
Scalable Readout for Proton CT

A thesis by

Øistein Jelmert Skjolddal
for the degree of

Master of Software Engineering

Department of Computing, Mathematics and Physics,

Western Norway University of Applied Sciences

Department of Informatics,

University of Bergen

June 2020

Abstract

A collaboration centred around University of Bergen, Western Norway University of
Applied Sciences and Haukeland University Hospital is developing a pixel based proton
computed tomography(pCT) prototype. In clinical use, this technology can help reduce
the uncertainties and errors associated with the conversion of the tissues stopping power
from the photon radiation used in the dosage planing to the proton radiation used in
treatment. Additionally, the use of the treatment device can help remove uncertainties
connected to the location of the tumor accumulated since the dosage plan was created.

This thesis covers the work done to create two software modules processing a data
stream received from the detector. The modules are developed in C++ 17 and runs
on a 64 bit CentOS system. This work is done as a part of a larger effort to improve
the readout software and make it more flexible, for this, it utilises a new template
based control module. This allows easy reconfiguration of the software’s functionality
by changing the included modules.

This thesis takes a look at the performance requirements and compares this to the
measured performance of the software in various configurations. The tests shows that
with binary output, the simulated data for a 1 second beam would be processed and
written to disk within 1,4 seconds. Using the root writer module to enable analysis of
the output,this increases to 4.8 seconds.

The memory usage is also measured, showing a 3,5 increase in memory use when
the root writer is employed and a 1,88 increase when the output is to a binary file
giving an indication on how much buffer memory is required in the prototype system.

The software is designed to scale with the detector, and the software model provide
a total processing speed designed to follow the speed of the layer receiving the most
data.

i

Preface

The work on this thesis have largely been performed at the Department of Physics and
Technology at the University of Bergen between August 2019 and until the closure of
the institute in May 2020. There has been an active research collaboration working on
the project driving it forwards.

Acknowledgements

Firstly I must thank my two supervisors Professor H̊avard Helstrup and Professor
Johan Alme for their help and guidance. I would also like to add Matthias Richter
who have overseen the software section of the project and provided valuable insight
and guidance.

I would also like to thank my fellow students Thea Bodova and Alf Herland who
have been working on the project along me and for providing help and ideas. And the
PhD students Ola Gøtvik and Viljar Eikeland who have provided insights and ideas.
And Kristin for putting up with my absence.

Øistein Jelmert Skjolddal
Bergen, Juni 2020

iii

iv

Contents

Preface iii

Glossary xiii

Acronyms xv

1 Introduction 1

1.1 Background and Motivation . 3

1.2 Problem Description . 4

1.3 Thesis Outline . 6

2 Theoretical Background 7

2.1 Physics Background . 8

2.1.1 Radiation Therapy . 8

2.1.2 CT . 10

2.1.3 Conversion Uncertainties . 10

2.1.4 Patient Positioning . 11

2.2 Technical Background . 11

2.2.1 ALPIDE . 12

v

Contents vi

2.3 Related Work . 16

3 The Bergen Proton CT System 19

3.1 General Overview . 19

3.2 The Detector Stack . 21

3.3 The Readout Units . 22

3.3.1 The pRU Format . 23

3.3.2 pRU Data Stream . 26

3.4 Final Offload and Data Processing . 26

4 Software 29

4.1 Software Goals and Functionality . 29

4.1.1 pRU Processing Specifications 30

4.1.2 ALPIDE Processing Specifications 31

4.2 System Overview . 31

4.2.1 Data Processing . 33

4.3 The Control Module . 34

4.3.1 Sorting and Error Checking . 35

4.3.2 Data Extraction . 37

5 Analysis and Assessment 45

5.1 General Overview . 45

5.2 Future Development Consideration . 45

5.3 Theoretical Requirements . 47

5.4 Processing Speed . 47

5.4.1 pRU Parser . 49

vii Contents

5.4.2 Root Writer . 50

5.4.3 Results . 51

5.5 Resource Use . 51

5.6 Correctness . 52

5.6.1 pRU Parser . 52

5.6.2 Root Writer . 53

6 Discussion and Future Work 55

6.1 Performance . 55

6.1.1 Processing Speed . 55

6.1.2 Memory Usage . 56

6.1.3 Scaling . 56

6.1.4 Summary . 57

6.2 Design evaluation . 57

6.2.1 Temporary Buffers . 58

6.2.2 Correctness . 58

6.3 Future work . 58

A Testing Tesults 65

List of Figures

1.1 The novel approach of the Bergen pCT setup using a pencil beam as the
beam origin and only a rear tracker before the calorimeter. 2

1.2 General overview of the software.The Top figure shows system scaling
with multiple software instances running in parallel. The bottom illus-
trates the subdivision of a software instance and the 3 templates in the
readout chain. The modules relevant for this thesis is marked in green.
The network module is a separate Masters Thesis. 5

2.1 Bragg curves for the most common medical radiation types [6] 8

2.2 Brag curves for photons and range modulated protons (Spread Out
Bragg Peak) [27]. 9

2.3 Patient positioning using the DORADOnova patient marking system [25] 11

2.4 ALPIDE Chip general structure and soldering points [8, p. 10] 12

2.5 ALPIDE pixel indexing of a double column [5, fig 4.5] 14

2.6 An example of a data long with the corresponding pixel cluster [5, fig
3.11]. 15

3.1 A prototype 9 chip string fixed to an aluminium backing plate and cov-
ered in anti static protection. 19

3.2 A half layer with the calorimeters top slab in orange and bottom slab in
green. The tracking layers have a single piece backing plate 20

ix

List of Figures x

3.3 A conceptual sketch of a layer. 2 half layers are mounted with the
ALPIDEs facing each other and with a spacer supplying a 2mm air gap
to prevent damage. 20

3.4 General overview of the radiation exposure of the hardware. 21

3.5 The current Xilinx FPGA test board used in prototyping. 22

3.6 The current pCT readout and control scheme. Although one interface
in this image, the control is conceptually different from the high speed
readout. 23

4.1 General overview of how an executable is defined using policies and the
control module. 32

4.2 General overview of the current software modules. The module in green
is covered by this thesis. 34

4.3 A detailed overview of the decision process in the pRU Parser. 36

4.4 A detailed overview of the decision process in the ALPIDE Decoder. . . 38

4.5 A detailed overview of the decision process in the Root Writer module. 42

5.1 Figure from [30, Fig 1] showing simulated data rates from a 230 MeV
proton scanning beam with a beam intensity of 1E7 protons/second.
The scans takes 65 ms. 48

List of Tables

2.1 This table shows the valid ALPIDE words constituting the data format
[5, section 3.4.1]. 13

3.1 This table shows the error flags that can be set in the pRU Trailer word
[32]. 25

5.1 This table shows a summary of the testing results. For full details, see
apendix A. *The data size is unknown but it should be comparable to
the ALPIDE Decoder . 51

A.1 Offline processing to a root tree. This includes both file read and file
write. 66

A.2 Offline processing to a binary file. This includes both file read and file
write. 66

A.3 Online processing to a root tree. This does not includes file read. . . . 67

A.4 Online processing to a binary file. This does not includes file read. . . . 67

A.5 pRU Parser Module using the input file size. 68

A.6 Complete root writer Module using the input file size. 69

A.7 ALPIDE decoder submodule using the input file size. 70

A.8 pRU Exporter (root tree) submodule using the input file size from the
alpide decoder. 71

xi

List of Tables xii

Glossary

active-pixel In an active-pixel sensor, each pixel sensor cell has a photodetector and
one or more active transistors.

ASCII American Standard Code for Information Interchange is a 7 bit, now extended
to 8 bits (UTF-8), standard for encoding text.

attenuation In physics: The gradual loss of energy by passing through a medium.

Bragg peak The region of high energy deposition and delivered dose at the end of a
charged particles range.

calorimeter In physics: A devise measuring the energy of a particle.

Ethernet A common family of computer networking technologies used in local area
networks (LAN) and wide area networks (WAN).

Inner Barrel mode A operating mode for the ALPIDE chips designed for the high
intensity environment in the innermost layer of the ALICE Inner Tracking system
detector.

K28.5 COMMA word A control symbol in 8b/10b encoding. It is in the class of
”comma symbols” which are used for synchronization.

LVDS Low-voltage differential signaling is a physical layer specification that enables
operations at low power and that can run at very high speeds using inexpensive
twisted-pair copper cables.

Monolithic Monolithic sensor contains its own readout electronics.

offline analysis Data analysis preformed on a stored file.

xiii

Glossary xiv

on-board imaging systems A radiation therapy device capable of producing CT
images for patient positioning.

online analysis Data analysis preformed directly on the data from a detector.

pencil beam Used to describe a steerable beam of radiation or charged particles.

phantom Is a conceptual representation of a patient containing elements to simulate
soft tissue, bone, metal implants etc..

scintillator A scintillator is a material that exhibits the property of luminescence
when excited by ionizing radiation.

slab A 1/4 of a layer in the Bergen pCT detector, There is a top slab and a bottom
with slight differences in their backing plate.

string 9 ALPIDE chips mounted on a FLEX cable. This unit forms the basis for the
Bergen pCT detector.

strobe In the ALPIDE setting, A data readout performed at a regular interval.

subcutaneous Beneath the skin.

Acronyms

ALICE A Large Ion Collider Experiment.
ALPIDE Alice Pixel Detector.
ATLAS A Toroidal LHC ApparatuS.

CI Continuous Integration.
CT Computed Tomography.

FoCal Forward Calorimeter.

HU Hounsfield Units.

ITS Inner Tracking System.

LHC Large Hadron Collider.

OBI on-board imaging.

pCT proton Computed Tomography.
pDTP pCT Data Transfer Protocol.
PRaVDA Proton Radiotherapy Verifica-

tion and Dosimetry Applications.
pRU Proton Readout Unit.

RSP Relative Stopping Power.
RU Readout Unit.

SOBP Spread Out Bragg Peak.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

xv

CHAPTER 1

Introduction

For the past 20 years, particle therapy has seen increasing use as a treatment modal-
ity within radiation therapy cancer treatment [7, p.2]. This has been followed up by
the Norwegian parliament and government who, through bipartisan agreements, have
worked to create national centres for particle therapy [18, p.7, p.15] [37]. Currently,
treatment is purchased from foreign treatment centers and there is a desire to nation-
alise this capability to increase availability [37].

In conjunction with this, University of Bergen, Western Norway University of Ap-
plied Sciences, Haukeland University Hospital and others, have an ongoing research
project to develop a proton Computed Tomography (pCT) detector suite. The project
have looked at different kinds of treatment types, sensor arrangements and available
technologies [29]. The project has opted for the ALPIDE pixel sensor developed for
the Inner Tracking System (ITS) at the ALICE experiment [9, Section 1] upgrade
along with custom readout and control hardware and software. There are currently
other projects using different sensor technologies. The two most notable is the proof
of concept detector developed by a US based research group centering around Santa
Cruz Institute for Particle Physics and Loma Linda University and the experimental
detector by the British PRaVDA consortium [40] [4].

The US based research group uses a combination of silicon-strips detectors for
the front and back tracking sensors, one on each side of the object to be scanned,
followed by a scintillator calorimeter to determine the particles energy loss. The use of
a scintillator based calorimeter greatly reduces cost and complexity as this technology
is well understood, mature and cheap. However, each scintillator element can only read
out a single particle at a time greatly limiting the spatial resolution of the detector.
This limits the potential particle rate of the beam, thus increasing the time required to
collect the necessary particle tracks for reconstruction. It is expected that this detector
can potentially support data capture speeds in the 5 to 10 minute range [33, section.1,

1

Chapter 1. Introduction 2

Figure 1.1: The novel approach of the Bergen pCT setup using a pencil beam as the
beam origin and only a rear tracker before the calorimeter.

2, 3].

The PRaVDA project in the UK is using only silicon strip detectors for both the
front tracers and calorimeter. The detector is based on sensor technology developed
for the CERN Large Hadron Collider (LHC) ATLAS experiment [26, section 1]. The
detector has an effective sensor area of 93 mm x 96 mm containing 2048 detection strips
[26, section 3.1]. Each tracker contains 3 silicon strip detectors offset at 60 degrees to
create virtual pixels by correlating the readout. [26, section 3.2]. Using a silicon-strip
based calorimeter greatly increases the spatial resolution in the detector. This makes
it possible to track far more particles per readout cycle and a higher intensity beam
can be used. The higher readout rates provides a more effective detector reducing the
time required to gather the necessary particle tracks for reconstruction. This detector
has been used used to generate a pCT image of a phantom. A series of 180 projections
were taken, each projection required 1 second to take [26, section 4]. This give the
detector a theoretical capture speed of 3 minutes.

The Bergen pCT detector is using the ALPIDE sensor detectors developed for the
LHC ALICE experiment. The ALPIDE chip is a small, active pixel sensor. The chip
provides excellent spatial and temporal resolution for the detector. This enables the
detector to track a large number of particles in a short time interval. The potential for
a large number of simultaneous particles coupled with short readout cycles will reduce
the time necessary to collect sufficient data for image reconstruction.

Another novel feature of this detector is the use of a pencil beam as a fixed position
for the particle origin, instead of using a front tracker like the other two designs. This
concept is shown in figure 1.1.

3 1.1. Background and Motivation

1.1 Background and Motivation

proton Computed Tomography and the combination of an imaging and treatment de-
vice offers several advantages over photon based CT where the the CT scanner and
the treatment device is separated. Since protons deposit most of their energy right
before the particle comes to rest, most of the radiation energy will be deposited in
the calorimeter instead of in the patient. Compared to conventional photon CT, this
will result in a lower radiation dose for the patient. Using the treatment machine to
generate a CT image will have several benefits.

The proton Computed Tomography capability will enable in situ and on demand
imaging. This will limit the errors and uncertainties associated with translating the
spatial coordinates from the patient CT to those of the treatment machine. This re-
moves the errors associated with the translation, erroneous measurement and changing
patient position, in both space and time. An additional benefit from this is that dosage
planning can be easily verified, removing spatial uncertainty of the tumour location.
[35]

The use of different radiation types for image generation and treatment necessitates
a conversion introducing both errors and uncertainties. Photon based CT images uses
Hounsfield Units (HU) showing the stopping power of photons in the imaged tissue.
Protons has a different interaction with the tissue and the description of this interaction
uses Relative Relative Stopping Power (RSP) in water equivalents. This introduces the
necessity a HU to RSP conversion introducing additional uncertainties as well as errors
based on the different tissue/bone interaction of photons and protons [13, section 3.3].

The Bergen pCT is currently in the process of verifying the 9 ALPIDE chip string
(string) and associated production processes, concepts, hardware, software, procedures
and readout chain. Concurrently, other groups are running simulations and tweaking
of the detector design. Once the full 9 chip string and associated processes, hardware
and software has been verified, the project can move to start building and testing the
first full 12 string detector layer.

The excellent spatial resolution of the planed detector will provide a large amount
of data to be offloaded and processed. A concurrent master thesis by Alf Herland is
concerned with the network and data transfer. While the master thesis of Ola Slettevoll
Grøttvik [31], his concurrent pHD work and a concurrent master thesis by Tea Bodova
is working on the initial detector data offload.

This thesis is a part of the Bergen pCT collaborations effort to develop software
that can handle readout of the necessary data volumes generated by the detector. The
capabilities of the ALPIDE sensor will allow the detector created by the Bergen pCT
collaboration to reduce the time necessary to generate a CT image in comparison to
competing technologies.

Chapter 1. Introduction 4

1.2 Problem Description

This thesis is a continuation of the work done by H̊akon Andreas Underdal [14] and
Annar Eivindplass Hilde [2] in 2018-2019 and the proof of concept software they created.
This thesis tackles the challenge of transforming that prototype into two more effective
software modules in the context of a new control structure. The Processing Module
organises the incoming data stream and removes faulty data in preparation of further
processing. The Output Module extracts the information in the data stream and stores
it in a usable format. The setup can be seen in the lower half of figure 1.2.

The two new modules will function as the preliminary step in in the reconstruction
process. However, as the reconstruction software is still being prototyped, the most
important function of the two modules is to help locate bugs in the system during
development and convert the data stream into a format more suitable for analysis and
human interaction.

This thesis also addresses the processing speed requirements for the modules with
regards to both online and offline data processing and recourse use. During data
taking, each detector layer can potentially generate a significant amount of data and
the hardware available for processing must be scaled accordingly. The detector is based
on a layered stack of sensor planes, each layer having dedicated readout hardware. The
goal is to have the software scale in the same manner, by having a dedicated software
instance for each detector layer. This is illustrated in the upper half of figure 1.2.

The processing and output modules receives data from file or from a Network Mod-
ule. The Network Module receives its data from a 10 Gb/s Ethernet connection from
the readout electronics of a single detector layer. The Processing Module and Output
Module should be able to process this data in a reasonable time frame and must process
it before any buffer overruns occur.

The work in this thesis has followed an agile approach, focusing on finishing small
and discrete sub modules encompassing a specific functionality. This helps development
and is conducive to changes, present and future as well as potential code reuse. This
development strategy is important since project is still being developed with changing
hardware and software requirements, so all software will also have to support changes.
The two most important considerations are changes in the physical detector layout and
the reconstruction software currently in the concept phase.

For this reason, the software modules will, at least conceptually, be divided in to
sub modules with a discrete function aiding development and simplifying changes in
the functionality of the overall software.

5 1.2. Problem Description

Figure 1.2: General overview of the software.The Top figure shows system scaling with
multiple software instances running in parallel. The bottom illustrates the subdivision
of a software instance and the 3 templates in the readout chain. The modules relevant
for this thesis is marked in green. The network module is a separate Masters Thesis.

Chapter 1. Introduction 6

1.3 Thesis Outline

The thesis is organised as follows:

Theoretical Background
Provides an overview of the technologies used by this project and provides the reader
with a basic and brief summary of the general physics behind the project. This is
followed by a general explanation of the ALPIDE chip with a focus on the software
elements relevant to this thesis. The chapter ends with a brief summary of the most
significant related works.

The Bergen Proton CT System
This chapter provides a more detailed description of the Bergen pCT system. This
chapter provides the reader with a description how the system is built up and of how
the hardware and software interacts.

Readout Software
This chapter describes the readout software in detail. The focus of this thesis and
chapter is on the data processing and preparation for analysis, data visualisation or
use by a future reconstruction algorithm.

Analysis and Assessment
This chapter presents the testing methodology, the test results and an assessment of
the implemented software.

Conclusion
This chapter presents a summary of the work undertaken and compares this with the
thesis goals. This is followed by a a summary of the work recommended in order to
improve on the work presented in this thesis.

CHAPTER 2

Theoretical Background

The use of photons in the form of Roentgen radiation was acknowledged already by the
turn of the 20th century. First, as an important tool for imaging internal structures
but also quickly as an important treatment modality for cancer patients. Radiation
therapy using photons has over the past 100 years evolved into today’s advanced treat-
ments where multiple beams are used to accurately irradiate the tumor volume while
minimizing the exposure of surrounding tissue [23, p.779].

Photons deposit most of the energy right after entering the tissue, thereafter, the
energy deposition gradually falls of greatly irradiating the tissue in front of the target
and slightly irradiating the tissue behind the target. While all radiation treatments
carries the risk of secondary tumors and damage to surrounding tissue, the photons
deposition profile creates a large tissue section at risk, both in front of and behind
the target volume for any given ray. For high intensity beams, this energy deposit
distribution may also result in radiation burns and additional damage to the skin and
subcutaneous layers. In dosage planning, it is therefore a primary concern to minimize
the dose to healthy tissue while maximizing the dose to the target volume.

The advantageous properties of ionising particles when used in cancer radiation
therapy has been known since at least 1946 where the use of both protons and carbon
atoms in the treatment of tumors were proposed [36, p.490]. Research on and use of
ionising particles in cancer radiation therapy continued [24] but it has only recently
started to be widely used and accepted. Per March 2020, there is currently at least 102
particle centers around the world in operation and providing therapy [11]. 32 centers
are currently under construction, around 20 of these have a planned startup in 2020
and 29 centres are currently in the planing stages [12] [10].

Especially in the past 10 years, there have been an enormous development in the
field. This is demonstrated by the fact, that of the 102 operational centers, only 29

7

Chapter 2. Theoretical Background 8

centres are 10 years or older [11].

2.1 Physics Background

The theoretical basis for the project is the properties of proton and heavy ion radiation
and their applications in medical imaging and cancer treatment. As part of ongoing
research to improve the current technology in medical particle imaging and radiation
treatment, bergen pCT collaboration attempts at creating a pCT detector. To this
end, a new particle sensor and energy detector is being developed along with dedicated
hardware and software for readout, control and system monitoring.

2.1.1 Radiation Therapy

Figure 2.1: Bragg curves for the most common medical radiation types [6]

In radiation therapy, the delivered dosage is dependent on how much energy is
deposited in the desired and unhealthy tissue. At the same time, there will be some
undesired energy deposition in healthy tissue. The goal is to achieve the minimal lethal
dose in the tumor to spare the surrounding tissue unnecessary exposure.

Currently, most radiation treatments use photon radiation. The lower cost and com-
plexity of photon based machines along with the more developed procedures provides
a cost effective treatment. Compared to the relatively higher cost of proton treatment,

9 2.1. Physics Background

this ensures that the majority of radiation therapy will continue to be dominated by
photon treatment [6].

The properties of energy deposition of heavy ions and protons are shown in figure
2.1. As shown, photons and electrons deposit most of their energy right after entry and
gradually loose energy as they go deeper. Protons and heavy ions on the other had,
deposit most of their energy right before the particle comes to rest in what is known
as the Bragg peak [36]. Conversely, photons and electrons will deposit most of their
energy at, or shortly after entry and then gradually lose the remaining energy.

Figure 2.2: Brag curves for photons and range modulated protons (Spread Out Bragg
Peak) [27].

Using protons and heavy ions allows for more energy deposited in the desired tissue
and less in the surrounding tissue compared to photons. When used in treatment
scenarios the beam is range modulated creating a Spread Out Bragg Peak (SOBP).

Chapter 2. Theoretical Background 10

This effect is shown in figure 2.2 where the SOBP in an ideal case delivers just enough
radiation to the tumorous area to be lethal. The area between the photon beam graph
and the SOBP graph in figure 2.2 is excess radiation to healthy tissue.

The reduced radiation of healthy tissue can reduce the side effects of the treatment,
and it can enable the treatment of more sensitive areas like the eye, brain, spinal
cord etc. Especially the sharp drop of in radiation after the peak dose facilitates the
treatment of tumors near vital areas.

2.1.2 CT

Computed Tomography gives volumetric models by taking many 1 or 2 dimensional
sections of an object. These are then combined to a 3D model of the object. These
models have many diagnostical and analytical uses amongst other, the resulting models
are used in dosage planning and post treatment tumor control.

Current CT scanners used in treatment planning uses photon radiation for image
generation. These CT scanners provides an accurate volumetric map of the tissues
photon absorption rate. The attenuation properties in tissue and bone structures are
different for the protons used in treatment, relative to the photons used in the image
generation. The use of this map (the CT image) in dosage planning will therefore
mandate a conversion, introducing errors and uncertainties. Imaging with protons will
provide a more accurate map of the tissues proton absorption rate. This image will
provide confirmation or correction from the CT model used in the dosage planning.
This will reduce the conversion error and uncertainties in the plan.

Due to the dose distribution of protons, pCT has the potential to generate images
with a lower imaging dose. This is a limitation in current photon based on-board
imaging (OBI) systems where the total radiation dose prohibits the use of CT for
positioning and control on a daily basis. This can then be used to reduce the error
margins, or at least reduce the potential positioning variations.

2.1.3 Conversion Uncertainties

CT scans provide a volumetric map of the tissue’s ability to attenuate photon radiation
in Hounsfield Units (HU). Proton radiation has a slightly different attenuation interac-
tion with the physiological elements measured in Relative Stopping Power (RSP). To
use the CT scan for proton treatment planning, a conversion from HU to RSP is neces-
sary. This has the effect of introducing both errors and uncertainties as the conversion
model is not perfect. By using protons in the imaging process, the resulting image will
show the attenuation directly in RSP reducing the errors and uncertainties.

11 2.2. Technical Background

A proton Computed Tomography (pCT) capable on-board imaging systems will be
able to augment the

2.1.4 Patient Positioning

Figure 2.3: Patient positioning using the DORADOnova patient marking system [25]

Since the CT scanner is a separate machine in a separate location, it uses a separate
reference frame that needs to be converted and unified. In conventional proton therapy,
it is therefore necessary to align the dosage plan and CT model with the patients
position in the treatment apparatus. The most common method is surface alignment,
most commonly by laser ranging [35, p.599] as shown if figure 2.3 or by cameras. With
proton CT treatment, the treatment apparatus can be used to provide CT feedback and
positioning during treatment session reducing errors stemming from the uncertainties
created by the spatial and temporal distances from the dosage planning device [24,
p798-799] [35, p.604] [25].

2.2 Technical Background

The main component of the detector stack is the ALPIDE chip, and while the work
conducted in this thesis does not interface directly with the chip, the data stream it
generates is acted upon by the processing module. The design of the readout electronics
is also required for the extraction of information contained in the data stream.

Chapter 2. Theoretical Background 12

Figure 2.4: ALPIDE Chip general structure and soldering points [8, p. 10]

2.2.1 ALPIDE

The detector uses the ALPIDE sensor, a newly developed Monolithic active-pixel sensor
for ionizing particles. The sensor is developed at CERN for the upgrade of the ITS
of the ALICE experiment [28]. The pCT detector plan is also very similar to the
proposed ALICE Forward Calorimeter (FoCal) [3, section 3.2.1 and section 6.1] and
there is synergy effects between the two projects. The ALPIDE sensor provides high
accuracy, a low error detection rate, low power consumption and readout only in the
case of a hit, which lowers the readout process data rate. These elements makes
the sensor useful in a medical setting, with high demands of efficiency and accuracy
to ensure patient safety and accurate treatment. ALPIDE sensor clusters can track
particle paths and energy deposition with high precision. This forms the basis for more
accurate treatment and more information in the treatment setting than was available
with previous technology.

The project aims to develop a custom ALPIDE readout pipeline and acompanying
hardware that is more suited to the requirements of a pCT scanner in stead of using
the existing ITS system. The ITS system is designed create snapshots of an event with
a global triggering system base of quick triggering photon detectors to register events.
For pCT use, the beam setup is known and controllable so a system based on a fixed
strobes is desirable.

Each ALPIDE chip is 30mm * 15 mm (X * Y) and contains 1024 * 512 pixels. Since
it is a Monolithic sensor, it has a 1.2mm * 30 mm readout circuit region in the chip

13 2.2. Technical Background

Table 2.1: This table shows the valid ALPIDE words constituting the data format [5,
section 3.4.1].

Data Word Bits Value (binary)
IDLE 8 1111 1111
CHIP HEADER 16 1010 chip id[3:0] BUNCH COUNTER[10:3]
CHIP TRAILER 8 1011 readout flags[3:0]
CHIP EMPTY FRAME 16 1110 chip id[3:0] BUNCH COUNTER[10:3]
REGION HEADER 8 110 region id[4:0]
DATA SHORT 16 01 encoder id[3:0] addr[9:0]
DATA LONG 24 00 encoder id[3:0] addr[9:0] 0 hit map[6:0]
BUSY ON 8 1111 0001
BUSY OFF 8 1111 0000

periphery providing the chip functionality illustrated in figure 2.4. Each chip is capable
of masking noisy or damaged pixels and adjusting the pixel trigger energy levels once
these settings have been provided. Due to the radiation environments, these values
will need to be regularly updated.

The ALPIDE can be connected and configured in several different ways to meet
the needs of for the ALICE experiment. For pCT, the chip will be operating in the
Inner Barrel mode. This mode requires that each chip has a dedicated readout link,
providing each chip a discrete, programmable 1.2 Gb/s link to the Readout Unit.

The ALPIDE is designed to operate in one of two modes, triggered and continuous.
In the triggered mode, a readout of the currently active pixels is performed and this
provides a snapshot of the hit status. This readout is performed based on an exter-
nal trigger signal. In continuous mode, readout is performed during repeating, fixed,
intervals (strobes) forgoing the external triggers [5, section 3.3.1 Readout modes].

The chip has two data interfaces, a serial and a parallel data port which both utilizes
the same 8 bit oriented protocol. In Inner Barrel mode, only the serial port is utilized.
The serial port is 8b/10b encoded using the K28.5 COMMA word control word for
clock recovery and data stream synchronisation [5, section 3.3.1 Readout modes]. The
COMMA is filtered by the RU and currently not used, but if tests shows that clock
recovery will be necessary in the operational prototype it can be included [32, section
1.2].

The ALPIDE data extraction

The ALPIDE chip organises the hit position information in the data in the readout
stream after the internal readout hardware. The pixels on the ALPIDE chip is organ-
ised into double columns with a shared readout bus extending from the chips digital

Chapter 2. Theoretical Background 14

Figure 2.5: ALPIDE pixel indexing of a double column [5, fig 4.5]

periphery. The double columns are numbered left to right with the readout periphery
on the bottom. Each of the 512 double columns has a dedicated Priority Encoder
circuit responsible for data offload. The priority encoders are in turn organised in 32
regions with a dedicated Region Readout Unit. The whole system with the Region
Readout Units containing the 1024x512 pixel matrix is supported by a Top Readout
Unit module organising the system. Each double column is read sequentially by the
Region Readout Unit while the Region Readout Units are read in parallel by the Top
Readout Unit module [5, p.7 & p.9].

All indexing is done with chips digital periphery along the bottom axis. [5, Chapter
4] The pixels in each double column are indexed starting with the top left pixel as 0,
moving to top right as 1, 2nd right as 2, 2nd left as 3, 3rd left as 4 and so on, thus
moving in an s pattern down the central buss, see figure 2.5.

These 1024 addressable pixels represents two 512 double pixel columns in the hard-

15 2.2. Technical Background

Figure 2.6: An example of a data long with the corresponding pixel cluster [5, fig 3.11].

ware and is the 10 bit address field (addr[9:0]) in the ALPIDE Data Short and Data
Long seen in Table 2.1.

The hit map in the Data Long specifies the relative position of other activated pixels
immediately following the pixel specified by the 10 bit address. The pattern follows
the same s shaped pixel addressing scheme. For instance a hit in the pixels 6, 8, 9
and 11 is shown in figure 2.6. The value 10’d6 is simply pixel number six and would
be represented by the binary 10b00’00000110 (number six), the binary 07b0010110
(number 22) is a bit map represents hits at the 2nd, 3rd and 5th pixel after pixel
number 6.

The 16 Priority Encoders for each double column are indexed left to right in each
Region Readout Unit. The priority encoders are the 4 bit encoder id value in the Data
Short and Data Long as seen in table 2.1. The 32 Region Readout Units are also
indexed from left to right and are the 5 bit region id in the Region Header word as
seen in table 2.1.

The Chop Trailer word consists of a 4 bit header and a 4, 1 bit flags. The flags, in
bit wise order is:

• BUSY VIOLATION – indication that the chip is replying with an empty data
packet due to saturation of data processing capabilities.

• FLUSHED INCOMPLETE – indication that a MEB slice was flushed in order to
ensure that the MATRIX always has a free memory bank for storing new events.
Observed in Continuous mode only.

• STROBE EXTENDED – indication that the framing window for the event of
question was extended due to the reception of an external trigger.

Chapter 2. Theoretical Background 16

• BUSY TRANSITION – indication that the BUSY was asserted during the read-
out of the frame in question [5, section 3.4.1].

Of these, only the 2 most significant bits are deemed fatal. This means the bit
patterns 0000 (no errors), 0001 (Busy Transition), 0010 (Strobe Extended) and 0011
(Busy transition and Strobe Extended) will not trigger the removal of the frame but
any other combination will cause the frame to be removed.

2.3 Related Work

This thesis is a part of a larger effort to create a proton Computed Tomography proof
of concept detector to be tested at the planned Norwegian proton centre in Bergen.
As parts of an ongoing project, there is a number of student projects, PhD’s and other
work being undertaken, see the project wiki [29].

There are several finished works that will not be listed here but are available from
the project wiki. It is also worth noticing that the project wiki does not contain
references for all related work.

The most relevant works for this thesis is:

The concept prototype paper ”Proton tracking in a high-granularity Digital Track-
ing Calorimeter for pCT purposes” by Pettersen et al. This paper provides details on a
prototype pixel detector using the Monolithic Active Pixel Sensor chip PHASE2/MIMOSA23.
This paper provides a proof of concept and details the rough and approximate con-
struction of the current detector design [17].

The article in review ”Design Optimization of a Pixel Based Range Telescope for
Proton Computed Tomography” by Pettersen H.E.S. et al [16]. and the 2018 PhD thesis
”A Digital Tracking Calorimeter for Proton Computed Tomography” by Pettersen
H.E.S [15] introduces the initial concepts around the ALPIDE based detector setup.

Karl Emil Sandvik Bohne - Ethernet-Based Control System and Data Readout for
a Proton [22] and Ola Slettevoll Grøttvik [31] - Design of High-Speed Digital Readout
System for Use in Proton Computed Tomography describes the initial concepts of the
readout hardware, firmware and protocols used by the project.

The work on the proof-of-concept readout and control software created by H̊akon
Andreas Underdal and Annar Eivindplass Hilde [14] [2]. This software formed the basis
for much of the work described in this thesis and it was used for a 2018 beam test.[14,
section 6.2]. A test preformed showed that this software had a processing speed of 0,2
MB/s or 1,6 Mb/s.

17 2.3. Related Work

The Network module being developed concurrently by Alf Herland meant to inter-
face with the software described in this thesis.

Chapter 2. Theoretical Background 18

CHAPTER 3

The Bergen Proton CT System

3.1 General Overview

The proton computed tomography system consists of a single post-patient particle
detector as shown in figure 1.1. The detector is designed for use with a pencil beam as
the particle origin, removing the need for a pre-patient detector. Compared to other
systems, this simplifies the detector design and reduces cost and complexity.

The detector stack is based on the ALPIDE string, a prototype 9 chip version in a
protective cover can be seen in 3.1. The string is composed of a flex cable containing
the data and power supply lines, supporting 9 ALPIDE chips. Each chip on the string
has a dedicated 1,2 Gb/s data link and a dedicated power conduit.

Because the flex cable takes up nearly as much area as the ALPIDE chips, there
is not enough room on a single plane for the necessary coverage of ALPIDE sensors.
To have the required sensor coverage, a layer is made up of two half layers. Each half
layer contains 6 strings and is shown in figure 3.2.

Figure 3.1: A prototype 9 chip string fixed to an aluminium backing plate and covered
in anti static protection.

19

Chapter 3. The Bergen Proton CT System 20

Figure 3.2: A half layer with the calorimeters top slab in orange and bottom slab in
green. The tracking layers have a single piece backing plate

Figure 3.3: A conceptual sketch of a layer. 2 half layers are mounted with the ALPIDEs
facing each other and with a spacer supplying a 2mm air gap to prevent damage.

2 layer is put against each other so they create a top half layer and a bottom half
layer forming a sandwich structure, the ALPIDE chips facing each other on the inside.
A spacer creates an air gap in between to prevent contact and damage 3.3.

This creates a robust unit protecting the fragile chips while minimizing the material
difference for the top and bottom. The significant section is the flex cable and chips of
the top layer, the air gap has little effect. Each of the half layer consists of 6, ALPIDE
strings. With the flex cable taking up slightly less space than the ALPIDE chips, this
provides a slight over coverage [34, sections 2.2.3 and 2.2.4]

Each detector layers supported by an outer framework. The framework fixes the
43 sensor layers in their correct alignment and provides support for the initial read-
out electronics. Each full layer alternates so that the transition electronics can be
distributed along both sides of the detector providing more vertical space for this com-
ponent. The outer frame also contains the cooling so that each layer can easily be
removed for maintenance. The propose of this design is to simplify the construction of

21 3.2. The Detector Stack

Figure 3.4: General overview of the radiation exposure of the hardware.

the string with only a single design leading to reduction in cost and production time
and increased reliability.

The design is based around the detector stack with only simple re transmission
and power routing electronics in the radiation area. This lets the more delicate power
supply units and readout modules be placed away from the radiation environment
removing the need for expensive, radiation hardened electronics 3.4.

3.2 The Detector Stack

The stack consists of 43 layers and the 2 first layers of the detector are the front
trackers. These 2 tracking layers have a single piece, carbon fiber backing plate, for
each half layer. The carbon fiber allows the particles to penetrate the layer without
the loss of much energy giving more data points for tracking and have heat transfer
properties similar to aluminium for cooling. The remaining 41 layers have aluminum
backing plates functioning as energy absorbers to force the particles to come stop inside
the calorimeter section of the detector. For these layers, the half layers are made up
of two slabs of 3 strings each, a top slab and a bottom slab, with guide holes for the
frame fixture on opposite sides as can be shown in figure 3.2.

Each detector plane is a self contained unit including the transition electronics that
can be removed as a single piece. Each plane contains 108 ALPIDE chips set in a 2x6x9
matrix. The flex cables from each layer ends in a radiation hardened transition card
[38]. The transition card separates the power and data links and provides power to the
ALPIDE chips. The card also provides fuses for the power line to prevent catastrophic
failure in the ALPIDE chips if there were to be a short circuit or other serious failure

Chapter 3. The Bergen Proton CT System 22

Figure 3.5: The current Xilinx FPGA test board used in prototyping.

that the control software is unable to respond to. The transition card provides a Samtec
FireFly link for the upstream data connection for each string.

The transition card provides a rigid mounting point for the fragile flex cables. The
transition card is mounted to the layer and can be removed with the rest of a layer
without the need unplug the strings reducing wear on the ALPIDEs.

The power is supplied by a standard, remotely controllable, power supply unit.
This unit will regulate the power for each transition card while providing feedback to
the control system. The transition card uses the MIC29302 power regulator provid-
ing emergency protection against over-current faults, reversed input polarity, reversed
lead insertion, over-temperature operation, and positive and negative transient voltage
spikes [20].

3.3 The Readout Units

Each layer has a dedicated Readout Unit (RU) handling control of the layer and initial
processing of the data stream. The RU is based on an Xilinx FPGA with custom
firmware. the Readout Unit is connected directly to the transition card via Fire Fly
cables and is placed away from the radiation area so that the electronics does not need
to be radiation hardened as per Figure 3.4. A 10 Gb/s Ethernet link provides the
upstream interface. The finalised Readout unit will be a simplified and scaled down

23 3.3. The Readout Units

Figure 3.6: The current pCT readout and control scheme. Although one interface in
this image, the control is conceptually different from the high speed readout.

version of the test setup in figure 3.5.

The RU provides a unified control interface for an entire layer handling clock syn-
chronisation, data offload and control. The Readout Unit provides a control interface
for both the individual chips and a broadcast command functionality for a simplified
control of an entire layer. This simplifies control since it is no longer necessary to
send general control instructions to each individual ALPIDE chip. Instruction sets
only meant for individual chips, like pixel masking sets, will still have to be addressed
individually.

A sketch of the whole pCT setup is shown in 3.6. With the detector stack, the
transition cards, the readout units and the host computer.

3.3.1 The pRU Format

To handle and differentiate the data from the different ALPIDEs in the different sensor
layers, Ola Grøtvik has defined a wrapper format encapsulating the ALPIDE data and
adding additional detector specific information called the Proton Readout Unit (pRU)
format [32]. This is a 128 bit data format encapsulating the ALPIDE data and adding
additional information about time, Readout Unit (RU), string(This was previously
called stave, hence the STAVE tag) and errors. In the format, all words follow the
general format: WORD TYPE(2 bit), RU(6 bit), STAVE(4 bit), CHIPID(4 bit) and
DATA(112 bit).

Chapter 3. The Bergen Proton CT System 24

The format contains four words:

1. DATA WORD Contains the ALPIDE data words from the readout of a chip.

2. TAG HEADER WORD marks the beginning of a chip readout and contains
information about the RU and string the chip comes from as well as busy flags
and timers.

3. TAG TRAILER WORD, marks the end of a chip readout and contains error flags
described in table 3.1

4. TAG EMPTY WORD is a bandwidth saving measure collecting a number of
ALPIDE EMPTY FRAME words.

5. DELIMITER WORD which is a special tag marking a need to flush the offload
stage of the RU.

When an ALPIDE Chip header is received, a TAG HEADER word is generated.
The ALPIDE data fills consecutive DATA WORDs, ALPIDE words larger than 8 bits
might be split between subsequent DATA WORDs. When a ALPIDE chip trailer is
received, the remaining bits in the data word is padded with all ”1”. The last data
word is followed by a TAG TRAILER WORD.

When receiving ALPIDE data the RU performs basic checks on the received data
to check for transmission errors, buffer overflow situations and other faults as can be
seen in table 3.1 as well as the BUSY ON and BUSY OFF flags in the pRU Header
word.

The detector set up is using a server client architecture. The Readout Unit acts
as a server simplifying the connection process as it will be listening for connections by
a workstation. This moves all initialisation to the workstation client as the Readout
Unit will be listening for connections from workstation clients once it is turned on.

To make the most effective use of the available bandwidth and reduce latency in
the data transferring process it is based on the User Datagram Protocol (UDP). UDP
forgoes the reliability of protocols like Transmission Control Protocol (TCP) for higher
latency and throughput making it potentially unreliable. To mitigate this problem
Ola Grøtvik has defined the pCT Data Transfer Protocol (pDTP). This protocol ads
transmission modalities, reliability and flow control. The pDTP has different datagram
headers for the server and the client as the communication is largely one way. The
server will primarily send data packets and acknowledgements while the client will
send commands to the server.

The format specifies 3 transmission modes that the client can requests from the
server:

25 3.3. The Readout Units

Table 3.1: This table shows the error flags that can be set in the pRU Trailer word
[32].

pRU Error Flags

0 Decode/Protocol Error

Asserted whenever the 8B10B Decoder has
been unable to decode a byte during process-
ing of the frame, but processing may con-
tinue. Is also asserted whenever other proto-
col errors are observed.

1 Frame Error

Asserted whenever a fatal error occurred dur-
ing processing of the frame. This error causes
the frame processing to be aborted and in-
stantly produces the trailer.

2 Empty Region Error
Asserted when a REGION identifier is de-
tected but no short or long words comes di-
rectly after it.

3 Double Busy On Error
Asserted when two BUSY ON is detected,
without a BUSY OFF in between.

4 Double Busy Off Error
Asserted when two BUSY OFF is detected,
without a BUSY ON in between.

5 Buffer Overflow Error
Asserted whenever a pRU buffer has over-
flown.

6 Max Size Error

Asserted whenever the data tagger has been
waiting for more than 100 consecutive clock
cycles (120MHz) for valid data during the
frame. Causes cancellation of the frame and
forces a trailer word. The maximum wait
time may be edited by setting the proper reg-
ister on the RU.

7 Max Wait Time Error

Asserted whenever the data tagger has been
waiting for more than 100 consecutive clock
cycles (120MHz) for valid data during the
frame. Causes cancellation of the frame and
forces a trailer word. The maximum wait
time may be edited by setting the proper reg-
ister on the RU.

Chapter 3. The Bergen Proton CT System 26

1. PULL mode: The client pulls a single packet of a specified size from the server
if the data is available, if no data is available an error will be sent instead.
Acknowledgements and re-transmission is possible.

2. SEMI-PUSH: The server sends a specific number of packets of a specified size if
the data is available. Acknowledgements are sent after the last packet(End Of
Stream).

3. FULL-PUSH: The server will continuously push available data to the client. The
server will continue in this mode until the client sends an abort.

3.3.2 pRU Data Stream

The RU will generate the appropriate pRU elements as the ALPIDE words are re-
ceived. Once an ALPIDE chip header is received a corresponding pRU Header word
is generated. ALPIDE Region Headers, Data Short and and Data Long elements are
used to create pRU Data words once 112 bits of data or an ALPIDE Trailer Word is
received. The receipt of an ALPIDE Trailer word will also generate a pRU trailer.

By generating the pRU words as the data arrives, the output will be a semi-ordered
list. The data from any single ALPIDE chip will arrive in order as specified by readout
module topology [5, section 1] over a dedicated () data line [31, p.29]. So for each
ALPIDE Chip: An ALPIDE Chip Header will be followed by that ALPIDEs Region
Header followed by data etc. The ALPIDEs in a layer will each be read out in parallel
by separate data modules, each interfacing with a single ALPIDE link [31, Section
4.2.1].

The resulting list will have the data from any one ALPIDE in order, but similarly
ordered data from other chips might be in between the different data elements of that
chip.

By the nature of the underlying UDP protocol, it is expected that the list will be
split and a pRU Header might arrive separately from it’s data and Trailer element.

3.4 Final Offload and Data Processing

Connecting to the Readout Unit via the 10 Gb/s interface is a workstation running the
client software. The number of workstations needed will depend on the data volume
received and the speed of the finished software, the network card and the available Linux
kernel [1]. Each Readout Unit is connected to a dedicated client software responsible
for processing the data stream supporting organic scaling of the detector. Adding any

27 3.4. Final Offload and Data Processing

number of layers to the calorimeter will increase the particle energy range the detector
can handle and, if desired, a pre-patient tracker could be added for a conventional
design in much the same way.

Currently a single workstation is used in conjunction with the test Readout Unit
shown in figure 3.5. The final hardware for the readout software has not been selected,
but it is expected that the concept will carry on, with a virtual machine running in a
server environment supporting a single readout unit connected to a 10 Gb/s network
interface.

Depending on the reconstruction software’s requirements, it is preferred that this
will share this hardware and run either in between or after data takings.

Chapter 3. The Bergen Proton CT System 28

CHAPTER 4

Software

This chapter describes the two modules that have been created for the pCT readout
chain as a part of this thesis. The first module is the pRU parser. The role of this
module is to organize and error check the pRU data stream from the Readout Unit
connected to this software instance. The second module is the Root Writer module
extracting the hit information stored in the ALPIDE data and storing this in a root
tree.

The software is written in C++ 17 and designed to run in a 64 bit version of the
Community Enterprise Operating System (CentOS) environment. The software have
been tested on a custom built workstation containing 64 GB system memory, an Intel
Xenon W-2133 CPU running at 3.60GHz , an 512 GB Samsung MZVLB512HAJQ-
000H2 SSD and a Nividea Quadro P400 graphics card running on a HP 81C5 mother-
board.

The work undertaken here is based upon the work done by H̊akon Andreas Underdal
and Annar Eivindplass Hilde taking the software they developed and improving it
by using pure binaries and adapting it to a new control structure. The old readout
software was written in C++ 11 and provided a proof of concept of reading data from
the ALPIDEs with the pCT setup. Most of the code have had to have been rewritten
as the previous concept used ASCII binary numbers, but much of the structure still
remains.

4.1 Software Goals and Functionality

The focus of the pct-online software is the timely, efficient and correct readout and
processing of the ALPIDE data stream from the Readout Units. For proton based

29

Chapter 4. Software 30

CT to be viable, the particle information captured by the detector must be offloaded
in a timely manner to avoid data loss by buffer overflow. To reduce the hardware
requirements of the final system, it is desirable that the modules have a low resource
footprint.

The software must be conducive to change and be easily adaptable to changes in
requirements. An example is that hardware requirements, such as the physical detector
layout, is still subject to change. Likewise, data elements and their significance is also
subject to change as an error might be moved fro a non fatal event to a fatal event
requiring the frame in question to be dropped.

The software should be capable of both offline analysis and online analysis of a data
stream. By splitting the concerns, the software developed does not distinguish between
data sources. The major challenge is instead the nature of the input. An offline process
will read the data in it’s entirety from disk and provide this as a single data package
for processing. In contrast, online processing will receive smaller data packages when
they become available. Online processing thus requires that status information about
the current processing is not lost when a data package has been processed.

For testing purposes all data must be collected for further analysis and error check-
ing of the system.

The software has been divided into modules containing the overall functionality.
The input defining the data extraction is not a part of this thesis so data is assumed
to be available. The focus her is the processing and output of the data.

4.1.1 pRU Processing Specifications

A summary of the specifications described in chapter chapter3.3: Since a pRU word
is 128 bits, any incoming data package must be modulo 128 to ensure it is possible to
separate it in to individual pRU words.

The pRU words specified in chapter 3.3 will be collected and the corresponding
pRU Header word, pRU Data words and pRU Trailer word will be put in to a pRU
Frame. Each Frame will contain a single pRU Header word, one or more pRU Data
words and a single pRU Trailer word with matching RU, STAVE and Chip ID. If any
of these elements are missing, the Frame is rejected.

BUSY ON and BUSY OFF flags in the pRU Header are stored for further processing
while all of the errors in the pRU Trailer are currently treated as fatal and the Frame
is rejected.

The FRAME Size must match the received size of ALPIDE words, a mismatch is

31 4.2. System Overview

a protocol error or loss of a number of pRU Data words and is considered fatal. The
frame would then be rejected.

4.1.2 ALPIDE Processing Specifications

A summary of the specifications described in chapter 2.2:

The Readout Unit will by default filter so all ALPIDE COMMA, IDLE; CHIP
EMPTY FRAME, BUSY ON and BUSY OFF are checked for in the PRU Data Words.

Any ALPIDE data stream must start with a ALPIDE Chip Header followed by an
ALPIDE Region Header.

Any ALPIDE Region Header must be followed by an ALPIDE Data Word.

Only the BUSY VIOLATION and FLUSHED INCOMPLETE error flags in the
ALPIDE Trailer is Fatal.

4.2 System Overview

The basis for the readout software, is a control module developed by Mathias Richter.
The control module uses lambda expressions to define easily replaceable template mod-
ules called policies. The control module define the system workflow and is split in to
3 different policies encapsulating the input, the data processing and the output of the
readout chain. The control module accepts the policies to be used during it’s creation
and only functions as a hosts for the policies and dictates the data flow.

Each policy is thereby a completely separate entity that neither the control module
or the other other policies knows what it is or what it does. Only the compiler enforces
that the input and return types matches. The type requirements are as follows: The
Input Policy must take no argument and return something of type T. The Processing
policy must take an argument of type T and return something of type B. The Output
Policy must take an argument of type B and not return anything. This loose coupling
leaves to the programmer to ensure that the different modules truly match.

From this, an executable is created defining the policies to be used in an executable
as shown in 4.1. The compiler will only accept modules with matching function calls but
the developer must ensure they provide output the following module can process. The
template base of the system provides both flexibility and robustness by decoupling the
program control structure from the system function and by decoupling the individual
policies/ software modules.

Chapter 4. Software 32

Figure 4.1: General overview of how an executable is defined using policies and the
control module.

33 4.2. System Overview

To ease development, the software is primarily divided by discrete functionality
and rely primarily on binaries of common interfaces like the ALPIDE data, pDTP and
pRU definitions for communication between the different modules. This allows the
various pieces of software to be completely disjoint relying on the common interfaces
instead. This also facilitates conversion to and from text representations of the binaries
or hexadecimal conversions, for ease of human inspection or data generation by python
script.

The control module does not know anything about the policies but the C++ type
system will require that the input-output pairs have corresponding types at compile
time. By making the control class a template class, the specific return value types
will be decided at compile time. The class constructor then utilises initialisation list,
binding the policies (lambda expressions) received to create static reference binding at
run time, making the reference a class member.

4.2.1 Data Processing

The processing/filter policy requires a software module that can take a incoming pRU
data stream and prepare it for further processing. The module accepts the binary
pRU Data in the form of vector < char >. The data stream might be separated in
to multiple vectors, each containing one or more of the 128 bit pRU Words. The data
stream can come from any source as long as the pRU Stream requirements specified in
chapter 3.3 are met.

The parsing of an pRU stream will generate a number of Frames. Each valid Frame
consists of a number of 128 bit pRU words. It will always start with a pRU Header
Word followed by one or more pRU Data Words and ending with a pRU Trailer Word
as defined in section 3.3. The data stream can be expected to be semi ordered where
each pRU word will keep it’s relative position in regards to the rest of it’s own frame
but with elements from other frames mixed in.

A pRU Stream could look like the following: header 1, data 1.1, header 2, data 1.2,
data 2.1 trailer 2, data 1.3, trailer 1.

There is fundamentally two approaches. The first approach is to extract the data
in to new elements while traversing the stream, performing the extraction and error
checking at each element. With this approach, it is only necessary to traverse the list
once at the cost of more processing at each step. Because of the unsorted nature if
the data stream, the potential for data races and access conflicts it is much harder
to implement parallel processing with this approach. The relatively small size of the
objects compared to the pointer (128 bit data word vs 64 bit pointer) the reduction in
data volume with a list of pointers would only be 50% compared to a complete deep
copy. for the added complexity at relatively meager gains, this approach has not been

Chapter 4. Software 34

Figure 4.2: General overview of the current software modules. The module in green is
covered by this thesis.

considered further.

The approach used is to sort the data stream (extract the pRU frames), check each
pRU frame for errors and lastly extract the data in to a new element. This will remove
any faulty data before the data extraction and the binary stream can easily be stored
as is or the stream of faulty frames can be separated and stored individually for later
processing or inspection. The disadvantage of this method is that it can potentially
use a a lot of memory, short of sorting the the data structure directly, most approaches
would increase the data volume by 50% or more. For instance a list of pointers to
the pRU words of a frame would give about a 50% increase in data volume since each
pRU word is only 128 bits and all relevant architectures operates with 64 bit pointers
[19, The Linux 64-bit architecture]. The advantage is that each step is discrete and
conducive to modular and parallel processes and it is a just in time approach only
doing the necessary processing on an element before moving on so that data extraction
is not attempted on faulty frames.

4.3 The Control Module

The control module contains a set of separate sub processes called policies. The control
module accepts the policies to be used during it’s creation and has only function as
a hosts for the policies while it controls the data workflow. Each policy is thereby a
completely separate entity that neither the control module or the other other policies
know what it is or what it does. Only the compiler enforces that the input and
return types matches. This loose coupling leaves to the programmer to ensure that the
different modules truly match.

35 4.3. The Control Module

The control module requires 3 policies defined at the time of creation, defining the
behaviour of that control instance. The first policy is the input policy. The role of
this policy is to acquire data from some source, it takes no argument and returns the
data it has gathered. The second policy is the processing policy. This policy takes the
output from the input policy, processes it and returns the result. Lastly, there is the
output policy, its takes some input and does not returning anything.

The control module is set up to run each policy in turn until it receives an abort
signal. Depending on the module calling the control module this might be anything
from a fixed loop to a command input.

The project has currently developed 6 modules for the initial testing of the prototype
hardware. The 2 input policies, pDTP parser for network interface and RU data offload
and the file reader policy for basic file reading. The 2 processing policies the forward
filter passing any input directly to output and the pRU parser sorting and checking the
pRU data stream from the RU and pDTP parser or a file. Lastly the 2 output policies
uses the std :: ifwriter for writing a binary pRU stream to disk and the root writer
for writing the ALPIDE pixel hit coordinates stored in the pRU stream to a CERN
root tree for statistical analysis and visualization using the root library.

The pDTP Network Module is a separate project and will not be discussed here. the
File Reader and File Writer modules are simple stream reader/writer and the forward
filter will just forward any input.

All the modules currently interface with a vector < char > containing a binary
pRU stream. All modules currently developed can easily be switched and still interface
with the other policies. They are not entirely compatible as the Root Writer Module
requires its input to have been parsed first. So the network module followed by the
forward filter is incompatible with the Root Writer Module. A binary file can be read
and fed through the forward filer to the Root Writer Module provided it has been run
through the parser first.

4.3.1 Sorting and Error Checking

The pRU parser processing module has been developed by conceptually, treating the
sorting of the pRU stream in to pRU Frames and the error checking of each complete
Frame as separate processes. This approach was chosen based on a desire for a modular
and parallelizable software architecture and the possibility for developing modules with
discrete functionality.

The pRU parser module itself is still a monolithic module as the error checking
lacks a separate control structure due to the legacy code structure. This is shown in
4.3 as the purple paths. A separate control structure analysing the finished Frames

Chapter 4. Software 36

Figure 4.3: A detailed overview of the decision process in the pRU Parser.

37 4.3. The Control Module

in the temporary buffer or a distinct buffer is necessary to completely separate the
functionality. This process has been postponed to be implemented with the inclusion
of threads.

The general approach to the processing module is to have 2 discrete processes de-
signed to operate as separate sub modules. The goal of this approach is:
- To facilitate parallel processing in the software.
- To have shorter development cycles with useful and working software.
- Simplify testing by separating concerns.

The first sub module is the sorting module. The purpose of this sub module is
to organises the data stream in to pRU Frames and reject any ill formed Frames as
described in section 4.1. As can be seen in figure 4.3, the parser will check the size
of the input data to ensure it can be broken up in to individual 128 bit pRU Words.
Then it will enter the main control structure analysing each 128 bit pRU Word. Any
pRU Words and partial Frames rejected will be put in to a dedicated error buffer that
can be extracted or written to disk for further analysis.

The second sub module checks the pRU Frames content for errors, if any errors
are found, the frame will be rejected and put in to the dedicated error buffer. This
module will first check the pRU Trailer word for any error flags and reject the frame
if any flags are set. It will then go through the ALPIDE Data in the each pRU Data
Word and check that it is well formed, as described in chapter 2.2.1 and 3.3, and reject
the frame if it is not. It will also count the number of ALPIDE words and their total
size. Any error flags in the ALPIDE Trailer Word is checked and if they violate the
constraints in chapter 2.2 the frame is rejected. The padding in the last pRU Data
Word is checked and the frame is rejected if there is something else than padding after
the ALPIDE Chip Trailer. Finally the count of the size of ALPIDE Data received is
compared to the registered sum in the pRU Trailer Word.

This will result in a sorted list of binary pRU Frames containing the accepted frames
being returned to be accepted by the output policy. Additionally the error buffer can be
extracted and stored separately. Unfortunately, this file has to be inspected manually.
A module to convert this buffer to a more flexible format will hopeful be developed in
the future.

4.3.2 Data Extraction

For further processing like statistical analysis, plotting and reconstruction, it is neces-
sary to extract the particle hit information from each ALPIDE chip. Each ALPIDE
is treated as a Cartesian plane of 1024 by 512 pixels (x,y) with the readout periphery
oriented in a strip along the boom of the x axis.

Chapter 4. Software 38

Figure 4.4: A detailed overview of the decision process in the ALPIDE Decoder.

39 4.3. The Control Module

The extraction of hit information is performed within the 1024x512 hit matrix of
each individual ALPIDE chip. The ALPIDE chip number and Readout Unit number is
stored for downstream software to determine that ALPIDE chip’s place in the detector
stack. This avoids the need for the current software to address the physical detector
layout.

For software flexibility, ease of development and to respond to future change in the
hardware, since the detector layout has not been completely finalised, the hit informa-
tion is extracted within the 1024x512 hit matrix of each individual ALPIDE chip. The
ALPIDE chip number and Readout Unit number is stored with the hit information
for downstream software to determine that ALPIDE chip’s place in the detector stack.
This avoids the need for the current software to address the physical detector layout
and changes in the detector stack layout are deferred to the reconstruction software.

This separation of concerns enables analysis and plotting of the data received from
the current test setups and should be feasible up til a complete layer of 108 chips.
Giving the reconstruction software the responsibility of knowing the physical detector
layout incurs a very small cost since it is likely this module will have to contain this
information regardless. An additional benefit is that is simplifies the use of the software
for different detector stacks. Most notably, the current planed prototype, will at least
be smaller and also possibly different in other ways than a clinical prototype facilitating
adaptation of the current software for future sensors.

The ALPIDE Decoder functions by looping through every pRU Frame. At the
pRU Header position, it will create a new RUDataHeader and extract the Readout
Unit number, the string ID, the chip ID, the Frame ID, and the Readout Unit clock.
It will then go through every pRU Data Word in the Frame saving the ALPIDE Chip
Header and the current ALPIDE Region Header and decode each Data Short or Data
Long in to their respective Cartesian hit coordinates and storing them in a hit list until
the ALPIDE trailer is found. When a pRU Trailer is found as the next pRU Word the
next Frame is decoded until the input buffer is empty and the list of RUDataHeaders
are returned.

The buffers persist in the pRU parser module enabling the module to receive data in
separate inputs. If a part of a readout is split by a network frame size limit or any other
reason, as long as the other stream requirements previously discussed are not broken,
this will not affect the parser. The error buffer will also continuously accumulate any
rejected data.

For use with reconstruction and for ease of analysis, some separate data types are
being created. The RUDataHeader and AlpideHit data types have currently undergone
2 iterations and have seen significant change. The RUDataHeader represents a single
readout (fixed in time) from a single ALPIDE (fixed in space) containing a number of
(x,y) hits represented by the AlpideHit type. The requirements for the type are chiefly

Chapter 4. Software 40

that they must contain the relevant extracted data in ”regular” variables to cater to the
need of both statistical analysis and performance checking of the prototype hardware
and future reconstruction algorithms. The type should be serializeable for writing
to disk or network transfer if the reconstruction takes place on separate hardware.
The type must be space efficient. A lot of data is expected so careful use of types is
necessary in order not use more space than necessary. Additionally, since some of the
data field in the pRU format are smaller than 8 bits, there is an option of using unions
of combining smaller variables in a larger type. For instance storing two 4 bit variables
can be stored in an 8 bit type.

struct UnionExample \{
union \{

u i n t 8 t conta ine r ;
struct \{

u i n t 8 t 4 BitVariableA : 4
u i n t 8 t 4 BitVariableB : 4

} ;
} ;

} ;

Currently, the RUDataHeader format is using a non-serializable vector for the stor-
age of ALPIDE hits for ease of implementation and testing. This have to be converted
back to the serializable C style array.

Data Extraction In The Readout Chain

There are valid arguments to be made to have the data extraction as part of the
processing module. The data extraction can be seen as integral to the process of
preparing the data stream for further use. The RUDataHeader format would have to be
serialised before it is returned to be compatible with the existing modules. This would,
however, create a conflict where seemingly similar files would not be in compatible
format as any attempts at re parsing a file containing the RUDataHeader format by
the parser would fail. The other option would be to introduce a module that can deduct
the formatting of an incoming stream greatly increasing complexity or force a different
naming scheme on the output. It is therefore more practical, by following the existing
modules, to set the extraction of hit coordinates in to the RUDataHeader format, as
a sub module in an output policy or, if the control structure is change as a separate
second processing module.

The primary use for the data extraction module is to support analysis, graphical
plotting and reconstruction. By making the data hit coordinate extraction software a
sub module accepting the sorted pRU Frame binaries from the standard output policy
ensures compatibility, allows the binary files generated by the standard output policy

41 4.3. The Control Module

to be valid input for the parser and can still be used as a sub module in a future
reconstruction policy.

ALPIDE Hit Position Calculations

As described in chapter 2.2, the ALPIDE pixel numeration is is based on a 1024 pixel
address space of tow 512 pixels in 16 double columns in to 32 readout regions. The hit
position calculation code has been taken from the CERN and adapted and improved
to meet the requirements of its user module.

The code treats every ALPIDE Data Word as a Data Long, a data short simply
having a cluster of 0. The 8 bit hit region is masked put in to an int, the encoder ID is
extracted and the encoder ID and 8 least significant bits of the address is extracted. At
this point, every Data Word is treated as a short so for the original hit and every hit in
the cluster hit map (data short is treated as having a 0 cluster), the pixel address is the
extracted encoder ID and 8 least significant bits incremented by the cluster position.
The row of this pixel is half the pixel address while the column is calculated by the
formula:

(region ∗ 32 + encoder ID ∗ 2) + (0 or 1) for left or right column

The column is the left one if

address mod 4 = 0 or address mod 4 = 3

Se pixel pattern in figure 2.5.

CERN Root Tree Module

Root is a data analysis toolkit developed at CERN [39].The framework is used by physi-
cists and provides tools and functionalities to perform big data processing, statistical
analysis, visualisation and storage. It was a desire from the user group to have the
readout stored in a format processable by root. The desire to use the root framework
greatly affected the ALPIDE Decoder format in order to get the data in to analysable
root Trees.

The root framework is primarily a scripting tool working very well when performing
tasks inside the framework. It has its own c++ interpreter to run c++ code directly,
easily serializing custom c++ classes in to root files. On the other hand, using this
functionality outside root, is not particularly easy as the serialisation uses some ”behind
the scenes” functionality in root.

Chapter 4. Software 42

Figure 4.5: A detailed overview of the decision process in the Root Writer module.

43 4.3. The Control Module

The root framework has a number of file options but on of the more common formats
is the root TTree used for this project. A TTree represents a columnar data set and is
filled by fundamental types. The following elements are defined:

ReadoutUnitID

FrameID

StaveID

ChipID

ReadoutUnitClock

SpillID

BunchCounter(ALPIDEClock)

Column

Row

The root tree is created by taking each RUDataHeader element and filling in all
but the column and row fields, then looping through the ALPIDE hit list and writing
each row column element. The Frame is then added to the TTree by calling:

// Write frame in f o to t r e e
tTree−>F i l l () ;
// Rese t t frame
frame . column={};
frame . row={};

This ads the Frame as a new element to the TTree. Once all Frames have been
processed the control loop exits.

As the pRU Parser module, the root tree module is reset on initialisation and will
over writer any existing trees with the same name. In a production environment,
date and time might be added to the output file to guarantee uniqueness and prevent
accidental data loss leaving the user to remove undesired files manually.

Chapter 4. Software 44

CHAPTER 5

Analysis and Assessment

5.1 General Overview

The modular nature of the software has lead to the testing focus being on the individual
modules, with incremental improvements of the test suite, as new functionality has been
added or bugs found and fixes provided. During development a Continuous Integration
(CI) environment has been enabled for the repository. The CI is configured to build
the project and run the tests it can find. The CI system therefore only provides the
build and execution environment while it is up to each developer to provide test cases
for new functionality or bug fixes.

The repository is set up so that each area of concern in the repository has its own
separate testing section for testing of the different elements.

The primary focus of these tests are on the correctness of their accompanying
module. Test on speed and throughput are performed separately and manually. The
reason for this is that the required data sets needed are far to large to store in the
repository and the tests are most easily performed by inserting benchmarking code
around the code bloc under testing.

Testing of memory issues is similarly done by using the Valgrind profiling suite.

5.2 Future Development Consideration

As the pCT project is active, significant development work still remains. The software
is therefor required to consider not only the current needs of the project but also future

45

Chapter 5. Analysis and Assessment 46

needs.

The designed pipeline is starting to become well developed for the initial readout.
The RU firmware is currently being used to readout the ALPIDE test strings and is
functioning well. Updates are being delivered to the firmware and the design of the
production hardware has begun.

For the software, a network module is being used to offload data from the RU and
along with the control module, the pRU Parser and the Root Writer, it provides a
complete pipeline. The software was originally based on the simple file reader module
still in use as the input policy, an largely outdated forwarding filter just returning the
input as the processing policy and the simple file writer still in use as the output policy.
The pDTP Client module has been added providing the ability to connect and receive
the data stream from the RU. The pRU Parser has been added providing sorting and
error checking of the data stream from the pDTP module and finally a root tree writer
module has been added extracting the pixel hit information and storing it in the root
tree format for analysis and visualization.

This demonstrates that the system architecture provides ample opportunity to eas-
ily add and change the functionality of the system just by switching or developing new
modules to expand the systems functionality when the necessity arises.

The most significant consideration is the architecture of the final server setup and
the reconstruction software. It is not certain how or where reconstruction will happen
and how it will access the processed data. A separate serializable format has been
developed and is used internally in the root writer module by the ALPIDE decoder. If
it should be necessary, the ALPIDE Decoder can be coupled to a network module for
of site data processing.

Lastly, by splitting the modules into smaller sub modules each with a distinct task,
like the ALPIDE Decoder extracting the pixel hit information in to the PRUData-
Header format, it may be possible to re use this element or easily replace or modify it
for more efficiency. This also applies to the pRU Parser, as it has been separated in to
a sorting section and an error checking section.

This is demonstrated by the 3 executables made for testing. These executables
are made by changing the modules to suit the desired purpose. These executables are
primarily used for testing the more complicated Network module. Further modifica-
tions are made by changing the Processing Policy and Output Policy modules between
compilations to alter the behaviour when required.

47 5.3. Theoretical Requirements

5.3 Theoretical Requirements

The expected data rates from a Readout Unit will vary with beam intensity, the layer
position in the sensor stack and the length of the data taking window (strobe). The
front layer will generate the most data and has simulated outputs of about 650 Mb/s,
700 Mb/s, 800 Mb/s, 950 Mb/s and 1 400 Mb/s for 30 microseconds, 20 microseconds,
15 microseconds, 10 microseconds and 5 microseconds strobe respectively. A minimal
gap of 25 nanoseconds is used between each strobe [30, p.1-2] see figure 5.1.

If the parser keeps pace with or outpaces the data stream, the processing will run
parallel to the readout and finish at roughly the same time as the data stream providing
instantaneous feedback. This is the, desired solution, however, it is not given that the
parser will reach these speeds so the question that needs to be answered is: “how slow
can we go?”.

Assuming a readout measured in seconds and the processing runs concurrent with
the data readout, the data processing time should not continue for any additional
period than the time it took to do the readout. In order to prevent the user form
feeling that the software is slow: a 2 second readout should therefore, as a goal, not
continue for more than 2 seconds after the readout has finished.

It is not quite known how a data take will be performed but as long as the beam
time is measured in seconds, before realigning, either the sensor or patient for the next
slice, this provides a time gap for the data processor to finish without slowing down the
overall process. It one take is all that is necessary, the processor should finish without
creating to much of a wait for the user.

When running software instances in parallel, the total speed is dictated by the layer
producing the most data, since this will take the most time to process. Keeping the
parse time below double the data acquisition time requires the parser to to have a
processing speed no less than half the speed of the data readout for that layer. From a
data rate somewhere in the 650 – 1400 Mb/s range, it is desirable to reach a processing
speed in the 325 - 700 Mb/s range or greater. These figures includes the time it takes
to write the data to disk.

5.4 Processing Speed

The focus of this thesis is processing of the pRU data so speed testing is performed
with a test file and the file reader module. The processing speed is measured by in-
serting benchmarking code around the code block under test and running the software.
The primary metric is throughput measured in megabits per seconds(Mb/s) average

Chapter 5. Analysis and Assessment 48

Figure 5.1: Figure from [30, Fig 1] showing simulated data rates from a 230 MeV
proton scanning beam with a beam intensity of 1E7 protons/second. The scans takes
65 ms.

processing speed. The use of bits in stead of bytes is because it is desirable to have a
metric that directly comparable to the network.

Since the file reader is used, there is only one, compete input and the size of the
input forms the base for the calculations. The tests uses the std::chrono library and
it’s high resolution clock and time point utility functions. The code used for all the
tests is the same to ensure they are comparable.

Code block for the test setup:

// −−−−−−−−−− Define benchmarking t o o l s −−−−−−−−−−−−− //
std : : chrono : : t ime point< std : : chrono : : h i g h r e s o l u t i o n c l o c k >

startTimePoint ;
s td : : chrono : : t ime point< std : : chrono : : h i g h r e s o l u t i o n c l o c k >

endTimePoint ;

Code block for the test:

// −−−−−−−−−− S ta r t benchmarking −−−−−−−−−−−−− //
startTimePoint = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now () ;
.
Code under t e s t
.
// −−−−−−−−−−− End benchmarking −−−−−−−−−−− //
endTimePoint = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now () ;

Code block for the test result:

49 5.4. Processing Speed

%// −−−−−−−−−−−− p r i n t r e s u l t −−−−−−−−−−−−−− //
auto s t a r t = std : : chrono : : t ime po in t ca s t<std : : chrono : : microseconds>

(startTimePoint) . t ime s in c e epoch () . count () ;
auto end =std : : chrono : : t ime po in t ca s t<std : : chrono : : microseconds>

(endTimePoint) . t ime s in c e epoch () . count () ;

auto durat ion = end − s t a r t ; // m i l l i s e c ond s

// Should g i v e number o f b i t s (but i s system dependent)
long double Megabits =

(data . s i z e () ∗ 8)/(long double)1 ’ 000 ’ 000 ;
long double seconds = durat ion /(long double)1000 ’ 000 ;

std : : cout<<”This parse had a speed o f : ”<<
Megabits / seconds<<”Mb/ s”<<std : : endl ;

The test setup and code is tailored for single input runs, ie. input from the file
reader. To expand the testing to multiple input, it is possible to just run everything
multiple times to simulate the input. This would increase the control overhead and
perhaps give a more realistic picture of the processing speed but these tests have not
been performed.

During each of the four tests for the overall system, the pRU parser and root writer
modules and the ALPIDE Decoder pRU Exporter (root tree writer) submodule and
the same file was used for each run. Since no data take of sufficient size with real
detector data exists, The data used could either be a composite file made from a data
take or a generated test file.

The test file used was a file from a data taking session performed 10.01.2020. The
file contains real word data in an idle environment, no beam or radiation source present.
The file therefore contains relatively small Frames as there is little radiation present
to trigger the pixels, giving few hits per readout cycle/Frame. This may affect perfor-
mance of the tested modules.

The data is then copied 1000 times to create a 3.14 GB test file used in all speed
test.

5.4.1 pRU Parser

The pRU Parser module is currently a monolithic module instead of discrete sorting
and error checking sub modules. The code will sort the incoming data and as soon

Chapter 5. Analysis and Assessment 50

as a pRU Frame is completed it will will proceed to perform error checking on that
frame before the sorting is continued. It is therefore not practically possible to test
the sorting and error checking independently as the testing on one would impact the
performance of the other. The parser has been tested as a whole by setting the initial
time point as the first element in the pRU Parser parse method and the end time point
right before the return statement. The test code is contained in the class under test
and output is written to the terminal, the code inserted between the end time point
and the return statement when it goes out of scope. The software is compiled on the
host machine and the executable is run with the input file and the results are manually
registered and processed.

5.4.2 Root Writer

The Root Writer module consists of two completely discrete modules designed to be
run in parallel. Since it is not a monolithic unit like the pRU Parser, it is easy to test
each sub module independently. To test the whole root writer module, it it necessary
to place the testing code around the calls to the modules in the run-pru-parsers output
policy. The output is placed after the code executes and before it goes out of scope by
the end of the lambda expression. Since this test is performed in the entity creator, it
is not necessary to perform the output right away however, it is good practice to keep
related elements together and have the same layout and output for all test cases. The
output for the test of the root writer and it’s sub modules is the same as the output for
the pRU Parser. The output is written to the terminal then registered and processed
manually.

For the ALPIDE Decoder, the test is performed similarly to the pRU Parser with
the initial time point as the first element in the decoder and the end time point just
before the return statement. The scope is moved to the sub module and everything is
set up as the pRU Parser with the output between the end time point.

The Root Writer module was similarly tested the initial time point as the first
element and the end time point with the output as the final elements of the method
scope.

in the pRU Parser parse method, the end time point right before the return state-
ment and the output is inserted between the end time point and the return statement.
The software is compiled on the host machine and the executable is run with the input
file and the result is manually registered and processed.

51 5.5. Resource Use

Table 5.1: This table shows a summary of the testing results. For full details, see
apendix A. *The data size is unknown but it should be comparable to the ALPIDE
Decoder

Module Data size Mean time Mean speed std dev speed
[Mb] [s] [Mb/s] [Mb/s]

Offline to root tree 25 169.92 86.564 291 3
Offline to binary 25 169.92 26.092 965 8
Online to root tree 25 169.92 85.561 294 3
Online to binary 25 169.92 25.395 991 6
pRU Parser, 25 169.92 24.593 1023 6
Root Writer Module 17 979.136 61.253 294 4
ALPIDE Decoder 17 979.136 12.721 1413 4
pRU Exporter* 17 979.136 46.633 386 5

5.4.3 Results

The data size used for the speed calculation is primarily the data read from disk. This
is 3 146 240 kilobytes or 25 169,92 megabit. The exception is the Root Writer module
which uses the size of the output from the pRU Parse module. Also, the input for
the pRU Exporter sub-module is incorrect since the ALPIDE Decoder transform the
binary input in to the RUDataHeader format. This format conceals the size of the
input. since no data is removed, and there is a little overhead in both formats, the
input size to the ALPIDE Decoder is used as a reasonable substitute.

Notes: For offline processing, pRU Parser and Root Writer module, the time is a
calculated from the speed and data size. Most tests had 20 runs with the exception of
Offline processing to binary and Online processing to binary. The

5.5 Resource Use

The primary tool used throughout development is the Memcheck tool in Valgrind.
Memcheck performs run time analysis of the compiled code. This way, Memcheck can
cover the entire code, even dynamically linked libraries and There is no need to insert
test code in the software being tested. Memcheck will only analyse the code that is
actually run and it will not be able to catch faults in execution paths that is not used
[21, section 2.9 and 2.10].

Memcheck dynamically tests the addressability of every byte of memory detecting
all accesses to unaddressable memory. Memcheck tracks all heap blocks allocated
using malloc() and new. This enables Memcheck to detect bad or repeated frees of

Chapter 5. Analysis and Assessment 52

heap blocks, and leaks at program termination. Memcheck looks for overlapping blocs
of memory supplied as arguments to functions. Most importantly it tracks every bit of
data in registers and memory enduring that they are well defined. With this, Memcheck
has bit level precision in tracking undefined value errors [21, Section 1.1].

During the processing speed measurements, the memory usage was also monitored.
The process peaks at 10.9 GB memory during the root tree creation process. When
the parsing is preformed with the binary file writer as the output policy, the memory
consumption peaks at 5.9 GB at the very end of the file writing process.

5.6 Correctness

Testing have for the most part been performed alongside the development of the module
under test. The constraints, requirements and existing code base for the different
modules have resulted in completely different testing strategies for the two module.
The general goal was to have a comprehensive, automated test suite to aid and guide
development and catch errors early.

The pRU Parser module have followed this strategy and has an automated test
suite developed along the software. The test suite have BEEN developed using the
BOOST::TEST framework, creating an automated test suite run at compile time.

The Root Writer module on the other hand have applied the diametrically opposed
strategy of manual testing for the software development.

5.6.1 pRU Parser

The pRU Parser test suite is based on the Boost framework’s Test library. The tests
have been developed along side the software and is based on simple hard coded sets
of pRU words, one set for the input, and one set for the correct output. Automated
generation of test data is the most desirable as it is easy to test the whole range of
possible combinations.

Making a software suite for automatic generation of test data, is time consuming
and testing suite would need some testing. In stead of having a comprehensive test
suite the pRU parser uses a just in time strategy of incrementally adding smaller blocks
of hard coded data when a new function is added or a bug discovered. The narrow
scope ensures simplicity and and by having hard coded values, the values are easily
tailored to narrowly test a single or limited number of features and include the points
most likely to fail. The reason this strategy was chosen was the initial code base. When
adapting the old legacy parser to the new system, it was necessary to have a simple

53 5.6. Correctness

test suite available immediately. Once this system is in place, and the initial tests
cleared, this setup provides simple and accurate incremental additions to the test suite
complementing the features of the software developments.

Each test is completely independent and automated by the Boost framework. The
framework provides automated response and is recognised by the CI environment so
all tests are run during integration.

The first tests is focused on the sorter, providing input with missing or miss aligned
pRU words. These test are created by duplicating, moving or removing elements of the
original test for correctness. Further tests are mead by making Small changes some
pRU words. A good example is size error input to check if all pRU Data words have
been received, only changes the last two bits of the pRU Trailer word as shown in the
example below.

Example of a test created by flipping two bits:

// Or i g ina l and co r r e c t pRU t r a i l e r
0b10000010 , 0b00010011 , 0b00000000 , . , 0b00000001 , . , 0b00100100
// Modif ied i n c o r r e c t pRU t r a i l e r
0b10000010 , 0b00010011 , 0b00000000 , . , 0b00000001 , . , 0b00100111

Each test consists of a named Boost test case denoting what is being tested and
terminal output with test number and feature being tested. Each test initialises its
own pRU Parser module which goes out of scope at the tests end. The module is then
feed the test input and the output is compared with the expected result using Boost
check.

5.6.2 Root Writer

The Root Writer module have used a diametrically opposite strategy of purely manual
testing. The choice of manual testing was based on several factors.

Firstly, unlike the pRU parser, it was not as easy to test the module until the
software was relatively complete and when it was complete, the root formatted output
was harder to test automatically but was easily human readable. There exists code
for reading .root files and the root framework provides some tools to create files with
serialized c++ objects to make the files readable by a test suite or code for reading
a root file directly. However the primary blockers faced in development were memory
related and functional resulting in insufficient time to develop an automated test suite
during development.

Secondly generation of test data was not as easy as for the pRU parser as each

Chapter 5. Analysis and Assessment 54

ALPIDE data element now had to contain data. Additionally, the way the ALPIDE
chips reads out the pixel hits and distributes the information over a number of data
fields make creation of test data more time consuming as it is necessary to know the
hit coordinates of the ALPIDE input to verify the output.

Lastly, the existing pRU Frame generator in WP3 could be used. This generates
pRU frames with an accompanying hit list so the input and output can be compared.
The test scripts in WP3 unfortunately generated data sets in incompatible hexadecimal
text files. The labour of converting these files and checking the result is less labour in-
tensive and overall faster than creating a test suite considering the additional technical
challenges that would have to be solved.

For these reasons, the testing of the Root Writer have been performed manually
using the data from the wp3 software simulation package and web based hex to binary
converters.

The reliance on these web based tools might seem questionable at first glance,
however, at least 3 different tools were used, and for all 3 to have the exact same fault,
is highly unlikely. Likewise; the chance that an error in the hexadecimal conversion
would exactly mask a fault in the ALPIDE data extractor and the Root Writer is not
likely either. It is therefore reasonable to accept this test method as sufficient.

CHAPTER 6

Discussion and Future Work

The software modules being described in this thesis is now being integrated in to the
project development to replace the prof of concept software. Some features have still
not been implemented but it is not the less preforming well.

6.1 Performance

6.1.1 Processing Speed

The testing done in chapter 5 and using the 3.14 GB file, shows the feasibility of using
the current software to analyse test data. The top layer is expected to generate the
most data and simulations shows it will generate about 1 400 Mb/s. The processing
of the data generated buy a 1 second beam exposure (1 400 Mb) would be 4,8 seconds
while the processing of a 10 GB file would take 4,6 minutes at the current pares speed
mean of 294 Mb/s. This compares quite favorably to the 1,6 Mb/s parse speed of the
proof of concept software but does not quite reach the desired minimum parse speeds
set forth in the requirements.

However a switch to the binary output processor increases the parse speed mean
to 991 MB/s well in excess of the 700 Mb/s desired but still less than the goal of 1
400 Mb/s. This setup would process 1 400 Mb of data in 1,4 seconds and 10 GB in 1
minute and 21 seconds.

The most notable result is the comparison between the 1 023 Mb/s mean processing
speed speed of the pRU Parser module and the 293 Mb/s mean processing speed of the
Root Writer module. This clearly shows that the Root Writer module is the current

55

Chapter 6. Discussion and Future Work 56

bottleneck as the mean processing speed of 293 Mb/s is within the margin of error for
”online” processing, when the time it takes to read from disk is excluded.

Of additional interest is the comparison of the Alpide Decoder submodule and the
pRU Exporter sub module. The relatively simple pRU Exporter submodule is taking
significantly longer than the ALPIDE Decoder submodule which reaches the desired
processing speed of 1 400 Mb/s.

6.1.2 Memory Usage

The software currently has a memory consumption of 3,5 times the data input when
using the rot writer module. Going by the data rates in figure 5.1, the highest data
rate is provided by the first layer and the beam stops at layer 40. At this point the
data rate is roughly 1 100 Mb/s. The decrease is roughly linear which gives an average
output of 1 250 Mb/s (0,156 GB/s) per layer. If the 40 layers then captured 1 s of data
at this rate, the detector would generate:

40 layers ∗ 0, 156 GB/s ∗ 1 s = 6, 24 GB of data

The final setup would then require a minimum on board memory of:

6.24 GB ∗ 3, 5 scale factor = 21, 84 GB

This shows that a minimum of 22 GB of memory is required to complete this
process in memory and write to disk, for the whole detector, with the current setup.
This compares favourably to the 64 GB of memory installed on the test machine.

With the binary file writer, the memory consumption scales by a factor 1,88.

6.24 GB ∗ 1 s ∗ 1, 88 scale factor = 11, 73 GB

This reduces the memory requirement to 12 GB of memory for a complete data take.

6.1.3 Scaling

The important part of this thesis is the scaling. This is achieved by providing each
layer/Readout Unit with a dedicated software instance for processing. Going by the
example above, the processing of these 6.24 GB will still only take 4.8 seconds.

Because each layer has it’s own dedicated software instance, the processing is of the
data stream from each layer is an independent process. The total processing time will
therefor equal the processing time of the layer generating the most data.

57 6.2. Design evaluation

This requires that no other hardware bottleneck exists. If the software is to run
in virtual machines in a server, it is feasible the the hard drive write capacity might
be exceed as this scaling will create 43 separate root tree files, one for the software
instance of each layers. It is also possible that other unknown bottlenecks might be
found.

Each root tree file can be opened and viewed immediately upon completion but to
open all, the entire process will have to be completed. The unification of these files for
further processing or reconstruction has not been solved. It is also unknown if the root
tree is the format that is going to be used as a basis for the reconstruction software. The
RUDataHeader format creates the possibility to replace the pRU Exporter submodule
with a network interface instead.

6.1.4 Summary

The current processing speed does not allow for proper online monitoring of a high
intensity beam. However, it is sufficiently fast to quickly verify a test setup and process
reasonable amounts of data in a reasonable time frame.

Currently the biggest blocker for additional increases in the processing speed is the
root tree creation. The rest of the the two software modules are already close to or
at the speeds predicted by the simulations and clear improvement paths exists. The
root module is very simple in its current form so might need a fundamentally different
approach.

6.2 Design evaluation

The design has shown itself to be quite adaptable as the current modules can be easily
changed to alter the software’s function. This is demonstrated both by how easy it is to
create new executables and how easy it is to modify existing executables by replacing
some modules. There is some issues with the control loop but this is outside the scope
of this thesis.

The for the goal to facilitate further development, the biggest remaining obstacle is
that the pRU Parser is still a monolithic module. Future changes will therefor have to
be done on the whole module increasing complexity and requires a developer to digest
more coder in order to change module.

The ALPIDE Decoder in the Root Writer module has some sections outside the
control loops where know elements are. This can be somewhat confusing and it is a

Chapter 6. Discussion and Future Work 58

performance consideration if these sections should be compressed and moved into an
expanded control structure.

6.2.1 Temporary Buffers

Currently the rejected data is only stored in a temporary buffer, the buffer persists
with the parsing module so it is necessary to manually extract this data along with
any partially completed frames remaining. If this is not done the data is lost when the
module goes out of scope. A plan to more permanently deal with this necessary and
the approach is different depending on what software element is chosen to have this
responsibility.

6.2.2 Correctness

For the default, filtered data stream from the Readout units, the parser has been
functioning well. However, the parser does not handle and unfiltered stream and the
inclusion of these ALPIDE words will lead to a mislabeling of the element. Even if the
event should not be fatal, any error generated will not be indicative of the underlying
cause.

6.3 Future work

Although a step in the right direction, there is still work that needs to be done. Better
Unit Testing for coverage from both modules is chief among them. This work should
also be used to set up and clearly define the desired functionality of the module under
testing. This should include functionality where it is desirable to have the ability to
turn it on and off.

Since the filtering of these ALPIDE Words can be turned on and off in the Readout
Unit, this functionality should be included in the pRU parser as well. If thes ALPIDE
Words are being filtered by the RU, it is not necessary to spend CPU resources loading
this code and checking for these elements.

More functionality is desired, especially from the parser module. The most im-
portant upgrade is improved event handling. It would be a significant improvement
in correctness if the pRU parser module could handle events that are currently not
covered. Currently only the pRU words have full coverage while ALPIDE Words like
the COMMA, BUSY etc are not checked for.

59 6.3. Future work

The pRU Parser’s error buffer currently have to be inspected manually. A module
that could read and present this content in a more human friendly format would ease
debugging.

The monolithic pRU Parser module should be divided into at least two separate
submodules. This would make the code easyer to modify and it would enable the
threading of the error checking section of the parser. Threading this section has the
potential to increase the processing speed significantly.

Implement threading and parallel processing in the pRU error checking and in the
ALPIDE Decoder. If a sufficiently fast buffer solution can be found, this could greatly
increase the processing speed of the software instance. Most importantly, decoupling
the Root Writer module, I believe significant gains can be made by allowing it to work
in parallel with the rest of the readout chain instead of forcing the slowest element to
wait for the completion of the previous steps.

Improvements can still be made by removing unnecessary copying present in the
software modules. This will have the additional benefit of improve memory footprint of
each software instance. A similar improvement is to change location of some elements
to let them go out of scope sooner, This will free up additional memory reducing the
overall memory footprint of the application.

Chapter 6. Discussion and Future Work 60

Bibliography

[1] Herland A. private communication, 2020.

[2] Hilde A.E. private communication, 2019.

[3] ALICE Collaboration. A Forward Calorimeter (FoCal) in the ALICE experiment.
CERN Document Server, October 2019.

[4] The PRaVDA Consortium. Proton radiotherapy verification and dosimetry appli-
cations.

[5] ALICE ITS ALPIDE development team. Alpide operations manual, July 2016.

[6] Manjit Dosanjh. The changing landscape of cancer therapy, 2020. Accessed: 2020-
06-15.

[7] Dale E. and Waldeland E. Proton therapy – a reality in Norway from 2023.
Tidsskriftet - Den Norske Legeforening, 138, September 2018.

[8] Rinella G.A. The alpide pixel sensor chip for the upgrade of the alice inner tracking
system. In Vienna Conference on Instrumentation, VCI, Viena, Austria, 2016.
indico.

[9] Rinella G.A. The alpide pixel sensor chip for the upgrade of the alice inner track-
ing system. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 845:583–587,
February 2017.

[10] Particle Therapy Co-Operative Group. Particle therapy facilities in a planning
stage, 2020. Accessed: 2020-04-11.

[11] Particle Therapy Co-Operative Group. Particle therapy facilities in clinical oper-
ation, 2020. Accessed: 2020-04-11.

[12] Particle Therapy Co-Operative Group. Particle therapy facilities under construc-
tion, 2020. Accessed: 2020-04-11.

61

Bibliography 62

[13] Paganetti H. Range uncertainties in proton therapy and the role of monte carlo
simulations. Physics in medicine and biology, 57:R99–117, June 2012.

[14] Underdal H.A. Design of high-speed digital readout system for use in proton
computed tomography, 2019.

[15] Pettersen H.E.S. A Digital Tracking Calorimeter for Proton Computed Tomogra-
phy. PhD thesis, The University of Bergen, 2018.

[16] Pettersen H.E.S. and et al. Design optimization of a pixel based range telescope
for proton computed tomography. Submitted to Physica Medica Special Issue:
Advances in Geant4 for medicine.

[17] Pettersen H.E.S. and et al. Proton tracking in a high-granularity digital tracking
calorimeter for proton ct purposes. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 860:51–61, July 2017.

[18] Sykehusbygg HF. Konseptfase – etablering av protonbehandling, sluttrapport, 06
2016. Avalible at: https://www.helse-sorost.no/Documents/Store utviklingspros-
jekter/OUS/Radiumhospitalet/Konseptrapport - 0etablering av protonbehan-
dling.pdf.

[19] Adiga H.S. Porting linux applications to 64-bit systems.

[20] http://ww1.microchip.com/downloads/en/DeviceDoc/MIC2915x-30x-
50x-75x High-Current-Low-Dropout-Regulators-DS20005685B.pdf.
Mic2915x/30x/50x/75x high-current low dropout regulators, 2020.

[21] Seward J. and Nethercote N. Using valgrind to detect undefined value errors with
bit-precision. In Proceedings of the USENIX’05 Annual Technical Conference,
USENIX ATC 05, pages 17–30, Anaheim, California, 2005. USENIX.

[22] Bohne K.E.S. Ethernet-based control system and data readout
for a proton computed tomography prototype, 2018. Available at:
http://dspace.uib.no/handle/1956/18466.

[23] Leksell L. The stereotaxic method and radiosurgery of the brain. Acta chirurgica
Scandinavica, 102(4):316–319, December 1951.

[24] Leksell L. Stereotactic radiosurgery. Journal of Neurology, Neurosurgery, and
Psychiatry, 46(9)::797–803, September 1983.

[25] LAP. Positioning at ct/pet-ct, 2020. Accessed: 2020-06-07.

[26] Esposito M. and et al. Pravda: The first solid-state system for proton computed
tomography. Physica Medica, 55:p149–p154, November 2018.

63 Bibliography

[27] MarkFilipak. Thematic diagram showing dose as a function of depth for overlay
of proton radiotherapy and x-ray radiotherapy to facilitate a comparison of the
two radiotherapy methods., 2020. Accessed: 2020-06-15.

[28] P. Martinengo. The new inner tracking system of the alice experiment. Nuclear
Physics A, 967:900 – 903, 2017. The 26th International Conference on Ultra-
relativistic Nucleus-Nucleus Collisions: Quark Matter 2017.

[29] University of Bergen. Wiki for the bergen proton ct project. Available at:
https://wiki.uib.no/pct/index.php/Main Page.

[30] Groettvik O.S. and etal.. Development of Readout Electronics for a Digital Track-
ing Calorimeter. In Proceedings of Topical Workshop on Electronics for Particle
Physics — PoS(TWEPP2019), volume 370, page 090, 2020.

[31] Grøttvik O.S. Design of high-speed digital readout system for use in proton com-
puted tomography, 2017.

[32] Grøttvik O.S. pru data format specification, 2018.

[33] Johnson R. P. and et al.. A fast experimental scanner for proton ct: Technical
performance and first experience with phantom scans. Transactions on Nuclear
Science, 63(1):p52–p60, February 2016.

[34] P. Piersimoni and et al.. A High-Granularity Digital Tracking Calorimeter Opti-
mized for Proton CT. Submitted to Frontiers in Physics. Currently under review.

[35] Wu Q.J. and et al. On-board patient positioning for head-and-neck imrt: Compar-
ing digital tomosynthesis to kilovoltage radiography and cone-beam computed to-
mography. International Journal of Radiation Oncology*Biology*Physics, 69:598–
606, 2007.

[36] Wilson R.R. Radiological use of fast protons. Radiology, 47(5):p487–p491, Novem-
ber 1946.

[37] Stortinget. Stortinget - møte onsdag den 13. november 2013 kl.
10 spørsmål 5. Available at: https://www.stortinget.no/no/Saker-
og-publikasjoner/Publikasjoner/Referater/Stortinget/2013-
2014/131113/ordinarsporretime/5/.

[38] Bodova T. private communication, 2020.

[39] The ROOT Development team. Root a data analysis framework. Accessed: 2020-
006-10.

[40] Santa Cruz’ Institute for Particle Physics University of California, Loma Linda
University, and San Bernadino California State University. The pct collaboration.

Bibliography 64

APPENDIX A

Testing Tesults

The data size used for the speed calculation is primarily the data read from disk. This
is 3 146 240 kilobytes or 25 169,92 megabit. The exception is the Root Writer module
which uses the size of the input to the module. Also, the input for the pRU Exporter
sub-module is incorrect since the ALPIDE Decoder transform the binary input in to
the RUDataHeader header format. This format conceals the size of the input. since
no data is removed, and there is a little overhead in both formats, the input size to the
ALPIDE Decoder is used as a reasonable substitute.

The tables are color coded so that measured value have a blue background while
calculated values have a white background.

65

Appendix A. Testing Tesults 66

Table A.1: Offline processing to a root tree. This includes both file read and file write.

Data volume (Mb) Time (s) Speed Mb/s
25 169.92 86.640 290.511
25 169.92 88.256 285.191
25 169.92 86.684 290.365
25 169.92 87.955 286.169
25 169.92 86.587 290.691
25 169.92 86.612 290.606
25 169.92 87.604 287.315
25 169.92 85.225 295.334
25 169.92 86.145 292.182
25 169.92 87.649 287.168
25 169.92 85.978 292.748
25 169.92 85.146 295.609
25 169.92 86.861 289.771
25 169.92 85.979 292.745
25 169.92 85.976 292.756
25 169.92 86.197 292.006
25 169.92 85.750 293.527
25 169.92 87.352 288.145
25 169.92 86.757 290.121
25 169.92 85.925 292.928
Mean 86.564 290.794
Standard deviation 2.880

Table A.2: Offline processing to a binary file. This includes both file read and file
write.

Offline processing to binary
Data volume (Mb) Time (s) Speed Mb/s
25 169.92 25.996 968.206
25 169.92 25.970 969.175
25 169.92 25.929 970.725
25 169.92 25.942 970.233
25 169.92 26.500 949.825
25 169.92 25.953 969.833
25 169.92 26.034 966.804
25 169.92 26.049 966.236
25 169.92 26.087 964.848
25 169.92 26.455 951.429
Mean 26.092 964.731
Standard deviation 7.672

67

Table A.3: Online processing to a root tree. This does not includes file read.

Data volume (Mb) Time (s) Speed Mb/s
25 169.92 84.858 296.613
25 169.92 84.903 296.457
25 169.92 85.968 292.782
25 169.92 85.1475 295.604
25 169.92 86.472 291.078
25 169.92 86.637 290.521
25 169.92 87.179 288.717
25 169.92 85.375 294.815
25 169.92 86.049 292.506
25 169.92 85.282 295.137
25 169.92 85.921 292.943
25 169.92 86.310 291.622
25 169.92 85.058 295.916
25 169.92 84.266 298.696
25 169.92 84.120 299.214
25 169.92 84.968 296.227
25 169.92 86.149 292.167
25 169.92 85.705 293.680
25 169.92 85.194 295.443
25 169.92 85.654 293.856
Mean 85.561 294.200
Standard deviation 2.705

Table A.4: Online processing to a binary file. This does not includes file read.

Data volume (Mb) Time (s) Speed Mb/s
25 169.92 25.392 991.245
25 169.92 25.668 980.585
25 169.92 25.333 993.546
25 169.92 25.487 987.557
25 169.92 25.172 999.936
25 169.92 25.438 989.448
25 169.92 25.506 986.839
25 169.92 25.344 993.115
25 169.92 25.351 992.846
25 169.92 25.253 996.705
Mean 25.395 991.182
Standard deviation 5.442

Appendix A. Testing Tesults 68

Table A.5: pRU Parser Module using the input file size.

Data volume (Mb) Time (s) Speed Mb/s
25 169.92 24.499 1 027.400
25 169.92 24.603 1 023.050
25 169.92 24.473 1 028.490
25 169.92 24.494 1 027.610
25 169.92 24.499 1 027.390
25 169.92 24.471 1 028.580
25 169.92 24.522 1 026.410
25 169.92 24.532 1 025.990
25 169.92 24.918 1 010.130
25 169.92 24.628 1 021.990
25 169.92 24.552 1 025.160
25 169.92 24.469 1 028.640
25 169.92 24.524 1 026.350
25 169.92 24.597 1 023.290
25 169.92 24.468 1 028.700
25 169.92 24.736 1 017.560
25 169.92 24.477 1 028.320
25 169.92 24.838 1 013.370
25 169.92 24.997 1 006.930
25 169.92 24.572 1 024.350
Mean 24.593 1 023.486
Standard deviation 6.467

69

Table A.6: Complete root writer Module using the input file size.

Data volume (Mb) Time (s) Speed Mb/s
17 979.136 60.746 295.972
17 979.136 60.519 297.083
17 979.136 63.265 284.188
17 979.136 61.325 293.176
17 979.136 61.018 294.651
17 979.136 60.840 295.513
17 979.136 61.096 294.277
17 979.136 61.498 292.352
17 979.136 61.130 294.113
17 979.136 61.250 293.536
17 979.136 61.216 293.702
17 979.136 61.774 291.048
17 979.136 60.721 296.093
17 979.136 60.312 298.102
17 979.136 61.034 294.578
17 979.136 61.366 292.981
17 979.136 61.729 291.257
17 979.136 60.171 298.801
17 979.136 63.274 284.148
17 979.136 60.785 295.784
Mean 61.253 293.568
Standard deviation 3.801

Appendix A. Testing Tesults 70

Table A.7: ALPIDE decoder submodule using the input file size.

Data volume (Mb) Time (s) Speed Mb/s
17 979.136 12.711 1 414.410
17 979.136 12.755 1 409.553
17 979.136 12.729 1 412.499
17 979.136 12.738 1 411.412
17 979.136 12.742 1 411.047
17 979.136 12.705 1 415.156
17 979.136 12.739 1 411.368
17 979.136 12.719 1 413.576
17 979.136 12.678 1 418.114
17 979.136 12.733 1 412.055
17 979.136 12.711 1 414.455
17 979.136 12.738 1 411.479
17 979.136 12.720 1 413.465
17 979.136 12.618 1 424.891
17 979.136 12.744 1 410.803
17 979.136 12.732 1 412.100
17 979.136 12.739 1 411.390
17 979.136 12.724 1 412.988
17 979.136 12.769 1 407.986
17 979.136 12.681 1 417.790
Mean 12.721 1 413.327
Standard deviation 3.666

71

Table A.8: pRU Exporter (root tree) submodule using the input file size from the
alpide decoder.

Data volume (Mb) Time (s) Speed Mb/s
17 979.136 46.411 387.391
17 979.136 47.813 376.027
17 979.136 46.207 389.101
17 979.136 47.137 381.425
17 979.136 47.726 376.718
17 979.136 47.191 380.987
17 979.136 46.682 385.140
17 979.136 46.416 387.349
17 979.136 46.896 383.387
17 979.136 46.622 385.633
17 979.136 45.691 393.491
17 979.136 47.217 380.781
17 979.136 46.862 383.660
17 979.136 46.360 387.815
17 979.136 46.134 389.715
17 979.136 46.298 388.333
17 979.136 47.017 382.398
17 979.136 46.306 388.268
17 979.136 45.574 394.506
17 979.136 46.100 390.001
Mean 46.633 385.606
Standard deviation 4.960

