
UNIVERSITY OF BERGEN

DEPARTMENT OF INFORMATICS

ALGORITHMS

Kernelization for Balanced Graph
Clustering

Author: Supervisor:

Andreas STEINVIK Petr GOLOVACH

Master Thesis

September 10, 2020

Abstract

The problems of FACTOR-α BALANCED CLUSTERING and DIFFERENCE-δ BALANCED CLUSTERING

ask whether it is possible to modify a graph such that it becomes a cluster graph where no cluster has a
size larger than a given multiplicative factor α or absolute difference δ relative to any other cluster in the
graph, by doing at most k graph modifications. In this thesis we study the problems with respect to the
graph modification operations Vertex Deletion, Edge Addition and Edge Deletion.

We will show NP-completeness and give polynomial kernels for each version. In the case when edge
addition is the operation allowed, we give a kernel with O(k) vertices, while we give kernels with O(k2)

vertices for edge deletion and edge editing, which is the problem when given the possibility of both
adding and deleting edges. For the case of vertex deletion we give a kernel with O(k2) vertices for the
weighted version and a kernel with O(k4) vertices for the unweighted version. We will also provide a
O(3k · (|V |+ |E|)) time FPT algorithm for vertex deletion.

Acknowledgements

I would like to thank my supervisor, Petr Golovach, for excellent guidance during the work on this thesis.
I would also like to thank my fellow students, and particularly Ole Magnus, Nora and André for all the
long lunches. Finally i would like to thank my family for all the support, and for housing me during the
coronavirus lockdown.

Andreas Steinvik

September 10, 2020

Contents

1 Introduction 1
1.1 Our Results . 3
1.2 Thesis Outline . 6

2 Preliminaries 7
2.1 Set Theory . 7
2.2 Algorithms and Complexity . 7

2.2.1 Computational Problems . 7
2.2.2 Algorithms . 8
2.2.3 Complexity . 8
2.2.4 Kernelization . 9

2.3 Graph Theory . 9
2.3.1 Subgraphs and Connectivity . 10
2.3.2 Graph Editing . 10
2.3.3 Critical Cliques . 10

3 Vertex Deletion 12
3.1 Hardness . 13
3.2 FPT-algorithm for FACTORCVD . 15

3.2.1 Running Time . 17
3.3 Polynomial Kernel for FACTORCVD . 18

3.3.1 Definitions . 18
3.3.2 Reduction Rules . 18
3.3.3 Analysis . 31

3.4 Polynomial Kernel for DIFFERENCECVD . 32
3.4.1 Reduction Rules . 32
3.4.2 Analysis . 34

i

CONTENTS CONTENTS

4 Edge Modification 35
4.1 Problem Statement . 35
4.2 Hardness . 36

4.2.1 Editing and Deletion . 37
4.2.2 Completion . 40

4.3 Polynomial Kernels . 41
4.3.1 FACTORCC . 42
4.3.2 Analysis . 44
4.3.3 DIFFERENCECC . 44
4.3.4 Analysis . 45
4.3.5 FACTORCD . 46
4.3.6 Analysis . 49
4.3.7 DIFFERENCECD . 49
4.3.8 Analysis . 50
4.3.9 FACTORCE . 50
4.3.10 Analysis . 53
4.3.11 DIFFERENCECE . 54
4.3.12 Analysis . 55

5 Open Problems and Future Work 56

ii

Chapter 1
Introduction

In computer science, a clustering problem is the task of grouping the objects of a data set in such a way
that objects are more similar to the other objects in the same cluster than to objects in other clusters. This
similarity can be any metric, and what property we choose to cluster by depends on the data set used.
A simple real life example of a clustering problem is PARTY PLANNING, which is the problem asking
whether given a list of people attending a party and some information on each guest, e.g. their interests or
which other guests they know, is it possible to find a way of grouping people so that all people sitting at
the same table have something in common. An example of a scientific use is the task of finding clusters
in a population based on the similarities and differences in their DNA. Clustering problems similar to
the aforementioned examples occur in many fields of study, ranging from social sciences to biology and
medicine [26].

Clustering problems are not bound to any specific data structure, and can occur in most types of
data structures. In this thesis we will focus on clustering in graphs, an abstract data structure composed
of vertices and edges. The vertices are objects in our data set, for example the guests in our PARTY

PLANNING example. The edges are a relation between vertices, and in our PARTY PLANNING example,
one such relation could be "guests A and B are friends". As a lot of study has been done into the theoretical
properties of graphs, they are a widely used data structure in computer science. There are no single unified
definition into what constitutes a cluster in a graph, with different definitions based on among others the
vertex density of the graph or its connectivity. In this thesis we use the definition of a cluster as a complete

component, which is a component which is also a clique. By this definition, a cluster graph is then a graph
that is a disjoint union of cliques. For a more comprehensive study of different cluster measures, see the
survey by Shaeffer [23].

If the problem is asking "Is this graph a cluster graph?", it is easy to see that this is then quite an easy
problem to decide. One can by checking each vertex and their edges see if for each vertex it has edges to
all other vertices in the same cluster, and no edges to vertices in other clusters. A harder question can be
"how far away from a cluster graph is this graph?". Problems of this type are called modification problems,
and ask whether we by doing some modification operation can alter the graph to become a cluster graph.

1

CHAPTER 1. INTRODUCTION

The types of modification operations we will consider are vertex deletion, edge addition and edge deletion.
Often when working with modification problems, the problems can be stated as modifying a graph to get
a H-free graph where H is a set of forbidden subgraphs. That is, can we modify a graph such that no
member ofH can be found as an induced subgraph. Examples of such problems is the problem of finding
a VERTEX COVER which ask for a minimum set of vertices such that all edges in the graph are incident
to a vertex in the vertex cover, can be restated as what is the minimum number of vertex deletions we
need for the graph to be an edge-free graph. Clustering problems can likewise be restated as modifying
to a P3-free graph, where P3 is a path of 3 vertices.

For modification problems we often look for a minimum number of modifications to reach the prop-
erty. As the problems we will study in this thesis are NP-hard, it is assumed that there does not exist
polynomial algorithms to find an optimal solution. This makes the the framework of parameterized com-

plexity introduced by Downey and Fellows [11] very useful. In parameterized complexity, instead of only
evaluating the running time of an algorithm based on the size of the input graph, we can add one or more
additional parameters. These parameters can be e.g. the number of modifications we need in a solution,
or it can be based on some property of the input. Working with k as the number of modifications we need,
we can rephrase the PARTY PLANNING question to "is it possible to achieve a clustering of the guests by
at most k modifications?".These modifications can in our problems be either that you remove at most k
guests from the guest list, or that you accept at most k unfulfilled relations. That is, for example having
an unknown person at your table, or that you have a friend at another table. The main principle of param-
eterized complexity is that even though the problems we study are hard to solve in the general case, we
try to achieve algorithms which for small values of the parameter does admit fairly efficient algorithms.
As it is assumed that no polynomial time algorithms for solving the problems exist, we will in this thesis
work on finding kernelization algorithms. This is a preprocessing algorithm, which aims to reduce the
input to its hard kernel. For a more formal definition of parameterized complexity, see Chapter 2.

There have been a lot of work done into both finding faster algorithms and better kernelizations for
both the regular graph clustering problem and many different variations. The problem of CLUSTER

VERTEX DELETION is the problem of finding a set of vertices in the graph such that by deleting them
we get a cluster graph. As the property of being a cluster graph is a hereditary property, meaning that
if a graph G has a property, then so does any induced subgraph of G, CLUSTER VERTEX DELETION

was shown to be NP-complete by Lewis and Yannakakis [20] when they showed that all vertex deletion
problems are NP-complete when the desired graph property is non-trivial and hereditary. The first study
of the parameterized complexity of CLUSTER VERTEX DELETION was by Huffner et al. [17], and later
work by Boral et al.[6] have produced an algorithm running in timeO(1.9102k(|V |+ |E|)). The smallest
kernel for CLUSTER VERTEX DELETION is the kernel given by Le et al. [19] which shows that the
problem admit a subquadratic kernel with O(k

5
3) vertices. In the paper by Huffner et al. [17] they also

study two variations of CLUSTER VERTEX DELETION, giving an O(2kk9 + |V | · |E|) algorithm for
WEIGHTED CLUSTER VERTEX DELETION, which is the problem of finding a cluster graph when the
cost of deleting vertices is given by a weight function for each vertex. And a O(2kk6 log k + |V | · |E|)
algorithm for d-CLUSTER VERTEX DELETION, which is the problem of finding a cluster graph with

2

1.1. OUR RESULTS CHAPTER 1. INTRODUCTION

exactly d clusters.
We will also study the problems where we modify edges. When we are allowed to both add and

delete edges, we get the problem CLUSTER EDITING, also called CORRELATION CLUSTERING. The
problem was shown to be NP-complete by several independent people, one such being Shamir et al.[24].
The first results on the parameterized complexity of CLUSTER EDITING were given by Gramm et al [14]
where they gave aO(2.27k+ |V |3) algorithm and a kernel withO(k2) vertices. The fastest algorithm has
since then been improved to O(1.62k + |V |+ |E|) by Böcker [2], and the smallest kernel was provided
by Cao and Chen [7] and gives a kernel with O(2k) vertices. CLUSTER EDITING has also received a
lot of practical attention, especially within the field of bioinformatics. For a more in depth read into
the practical implementations see the survey by Böcker and Baumbach [3]. For the related problem of
CLUSTER COMPLETION, which is the problem where the only allowed operation is adding in edges, we
can easily observe that this problem is polynomial time solvable. To solve CLUSTER COMPLETION we
need to compute the components in the graph, and then add in all edges missing for the graph to become
a cluster graph. The problem of CLUSTER DELETION, where only edge deletions are allowed has not
gotten as much attention as CLUSTER EDITING, but a kernel with O(k3) vertices was given by Gramm
et al. [14] and an algorithm running in time O∗(1.415k) was given by Böcker et al. [4]. For an overview
of what is known about the parameterized complexity of edge modification problems, see the survey by
Crespelle et al.[8].

1.1 Our Results

In this thesis we will look at a version of graph clustering we call FACTOR-α BALANCED CLUSTERING,
where we in addition to looking for a cluster graph have the added constraint that the sizes of each cluster
has to have a size bounded by a multiplicative factor of the sizes of the other clusters. If for example we
have α = 2, no cluster can be more than double the size of any other cluster. For our PARTY PLANNING

problem, this can be seen as a natural extension: for our party we do not want 40 guests at one table,
while the remaining 5 guests are split up into 5 different single tables. By then setting α to a reasonable
value based on our preferences we instead look for a table configuration of more equally sized tables.
We will also provide results for a related version called DIFFERENCE-δ CLUSTERING, where instead of
using an multiplicative factor, we look at the absolute difference between cluster sizes. Note that unlike
for regular cluster graphs, being a Factor-α balanced cluster graph is not a hereditary property. Because
of this we also have to provide proofs for NP-completeness of the vertex deletion versions we will study.

For the problems of FACTOR-α BALANCED CLUSTER VERTEX DELETION (FACTORCVD) and
DIFFERENCE-δ BALANCED CLUSTER VERTEX DELETION (DIFFERENCECVD) we will be studying
both the unweighted and the weighted versions of the problems. In the unweighted version the operation
is vertex deletion, while in the weighted versions we use an operation called weight decreasing. Weight
decreasing works by reducing the weight of a vertex by 1 if its weight is larger than 1, and deleting the
vertex if its weight equals 1. Observe that the unweighted problems are special cases of the weighted
problems where we have the weight of each vertex equaling 1. This property is used to transform an

3

1.1. OUR RESULTS CHAPTER 1. INTRODUCTION

unweighted instance into an instance of the weighted problem. Let α ∈ R be a fixed constant such that
α ≥ 1, and let δ ∈ Z+ be a fixed integer such that δ ≥ 0.

FACTOR-α BALANCED CLUSTER VERTEX DELETION

Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a vertex set X ∈ V such that |X| ≤ k and G − X results in a cluster Graph

(i.e a disjoint union of cliques) where for all components Ci, Cj in G, it holds that
α · |V (Ci)| ≥ |V (Cj)|?

DIFFERENCE-δ BALANCED CLUSTER VERTEX DELETION

Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a vertex set X ∈ V such that |X| ≤ k and G − X results in a cluster graph

(i.e a disjoint union of cliques) where for all components Ci, Cj in G, it holds that
δ + |V (Ci)| ≥ |V (Cj)|?

WEIGHTED FACTOR-α BALANCED CLUSTER VERTEX DELETION

Input: A graph G = (V,E), a budget k ∈ N and a weight function w : V (G)→ N
Question: Is it possible to obtain a cluster graph G′ from G by at most k weight decrease oper-

ations such that for all components Ci, Cj in G, it holds that α ·
∑
v∈V (Ci)

w(v) ≥∑
v∈V (Cj)

w(v)?

WEIGHTED DIFFERENCE-δ BALANCED CLUSTER VERTEX DELETION

Input: A graph G = (V,E), a budget k ∈ N and a weight function w : V (G)→ N
Question: Is it possible to obtain a cluster graph G′ from G by at most k weight decrease oper-

ations such that for all components Ci, Cj in G, it holds that δ +
∑
v∈V (Ci)

w(v) ≥∑
v∈V (Cj)

w(v)?

In this thesis we will show that the VERTEX DELETION problems are NP-complete, and then give a
O(3k(|V | + |E|)) FPT-algorithm solving the problems. We will also give a polynomial kernel for the
weighted problems with O(k2) vertices and with each vertex having a weight bounded by O(k2). We
also show that this kernel can be used to obtain a kernel with O(k4) vertices for the unweighted version.
By combining the weighted kernel and the FPT-algorithm we are able to provide an algorithm solving the
problems in time O(3kk4 + |V |2(|V |+ |E|)).

For edge modification, we will study the three different variations of BALANCED CLUSTER COMPLE-
TION, which is the problem of finding a balanced cluster graph by adding in edges, BALANCED CLUSTER

DELETION which asks whether it is possible to find a balanced cluster graph by deleting edges, and BAL-
ANCED CLUSTER EDITING which is the problem of finding a balanced cluster graph when we have the
option to both delete and add in edges. As we will study both the FACTOR-α and DIFFERENCE-δ versions
of each problem we get a total of six different edge modification problems. Let α ∈ R be a fixed constant
such that α ≥ 1, and let δ ∈ Z+ be a fixed integer such that δ ≥ 0.

4

1.1. OUR RESULTS CHAPTER 1. INTRODUCTION

FACTOR-α BALANCED CLUSTER COMPLETION (FACTORCC)
Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆

(
V (G)

2

)
\ E(G) such that |A| ≤ k and the graph G + A is a cluster

graph (i.e a disjoint union of cliques) where for all components Ci, Cj in G, it holds
that α · |V (Ci)| ≥ |V (Cj)|?

DIFFERENCE-δ BALANCED CLUSTER COMPLETION (DIFFERENCECC)
Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆

(
V (G)

2

)
\ E(G) such that |A| ≤ k and the graph G + A is a cluster

graph where for all components Ci, Cj in G, it holds that δ + |V (Ci)| ≥ |V (Cj)|?

FACTOR-α BALANCED CLUSTER DELETION (FACTORCD)
Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆ E(G) such that |A| ≤ k and the graph G − A is a cluster graph

(i.e a disjoint union of cliques) where for all components Ci, Cj in G, it holds that
α · |V (Ci)| ≥ |V (Cj)|?

DIFFERENCE-δ BALANCED CLUSTER DELETION (DIFFERENCECD)
Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆ E(G) such that |A| ≤ k and the graph G − A is a cluster graph

where for all components Ci, Cj in G, it holds that δ + |V (Ci)| ≥ |V (Cj)|?

FACTOR-α BALANCED CLUSTER EDITING (FACTORCE)
Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆

(
V (G)

2

)
such that |A| ≤ k and the graph G4A is a cluster graph

where for all components Ci, Cj in G, it holds that α · |V (Ci)| ≥ |V (Cj)|?

DIFFERENCE-δ BALANCED CLUSTER EDITING (DIFFERENCECE)
Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆

(
V (G)

2

)
such that |A| ≤ k and the graph G4A is a cluster graph

where for all components Ci, Cj in G, it holds that δ + |V (Ci)| ≥ |V (Cj)|?

Unlike for CLUSTER COMPLETION, which is polynomial time solvable, we will in this thesis show
that FACTOR-α BALANCED CLUSTER COMPLETION and its absolute difference version are NP-complete
for any fixed α or δ respectively. We will also show NP-completeness for the other edge modification
problems.

We will provide a kernel with O(k) vertices for FACTORCC and DIFFERENCECD, and give kernels
with O(k2) vertices for the problems of EDGE DELETION and EDGE EDITING.

5

1.2. THESIS OUTLINE CHAPTER 1. INTRODUCTION

1.2 Thesis Outline

In Chapter 2 we will provide definitions for notation and concepts used in this thesis. In Chapter 3 we
will study the VERTEX DELETION problems. There we will start by proving NP-completeness, and then
give an algorithm and a kernel. In Chapter 4 we will give proofs of NP-hardness and kernels for the edge
modification problems. Lastly, in Chapter 5 we will present some open problems and related problems
for future work.

6

Chapter 2
Preliminaries

2.1 Set Theory

A set is a collection of distinct objects where the ordering of the objects does not matter. Named set
will have names in capital letters e.g. A or B. We will be using the common notation for common set
operations and properties as membership (∈, /∈), subsets (⊆,⊂), union and intersection (∪,∩), difference

(\) and cardinality or size (|A|). We will also use the notation
(
A
2

)
which gives a set of all distinct pairs

of elements from A. The symmetric difference 4 of two sets A and B is defined as the union minus the
intersection, A4B = (A ∪B) \ (A ∩B).

2.2 Algorithms and Complexity

In this thesis we will work with parameterized problems, and finding efficient ways to solve them. To do
this we first have to define what a decision problem is, give some formal definitions of what a parameter-

ized algorithm is, and how we evaluate its complexity. We will also show how to evaluate the efficiency
of an algorithm by introducing big-O notation. Lastly we will define what a kernelization algorithm is.

2.2.1 Computational Problems

An alphabet Σ is a fixed, finite set of symbols, and a string is a sequence of symbols from Σ. We denote
all possible strings over Σ by Σ∗. A language L over Σ is some subset of strings L ⊆ Σ∗.

A decision problem, is a language L ⊆ Σ∗ where for a string w ∈ Σ∗, if w ∈ L we say that w is ,
and likewise if w /∈ L we say that it is a NO-instance. A parameterized decision problem is a language
L ⊆ Σ∗ × N where for an instance (x, k) ∈ L, x is some string over Σ and k is the parameter.

7

2.2. ALGORITHMS AND COMPLEXITY CHAPTER 2. PRELIMINARIES

2.2.2 Algorithms

For this thesis it is sufficient to go with an informal definition of an algorithm as a finite set of rigorous
instructions for how to solve a problem, but more formally an algorithm can be expressed by the math-
ematical concept of Turing machines. For the more formal definitions see the book by Sipser [25]. A
parameterized decision algorithm accept as input an instance (x, k) ∈ Σ∗ × N and upon halting returns
whether the instance is a YES-instance if (x, k) ∈ L or a NO-instance if it is not.

2.2.3 Complexity

An informal definition of the complexity of an algorithm is that it is how much time and space it requires
to solve a problem of a given size. In this thesis we will mostly talk about time complexity, the running
time of an algorithm in the number of steps it takes to solve an instance. As this can vary between
instances of same size we usually talk about the worst case running time, which is the maximum number
of steps needed to solve instances of a given size. We describe running time as a function f(n) where
n is the size of our instance, and for a parameterized problem we also include the parameter into the
function to get f(n, k). Often it is not necessary to have the exact function f(n), and more useful to talk
about an upper bound to the running time. For this we use big-O notation, which for some function f(n)

is defined as: If the function f(n) ≤ c · g(n) for a sufficiently big n and some constant c, we say that
f(n) = O(g(n)).

Using the time complexity we can categorize problems into classes by how difficult they are to solve.
The classes most relevant for this thesis are the classes P , NP and FPT . P is the class of problems
which can be decided in polynomial time. That is, there exist an algorithm which decides the problems
with running time bounded by some function f(n) = O(nc) where c is a constant. NP is the class
of problems where given an instance I and a certificate S ∈ Σ∗, a string showing how this is an YES-
instance, it can be verified in polynomial time whether it is correct. As we see by the definitions of P and
NP we have the relation P ⊆ NP , but whether P = NP or not is the famous P vs. NP problem [25].

The class FPT is the class of parameterized problems which can be solved in timeO(g(k) ·nc) where
c is a constant and g(k) is a computable function only dependent on the parameter k. The parameter k
can be of many different types, like the size of the solution or some bound on a property of the input
x. The motivation behind FPT is that for problems in FPT, even though they are not polynomial time
solvable, given a small parameter k they still can have an efficient algorithm. Similar to the relation
between P and NP, there is also a hierarchy of classes for parameterized problems, the W-hierarchy,
where W [0] ⊆ W [1] ⊆ W [2] ⊆ ... ⊆ XP . The class of FPT is equal to the class W[0] and all problems
that are complete for some class W[i] where i > 0 are believed to not have FPT algorithms. An example
of such a problem is the W[1]-complete problem CLIQUE of finding a clique of size k in a graph. For a
more thorough read on FPT and parameterized algorithms see the book by Cygan et. al. [9].

8

2.3. GRAPH THEORY CHAPTER 2. PRELIMINARIES

2.2.4 Kernelization

A related concept to a FPT algorithm is a kernelization algorithm. This is a preprocessing algorithm

which takes an instance (x, k) of some problem as input and in time polynomial in |(x, k)| outputs an
instance (x′, k′) where |x′|, k′ ≤ g(k) for some computable function g(k) where (x′, k′) is a YES-
instance if and only if (x, k) is a YES-instance. The reduced instance is often referred to as the kernel

of the instance. The relation between kernelization and FPT is easy to see, as the kernelization algorithm

runs in polynomial time and outputs a kernel bounded by some g(k), it can then be combined with a
superpolynomial decision algorithm to give an answer in FPT time. In this thesis we will also use the
notion of a bikernel [1] , also called a generalized kernel [5]. A bikernel is an algorithm which takes as
input an instance (x, k) of a language L, and in time polynomial in |(x, k)| returns an instance (x′, k′) of
another language L′, such that |x′|, k′ ≤ f(k) and (x, k) ∈ L if and only if (x′, k′) ∈ L′. Notice that this
is a generalization of a kernel, since for a kernel we have that L = L′.

Notice that although all problems in FPT have kernels, under some computational complexity as-
sumptions not all problems admit polynomial kernels. One such example is the problem of k-LONGEST

PATH. This asks whether a graph has a path of length k, and it is believed that the optimal kernels for this
problem has a size exponential in k.

The most common strategy to create kernelization algorithms is by the use of reduction rules. A
reduction rule is a function f : Σ∗ × N → Σ∗ × N which maps an instance (x, k) to an equivalent
instance (x′, k′) in polynomial time and is safe. That is, the reduced instance (x′, k′) is a YES-instance
if and only if (x, k) is a YES-instance. Often a kernelization algorithm is a sequence of such reduction

rules, applied to the problem instance in order and often repeated until no rule applies. The running
time such algorithms is then bounded by the running time of each rule, and how many times they can be
applied in worst case. For a deeper read into the subject kernelization we refer to the book by Fomin et.
al. [12]

2.3 Graph Theory

A graph is a tuple G = (V,E) where V is a set of vertices, and E ⊆
(
V
2

)
is a set of edges. An edge

is an unordered pair of vertices e = {u, v} ∈ E where u, v ∈ V . We denote the set of vertices in a
graph G as V (G) and likewise the set of edges as E(G). In this thesis we will only consider undirected

graphs, which is graphs where the edges are symmetric, i.e the edges {u, v} and {v, u} are the same.
We say that two vertices u and v are adjacent if there exist an edge {u, v} ∈ E, and an edge e ∈ E is
incident to a vertex w if w ∈ e. A neighbour of vertex u is the same as a vertex adjacent to u. The
open neighbourhood of u denoted as N(u) is the subset of vertices of V (G) which are neighbours of the
vertex u , while the closed neighbourhood N [u] of u is defined as N [u] = N(u) ∪ {u}. If two vertices
have equal closed neighbourhoods, that is N [u] = N [v], we say that they are true twins.

The number of edges incident to a vertex u is called the degree of u and is denoted deg(u). If a vertex
u has degree 0 we say that it is a isolated vertex. We will mostly follow the notation of Diestel [10] and
recommend this book for a more in-depth study of graphs.

9

2.3. GRAPH THEORY CHAPTER 2. PRELIMINARIES

2.3.1 Subgraphs and Connectivity

A subgraph G′ = (V ′, E′) of a graph G = (V,E) is a graph where V ′ ⊆ V and E′ ⊆
(
V ′

2

)
∩ E. And

the special case where E′ contains all edges {v, u} ∈ E if u, v ∈ V ′,is an induced subgraph. For a set
of vertices U ⊆ V (G), the subgraph it induces in G is denoted as G[U].

If for a sequence of verticesU = {u0, u1, ..., uk} ⊆ V (G) there exist a set of edgesE′ = {{u0, u1}, {u1, u2}..., {uk−1, uk}} ⊆
E(G) we say that there exist a path between the end vertices u0 and uk. An induced path of length k in
G, denoted Pk is an induced subgraph of k vertices forming a path of k vertices and k− 1 edges. A cycle

is a sequence of vertices U = {u0, u1, ..., uk} such that there is a path from u0 to uk, and there also exist
an edge {uk, u0} ∈ E.

If for two vertices x, y ∈ V (G) there exist a path between them, we say that x and y are connected,
and if this is true for any pair of vertices in V (G) we say the graphG is connected. An inclusion maximal
connected subgraph of G is a component, and note that an isolated vertex is also a component. If for a
graph G = (V,E) all vertices in V are pairwise adjacent we say that G is a complete graph, and if a
component in G is a complete graph, we say that the component is a complete component. If for a graph
G all components are complete components we say that the graph is a cluster graph. Another and equal
definition of a cluster graph is a P3-free graph, i.e. a graph without induced paths of length 3. In this
thesis we will use the term balanced cluster graph to mean a cluster graph in which each component is
bounded in size relative to all other components, but how it is bounded is either not relevant or obvious
from the context.

A clique is a subset of vertices C ⊆ V (G) such that the induced subgraph G[C] is a complete graph.

2.3.2 Graph Editing

If G = (V,E) is a graph and U ⊆ V (G), then the deletion G−U = G′ gives the graph G′ = G[V (G) \
U]. Deletion of a setA ⊆ E(G) is defined asG−A = G′ whereG′ = (V (G), E(G)\A). The operations
will mostly be referred to as vertex deletions and edge deletions. The operation of edge addition is
defined as G + A = G′ where A ⊆

(
V (G)

2

)
\ E(G) gives the new graph G′ = (V (G), E(G) ∪ A).

The combination of both adding edges and removing a set of edges G4A = G′ where A ⊆
(
V (G)

2

)
is

the symmetric difference of E(G) and A, gives the graph G′ = (V (G), E(G)4A). The graph G′ then
contains all edges which is in either E(G) or A, but not in both.

When adding edges, we sometimes need make the complete join of two complete components. This
is the operation of adding all |V (C1)| · |V (C2)| edges between the vertices in V (C1) and V (C2). After
this addition the new component is a complete component.

2.3.3 Critical Cliques

We will use the concept of a critical clique K and the corresponding critical clique graph K as first
introduced by Lin [21] and later used by Guo [15] to create a 4k kernel for CLUSTER EDITING.

A critical clique K in G is an inclusion maximal clique where all vertices in K have the same closed
neighbourhood. That is, if u and v is in K, then they are true twins. As all vertices in a given critical

10

2.3. GRAPH THEORY CHAPTER 2. PRELIMINARIES

clique has the same neighbours, if the vertices of two critical cliques are adjacent, we say that the critical
cliques are adjacent. Using these properties we can build a critical clique graph K = (VK, EK), where
VK is the set of critical cliques of G, and the edges in EK are between adjacent critical cliques. Two
critical cliques are adjacent if for all u, v ∈ V (G), if u is a member of the critical clique Ki and v is a
member of a different critical clique Kj and {u, v} ∈ E(G) then in the critical clique graph we have the
edge {Ki,Kj} ∈ EK .

The critical clique for a graph G can be constructed in time O(|V | + |E|) [16] by creating a lexico-
graphical ordering of vertices based on their closed neighbourhoods. The critical cliques is then the sets
of vertices in the same class.

We will use the notation K(v) to describe the critical clique containing v, and V (K) to describe
the vertices contained in K. Open and closed neighbourhoods in K are written as NK(K) and NK[K]

respectively. Observe that an isolated critical clique in K corresponds to a complete component in G.

11

Chapter 3
Vertex Deletion

In this chapter we will study the problem of deleting vertices to obtain a cluster graph with cluster sizes
balanced by either a multiplicative factor α, or the absolute difference δ. The two problems we will
study are FACTOR-α BALANCED CLUSTER VERTEX DELETION (FACTORCVD) and DIFFERENCE-δ
BALANCED CLUSTER VERTEX DELETION (DIFFERENCECVD). First we will present proofs for NP-
completeness of each problem, then we will give an FPT-algorithm, and lastly we will give a polynomial
kernel for the problems. In creating a polynomial kernel for these problems we will use the weighted
version, the case when vertices can have an integer weight. Note that the unweighted case is a special
case of the weighted version where all weights are equal to 1.

For clarity we will restate the problems here as earlier stated in the introduction. Let α ∈ R be a fixed
constant such that α ≥ 1, and let δ ∈ Z+ be a fixed integer such that δ ≥ 0.

FACTOR-α BALANCED CLUSTER VERTEX DELETION

Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a vertex set X ∈ V such that |X| ≤ k and G−X results in a balanced cluster

graph (i.e a disjoint union of cliques) where for all components Ci, Cj in G, it holds
that α · |V (Ci)| ≥ |V (Cj)|?

DIFFERENCE-δ BALANCED CLUSTER VERTEX DELETION

Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a vertex set X ∈ V such that |X| ≤ k and G−X results in a balanced cluster

graph (i.e a disjoint union of cliques) where for all components Ci, Cj in G, it holds
that δ + |V (Ci)| ≥ |V (Cj)|?

While for the unweighted versions FACTORCVD and DIFFERENCECVD the editing operation used is
deleting vertices, for the weighted problems the equivalent operation is weight decreasing. This operation
decreases the weight by one if the weight of a vertex is greater than 1, and deletes the vertex if the weight
is equal to 1.

12

3.1. HARDNESS CHAPTER 3. VERTEX DELETION

Definition 3.0.1. The weight decrease operation is defined as: For a vertex u ∈ V (G), if w(u) > 1 :

w(u) = w(u)− 1 else G = G− {u}

WEIGHTED FACTOR-α BALANCED CLUSTER VERTEX DELETION

Input: A graph G = (V,E), a budget k ∈ N and a weight function w : V (G)→ N
Question: Is it possible to obtain a cluster graph G′ from G by at most k weight decrease oper-

ations such that for all components Ci, Cj in G, it holds that α ·
∑
v∈V (Ci)

w(v) ≥∑
v∈V (Cj)

w(v)?

WEIGHTED DIFFERENCE-δ BALANCED CLUSTER VERTEX DELETION

Input: A graph G = (V,E), a budget k ∈ N and a weight function w : V (G)→ N
Question: Is it possible to obtain a cluster graph G′ from G by at most k weight decrease oper-

ations such that for all components Ci, Cj in G, it holds that δ +
∑
v∈V (Ci)

w(v) ≥∑
v∈V (Cj)

w(v)?

3.1 Hardness

In this section we will show that FACTORCVD and DIFFERENCECVD are NP-complete for every fixed
α ≥ 1 and δ ≥ 0 respectively. To do this we have to show that they are members of the class NP, and
that they are NP-hard. To show NP-hardness we will use a reduction from the problem VERTEX COVER,
which is known to be NP-complete [13].

VERTEX COVER

Input: A graph G = (V,E) and an integer k
Question: Does there exist a set X ⊆ V (G) of size at most k such that G−X has no edges?

Lemma 3.1.1. FACTORCVD and DIFFERENCECVD are members of NP.

Proof. To show membership in NP we will show that given a instance I = (G, k) of either FACTORCVD
or DIFFERENCECVD and a certificate S ⊆ V (G), which is a set of vertices which when deleted gives
a balanced cluster graph, it is possible in polynomial time to verify whether I is a YES-instance. First
verify that |S| ≤ k. Then, create the graph G′ = G−S and check if G′ is P3-free. Lastly, check for each
pair of components Ci, Cj if the sizes are within |Ci| ≤ α · |Cj | or |Ci| ≤ δ+ |Cj | for FACTORCVD and
DIFFERENCECVD respectively.
As all of these operations are clearly polynomial, FACTORCVD and DIFFERENCECVD are in NP.

Lemma 3.1.2. FACTORCVD and DIFFERENCECVD are NP-hard for every fixed α ≥ 1 and δ ≥ 0

respectively.

Proof. We prove NP-hardness by a reduction from VERTEX COVER, and since both the reductions from
VERTEX COVER to FACTORCVD and DIFFERENCECVD are almost identical, we will create a dummy
variable s which will then take on different values for each problem, and by this show that the reduction

13

3.1. HARDNESS CHAPTER 3. VERTEX DELETION

works for both problems. Given an instance (G′, k) of VERTEX COVER and let s = bαc − 1 for FAC-
TORCVD or s = δ for DIFFERENCECVD, we build a graph G = (V,E):

First we construct a copy of G′ to G. Then, for each vertex u ∈ V (G′) we add a complete component
Qu of size s. Note that for the special cases of when α < 2 and δ = 0, s = 0 so we add nothing.
Each vertex of these complete components are then connected to the corresponding vertex u ∈ V (G′) by
adding edges between u and each vertex v ∈ Qu, creating cliques of size s+ 1. Lastly we add a set I of
k + 1 isolated vertices to G. We now have to prove that there exists a solution to FACTORCVD or DIF-
FERENCECVD of instance (G, k) if and only if there is a solution of VERTEX COVER of instance (G′, k).

Claim 3.1.3. (⇒) If the set C ⊆ V (G′) is a vertex cover of G′ of size at most k, then C is also a solution

to FACTORCVD and DIFFERENCECVD of graph G.

Each clique of size s is either adjacent to a vertex in C, or adjacent to a vertex in V (G′) \ C. In the
first case, it is now obviously a component with size s. In the latter case, it is now a component of size
s + 1, since E(G′) = ∅ follows from the definition of VERTEX COVER. To check for size balance, we
see that the isolated vertices in I have not been touched, so the smallest components have size 1. The
largest component has size at most s + 1, which then for the two versions of the problems is within the
bound of s+ 1 = bαc ≤ α · 1 or s+ 1 = δ + 1.

Claim 3.1.4. (⇐) If the set A ⊆ V (G) is a inclusion minimal solution set to FACTORCVD or DIFFER-
ENCECVD of G we will show that it can be used to obtain a solution A′ to VERTEX COVER in G′ such

that |A| = |A′|.

As |I| > k, not all vertices of I can be a member of A. This implies that there is a set A′ = A \ I
which is a solution if A is a solution. Further, since for each vertex u ∈ V (G′) the graph induced by
Qu ∪ {u} is a complete graph, or if s = 0 it is only a single vertex u, all P3s in G has to contain at least
two members not inQu. If vertex v ∈ Qu is inA, then there is an equivalent solutionA′ = A\{v}∪{u}
where u ∈ V (G′) ∩ N(v). This is because all P3s that the vertex v is a member of goes through its
neighbour u, and also all P3 that N(v) is part of goes through u. The size of the complete component
containing v can increase as a result of this substitution, but as |Qu| = s and the smallest complete
component is of size 1, the size constraint is satisfied.

For the case of s = 0, all P3s in G are contained in G′ by default, and by deleting A what is left
are isolated vertices in V (G′) ∪ I . This is true because having a remaining edge in E(G′) would create
components of size 2, not satisfying the size requirement.

After this substitution A ⊆ V (G′), and since an edge {u, v} ∈ E(G′) would induce a P3 with
members of both Qu and Qv , no such edges should exist. This implies that A is a vertex cover of graph
G′ with |A| ≤ k.

14

3.2. FPT-ALGORITHM FOR FACTORCVD CHAPTER 3. VERTEX DELETION

Theorem 3.1.5. FACTOR-α BALANCED CLUSTER VERTEX DELETION and DIFFERENCE-δ BALANCED

CLUSTER VERTEX DELETION are NP-Complete for every fixed α or δ.

Proof. As we now have proved that FACTORCVD and DIFFERENCECVD are both in NP by Lemma
3.1.1 and are NP-hard by Lemma 3.1.2 They are both NP-Complete.

To show hardness of the weighted variations we use that the unweighted version is a special case of
the weighted.

Theorem 3.1.6. WEIGHTED FACTOR-α BALANCED CLUSTER VERTEX DELETION and WEIGHTED

DIFFERENCE-δ BALANCED CLUSTER VERTEX DELETION are NP-Complete for every fixed α or δ.

Proof. As we now have proved that FACTORCVD and DIFFERENCECVD are both NP-Complete, notice
that they are equivalent with the weighted instance where for all u ∈ V (G), w(u) = 1. This shows that
that the weighted versions are also NP-complete.

3.2 FPT-algorithm for FACTORCVD

We will now present a branching algorithm for WEIGHTED FACTORCVD. The algorithm uses the obser-
vation that a cluster graph is a P3-free graph, i.e. without induced paths of length 3, by finding a P3 and
branching on deleting each of the three vertices. It repeats this until the graph is a cluster graph, and then
computes the weight of all components and sorts them by increasing weight. Finding a set of components
to delete to get to a balanced cluster graph is then done by finding a sequence in the list which upholds
the constraints. The steps of the algorithm will be presented as a set of rules to apply until they are no
longer possible to apply.

This algorithm can also easily be modified to work for DIFFERENCECVD, by in Step 4 instead
of looking for an upper bound of some α times the lower bound, the upper bound is some absolute
value greater than the lower bound. For this algorithm to work for the unweighted versions of DIF-
FERENCECVD or FACTORCVD, we use the property that an unweighted instance is a special case of a
weighted instance where all weights are set to 1.

Step 1. Given an instance (G, k), find a P3 in G, and for each of the vertices {u, v, w} ∈ V (G) in the
P3, branch into the 3 instances (G− {u}, k−w(u)),(G− {v}, k−w(v)) and (G− {w}, k−w(w)). If
k < 0 return NO.

Lemma 3.2.1. Step 1 is safe and can be done in time O(3k · (|V |+ |E|)).

Proof. In one direction, it is obvious that if either (G − {u}, k − w(u)),(G − {v}, k − w(v)) or (G −
{w}, k − w(w)) are a YES-instance, then (G, k) is also a YES-instance.

For the other direction, to create a P3-free graph we have to remove at least 1 vertex from each P3.
If {u, v, w} induces a P3, one of them has to be removed. As the algorithm tries all three possibilities, if
(G, k) is a YES-instance, at least one of (G−{u}, k−w(u)),(G−{v}, k−w(v)) or (G−{w}, k−w(w))

has to be a YES-instance.

15

3.2. FPT-ALGORITHM FOR FACTORCVD CHAPTER 3. VERTEX DELETION

Finding an induced P3 can be done in time O(|V |+ |E|) by DFS. For each component in G, we run
DFS, and for each visited vertex we ensure that it is in a clique with all marked vertices. If we find a vertex
u such that its set of visited neighbours is smaller than the set of visited vertices in the component, we
have found a P3. Finding the vertex v which is not a neighbour of u can be done by comparing the visited
vertices with the vertices adjacent to u. As we decrease k in all branches the height of the branching tree
is at most k, and the total number of nodes in the tree is 3k. The total running time of the branching step
is then O(3k · (|V |+ |E|)).

As we now know that each component is a complete graph, we can compute the total weight of each
component and create a list M of the weights of all components. The total weight is the sum of the
weights of all vertices in a component.

We now introduce the operation of weight decreasing in lists which is defined in Definition 3.2.1. By
using this we can change the problem into finding a set of elements in M such that by at most k weight
decreases each element in the list is either 0, or satisfies the property that for any two elements M [i]

and M [j] it holds that α ·M [i] ≥ M [j] for FACTORCVD or δ + M [i] ≥ M [j] for DIFFERENCECVD.
Observe that as each element in M corresponds to a component in G, the size of M is bounded by |V |.

Definition 3.2.1. The weight decrease operation for elements in a list is defined as: For a list M with
elements M [i] where 0 ≤ i < |M |, if M [i] > 0 then decreasing the weight gives M [i] = M [i]− 1.

Step 2. Compute the weight of each component, and add this to a list M . Sort M so that weights are in
increasing order.

Lemma 3.2.2. Step 2 can be done in time O(|V |).

Proof. Computing the weights of all components can be done in time O(|V |). As the number of compo-
nents are at most |V |, and the value of each element is also bounded by |V |, sorting by bucket sort can be
done in timeO(|V |). As all operations are linear, this gives a total running time bounded byO(|V |).

As the list is now sorted, a solution will be to decrease some amount of the smallest elements down to
zero, and reduce the value of some amount of the largest elements, so that the remaining elements form a
consecutive sequence in the list. To make the search for this subsequence of M easier, we create the two
auxiliary lists S and L, such that S[i] is the sum of all elements from M [0] to M [i − 1] and L[i] is the
sum of the absolute difference ofM [i] and each element fromM [i+1] to the end of the list. The element
S[i] can be understood as "how much has to be deleted for M [i] to be the smallest element in M", and
L[i] is the cost of reducing all elements larger than M [i] down to the value of of M [i]. As M is sorted in
increasing order it holds that S[i] ≤ S[i+ 1] and L[i] ≥ L[i+ 1].

Step 3. Create list S and L such that S[i] =
∑i−1
j=0M [j] is the sum of all elements smaller that M [i] and

L[i] =
∑|M |−1
j=i+1 M [j]−M [i] is the sum the difference of M [i] and all elements after M [i] in the list.

Lemma 3.2.3. Step 3 can be done in time O(|V |).

Proof. As |M | ≤ |V |, creating each list S and L can be done in timeO(|V |) as S[i] = S[i−1]+M [i−1]

and L[i] = L[i+ 1] + (M [i+ 1]−M [i]) · (|M | − 1− i) and S[0] = 0, L[|M | − 1] = 0

16

3.2. FPT-ALGORITHM FOR FACTORCVD CHAPTER 3. VERTEX DELETION

Now we use a version of the sliding window technique to find a sequence which upholds the con-
straints. For each step 0 ≤ i < |M | we assume that element M [i] is the smallest in the sequence and
everything in M [j] where j < i has to be deleted. To simplify reading, we use the value MAX to mean
MAX = bα ·M [i]c for FACTORCVD or MAX = δ+M [i] for DIFFERENCECVD. As we do not know
the length of the sequence at each step, we have to search from the last value of x′ to find the new M [x]

where x > x′ such that M [x] ≤ MAX < M [x+ 1]. When this value M [x] is found a lookup of S and
L is enough to check if this is a valid solution.

Step 4. For each value 0 ≤ i < |M |:
If S[i] > k, then return NO.
Find x such that M [x] ≤MAX < M [x+ 1].
Check if S[i] + (L[x+ 1] + (M [x+ 1]−MAX) · (|M | − 1− i)) ≤ k and return YES if it holds.
If this completes to i = |M | − 1 without finding a valid solution, then return NO.

Lemma 3.2.4. Step 4 is safe and can be done in time O(|V |) .

Proof. This uses the fact that a cluster graph satisfying the size constraint has to have one of the original
components as its smallest element. Assume Cmin is the smallest component. By only deleting some of
its vertices, it is now a smaller component, and the budget is smaller. If the instance did not satisfy the
size constraint before, it does not do that now either. Therefore, either Cmin is the smallest component,
or it has to be deleted entirely.

As the branching step of the algorithm tries all possible configurations of removing all P3s, it will
clearly always find a valid solution if there is one, or conclude that there is no solution if it has checked
all configurations. As all components greater than the size constraint has to be decreased, we see that the
optimal decrease is to make them all of size bα · Cminc or δ + Cmin.

For each value of i we have to find the largest component which satisfies the size constraint. As this
value is greater than the previous value, the pointer indicating the largest value has to only search in one
direction. A lookup of S and L to find how much has to be deleted for this particular solution is done in
constant time. As i ≤ |M | ≤ |V | the total running time is O(|V |).

3.2.1 Running Time

Theorem 3.2.5. FACTORCVD, DIFFERENCECVD and WEIGHTED FACTORCVD are solvable in time

O(3k · (|V |+ |E|)).

Proof. As the safeness of each step is shown by Lemmas 3.2.1 to 3.2.4, the only thing remaining is to
show running time.

The total running time for the branching step is O(3k · (|V |+ |E|)). For each of 3k the leaves of the
branching tree we have to execute the steps 2 to 4. All of these are bounded byO(|V |). The total running
time is therefore bounded by O(3k · (|V |+ |E|)).

17

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

3.3 Polynomial Kernel for FACTORCVD

In this chapter we will first give a kernel for the problem of WEIGHTED FACTORCVD. The kernel is split
into two parts, with the first part giving a polynomial bound on the number of vertices inG, and the second
part bounds the weight of each vertex by a function g(k). The kernel for WEIGHTED FACTORCVD can
then be used as a bikernel for FACTORCVD by giving each vertex in an instance of FACTORCVD a
weight of 1. We will also discuss how the results from this kernel can be used to transform a reduced
instance of WEIGHTED FACTORCVD back into a reduced instance of FACTORCVD.

3.3.1 Definitions

We will now give some definitions of notation and operations used in the kernel.

Definition 3.3.1. For the sum of weights of a set A of vertices we will overload the notation by giving
w() different meaning for application on vertices and sets of vertices. For a set A of vertices, w(A) is
defined as the sum of the weights of all vertices in A. That is, w(A) =

∑
v∈A w(v). This will mostly be

used in the sense of the total weight of a closed neighbourhood w(N [v]), as this is an upper limit on the
weight of a clique where v is a member.

Definition 3.3.2. For a YES-instance (G, k), a solution is a triple A = (A1, A2, dec), where A1 ⊆ V (G)

is a set of weighted vertices which has to be deleted from G. A2 ⊆ V (G) is a set of weighted vertices
where the weight has to be decreased and dec(u) is a function giving the amount of weight decreasing
needed for each vertex in A2. The total weight of a solution w(A) = w(A1) +

∑
u∈A2

dec(u) is the
total weight of the deleted vertices plus the sum of all weights decreased in A2 by dec. For a solution to
be valid it has to have w(A) ≤ k and G − A is a solved instance. That is, G − A is P3-free and also
a balanced cluster graph. When using the notation G − A here we use it as a combination of the two
operations G−A1 and w(u) = w(u)− dec(u) for all vertices u ∈ A2.

Definition 3.3.3. In the trivial YES-instance (G, k), let V (G) = {u}, E(G) = ∅, k = 0.

Definition 3.3.4. In the trivial NO-instance (G, k), let V (G) = {u, v, w}, E(G) = {{u, v}{v, w}}, k =

0.

3.3.2 Reduction Rules

The reduction rules of this kernel takes an instance of WEIGHTED FACTORCVD as input, and outputs
a reduced instance of WEIGHTED FACTORCVD. For an instance of FACTORCVD, each vertex has to
be given weight of 1. The reduction rules will be applied exhaustively, by always applying the lowest
numbered rule which can be applied. An exception to this is in the bounding of weights, where there are
multiple rules concerned with bounding weights, but if they are already bounded we can skip to the last
reduction rule.

Reduction Rule 1. If k < 0, then return a trivial NO-instance.

18

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

If the parameter k is smaller than α+1
α−1 , then the instance is solvable in polynomial time. We therefore

use the FPT-algorithm to solve the instance and return either YES-instance or NO-instance.

Reduction Rule 2. If α > 1 and k ≤ α+1
α−1 , then solve the instance using the algorithm provided in

section 3.2, and return either a trivial YES-instance or NO-instance.

By Theorem 3.2.5 this is safe and runs in time O(3
α+1
α−1 · (|V |+ |E|)).

We will now employ the marking procedure given by Le et al. [19]. It uses the observation that the
problem of CLUSTER VERTEX DELETION has a trivial 3-approximation to find an approximated solution
S of size at most 3k. This is done by finding 3 vertices u, v, w ∈ V (G) which induces a P3 in G and
adding them to the set S. This operation is repeated until G− S is P3-free, and we have the set S which
we know is at most 3 times an optimal solution.

Reduction Rule 3. If |S| > 3k, then return the trivial NO-instance.

Lemma 3.3.1. Reduction Rule 3 is safe and can be applied in time O(|V | · |E|).

Proof. As S is comprised of more than k P3s, and at least one vertex of each induced P3 has to be deleted,
there can be no solution S′ of weight at most k.

Finding all P3s in G can be done in time O(|V | · |E|) as shown by Huffner et al. [17]. This is done
by for each vertex u ∈ V (G), finding the P3s where u has degree 2. To do this, for each pair of vertices
v, w ∈ N(u), check if there exist an edge {v, w} in E(G). As checking if an edge exist is O(1), and for
each vertex u we check forO(deg(u)2) edges, for the entire graphG this is bounded byO(|V | · |E|).

The marking procedure from [19] runs by for each vertex s ∈ S, marking edges in G− S by adding
them to the set mark(s). It does this by finding an edge {u, v} ∈ E(G− S) such that the vertices s, u, v
induce a P3 inG. The edge is then added tomark(s). This is then repeated until either a vertex has k+1

marked edges, or there is no edges left to mark for any vertex in S.

Reduction Rule 4. If there exist a vertex s ∈ S such that |mark(s)| > k, then delete s and reduce k by
w(s). The new instance is then (G− {s}, k − w(s)).

Lemma 3.3.2. Reduction Rule 4 is safe and can be applied in time O(|V |(|V |+ |E|)).

Proof. In one direction it is clear that if A where w(A) ≤ k−w(s) is a solution to (G−{s}, k−w(s)),
then A = (A1 ∪ {s}, A2, dec) is a solution to (G, k) of weight w(A) ≤ k.

For the other direction, let A be a solution to (G, k). Assume that s /∈ A1. Then we have that one
vertex from each edge in mark(s) has to be a member of A1. As w(A) ≤ k, we see that this is not
possible. This implies that s ∈ A1 and therefore A1 \ {s} is a solution to (G− {s}, k − w(s)).

This is done by for each vertex in s ∈ S, find any vertex u with distance 2 from s such that u /∈ S.
This can be done by e.g. BFS in time O(|V | + |E|). As |S| ≤ |V | the total time is bounded by
O(|V |(|V |+ |E|)).

19

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

Reduction Rule 5. If a vertex s ∈ S is adjacent to vertices in more than k+ 1 different cliques in G−S,
then delete s and decrease k by w(s). The new instance is then (G− {s}, k − w(s)).

Lemma 3.3.3. Reduction Rule 5 is safe and can be applied in time O(|V |(|V |+ |E|)).

Proof. In one direction in it clear that if A where w(A) ≤ k−w(s) is a solution to (G−{s}, k−w(s)),
then A = (A1 ∪ {s}, A2, dec) is a solution of (G, k) of size w(A) ≤ k.

For the other direction assume the opposite, that the set A is a solution to (G, k) and s /∈ A1. For
vertices u, v ∈ V (G−S) and u, v ∈ N(s), such that u /∈ N(v), this implies that they are part of different
cliques in G − S. We then know that s, u, v induce a P3 in G such that at least one of them has to be
deleted. If s is adjacent to at least k + 2 cliques and s /∈ A1, the vertices adjacent to s in k + 1 of those
cliques has to be deleted, but as w(A) ≤ k, this is not possible. We then have that (G − {s}, k − w(s))

is a YES-instance if (G, k) is a YES-instance.
This is done by for each vertex s ∈ S, run DFS in (G− S) ∪ {s}. The number of branches from s in

the DFS-tree is the number of cliques neighbouring s. For each vertex this is bounded by O(|V |+ |E|),
and since |S| ≤ |V | the total time is bounded by O(|V |(|V |+ |E|)).

If two vertices u, v ∈ V (G) have the same closed neighbourhood, i.e. they are true twins, we know
that if u has to be deleted for there to be a P3-free graph, so does v. This is because as they has the same
neighbourhood, there is no vertex x such that {x, u, v} induce a P3, and if there are vertices y, w such that
{y, u, w} induce a P3, then so does {y, v, w}. As the cost of deleting u and v is w(u) +w(v), deleting v
from G and increasing w(u) by w(v) keeps the cost of removing all P3 in G the same.

Reduction Rule 6. If there exist two vertices u, v ∈ V (G) with N [u] = N [v], then remove v and set
w(u) = w(u) + w(v).

Lemma 3.3.4. Reduction Rule 6 is safe and can be carried out in time O(|V |+ |E|).

Proof. For two vertices u, v ∈ V (G) where N [u] = N [v], there can not exist a vertex w such that u, v, w
induce a P3 in G. If there exist vertices x, y such that x, y, u induce a P3, then so does x, y, v. We will
now show that if the triple A = (A1, A2, dec) is a solution to the instance (G, k) before application of
Rule 6, then there exist solution A′ = (A′1, A

′
2, dec

′) to (G′, k) after the application of Rule 6 such that
w(A) = w(A′) and vice versa.

In one direction, if there is a vertex u ∈ V (G′) withw(u) > 1 obtained by applying Rule 6 on vertices
u, v ∈ V (G) such that x, y, u induce a P3, then at least one of them has to be a member of A′1. If this
member is either x or y, then we have thatA = A′, while if u ∈ A′1, then in (G, k), we have the vertices u
and v, such that w(u) = w(u)+w(v) andN [u] = N [v]. This implies thatA = (A′1∪{v}, A′2, dec′) with
w(A) = w(A′). If u ∈ A′2, we have that dec′(u) < w(u) = w(u) +w(v), which gives us three different
cases of A. If dec′(u) < w(u), we have that A = (A′1, A

′
2, dec

′), if dec′(u) = w(u), we have that
A = (A′1∪{u}, A′2\{u}, dec′), while if dec′(u) > w(u) we haveA = (A′1∪{u}, (A′2\{u})∪{v}, dec)
with dec(v) = dec′(u)−w(u). As all three cases havew(A) = w(A′), this implies that ifA′ is a solution
to (G′, k′), then A is a solution to (G, k).

20

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

For the reverse direction, if vertices u, v ∈ V (G) has the same closed neighbourhood, Rule 6 delete
vertex v, and update the weight of vertex u such that w(u) = w(u)+w(v). To show that w(A) = w(A′),
we have to study each combination of u, v being members of A. If both vertices u, v ∈ A1, then this
implies that the new solution is A′ = (A1 \ {v}, A2, dec), and as w(u) = w(u) + w(v) we have that
w(A) = w(A′). If u ∈ A1 and v ∈ A2, we have that w(u) + dec(v) < w(u) + w(v). This implies that
the new solution is A′ = (A1 \ {u}, (A2 \ {v})∪ {u}, dec′) where dec′(u) = w(u) + dec(v). If u ∈ A1

and v /∈ A1 ∪ A2, we have that w(u) < w(u) + w(v). This implies that we can not delete u, but rather
decrease its weight by w(u). By this we have A′ = (A1 \ {u}, A2 ∪ {u}, dec′) where dec′(u) = w(u).
If both vertices u, v ∈ A2, then this implies that the new solution is A′ = (A1, A2 \ {v}, dec′) where
dec′(u) = dec(u) + dec(v). If u ∈ A2 and v /∈ A1 ∪ A2, this implies that A′ = A. As we in each
case above have the property of w(A) = w(A′) this implies that if A is a solution to (G, k), then A′ is a
solution to (G′, k).

This can be constructed in timeO(|V |+ |E|) by creating a lexicographical ordering of vertices based
on their closed neighbourhoods. The true twins are then the sets of vertices in the same class [16].

After application of Rule 6, a complete component in G is now reduced to an isolated vertex and is
not part of any P3, but as we may need to reduce the weight of the vertex to get a balanced cluster graph
we need to store the vertex for later. Because of this, they are removed from G and stored in a separate
list Iv .

Reduction Rule 7. If a vertex u ∈ V (G) is isolated, then delete it from G and add it to Iv . We then have
G = G− {u}, Iv = Iv ∪ {u}

As we have removed all isolated vertices from G, we can now give a bound on the number of vertices
in G

Claim 3.3.5. After application of Rules 1 to 7, G has at most 9k2 + 6k vertices.

Proof. After Rule 7, G does not have any isolated vertices. Each vertex is either part of S, part of a
marked edge or neither. We will now show that the size of each of these is bounded.

By Rule 3 we know that |S| ≤ 3k. As |mark(s)| ≤ k for each vertex in S, the total number of
vertices in marked edges is at most 2 · 3k · k = 6k2. For a vertex u ∈ V (G) to be part of neither of
these sets, all its neighbours has to be in a marked edge, or it does not induce a P3 with any vertex in S
and any of its unmarked neighbours. If two vertices do not induce a P3 with any neighbour, they has to
be true twins, which would be impossible after application of Rule 6. As each component in G − S is
complete, this shows that there can be at most 1 vertex in each component of G− S which is not part of
a marked edge. By Rule 5 each vertex in S can be connected to at most k + 1 components in G − S,
and the total number of components in G− S is at most 3k2 + 3k. Adding up all sets of vertices, we get
(3k2 + 3k) + 3k + (6k2) = 9k2 + 6k.

If there is an edge in {x, y} ∈ E(G) such that both its vertices has weight greater than k, neither of
them can be deleted. This implies that all vertices which is a neighbour of one of them but not the other,

21

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

has to be deleted. After application of this rule the vertices x and y has the same neighbourhood, and will
therefore be merged by Rule 6.

Reduction Rule 8. If there exist and edge {x, y} ∈ E(G) such that w(x) > k and w(y) > k, then
remove every vertex in N(x) \N(y) from G and decrease k by w(N(x) \N(y)).

Lemma 3.3.6. Reduction Rule 8 is safe and can be applied in time O(|V |+ |E|).

Proof. In one direction, if A is a solution to ((G − N(x) \ N(y)) ∪ Iv, k − w(N(x) \ N(y))), then
A = (A1 ∪ (N(x) \N(y))), A2, dec) is a solution to (G ∪ Iv, k).

For the other direction, for a vertex u ∈ (N(x) \ N(y)), the vertices u, x, y induce a P3 in G. For
A to be a solution to (G ∪ Iv, k), at least one of u, x, y has to be a member of A1, but as w(A) ≤ k and
w(x) > k, w(y) > k, we can conclude that (N(x) \N(y)) ⊆ A1. Then (A1 \ (N(x) \N(y)), A2, dec)

is a solution to (G− (N(x) \N(y)), k − w(N(x) \N(y))).
The rule can be applied in time O(|V | + |E|) by using DFS. If for an edge {x, y} both vertices has

weight greater than k, finding vertices neighbouring only one of x, y and deleting them is also a linear
operation.

After removing all edges where both vertices has weight greater than k (big vertex), we know that the
only way for a vertex u to have more than one big neighbour is for the big neighbours to not share an
edge. This is because after application of Rule 8, neighbouring big vertices will become true twins and
therefore be reduced by Rule 6. Because of this, they induce a P3 together with u, and the only way of
removing this P3 is to delete u.

Reduction Rule 9. If there exist distinct vertices x, y ∈ N(u) such that w(x) > k and w(y) > k, then
remove u and decrease k by w(u).

Lemma 3.3.7. Reduction Rule 9 is safe and can be applied in time O(|V |+ |E|).

Proof. In one direction, if A is a solution to ((G − {u}) ∪ Iv, k − w(u)) and w(A) ≤ k − w(u), then
(A1 ∪ {u}, A2, dec) is a solution to (G ∪ Iv, k).

For the other direction, as we after application of Rule 8 know that there is no edge {x, y} ∈ E(G),
the vertices x, y, u induce a P3 in G. If A is a solution of (G∪ Iv, k), then at least one of x, y, u has to be
members of A1. Seeing that w(A) ≤ k then this shows that x, y /∈ A1. As A is a solution to (G ∪ Iv, k),
(A1 \ {u}, A2, dec) has to be a solution to (G− {u}, k − w(u)).

It can be carried out in time O(|V | + |E|) by for each vertex in G, iterate though the adjacency list
and count the number of neighbours with weight greater than k. If for a vertex v it has more than one
such neighbour, deleting v is a linear operation.

Next we use another observation given by [19], namely that for a vertex s ∈ S and a clique C in
G − S such that N(s) ∩ C 6= ∅ and C \ N(s) 6= ∅, we have to deltete at least one of s, (N(s) ∩ C) or
(C \N(s)). If then both w(N(s) ∩ C) > k and w(C \N(s)) > k, this implies that we have to delete s.

Reduction Rule 10. If for a vertex s ∈ S and a clique C in G − S, both w(N(s) ∩ C) > k and
w(C \N(s)) > k, then delete s and decrease k by w(s).

22

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

Lemma 3.3.8. Reduction Rule 10 is safe.

Proof. In one direction it is clear that if A′ = (A′1, A
′
2, dec

′) where w(A′) ≤ k − w(s) is a solution to
((G−{s})∪ Iv, k−w(s)), then A = (A′1 ∪{s}, A′2, dec′) is a solution of (G∪ Iv, k) of size w(A) ≤ k.

For the other direction, let A = (A1, A2, dec) be a solution to (G ∪ Iv, k), and assume that s /∈ A1.
As w(N(s) ∩ C) > k and w(C \N(s)) > k, then for all vertices x ∈ (C \N(s)) and y ∈ (C ∩N(s)),
x, y, s induce a P3 in G. As w(A) ≤ k we see that neither N(s) ∩ C ⊆ A1 or N(s) \ C ⊆ A1. By this
we see that s ∈ A1, and A = (A1 \ {s}, A2, dec) is a soluton to ((G− {s}) ∪ Iv, k − w(s)).

If there exist a vertex s ∈ S such that w(s) > k, we know that it can not be deleted. If this vertex is
then neighbour with a clique C in G− S such that w(N(s) ∩ C) > k we know that all other neighbours
of s in G− S has to be deleted.

Reduction Rule 11. If for a vertex s ∈ S with weight w(s) > k and a clique C in G − S such that
w(N(s)∩C) > k , then delete (N(s)\C)∩(V (G)\S)) and decrease k by w((N(s)\C)∩(V (G)\S)).

Lemma 3.3.9. Reduction Rule 11 is safe.

Proof. In one direction, it is obvious that ifA = (A1, A2, dec) is a solution to (G−(N(s)\C)∩(V (G)\
S) ∪ Iv, k − w((N(s) \ C) ∩ (V (G) \ S)), then A = (A1 ∪ (N(s) \ C) ∩ (V (G) \ S), A2, dec) is a
solution to (G ∪ Iv, k).

For the other direction, assume that A = (A1, A2, dec) is a solution to (G − (N(s) \ C) ∩ (V (G) \
S), k−w((N(s)\C)∩(V (G)\S)) and (N(s)\C)∩(V (G)\S)∩A1 = ∅. As we know that two vertices
u, v ∈ V (G − S) which is adjacent to s but not in the same clique in G − S induces a P3 together with
s, for G to become P3-free s can be adjacent to only one clique in G− S. If s ∈ A1 or N(s) ∩ C ⊆ A1,
then w(A) > k. This implies that (N(s) \ C) ∩ (V (G) \ S) ⊆ A1 for w(A) ≤ k.

Claim 3.3.10. Reduction Rules 10 and 11 can be applied in time O(|V |(|V |+ |E|)).

Proof. For each vertex s ∈ S, checking the weight of the neighbouring cliques in G − S and also the
the weights of the partitions of a clique either adjacent to s or not adjacent to s can be done in time
O(|V |+ |E|) by e.g. DFS. Eventually deleting vertices can also be done in linear time. As |S| ≤ |V | the
total running time for the rules are bounded by O(|V |(|V |+ |E|)).

After application of Rule 11, we can give bounds on the total weight of a clique C in G.

Claim 3.3.11. For a cliqueC ′ inG, w(C ′) ≤ 6k2+w(u) where u is the vertex inC ′ with largest weights.

Proof. The clique C ′ contains the vertices of at most one clique C in G − S and all vertices in S.
We also have that at most one vertex in C ′ has weight greater than k. As |S| ≤ 3k, we have that
w(S ∩ C ′) ≤ 3(k − 1)k + w(smax) where smax is the vertex in S ∩ C ′ of maximum weight.

By Rule 10 we know that for each vertex s ∈ S, either w(N(s) ∩ C) ≤ k or w(C \ N(s)) ≤ k. If
there is a vertex s′ ∈ S such that w(N(s) ∩ C) ≤ k and w(C \N(s)) ≤ k, we know that w(C) ≤ 2k.

23

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

If no such vertex exist, we have the partition S1, S2 ⊆ S, where S1 = {s ∈ S | w(C ∩N(s)) ≤ k} and
S2 = {s ∈ S | w(C \N(s)) ≤ k}.

Let C1 ⊆ C be the set of vertices adjacent to at least one vertex in S1, and C2 ⊆ C be the set of
vertices not adjacent to at least one vertex in S2. Then we have w(C1) + w(C2) ≤ k|S1| + k|S2| ≤
k|S| ≤ 3k2. If |C \ (C1∪C2)| > 0, this means that there is some vertex v ∈ C such that it is not adjacent
to any vertex in S1, and adjacent to all vertices in S2. By Rule 6, we know that |C \ (C1 ∪ C2)| ≤ 1 and
that w(C) ≤ 3k2 + w(v).

We now have that w(C ′) = w(S) + w(C) ≤ (3(k − 1)k + w(smax)) + (3k2 + w(v)). By Rules
8 and 9, we have that at most one of smax and v can have weight greater than k. This gives the bound
w(C ′) ≤ 6k2 + w(u).

By Claim 3.3.11 we then know that if there exist vertices with weight greater than k such that they
have a neighbourhood with total weight of more than 6k2 + k, it is a NO-instance.

Reduction Rule 12. If there exist a vertex u ∈ V (G) such that w(u) > k and w(N(u)) > 6k2 + k, then
return trivial NO-instance.

Lemma 3.3.12. Reduction Rule 12 is safe and can be applied in time O(|V |+ |E|).

Proof. As we showed in Claim 3.3.11 that no vertex with weight bigger than k can have a neighbourhood
with total weight of more than 6k2 in the same clique, we know that if a vertex has a neighbourhood of
weight more than 6k2 + k, we can not decrease the weight of the neighbourhood enough. This implies
that we have a NO-instance.

This can be checked in timeO(|V |+ |E|) by for each vertex with weight greater than k, compute the
sum of the weights of its neighbouring vertices.

Weight reduction

After bounding the number of vertices in G, we have to give a bound on the weight of each vertex as a
polynomial of k. If no vertex in G∪ Iv has weight greater than α(6k2 + k) + k, we already have a bound
on the weights of each vertex, and can therefore skip to reduction Rule 17. If there exist vertices with
weight greater than this, we have to bound these weights by substitution.

The first step in bounding the weight is done by partitioning all vertices into three sets X,Y, Z, where
members of X has weight greater than k, members of Y are neighbours of a member of X , and Z is the
rest of V (G). See Figure 3.1. Observe that after Rule 8, the vertices in the set X form an independent
set in G, and by Rule 12 a vertex x ∈ X has w(N(x)) ≤ 6k2 + k. Each vertex in Y has exactly one
neighbour in X , but can have many neighbours in Y ∪ Z, while the vertices in Z only has neighbours in
Y ∪Z. This implies that they can only be part of a clique with vertices of weight at most k. If there exist
vertices x ∈ X, y ∈ Y and z ∈ Z such that x, z ∈ N(y), this implies that x, y, z induces a P3 in G. By
this we see that no complete component in a solution can contain vertices from both Y and Z, since that
implies that some vertex in X has to be deleted.

24

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

X Y Z

Figure 3.1: An example of the partition of a graph G into sets X,Y, Z

As we have by Claim 3.3.11 that a clique containing only vertices of weight at most k have a total
weight of at most 6k2 + k, and we already have concluded that there exist a vertex with weight greater
than α(6k2 + k) + k, we see that if Z is not empty, we need to delete all vertices in Z.

Reduction Rule 13. If |Z| > 0, then remove every vertex in Z and decrease k accordingly. The reduced
instance is ((G− Z) ∪ Iv, k − w(Z)).

Lemma 3.3.13. Reduction Rule 13 is safe and can be applied in time O(|V |+ |E|).

Proof. In one direction it is obvious that if ((G−Z)∪ Iv, k−w(Z)) is a YES-instance, then (G∪ Iv, k)

is the same. To show that if (G ∪ Iv, k) has a solution then so does (G − Z, k − w(Z)), we assume the
opposite, that there exist a solution where Z is not deleted. Observe that there is a vertex u ∈ V (G) such
that w(u) > α · (6k2 + k) + k. Then there exist a vertex v ∈ Z which is part of a clique with total weight
greater than 6k2 + k. By the definition of Z no vertex in N [v] has weight greater than k, so by Claim
3.3.11 we know this to not be possible. This shows that there is no solution without deleting Z.

Finding the partition of G into X,Y, Z can be done in time O(|V |+ |E|). Then deleting the vertices
in Z is also a linear operation.

By the same reasoning as in Rule 13, we can delete vertices in Iv with small weights as we know
there exist vertices with large weights.

Reduction Rule 14. If there exist a vertex u ∈ Iv such that w(u) ≤ 6k2 + k, then delete u and decrease
k by w(u). The new instance is then (G ∪ Iv \ {u}, k − w(u)).

Lemma 3.3.14. Reduction Rule 14 is safe and can be applied in time O(|V |).

25

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

Proof. This use the same observation as Rule 13. As there exist a vertex with weight greater than α ·
(6k2 + k) + k, no component in a YES-instance can have weight less than 6k2 + k.

As the size of Iv is bounded by |V |, checking each for size and deleting elements which is too big is
linear.

Definition 3.3.5. We call the vertex with w(u) > k which minimizes w(N [u]) for all vertices in V (G)∪
Iv for umin, and we also denote wmin = w(N [umin]) as this is used repeatedly throughout the proofs.

Find the vertex u where w(u) > k with smallest neighbourhood weight wmin = w(N [u]) as defined
in Definition 3.3.5, and call it umin. As the only operation is weight decreasing, we know that α · wmin
is the largest a component can be in an YES-instance.

Reduction Rule 15. If there exist a vertex v ∈ V (G)∪ Iv such that w(N [v]) > α ·wmin + k then return
NO-instance.

Lemma 3.3.15. Reduction Rule 15 is safe and can be applied in time O(|V |+ |E|).

Proof. As wmin is an upper bound on the size of the smallest component in a solution, if there is a
component which require more than k weight reductions to get down to a weight of αwmin, this implies
that the instance is a NO-instance.

Finding the total weight of the neighbourhood of all vertices can be done by for each edge, adding the
weights each endpoint to the neighbourhood weight of the other endpoint. By this, each edge is visited
once. Then checking for vertices with too big neighbourhoods can be done in time O(|V |).

Now we apply the weight substitution function. For the case of α > 1, it uses the vertex umin as
defined in Def 3.3.5 as an anchor, while for the case for α = 1 it uses the vertex xsmall, which is the
vertex in the set X of the partitioning of G with lowest weight.

For each value of k > 1 there is a value of α > 1 such that there exist a size of wmin where the
weight substitution does not work. This is the case when wmin ≤ α+1

α−1 · k, but as we in this case already
have weights bounded linearly by k, we can skip to Rule 17.

Definition 3.3.6. The weight substitution function is the function used to substitute the weights of vertices
with a weight bounded by a function of k. It is separated into two functions, one for α = 1 and one for
α > 1.

The function for α > 1 uses umin and wmin as defined in Definition 3.3.5. umin is used as an anchor
and given the new weight λ = (6k2 + dαk+k+1

α−1 e+ k), and all other vertices are shifted in relation to this
vertex.

26

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

sub(v) =

w(v) if w(v) ≤ k

λ+ (w(v)− w(umin)) if w(v) > k

and w(N [v]) ≤ wmin + k

λ+ (k + 1) + (w(N(umin))− w(N(v))) if w(v) > k

and wmin + k < w(N [v]) < α · wmin − αk

αλ+ (w(v)− αw(umin)) if w(v) > k

and α · wmin − αk < w(N [v]) ≤ α · wmin + k

For the case of α = 1, the weight substitution is simpler. Here we use the vertex xsmall, which is the
vertex in X ∪ Iv with lowest weight.

sub(v) =

w(v) if w(v) ≤ k

(k + 1) + (w(v)− w(xsmall)) if w(v) > k

Reduction Rule 16. Apply the weight substitution function sub(v) on all v ∈ V (G) ∪ Iv

Lemma 3.3.16. Reduction Rule 16 is safe and can be carried out in time O(|V |).

Proof. The proof of this will be split in parts, by first showing safeness for the case when α = 1, and
then the cases for α > 1. Note that umin will be used as previously defined. For each neighbourhood
N [u] in Iv ∪G, it is either an isolated vertex in Iv , or a neighbourhood from G containing a single vertex
x ∈ X , and a set N [x] ⊆ Y , such that w(N [x]) ≤ 6k2 + k by Rule 12. Because of this, setting the
anchor value to be at least (6k2 + dαk+k+1

α−1 e+ k) when α > 1 guarantees that after substitution, a vertex
with w(u) > k get sub(u) > k. Since no two vertices with weight greater than k can be part of the
neighbourhood of any vertex, for each neighbourhood in G only one vertex has its weight substituted.

Claim 3.3.17. If α = 1, weight substitution is safe with λ = k + 1 as the anchor value.

In one direction, assume that instance (G ∪ Iv, k) is a YES-instance where A = (A1, A2, dec) is a
solution. That implies thatG−A is a balanced cluster graph where all components have the same weight.
As w(A) ≤ k we know that no vertex in X ∪ Iv is a member of A1. For a vertex u ∈ (X ∪ Iv), we
know that it is part of a closed neighbourhood such that w(N [u]) − k ≤ w(Cu) where Cu is the clique
in G − A such that u ∈ V (Cu). We now have to show that after substitution we have that A′ = A is a
solution to (G′ ∪ I ′v, k).

For vertex u ∈ (X ∪ Iv) we have that after substitution its new weight is sub(u) = (k + 1) +

(w(u)− w(xsmall)), and as xsmall is defined as the vertex in (X ∪ Iv) with lowest weight, this implies
that sub(u) > k.

27

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

For each closed neighbourhood N [u] we have that weight substitution is only applied once, since
each vertex in Y has exactly one neighbour in X . If we first look at the vertices in A1, we see that
application of weight substitution does not affect them since their weight is at most k. If we have a
vertex v ∈ A2 ∩ (X ∪ Iv), we see that dec(v) ≤ k < w(v). This implies that after substitution
we still have that dec(v) ≤ k < sub(v). For the neighbourhoods N [v] and N [xsmall], we have that
w(N [v]) − w(N [xsmall]) = sub(N [v]) − sub(N [xsmall]), and if A is a solution to (G ∪ Iv, k), then
A′ = A is a solution to (G′ ∪ I ′v, k).

For the other direction, assume that A′ = (A′1, A
′
2, dec

′) is a solution to the instance (G′∪ I ′v, k) after
application of weight substitution. We will then show that this implies that A = A′ is a solution to the
instance (G ∪ Iv, k) before weight substitution. As each closed neighbourhood in G′ ∪ I ′v has had its
weight changed by an equal amount, we know that if some vertices in the neighbourhood are members
of A′1 ∪ A′2, this implies that we also need to either remove them or decrease their weight by the same
amount in the instance (G ∪ Iv, k). As no vertex in X ∪ Iv can be a member of A′1, we know that this
is also true before substitution. This implies that if A′ is a solution to (G′ ∪ I ′v, k), it is also a solution to
(G ∪ Iv, k).

Claim 3.3.18. If α > 1, weight substitution is safe with λ = (6k2 + dαk+k+1
α−1 e+ k) as the anchor value.

Proof. First we will show that for any value of α > 1 the difference αsub(N [umin])− sub(N [umin]) >

αk + k as this is used later in the proof. As the smallest value sub(N [umin]) can have is λ, this will be
used in the proof, as a larger value will give a larger difference by properties of multiplication. By Rule
2 we have that k > α+1

α−1 , which for instances where α is close to 1 ensures that we have a sufficiently
large k. By not skipping weight substitution we also have that wmin > α+1

α−1 · k, as when this is not the
case it is impossible to make the difference between αλ and λ big enough. We will now show that with
λ = (6k2 + dαk+k+1

α−1 e+k), after substitution the difference αλ−λ is greater than αk+k for any α > 1

as we need this to have enough separation after substitution.

αλ− λ =

= (α− 1)(6k2 + dαk + k + 1

α− 1
e+ k)

= (α− 1)6k2 + (α− 1)dαk + k + 1

α− 1
e+ (α− 1)k

As we know that dxe ≥ x we have:

≥ (α− 1)6k2 + (α− 1)
αk + k + 1

α− 1
+ (α− 1)k

As (α− 1) > 0 and k ≥ 0 we have that:

≥ (α− 1)
αk + k + 1

α− 1
= αk + k + 1

(3.1)

In one direction, assume that A = (A1, A2, dec) is a solution to the instance (G ∪ Iv, k) such that
w(A) ≤ k. For vertices v, umin ∈ (X ∪ Iv), we know that since w(v) > k and umin > k they can not

28

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

be members of A1. Then they are either not part of A, or they are part of A2. If v ∈ A2 we have that
dec(v) ≤ k < w(v), and as sub(v) > k we have that after substitution A′ = A.

If (G ∪ Iv, k) is a YES-instance, then this implies that for the neighbourhoods N [v], N [umin] in
(G∪Iv), they correspond to some cliques Cv, Cmin in (G∪Iv)−A. By this we also have that w(N [v])−
k ≤ w(Cv) and w(N [umin])− k ≤ w(Cmin), as we can at most reduce the weight of a neighbourhood
by k.

To show that if A is a solution to (G ∪ Iv, k), then it is also a solution to to (G′ ∪ I ′v, k) after
substitution, we have to study each case of the weight substitution function. The three different cases for
N [v] are:
• (i) w(N [v])− wmin ≤ k.

The weight of N [v] is within a distance of k to the weight of wmin

• (ii) wmin + k < w(N [v]) < αwmin − αk.
The weight of N [v] is more than k bigger than wmin, and also more than k smaller than αwmin.

• (iii) αwmin − k < w(N [v]) < αwmin + k.
The weight of N [v] is within a difference of k smaller or bigger than αwmin.

We will now show that weight substitution is safe for each of the three cases separately.
Case (i):
As we know by Equation 3.1 that αwmin − wmin > αk + k, wmin − k ≤ w(Cmin) ≤ wmin and

w(A) ≤ k, we know that if w(N [v]) − wmin ≤ k then w(Cv) ≤ w(Cmin) + 2k. This implies that it
is impossible for w(Cv) to become larger than α · w(Cmin). We now have to show that this is also true
after substitution, and that if v ∈ A2, then this implies that v ∈ A′2.

If v ∈ A2, we know that dec(v) ≤ k < w(v). After substitution we have that sub(v) = λ +

(w(v) − w(umin)). As we know that w(N(v)) and w(N(umin)) are at most 6k2 + k by Rule 12, and
that w(N [umin]) ≤ w(N [v]) we have that w(umin) + w(N(umin)) ≤ w(v) + w(N(v)). This implies
that the difference w(umin)− w(v) ≤ 6k2 + k. By this we have that the smallest weight sub(v) can get
is sub(v) = dαk+k+1

α−1 e. As this is greater than k it holds that dec(v) ≤ k < sub(v).
To show that it is impossible for sub(Cv) to become larger thanα·sub(Cmin), we have that sub(Cmin) ≥

sub(umin) +w(N(umin))− k, and we also have that α · sub(N [umin])− sub(N [umin]) > αk + k for
any α. As we know that weight substitution changes the weight of N [v] and wmin by an equal amount, if
it was true that w(Cv) could not become bigger than αw(Cmin), then it is also true that sub(Cv) can not
become bigger than α · sub(Cmin) by decreasing the weight of sub(umin) +w(N(umin)) by at most k.

Case (ii):
Before weight substitution the closed neighbourhood N [v] had a weight such that by decreasing

the weight by at most k it could not become smaller than wmin, and that by decreasing the weight of
wmin by at most k, w(N [v]) could not become larger than αw(Cmin). To show that this is also true
after substitution, we see that sub(v) = λ + (k + 1) + (w(N(umin)) − w(N(v))). As we also have
that sub(umin) = λ, we see that sub(N [v]) − sub(N [umin]) = k + 1. This means that by doing at
most k weight decreases, w(Cv) can not become smaller than w(Cmin), and as α · sub(N [umin]) −
sub(N [umin]) > αk+k, by having sub(Cmin) = sub(N [umin])−k we still have that α · sub(Cmin) ≥

29

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

sub(Cv).
Case (iii):
As we know that w(N [v]) can not become smaller than wmin by the fact that members of this case

have a larger weight than in Case (ii), what we need to show is that if w(Cv) ≤ αw(Cmin), then it
implies that sub(Cv) ≤ αsub(Cmin). As sub(Cmin) ≥ sub(N [umin])−k, we have that αsub(Cmin) ≥
αsub(N [umin])−αk. This gives us a lower bound of the upper size bound at α(λ+w(N(umin)))−αk.

For neighbourhoods in this range, their weight are substituted with sub(v) = αλ+(w(v)−αw(umin)),
which gives a new weight such that αsub(N [umin])− sub(N [v]) = αw(N [umin])−w(N [v]). If then A
decreases the weight ofwmin by an amount c ≤ k before substitution, the weight of sub(N [umin]) is also
decreased by c after substitution. This lowers the upper bound by α · c both before and after substitution.
As this change is equal, and the difference between the upper bound and sub(N [v]) is the same, if A was
a solution to (G ∪ Iv, k) before substitution, it is also a solution to (G′ ∪ I ′v, k) after substitution.

For the other direction, assume that A′ = (A′1, A
′
2, dec

′) is a solution to (G′ ∪ I ′v, k) such that
w(A′) ≤ k. Then we know that no vertex where weight substitution was applied can be a member of A′1,
and if a vertex in A′2 was changed by weight substitution, we know that its weight is still larger than k.
This implies that dec′(u) = dec(u) for all vertices u ∈ A2.

To show that if sub(C ′v) ≤ αsub(C ′min) then this implies that w(C ′u) ≤ αw(C ′min) before weight
substitution, we need to do a study of the three different cases of the weight substitution function.
• (i) sub(N [v])− sub(N [umin]) ≤ k.

The weight of N [v] is within a distance of k to the weight of N [umin]

• (ii) sub(N [umin]) + k < w(N [v]) < αsub(N [umin])− αk.
The weight of N [v] is more than k bigger than sub(N [umin]), and also more than k smaller than
αsub(N [umin]).

• (iii) αsub(N [umin])− k < w(N [v]) < αsub(N [umin]) + k.
The weight of N [v] is within a difference of k smaller or bigger than αsub(N [umin]).

Case (i): If the weight of neighbourhoodN [v] is within a distance of k to the weight ofN [umin] after
substitution, we have that the same had to be true before substitution. This is because in the previous case
analysis we showed that this was not possible for the two other cases. As we know that A′ is a solution
to (G′ ∪ I ′v, k), and we know that αwmin − wmin > αk + k before substitution, and αλ− λ > αk + k

after substitution. This implies that as by decreasing the weight of either sub(N [v]) or sub(N [umin]) by
at most k, neither sub(Cv) after substitution or w(Cv) before substitution can not become too big.

Case (ii): By the definition of the weight substitution function, sub(N [v]) has a weight of sub(N [umin])+

k + 1. The distance between αw(N [umin])− w(N [umin]) both before and after substitution are greater
than αk+k, and w(N [v]) and sub(N [v]) are more than αk smaller than αw(N [umin]) and at least k+ 1

larger than w(N [umin]). This implies that if A′ if a solution to (G′ ∪ I ′v, k) after substitution, then it is a
solution to (G ∪ Iv, k) before substitution.

Case (iii): As we know that A′ is a solution to (G′ ∪ I ′v, k), and that sub(N [v])−αsub(N [umin]) =

w(N [v])− αw(N [umin]) by the definition of the weight substitution function, this implies that if (G′ ∪
I ′v)−A′ creates cliques C ′v and C ′min such that w(C ′v) ≤ αw(C ′min, the same is also true for the instance

30

3.3. POLYNOMIAL KERNEL FOR FACTORCVD CHAPTER 3. VERTEX DELETION

(G ∪ Iv, k) before substitution.

Reduction Rule 17. Sort Iv with respect to increasing weights. Delete all elements excluding the k + 1

with largest weights and the x smallest such that
∑i=x
i=1 w(ui) > k.

Lemma 3.3.19. Reduction Rule 17 is safe and can be applied in time O(|V |).

Proof. For this to be safe, no solution have to edit the weights of the deleted elements. As the reduction
stores up to k+ 1 of the smallest members of Iv in such a way that the total weight of the small elements
is greater than k. This ensures than not all small elements can be deleted, and we know that at least one
of them has to be either the smallest component in G ∪ Iv or bigger than the smallest component.

If there are some component too big for the size constraint, there can be at most k of them for
(G ∪ Iv, k) to be a YES-instance. So deleting all but the k + 1 largest will not change the instance
in any way.

As the number of elements in Iv is bounded by |V |, computing their sizes and sorting them by bucket
sort are both operations bounded by O(|V |).

3.3.3 Analysis

Theorem 3.3.20. WEIGHTED FACTORCVD has a polynomial kernel with O(k2) vertices, each with

weight of at most O(k2) that can be constructed in O(|V |2(|V | + |E|)) time. This kernel is also a

bikernel for FACTORCVD.

Proof. After exhaustive application of the reduction rules, the number of vertices in V (G) is at most
9k2 + 6k as shown in Claim 3.3.5, and Iv has at most 2k+ 2 by Lemma 17. This gives a total number of
vertices as 9k2 + 8k + 2.

The bound on the weights of each vertex is either bounded by α(6k2+k)+k, α(6k2+d 2k+1
α−1 e+k)+k

or α · α+1
α−1 ·k. Where the first two areO(k2) and the last isO(k). The safeness of this reduction is shown

in the proofs for each reduction rule.
For use as a bikernel for an instance (G∪ Iv, k) of FACTORCVD, give each vertex in V (G) a weight

of 1. As this is clearly a polynomial time operation, it is a bikernel.
To get the bound on the running time, observe that each reduction rule has a running time bounded

by at most O(|V |(|V | + |E|)). As the reduction rules are applied exhaustively they are bounded by the
number of vertices deleted. As they can at most be applied |V | times, we have a total bound on the
running time of O(|V |2(|V |+ |E|)).

Corollary 3.3.20.1. FACTORCVD has a kernel with O(k4) vertices.

Proof. To transform an instance (G′, k) of WEIGHTED FACTORCVD into an instance (G, k) of FAC-
TORCVD, for each vertex u′ ∈ V (G′) with weight w(u) = q, construct a clique of vertices {u1, u2...uq}
in G. Then add edges {ux, vy} for each ux and vy where {u′, v′} ∈ E(G′).

As G′ has a quadratic number of vertices with quadratic weights, the total number of vertices in G is
bounded by O(k4).

31

3.4. POLYNOMIAL KERNEL FOR DIFFERENCECVD CHAPTER 3. VERTEX DELETION

Theorem 3.3.21. FACTOR-α BALANCED CLUSTER VERTEX DELETION has a FPT-algorithm with

running time O(3kk4 + |V |2(|V |+ |E|))

Proof. By transforming the instance of FACTORCVD into an equivalent weighted instance we can bound
the number of vertices to O(k2) and by this the number of edges to O(k4) in time O(|V |2(|V | + |E|))
by Theorem 3.3.20. Then using the algorithm from Theorem 3.2.5 running in time O(3k · (|V | + |E|))
on the reduced instance we get a total running time of O(3kk4 + |V |2(|V |+ |E|)).

3.4 Polynomial Kernel for DIFFERENCECVD

As the problem of DIFFERENCECVD is quite similar to FACTORCVD except for how the sizes of each
component is compared, most of the reduction rules for a kernelization algorithm can be reused. For
the task of bounding the number of vertices, we can use the exact same procedure, while for bounding
the weights the procedure is simplified. This is because the property of absolute difference allows for a
simpler weight substitution. As the difference between two weights stays constant by shifting all weights
by a constant, each component has the same size relative to each other before and after weight substitution.
Since the reduction rules are almost the exact same as for FACTORCVD, we refer to the statements of the
corresponding rule in FACTORCVD for a proof of safeness.

3.4.1 Reduction Rules

As for FACTORCVD, we start by checking if there exist any vertex with weight larger than (6k2 + k) +

k + δ. If no such vertex exist, we already have a bound on the weights of all vertices, and therefore we
can skip to rule 5. If this is not the case we partition the vertices into three sets X,Y, Z, where X is the
vertices with weight greater than k, Y is the neighbours of vertices in X , and Z is the set of vertices with
weight at most k and no neighbour with weight greater than k. As we have established the existence of
vertices with weights greater than (6k2 + k) + k+ δ, by Claim 3.3.11 we have that no vertex in Z can be
part of a clique with total weight larger than (6k2 + k). This implies that for there to exist a solution, all
vertices in Z has to be deleted.

Reduction Rule 1. If |Z| > 0, remove every vertex in Z and decrease k accordingly. The reduced
instance is ((G− Z) ∪ Iv, k − w(Z)).

By the same reasoning as in rule 1, we know that if there exist vertices with weight greater than
(6k2 + k) + k + δ in G, then if there exist vertices with weight smaller than (6k2 + k) in Iv , they has to
be deleted.

Reduction Rule 2. If there exist a vertex u ∈ Iv such that w(u) ≤ 6k2 + k, then delete u and decrease
k by w(u). The new instance is then (G ∪ Iv \ {u}, k − w(u)).

Find the vertex uwherew(u) > k with smallest neighbourhood weightw(N [u]), and call it umin. As
the only operation is weight decreasing, we know that δ+w(N [umin]) is the largest weight a component

32

3.4. POLYNOMIAL KERNEL FOR DIFFERENCECVD CHAPTER 3. VERTEX DELETION

can have in an YES-instance. If there exists neighbourhoods with weight more than k bigger than this
upper bound, we can safely conclude that it is a NO-instance.

Reduction Rule 3. If there exist a vertex v ∈ V (G)∪ Iv such that w(N [v]) > δ+w(N [umin]) +k then
return NO-instance.

The weight substitution is done by first finding the vertex xsmall ∈ X ∪ Iv , which is the vertex in
X ∪ Iv with minimal weight. The weight of this vertex is then set to k + 1, and then the weight of all
other vertices are set such that w(v)− w(xsmall) = sub(v)− sub(xsmall).

Reduction Rule 4. For each vertex v ∈ V (G) ∪ Iv such that w(v) > k. Replace the weight with
xsmall = (k + 1) + (w(v)− w(xsmall)).

Lemma 3.4.1. Reduction Rule 4 is safe.

Proof. In one direction, assume that instance (G ∪ Iv, k) is a YES-instance where A = (A1, A2, dec)

is a solution. That implies that G − A is a balanced cluster graph where all components have weights
differing by at most δ. As w(A) ≤ k we know that no vertex in X ∪ Iv is a member of A1. For a vertex
u ∈ (X ∪ Iv), we know that it is part of a closed neighbourhood such that w(N [u])− k ≤ w(Cu) where
Cu is the clique in G − A such that u ∈ V (Cu). We now have to show that after substitution we have
that A′ = A is a solution to (G′ ∪ I ′v, k).

If vertex u with w(u) > k, we have that after substitution its new weight is sub(u) = (k + 1) +

(w(u)−w(xsmall)), and as (w(u)−w(xsmall) ≥ 0 by definition of xsmall, this implies that sub(u) > k.
If u ∈ A2, we see that dec(u) ≤ k < sub(u), which implies that this is safe after substitution.

For each closed neighbourhood N [u] we have that weight substitution is only applied once, since
each vertex in Y has exactly one neighbour in X . As we know that any vertex in A1 has to have weight
at most k, they are not affected by weight substitution. For the neighbourhoods N [u] and N [xsmall], we
have that w(N [u])−w(N [xsmall]) = sub(N [u])− sub(N [xsmall]), and if A is a solution to (G∪ Iv, k),
then A′ = A is a solution to (G′ ∪ I ′v, k).

For the other direction, assume that A′ = (A′1, A
′
2, dec

′) is a solution to the instance (G′∪ I ′v, k) after
application of weight substitution. We will then show that this implies that A = A′ is a solution to the
instance (G ∪ Iv, k) before weight substitution. As each closed neighbourhood in G′ ∪ I ′v has had its
weight changed by an equal amount, we know that if some vertices in the neighbourhood are members
of A′1 ∪ A′2, this implies that we also need to either remove them or decrease their weight by the same
amount in the instance (G ∪ Iv, k). As no vertex in X ∪ Iv can be a member of A′1, we know that this
is also true before substitution. This implies that if A′ is a solution to (G′ ∪ I ′v, k), it is also a solution to
(G ∪ Iv, k).

Reduction Rule 5. Sort Iv with respect to increasing weights. Delete all elements excluding the k + 1

with largest weights and the x smallest such that
∑i=x
i=1 w(ui) > k.

33

3.4. POLYNOMIAL KERNEL FOR DIFFERENCECVD CHAPTER 3. VERTEX DELETION

3.4.2 Analysis

As for the kernelization for FACTORCVD, the number of vertices in the kernel for DIFFERENCECVD is
bounded by V (G) ≤ 9k2 + 6k, V (Iv) ≤ 2k+ 2. Which gives a total of 9k2 + 8k+ 2 vertices, with each
vertex having a weight of at most (k + 1) + δ + k. This gives a kernel with O(k2) vertices and weight
bounded by O(k).

Theorem 3.4.2. WEIGHTED DIFFERENCECVD has a polynomial kernel withO(k2) vertices, each with

weight of at mostO(k2) that can be constructed inO(|V |2(|V |+|E|)) time. This kernel is also a bikernel

for DIFFERENCECVD.

Proof. As the kernel uses the same rules to bound the number of vertices as the kernel for WEIGHTED

FACTORCVD, we showed in Theorem 3.3.20 that the total number of vertices is at most 9k2 + 8k + 2.
The weights of each vertex is either bounded by (6k2 + k) + k+ δ, which is the case when we do not

delete the vertices in Z, or they are bounded by 6k2 + 2k + 1 + δ by weight substitution.
The safeness and running time of each rule was showed in Theorem 3.3.20, except for Rule 4 which

we showed in Lemma 3.4.1. This gives us a running time bounded by at most O(|V |2(|V |+ |E|)).

Corollary 3.4.2.1. DIFFERENCECVD has a kernel with O(k4) vertices.

Proof. To transform an instance (G′, k) of WEIGHTED DIFFERENCECVD into an instance (G, k) of
DIFFERENCECVD, for each vertex u′ ∈ V (G′) with weight w(u) = q, construct a clique of vertices
{u1, u2...uq} in G. Then add edges {ux, vy} for each ux and vy where {u′, v′} ∈ E(G′).

As G′ has a quadratic number of vertices with quadratic weights, the total number of vertices in G is
bounded by O(k4).

Theorem 3.4.3. DIFFERENCE-δ BALANCED CLUSTER VERTEX DELETION has a FPT-algorithm with

running time O(3kk4 + |V |2(|V |+ |E|))

Proof. By transforming the instance of DIFFERENCECVD into an equivalent weighted instance we can
bound the number of vertices to O(k2) and by this the number of edges to O(k4) in time O(|V |2(|V |+
|E|)) by Theorem 3.4.2. Then using the algorithm from Theorem 3.2.5 running in timeO(3k ·(|V |+|E|))
on the reduced instance we get a total running time of O(3kk4 + |V |2(|V |+ |E|)).

34

Chapter 4
Edge Modification

In this chapter we will look at different ways of obtaining a cluster graph by edge modification. The
three different edge modification versions we will study are Edge Addition, Edge Deletion, and Edge

Editing. We will study both the FACTOR-α BALANCED version and the DIFFERENCE-δ BALANCED

version, giving a total of 6 problems restated below.
First we will restate the different problems as stated in the introduction, before we give proof for

the NP-Completeness of each of them. Then we will present a kernel for the each of the FACTOR-α
BALANCED version with a section showing how to use the kernel for the DIFFERENCE-δ BALANCED

version.

4.1 Problem Statement

For all problems, let α ∈ R be a fixed constant such that α ≥ 1, and let δ ∈ Z+ be a fixed integer such
that δ ≥ 0.

For the two EDGE ADDITION problems FACTOR-α BALANCED CLUSTER COMPLETION (FACTORCC)
and DIFFERENCE-δ BALANCED CLUSTER COMPLETION (DIFFERENCECC) the graph modification we
do is adding edges between vertices which was not already adjacent to create complete components.

FACTOR-α BALANCED CLUSTER COMPLETION

Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆

(
V (G)

2

)
\ E(G) such that |A| ≤ k and the graph G + A is a cluster

graph (i.e a disjoint union of cliques) where for all components Ci, Cj in G, it holds
that α · |V (Ci)| ≥ |V (Cj)|?

DIFFERENCE-δ BALANCED CLUSTER COMPLETION

Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆

(
V (G)

2

)
\ E(G) such that |A| ≤ k and the graph G + A is a cluster

graph where for all components Ci, Cj in G, it holds that δ + |V (Ci)| ≥ |V (Cj)|?

35

4.2. HARDNESS CHAPTER 4. EDGE MODIFICATION

In the EDGE DELETION problems FACTOR-α BALANCED CLUSTER DELETION (FACTORCD) and
DIFFERENCE-δ BALANCED CLUSTER DELETION (DIFFERENCECD), we ask whether there exist a set
of edges in the graph which when deleted gives a balanced cluster graph.

FACTOR-α BALANCED CLUSTER DELETION

Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆ E(G) such that |A| ≤ k and the graph G − A is a cluster graph

(i.e a disjoint union of cliques) where for all components Ci, Cj in G, it holds that
α · |V (Ci)| ≥ |V (Cj)|?

DIFFERENCE-δ BALANCED CLUSTER DELETION

Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆ E(G) such that |A| ≤ k and the graph G − A is a cluster graph

where for all components Ci, Cj in G, it holds that δ + |V (Ci)| ≥ |V (Cj)|?

The EDGE EDITING problems FACTOR-α BALANCED CLUSTER EDITING (FACTORCE) and DIFFERENCE-
δ BALANCED CLUSTER COMPLETION (DIFFERENCECE) ask whether it is possible to create a balanced
cluster graph when we have the option of both adding and deleting edges.

FACTOR-α BALANCED CLUSTER EDITING

Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆

(
V (G)

2

)
such that |A| ≤ k and the graph G4A is a cluster graph

where for all components Ci, Cj in G, it holds that α · |V (Ci)| ≥ |V (Cj)|?

DIFFERENCE-δ BALANCED CLUSTER EDITING

Input: A graph G = (V,E), a budget k ∈ N
Question: Is there a set A ⊆

(
V (G)

2

)
such that |A| ≤ k and the graph G4A is a cluster graph

where for all components Ci, Cj in G, it holds that δ + |V (Ci)| ≥ |V (Cj)|?

4.2 Hardness

We will now show the hardness of the three different edge modification variations EDGE ADDITION,
EDGE DELETION and EDGE EDITING. The hardness proofs of editing and deletion will be done together,
while edge addition will be done separately. The proof of membership in NP will be done as one for all
variations.

Lemma 4.2.1. FACTORCC, FACTORCD, FACTORCE, DIFFERENCECC, DIFFERENCECD and DIFFER-
ENCECE is in NP for all fixed α ≥ 1 or δ ≥ 0, respectively.

Proof. To show membership in NP we have to show that given an instance (G, k) and a certificate A ⊆(
V (G)

2

)
of edges to modify to get to a balanced cluster graph, it can be checked in polynomial time

whether G − A is a balanced cluster graph. Note that for EDGE ADDITION the set A has to be a subset
of
(
V (G)

2

)
\ E(G), and for EDGE DELETION A has to be a subset of

(
V (G)

2

)
∩ E(G).

36

4.2. HARDNESS CHAPTER 4. EDGE MODIFICATION

Given a certificate A to an instance (G, k), first check if |A| ≤ k. Then construct the solved instance
G′ = (V,E4A) and check if G′ is P3-free. Finally, compute the sizes of each component to check if
they all are within α · |Ci| ≥ |Cj | or δ+ |Ci| ≥ |Cj | . All these operations are clearly polynomial, so the
verifier is then polynomial. This implies that the problems are members of the class NP.

4.2.1 Editing and Deletion

The proofs of the hardness of EDGE EDITING and EDGE DELETION will be split into two parts, where
we use one reduction for the cases when α = 1 and δ ≤ 2 and a separate reduction for α > 1 and δ > 2.
For the case of inequality (α > 1, δ > 2) we will use a reduction from the NP-Complete problem EXACT

3-COVER [13], a variation of EXACT COVER. The reduction follows the lines of the reduction by Shamir
et al.[24].

EXACT 3-COVER

Input: A collection C of triplets of elements in universe U = {u1, u2, ..., u3n}, where each
element in U is a member of at most 3 triplets in C

Question: Is there a set I ⊆ C of size n which covers U .

Lemma 4.2.2. FACTORCE, DIFFERENCECE, FACTORCD and DIFFERENCECD are NP-hard for every

fixed α > 1 or δ > 2.

Proof. In this proof we will give a polynomial reduction from EXACT 3-COVER. For the proof to work
for both the case of α > 1 and δ > 2 we will create two dummy variables q and c which will be different
for each problem. To show that the reduction works for both editing and deletion we will do the reduction
for editing, but show that no optimal solution requires any edge additions, and therefore is equivalent to
a deletion problem. Let n = |U |

3 , for α > 1 let q = n + d 3
α−1e and c = αq − 3, while for δ > 2 let

q = n+ 3 and c = δ + q − 3. Let k = n · 6c+ 12 be the budget.
We construct the graph G by this procedure: First, we construct a set of vertices V1 such that |V1| =

|U | and each vertex in V1 corresponds to an element in U . We then for each triple in the set C construct
a complete component of c vertices in G corresponding to that triple, and for each vertex in the complete
component we connect it to each of the vertices in V1 corresponding to members of the triple, and also
add edges so that those vertices in V1 induce a triangle. Finally we construct n complete components of
size q.

Claim 4.2.3. (⇒) If the set I ⊆ C is a cover of U where |I| = n, there is a corresponding partitioning

of G such that by making each partition a complete component, G becomes a balanced cluster graph by

at most k edge editions.

If I covers U , then for each triple in I , find the corresponding component K in G. Then for each
vertex in V1 ∩K, remove all edges between vertices in V1 ∩K and vertices in V (G) \ (V1 ∩K) , which
for each vertex is at most 2c + 4. After this deletion each component is now a complete graph, and we
have done at most 3n(2c + 4) = n(6c + 12) = k deletions. Observe that we now have components of
3 different sizes, the n components of size q, the components corresponding to I of size c + 3, and the

37

4.2. HARDNESS CHAPTER 4. EDGE MODIFICATION

components corresponding to C \ I of size c. As c+ 3 = α · q or c+ 3 = δ + q this is within the bound
for both problems and q ≤ c < c+ 3, this is a balanced cluster graph.

Claim 4.2.4. (⇐) If the set A ⊆
(
V (G)

2

)
is a minimum editing set such that |A| ≤ k and G = (V,E4A)

is a balanced cluster graph, we will show that it can be used to obtain a solution I ⊆ C to EXACT

3-COVER such that |I| = n.

For this proof we need to show that an optimal solution consists of components of size c + 3 or c,
where each component of size c + 3 has exactly 3 vertices from V1, and that is solution can be used to
obtain a solution I ⊆ C to the problem of EXACT 3-COVER for universe U .

The cost of creating a complete component of size c + 3 in G is at most 6c + 12 assuming each of
the three vertices from V1 is part of 3 triplets, as for a vertex to be removed from a triplet we have to do
c deletions +2 deletion to the other vertices from V1 also in that triplet. To show that an optimal solution
creates components of this size, we have to show that the cost of making components of size c + 1 and
c+ 2, or of size c+ 2 and c+ 4 is greater than k.

To split the three vertices from a triplet such that they create complete components of size c + 1 and
c + 2, the deletion cost for the two vertices in c + 2 is same as before (2(c + 2) for each vertex), while
for the vertex in the component of size c+ 1, it has to delete all edges to vertices in V1 and to 2 of the at
most 3 cliques representing triplets for a total cost of 6 + 2c. The total cost for this configuration is then
(6 + 2c) + 2(2c+ 4) = 6c+ 14 which is 2 more than what we claimed to be an optimal solution.

To make complete components of size c+ 4 and c+ 2, the cost for the two vertices in c+ 2 is same
as before (2c+ 4 for each). For the vertex in the component of size c+ 4, we have to add this vertex to a
triple it is not part of already (assuming the other 3 vertices corresponds to the triple). To do this we have
to delete its edges to all triplets it is a member of and vertices in V1 not in the same component, at a cost
of at least 3c. It also has to add c edges to the c vertices it is in the same component as. The total editing
cost is then (4c) + 2(2c+ 4) = 8c+ 8, 2c− 4 more than optimal.

In addition to this, c+ 4 is larger than α · q or δ+ q, so we have to join each component of size q with
either another component of same size at a total cost of n2 · q

2, or with a component of size c at a cost of
n · c · q. Both these operations comes with a cost in the order of n3 which is greater than k.

To obtain the solution to EXACT 3-COVER, for each component of size c + 3, the triplet in C corre-
sponding to that component is a member of the solution I . We have now showed that if there exist a YES
solution of size at most k, it corresponds to a solution of EXACT 3-COVER of size n. As we use only
deletions in this reduction, and showed that having the option to add edges does not change the solution,
the reduction is applicable to both EDGE EDITING and EDGE DELETION.

For the equality versions α = 1 and δ ≤ 2 case we give a separate proof. This proof will be from
the problem RESTRICTED PARTITIONING INTO TRIANGLES(RPIT), a variation of PARTITIONING INTO

TRIANGLES where the input graph is a 4-regular graph with restricted neighbourhoods. Rooij et al.[22]
showed that PARTITIONING INTO TRIANGLES is NP-complete for 4-regular graphs, and that this persists

38

4.2. HARDNESS CHAPTER 4. EDGE MODIFICATION

even for the case where G is a graph such that there is no clique of size 4. This reduction is based on a
reduction by Komusiewicz[18].

RESTRICTED PARTITIONING INTO TRIANGLES

Input: An undirected 4-regular graph G = (V,E) with neighbourhoods resticted such that
there is no cliques of size 4 in G.

Question: Can V be partitioned into |V |/3 sets such that each set induce a triangle.

Lemma 4.2.5. FACTORCE, DIFFERENCECE, FACTORCD and DIFFERENCECD are NP-hard when α =

1 or δ ≤ 2.

Proof. In this proof we will give a polynomial reduction from an instance G′ = (V ′, E′) of RPIT. Let
n = |V ′| and as budget we set k = n.

We construct the graph G by first constructing a copy of G′, and then adding n isolated triangles.
For the case of δ = 2 or δ = 1, we instead add 3n isolated components of size 1 or 2 respectively. We
will now show that there exists a valid partitioning into triangles in G′ if and only if there exists a cluster
editing set of size at most k in G.

Claim 4.2.6. (⇒) If A′ is a valid partition of the vertices of G′ into triangles, it can be used to obtain a

set A ⊆
(
V (G)

2

)
such that G4A gives a balanced cluster graph and |A| ≤ k.

For each triplet {x, y, z} ∈ A′, remove all edges from each vertex where the vertex adjacent is not in
the same triplet. Since each vertex has 4 neighbours, where 2 has to be members of the same triplet, we
see that the cost of edits are k. Now each component of G is a triangle, which implies that they are all of
same size, or for the case of δ = 1 or δ = 2, components are within δ of each other.

Claim 4.2.7. (⇐) If a set A ⊆
(
V (G)

2

)
is an editing set of size at most k such that G4A is a balanced

cluster graph, the components of G corresponds to a partition into triangles of G′.

To rule out that there exist a solution with components of size larger than 3, we see that the minimal
cost of adding a vertex to each of the isolated complete components has a total cost greater than n, which
is larger than the budget.

To create complete components smaller than 3 we observe that as each vertex in V ′ has degree 4. This
means that we at least have to delete 2 from each for each vertex to be part of a component complete. As
this deletion costs n = k, there is no budget left to delete further edges. This then shows that the complete
components in a solution has to have size 3. If after this deletion there is a valid cluster editing instance
then the triangles from G′ is also a valid RPIT solution.

Since this reduction uses only edge deletions and we show that having the option to add in edges does
not change the solution, we see that RPIT can be reduced to both EDITING and DELETION.

Theorem 4.2.8. FACTORCE, DIFFERENCECE, FACTORCD and DIFFERENCECD are NP-Complete for

every fixed α ≥ 1 and δ > 0.

39

4.2. HARDNESS CHAPTER 4. EDGE MODIFICATION

Proof. By Lemma4.2.1 we show membership in NP, and by Lemma 4.2.2 and 4.2.5 we show hardness
for all α ≥ 1 or δ ≥ 0. The problems are therefore NP-Complete.

4.2.2 Completion

As we have allready shown that FACTORCC and DIFFERENCECC are in NP it only remains to prove
that they are NP-hard. This will be done with a reduction from the strongly NP-Complete problem 3-
PARTITION [13].

3-PARTITION

Input: A collection of positive integers S = {q1, q2...q3N}
Question: Can S be partitioned into N triplets such that the elements of each triplet sums up to

B where B =
∑
q∈S q

N

Lemma 4.2.9. FACTORCC and DIFFERENCECC are NP-Hard for every fixed α ≥ 1 or δ ≥ 0.

Proof. In this proof we will give a polynomial reduction from an instance S = {q1, q2...q3N} of 3-
PARTITION where all integers q ∈ S is bounded by B/4 < q < B/2. Let Q =

∑
q∈S q be the sum of all

elements in S,B = Q
N the target sum of each of theN triplets, and the budget k = (3Q2+2QB+B2

3)·N .
We construct the graph G, by for each element q ∈ S we construct a complete component of size

q+Q. We also construct (BN)2 complete components of size α(B+3Q) or δ+(B+3Q) for FACTORCC
and DIFFERENCECC respectively. The 3Q part is used to force each component to be a complete join
of 3 original components and the B forces each component to represent elements with sum B. We will
now show that there is a solution to FACTORCC and DIFFERENCECC if and only if there is a solution to
3-PARTITION, and that it can be used to get to this solution.

Claim 4.2.10. (⇒) If the set A′ of triplets is a valid 3-partition of S, it can be used obtain a set A ⊆(
V (G)

2

)
\ E(G) such that |A| ≤ k and G+A is a balanced cluster graph.

For each triplet in A′, join the corresponding components in G. All components will then have size
B + 3Q which is within a factor of α or δ of the large components. Also, the cost of this join is at most
k = (3Q2 + 2QB + B2

3) ·N , which is the case when each component is of size B
3 +Q.

Claim 4.2.11. (⇐) If there is a set A ⊆
(
V (G)

2

)
\ E(G) of at most k of edges such that G + A is a

balanced cluster graph, it can be used to obtain a solution to 3-PARTITION of S.

For the instance to be a YES-instance, each final component Ci has to have size B + 3Q ≤ |Ci| ≤
(α(B + 3Q) or δ+ (B + 3Q)). For each of the small components to reach this size they has to be joined
with at least 2 other components to reach a size of x + 3Q. For a joining of 4 components to happen,
the lowest cost is for a join of components of size {(B/4 + Q,B/4 + Q,B/4 + Q,B/4 + Q}. The
cost of this is (6Q2 + 3QB + 6B2

16). For the remaining 3N − 4 components there are now 2 components
which has to be joined into components of 4 since 3N − 4 mod 3 = 2. The total cost of these 3
joins into components of 4 has a cost of (18Q2 + 9QB + 9B2

8), and the remaining budget is then k′ =

(3N − 18)Q2 + (2N − 9)BQ+ (N3 −
9
8)B2. The reduced instance S′ now has 3(N − 4) elements to be

40

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

joined into (N − 4) components. The budget needed for this is (3Q2 + 2QB + B2

3) · (N − 4). We will
now show that this is more than the remaining budget in k′

3NQ2 + 2NBQ+
NB2

3
− 18Q2 − 9BQ− 9B2

8
(4.1)

−3NQ2 + 2NBQ+
NB2

3
− 12Q2 − 8BQ− 4B2

3
(4.2)

=− 6Q2 −BQ+
5B2

24
(4.3)

=B2(−6N2 −N +
5

24
) < 0, ∀N > 0 (4.4)

For FACTORCC, if a component of size B/4 + Q joins with a big component of size α · (B + 3Q)

with a cost of (3αQ2 + 7αQB
4 + αB2

4), this then raises the lower bound on the size of components from
B + 3Q to (1

4+α)B+(1+3α)Q

α . As we have allready shown that merging of 4 components is not possible,
each of the 3N small components has to join with a large component. As the cost of one such join is
(3αQ2 + 7αQB

4 + αB2

4), the total will be (9αQ2 + 21αQB
4 + 3αB2

4) · N which is greater than k for all
α ≥ 1.

The same is true for DIFFERENCECC, the cost of merging a component of size B/4 + Q with a big
component of size δ + (B + 3Q) has a cost of (3Q2 + 7QB

4 + B2

4 + δ(B+D)
4), and the cost of doing 3N

such joins has a cost of (9Q2 + 21QB
4 + 3B2

4 + 3δ(B+D)
4) ·N which is greater than k for all δ ≥ 0.

As we now see that each component has to be a result of joining exactly 3 components, it remains to
show that each component will have size exactlyB+3Q. Assume that a component has size (B+x)+3Q,
then there will be another component with size at most (B − x) + 3Q. This is not within the bound of
B + 3Q, and can’t be part of a YES-instance.

Recreating a solution of 3-PARTITION can be done by checking which components who joined each
other, and which elements of S they corresponds to. These 3 elements then creates a triple in a solution
of S.

Theorem 4.2.12. FACTORCC and DIFFERENCECC are NP-Complete for every fixed α ≥ 1 and δ.

Proof. By Lemma4.2.1 we show membership in NP, and by Lemma 4.2.9 we show hardness for all α ≥ 1

or δ ≥ 0. The problems are therefore NP-Complete.

4.3 Polynomial Kernels

We will now give polynomial kernels for all 6 variations of edge modification problems. As the ker-
nels for absolute difference balancing are very similar to their factor variation, the only differences are
in rules comparing sizes of components. We will therefore state the rules and give safeness proofs for
FACTORCC, FACTORCD and FACTORCE, while for DIFFERENCECC, DIFFERENCECD and DIFFER-

41

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

ENCECE we will state all reduction rules, but only give proofs for safeness for rules which are not equal
to their factor version.

For all kernels we define the trivial YES-instance and NO-instance as the same.

Definition 4.3.1. In the trivial YES-instance(G, k), let V (G) = {u}, E(G) = ∅, k = 0.

Definition 4.3.2. In the trivial NO-instance(G, k), let V (G) = {u, v, w}, E(G) = {{u, v}{v, w}}, k =

0.

4.3.1 FACTORCC

We will now provide a polynomial kernel for the FACTORCC problem. The rules in this kernel each takes
an instance (G, k) of the problem as input and then returns a reduced instance (G′, k′) in polynomial time.
For this kernel each rule are only applied once, and in the order they are stated.

Reduction Rule 1. If k < 0, then return the trivial NO-instance.

As the only operation is edge addition, we observe that if there is a component which is not a complete
component, then we need to add all edges between vertices in the same component which is not already
adjacent. If there are more than k edges missing, this is obviously a NO-instance.

Reduction Rule 2. For each pair of connected vertices u, v such that {u, v} /∈ E(G), then add {u,v} to
E(G), and reduce k by 1. The new instance is (G+ {u, v}, k − 1).

Lemma 4.3.1. Reduction Rule 2 is safe and can be carried out in time O(|V |2).

Proof. In one direction, if A is a solution to (G+ {u, v}, k − 1) of size |A| ≤ k − 1, then it is clear that
(A ∪ {u, v} is a solution to (G, k).

For the other direction, assume than for an YES-instance(G, k) there is a solution A′ such that
{u, v} /∈ A. In that case we see that the vertices u and v has to be in different components, but as
our only operation is edge addition, and we know that they are in the same component in G this gives a
contradiction. By this we see that there are no solution without {u, v} ∈ A.

Computing the components can be done by DFS or BFS, and then adding in the edges missing for
all components to become complete is at worst case O(|V |2).

Rule 2 uses the fact that we know that each component has to be a clique to just fill in all missing
edges. As each component now is a complete component, we want to check the size of each component,
and sort them in increasing size to check if they already fulfill the bounds on sizes. The sizes of each
component is then stored in a list for use in later rules.

Reduction Rule 3. Sort all complete components by size in increasing order from C1 to Cmax and store
the size of each component in a list. If |V (Cmax)| ≤ α · |V (C1)| return the trivial YES-instance.

Lemma 4.3.2. Reduction Rule 3 is safe and can be carried out in time O(|V |).

42

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

Proof. If all components are complete components with sizes within a factor of α from each other then
the instance is solved.

Checking for this is done by first computing the size of each component in linear time, and then
sorting the list with bucket sort has running time bounded by O(|V |).

Since we now know that not all components are within the bounds, and that we cant make the largest
components smaller, we have to join the smallest components to make them larger. Because of this we
can remove everything but the smallest components and the largest component Cmax to compare against.

Reduction Rule 4. If the number of vertices is |V (G)| ≤ 2k skip to Rule 6. Else, remove all components
Ci except Cmax and {C1, ..., Cx}, where x is th smallest integer such that such that the total size of all
elements in |V (C1)|+ ...+ |V (Cx)| ≥ 2k.

Lemma 4.3.3. Reduction Rule 4 is safe and can be carried out in time O(|V |+ |E|).

Proof. As adding in k edges affects 2k vertices, storing more than 2k vertices ensures that we can not
join all components. By this we know that at least one of the components C1, ..., Cx are not joined with
another component. This implies that the smallest component in a solved instance is either an untouched
component, or the result of joining two or more components. By this we see that this rule does not affect
the smallest component in the solved instance. To show that no component Ci in C1, ..., Cx should join
a component which is greater than Cx, we see that the cost of this is greater than or equal to joining it
with any of the components C1, ..., Cx. This implies that we now have x − 2 components which may
need joining. If Ci joins with a component in C1, ..., Cx so that they become large enough, we now have
a greater budget left and x− 3 components to join.

By keeping at least one more component than we have budget to join we can use Cx to check if those
removed had size at least |V (Cmax)|

α .

Reduction Rule 5. If |V (Cx)| < |V (Cmax)|
α , then return the trivial NO-instance. If not, delete it from the

instance.

Lemma 4.3.4. Reduction Rule 5 is safe.

Proof. By Reduction Rule 4 we know that |V (C1)| + ... + |V (Cx) > 2k. This implies that at least one
component in C1, ..., Cx can not be joined with another component. We can therefore conclude that the
smallest component in a solved instance has to be smaller than or equal in size to Cx.

Since we know that there are some small components which has to be joined, this gives a bound on
the size of the largest components, since the largest components we can create with merging is of size
k + 1.

Reduction Rule 6. If |V (Cmax)| > α · (k + 1) return the trivial NO-instance.

Lemma 4.3.5. Reduction Rule 6 is safe.

43

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

Proof. As the cost of joining Ci and Cj is |V (Ci)| · |V (Cj)|, creating a component |V (Ci+j)| ≥ k + 2

cost at least k + 1 with the minimum being |V (Ci)| = 1 and |V (Cj)| = k + 1.

We also want to return a NO-instance if no joins at all is possible. This is the case when even the two
smallest components can not be joined.

Reduction Rule 7. If |V (C1)| · |V (C2)| > k return the trivial NO-instance

Lemma 4.3.6. Reduction Rule 7 is safe.

Proof. If even joining the two smallest components with each other has a cost higher than k then no joins
is possible in G and it’s a NO-instance.

Lemma 4.3.7. Reduction Rules 5, 6 and 7 can be carried out in time O(1).

Proof. As we have stored the size of each component in a sorted list. These rules is applied by lookup of
specific indexes in the list.

4.3.2 Analysis

Theorem 4.3.8. FACTORCC has a polynomial kernel with O(k) vertices that can be constructed in

O(|V |2) time.

Proof. Each reduction rule is applied in order, and only applied once. With each rule having a running
time bounded by at most O(|V |2) the kernel has a total running time also bounded by O(|V |2).

To give a bound on the number of vertices in the reduced instance we see that there are at most 3k

vertices in the small components, and that the size of Cmax is no larger than α · (k+ 1).The total number
of vertices is then |V (G)| ≤ 3k + α(k + 1).

Theorem 4.3.9. FACTORCC has a FPT-algorithm with running time kO(k) +O(|V |2).

Proof. By first employing the kernelization from Theorem 4.3.8 running in time O(|V |2), we have an
instance with O(k) vertices. By then brute force joining k components and checking if the graph is a
balanced cluster graph, we get an algorithm running in time kO(k) +O(|V |2).

4.3.3 DIFFERENCECC

For the related problem of adding edges to achieve a cluster graph such that the size of all components
Ci, Cj are within a difference of δ of each other. That is, ∀Ci, Cj ∈ G : |V (Ci)| ≤ |V (Cj)| + δ, a
polynomial kernel can be achieved by by mostly following the rules for the FACTORCC kernel. Because
of this we will state the rules, but for those who are the same as for FACTORCC we refer to those for the
proof of safeness and running time.

Reduction Rule 1. If k < 0 return the trivial NO-instance.

44

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

Reduction Rule 2. For each pair of connected vertices u, v such that {u, v} /∈ E(G), then add {u,v} to
E(G), and reduce k by 1. The new instance is (G+ {u, v}, k − 1).

Reduction Rule 3. Sort all complete component by size in increasing order from C1 to Cmax and store
the size of each component in a list. If |V (Cmax)| ≤ δ + |V (C1)| return the trivial YES-instance.

Lemma 4.3.10. Reduction Rule 3 is safe and can be carried out in time O(|V |).

Proof. If all components are complete graphs with sizes within a difference of δ from each other the
instance is solved.

Checking for this is done by first computing the sizes of the components in linear time, and then
sorting the list with bucket sort has running time bounded by O(|V |).

Reduction Rule 4. If the number of vertices is |V (G)| ≤ 2k skip to Rule 6. Else, remove all components
Ci except Cmax and {C1, ..., Cx}, where x is th smallest integer such that such that the total size of all
elements in |V (C1)|+ ...+ |V (Cx)| > 2k.

Reduction Rule 5. If |V (Cmax−1)|+ δ < |V (Cmax)|, then return the trivial NO-instance. If not, delete
it from the instance.

Lemma 4.3.11. Reduction Rule 5 is safe.

Proof. By Reduction Rule 4 we know that |V (C1)| + ... + |V (Cx) > 2k. This implies that at least one
component in C1, ..., Cx can not be joined with another component. We can therefore conclude that the
smallest component in a solved instance has to be smaller than or equal in size to Cx.

Reduction Rule 6. If |V (Cmax)| > k + 1 + δ return the trivial NO-instance.

Lemma 4.3.12. Reduction Rule 6 is safe.

Proof. As cost of joining Ci and Cj is |V (Ci)| · |V (Cj)|, creating a cluster |V (Ci+j)| ≥ k + 2 cost at
least k + 1 with the minimum being |V (Ci)| = 1 and |V (Cj)| = k + 1.

Reduction Rule 7. If |V (C1)| · |V (C2)| > k return the trivial NO-instance

4.3.4 Analysis

Theorem 4.3.13. DIFFERENCECC has a polynomial kernel with O(k) vertices that can be constructed

in O(|V |2) time.

Proof. As for the FACTORCC, all rules are applied only once, with a running time bounded by O(|V |2).
The number of vertices in the reduced instance is at most |V (G′)| ≤ 4k + 1 + δ.

Theorem 4.3.14. DIFFERENCECC has a FPT-algorithm with running time kO(k) +O(|V |2).

Proof. By first employing the kernelization from Theorem 4.3.13 running in time O(|V |2), we have an
instance with O(k) vertices. By then brute force joining k components and checking if the graph is a
balanced cluster graph, we get an algorithm running in time kO(k) +O(|V |2).

45

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

4.3.5 FACTORCD

In the polynomial kernel for Edge Deletion we will use two data structures in addition to the instance
(G, k). These will be a list Iv of the complete components we remove from G, sorted by size to easy find
the smallest and largest components, and the critical clique graph K of G. The reduction rules will be
applied exhaustively, by always applying the lowest numbered rule which can be applied.

Reduction Rule 1. If k < 0, then return the trivial NO-instance

Now we will employ a procedure first introduced by Guo et al [15]. By computing the critical clique
graph K of G, we can use that to both get a bound of the number of vertices in G, and to find edges
between critical cliques which has to be deleted.

Reduction Rule 2. Build the critical clique graph K of G. For each isolated vertex in K, remove it from
K and move the corresponding component from G to Iv .

Lemma 4.3.15. Reduction Rule 2 is safe and can be carried out in time O(|V |+ |E|).

Proof. This rule does not change the instance in any way. Moving components from G to Iv preserves
them for later checking for size bounds.

The graph K can be constructed in time O(|V | + |E|) by lexicographical sorting of G. The critical
cliques are then the vertices in the same class. Moving a component fromG to Iv is also a linear operation.

If nowG is empty, then we know that each component is a complete component, and if the size bound
is upheld we have an YES-instance.

Reduction Rule 3. If G = ∅ and for all Ci, Cj ∈ Iv it holds that |V (Ci)| ≤ α|V (Cj)|, then return the
trivial YES-instance.

Lemma 4.3.16. Reduction Rule 3 is safe and can be carried out in time O(|V |+ |E|).

Proof. As G is empty, each component is a complete component. Computing the size of all components
can be done in O(|V | + |E|). By finding the smallest component and comparing all other components
against this, the number of comparisons is linear. If all components already are within the size bound we
can return a trivial YES-instance.

As we now have removed all complete components from G, we know that each component in G
demands at least one deletion. By this property we can give a bound on the number of components in a
YES-instance. We can also give a bound on the number of vertices in K by the property that each vertex
is part of at least one P3.

Reduction Rule 4. If the number of components in K is greater than k or the number of vertices in K is
greater than 4k, then return the trivial NO-instance.

Lemma 4.3.17. Reduction Rule 4 is safe and can be carried out in time O(|V |+ |E|).

46

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

Proof. As each component left in G after application of Rule 2 need at least 1 deletion to become a
complete component, there can be at most k components for the instance to be a YES-instance.

To bound the number of vertices in K, observe that each vertex Ki ∈ K is part of at least one P3 by
the properties of a critical clique graph. This means that for every edge {Ki,Kj} ∈ E(K) there exist
at least one vertex Kx ∈ K such that exactly one of the edges {Ki,Kx} or {Kx,Kj} are in E(K). For
there to be a clique of size x in K there is at least x − 1 edges in E(K) which has to be deleted to make
the component P3-free.

To maximize the number of vertices in K of a YES-instance, observe that a component with only one
deletion necessary can’t have a clique of size greater than 2. Any way of connecting 3 or more vertices in
K requires at least 1 deletion for the component to become complete. To maximize the ratio of vertices
in G per deletion required, observe that for a clique of size x this ratio is x

x−1 . This has a maximum at
x = 2. As we can then create a component comprised of two cliques of size 2 connected by a single edge,
we get a P4, which has 4 vertices and requires 1 deletion. As we have a bound of k components, we see
that |V (K)| ≤ 4k.

By this we see that the highest number of critical cliques in a YES-instance can be at most 4k. Check-
ing for this can be done in linear time by e.g. DFS in K.

Two neighbouring critical cliques Ki and Kj has |V (Ki)| · |V (Kj)| edges between them, and there-
fore the cost of making them two different complete components costs |V (Ki)| · |V (Kj)|. If an edge
{Ki,Kj} ∈ EK has a cost of more than k to delete, we know that V (Ki) and V (Kj) has to be in the
same component. To achieve this, we have to remove all edges to vertices adjacent to one of the critical
cliques, but not adjacent to the other.

Reduction Rule 5. For some edge {Ki,Kj} ∈ EK such that |V (Ki)| · |V (Kj)| > k, if there exist an
edge {u, x} ∈ E(G) where u ∈ V (Ki) ∪ V (Kj) and x /∈ N(Ki) ∩ N(Kj), then delete {u, x} and
decrease k by 1. The new instance is then (G− {u, x}, k − 1).

Lemma 4.3.18. Reduction Rule 5 is safe and can be carried out in time O(|V |+ |E|).

Proof. In one direction, assume that after application of Rule 5 the reduced instance (G′, k′) is a NO-
instance. As the instance (G, k) was a YES-instance, there had to be a way to make the component which
the critical cliques Ki and Kj belongs to into complete components. By application of Rule 5 we made
the components such that Ki and Kj is part of the same component. If this made the instance into a
NO-instance, this implies that Ki and Kj should belong to different components. To do this we have to
remove all |V (Ki)| · |V (Kj)| edges between them. But as the number of edges between them is greater
than k, we don’t have enough budget for this operation and it is therefore not possible.

For the other direction, if(G′, k′) is a YES-instance, observe that we decrease the budget k by the
number of edges removed. So if (G′, k′) is a YES-instance, then there exist a set A of edges such that
(G′ ∪A, k′ + |A|) = (G, k).

Finding an edge in K were this rule applies can be done by DFS in time O(|V |+ |E|). Then finding
the critical cliques which is neighbour of only one of them can be done in time O(k) as we have already
bounded the number of vertices in K.

47

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

After application of Rule 5 each edge in EK has a deletion cost of at most k. This means that the size
of two adjacent critical cliques Ki and Kj is at most |V (Ki)|+ |V (Kj)| ≤ k+ 1 as this is the maximum
of the function |V (Ki)| · |V (Kj)| ≤ k. As we also know that a clique of size x in K demands at least
x − 1 deletions, we know that in a YES-instance, there is no cliques of size greater than k + 1 in K. By
applying the first bound on each edge of a clique of size k + 1, we get a clique containing one critical
clique of size k and k critical cliques of size 1, for a total size of the clique of 2k. By this we know that
if there exists components in Iv of size greater than α · 2k and the instance is not already solved it is a
NO-instance.

Reduction Rule 6. If there exist a component C in Iv such that |V (C)| > α · 2k, then return the trivial
NO-instance.

Lemma 4.3.19. Reduction Rule 6 is safe and can be carried out in time O(|V |).

Proof. If G = ∅ we know by Rule 3 that the instance is not already solved, and since the cost of splitting
complete graphs of size greater than 2k is more than k, we therefore have a NO-instance.

Otherwise, if G is not empty, creating a complete graph of k + 1 critical cliques has an editing cost
of at least k by the definition of a critical clique graph. By Rule 5, no critical clique has size greater than
k. Assume that vertices {K1,K2,,Kx} ∈ K creates a clique in K, and at least x − 1 of the vertices
has an edge to at least one vertex not adjacent to any other critical clique in the clique. To remove the
vertices not in the clique from the component the number of edges which has to be removed is the size of
their neighbouring critical clique. As we know that there are at least x− 1 such vertices, x can be at most
k + 1, and

∑x−1
i=1 |V (Ki)| ≤ k. By then having |V (Kx)| = k this gives us a maximal size of the clique

at k + k = 2k.
Application of the rule is done in linear time, as computing the sizes of complete components is

bounded by O(|V |).

Reduction Rule 7. If Iv has more than k + 2 components, remove all components except Cmin and the
k + 1 largest components.

Lemma 4.3.20. Reduction Rule 7 is safe and can be carried out in time O(|V |).

Proof. If more than k components needs a split to be within the size bound, we have a NO-instance, so
by storing k + 1 largest components, we know that at least one of them has to be within the size bound
already for there to be a YES-instance. We also don’t know if the smallest component of the solution is
Cmin or a part of one of the components in G, so we have to store Cmin too.

Reduction Rule 8. Return (G ∪ Iv, k)

48

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

4.3.6 Analysis

Theorem 4.3.21. FACTORCD has a polynomial kernel with O(k2) vertices that can be constructed in

O(|E|(|V |+ |E|)) time.

Proof. As the reduction rules are applied exhaustively, with the number of edges bounding the number
of application of each rule, and each rule can be applied in time O(|V | + |E|) the total running time of
the kernel is then O(|E|(|V |+ |E|)).

To give a bound on the number of vertices in the reduced instance, observe that there are at most 4k

critical cliques in G, each with a size of at most k.This gives a bound of |V (G)| ≤ 4k2. In addition
to this we have at most k + 2 components in Iv , with a maximum number of vertices as |V (Iv)| ≤
(k+2) ·α2k = α · (2k2 +4k). The total number of vertices in the reduced instance is then |V (G∪Iv)| ≤
4k2 + α · (2k2 + 4k).

Theorem 4.3.22. FACTORCD has a FPT-algorithm with running time kO(k) +O(|E|(|V |+ |E|)).

Proof. By first employing the kernelization from Theorem 4.3.21 running in time O(|E|(|V | + |E|)),
we have an instance with O(k2) vertices. By then using the trivial O(2k) branching algorithm by on
each remaining P3, branch in two by removing either of them. When the graph is P3-free, brute force
splitting of components which are too big and checking if the graph is a balanced cluster graph, we get
an algorithm running in time kO(k) +O(|E|(|V |+ |E|)).

4.3.7 DIFFERENCECD

For the problem of deleting edges to achieve a cluster graph such that the size of all complete components
is Ci, Cj are within a difference of δ of each other ∀Ci, Cj ∈ G : |V (Ci)| ≤ |V (Cj)| + δ, most of the
reduction rules from the kernel for FACTORCD can be used. Because of this safeness of the reduction
rules which are the same is shown in the the chapter for FACTORCD.

Reduction Rule 1. If k < 0, then return the trivial NO-instance.

Reduction Rule 2. Build the critical clique graph K of G. For each isolated vertex in K, remove it from
K and move the corresponding component from G to Iv .

Reduction Rule 3. If G = ∅ and for each pair of components Ci, Cj ∈ Iv we have that |V (Ci)| ≤
|V (Cj)|+ δ, then return the trivial YES-instance.

Lemma 4.3.23. Reduction Rule 3 is safe.

Proof. As G is empty, each component is a complete graph. Checking the sizes of all components can
be done in O(|V | + |E|). By finding the smallest component and comparing all components against
this the number of comparisons is linear. If the sizes of all components is within the bound we have a
YES-instance.

Reduction Rule 4. If the number of components in K is greater than k or number of vertices in K is
greater than 4k, then return the trivial NO-instance.

49

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

Reduction Rule 5. If for some edge {Ki,Kj} ∈ EK such that|V (Ki)| · |V (Kj)| > k. If there exist
an edge {u, x} ∈ E(G) where u ∈ V (Ki) ∪ V (Kj) and x /∈ N(Ki) ∩ N(Kj), then delete {u, x} and
decrease k by 1. The new instance is then (G− {u, x}, k − 1).

Reduction Rule 6. If there exist a component C in Iv such that |V (C)| > 2k + δ, then return the trivial
NO-instance.

Lemma 4.3.24. Reduction Rule 6 is safe.

Proof. As we showed in Reduction Rule 6 of FACTORCD kernel, by deleting edges in G, the largest
complete graph we can create has size 2k. Because of this, no YES-instancecan contain a complete graph
of size greater than 2k + δ.

Reduction Rule 7. If Iv has more than k + 2 components, remove all components except Cmin and the
k + 1 largest components.

4.3.8 Analysis

Theorem 4.3.25. DIFFERENCECD has a polynomial kernel with O(k2) vertices that can be constructed

in O(|E|(|V |+ |E|)) time.

Proof. As for the FACTORCD, all rules are applied exhaustively, with each rule having a running time
bounded by O(|V | + |E|). As the number of application per rule is bounded by the number of edge
deletions, we get a total running time of O(|E|(|V |+ |E|)).

The number of vertices in the reduced instance is at most |V (G ∪ Iv)| ≤ 6k2 + 4k + δ.

Theorem 4.3.26. DIFFERENCECD has a FPT-algorithm with running time kO(k) +O(|E|(|V |+ |E|)).

Proof. By first employing the kernelization from Theorem 4.3.25 running in time O(|E|(|V | + |E|)),
we have an instance with O(k2) vertices. By then using the trivial O(2k) branching algorithm by on
each remaining P3, branch in two by removing either of them. When the graph is P3-free, brute force
splitting of components which are too big and checking if the graph is a balanced cluster graph, we get
an algorithm running in time kO(k) +O(|E|(|V |+ |E|)).

4.3.9 FACTORCE

The kernel for FACTOR-α BALANCED CLUSTER EDITING builds on ideas developed by Guo et al. [15]
for the problem of CLUSTER EDITING. Similar to their kernel we will employ the technique of building
the critical clique graph K of G. In addition to K we also need a list Iv to keep track of complete
components which we remove from G so that they can be stored until we need to compare sizes of
components. This kernel also heavily builds on the kernel for FACTORCD, as e.g. the technique for
giving a bound on the number of vertices in K is equal.

The reduction rules will be applied exhaustively by always applying the lowest numbered rule which
can be applied.

50

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

Reduction Rule 1. If k < 0, then return the trivial NO-instance.

Reduction Rule 2. Build the critical clique graph K of G. For each isolated vertex in K, remove it from
K and move the corresponding component from G to Iv .

Lemma 4.3.27. Reduction Rule 2 is safe and can be carried out in time O(|V |+ |E|).

Proof. This rule does not change the instance in any way. Moving components from G to Iv preserves
them for later checking against size bounds.

The graph K can be constructed in time O(|V | + |E|) by lexicographical sorting of G. The critical
cliques are then the vertices in the same class. Moving a component fromG to Iv is also a linear operation.

If now G is empty, then we know that each component is a complete graph, and if the size constraint
is upheld for all components in Iv , we have a YES-instance.

Reduction Rule 3. If G = ∅ and for each pair of components Ci, Cj ∈ Iv we have that |V (Ci)| ≤
α|V (Cj)|, then return the trivial YES-instance.

Lemma 4.3.28. Reduction Rule 3 is safe and can be carried out in time O(|V |).

Proof. As G is empty, each component is a complete graph. Computing the sizes of all components can
be done in O(|V |). By finding the smallest component and comparing all components against this the
number of comparisons is linear. If the sizes of all components is within the bound we have a YES-
instance.

Reduction Rule 4. If the number of components in K is greater than k or number of vertices in K is
greater than 4k, then return the trivial NO-instance.

Lemma 4.3.29. Reduction Rule 4 is safe and can be carried out in time O(|V |+ |E|).

Proof. As each component left inG after application of rule 2, need at least one edge deletion or addition
to become a complete component, there can be at most k components for the instance to be a YES-
instance.

To bound the number of vertices in K, observe that each vertex Ki ∈ K is part of at least one P3 by
the properties of a critical clique graph. This means that for every edge {Ki,Kj} ∈ E(K) there exist
at least one vertex Kx ∈ K such that exactly one of the edges {Ki,Kx} or {Kx,Kj} are in E(K). For
each such vertex Kx, either at least one edge has to be added in, or one edge has to be deleted. For there
to be a clique of size x in K it then has to be done at least x− 1 edits to make the component P3-free.

To maximize the number of vertices in K of a YES-instance, observe that a component with only one
deletion necessary can’t have a clique of size greater than 2. Any way of connecting 3 or more vertices in
K requires at least 1 deletion for the component to become complete. To maximize the ratio of vertices
in G per deletion required, observe that for a clique of size x this ratio is x

x−1 . This has a maximum at
x = 2. As we can then create a component comprised of two cliques of size 2 connected by a single edge,

51

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

we get a P4, which has 4 vertices and requires 1 deletion. As we have a bound of k components, we see
that |V (K)| ≤ 4k.

By this we see that the highest number of critical cliques in a YES-instancecan be at most 4k. Check-
ing for this can be done in linear time by e.g. DFS in K.

Now if there is a critical clique K of size greater than k in G, we know that we can neither delete any
edges between K and its neighbouring critical cliques or add any edges between K and critical cliques
not in NK[K]. By this we then know that we have to delete any edge between a neighbour of K and a
non-neighbour, and also add edges between vertices in NK[Ki] which is not adjacent.

Reduction Rule 5. If for some critical clique K ∈ K such that |V (K)| > k, there exist an edge {u, v} ∈
E(G) where u ∈

⋃
K′∈NK(K) V (K ′) and v /∈

⋃
K′∈NK[K] V (K ′), then delete the edge {u, v} and

decrease k by 1. If there exist two vertices x, y in
⋃
K′∈NK[K] V (K ′) such that {x, y} /∈ E(G), then add

the edge to E(G) and decrease k by 1.

Lemma 4.3.30. Reduction Rule 5 is safe is safe and can be carried out in time O(|V |+ |E|).

Proof. To show that if the instance (G, k) is a YES-instance, then the reduced instance (G′, k′) is a YES-
instance we assume the opposite to show that this is not correct. If the reduced instance (G′, k′) is a NO-
instance, then that implies that there is another way to make the big critical cliqueKi part of a component
which is a complete graph. For Ki to be part of the same component as a vertex v /∈

⋃
K′∈NK[Ki] V (K ′)

the set A of edged added between vertex v and each of the vertices in Ki, is greater than k.
Likewise, if a vertex v ∈

⋃
K′∈NK[Ki] V (K ′) is not in the same complete graph as the vertices of

Ki, the set A of edges to delete is greater than k. Lastly, if a vertices u, v ∈ V (Ki) is to end up in two
different components, the cost of splitting a complete graph of size k + 1 into two components of size k
and 1 has a cost of k. In addition to this, size Ki ∈ K this implies it has at least 1 neighbour, which has
to have its edges to one of the splits of Ki removed, for a cost which then exceeds k.

To show that if the reduced instance (G′, k′) is a YES-instance implies that the original instance (G, k)

also is a YES-instance, observe that we decrease the budget k by the number of edges removed. So if
(G′, k′) is a YES-instance, then there exist a set A of edges such that (G′∆A, k′ + |A|) = (G, k).

Finding a big critical clique is done by traversing K. Then finding critical cliques with distance two
from a big critical clique can be done by BFS. Checking if the neighbours of a critical clique are adjacent
to each other can also be done in linear time.

After application of Rule 5 we can now give a bound on how big complete components we can create
in G. This is possible as we have a maximum size of each critical clique, and also a bound on the number
of critical cliques in a clique in K.

Reduction Rule 6. If there exist a component C ∈ Iv such that |V (C)| > α · (2k + 1), then return the
trivial NO-instance.

Lemma 4.3.31. Reduction Rule 6 is safe and can be carried out in time O(|V |+ |E|).

52

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

Proof. To prove this rule we will show that by neither adding or removing edges to G can we create a
complete graph of size greater than 2k + 1. If G = ∅ we know by Rule 3 that the instance is not already
solved, and since the cost of splitting or merging complete graphs of size greater than 2k is more than k,
we therefore have a NO-instance.

Otherwise, if G is not empty, creating a complete graph of k + 1 critical cliques has an editing cost
of at least k by the definition of a critical clique graph. By Rule 5, no critical clique has size greater than
k. Assume that vertices {K1,K2,,Kx} ∈ K creates a clique in K, and at least x − 1 of the vertices
has an edge to at least one vertex not adjacent to any other critical clique in the clique. Then we either
has to add an edge between the vertex not in the clique and each of the x− 1 critical cliques in the clique
it’s not adjacent to, or delete all edges between it and all adjacent vertices in the clique. For the vertex to
be included into the clique, it can at most require k edge additions. If it already is connected to a critical
clique of size k this now gives a maximal size of the clique as k + k + 1 = 2k + 1.

By instead removing the vertex from the component the number of edges which has to be removed
is the size of the neighbouring critical clique. As we know that there are at least x − 1 such vertices, x
can be at most k + 1, and

∑x−1
i=1 |Ki| ≤ k. By then having |Kx| = k this gives us a maximal size of the

complete graph at k + k = 2k.
Each application of the rule is done in linear time, as computing the sizes of each component is

bounded by O(|V |+ |E|).

Reduction Rule 7. If Iv has more than 3k + 2 components, remove all components except the 2k + 1

smallest and the k + 1 largest.

.

Lemma 4.3.32. Reduction Rule 7 is safe and can be carried out in time O(|V |+ |E|)

Proof. If more than k large components needs splitting to be within the size bound, we have a YES-
instance, so by storing the k + 1 largest components, we know that at least one of them has to be within
the size bound already for there to be a YES-instance. As merging two small components has a cost of
at least 1, keeping 2k + 1 smallest componets we know that at least one of them can’t be merged, and
therefore already has to be big enough.

Sorting the list by sizes of components can be done in time O(|V |) with bucket sort. Then removing
the middle components can be done in O(|V |)

Reduction Rule 8. Return (G ∪ Iv, k)

4.3.10 Analysis

Theorem 4.3.33. FACTORCE has a polynomial kernel with O(k2) vertices that can be constructed in

O(|V |2(|V |+ |E|)) time.

53

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

Proof. After exhaustive application of Rules 1 to 7, we have at most k components with 4k critical cliques
inGwhich implies that |V (G)| ≤ 4k2, and at most 3k+2 components with size at most α ·(2k+1) in Iv .
The number of vertices in V (Iv) is bounded the fact that each component has a size at most α · (2k+ 1),
and therefore the total number of vertices |V (Iv)| ≤ (3k + 2) · α · (2k + 1) = α · (6k2 + 7k + 2). The
total size of the kernel is then |V (G ∪ Iv)| ≤ 4k2 + α · (6k2 + 7k + 2).

Each reduction rule has running time at mostO(|V |+ |E|), and the number of times each rule can be
applied is bounded by the number of edges either added or deleted. This is bounded by |V |2, which gives
a bound on the running time of O(|V |2(|V |+ |E|))

Theorem 4.3.34. FACTORCE has a FPT-algorithm with running time kO(k) +O(|V |2(|V |+ |E|)).

Proof. By first employing the kernelization from Theorem 4.3.33 running in time O(|V |2(|V | + |E|)),
we have an instance withO(k2) vertices. By then using the trivialO(3k) branching algorithm by on each
remaining P3, branch in three by removing either of them or adding in the missing edge. When the graph
is P3-free, brute force splitting of big components and joining small components and checking if the graph
is a balanced cluster graph. By this we get an algorithm running in time kO(k) +O(|V |2(|V |+ |E|)).

4.3.11 DIFFERENCECE

For the problem of editing to a cluster graph such that the size of all components is Ci, Cj is within a
difference of δ of each other ∀Ci, Cj ∈ G : |V (Ci)| ≤ |V (Cj)|+ δ, most of the reduction rules from the
kernel for FACTORCE can be used. Because of this safeness of the reduction rules which are the same is
shown in the the chapter for FACTORCE kernel.

Reduction Rule 1. If k < 0, then return the trivial NO-instance.

Reduction Rule 2. Build the critical clique graph K of G. For each isolated vertex in K, remove it from
K and move the corresponding component from G to Iv .

Reduction Rule 3. If G = ∅ and for each pair of components Ci, Cj ∈ Iv we have that |V (Ci)| ≤
|V (Cj)|+ δ, then return the trivial YES-instance.

Lemma 4.3.35. Reduction Rule 3 is safe and can be carried out in time O(|V |+ |E|).

Proof. As G is empty, each component is a complete graph. Checking the sizes of all components can
be done in O(|V | + |E|). By finding the smallest component and comparing all components against
this the number of comparisons is linear. If the sizes of all components is within the bound we have a
YES-instance.

Reduction Rule 4. If the number of components in K is greater than k or number of vertices in K is
greater than 4k, then return the trivial NO-instance.

Reduction Rule 5. If for some critical clique K ∈ K such that |V (K)| > k, there exist an edge {u, v} ∈
E(G) where u ∈

⋃
K′∈NK(K) V (K ′) and v /∈

⋃
K′∈NK[K] V (K ′), then delete the edge {u, v} and

decrease k by 1. If there exist two vertices x, y in
⋃
K′∈NK[K] V (K ′) such that {x, y} /∈ E(G), then add

the edge to E(G) and decrease k by 1.

54

4.3. POLYNOMIAL KERNELS CHAPTER 4. EDGE MODIFICATION

Reduction Rule 6. If there exist a component C ∈ Iv such that |V (C)| > 2k + 1 + δ, then return the
trivial NO-instance.

Lemma 4.3.36. Reduction Rule 6 is safe.

Proof. As we showed in Reduction Rule 6 of FACTORCE kernel, by neither adding or deleting edges can
we make a complete graph of size greater than 2k + 1. Because of this, no YES-instance can contain a
complete graph of size greater than 2k + 1 + δ.

Reduction Rule 7. If Iv has more than 3k + 2 components, remove all components except the 2k + 1

smallest and the k + 1 largest

4.3.12 Analysis

Theorem 4.3.37. DIFFERENCECE has a polynomial kernel with O(k2) vertices that can be constructed

in O(|V |2(|V |+ |E|)) time.

Proof. After application of Rules 1 to 7 we have a kernel of size at most |V (G∪Iv)| ≤ 10k2+7k+2+δ.
Each reduction rule has running time at mostO(|V |+ |E|), and the number of times each rule can be

applied is bounded by the number of edges either added or deleted. This is bounded by |V |2, which gives
a bound on the running time of O(|V |2(|V |+ |E|))

Theorem 4.3.38. DIFFERENCECE has a FPT-algorithm with running time kO(k) +O(|V |2(|V |+ |E|)).

Proof. By first employing the kernelization from Theorem 4.3.37 running in time O(|V |2(|V | + |E|)),
we have an instance withO(k2) vertices. By then using the trivialO(3k) branching algorithm by on each
remaining P3, branch in three by removing either of them or adding in the missing edge. When the graph
is P3-free, brute force splitting of big components and joining small components and checking if the graph
is a balanced cluster graph. By this we get an algorithm running in time kO(k) +O(|V |2(|V |+ |E|)).

55

Chapter 5
Open Problems and Future Work

In this thesis we have shown that FACTOR-α BALANCED CLUSTERING and DIFFERENCE-δ BALANCED

CLUSTERING are NP-complete for all graph modification operations we have studied, and also showed
that they admit polynomial kernels.

As the kernel for WEIGHTED FACTORCVD has O(k2) vertices, while the current best kernel for
CLUSTER VERTEX DELETION has O(k

5
3). This raises the question of does the two problems have the

same lower bound on the number of vertices. Another open problem is whether the weight bound of
O(k2) is optimal, or whether a more sophisticated weight substitution can give a subquadratic bound.

Open Problem 1. Does WEIGHTED FACTORCVD admit a kernel with a subquadratic bound on vertices
or weights?

For FACTORCC and DIFFERENCECC we showed that the hard part of the problem is the size balanc-
ing of clusters by complete joins, while completing each component is polynomial. As size balancing is
the bottleneck of both BALANCED CLUSTER COMPLETION and BALANCED CLUSTER EDITING, a sin-
gle exponential algorithm for BALANCED CLUSTER COMPLETION would also give a single exponential
algorithm for BALANCED CLUSTER EDITING.

Open Problem 2. Does FACTORCC and DIFFERENCECC admit single exponential time FPT-algorithms?

For the problems of BALANCED CLUSTER EDITING and BALANCED CLUSTER DELETION, we
provided kernels with O(k2) vertices. While our kernel for BALANCED CLUSTER DELETION is an
improvement of the best kernel for the less studied problem CLUSTER DELETION, the best kernel for
CLUSTER EDITING has O(2k) vertices. Similar to the vertex deletion problems, this raises the ques-
tion of whether there is a inherent difference between the regular CLUSTER EDITING problem, and the
BALANCED CLUSTER EDITING, or do they have the same lower bound on the number of vertices in the
kernel.

Open Problem 3. Does FACTORCE and DIFFERENCECE admit kernels with a linear number of vertices?

56

CHAPTER 5. OPEN PROBLEMS AND FUTURE WORK

An interesting extension to FACTOR-α BALANCED CLUSTERING and its absolute difference version,
is the problem of FACTOR-α BALANCED d-CLUSTERING where we also give the number d of clusters
in a solved instance.

FACTOR-α BALANCED d-CLUSTERING

Input: A graph G = (V,E), a budget k ∈ N
Question: Is it possible by at most k graph modifications to get a cluster graph (i.e a disjoint

union of cliques) with exactly d components, where for all components Ci, Cj in G, it
holds that α · |V (Ci)| ≥ |V (Cj)|?

Another related problem is the problem of instead of bounding the size of each cluster by the sizes
of other clusters, we give a lower bound p and an upper bound q such that it holds that for all clusters
we have p ≤ |V (Ci)| ≤ q. This problem is known as CAPACITATED CLUSTERING in the literature, and
notice that when q = α · p or q = p + δ it can be used to solve the problems studied in this thesis by
iterating through all possible values of p.

CAPACITATED CLUSTERING

Input: A graph G = (V,E), a budget k ∈ N and integers (p, q)

Question: Is it possible by at most k graph modifications to get a cluster graph (i.e a disjoint
union of cliques) where for each component Ci in G, it holds that p ≤ |V (Ci)| ≤ q?

57

Bibliography

[1] N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. Solving MAX-r-SAT above a tight lower
bound. In: Algorithmica 61.3 (2011), pp. 638–655.

[2] S. Böcker. A golden ratio parameterized algorithm for cluster editing. In: Journal of Discrete Al-

gorithms 16 (2012), pp. 79–89.

[3] S. Böcker and J. Baumbach. Cluster Editing. In: The Nature of Computation. Logic, Algorithms,

Applications. Ed. by P. Bonizzoni, V. Brattka, and B. Löwe. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 33–44. ISBN: 978-3-642-39053-1.

[4] S. Böcker and P. Damaschke. Even faster parameterized cluster deletion and cluster editing. In:
Information Processing Letters 111.14 (2011), pp. 717–721.

[5] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without polyno-
mial kernels. In: Journal of Computer and System Sciences 75.8 (2009), pp. 423–434.

[6] A. Boral, M. Cygan, T. Kociumaka, and M. Pilipczuk. A fast branching algorithm for cluster vertex
deletion. In: Theory of Computing Systems 58.2 (2016), pp. 357–376.

[7] Y. Cao and J. Chen. Cluster editing: Kernelization based on edge cuts. In: Algorithmica 64.1
(2012), pp. 152–169.

[8] C. Crespelle, P. G. Drange, F. V. Fomin, and P. A. Golovach. A survey of parameterized algorithms
and the complexity of edge modification. In: arXiv preprint arXiv:2001.06867 (2020).

[9] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S.
Saurabh. Parameterized algorithms. Springer, 2015.

[10] R. Diestel. Graph Theory, 4th Edition. Vol. 173. Graduate texts in mathematics. Springer, 2012.
ISBN: 978-3-642-14278-9.

[11] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer, 1999.

[12] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: theory of parameterized

preprocessing. Cambridge University Press, 2019.

58

BIBLIOGRAPHY BIBLIOGRAPHY

[13] M. R. Garey and D. S. Johnson. Computers and intractability. Vol. 174. Freeman San Francisco,
1979.

[14] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clustering: Fixed-parameter
algorithms for clique generation. In: Italian Conference on Algorithms and Complexity. Springer.
2003, pp. 108–119.

[15] J. Guo. A more effective linear kernelization for cluster editing. In: Theoretical Computer Science

410.8-10 (2009), pp. 718–726.

[16] W.-L. Hsu and T.-H. Ma. Substitution decomposition on chordal graphs and applications. In:
ISA’91 Algorithms. Ed. by W.-L. Hsu and R. C. T. Lee. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1991, pp. 52–60. ISBN: 978-3-540-46600-0.

[17] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-parameter algorithms for cluster
vertex deletion. In: Theory of Computing Systems 47.1 (2010), pp. 196–217.

[18] C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded modifications. In: Discrete

Applied Mathematics 160.15 (2012), pp. 2259–2270.

[19] T.-N. Le, D. Lokshtanov, S. Saurabh, S. Thomassé, and M. Zehavi. Subquadratic kernels for im-
plicit 3-hitting set and 3-set packing problems. In: Proceedings of the Twenty-Ninth Annual ACM-

SIAM Symposium on Discrete Algorithms. SIAM. 2018, pp. 331–342.

[20] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is NP-
complete. In: Journal of Computer and System Sciences 20.2 (1980), pp. 219–230.

[21] G.-H. Lin, P. E. Kearney, and T. Jiang. Phylogenetic k-root and Steiner k-root. In: International

Symposium on Algorithms and Computation. Springer. 2000, pp. 539–551.

[22] J. M. van Rooij, M. E. van Kooten Niekerk, and H. L. Bodlaender. Partition into triangles on
bounded degree graphs. In: Theory of Computing Systems 52.4 (2013), pp. 687–718.

[23] S. E. Schaeffer. Graph clustering. In: Computer science review 1.1 (2007), pp. 27–64.

[24] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. In: Discrete Applied

Mathematics 144.1-2 (2004), pp. 173–182.

[25] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

[26] R. Xu and D. Wunsch. Clustering. Vol. 10. John Wiley & Sons, 2008.

59

	Introduction
	Our Results
	Thesis Outline

	Preliminaries
	Set Theory
	Algorithms and Complexity
	Computational Problems
	Algorithms
	Complexity
	Kernelization

	Graph Theory
	Subgraphs and Connectivity
	Graph Editing
	Critical Cliques

	Vertex Deletion
	Hardness
	FPT-algorithm for FactorCVD
	Running Time

	Polynomial Kernel for FactorCVD
	Definitions
	Reduction Rules
	Analysis

	Polynomial Kernel for DifferenceCVD
	Reduction Rules
	Analysis

	Edge Modification
	Problem Statement
	Hardness
	Editing and Deletion
	Completion

	Polynomial Kernels
	FactorCC
	Analysis
	DifferenceCC
	Analysis
	FactorCD
	Analysis
	DifferenceCD
	Analysis
	FactorCE
	Analysis
	DifferenceCE
	Analysis

	Open Problems and Future Work

