traditionally, data augmentation is based on simple transformations of
the images, e.g. scaling, rotations, etc [35]. But GAN models are also being used
for these purposes. For example, in [36] the authors used a GAN to generate
images of the eye fundus. The model was an image-to-image network trained on
pair images of vessle trees and its corresponding eye fundus. They found that
the synthesized eye fundus images were different from the real images in their
global appearance, even though they where generated from the same vessle tree,
while still retaining a high proportion of the true image quality.

The work reported in [37] also used image-to-image GANs for data aug-
mentation. They used cycle-consistent generative adversarial networks (Cy-
cleGANs) in an unpaired image-to-image translation technique, transforming
normal colonic mucosa images (the innermost layer of the colan), to synthetic
colonic mucosa images containing an uncommon class of colorectal polyp (a ab-
normal tissue growth that can lead to colon cancer). The images that where
generated was of such a good quality that two out of four gastrointestinal pathol-
ogists could not tell the synthesized images apart from the real ones. Addition-
ally they found that the generated images were useful for data augmentation,
leading to an improved classification model.

GANs can also be used to mitigate data imbalances, through generating
additional images for the classes with low representation. In [38] different GAN
models where used to generate realistic high quality images of melanoma lesions.
The models where used in an experiment for skin lesion classification. The
experiment where conducted by training a classifier on three different classes, it
was shown that generated images helped by improving accuracy for cases with
high class imbalance. As we shall see, our first experiment reported in Part II
of this thesis resembles their approach, as we attempt to generate high quality
images of skin lesions from random noise and testing the images as additional
data for a classifier.

Before GANs where introduced by Ian Goodfellow in 2014 [39], there have
been many other attempts at generating synthetic images. For example, in the
1990s, some work was done on texture synthesis of images, e.g. [40, 41, 42].
Here the goal was to capture the textures in an image, and generate a new
synthetic image with the same texture. The work of Efros et. al. [40] starts
with a seed (a small part of a sample image). Then they synthesize one pixel at
the time around this seed by looking at the neighbours of the pixel, and creates
a neighbourhood with width and height w, which contains pixels from the seed
and empty pixels. With a similarity measure they find similar neighbourhoods
in the sample image, and the center of a random chosen neighbourhood is the
new pixel around the seed. This work motivated Rose et. al. to later synthesize
images of mammograms [43].

In 2013, Jog et. al. [44] generated MRI images using a regression tree. They
did an image-to-image translation by generating T2 weighted MRI images from
T1. This was done to tackle the missing sequence problem when taking a MRI
scan. This method was much faster than the state-of-the-art approaches at that
time, and generated, in most cases, images of a higher quality.

In this thesis, we have investigated multiple different approaches to generate
synthetic skin lesion images. As discussed earlier, recent years have shown that

6

GANs provide the most promising approach to image synthesis. We therefore
focused our work on GAN-based approaches. In our first experiment, the goal
was to generate as realistic looking skin lesion images as possible from random
noise, much like in the work of [38]. To achieve this, we defined a novel pipeline,
a pipeline that we have not seen anyone else using earlier. Unlike [38], our
approach generates images of more than one class. In our second experiment,
we wanted to balance a data set to improve the classification of a critical class
in that data set. This approach was heavily inspired of the work in [37], but
instead of generating synthetic colorectal polyp images from colonic mucosa, we
generate images of melanoma from nevus.

7

Part I

Background

Chapter 2

Artificial Neural Networks

Artificial neural networks (ANNs) is a class of machine learning models, inspired
by the biological brain. They have been around for a long time (arguably
since the 1940s), but have seen a lot of traction over the last decade. It is the
workhorse behind a lot of new technologies, and is behind all impressive results
across all sort of fields, ranging from self driving cars, to targeted advertisement,
and medicine.

These networks are examples of what is referred to as self-learning algo-
rithms, being part of the larger field of machine learning (ML), aiming to create
algorithms able to learn from data. In other words, ANNs are able to learn how
to preform a task on their own, learning from examples of intended behaviour
or from patterns extracted from data. In a style of training called Supervised
learning, the network learns how to preform task by viewing examples of the
task they are training on. I.e. if one wants to use a neural network to detect
if a x-ray image contains a fracture, one would give the network x-ray images,
some containing fractures, and some not. After seeing many of these images,
the network can learn what images contains fractures and which does not. The
network can then be shown a x-ray image it has never seen before, and make a
prediction on whether or not the image contains a fracture.

This style of writing algorithms is different from the traditional approach
to programming, where an algorithm is written as step by step instructions on
how to behave. This can be very difficultly to do in many situations, confer the
example of fractions in x-rays above. Humans can relatively easily be trained to
tell the difference between a broken and healthy bone, but how would one de-
scribe that logic in a way that a computer would understand? It is for this types
of situations the practical use of artificial neural networks become apparent.

In this chapter we try to give an introduction on how basic neural networks
work, how they are structured and how they learn. Hopefully getting a basic
understanding on how the basic works will make the more specified topics in
the later chapters more digestible. The chapter is inspired by Michael Nielsen’s
book “Neural Networks and Deep Learning” [45]. Which is highly recommended
if one wants to learn more about the subjects touched upon in this chapter.

9

2.1 Building a Neural Network

In order to understand how a neural network actually function, it is helpful to
get an understanding of the different components it is made from.

2.1.1 The Artificial Neuron

An artificial neural network is a collection of connected artificial neurons.The
idea behind artificial neurons goes back to the 40’s when Warren McCulloch and
Walter Pitts published their paper [46] about a mathematical representation of
a simplified model of the biological neuron.

Figure 2.1: An illustration of an Artificial Neuron

The neurons used in artificial neural networks today consist of a few main
components: an input, some weights and an activation function. The neuron
receives some input ([x1, ..., xi]). This input is then multiplied with its matching
weight ([w1, ..., wi]), a value contained inside the neuron. Then the sum is taken
for all the input weight pairs, including a special pair (x0, w0) called the bias.
The bias is an input/weight pair where the input is active (value of 1) at all
times, meaning that its weight is always in use. This addition is used to push
the value passed to the activation function in a positive or negative direction,
independent of the input. This allows the weights connected to the actual input
values to be more precise since they don’t have to work as hard to bring the
sum-value to a meaningful range for the activation function.

Beside this, is the bias regarded as all other input/weight pairs, and is used
in the same fashion when calculating the sum.

The sum is then passed to a activation function. It is the activation function
that defines what the final output from the neuron is going to look like.

10

2.1.2 Activation Functions

Step Function

The earliest implementation of the artificial neuron was the perceptron, created
in the 60’s by Frank Rosenblatt [47]. The perceptron described in the original
paper is structured some what differently from the artificial neuron described
above, but to keep things from getting to confusing we will describe similarly
to the modern artificial neurons.

Figure 2.2: A graph illustrating
the step function

The perceptron is a neuron that re-
ceives multiple boolean-inputs and returns
one boolean-output based on its internal
logic. It receives some values [x1, ..., xi],
where each value is either 0 or 1. These inputs
are then multiplied with the internal integer-
value with the matching index ([w1, ..., wi]).
The total sum is then calculated for all these
values (

∑n
i=0 xiwi), including the bias, x0w0,

where x0 is always equal to 1. As mention
earlier the neuron is supposed to output a
boolean value, but the sum of the weights and
bias can be any integer value, large or small,
negative or positive, it is not limited to 0 or 1.
It becomes the job of the activation function to transform the sum to a boolean-
value. The function used for this in the perceptron is the Step Function. This
is a function that return 1 if it’s given a positive value, and 0 if its input is
negative. A problem with the step function is its sensitivity to small changes.
Since the output from the step function always is either 0 or 1, small changes
in its input can cause the output to completely flip from 0 to 1, and vice versa.
This behavior is unwanted because it implies that a small adjustment made to
increase performance in one area, can result in performance decrease in others.

Linear Activation Functions

One naive way of solving the problem related to sensitivity with the step function
would be to use a linear activation function. Then the neurons output would
be in some range rather then binary, meaning that changes to the input would
not cause such drastic changes in the output.

Using linear activations to reduce the sensitivity sounds nice, but unfortu-
nately this would drastically reduce the amount of problems that the network
can solve. All a ANN actually does is to find patterns in the input data so
that it can map them to specific outputs. When solving complex problems,
this entails that the network has to find a complex pattern. If all activations
in the network are linear, then the final function mapping inputs to outputs
given by the network will also be linear. In other word, a ANN that uses linear
activations can only map the input linearly, reducing the problems it can solve
to those that are approximated well by a linear function.

11

Sigmoid

The Sigmoid Function, or logistic function, is a frequently used non-linear ac-
tivation function. It works by squishing the neurons output into to a range
between 0 and 1:

σ(x) =
ex

1 + ex
.

The characteristic “S” shape of the function is caused by the steep middle
part of the curve. Having such a steep curve means that small changes in
the input causes big changes in the output. Meaning that the function has a
tendency to push all values towards 0 or 1.

A problem with the sigmoid function is what’s at the edges of the graph.
The bigger the input values get, the smaller difference it makes in the output.
In other words, the gradient at these regions becomes small. This is problematic
while training a neural network, since, as we shall see below, the changes (learn-
ing) to the network is based on the gradient. When the gradient becomes small,
the changes in the network are also small resulting in a slow learning process.
This problem is often referred to as the “vanishing gradients”-problem.

Tanh

Another “S”-shaped activation function is Tanh, the hyperbolic tangent func-
tion:

tanh(x) =
ex − e−x

ex + e−x

It looks and behaves similarly to the sigmoid function. It is in fact just a scaled
sigmoid function, where the range is from -1 to 1 instead of from 0 to 1.

Figure 2.3: A graph illustrating the sigmoid function (left) and the tanh function
(right)

ReLU

Another popular non-linear activation function is the ReLU, or rectified linear
unit. The output for this function is the input as long as the input is positive,

12

if its negative the output is 0:

ReLu(x) = max(0, x).

It ranges from 0 to infinity.
Since the function excludes all negative values it results in networks that

are relatively fast to train (see the section 2.2 for more details on training). If
one uses Tanh or sigmoid, all inputs will give an output within some range,
meaning that all the activations play a role in the final output. This makes
the network dense and slow to train. But with ReLU negative values will cause
neurons not to fire (i.e. output zero). The ReLU networks will be faster to
train from scratch, since approximately half of the neuron will be inactive after
initialization.

Neglecting negative values can also cause some problems, as the gradient
will be zero for these neurons. This means that during training they wont
be adjusted, becoming so-called dead neurons, permanently inactive. This is
refereed to as the “dying ReLU problem”.

Leaky ReLU

The leaky ReLU is a variation of ReLU that attempts to solve the problem of
dead neurons. Here negative values are multiplied with some small number α
(often 0.001):

LeakyReLU(x) =

{
x, x > 0

α · x, x ≤ 0

This results in a slow decline below zero rather than an horizontal line, causing
the values to be non-zero in other to help them recover during training.

Figure 2.4: A graph illustrating the ReLU function (left) and the Leaky ReLU func-
tion (right)

13

2.1.3 Network Architecture

In the graphical representation 2.5 the information flows from left to right.
Passing from one column of neurons to the next. These columns are called layers.
The number of layers, and how they are connected will vary from network to
network, but the layers can be broken down to three main types; input-, output-
and hidden-layers.

Figure 2.5: A graphical representation of a ANN, showing the different layers

The input layer is where the network gets its information. The nodes at this
layer represents the values in one data sample. If the input to a network is an
image, there would be an input node representing each pixel in that image. The
nodes in this layer are connected to the hidden layer.

The hidden-layer is in the middle of the network and is the part that trans-
forms the input to an output. The number of hidden layers denotes the networks
dept. Having a large number of hidden-layers increases the complexity of the
network in that it allows for more computations.

After the input has passed trough the hidden layers it reaches the output-
layer. This is the last and final layer representing the networks output. Similarly
to the input-layer the nodes here can take many forms, depending on what the
task is.

14

2.2 Training a Neural Network

Now we have looked at how an input flows through a neural network producing
a specific output, by transforming it in the hidden layers. This process of
information flow from the start of the network to the end is called a forward-
pass.

When a neural network is first created, its weights and biases are set to
some random values by what is called initialization. When the input first passes
through the network, the output will likely be wrong. The network isn’t trained
yet. That is because the weights and biases has not been adjusted for the data
in order for it to return any meaningful output.

2.2.1 Cost Function

To give feedback to the network regarding its output a cost function is used. The
cost function is also referred to as the loss function or the objective function,
but they are the same thing which is, in essence, a function that measures the
distance between two values.

In a typical neural network setting this would be how far off the predicted
output ŷ given x is from the actual answer y. This tells the network if its
predictions is wrong and by how much. If the cost function returns a large
number, i.e. the distance is far, the network is doing a bad job. The networks
job is to reduce the distance between its predictions and the actual answer. In
other words, to minimize the cost function.

2.2.2 The idea of Gradient Descent

To minimize the cost function gradient descent is often used. Gradient descent
is an incremental optimization algorithm used to find the local minimum of a
function. The idea is to figure out how to adjusts the functions variables in
order to reduce the value of the functions output. The algorithm starts out at
some arbitrary position. From that position it finds what direction it needs to
move (what values to change) in order to move towards the (global or local)
minimum of the function. The direction is determined by calculating the slope
(or the gradient) of the function at its current position. Having that information
it changes its position by stepping in the negative direction of the slope. The size
of that step is determined by η the step size, later referred to as the learning rate.
From the new position the process is repeated, incrementally moving towards a
minimum.

Position→ Position′ = Position− η ∗ Slope

This process keeps iterating until the slope equals 0 (or is approximately equal
to 0), or until some max number of iterations have been completed.

Univariate Gradient Descent

An example of gradient descent applied on a univariative function to illustrate
the concept.

The function we want to minimize is a univariative function f(x), the goal
is then to minimize the output from f(x) by making small incremental changes
to x.

15

First we find a starting position by selecting a value for x. Then we calculate
the slope at that position by taking the derivative of the function at x, ∆f(x).
Using that slope we update at the current position x to a new position x′, by
taking a η size step in the negative direction of the slope:

x→ x′ = x− η∆f(x)

Then repeat that process from the new point, then the next, etc, until we have
reached our conditions for determination.

Figure 2.6: An illustration of gradient descent on a univariative function

Multivariate Gradient Descent

A neural network is a function with a large amount of variables (weights and
biases), so it can be useful to give an example of how gradient descent work on
a function containing multiple variables.

C is a function for two values v1 and v2, and what we want is to minimize
that function C(v). (If this was the cost function for a neural network it would
contain many more variables, but the approach is the same for two variables
which is much easier to illustrate.)

Same as before we use gradient descent to make negative changes in C by
making small adjustments to its variables v1 and v2.

The difference is that earlier when the function only contained one variable,
we could calculate the slope by taking the derivative of the function, but now
we are working with multiple variables.

In order to find the gradient (slope) for C we set it to be the vector of partial
derivatives, the gradient vector ∇C:

∇C ≡
(
∂C

∂v1
,
∂C

∂v2

)T
.

16

We also define ∆v as the vector of changes in v, ∆v ≡ (∆v1,∆v2)T . The
iterative adjustments to the variables v1 and v2 is then:

∆v = −η∇C,

Giving us a similar update rule as earlier: v → v′ = v − η∇C.

Figure 2.7: An illustration of gradient descent on a function with two variables. This
figure is from http://neuralnetworksanddeeplearning.com/chap1.html which is li-
censed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.

2.2.3 Backpropagation

In order to minimize the cost we use gradient decent. And in order to do that
we need to calculate the partial derivatives for all the weights and biases in the
network with respect to the cost. Backpropagation is an algorithm that allows
us to do just that.

The cost function is a function of the neural networks output aL:

Figure 2.8: An illustration of how the cost function is a function of the networks out-
put. This figure is from http://neuralnetworksanddeeplearning.com/chap2.html

which is licensed under a Creative Commons Attribution-NonCommercial 3.0 Un-
ported License.

aL is just a function of all the weights, biases and activations being past
from the previous layer:

aL = σ(wLaL−1 + bL)

The same goes for that layer:

aL−1 = σ(wL−1aL−2 + bL−1),

17

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap2.html

and the next, continues all the way back to the first layers in the network.
In order to compute the partial derivatives for all the weights and biases in

the network it has to start at the end of the network, and then compute its way
back to the input-layer.

So in order to compute the partial derivatives for all the weights and biases
in the network it has to start by computing the partial derivatives of the cost
function with respect to the weights and biases, and the activation function from
the previous layer. This computation results in an intermediate quantity called
the error δl, where l denotes the layer. The error in one layer δl is then used
to compute the error in the previous layer δl−1, and so on, backwards trough
the network. The errors are then used to compute the partial derivatives for
each individual weight, ∂C

∂wl
jk

and bias, ∂C
∂blj

. The gradient of the cost function

is described by combining those partial derivatives, allowing the weights and
biases to be updated with gradient descent.

Equations

The equations used to compute backprobagation as described by Michael Nielsen [45],
see book for more detailed deception and proof for the equations.

• An equation for the error in the output layer, δL:

δL = ∇aC � σ′(zL)

• An equation for the error δl in terms of the error in the next layer, l + 1:

δl = ((wl+1)T δl+1)� σ′(zl)

• An equation for the rate of change of the cost with respect to any bias in
the network:

∂C

∂blj
= δlj

• An equation for the rate of change of the cost with respect to any weight
in the network:

∂C

∂wljk
= al−1k δlj

2.2.4 Learning Rates

As mentioned above the learning rate (step size) determines how much the
parameters are adjusted in the negative direction of the gradient. The learning
rate is a hyper-parameter, one chooses its value before running the algorithm.
Setting the right value for the learning rate can be crucial for model performance.
Choosing a learning rate that is too high can lead to overshooting the minima,
and in some cases lead to divergent behavior; where it moves in the positive
direction of the gradient.

Using a learning rate that is to small can lead to slow learning. Meaning
that it takes a insufficient amounts of steps to reach minima, because the the
changes are so small per iteration. The main idea is to find a optimal learning
rate, that doses not over shoot the minima and that isn’t to slow.

18

Figure 2.9: An illustration of how the learning rate impacts gradient descent. Left:
shows when the learning rate is to high. Right: shows a learning rate that is way too
high, causing it to diverge

Figure 2.10: An illustration of how the learning rate impacts gradient descent. Left:
illustrates how a low learning rate can result in slow learning. Right: illustrates how
a “optimal” learning rate allows for a smooth descent with few steps.

2.2.5 Feature Scaling

Another way of making gradient descent faster is by scale the features (data).
Having un-scaled data is slow since this means that some parameters has to
be adjusted by a larger amount then others. When the data is normalized the
parameters can be adjusted by a some what similar amount, making the process
of gradient descent smoother and faster.

I.e. if we have some cost function F (x1, x2). And the features are not scaled
the gradient descent algorithm has to adjust x1 and x2 by varying amounts,
leading to a lot of jumping back and forth, taking a long time to reach minima.
While if the features are scaled the parameters can be adjusted by a similar
amount, giving a smother descent that requires fewer iterations.

19

Figure 2.11: Contour plot of F (.) showing the effect feature scaling has on gradient
descent. With unscaled data on the left, and scaled data on the right.

Standardization

Standardization (also called Z-score normalization) scales the features to a stan-
dard normal distribution with the mean µ of 0 and a standard deviation σ of
1.

x′ =
x− µ
σ

Normalization

Normalization (often refereed to as Min-max scaling) scales the features in to
a fixed range, Xmin < − > Xmax. The range is often 0 to 1, or 0 to 255 on
images.

x′ =
x−min(x)

max(x)−min(x)

x′ =
x−Xmin

Xmax −Xmin

2.2.6 Overfitting and Underfitting

A common problem, and often the reason for bad performance of a machine
learning model, is overfitting or underfitting. If a model is very complex it has
the tendency to fit the training data extremely well, but produce bad predictions
on unseen data. This is called overfitting, characterized by high generalization
error. If the model is too simple it outputs bad predictions on both training
data and unseen data. This is called underfitting. We want to find the golden
middle way, i.e. a model that has low training error and low generalization
error, i.e. that predicts well on unseen data.

In practice, when using models of high capacity, i.e. complex models that
can reach very low training errors, overfitting is often caused by overtraining:
during training the model becomes too adapted to the training data, including
its noise. This results in a minimal training error, but the model will make
unreliable predictions of new instances. On the other hand, if the model hasn’t
learned enough from the training data, it will typically also be unreliable when
producing predictions on new input.

20

Figure 2.12: Visualizing overfitting and underfitting.

2.2.7 Bias and variance

There are different sources of generalization errors: irreducible, bias and vari-
ance.

The irreducible error have nothing to do with the trained model, but inherent
features of the data, for example noisy or uncertain measurements from sensors.
The only way to reduce this error is by cleaning the data set.

The bias is high when the training error is high. When this is the case it is
often a simple model that is underfitting.

The variety in the performance when constructing models from different
training data is called the model variance. A complex model that is overfitting
tends to have high variance. It adapts too closely to very specific features of
the training data and not to the underlying structures common to all possible
sets of training instances.

Figure 2.13: Visualizing the models that are high or low in bias or variance.

Bias-variance tradeoff

To find the sweet spot for a model that generalizes well, you need to discover
the optimal balance in the bias-variance tradeoff. The optimal solution is to
have both low bias and variance, but these two will fight against each other. If

21

the bias is decreased the variance will increase, and vice versa. This is because
when a model is simple and underfitting the training error is high, which means
the bias is high, and the variance is low. By training the model further, it
becomes more complex, which reduces the training error and bias, and increase
the variance. When the model is overfitting the variance is high, and the training
error and bias is low. The challenge is to find the correct balance such that the
model neither overfits nor underfits. See figure 2.14

Figure 2.14: Illustration of the bias-variance tradeoff showing the optimal balance.
With a simple model the bias gives a high error and the variance a low error, the more
complex the model gets the error because of the bias is reduced, but increased because
of the variance.

2.2.8 Optimizing Gradient Descent

There are multiple approaches to gradient descent, differing in their usage of
training data when computing gradients. Which one to choose depends on the
amount and character of the training data, and it becomes a trade-off between
the accuracy of the weight updates, memory usage and training time. In this
section, we follow the notation in [48]. The goal of gradient descent is to mini-
mize the objective function J(θ), where θ are the weights. We write the learning
rate as η.

Stochastic Gradient Descent

In Stochastic Gradient Descent or SGD, J(θ) is calculated and gradient descent
is applied for each data-sample. It can be expressed as follows:

θ = θ − η ∗ ∇θJ(θ;x(i); y(i))

where x(i) and y(i) is a specific training sample. This approach can be time
consuming for large collections of data, since the calculations have to be done
often. It can also result in very unstable gradient updates. It is rarely used in
practice.

22

Batch Gradient Descent

In Batch Gradient Descent, the gradient is calculated based on the entire train-
ing data set:

θ = θ − η ∗ ∇θJ(θ)

In this case, the gradient will definitely point in the direction of steepest descent
of J(θ) (given the training data), and convergence can therefore be faster. But
depending on the size of the training data set, BGD can have prohibitively large
memory requirements. Batch gradient descent is often completely infeasible to
use in practice.

Mini-Batch Gradient Descent

Mini-Batch Gradient Descent (Mini-BGD) provides a middle-ground between
SGD and BGD by introducing a parameter called the batch size. The training
data is separated into multiple batches, each of the same size (mini-batches).
The errors and updates is then calculated and done for each mini-batch:

θ = θ − η ∗ ∇θJ(θ;x(i:i+n); y(i:i+n))

Batch size equal to 1 recovers SGD, batch size set to the size of the training
set is identical to BGD. The adjustable batch size provides a way to strike a
balance among gradient stability, speed and memory requirements. It is also
highly parallelizable and can therefore make efficient use of the high number of
cores in GPUs.

Additional tweaks to gradient descent

These were the basic forms of gradient descent. There are many further varia-
tions that result in optimization algorithms that can perform significantly better
in practice. We mention two such tweaks below. See [48] for a nice overview of
gradient descent optimization algorithms.

Momentum. With the above gradient descent approaches, the weights are
updated usign the gradient at the current step. With momentum, the weighted
moving average of the previous steps are included in the equation. This results
in movements analogous to rolling a ball down a hill, making it possible to pass
over small valleys (i.e. local minima). This is done by adding a term to the
gradient update, controlled by a hyperparameter γ between 0 and 1 (most cases
as 0.9) . γ is multiplied by the result from the previous step and added to the
current step length:

vt = γvt−1 + η∇θJ(θ)

θ = θ − vt

23

Adam optimizer. Adaptive Moment Estimation (Adam) is one of the most
frequently used optimization algorithms. It is a combination of momentum and
what is called Root Mean Square Propagation, or RMSProp. RMSProp divide
the learning rate by the exponentially decaying average of squared gradients
(vt), to adjust the learning rate automatically for each update of a weight. The
hyperparameter β2 is in most cases between 0.9 and 0.99.

The weighted moving average is included with the formula vt, like momen-
tum:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2t

With mt and vt, the weight can be updated by using the Adam optimization
algorithm:

θt+1 = θt −
η

√
vt + ε

mt

ε is just a small number to make sure we do not divide by 0.

2.2.9 Regularization

Regularization is a collective term for tecniques used to reduce generalization
error. In practice, when a model is underfitting the solution often is just to
continue training the model.1 On the other hand there are many techniques
to prevent overfitting. In this section we present some of the most common
regularisation techniques for deep learning.

Data augmentation

Collecting more data is the best way to prevent overfitting, but in many cases
this is extremely difficult or prohibitively expensive. An approach for expanding
an existing data set, without gathering more data, is data augmentation. In
computer vision this is an easy and efficient way to, in effect, obtain more
training data. Operations such as flipping, rotating, zooming and changing
contrast can be applied to the images in the data set, creating several versions
of the same images. See figure 2.15 for an example.

Note that one can also use data augmentation to make models more invariant
to the transformations used to expand the data set, e.g. better able to detect
upside-down cats.

Early stopping

When training a neural network you can often get better generalization per-
formance by stopping the training process when the model starts overfitting.
Signs of overfitting can be detected by looking at the training and validation

1This is true if the underfitting is not caused by using a model that’s too simple, i.e. of
too low capacity. In that case, switching to a more complex model or class of models may be
necessary.

24

Figure 2.15: Data augmentation applied to an image of a cat from [49]. For a
computer vision model this can, in practice, have an effect similar to expanding the
data set with completely new images.

loss during training. When the validation loss is significantly higher than the
training loss, the model will likely be overfitted when evaluated on the test data.
By stopping the training before this happens, or reverting to an earlier, stored
model checkpoint, one can end up with a model that generalize well.

Figure 2.16: Shows the learning curves of training a neural network. Early stopping
is when you stop training while the validation loss is at its lowest before it start
increasing.

Dropout

Another approach to avoid overfitting artificial neural networks is dropout, in-
troduced by Srivastava et. al. in 2012 [50]. When applying dropout, each unit
(neuron) and its connected weights is removed with a probability p (a typical
choice is p = 0.5), independently for each neuron and for each training iteration,
resulting in a sparser version of the neural network (See figure 2.17). At test

25

time, the full neural network is used.2. This tends to lead to better general-
ization performance as there’s a lower chance of each individual neuron being
assigned specific, important tasks during training.

Figure 2.17: An example of how a neural network looks before and after dropout.
For each batch of training data flowing through the network neurons are disabled with
a certain probability, resulting in network’s that tend to overfit less.

L1 and L2 regularization

A sign of a complex model is if the neural network contains large weights,
signifying high reliance on certain neurons. As discussed above, this can lead
to overfitting. To help avoid one can add a penalty to the loss function during
optimization, e.g. an L1 or L2 regularisation term. L1 regularization penalize
the weights by pushing them to become zero:

Loss = Error(y, ŷ) + λ

N∑
i=1

|wi|

The L2 regularization focus more on penalizing the large weights, and does
not force their values to become zero:

Loss = Error(y, ŷ) + λ

N∑
i=1

w2
i

In both cases, λ is a hyperparameter with value between 0 and 1, controlling
the amount of weight magnitude penalty. The higher the number, the harder
the weights are penalized.

2.2.10 1cycle policy and cyclic momentum

In the paper [53], Leslie Smith present different approaches for tuning your
hyperparameters. To optimize the learning rate a test is run where it starts

2Leaving dropout turned on also at test time and feeding the test data through the models
multiple times leads to an interesting approach to getting an estimate of model uncertainty
associated to model predictions. This was introduced in [51] and further explored in the MSc
thesis of Sean Murray from our research group [52]

26

with a small learning rate which is increased for each mini-batch until the loss
starts increasing drastically. With this test it is possible to find a good learning
rate. Then during training the 1cycle policy is applied. The chosen learning
rate is set as the maximum learning rate, and the minimum learning rate is set
to 1

5 or 1
10 of the maximum learning rate. While training there is two steps

with equal length in the 1cycle policy. The first step starts with the minimum
learning rate and increases to its maximum, step two starts with the maximum
learning rate and decrease until it reach its minimum. The cycle length is set
to be a little less then the total number of epochs the training of the network
is running. The remaining epochs, the learning rate is even lower than the
minimum learning rate.

The cycle momentum is an approach to set the hyperparameter momentum
during training. The approach is to adjust the momentum in the exact oppo-
site direction of the learning rate, so when the learning rate is increasing the
momentum is decreasing and the other way around. See Fig. 2.18

Combining these two approaches have shown to greatly decrease the training
time.

Figure 2.18: First graph shows the 1cycle policy, the second shows the cycle momen-
tum.

Further unpublished work have shown even more improved results, if you use
the same step one, but in the second step cosine annealing from the maximum
learning rate to zero. The momentum also follows step one from earlier, and
follows a symmetric cosine in the second step. This is shown in figure 2.19

Figure 2.19: Shows the improved 1cycle policy, and cyclic momentum. Fig. 8
from [54]

27

2.3 Evaluate a Neural Network

It is important to point out that this section is about metrics that can be used for
evaluating all kinds of machine learning models used for classification tasks. But
in this work the metrics have been used to evaluate neural network specifically.

When evaluating a model there is many different metrics that can be used to
discover if the model does a good job or not. But depending on what data set
that is used, it is important to know which metrics to use to assess the quality
of the model. If the data set is highly unbalanced containing 90% of data with
the same label, the accuracy score will be 90% if the model always predict that
label, which makes the metric accuracy misleading in evaluating the model. In
this section we will explain some of these metrics. But first, to understand the
concepts of true positive (TP), true negative (TN), false positive (FP) and false
negative (FN) look at the illustration in figure 2.20

Figure 2.20: Shows the concepts of true positive, true negative, false positive and
false negative

2.3.1 Accuracy

Accuracy evaluates how accurate your model is, by looking at how many inputs
have been predicted correctly, and works great when dealing with a balanced
data set.

Accuracy =
TP + TN

TP + FP + TN + FN

2.3.2 Recall

Recall evaluates how precise the model is on predicting positive labeled data.
This metric is good to use with a unbalanced data set and when it is important
to avoid the false negative cases.

Recall =
TP

TP + FN

28

2.3.3 Precision

Precision looks at the positive predicted data and evaluates how precise the
model is in positive predictions. This is a good measure when the data set is
unbalanced and the importance of discovering false positive cases are very high.

Precision =
TP

TP + FP

2.3.4 Model Evaluation in Real World

While these measurements mentioned above are useful for evaluating the quality
of you model they should be viewed as indications and not be interpreted to
strictly. For a model that preforms well on the data its trained and evaluated
on, can in many cases have problems when applied in new situations, where
features can vary from in the lab setting.

Google felt the impact on this when they applied a deep learning system for
the detection of diabetic retinopathy (DR), for real life use in Thailand [55].
There model was built with the intention to reduce the amount of time it takes
to process screening of DR, which can take 2 to 10 weeks, but with the use
of there algorithm they meant it could be reduced down to 10 minutes. The
algorithm had shown promising result in detecting referable cases of DR, scoring
over 90% on sensitivity and specificity. To achieve these results the model had
a feature where it discarded images if the quality wasn’t good enough for it to
make a accurate prediction. This feature cause problems in the real life usage,
where poor lighting conditions resulted in that a large portion of the images
where deemed ungradable by the model. This meant that multiple images had
to be taken in order for the patient to be processed. This caused some patients
to spend more time getting processed that it normally would using the normal
approach.

29

Chapter 3

Convolutional Neural
Networks

Neural networks really started to outperform other methods within the field
of computer vision when Convolutional Neural Networks (CNN) were used in
the winning entry of the 2012 ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC), significantly outperforming all competitors using their AlexNet
CNN model [56]. CNN is not a new technology, it was already introduced by
Fukushima [57] as early as 1980, and used together with backpropagation in
1989 [58]. But it was not until the recent breakthrough performances that
CNNs became the go-to method for most of computer vision tasks.

The CNN takes a matrix of pixels as input, instead of a vector of pixels,
like in a regular neural network. This matrix is sent through a series of filters
(layers), and, for image classification, in the end outputs one single label for
the input image. A CNN network do a better job processing more complex
images, and have improved results in a lot of image classification problems [56,
59]. It is also used for other computer vision tasks beyond classification, e.g.
semantic segmentation and various other image-to-image settings, and to solve
non-computer vision problems [60, 61, 62].

Figure 3.1: An example of a CNN architecture, showing some of the fundamental
building blocks for constructing a CNN, including convolutional layer, pooling layer
and fully connected layer. Made with [63]

30

3.1 Layers

In this section, we will go further into CNN architectures by looking at some of
the different layers commonly used when constructing a CNN. Note that modern
CNNs combine these and other building blocks in (increasingly) complex ways.
This is exemplified in Section 3.2 below.

3.1.1 Convolutional layer

The convolutional layer is the main component in a CNN. A fully-connected,
non-convolutional neural network for image processing takes an image as input,
treating every single pixel from all its color channels individually. This is a lot
of information, and probably a lot of useless or at least redundant information.
The core idea of a convolutional layer is to focus on the important parts, by
extracting the features in the image. This is done by applying a mathematical
operation with a set of matrices called kernels, over the image. These kernels
makes it less redundant by: Having kernels that are smaller then the input
(sparse connectivity [64]), reduce the amount of parameters needed for matrix
multiplication. And reusing the same weights in multiple functions (weight
sharing [64]), reducing the workload for updating weights. In the first few
layers the CNN can focus on features like corners and horizontal lines, deeper
into the network more complex shapes are detected.

A convolution takes a small part of the image in the first layer, or the output
of the previous layer and transforms the pixels within this region into one single
pixel, with the assistance of a kernel. The kernel is a matrix with the same
number of dimensions as the input to that layer, but with a smaller width and
height (the depth is the same). The kernel is applied to this smaller region
and does an element-wise multiplication and add them together into a single
number. This operation continues one step to the side, when the stride value
is 1, and slides over all the input values. Stride is a way to control the output
width and height, by defining the number of steps the kernel is going to jump
after each convolution. With a stride of 2 the output width and height will be
half of its input. With this approach there will be a reduction in the output
dimensions, even with the stride as 1, because the kernel will not be able to
preserve the outer pixels. A normal solution to this is to add a padding around
the image with zeros. This is explained with an illustration in Figure 3.2.

3.1.2 Pooling Layer

Another approach for down scaling the width and height instead of increasing
the convolution stride is pooling. The two most common functions is max
pooling and average pooling. To get half the width and height from the input
you use a 2x2 frame and slide over the input with a stride of 2. For max pooling
the output is the highest value in the frame, see Figure 3.3 for average pooling
you take the average of all the values in the frame.

This is done to compress the input and reduce the number of parameters,
and opens the opportunity for creating more depth in the output in the next
convolutional layer.

31

Figure 3.2: a) A convolutional operation with kernel size 3x3x1, and stride 1. b) A
convolutional operation with kernel size 3x3x1, and stride 2.

Figure 3.3: Max pooling with a 2x2 frame

3.1.3 Fully Connected Layer

In the last step of the network, the matrix is flatten into a vector where each
neuron is connected to each neuron in the next layer, like in a normal feed
forward network. This is to map from the deep feature maps into the desired
output.

32

3.2 Three illustrative examples of CNN archi-
tectures

3.2.1 AlexNet

CNN got its breakthrough when Krizhevsky et. al. participated in the ImageNet
competition with their AlexNet back in 2012 [56]. They crushed their opponents
with an error rate of 15.3% compared to 26.2% from the nearest competitor.
This was done with a pretty standard CNN, containing five convolutional layers,
each followed by ReLU activations, three max pooling layers, and ends up with
three fully connected layers.

3.2.2 ResNet

There has been a lot of different improvements from the basic idea of AlexNet.
One of the most impactful is ResNet, which was published by Kaiming He et.
al. from Microsoft Research in 2015 [59], and minor tweaks of ResNets are still
today state-of-the-art approaches for deep learning-based image processing.

The origin of ResNets is based on an observation of Kaiming He [59]. He
compared the training error from a 20-layer and 54-layer CNN, expecting the
54-layer network to be at least as good as the 20-layer, and that it would likely
overfit. That did not happen. The 54-layer network had a higher training error
than the 20-layer network. He then got the idea to introduce residual blocks to
the network. For every second convolutional layer the input x of the first layer
was added to the output of the second layer with an identity connection. This
is often called a skip connection, see Figure 3.4.

Figure 3.4: A Residual Block inspired by Fig. 2 in the paper Deep Residual Learning
for Image Recognition [59]. Note that adding paths that bypass weight layers allows
the network to learn to, in effect, use fewer layers for certain inputs.

The idea of this is that if in worst case there is no need for the extra layers,
they can learn to output the identity, and only the parameters from earlier layers
in the network is retained. This should make a deep network at least as good
as a shallower one. This was a great success and they easily won the ImageNet
competition that year, with a 152-layer network, which was a lot deeper than

33

any of its opponents. ResNet made it possible to create much deeper networks,
but why did it work? The answer to this came three years later when Hao Li
et. al. discovered how to visualize the loss surface of a neural network [65].
We were then able to see that with skip connections the loss landscape was
much smoother, which makes it easier to find the global minimum. Without
skip connections a deep network created such a complex loss landscape that it
would get stuck in a local minimum. See Figure 3.5

Figure 3.5: The loss surface of a 56-layer ResNet, to the left without skip con-
nections and to the right with skip connections. This figure is published under
the MIT License, for more information see: https://github.com/tomgoldstein/loss-
landscape/blob/master/LICENSE

3.2.3 Unet and image segmenation

Until now we have talked about image classification where the whole image
have been predicted to a specific class label. Another task, which is especially
interesting within the field of medicine is to locate different objects in an image
with segmentation. This is done by classifying each pixel into what kind of
object in the image it is a part of. Instead of outputting one label class, it
outputs a label for each pixel in the input image, shown in Figure 3.6

The U-net architecture (Figure 3.7) is still a state-of-the-art approach for
image segmentation, and was published in 2015 [67]. A U-net can be split into
two parts, the down-sampling part called the encoder, and a up-sampling part
called the decoder. The encoder is typically CNN without the fully connected
layers. Since the output is suppose to be the same size as the input we need an
up-sampling part which is the decoder. There is many approaches to increase
the image size e.g. transposed convolution (deconvolution), nearest neighbor
interpolation, bi-linear interpolation and bi-cubic interpolation. The most com-
mon technique for a U-net is the transposed convolution with a 2x2 kernel,
which transform input pixel with all its depth into 4 pixels (2x2), and for one
up-convolution several kernels is used to output half the depth of the input. For
further details see [68]. But from this approach a lot of details from the input
images is lost in the encoder part, and it is difficult to rebuild the image with the
small amount of information after the encoding. That is why skip connection is
introduced. After each up-sampling layer, the output from the same level in the

34

Figure 3.6: Examples of training data from the ISIC 2018 competition. Top: Input
data. Bottom: How output data is suppose to look like [66]. The ISIC data set is also
used for Part II in this thesis

encoder is concatenated to the up-sampling output. And this is how the details
from the input image is kept throughout the network.

Figure 3.7: The U-Net architecture from the paper U-Net: Convolutional Networks
for Biomedical Image Segmentation [67]

35

Chapter 4

Generative Adversarial
Networks

The last couple of years generative models have shown great potential in gen-
erating realistic looking synthetic images, e.g. BigGAN [11], StyleGAN2 [12]
and pix2pix [69]. After Ian Goodfellow came up with the idea of generative
adversarial networks (GAN) [39], this have become the standard approach for
generating synthetic images. There have been a lot of development within the
field of GANs, and many different architecture have been explored, but with the
same fundamental ideas that Goodfellow introduced back in 2014. In this chap-
ter we are going to look deeper into the GAN models that we have found most
suitable for our project, where we aim to produce as realistic looking synthetic
images as possible.

4.1 Generative adversarial networks

The traditional GAN model of [39] includes two deep neural networks, whose
combined purpose is to synthesize new “fake” data. The two deep neural net-
works in the GAN are called the generator(G) and the Discriminator(D). The
generator is given vector z, often consisting of random noise, and attempts to
produce “fake” data G(z) by sampling from the data distribution pdata(x) of the
training data, attempting to fool the discriminator D, whose aim is to distinguish
real samples y from those produced by G. During training, the discriminator
provides guidance to the generator, making each other better. See Fig. 4.2 for
an illustration. If the training process is successful, the generator can produce
synthetic samples with similar properties as the training data. More precisely,
the objective of the basic GAN models can be expressed as follows:

LGAN(G,D,Z,X) = Ex∼pdata(x)
[

log(D(x))
]

+ Ez∼pdata(z)
[

log(1−D(G(z))
]
)),

and G and D together tries to solve the minimax problem

min
G

max
D
LGAN(G,D,Z,X),

36

aiming for a Nash equilibrium for this two-player non-cooperative game. In other
word, the minimax solution is reached when the discriminator can’t differentiate
between the generated images (G(z)) and the real images, i.e. D(x) = 1

2 .
The two models are trained simultaneously where they play the two-player

minimax game presented above. G tries to minimize log(1 − D(G(x))), and
D maximize log(D(x)). In the inner loop of the algorithm, D is updated k
times, before G is updated. For the end product the optimal solution is when G
generates samples from the training data distribution, and D equal 1

2 all over.
See Fig. 4.1.

Figure 4.1: Algorithm inspired from the original paper [39], describing how to train
a GAN using minibatch stochastic gradient descent. The number of steps to apply to
the discriminator is given by k and the size of each minibatch is denoted by m. Note
that the notation is kept as in the original paper.

Multiple modifications and extensions to this basic setup have been pro-
posed, aimed at providing more stable training and making the generators pro-
duce higher quality and more diverse samples. See [70] for a recent overview.

4.2 Conditional Image Synthesis with Auxiliary
Classifier GANs

A generator trained using the traditional GAN setup can only produce images
from one specific domain. The generator is never told what to generate. It is
simply trying to produce an image from noise that is good enough to fool the
discriminator.

If one wanted to use GANs to make an image gallery of cats and dogs, one
would have to train multiple models. One model trained on images of dogs, and
another on images of cats. To add other animals to the gallery, new models

37

would have to be trained. What would be better is a single GAN that can
generate images from multiple classes.

4.2.1 Conditional generative adversarial networks

Conditional generative adversarial networks [71] (CGAN) is a modification of
GAN that is capable of producing class-specific images. Meaning that a single
CGAN model can be used to synthesize images from multiple domains.

The basic idea is to feed both the generator and the discriminator the class
label as additional side information. The generator is given a class label speci-
fying what to generate in addition to the noise, providing a mechanism to guide
the image synthesis process. The discriminator is also given a class label. Its
task changes from classifying if an image is real or fake, to classify if an image
from a specific domain is real or fake.

To get the networks to do this we have to modify the objective function in
the original GAN to include the the label information:

min
G

max
D

V (D,G) = Ex∼pdata(x)

[
log(D(x))

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
.

Giving CGAN the objective function:

min
G

max
D

V (D,G) = Ex∼pdata(x)

[
log(D(x|y))

]
+ Ez∼pz(z)

[
log(1−D(G(z|y)))

]
,

where y is the additional side information. In the explanation above, y is the
image label, but it could be any type auxiliary information.

4.2.2 Auxiliary Classifier GAN

The Auxiliary Classifier GAN [72] (ACGAN) further modifies the changes done
in CGAN in order to produce an image synthesis model that could produce
128x128 resolution image samples exhibiting global coherence for all 1000 Ima-
geNet classes.

Here the generator remains the same. It synthesises an image of a specific
class based on the input label and the noise its given.

What separates this model from CGAN is that the discriminator is not
getting the label-specifying side information. Instead they get the discriminator
to figure out the image classes on its own. This is done by implementing what
they call an “auxiliary classifier network” into the discriminator, which is a
auxiliary decoder that is assigned with the task to correctly reconstruct the
class labels in the images its presented. Now the discriminator has to classify
what the image is and if it is artificially generated or a sample from the training
data.

The modification made to the model results in changes in the objective
function. Following the notation in [72], in the standard GAN model:

L = E[log P (S = real | Xreal)] + E[log P (S = fake | Xfake)],

where Xfake = G(z), z is the random noise feed to G. Here the discriminator
D is trying to maximize the log-likelihood of L, and the generator G is aiming
to minimize the second term in L.

38

In the ACGAN model:

LS = E[log P (S = real | Xreal)] + E[log P (S = fake | Xfake)],

LC = E[log P (C = c | Xreal)] + E[log P (C = c | Xfake)],

where Xfake = G(c, z), c is the class-label and z is some noise as in the tradi-
tional GAN. LS is the log-likelihood for the image source (generated or real),
same as in L, while LC is the log-likelihood of the correct class. D is trained to
maximize LS + LC , while G is attempting to maximize LC − LS

Figure 4.2: An illustration of the architectural differences between the original
GAN(left), the CGAN(middle), and the ACGAN(right).

4.3 Image-to-image translation with Cycle-Consistent
Generative Adversarial Networks

Image-to-image translation has recently been successfully approached using gen-
erative adversarial networks, e.g. pix2pix [69] and SRGAN [73].

A requirement for setting up most image-to-image models is to have a set
of image pairs to be used as training data. For example, in an assignment
where the generator is suppose to colorize black and white images, the training
set need to contain pairs of black and white images and the same images with
colors (X and Y). The generator is then given a black and white input image x,
and the output is compared with the colorized image y during training. In this
case one can create grayscale images from their colored counterparts, but there
are many cases where the data sets does not have these image pairs, and it is
extremely difficult to obtain (e.g. horse ↔ zebra). One solution for this is to
use the cycle-consistent generative adversarial networks (CycleGAN) model [74]

In a CycleGAN there are two generators G and F, where G transform X
→ Y, and F transform Y → X. While training the model, two loss functions
are used to update the G and F. The Adversarial Loss, the same as for the

39

Figure 4.3: (a) shows Adversarial Loss, and (b) shows Cycle-Consistency Loss. This
figure is inspired by Fig. 3 in the paper Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks [74]

traditional GAN, introduced in 4.1, and the so-called Cycle-Consistency Loss,
explained below.

It is possible for the adversarial training to generate output of both G and
F that is equally distributed to the target Y and X. However, there are endless
ways for G to map from X→Y. This approach individually have shown problems
with reaching its potential, and often end up with the mode collapse problem,
where all input x maps to (essentially) the same output y. This is why the Cycle
Consistency Loss is introduced. It forces more structure in the mapping of X
↔ Y, such that G(F(y)) ≈ y and F(G(x)) ≈ x, with the objective function:

Lcyc(G,F) = Ex∼pdata(x)
[
‖F (G(x))− x))‖1]

+ Ex∼pdata(y)
[
‖G(F (y))− y))‖1].

In this cycle, the image x should be able to go through the cycle and end up
looking like x again, and same for y. This means that x → G(x) → F(G(x)) ≈
x, and this results in cycle consistency (illustrated in 4.3).

4.4 Other GAN models

The huge interest around GAN have resulted in a lot of research. This have
resulted in many different approaches and architectures for generating synthetic
images. Table 4.1 shows some of the most influential recent GAN models.

40

Model Title Author Year Reference
GAN Generative Adversarial Networks Goodfellow et. al. 2014 [39]

DCGAN
Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks

Radford et. al. 2015 [75]

LAPGAN
Deep Generative Image Models using a Laplacian
Pyramid of Adversarial Networks

Denton et. al. 2015 [76]

WGAN Wasserstein GAN Arjovsky et. al. 2017 [77]

SRGAN
Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network

Ledig et. al. 2017 [73]

pix2pix
Image-to-Image Translation with Conditional
Adversarial Networks

Isola et. al. 2018 [69]

PGGAN
Progressive Growing of GANs for Improved
Quality, Stability, and Variation

Karras et. al. 2018 [78]

BigGAN
Large Scale GAN Training for High Fidelity
Natural Image Synthesis

Brock et. al. 2019 [11]

StyleGAN
A Style-Based Generator Architecture for
Generative Adversarial Networks

Karras et. al. 2019 [79]

LOGAN
LOGAN: Latent Optimisation for Generative
Adversarial Networks

Wu et. al. 2019 [13]

StyleGAN2
Analyzing and Improving the Image Quality of
StyleGAN

Karras et. al. 2020 [12]

Table 4.1: Some of the most influential recent GAN models

41

Part II

Experiments

Chapter 5

Introduction to
Experiments

5.1 Introduction

One of the more important aspects of machine learning is data. Data is so es-
sential that a lot of the time, simpler models will outperform more complex ones
if you simply feed them more data. Therefore, spending time on prepossessing
and gathering sufficient amounts of data is crucially important when creating a
machine learning model. For supervised learning, the data needs to be labeled.
In many cases it is also important that the data is well balanced in order to get
good results.

Acquiring well balanced data is a common hurdle when developing machine
learning models. This is especially difficult when working with medical data
since the data is often very unbalanced. The reason for this is that getting data
for healthy patients is easy, but since such a small percentage of the population
is sick it is difficult to get enough data to represent the group to a comparable
extent. A possible solution to this problem is to artificially create more data by
using generative adversarial networks (GANs, Chapter 4).

For this thesis the idea is to use GANs to generate realistic medical images
from random noise. Ideally, we want to synthesize images in cases where the
availability of real images are lacking (i.e. generate images with abnormalities,
since images without are typically easier to come bye). Then use the fake
generated data to train deep neural networks capable of, for example, separating
the sick patients from the healthy ones. We also investigate the use GANs to
generate fake abnormalities in the images from the healthy patients, creating
more data representing sick patients.

43

5.2 Methods and Materials

5.2.1 Data

ISIC

The International Skin Imaging Collaboration (or ISIC) is a collaboration be-
tween academia and industry with the goal to reduce the number of mortalities
related to melanoma by building the necessary infrastructures needed for the
application of digital skin imaging. In order to reach their goal they are de-
veloping standards for what technologies, techniques, and terminology should
be used for skin imaging, with attention to privacy and the ability to share
the data on different platforms. To test these standards they are developing an
open source public access archive of skin images. In addition to this, the archive
can also be used for other purposes such as teaching or, for the development of
automated diagnostic systems.

Data set

We used the training data set from the International Skin Imaging Collaboration
(ISIC) Challenge 2019 [66, 80, 81], consisting of 25.331 images, each classified as
either Melanoma (MEL), Melanocytic nevus (NV), Basal cell carcinoma (BCC),
Actinic keratosis (AK), Benign keratosis (solar lentigo / seborrheic keratosis
/ lichen planus-like keratosis) (BKL), Dermatofibroma (DF), Vascular lesion
(VASC) or Squamous cell carcinoma (SCC). See Fig. 6.4 for some examples.

Data preprocessing

The preprocessing were done using the pytorch transforms library. The images
where resized to 128x128 in the first experiment for training the ACGAN model.
For training the CycleGAN models in both experiments the images where resized
to 256x256. Bicubic interpolation where used for resampling the images. The
images where then converted to tensors, before being normalized with mean and
standard deviation set to 0.5 for all three color channels.

5.2.2 Frameworks

We used a number of Python-based libraries in our work. In particular Pytorch
and the Pytorch-based fastai library.

Pytorch

Pytorch is a open source scientific computing software written in Python, de-
veloped with two aims:

1. “A replacement for NumPy to use the power of GPUs” by using Tensors.
These provide a lot of the same functionality as NumPy’s N-dimensional
arrays, but are compatible with CPUs as well as with GPUs, making
computations much faster.

2. “A deep learning research platform that provides maximum flexibility and
speed”. They build their framework to accelerates the path from research
prototyping to production deployment.

44

Fastai

Fastai is an open source library for deep learning built on top of Pytorch, devel-
oped by Jeremy Howard et. al. [82]. The goal is to make it as easy and effective
as possible to create a state-of-the-art deep learning models, such that anyone
can do it. This combined with the opportunity to configure your own complex
adjustments, makes this library very powerful.

5.2.3 Models

Skin lesion classifier using fastai

To test if our generated images could improve a classifier we needed to make
this classifier, and an easy way to create a state-of-the-art image classifier, is
to work with the fastai library. In this project the resnet-50 model (50 layers
residual network) pretraind on the ImageNet in fastai is used to create the
classifiers for testing. The residual network was introduced in 2015 by Kaiming
He et. al. [59] and where explained in 3.2.2. The resnet model run the Adam
optimization algorithm [83] to update its weights (see 2.2.8), and to find the
optimal learning rate fastai have a learning rate finder that explore different
learning rates. To speed up the training fastai gives the opportunity to train
with the 1cycle policy [53] which we talked about in 2.2.10. In the first part
of the training only the weights in the last layers that are added to fit this
classification task is tuned, and to fine-tune the model the weights in all the
layers are updated for optimal results.

5.3 Experiments

The main goal of our thesis was to generated realistic looking images of skin
lesions. In the first experiment we explore different GAN models to find the
optimal approach for generating these realistic looking images from random
noise. In the second experiment we wanted to use GAN to see if image-to-image
translation could balance the the data set, and by this improve a classifier. This
work was presented at the MMIV Conference in December 2019, where it won
the “Best Poster Award”.

45

Chapter 6

Generating Images From
Noise

6.1 Introduction

The main goal was to produce images that looked visually pleasing directly from
noise.

While working toward that goal we experimented with multiple GAN models
with varying results. We tried unconditional GANs, where we would train one
model for each class in the skin lesion data set. These images would vary a lot
depending on the amount of images that where available from each class. This
problem occurs because each model had to learn how to generate the skin lesion
from scratch. That can be an unnecessary process since the lesions are visually
similar, with small variations separating the classes. Therefore we tried using a
conditional GAN model. This meant that the the same network could use all
of the images. Meaning that in theory it could learn the main features from
all lesions, then find what separates them in order to produce images for the
specific classes.

First, we tried to use a CGAN for this. The images were very noisy and it
was difficult to see if the different classes got separated. Later we tried using
an ACGAN. The images produced by this model had a larger visual difference
for the classes. However, the images were limited to being of size 128x128
pixels. Additionally to being in a small resolution, they contained quite a lot
of artifacts, resulting in them being easily separable from the real skin lesion
images.

In order to improve the visual quality of the images we decided to use Cy-
cleGAN as an image-to-image technique to make the synthetic images resemble
the real ones of the same lesion class. We used CycleGAN because the model is
designed to be used on image-to-image translation tasks where the images aren’t
paired. This was perfect for our case since the generated images where created
from random noise and there where no structural match in the real data set that
were easy to find. The use of the CycleGAN model for quality improvement on
the ACGAN images resulted in a large improvement in the visual quality, to
the extent where we had a hard time separating between the generated and the
real ones.

46

This lead to some interesting questions. If the images where hard for us to
separate from real ones, could them be used as training data for a classification
model? And furthermore, are the improvements of the visual quality in the
CycleGAN processed images more meaningful for the classifier than the images
produced by the ACGAN model alone?

6.2 Methods and materials

6.2.1 Dataset

The data used in this project is from the ISIC 2019 Classification Task. We
separated the data randomly into a training, validation and a test set. The
Training and Validation data is used during the training of the GANs. The test
set is only used to test the quality of the classifiers after they have been trained
on the generated images.

Label Train Validation Test
NV 10300 1287 1288
MEL 3618 452 452
BCC 2658 332 333
BKL 2099 262 263
AK 694 87 86
SCC 502 63 63
VASC 202 26 25
DF 191 24 24
Sum 20264 2533 2534

Table 6.1: Table showing the number of images per class for each data set.

6.2.2 Models

ACGAN

ACGAN is a GAN model that can be used to generate label-specific images
(Chapter 4). It deviates from a standard GAN model since the generator is
trained to generate different types of images based on the label it given. For our
project it is trained to generate images based on the 8 different types of lesions
in the ISIC data set.

Figure 6.1: An illustration of how ACGAN is utilised in the experiment

47

CycleGAN

CycleGAN is a image to image style of GAN model, meaning that the generator
is given a image instead of random noise. For this project it is used to transform
the images generated using the ACGAN in such a way that they will look more
closely to the real images in the ISIC data set of the same label.

Figure 6.2: An illustration of how CycleGAN is utilised in the experiment

6.2.3 Experiment pipeline

First we use the trained ACGAN model to generate label specific images using
the training data. When this model is finished training it can be used to gen-
erate an unlimited amount of images given a label and some noise. However,
these images where not of the greatest quality, often containing large amount of
artifacts and being confined to 128x128 pixel resolution. The second step is to
try and improve the quality and image size of these images. Here we train one
CycleGAN model for each label in the data sett. We do this by extracting the
all the images from on label out of the training set and the ACGAN generated
images of the same label type.

Figure 6.3: The experimental pipeline

6.3 Experimental setup

The experimental setup is composed of to different part, one looking at the
visual quality of the images, the second is to test if the images can be used as
additional data in the training of a classifier.

Since the syndication pipeline was mainly created with the intention of gen-
erating visually realistic skin lesion images. The first experiment is therefor a
visual comparison of the generated images in relation the the real images.

To test the generated images potential for improving image classification we
composed a classifier designed to correctly label images from the eight different
skin lesion classes that where generated.

48

6.4 Evaluation setup

The testing was done by first training a baseline model. The baseline was set
by training a classifier using the training set composed of images form the ISIC
data set. The model was then evaluated on a test set, composed of other, unseen
images from the ISIC data set. The results from the evaluation is the baseline
score, compared to the models trained using additional generated images.

The data containing the synthetic images where created by taking the train-
ing set for the baseline model and then adding varying amounts of generated
images to all of the classes. The amount of additional data added to each class
was: 250, 500, 1000, 2000, 3000. We created training set for the ACGAN images
and for the visually improved images generated from the CycleGAN, resulting
in ten new training sets. The classifier was trained and evaluated from scratch
for each new data set, using the test set that where used for the baseline.

6.5 Experimental results

Fig. 6.4-6.6 are the visual results, where Fig. 6.4 shows real skin lesion images
from the ISIC data set, Fig. 6.5 shows images generated form noise/label pairs
using the ACGAN model, and Fig. 6.6 shows the generated images in Fig. 6.5
after they have been improved by the CycleGAN model.

Fig. 6.2 shows the results from the image classification test. The Model
column denotes what data has been used, where ISIC-0 is the base line model
trained using only the real images. In the remaining models the first part of the
name (i.e. acgan-250 and cyclegan-250) denotes what model has been used to
generate the images, and the final number (i.e. acgan-250 and cyclegan-250)
is the number of generated images that has been added to each class to expand
on the training set used in ISIC-0. The columns with the class labels show the
classification results (precision/recall) for each model, and the Accuracy for all
classes.

Figure 6.4: Images from the ISIC 2019 data-set. Label order: NV, MEL, BCC, BKL,
AK, SCC, VASC, DF

49

Figure 6.5: Images generated using the ACGAN model. Label order: NV, MEL,
BCC, BKL, AK, SCC, VASC, DF

Figure 6.6: Images generated using the CycleGAN model. Label order: NV, MEL,
BCC, BKL, AK, SCC, VASC, DF

Model MEL NV BCC AK BKL DF VASC SCC Accuracy
ISIC-0 0.823/0.721 0.894/0.939 0.854/0.877 0.761/0.628 0.786/0.783 0.708/0.708 0.913/0.84 0.683/0.683 0.856

acgan-250 0.763/0.757 0.909/0.911 0.824/0.925 0.736/0.616 0.752/0.692 0.727/0.667 0.957/0.88 0.738/0.714 0.845
cyclegan-250 0.782/0.739 0.903/0.925 0.853/0.889 0.679/0.64 0.78/0.753 0.692/0.75 1.0/0.8 0.712/0.667 0.85
cyclegan-500 0.803/0.748 0.894/0.932 0.864/0.898 0.651/0.651 0.826/0.741 0.857/0.75 0.846/0.88 0.714/0.635 0.856

acgan-500 0.811/0.701 0.883/0.94 0.845/0.883 0.675/0.605 0.795/0.738 0.783/0.75 0.95/0.76 0.695/0.651 0.847
cyclegan-1000 0.797/0.748 0.892/0.93 0.861/0.895 0.671/0.64 0.785/0.722 0.762/0.667 0.84/0.84 0.804/0.651 0.851

acgan-1000 0.812/0.743 0.9/0.938 0.846/0.889 0.671/0.616 0.802/0.753 0.842/0.667 0.88/0.88 0.707/0.651 0.856
acgan-2000 0.839/0.701 0.885/0.946 0.839/0.889 0.685/0.709 0.793/0.73 0.783/0.75 0.95/0.76 0.698/0.587 0.852

cyclegan-2000 0.813/0.759 0.907/0.942 0.842/0.913 0.738/0.686 0.807/0.73 0.857/0.75 0.952/0.8 0.741/0.635 0.864
acgan-3000 0.806/0.706 0.896/0.932 0.844/0.91 0.638/0.698 0.785/0.734 0.8/0.667 1.0/0.8 0.644/0.603 0.848

cyclegan-3000 0.785/0.752 0.895/0.936 0.845/0.886 0.641/0.581 0.824/0.711 0.762/0.667 0.958/0.92 0.696/0.619 0.85

Table 6.2: Model number of generated images that has been added to the training-
set, ISIC-0 is only the original training data. Classification results per class showing
precision/recall. Accuracy is accuracy for all classes

50

Chapter 7

Generating Images From
Other Classes

7.1 Introduction

In an image dataset, it can occur similarities in different classes. Take for
example The Oxford-IIIT Pet Dataset [84] with images of dogs and cats where
each class is the breed of the animal. Here it should be possible to find similar
features in images of two different dog breeds. An image with some similarities,
makes a much better base for a GAN model than to get random noise as input.

This concept is transferable to the ISIC2019 dataset [85]. In a classification
task with the ISIC dataset, the classifier often has problems separating the
Nevus and Melanoma class. Since melanoma in many cases develops from nevus
it is logical to conclude that nevus and melanoma have feature similarities.

The approach for this chapter is inspired by the work of Jerry Wei et. al. [37],
where we want to generate melanoma images from nevus images, and balance
the dataset by using generated melanoma images.

Another interesting factor with this approach from Jerry Wei et. al. [37],
is to see if good quality data is more important than the amount of data to
generate training data that are supposed to improve a classification model.

7.2 Methods and materials

7.2.1 Data

For this experiment, we are only using the melanoma and nevus images for
training the CycleGAN model (Fig. ??). All classes from the ISIC 2019 data
set is used for training the classifier for testing.

7.2.2 Models

ResNet

A ResNet classifier that is trained on the training data. The purpose of this
model is then to predict all the melanoma training data, to find the images the

51

Label Train Validation Test
NV 10300 1287 1288
MEL 3618 452 452
Sum 13918 1739 1793

Table 7.1: The number of images for each class in the data set.

model is most confident in classifying correctly. With this information we are
able to do the path-rank-filtering, which you can read more about in 7.2.3

CycleGAN

A CycleGAN model that is trained on the nevus images and the α melanoma
images which the ResNet model was most confident on, further explained in 7.3.
When finished training the model is able to generate new images of melanoma
from the nevus images.

7.2.3 Experiment pipeline

In an image to image problem with no obvious image pairs, a CycleGAN model
is preferred. But to decide the training data for the model an idea from the
Jerry Wei et. al. paper [37] called Path-Rank-Filter is used. When the training
data is ready, the next step is to train the CycleGAN model, which is able to
generate melanoma from nevus images, and vice versa, when finished training.
See figure 7.1

Path-Rank-Filter

A path-rank-filter is a way to filter out data that a classifier has difficulties to
predict correctly. In this case, you want to generate melanoma images from a
generator trained on melanoma data that a classifier is confident is melanoma.

By using a ResNet model trained with all the original data, and make the
classifier predict the training data of the class a generator is going to generate
images of at a later time. Then pick an α of the images that the classifier
predicted correctly with the highest confidence, and use these images to train
the generator.

7.3 Experimental setup

The main objective of this experiment is to improve a classification model by
adding generated images. Another interesting aspect of this experiment is to
observe if good quality data, meaning data that is classified correctly with high
confidence, or the amount of data is decisive for a good result, and if there
are more important features than visually good looking synthetic images when
training a classifier.

In this experiment we train four CycleGAN models, to generate four types
of melanoma images. The difference in these CycleGAN models is the training
data, which have been sent through the path-rank-filter with α=[1/8, 1/4, 1/2,

52

Figure 7.1: The experimental pipeline for experiment 2

1/1], and ended up as four data sets (containing the output of the path-rank
filter and all the nevus images in the training set), one for each CycleGAN
model. After training the models, all the nevus images was generated to their
corresponding synthetic melanoma image.

7.4 Evaluation setup

For testing if the additional synthetic data could improve a classifier, we cre-
ated 32 new data sets where we added different amounts of synthetic melanoma
images, which was generated by different α values. All these different combina-
tions of generated melanoma images was added to the original training set, and
was used to train 32 different resnet classifier models. More specific, the data
sets where made out of all the combinations of:

• α = [1/8, 1/4, 1/2, 1/1]

• Number of generated data = [500, 1000, 2000, 3000, 4000, 5000, 6000,
7000]

The images that where used was random picked, but for every α value the
generated melanoma image from the same nevus image was used, and the images
in 500 ∈ 1000 ∈ 2000 and so on. The generated image was then added to the
original training set to train the test classifier.

7.5 Experimental results

Figure 7.2 shows a sample of generated melanoma images. To the naked eye
it looks like the higher α is, the images are more similar to their original ne-
vus images. This provides basis to belief that with a lower α the CycleGAN
model uses more of the dominating features in the melanoma images to generate
new ones. To test if these generated images is of any use as an augmentation
approach, we have completed a set of classification tasks with different train-
ing data. Different amounts of synthetic MEL images, which is generated with
different α value, is added to the original dataset. See results in table 7.2.

53

α = 1
8 α = 1

4 α = 1
2 α = 1

1
MEL MEL MEL MEL

Num. gen. acc. prec recall acc. prec recall acc. prec recall acc. prec recall
500 0.852 0.797 0.712 0.853 0.807 0.712 0.857 0.820 0.724 0.856 0.819 0.710
1000 0.851 0.824 0.717 0.848 0.797 0.719 0.861 0.843 0.701 0.851 0.825 0.708
2000 0.857 0.815 0.730 0.847 0.817 0.719 0.856 0.836 0.732 0.856 0.828 0.712
3000 0.858 0.837 0.715 0.857 0.837 0.728 0.857 0.833 0.726 0.859 0.825 0.746
4000 0.854 0.801 0.746 0.856 0.802 0.728 0.864 0.855 0.715 0.854 0.807 0.730
5000 0.858 0.848 0.717 0.856 0.804 0.754 0.855 0.818 0.737 0.858 0.811 0.741
6000 0.865 0.851 0.759 0.852 0.816 0.724 0.856 0.825 0.730 0.858 0.819 0.741
7000 0.854 0.781 0.748 0.864 0.810 0.763 0.849 0.783 0.743 0.856 0.819 0.752
ISIC-0 0.856 0.823 0.721 0.856 0.823 0.721 0.856 0.823 0.721 0.856 0.823 0.721

Table 7.2: The results from the classification test in experiment 2. The rows is
number of generated melanoma images added to the original training data, ISIC-0 is
when no generated data is added. α is the value in the path-rank-filter. acc. is the
all over accuracy when predicting on the test set. MEL prec/recall is the class specific
precision and recall for the melanoma class.

Figure 7.2: Column 1 - Nevus images, column 2 - generated melanoma images α=1/8,
column 3 - generated melanoma images α=1/4, column 4 - generated melanoma images
α=1/2, column 5 - generated melanoma images α=1/1

54

Chapter 8

Discussion

In this chapter we discuss the results obtained in the above experiments, and
look at reasons that can explain what we did and didn’t achieve with our various
approaches. We point to general challenges with GANs, linking them to what
we have observed throughout our work. Finally, we discuss some future work
that could potentially lead to improved results.

8.1 Results

In this work we have been able to reach our goal in generating realistic looking
images of skin lesions (seen in figure 6.6 and 7.2), and for an untrained eye it
would be difficult to separate the real images from the generated images. In our
two approaches, generating synthetic images from random noise (Experiment
1), and an image translation with an image-to-image approach (Experiment 2),
we have show that GANs have the ability to generate realistic looking synthetic
images.

When it comes to using this generated data to improve a classification model,
we have not been able to find an approach that we can confidently recommend.
We have found cases that see some improvements, but also some for which
adding synthetic images lessens classification accuracy. When looking at the
tables 6.2 and 7.2, the numbers seems to be a bit random, and there is no clear
structure in the results.

8.2 Challenges with GAN

8.2.1 Failure to converge

A possible pitfall when training GANs is that it can have problems with con-
verging, meaning that the model has a hard time reaching a Nash equilibrium,
but for example rather jump back and forth between lowering the loss of the
generator and lowering the loss of the discriminator. There is a variety of dif-
ferent theoretical interpretations for why this problem occurs, and each variety
of GAN has their own set of convergence issues.

In the original GAN paper they speculate that the cause of stagnant training
can be traced back to how the objective function is built. In our earlier chapter

55

on GANs, we discussed that the objective function is a minimax game between
the discriminator and the generator, where improvements to one network is
supposed to cause improvements to the other.

Figure 8.1: A generated im-
age from one of our early
attempts at constructing a
working GAN model

But if the discriminator becomes to good at
differentiating the generated images from the real
ones too early on in the training process, it can be
difficult for the generator to know what changes it
needs to do in order to improve its output. If this
happens the generator can reach a point where it
never figure out how to adjust itself in the right
direction, failing to converge.

In the early stages of our research we noticed
this failure to converge while implementing a sim-
ple GAN model to produce skin lesions images
from random noise. All outputs from the genera-
tor were these green and red images that remained
the same no matter how long it was trained for.
Fig. 8.1 shows an example.

8.2.2 Mode collapse

A good generator should generate outputs of a wide variety over the distribution
of the data. Mode collapse is when the generator excludes parts of the data
distribution when generating images, and end up generating the same, or close
to the same, output whatever the input. Take for example the MNIST data set,
if the generator only outputs images of the digit 3, and all the other numbers
in the data distribution never appear, you are dealing with a mode collapse.
In practice, GAN generators can quickly end up in this situation, until the
discriminator starts classifying these digit correctly as being fake. At which
point the generator end up in another collapse, only generating images of another
digit. And so on, ad nauseam. This is one of the biggest challenges of training
GAN models. For technical details of what this is and why it happens see [86].

To know if this has happened in our work is difficult to say. In our generated
data we can see that there is a lot of variety in the images that is produced.
But there is a high probability that we have a mode collapse at some level, even
though it is difficult to discover. We can also see examples in our generated
data that some images are very similar to each other, signifying mode collapse.

8.2.3 Need for data

To generate images of high quality the need of a large and high quality dataset
is crucial [87]. State-of-the-art models generating high quality realistic models
such as [11, 13, 79] all use large data set to achieve their results. To generate
images of such high quality requires an enormous amount of computing power
and time. To use images like these for data augmentation would be cumbersome,
and likely not even be very impactfule for a classifier, as the already complex
original data set could give good results on its own.

56

8.2.4 Difficult to evaluate

The lack of evaluation metricis for GAN makes it difficult to improve and adjust
the model. Even though many measures have been introduced, visual examina-
tion is still the go-to method. This is time consuming, and you often need an
expert to do a thorough evaluation [86]. In the paper [88] they review many of
the evaluation measures that have been introduced to GAN, and point out the
importance of settling on a few good measures to steer the progress.

8.2.5 Is GAN the way to go for data augmentation?

To improve a classifier with synthetic data, does the optimal generated data
look as realistic as possible? In the work of Han et. al. they conclude that
realistic images does not always guarantee better data augmentation [89]. While
a discriminator in a GAN model predicts if an image looks real or not, should it
not instead see if the generated image improve a classifier? An example of this
approach is Uber AI Labs recent work reported in [90]

8.3 Our approach

While working with the thesis, we have been through many types of GAN
models with different approaches. The product we have presented here is the
approaches we found to give the best results in generating as realistic skin lesion
images as possible. Other models we have tried to generate synthetic images of
is Wasserstein GAN [77], Conditional GAN [69] and BigGAN [11], but none of
them gave the visual quality we where looking for.

We have also looked at the segmentation problem from the ISIC 2018 data
set [66]. Here we tried to generate both skin lesion images and its segmentation
mask. We explored the models, Wasserstein GAN [77], Deep Convolutional
GAN [75], perceptual loss [91] and Bicycle GAN [92], but because of the lack
of improvement in our model tasked with segmenting lesions by using these
synthetic masks, we put the problem aside.

In this work we have not focused that much on fine tuning hyperparameters.
This is because of the extremely long training time in many cases, which makes
trying multiple parameter settings time consuming, and the difficulties of eval-
uating small improvements in the output of the generator just by trying to spot
the visual differences in the generated images. That is why we have prioritized
exploring different GAN models, where it is a lot more variation in the output,
and easier to spot which model has the potential or not.

While exploring these GAN models we have stumbled upon some of the
challenges described in section 8.2. In figure 8.2 we can see some examples
of generated images from our CGAN model and BigGAN model. Because of
the similarities in the images generated from both models, much indicates that
these models have a mode collapse problem. The bad quality in the images is
probably because we don’t have a big enough data set. BigGAN is known for
needing a lot of training data, such as the 1.4 million images in ImageNet, so
it’s reasonable to conclude that the bad quality is at least partly a result of not
having enough data.

57

Figure 8.2: Examples of generated images from our CGAN and BigGAN models.
A lot indicates that these images suffers from mode collapse and the need of more
training data.

8.4 Further work

The main focus in the work reported in our thesis was to test a variety of different
GAN models, in order to find the ones that worked best. The process of finding
new models and setting up a functional environment, including implementation
of the models, was very time consuming. In addition to that, the training time
for GAN models can be extremely slow as well. Some of the models took weeks
to train, sometimes without converging.

This left some “intended work” that we never found the time to execute. In
this section we will discuss some those project.

One of the things we would have liked to spend more time on is to try to im-
prove the quality of the models used in our experiments. Generative adversarial
nets are notoriously hard to train. Since they often requires a lot of manual
supervision (checking if the generator output makes sense) and fine tuning of
parameters. In [38] they were successful in using a GAN to mitigate problems
related to data imbalance for classifier training, but also noted that the suc-
cessful model demanded a lot of supervision in order to perform: “we also want
to emphasize that training the LAPGAN is very difficult, requiring constant
supervision and adjustment of hyperparameters”. Ideally, we would have used
a large-scale grid search or a similar strategy to find sets of hyperparameters
resulting in high performance. But this would have been far too time-consuming
given the time and computational resources we had available.

Another aspect that we would like to investigate is different ways of testing
the quality of the generated images.

In [37], the paper that our second experiment was motivated by, they had
an additional test we did not have the time to perform. They devised what
they called a “Turing-test” where the generated images where mixed in with
real images, and then displayed to experts that would try to separate between
the two.

This style of image evaluation is also mention in [30] that reviews the use

58

of GANs for medical imaging. Where they recognize that this approach to
evaluation can be time consuming and not easily scalable. In response to that
they list several other ways of evaluation used in the papers they reviewed.
It could certainly be interesting to try and use these ways of measure on our
models and compare the results to theirs.

It could also be useful to use our pipelines on similar projects, medical or
not, and then compare our generated images with those obtained by others.

In addition to further improve the models used, it would be interesting to
explore even more GAN models as well.

There are many variations of GAN that has shown promising results in
medical image synthesis, like the LAPGAN [76]. That was successfully used
for medical image synthesis where the goal was to improve classification results
caused by data imbalance [38].

In addition to popular models for medical imaging it would be interesting
to try other GAN models that has shown promising results in non-medical
image synthesis. I.e. [90] where they use a different approach to model training.
In the standard usages the generators output is evaluated by how good the
images looked to the human eye. Here the images are, during training, evaluated
by there usefulness in improving classification models. This can lead to some
interesting results, where the images that are generated could look like a total
mess and seemingly completely useless, but they improved the classifier. Which
poses some very interesting questions for our approach of generating realistic
looking images with the intended use as training data for a image classifier.

8.5 Conclusion

When we started this work we formulated two research questions (see section
1.4). The first one was to see if we could generate realistic-looking images of
skin lesions, and the second was to see if the generated images could be used as
training data to improve a classifier.

For the first question we have overcome the challenges of failure to converge
and mode collapse, at least to a point where we are able to generate images that
are visually pleasing, look realistic and have quite a lot of variety. In our first
experiment we came up with a pipeline that we haven’t seen anyone else use
before us. The pipeline was able to generate realistic-looking images, and have
outperformed all our other attempts in generating images of skin lesions from
random noise.

When it comes to the second research question, it has turned out to be more
challenging. When using the generated data to train a classifier, we have not
been able to see any improvement. Because of this it has been difficult to recom-
mend an approach where GANs should be used for data augmentation. Others
have also asked the question if GAN is a good tool for data augmentation [93],
and in the work of Perez et. al. they show that traditional augmentation gives
better results then applying GANs as a data augmentation tool [94]. Figuring
out whether a positive answer to our second research question exists requires
further work aimed at discovering and surmounting the current limitations for
GAN models and their ability to move beyond the training data distribution.

59

References

[1] World Health Organization. Cancer. https://www.who.int/news-room/

fact-sheets/detail/cancer, 2012. Online; accessed 17 September 2019.

[2] The Skin Cancer Foundation. Skin Cancer Facts Statistics. https://www.
skincancer.org/skin-cancer-information/skin-cancer-facts/,
2019. Online; accessed 17 September 2019.

[3] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swet-
ter, Helen M Blau, and Sebastian Thrun. Dermatologist-level classification
of skin cancer with deep neural networks. Nature, 542(7639):115–118, 2017.

[4] Holger A Haenssle, Christine Fink, R Schneiderbauer, Ferdinand Toberer,
Timo Buhl, A Blum, A Kalloo, A Ben Hadj Hassen, Luc Thomas, A Enk,
et al. Man against machine: diagnostic performance of a deep learning con-
volutional neural network for dermoscopic melanoma recognition in com-
parison to 58 dermatologists. Annals of Oncology, 29(8):1836–1842, 2018.

[5] Alexander Selvikv̊ag Lundervold and Arvid Lundervold. An overview of
deep learning in medical imaging focusing on MRI. Zeitschrift für Medi-
zinische Physik, 29(2):102–127, 2019.

[6] Titus J Brinker, Achim Hekler, Alexander H Enk, Carola Berking, Se-
bastian Haferkamp, Axel Hauschild, Michael Weichenthal, Joachim Klode,
Dirk Schadendorf, Tim Holland-Letz, et al. Deep neural networks are supe-
rior to dermatologists in melanoma image classification. European Journal
of Cancer, 119:11–17, 2019.

[7] Stephanie Chan, Vidhatha Reddy, Bridget Myers, Quinn Thibodeaux,
Nicholas Brownstone, and Wilson Liao. Machine Learning in Dermatol-
ogy: Current Applications, Opportunities, and Limitations. Dermatology
and therapy, pages 1–22, 2020.

[8] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu,
Arunachalam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner,
Tom Madams, Jorge Cuadros, et al. Development and Validation of a
Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs. Jama, 316(22):2402–2410, 2016.

[9] Rishab Gargeya and Theodore Leng. Automated Identification of Diabetic
Retinopathy Using Deep Learning. Ophthalmology, 124(7):962–969, 2017.

60

https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/
https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/

[10] Jaakko Sahlsten, Joel Jaskari, Jyri Kivinen, Lauri Turunen, Esa Jaanio,
Kustaa Hietala, and Kimmo Kaski. Deep Learning Fundus Image Analysis
for Diabetic Retinopathy and Macular Edema Grading. Scientific reports,
9(1):1–11, 2019.

[11] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN
Training for High Fidelity Natural Image Synthesis. arXiv preprint
arXiv:1809.11096, 2018.

[12] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Analyzing and Improving the Image Quality of StyleGAN.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8110–8119, 2020.

[13] Yan Wu, Jeff Donahue, David Balduzzi, Karen Simonyan, and Timothy Lil-
licrap. LOGAN: Latent Optimisation for Generative Adversarial Networks.
arXiv preprint arXiv:1912.00953, 2019.

[14] The Skin Cancer Foundation. Skin Cancer 101. https://www.skincancer.
org/skin-cancer-information/, 2019. Online; accessed 17 September
2019.

[15] Norsk Helseinformatikk AS. Hudkreft - animasjon. https://nhi.no/

animasjoner/hud/hudkreft/, 2014. Online; accessed 17 September 2019.

[16] Shivangi Jain, Nitin Pise, et al. Computer aided Melanoma skin cancer
detection using Image Processing. Procedia Computer Science, 48:735–740,
2015.

[17] The International Skin Imaging Collaboration. Background. https:

//challenge2019.isic-archive.com/background.html, 2019. Online;
accessed 17 September 2019.

[18] Inger Kristin Larsen, B Møller, TB Johannesen, S Larønningen, T Rob-
sahm, T Grimsrud, and G Ursin. Cancer in Norway 2016-Cancer inci-
dence, mortality, survival and prevalence in Norway. Book Cancer in Nor-
way 2010–Cancer Incidence, Mortality, Survival and Prevalence in Norway
(Editor ed.ˆ eds), 2017.

[19] Norsk Elektronisk Legehandbok. Malignt melanom. https:

//legehandboka.no/handboken/kliniske-kapitler/hud/

pasientinformasjon/foflekker-pigmenterte-utslett/

foflekkreft-malignt-melanom, 2019. Online; accessed 17 Septem-
ber 2019.

[20] Hensin Tsao, Jeannette M Olazagasti, Kelly M Cordoro, Jerry D Brewer,
Susan C Taylor, Jeremy S Bordeaux, Mary-Margaret Chren, Arthur J
Sober, Connie Tegeler, Reva Bhushan, et al. Early Detection of Melanoma:
Reviewing the ABCDEs. Journal of the American Academy of Dermatol-
ogy, 72(4):717–723, 2015.

[21] Darrell S Rigel, Julie Russak, and Robert Friedman. The Evolution of
Melanoma Diagnosis: 25 Years Beyond the ABCDs. CA: a cancer journal
for clinicians, 60(5):301–316, 2010.

61

https://www.skincancer.org/skin-cancer-information/
https://www.skincancer.org/skin-cancer-information/
https://nhi.no/animasjoner/hud/hudkreft/
https://nhi.no/animasjoner/hud/hudkreft/
https://challenge2019.isic-archive.com/background.html
https://challenge2019.isic-archive.com/background.html
https://legehandboka.no/handboken/kliniske-kapitler/hud/pasientinformasjon/foflekker-pigmenterte-utslett/foflekkreft-malignt-melanom
https://legehandboka.no/handboken/kliniske-kapitler/hud/pasientinformasjon/foflekker-pigmenterte-utslett/foflekkreft-malignt-melanom
https://legehandboka.no/handboken/kliniske-kapitler/hud/pasientinformasjon/foflekker-pigmenterte-utslett/foflekkreft-malignt-melanom
https://legehandboka.no/handboken/kliniske-kapitler/hud/pasientinformasjon/foflekker-pigmenterte-utslett/foflekkreft-malignt-melanom

[22] John F Thompson, Richard A Scolyer, and Richard F Kefford. Cutaneous
Melanoma. The Lancet, 365(9460):687–701, 2005.

[23] Harold Kittler, H Pehamberger, K Wolff, and MJTIO Binder. Diagnostic
Accuracy of Dermoscopy. The lancet oncology, 3(3):159–165, 2002.

[24] ME Vestergaard, PHPM Macaskill, PE Holt, and SW Menzies. Dermoscopy
Compared With Naked Eye Examination for the Diagnosis of Primary
Melanoma: A Meta-Analysis of Studies Performed in a Clinical Setting.
British Journal of Dermatology, 159(3):669–676, 2008.

[25] Ashley Privalle, Thomas Havighurst, KyungMann Kim, Daniel D Ben-
nett, and Yaohui G Xu. Number of Skin Biopsies Needed Per Malignancy:
Comparing the Use of Skin Biopsies Among Dermatologists and Nonder-
matologist Clinicians. Journal of the American Academy of Dermatology,
82(1):110–116, 2020.

[26] Andre GC Pacheco and Renato A Krohling. The impact of patient clinical
information on automated skin cancer detection. Computers in biology and
medicine, 116:103545, 2020.

[27] Abhishek Bhattacharya, Albert Young, Andrew Wong, Simone Stalling,
Maria Wei, and Dexter Hadley. Precision Diagnosis Of Melanoma And
Other Skin Lesions From Digital Images. AMIA Summits on Translational
Science Proceedings, 2017:220, 2017.

[28] Shivangi Jain, Nitin Pise, et al. Computer aided Melanoma skin cancer
detection using Image Processing. Procedia Computer Science, 48:735–740,
2015.

[29] Ana Filipa Duarte, Altamiro da Costa-Pereira, Veronique Del-Marmol, and
Osvaldo Correia. Are General Physicians Prepared for Struggling Skin
Cancer?—Cross-Sectional Study. Journal of cancer education, 33(2):321–
324, 2018.

[30] Xin Yi, Ekta Walia, and Paul Babyn. Generative adversarial network in
medical imaging: A review. Medical image analysis, page 101552, 2019.

[31] Jelmer M Wolterink, Tim Leiner, Max A Viergever, and Ivana Išgum. Gen-
erative Adversarial Networks for Noise Reduction in Low-Dose CT. IEEE
transactions on medical imaging, 36(12):2536–2545, 2017.

[32] Yuhua Chen, Feng Shi, Anthony G Christodoulou, Yibin Xie, Zhengwei
Zhou, and Debiao Li. Efficient and Accurate MRI Super-Resolution using
a Generative Adversarial Network and 3D Multi-Level Densely Connected
Network. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 91–99. Springer, 2018.

[33] Ohad Shitrit and Tammy Riklin Raviv. Accelerated Magnetic Resonance
Imaging by Adversarial Neural Network. In Deep Learning in Medical Im-
age Analysis and Multimodal Learning for Clinical Decision Support, pages
30–38. Springer, 2017.

62

[34] Dong Yang, Daguang Xu, S Kevin Zhou, Bogdan Georgescu, Mingqing
Chen, Sasa Grbic, Dimitris Metaxas, and Dorin Comaniciu. Automatic
Liver Segmentation Using an Adversarial Image-to-Image Network. In
International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 507–515. Springer, 2017.

[35] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best Practices
for Convolutional Neural Networks Applied to Visual Document Analysis.
In Icdar, volume 3, 2003.

[36] Pedro Costa, Adrian Galdran, Maria Inês Meyer, Michael David Abràmoff,
Meindert Niemeijer, Ana Maria Mendonça, and Aurélio Campilho. Towards
Adversarial Retinal Image Synthesis. arXiv preprint arXiv:1701.08974,
2017.

[37] Jerry Wei, Arief Suriawinata, Louis Vaickus, Bing Ren, Xiaoying Liu,
Jason Wei, and Saeed Hassanpour. Generative Image Translation for
Data Augmentation in Colorectal Histopathology Images. arXiv preprint
arXiv:1910.05827, 2019.

[38] Christoph Baur, Shadi Albarqouni, and Nassir Navab. MelanoGANs:
High Resolution Skin Lesion Synthesis with GANs. arXiv preprint
arXiv:1804.04338, 2018.

[39] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
Adversarial Nets. In Advances in neural information processing systems,
pages 2672–2680, 2014.

[40] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric
sampling. In Proceedings of the seventh IEEE international conference on
computer vision, volume 2, pages 1033–1038. IEEE, 1999.

[41] David J Heeger and James R Bergen. Pyramid-Based Texture Analy-
sis/Synthesis. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 229–238, 1995.

[42] Jeremy S De Bonet. Multiresolution Sampling Procedure for Analysis and
Synthesis of Texture Images. In Proceedings of the 24th annual conference
on Computer graphics and interactive techniques, pages 361–368, 1997.

[43] CJ Rose and CJ Taylor. A Statistical Model of Texture for Medical Image
Synthesis and Analysis. Med. Image Understand. Anal, pages 1–4, 2003.

[44] Amod Jog, Snehashis Roy, Aaron Carass, and Jerry L Prince. Magnetic
resonance image synthesis through patch regression. In 2013 IEEE 10th
International Symposium on Biomedical Imaging, pages 350–353. IEEE,
2013.

[45] Michael A Nielsen. Neural Networks and Deep Learning, volume 2018.
Determination press San Francisco, CA, USA:, 2015.

[46] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics, 5
(4):115–133, 1943.

63

[47] Frank Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.

[48] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[49] Fast.ai. vision.transform. https://docs.fast.ai/vision.transform.

html, 2020. Online; accessed 15 May 2020.

[50] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

[51] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approxima-
tion: Representing Model Uncertainty in Deep Learning. In international
conference on machine learning, pages 1050–1059, 2016.

[52] Sean Murray. An Exploratory Analysis of Multi-Class Uncertainty Ap-
proximation in Bayesian Convolutional Neural Networks. Master’s thesis,
University of Bergen, 2018.

[53] Leslie N Smith. A disciplined approach to neural network hyper-
parameters: Part 1 – learning rate, batch size, momentum, and weight
decay. arXiv preprint arXiv:1803.09820, 2018.

[54] Jeremy Howard and Sylvain Gugger. fastai: A Layered API for Deep
Learning. Information, 11(2):108, 2020.

[55] Emma Beede, Elizabeth Baylor, Fred Hersch, Anna Iurchenko, Lauren
Wilcox, Paisan Raumviboonsuk, and Laura Vardoulakis. A Human-
Centered Evaluation of a Deep Learning System Deployed in Clinics for
the Detection of Diabetic Retinopathy. 2020.

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[57] Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in po-
sition. Biological cybernetics, 36(4):193–202, 1980.

[58] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropa-
gation Applied to Handwritten Zip Code Recognition. Neural computation,
1(4):541–551, 1989.

[59] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[60] Alok Sharma, Edwin Vans, Daichi Shigemizu, Keith A Boroevich, and
Tatsuhiko Tsunoda. DeepInsight: A methodology to transform a non-image
data to an image for convolution neural network architecture. Scientific
reports, 9(1):1–7, 2019.

64

https://docs.fast.ai/vision.transform.html
https://docs.fast.ai/vision.transform.html

[61] Cicero Dos Santos and Maira Gatti. Deep Convolutional Neural Networks
for Sentiment Analysis of Short Texts. In Proceedings of COLING 2014,
the 25th International Conference on Computational Linguistics: Technical
Papers, pages 69–78, 2014.

[62] Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen, Fei Ren, Patrick
Nguyen, Ruoming Pang, Ignacio Lopez Moreno, Yonghui Wu, et al. Trans-
fer Learning from Speaker Verification to Multispeaker Text-To-Speech
Synthesis. In Advances in neural information processing systems, pages
4480–4490, 2018.

[63] Alexander LeNail. NN-SVG: Publication-Ready Neural Network Architec-
ture Schematics. Journal of Open Source Software, 4(33):747, 2019.

[64] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[65] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein.
Visualizing the Loss Landscape of Neural Nets. In Advances in Neural
Information Processing Systems, pages 6389–6399, 2018.

[66] Noel CF Codella, David Gutman, M Emre Celebi, Brian Helba, Michael A
Marchetti, Stephen W Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin
Mishra, Harald Kittler, et al. Skin Lesion Analysis Toward Melanoma De-
tection: A Challenge at the 2017 International Symposium on Biomedical
Imaging (ISBI), Hosted by the International Skin Imaging Collaboration
(ISIC). In 2018 IEEE 15th International Symposium on Biomedical Imag-
ing (ISBI 2018), pages 168–172. IEEE, 2018.

[67] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation. In International
Conference on Medical image computing and computer-assisted interven-
tion, pages 234–241. Springer, 2015.

[68] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic
for deep learning. arXiv preprint arXiv:1603.07285, 2016.

[69] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-
Image Translation with Conditional Adversarial Networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
1125–1134, 2017.

[70] Karol Kurach, Mario Lučić, Xiaohua Zhai, Marcin Michalski, and Sylvain
Gelly. A Large-Scale Study on Regularization and Normalization in GANs.
In International Conference on Machine Learning, pages 3581–3590, 2019.

[71] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial
Nets. arXiv preprint arXiv:1411.1784, 2014.

[72] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional
Image Synthesis With Auxiliary Classifier GANs. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 2642–
2651. JMLR. org, 2017.

65

http://www.deeplearningbook.org

[73] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cun-
ningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes
Totz, Zehan Wang, et al. Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 4681–4690, 2017.

[74] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
Image-to-Image Translation using Cycle-Consistent Adversarial Networks.
In Proceedings of the IEEE international conference on computer vision,
pages 2223–2232, 2017.

[75] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks.
arXiv preprint arXiv:1511.06434, 2015.

[76] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep Generative
Image Models using a Laplacian Pyramid of Adversarial Networks. In
Advances in neural information processing systems, pages 1486–1494, 2015.

[77] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN.
arXiv preprint arXiv:1701.07875, 2017.

[78]

[79] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Ar-
chitecture for Generative Adversarial Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4401–4410,
2019.

[80] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The HAM10000
dataset, a large collection of multi-source dermatoscopic images of common
pigmented skin lesions. Scientific data, 5:180161, 2018.

[81] Marc Combalia, Noel CF Codella, Veronica Rotemberg, Brian Helba,
Veronica Vilaplana, Ofer Reiter, Allan C Halpern, Susana Puig, and Josep
Malvehy. BCN20000: Dermoscopic Lesions in the Wild. arXiv preprint
arXiv:1908.02288, 2019.

[82] Jeremy Howard et al. fastai. https://github.com/fastai/fastai, 2018.

[83] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Op-
timization. arXiv preprint arXiv:1412.6980, 2014.

[84] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar.
Cats and dogs. In IEEE Conference on Computer Vision and Pattern
Recognition, 2012.

[85] Noel Codella, Veronica Rotemberg, Philipp Tschandl, M Emre Celebi,
Stephen Dusza, David Gutman, Brian Helba, Aadi Kalloo, Konstantinos
Liopyris, Michael Marchetti, et al. Skin Lesion Analysis Toward Melanoma
Detection: A Challenge at the 2017 International Symposium on Biomedi-
cal Imaging (ISBI), Hosted by the International Skin Imaging Collaboration
(ISIC). arXiv preprint arXiv:1902.03368, 2019.

66

https://github.com/fastai/fastai

[86] Divya Saxena and Jiannong Cao. Generative Adversarial Networks
(GANs): Challenges, Solutions, and Future Directions. arXiv preprint
arXiv:2005.00065, 2020.

[87] Keyang Cheng, Rabia Tahir, Lubamba Kasangu Eric, and Maozhen Li. An
analysis of generative adversarial networks and variants for image synthesis
on MNIST dataset. Multimedia Tools and Applications, pages 1–28, 2020.

[88] Ali Borji. Pros and Cons of GAN Evaluation Measures. Computer Vision
and Image Understanding, 179:41–65, 2019.

[89] Changhee Han, Hideaki Hayashi, Leonardo Rundo, Ryosuke Araki, Wataru
Shimoda, Shinichi Muramatsu, Yujiro Furukawa, Giancarlo Mauri, and
Hideki Nakayama. GAN-based synthetic brain MR image generation. In
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI
2018), pages 734–738. IEEE, 2018.

[90] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O Stanley, and
Jeff Clune. Generative Teaching Networks: Accelerating Neural Archi-
tecture Search by Learning to Generate Synthetic Training Data. arXiv
preprint arXiv:1912.07768, 2019.

[91] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for
Real-Time Style Transfer and Super-Resolution. In European conference
on computer vision, pages 694–711. Springer, 2016.

[92] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A
Efros, Oliver Wang, and Eli Shechtman. Toward Multimodal Image-to-
Image Translation. In Advances in neural information processing systems,
pages 465–476, 2017.

[93] Christoph Baur, Shadi Albarqouni, and Nassir Navab. Generating Highly
Realistic Images of Skin Lesions with GANs. In OR 2.0 Context-Aware
Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-
Based Procedures, and Skin Image Analysis, pages 260–267. Springer, 2018.

[94] Luis Perez and Jason Wang. The Effectiveness of Data Augmentation in Im-
age Classification using Deep Learning. arXiv preprint arXiv:1712.04621,
2017.

67

	Introduction
	Machine learning and generative adversarial networks in medicine
	Skin Cancer
	Common Types
	Diagnosis

	Machine Learning and Skin Cancer
	Research question and main contributions of thesis
	Related work

	I Background
	Artificial Neural Networks
	Building a Neural Network
	The Artificial Neuron
	Activation Functions
	Network Architecture

	Training a Neural Network
	Cost Function
	The idea of Gradient Descent
	Backpropagation
	Learning Rates
	Feature Scaling
	Overfitting and Underfitting
	Bias and variance
	Optimizing Gradient Descent
	Regularization
	1cycle policy and cyclic momentum

	Evaluate a Neural Network
	Accuracy
	Recall
	Precision
	Model Evaluation in Real World

	Convolutional Neural Networks
	Layers
	Convolutional layer
	Pooling Layer
	Fully Connected Layer

	Three illustrative examples of CNN architectures
	AlexNet
	ResNet
	Unet and image segmenation

	Generative Adversarial Networks
	Generative adversarial networks
	Conditional Image Synthesis with Auxiliary Classifier GANs
	Conditional generative adversarial networks
	Auxiliary Classifier GAN

	Image-to-image translation with Cycle-Consistent Generative Adversarial Networks
	Other GAN models

	II Experiments
	Introduction to Experiments
	Introduction
	Methods and Materials
	Data
	Frameworks
	Models

	Experiments

	Generating Images From Noise
	Introduction
	Methods and materials
	Dataset
	Models
	Experiment pipeline

	Experimental setup
	Evaluation setup
	Experimental results

	Generating Images From Other Classes
	Introduction
	Methods and materials
	Data
	Models
	Experiment pipeline

	Experimental setup
	Evaluation setup
	Experimental results

	Discussion
	Results
	Challenges with GAN
	Failure to converge
	Mode collapse
	Need for data
	Difficult to evaluate
	Is GAN the way to go for data augmentation?

	Our approach
	Further work
	Conclusion

	References

