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Preface 

The research forming this thesis is based on in-patient samples from three major 

diagnostic groups in psychiatry: bipolar disorder, schizophrenia and (unipolar) 

depression. The main emphasis of the thesis is the effect and feasibility of the novel 

intervention of blue-blocking (BB) glasses for mania in bipolar disorder. Second, the 

diverse utility of actigraphy is a common theme throughout. Although all papers 

included in the thesis primarily have aims related to clinical practice (treatment or 

diagnostic support), the results also enabled the discussion of theories on 

pathophysiological mechanisms.  

The first two papers are based on data from a randomized placebo-controlled trial 

(RCT) that tested the effects of blocking blue light during a manic episode. In Paper I 

the aim was to test whether blue-blocking (BB) glasses had an effect on overall manic 

symptoms as compared with a placebo, and whether this intervention was feasible in 

the clinic. Primary outcome measures were: clinically rated manic symptoms using the 

Young Mania Rating Scale (YMRS) and mean motor activity measured by wrist-worn 

actigraphs [1]. In paper II, the aim was to compare and describe the effects on 

actigraphy-derived sleep parameters between the two groups: one with the BB glasses 

and one with the placebo. In paper III, yet another utility of actigraphy data was 

described; the use of linear and non-linear mathematical analyses for characterizing 

motor activity patterns of variability and complexity in recordings of 24 h, as well as 

in morning and evening periods. The aim was to investigate whether it was possible to 

differentiate between the diagnostic entities of schizophrenia spectrum disorders, 

mania, and unipolar depression, based on the diurnal activity patterns.  

Data for patients and the healthy controls used in papers I and II were derived from the 

Virtual Darkness as Additive Treatment in Mania (VATMAN) trial [2]. The 

participants were recruited between February 2012 and February 2015 from Helse 

Fonna and Helse Stavanger Health Authorities.  In paper III, data from healthy 

controls were also derived from the VATMAN trial, while the patients were recruited 



8 

 

from the Agitation at Admittance to a Psychiatric Acute Department study 

conducted at Østmarka Hospital in Trondheim. Data were collected from 1st 

September 2011 to 31st March 2012.  

The intervention BB glasses used in the VATMAN trial is an evolvement based on the 

recent neuroanatomical discovery of the daylight signaling system which is mainly 

sensitive to blue light, and the dark therapy pilot study and case reports [3]. These two 

lines of research combined with shift work studies demonstrating the utility of BB-

glasses to induce “night mode” in the brain, pawed the way for virtual darkness 

therapy for bipolar disorders [4-6]. This story will be presented in more detail in 

Chapter 1.  

One of the most frequently occurring terms throughout this thesis is activation. Here, 

activation refers to generalized activation, as a result of the influence of multiple 

systems. The arousal system has almost immediate downstream effects on generalized 

activation, and for most situations and conditions, arousal and activation covary [7, 8]. 

Actigraphy is a measure of the integrated motor activation and is used as an objective 

measure of generalized activation [9, 10]. However, strictly speaking, an activity count 

measured at the wrist or trunk reflects the final executive steps of activation within the 

locomotor system, which may be disassociated from arousal in extreme hyper-aroused 

states such as catatonia. However, the patients who participated in the studies included 

in this thesis were not in the most extreme symptomatic condition; therefore, the 

interpretation was made that the actigraphy data could serve as a proxy for generalized 

activation of the brain.  

In addition to presentation and discussion of the results from papers I-III, the relevant 

theoretical and empirical research context is discussed in the thesis. Lastly, a theory on 

how BB interventions may halt a mania-sustaining feedback loop is presented.  
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Abstract 

Background: There is a need for more effective treatments of bipolar mania. 

Promising reports of the effects of dark therapy on bipolar disorder symptoms and the 

discovery of a mainly blue-light sensitive daylight-signaling retinal ganglion cells has 

resulted in the utility of BB glasses to create a virtual darkness condition for the brain. 

Changes in activation or aberrant motor activity is present in all serious mental 

disorders. Actigraphy is a non-invasive and simple means of assessing motor activity, 

but is still mostly used to assess sleep outcomes. Before the utility of actigraphy can be 

broadened, there is need for further exploration of daily activity pattern characteristics 

for the diagnostic entities.  

Aims: By means of the Virtual Darkness as Additive Treatment in Mania (VATMAN) 

trial, we aimed to test the effectiveness and feasibility of BB glasses as an adjunctive 

treatment for mania compared to placebo glasses. As part of the Agitation at 

Admittance to a Psychiatric Acute Department Study, we aimed to characterize the 

motor activity patterns among a new sample of patients with psychotic disorders, and 

compare these characteristics to the motor activity patterns of patients with affective 

disorders and with healthy controls. 

Methods: Eligible patients for the VATMAN trial (hospitalized with bipolar disorder 

mania and otherwise fulfilling inclusion criteria) were randomized to receive either 

BB-glasses or clear-lensed placebo glasses. The glasses were worn as an adjunctive 

treatment from 6:00 p.m. to 8:00 a.m. for seven consecutive days. Manic symptoms 

were rated daily using the Young Mania Rating Scale. Motor activity was measured 

using wrist-worn actigraphs. Feasibility was assessed using a self-report patient 

experience questionnaire together with the clinical observation of side-effects. Sleep 

was assessed using actigraphy-derived sleep parameters. In the Agitation at 

Admittance to a Psychiatric Acute Department study, all hospitalized patients in the 

acute psychiatric ward in Østmarka Hospital, Trondheim were asked to wear an 

actigraph for 24 h. The motor activity patterns of patients diagnosed with 
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schizophrenia and other psychotic disorders were compared to those of patients with 

mania, motor-retarded unipolar depression, and healthy controls. Linear and non-linear 

analytical methods were used to describe and compare motor activity variability and 

complexity (irregularity) for a 24 h period as well as in morning and evening 

sequences.  

Results: Out of 32 randomized patients in the VATMAN trial, 12 patients in the BB-

group and 11 patients in the placebo-group were included in the analyses. After seven 

days, the Cohen’s d effect size was 1.86. There was a significant group difference in 

YMRS scores after three days (p = 0.042) and the group difference increased steadily 

throughout the intervention. Observed side effects included headache in one patient 

and rapidly reversible depressive symptoms in two patients. Actigraphy-derived sleep 

outcomes at night five showed significantly higher sleep efficiency, lower motor 

activity and less minutes of wake after sleep onset in the BB group as compared to the 

placebo group. Several patients in both groups displayed a 48 h-like rhythm of shorter 

or disrupted sleep. The schizophrenia spectrum group shared the characteristic of high 

motor activity variability with the unipolar depressed group, but differed with respect 

to more irregular (complex) activity pattern in the morning sequence. The 

schizophrenia spectrum and the mania groups could not be separated using formal 

statistical analyses, being most similar with regards to high morning activity 

irregularity. The mania group was the only one to show a blunted morning-to-evening 

activity fluctuation, while the normal morning-to-evening decline was more preserved 

in the schizophrenia spectrum group.  

Conclusions: BB-glasses were found to be both effective and feasible as an adjunctive 

treatment for mania. The BB-group showed actigraphy-derived sleep parameters 

reflecting less activated sleep compared with the placebo-group. The use of actigraphy 

data to characterize diurnal motor activity patterns, by use of the combination of linear 

and non-linear analytical approaches, seems to have potential for assessment of 

symptoms and for diagnostic support.  
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1. Introduction 

1.1 The spectra of bipolar disorder and schizophrenia  

Bipolar disorders are prevalent in approximately 1 % of the human population 

worldwide [11]. The illness is associated with increased mortality due to both suicide 

and comorbid somatic illness [12, 13]. In spite of advances in pharmacological 

treatments, bipolar I disorder (BD-I) patients are symptomatic for more than 40 % of 

the time on average [14]. Emil Kraepelin made the distinction between dementia 

praecox (renamed to schizophrenia by Bleuler in 1911) and manic-depressive illness, 

based on the mood symptoms and better prognosis of the latter [15]. The modern 

denomination of bipolar disorder evolved during the 1990s along with a suggestion of 

a wider bipolar spectrum [16]. Manic-depressive illness originally described large 

mood swings (including full-blown manic episodes) corresponding to BD-I diagnosis 

in the Diagnostic and Statistical Manual (DSM-5) [17]. The modern broader bipolar 

disorder category included a new group of patients with depression-hypomania mood 

swings, called bipolar II disorder (BD-II) [16]. Hypomania is a milder presentation of 

manic symptoms lasting less than 1 week. [17]. Although one single manic episode 

qualifies for a BD-I diagnosis, the recurrence of mood episodes is characteristic [17]. 

The length of time in stable mood and functioning can vary from many years to almost 

nil in severe rapid-cycling bipolar disorder [17-19]. For some patients their mood 

swings low with much time spent in depression and only brief and few glimpses of 

hypomania. This is typical for BD-II patients, who in spite of less time in hospital may 

suffer most. Other patients may experience moderate or mild depression, but 

repeatedly develop full-blown psychotic mania requiring hospitalization. The 

continuum of presentations regarding polarity, duration, severity, episode-frequency, 

age of onset, and treatment responsiveness, justifies the proposal of a bipolar spectrum 

rather than separate categories [16, 20, 21]. This conceptualization is supported by the 

polygenetic nature of bipolar disorders [22, 23]. In addition, individual epigenetic 

effects could explain the variety of endophenotypes observed. In a practical sense, the 
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psychiatrist should ask, “how bipolar is my patient’s affective disorder?” [20, 21]. 

From the perspective of considering bipolar disorders on a spectrum, the extreme 

presentation could be rapid cycling BD-I with childhood onset and a significant family 

history of bipolar disorder. Conversely, the least bipolar affective disorder phenotype 

could be a late-life single episode of unipolar depression with no family history of 

bipolarity.  

The other main group of the serious mental illnesses is represented by schizophrenia, 

with a prevalence of 4-7 per 1000 [24]. The current diagnostic category  of 

schizophrenia is notably much broader than dementia praecox described by Kraepelin, 

which corresponds to the current subcategory of hebephrenic schizophrenia in the 

World Health Organization’s International Classification of Disease (ICD-10) [25]. 

Schizophrenia affects cognition, emotion, and behavior, often with detrimental 

consequences for daily life functioning. Early intervention can improve the outcomes, 

the basis for which is correct diagnosis [26, 27]. In the prodromal phase, schizophrenia 

may present with many symptoms in common with depression, which poses a 

diagnostic challenge [28]. These shared symptoms are social withdrawal, lack of 

normal emotional reactivity, and loss of motivationally directed behavior and interest 

[25, 28]. In the context of schizophrenia, these symptoms are called negative 

symptoms, but overlap extensively with the depressive syndrome [17, 25]. Positive 

symptoms of schizophrenia refer to hallucinations and delusions, often accompanied 

by severe anxiety [17, 25]. Of the most characteristic positive symptoms are bizarre 

delusions, delusions of thoughts being directly controlled by other people and hearing 

commenting voices [17, 25]. The voices may command the patient not to tell, a 

phenomenon that may prolong the diagnostic process. Commenting voices is a core 

symptom of schizophrenia; however, also patients with affective disorders may 

experience psychotic symptoms. Depression may present with anger, and psychotic 

mania may appear similar to schizophrenia with florid positive symptoms [29]. 

Without the support of valid and reliable objective diagnostic tools, clinicians must 

still make diagnostic decisions based on the medical history of the patient and 
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observations of symptoms in clusters and time. This makes the diagnostic process 

prone to delays and errors, the consequences of which are delayed treatment, greater 

suffering, and poorer prognosis. 

Although the categorization between bipolar disorder and schizophrenia is clinically 

useful for guiding treatment, the distinction is less clear at a group level [29]. 

Inflammation is implied as a central factor in in both conditions [30, 31]. Several gene 

polymorphisms overlap and some patients have symptoms of both bipolar disorder and 

schizophrenia [29, 32]. These patients constitute the intermediate diagnostic category 

of schizoaffective disorder [19]. The term schizophrenia spectrum disorders is 

currently often used in both clinical and research contexts, including in paper III in this 

thesis [33].  

1.2 Biological rhythms and bipolar disorder  

Rhythmicity is an inherent trait of all life forms [34]. The most striking feature of 

bipolar disorder is the rhythmicity of episodes. Some patients demonstrate a clock-like 

regularity for alternating antipode states [18]. In healthy subjects, the biological 

rhythms are regular and synchronized both within the organism and to the outer 

environment [35, 36]. The most well-known biological rhythm is the circadian (circa 

one day) that controls e.g. the body’s temperature and melatonin secretion [35, 37]. 

Biological rhythms with periods longer than one day are called infradian (such as 

monthly or annual rhythms of fertility) [34]. The circadian and annual rhythms are 

both influenced by the light/dark cycles caused by the Earth’s 24-hour rotation around 

its own axis and the 365-day orbit around the Sun. More recently, a dopamine-driven 

activity rhythm (which normally has a four-hour period) has been discovered [38]. 

This is an example of an ultradian (shorter than one day) biological rhythm.  

Some have argued that bipolar disorder evolved as an adaption to seasonal 

photoperiods [39]. This theory infers that the bipolar constitution evolved in temperate 

regions, as an adjustment of function to survive extreme seasons [39]. For a group of 
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people, members with bipolar traits may have increased the general likelihood of 

survival. In situations of opportunity, manic excessive energy, initiative, and courage 

could have promoted the expansion of habitat through warfare or migration [40]. In 

times of starvation with no escape (such as winter), the depressive syndrome may have 

promoted survival through decreased energy expenditure while passively awaiting 

resources (spring) to return. This way, bipolar disorder traits may have served as an 

evolutionary asset [39, 40].  

Circadian dysregulation has long been proposed a central cause of affective disorders 

[41, 42] Hypotheses relating to internal desynchronization of circadian rhythms in 

affective disorders (presented more than 40 years ago), are now supported by more 

recent research findings [41, 43-49]. During affective episodes, the circadian rhythms 

are desynchronized both in relation to the environmental light/dark cycle, and within 

the organism [44, 50-53]. Many gene-polymorphisms that are associated with bipolar 

disorder codes for proteins involved in regulation of the circadian clocks [23, 54, 55]. 

Commonly used mood-stabilizers and antidepressants affect the rhythmicity of 

neurons of the master clock (the suprachiasmatic nucleus SCN), and peripheral cell 

clocks [56, 57]. Moreover, individual chronotype and cellular circadian rhythms have 

been found to predict lithium response, a finding that clearly illustrates the close 

relationship between circadian function and bipolar disorder symptoms [58]. However, 

circadian disruption is not included within the diagnostic clinical syndromes, and 

exactly how circadian dysfunction relates to the mood-syndromes is not fully 

understood. Until recently, it was not even known whether (and how) variants of 

circadian rhythms (expressed as morning or evening preference) relate to episode 

polarity [52]. Most of the studies on the nature of circadian rhythms in bipolar disorder 

have used cross-sectional designs, subjective reports on morning or evening 

preference, or activity data as measures of circadian phases among bipolar disorder 

patients [52, 59]. A majority of studies have found an association between eveningness 

(evening preference) in depressive episodes as well as in euthymia; however, the 

findings have not been consistent [53, 59, 60]. Few studies have included manic 
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patients [52, 59, 60]. With only one exception, there is a lack of recent studies using 

multiple outcomes including valid measures of central circadian rhythm (such as 

melatonin) and measures of peripheral circadian rhythms [50]. Furthermore, studies of 

the transitions between mood-states have been lacking since some rather advanced 

case-reports from before the millennium [52, 61-64]. One exceptional recent study by 

Moon et al. examined the transition between states and used multiple outcomes for 

circadian rhythms. The results indicated extremely advanced circadian phases in 21 

out of 23 manic patients as measured by fluctuations in cortisol and peripheral clock 

genes [50]. For the five depressed patients in the study, the same rhythms were 

delayed [50]. The circadian phases of patients with mixed symptoms were 

intermediate to those of the manic and depressed patients. For all, the desynchronized 

circadian rhythms returned to normal along with recovery from the episodes [50]. In 

spite of the relatively small sample-size, the findings were very consistent. Notably, 

for both the depressed and manic patients, the central and peripheral circadian rhythms 

were disassociated from the more stable rest/activity cycles [50]. This indicates that 

data on rest/activity cycles alone cannot serve a proxy for data on the phase of the 

circadian rhythm machinery during affective episodes. This observation could explain 

the inconsistencies in the previous literature on circadian rhythms and chronotype in 

bipolar disorders, which was most often based on data on rest/activity rhythms [52]. 

But how may these state-dependent disassociated circadian rhythms mechanistically 

relate to the mood symptoms and abnormal levels of energy? In recent years, there has 

been a renewed interest in this basic question that may bring us closer to understanding 

the origin of mood symptoms and mood switches [65-70]. This topic will be more 

discussed in Chapter 6.  

1.3 The role of light  

The circadian rhythm matching the speed of the Earth’s rotation is programmed into 

each separate cell within the body [35]. The intrinsic rhythm is not dependent on 

external control to maintain the circa 24 h cycle [35]. However, the cell-clocks do need 
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an external time signal to remain synchronized within the body and to the external 

time. The synchronizing master-clock is the suprachiasmatic nucleus (SCN), which is 

a small a part of the hypothalamus located adjacent to the third ventricle of the brain, 

just above the crossing (chiasma) of the optic nerve [71]. The main signal of time for 

the SCN is the presence or absence of light [35]. Cells that monitor light (daytime) or 

darkness (nighttime) are identified as the intrinsically photo-responsive retinal 

ganglion cells (ipRGC) located in the inner layer of the retina [72-74]. This relatively 

recent discovery has facilitated the mapping of neural circuits involved in the non-

image-forming responses to light [75-78]. However, this term has been subject to 

criticism for being inaccurate, as the ipRGCs may elicit (some very blurry) visual 

perception in otherwise blind subjects [79]. The more correct term is therefore ipRGC-

influenced responses to light [80]. The photo pigment in the ipRGC is melanopsin, 

which change isomeric form (promoting ipRGC signaling) when absorbing blue light 

[81, 82]. In addition, ipRGCs receive some light information from rods and cones, 

which accounts for the green proportion of the ipRGC sensitivity spectrum [83]. This 

spectrum is the basis for the new light metric melanopic lux, which provides 

information of the daylight signaling property of light sources [80, 84]. When exposed 

to light with sufficient melanopic lux, the ipRGCs send excitatory signals to the SCN. 

The SCN responds by conveying daytime-signal to the cells and organs in the body, by 

suppression of the dark hormone melatonin and via direct innervation [85-87]. In 

darkness (or more precisely, in the absence of light with shorter wavelengths than 530 

nm) signaling from the ipRGCs to the SCN is halted. This allows melatonin 

production in the pineal gland and the biological night can commence [5, 6]. 

In addition to merely serving as a time-signal (zeitgeber) to the master clock SCN, 

light is also a direct activator and mood-regulator though neuronal projections 

independent of SCN involvement [77, 78]. It has not yet been established which 

mechanism is most important in bipolar disorder: light as a time-cue, a direct 

activator/mood regulator, or both [3, 88]. Recently, light in the morning is shown also 

to have neurotrophic effects, an effect not yet studied in bipolar disorder subjects [89].  
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The spring and autumn peaks of mania is suggestive that change in photoperiod is 

provocative [90, 91]. Furthermore, solar insulation at the latitude of residence and 

season of birth seems to modulate the course of illness [92-94]. Light supersensitivity 

has been suggested as a potential trait marker of bipolar disorder, and although some 

studies have shown contradictory results, other studies have demonstrated deviant light 

responses in the pupillary reflex, in melatonin output, and in color perception [95-

103]. The nature of the proposed light sensitivity in bipolar disorder is not revealed, 

but recent findings are in support of a supersensitivity in very low light conditions 

[104-106]. It is likely that some of the experimental research on light sensitivity have 

been hampered by use of light exposure above the ipRGC saturation threshold [105, 

107]. Moreover, commonly used medications in bipolar disorder alter retinal function, 

which means that effects from medication should be controlled for in future research 

on light sensitivity in bipolar disorder subjects [108-110].  

1.4 Sleep in bipolar disorders 

Sleep problems are present in most psychiatric conditions, but only in affective 

disorders sleep problems (or change in sleep) are defined as part of the diagnostic 

syndromes. In bipolar disorders, sleep characteristics usually follow the polarity of the 

episodes. In bipolar depression, the sleep problems can present as insomnia or 

hypersomnia [111]. But regardless of sleep length, the depressed patients feel unrested. 

As the mirror image of the depressed state, the manic patient usually experiences a 

reduced need for sleep and often does not regard few hours of sleep as a problem. It is 

a common view that short sleep and reduced need for sleep reflects the level of manic 

symptoms. This understanding is reflected in the construction of the item for sleep 

(Item 4) of the Young Mania Rating Scale (YMRS) [1].  Consequently, one of the 

main clinical treatment strategies in the clinic is to promote adequate hours of sleep, 

with less emphasis on sleep quality or when sleep occurs. However, new data suggests 

that sleep disturbances for patients with bipolar disorder are best characterized by poor 

sleep quality and high variability of sleep length, while average total sleep duration 
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seems to be less affected even during episodes [112-115].  Studies investigating sleep 

in bipolar disorder patients are generally few and diverse concerning the state of the 

subjects and outcome measures [59, 116].  

Actigraphy is shown to be a valid source of data for sleep outcomes among bipolar 

disorder patients, although studies of patients in mania are scarce [59, 117]. One study 

of patients in manic and mixed states found increased daytime sleep, and high inter-

daily variability of sleep length, while the 24 h sleep time was less reduced in mania 

than previously assumed [60]. This suggested that sleep disturbance during mania may 

relate to hyper-arousal and/or disrupted circadian rhythms rather than an actual 

reduced need for sleep [60].  

The basic mechanistic relationship of mania and sleep disturbances is not fully 

understood. Altered sleep is an inherent symptom of mania, as well as a mania trigger 

[118, 119]. Transient misalignment of circadian rhythms both within the organism and 

in relation to outer light/dark cycles could explain part of the worsening of sleep-

problems during bipolar disorder episodes [50]. In the informative paper by Moon et 

al., the sleep/wake cycles of the manic patients were found to be disassociated from 

their central and peripheral circadian rhythms in a state-dependent manner. While their 

cortisol and peripheral clock gene rhythms showed a near 180 degrees deviation from 

the depressed comparators, both groups’ sleep/wake cycles showed little deviation 

from the normal rhythm [50]. The circadian desynchrony observed in the manic 

patients resembled the circadian rhythm turmoil and sleep problems occurring during 

jet-lag, where the sleep schedules are largely controlled by the social rhythm. 

1.6 Chronotherapies in affective disorders 

Chronotherapies (from the Greek Khronos, meaning time; time(ing)-therapy) for 

affective disorders are interventions directed to alter biological rhythmicity by 

adjusting the function of the time-keeping system, thereby improving affective 

symptoms [3]. At present, the chronotherapeutic armamentarium consists of five main 
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approaches, as follows [3]. Clinical application of bright light as a therapy for 

depression commenced in the early 1980’s and is effective for seasonal affective 

disorders (SAD) as well as for non-seasonal depression [3, 120]. The development of 

wake-therapy protocols with lasting effects enabled the clinical application of this 

potent treatment for (otherwise) treatment-resistant depression [3, 121]. Melatonin-

agonist as a pharmacological intervention for affective disorders has been the subject 

of researched since the last millennium, although so far it has shown mixed results [3, 

122, 123]. The psychological/behavioral therapies of inter personal social rhythm 

therapy (IPSRT) and cognitive therapy for insomnia in bipolar disorder (CBTI-BP) 

was introduced in 2005 and 2013, respectively [124, 125]. These interventions have 

modest effects as compared with light and wake therapies, and of the behavioral 

therapies, only IPRST have shown effectiveness during acute (depressive) episodes 

[3]. However, the behavioral interventions of the chronotherapies have contributed 

much to the psychoeducational focus on regularity of sleep and daily schedules for 

preventing bipolar disorder episodes.  

Dark therapy is one of the latest developments of the chronotherapies. The idea of 

using regular periods of darkness as a means of stabilizing mood was suggested by 

Tom Wehr in 1989 [126]. The rationale was twofold: to stop a vicious circle of sleep 

problems and mood instability, and to promote circadian regularity by increasing the 

SCN’s sensitivity to light in the morning (after the extended darkness period). In the 

first reported case of a patient with rapid cycling bipolar disorder treated with a 

schedule of 14 h darkness and extended bedrest, simultaneous stabilization of mood, 

sleep, and activity was demonstrated shortly after the procedure commenced [126]. In 

the following year, similar results were demonstrated for another patient with severe 

rapid cycling bipolar disorder [127]. The first controlled study on dark therapy for 

mania was published in 2005 [128]. Acutely admitted bipolar disorder patients in a 

manic episode were treated with complete darkness from 6:00 p.m. to 8:00 a.m. in 

addition to treatment as usual (TAU), and the outcome was compared to a group who 
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received TAU only. The decrease in manic symptoms for the dark therapy group was 

striking, with a high effect size of 1.6 (Cohen’s d) after only three days [128].  

Whilst James Phelps first described the concept of exchanging complete darkness with 

BB glasses in treatment efforts for bipolar disorder outpatients, our VATMAN trial 

was the first to test the effect of BB-glasses for inpatients in a manic state [4, 129].  

Several case reports and studies on effect and feasibility of BB interventions have now 

been published [130-143]. The majority are pilot studies or the first within each age 

group or diagnostic category. In spite of relatively small sample sizes, all published 

studies have described improvement in either psychiatric outcome measures, sleep 

outcomes, melatonin profile or cognitive performance [130-143]. Since 2016, no new 

papers have been published on the effect of BB glasses on manic symptoms, although 

we are awaiting the results from an ongoing controlled study of effects of BB-depleted 

evening and night light environment (from 6:00 p.m. to 7:00 a.m.) for acutely admitted 

patients in Trondheim [144]. 

1.7 Dysregulated activation in mental disorders 

Motor activity disturbances in serious mental disorders are evident, ranging from 

hyper-kinetic states to catatonia [9, 10, 145]. To acknowledge this, the category of 

sensorimotor systems was added to the Research Domain Criteria (RDoC) framework 

in 2018 [146, 147]. RDoC is a leading transdiagnostical framework for research on 

mental disorders developed by the National Institute of Mental Health (NIMH) in the 

United States, which focuses on neurobiological systems beyond diagnostic categories 

[148]. Increase in “activity or energy” was added as an additional first rank criterion 

for manic episodes in the last revision of the DSM-5 [17]. Studies on the association 

between the separate symptoms of affective syndromes have indicated that activation 

is a core symptom in mania, and a distinctly different dimension than mood [9].The 

lack of a clear conceptualization and operationalization of “activity and energy”, 

motivated a comprehensive review of activation in bipolar disorders by Jan Scott et al. 

in 2017 . Their chosen definition of activation was descriptive, rather than based on 
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theories of etiology: “1) emerging from underlying physiological change; and 2) 

measurable in the objectively observed behavior (motor activity) and the related 

subjective experience of overt behavior (energy)” [9]. Based on 56 studies with 

objective data on motor activity or subjective energy, two of their main conclusions 

were: 1) Mean activity is lower in depressed and euthymic patients than in healthy 

controls and other comparative groups. 2) Patients with mania have higher mean 

activity than depressed patients, but demonstrate greater difference with regard to 

more unpredictable and complex activity patterns (according to linear and non-linear 

mathematical analyses of activity in time series) [9]. This review was restricted to 

studies on activation in bipolar disorder and relatively few studies have compared 

activity across diagnostic groups [149-154]. Reduced mean activity seems to be a 

common finding in hospitalized patients compared to healthy controls [9, 59, 155]. 

Given the limited information from analyses of mean activity alone, some studies have 

included analyses on activity variability, as well as applied non-linear mathematical 

analyses that can inform on degree of chaos/irregularity/complexity of motor activity 

in time series [150-153, 156-158]. In schizophrenia spectrum disorders, low activity 

mean is associated with negative symptoms, and irregular motor activity is associated 

with positive symptoms and agitation [155-157]. Similar to depressive patients, 

patients with schizophrenia demonstrate higher than normal activity variability, which 

in combination with low mean activity describes a monotonous activity pattern. The 

high degree of complexity in activity patterns for patients with schizophrenia is also 

found in patients in a manic state [158]. Thus, according to previous literature, the 

schizophrenia spectrum group seem to share motor activity traits with both depressed 

and manic patients groups.  

1.8 Motor activity monitoring in serious mental disorders  

The first efforts to monitor motor activity objectively consisted of handwriting 

analyses, actigraphy case-reports, or case series [18, 159, 160]. The last two decades 

have seen a growing interest in actigrapy research; however, until recently, most of the 
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studies have focused on sleep outcomes and fewer have studied diurnal motor activity 

characteristics [59, 155].  

There is an ongoing world-wide effort to collect large-scale actigraphy data to 

characterize motor activity traits for various diagnostic entities in the Mobile Motor 

Activity Consortium for Health project (mARCH) [10, 161]. In addition, a large scale 

number of private consumers wear products with integrated motor activity sensors 

sending real-time activity information to online suppliers of health services. In contrast 

to the vast amount of data that is now collected around the world, the science of data-

interpretation is less mature.  

Other methods have been tested for assessing motor activity in serious mental 

disorders, such as the human open field1 paradigm, which involves assessment of 

exploratory behavior in a novel environment within a limited period [162]. In a study 

by Perry et al., patients in a manic state demonstrated a characteristic pattern of rapid 

straight approach, tactile exploration and gathering of objects during the first part of 

the session. In contrast, patients diagnosed with schizophrenia showed a constant low 

level of exploration and a reduced approach towards objects. Although this human 

“open field” paradigm suggested higher diagnostic specificity than the nurse 

observations, this method is probably not applicable outside a research context in the 

near future [162]. Radar technology is currently being tested for sleep and safety 

monitoring of patients in their rooms, and may also be applicable for motor activity 

supported diagnostics and symptom monitoring in the future [163]. For now, 

actigraphy is still the most feasible method for obtaining motor activity data in a 

hospital setting as well as for outpatients.  

 

1The human open field paradigm is a human parallel of the rodent open field paradigm for behavioral 

testing in a novel environment. 
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2. Aims  

2.1 Paper I  

The aims of the randomized controlled trial (RCT) were first to test the effectiveness 

of BB glasses as adjunctive treatment for hospitalized patients in a manic episode, and 

second, to examine their feasibility of use within in the hospital setting.  

The specific aims were as follows:  

1) To compare mean YMRS total scores and mean motor activity of the BB group to 

the outcomes of the placebo group.  

2) To investigate the feasibility of use of the BB glasses through a patient satisfaction 

self-report form and by monitoring side effects. 

2.2 Paper II 

The aim of this study was to examine the effect of BB glasses on actigraphy-derived 

sleep parameters, as an adjunctive treatment for hospitalized patients in a manic 

episode. 

The specific aims were as follows:  

1) To compare sleep efficiency and mean motor activity of the BB group with the 

outcomes of the placebo group. 

2) To compare total sleep duration, wake after sleep onset, wake bouts, sleep 

fragmentation, total sleep length, sleep onset, sleep offset, and mid-time sleep of the 

BB group with the outcomes of the placebo group. 

3) To describe sleep pattern observations from patients in a manic state who received 

treatment with either adjunctive BB glasses or placebo. 
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2.3 Paper III  

The overall aim was to investigate whether the activity patterns of patients with 

schizophrenia spectrum diagnoses could be differentiated from activity patterns of 

patients with mania, unipolar depression and healthy controls. 

 The specific aims were as follows:  

1) To describe the 24 h activity patterns and 64 min morning and evening sequences in 

a new sample of patients with schizophrenia spectrum disorders.  

 2) To compare the motor activity patterns in the schizophrenia spectrum group to the 

motor activity patterns of patients with bipolar mania, unipolar depression, and healthy 

controls. 
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3. Materials and methods  

3.1 Settings 

3.1.1 Setting for the Virtual Darkness as Additive Treatment in Mania 

(VATMAN) trial  

The patients were recruited from three hospitals and two district hospital centers in 

southwest Norway at latitudes 58–59 °N from February 1st 2012 to February 15th, 2015. 

Recruiting centers 

1. Valen Hospital and Folgefonn District Hospital, Valen, from February 1st 2012  

(14 patients, 28 healthy controls) 

2. Haugesund Hospital and Haugaland District Hospital, Haugesund from August 29th 

2012 (5 patients, 12 healthy controls) 

3. Stavanger University Hospital, Stavanger from August 20th 2014                             

(5 patients, 5 healthy controls) 

The recruitment was closed at all sites at February 15th 2015. 

3.1.2 Setting for the study Agitation at Admittance to a Psychiatric Acute 

Department study/paper III.  

This study was undertaken at Østmarka Department of Psychiatry, Trondheim 

University Hospital, Norway. During the period September 1th 2011 to March 31st 

2012, 280 acutely admitted patients were recruited, and 71 were included in the 

analyses of Paper III.  Data from 28 healthy controls included in the study (recruited in 

the VATMAN trial, Valen, Haugesund, Stavanger) were sampled in the time period 1th 

February 2012 to 15th February 2015. 
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3.2 Study populations 

3.2.1 Diagnostic process 

3.2.1.1 Diagnostic process for the VATMAN trial 

The diagnoses of the patients included in the trial were verified by a specialist in 

psychiatry, using the Mini International Neuropsychiatric Interview Plus (MINI Plus) 

for diagnostic support [164]. During the recruitment-period, a new revision of the 

DSM (the DSM-5, 2013) was published [17]. The criteria for manic episode were 

amended by adding “increased goal-directed activity or energy” as a second A- 

criterion, in addition to the previous mood criterion “persistently elevated or irritable 

mood [17]. Due to the clinical priority of addressing ongoing manic symptom, the 

diagnostic entity mixed episode was replaced by manic episode with mixed features, 

also in the cases where depression and mania symptoms present in same proportions. 

Consequently, the DSM-5 definition of manic episode has been somewhat broadened 

since the data-collection for the VATMAN trial.  

3.2.1.2 Diagnostic process for the Agitation at Admittance to a Psychiatric 

Acute Department study 

The patients included in this study were diagnosed through an expert consensus 

meeting of a minimum of three specialists in psychiatry. The criteria for diagnoses 

were defined by the ICD-10 [25]. All available information was included in the 

diagnosis decision process, and at least two of the specialists had firsthand information 

on the patients’ history and current state. To select unipolar depressed patients with 

motor retardation, the Symptomatic Organic Mental Disorder Assessment Scale (item 

B) was used [165]. 
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3.2.2 Inclusion and exclusion criteria for the VATMAN-trial and analyses in 

Paper I and Paper II 

3.2.2.1 Inclusion criteria for the VATMAN trial 

For patients the inclusion criteria were as follows:  

 1) Diagnosis of BD-I with current manic episode. The recruitment of hospitalized 

patients defined the severity of symptoms at the level of mania, without the need for 

use of the symptom duration criterion (a minimum of one week of symptoms for 

manic episode).  

2) Aged 18-70 years 

3) Ability to comply with the protocol 

4) Willingness to participate in the study 

5) Delayed written informed consent at discharge 

 

For the non-bipolar controls the inclusion criteria were: 

1) Aged 18-70 years 

2) Written informed consent 

 

Inclusion criterion for the intention to treat analyses in Paper I 

The inclusion criterion was use of BB glasses for a minimum of one evening/night.  

Inclusion criteria for the group comparison analyses in Paper II  

The inclusion criterion was valid actigraphy recordings both night one and night five. 
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3.2.2.2. Exclusion criteria 

The exclusion criteria for patients were as follows: 

1) Inability to comply with the protocol 

2) Severe retinal damage, cataract or corneal damage to both eyes 

3) Daily use of NSAIDS, beta-blockers, or calcium-antagonists 

 

For the non-bipolar controls the exclusion criteria were: 

1) Working night shift 

2) Diagnose of bipolar disorder or single manic episode 

3) Severe retinal damage, cataract or corneal damage on both eyes 

4) Daily use of alcohol, benzodiazepines, NSAIDS, beta blockers, or calcium 

antagonists. 

 

3.2.3 Inclusion and exclusion criteria for the Agitation at Admittance to a 

Psychiatric Acute Department study and analyses in Paper III 

3.2.3.1 Inclusion criteria for patients  

1) Hospitalization at Østmarka acute department 

2) Ability and willingness to grant written informed consent 

3.2.3.2 Exclusion criterion for patients 

Inability to grant written informed consent 

3.2.3.3 Inclusion criteria for healthy controls  

1)  Recruited in the VATMAN trial 

2) Aged 18-70 years 

3) Written informed consent 
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3.2.3.4. Inclusion criteria for the analyses in Paper III 

1) Diagnosis of a primary psychotic disorder, a manic episode of bipolar disorder, or a 

(clinically rated) motor-retarded unipolar depression without psychotic symptoms.  

2) The presence of valid (near) 24 hour actigraphy recording  

3) For the analyses of morning and evening sequences, a 64 minute period of 

continuous activity (in 1 minute epochs) after 6:00 a.m. and before midnight p.m. 

respectively 

3.2.4 Withdrawal from the studies 

All participants could withdraw consent at any time without any given reason before 

the analysis and publication of the data. The participants were informed of this right 

both orally at recruitment and in writing in the information and consent form 

 

3.3 Methods 

3.3.1 Study designs 

3.3.1.1 Design of The VATMAN trial/papers I and II 

The VATMAN trial was an effectiveness trial with an RCT design. The trial 

constituted of two groups of patients who were randomized to use either BB glasses or 

clear-lensed glasses as placebo condition. In addition, we recruited a non-bipolar 

control group to serve as a comparator with regards to activity-data and for monitoring 

of side effects.  

3.3.1.1.1 Randomization and masking 

The patients were randomized (to receive either BB glasses or placebo) by using 

folded patches that were manually drawn by secretaries who had no other role in the 

trial. The study was single-blinded. The patients were blinded for assignment to the 
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respective group by receiving the same information: the glasses were filtering some 

part of the spectrum of light and one type of glasses would be compared to the other.  

No patient observed the other type of glasses during the intervention. The doctors who 

rated the patients for daily manic symptoms (using YMRS) were not blinded to the 

assignment, nor were the persons performing the analyses.  

3.3.1.1.2 Baseline assessment  

Baseline assessment in Paper I included demographical data, clinical characteristics, 

YMRS scores at day 0 (scored at daytime before the first night of intervention), and 

mean daytime activity before 6:00 p.m. on day 0. There was no baseline assessment of 

actigraphy sleep outcomes. 

3.3.1.1.3 Interventions 

Either BB glasses or placebo clear lenses glasses were used as interventions, worn 

from 6:00 p.m. to 8:00 a.m. adjunctive to TAU. The glasses could be taken of when 

going to bed and turning off the light. Intervention and observation were for a period 

of seven days. The nursing staff were instructed to pay equal attention to all patients 

and encourage continuous use between 6:00 p.m. to 8:00 a.m. (except when the lights 

where turned off), regardless of group assignment. 

3.3.1.1.4 Treatment as usual 

The interventions were purely adjunctive in an otherwise naturalistic clinical setting. 

Thus, TAU consisted of all usual modalities of treatment for patients in a manic 

episode, based on individual assessment and decision taken by the treating doctor 

(who was not involved in the study). The pharmacological TAU is shown in Table 1. 

In addition, non-pharmacological treatments were used, such as stimuli reduction by 

use of seclusion.  
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Table 1. Individual Medications for Patients Assigned to Blue-Blocking (BB) Glasses or 

Clear Glasses (Placebo) [129] 

Patient Antipsychotics, 
mean dosage (mg/day) 

Anticonvulsants, 
mean dosage (mg/day) 

Lithium,  mean 
dosage (mg/day) 

Anxiolytics/Hypnotics/ 
Sedatives, mean dosage (mg/day) 

11 Olanzapine 5.6 
Quetiapine 600.0 

Valproate 837.5   Diazepam 21.3 
Zopiclone 15  

2 Quetiapine 200.0     
3  Valproate 3300.0 Lithium sulfate 84.0 Zopiclone 7.5 

 Alimemazine 40.0  
4  Valproate 600  Oxazepam 31.25  

Cetirizin 10.0 
5 Haloperidol 6.25 

Levomepromazine 50.0 
Valproate 1537.5  Diazepam 10.0,  

Zopiclone 7.5 
6 Haloperidol depot 50.0  

(every 14 days) 
Chlorpromazine 162.5 

 Lithium sulfate 119.9 Diazepam 16.3 

7 Haloperidol 0.75 
Olanzapine 22.5 

Carbamazepine 325.0  Diazepam 34.4 

8 Olanzapine 20.0 
Quetiapine 100.0 

 Lithium carbonate 
1200.0 

Oxazepam 17.0 
Zopiclone 3.3 
Alimemazine 10.0 
 Cetirizine 10.0  

9 Chlorprothixene 123.1 
Olanzapine 23.6 

  Oxazepam 10.0  

10 Levomepromazine 6.3  
Olanzapine 3.8 

 Lithium sulphate 166.0  Diazepam 5.0  
Melatonin 0.5 

11 Aripiprazole 9.0 
Quetiapine 30.0 
Zuclopenthixol 10.0 

Valproate 936.0   Cetirizine 10.0 

122 Quetiapine 250.0  Valproate 1200.0   Diazepam 10.0  
13 Quetiapine 350.0 

Zuclopenthixol 20.0 
 Lithium sulphate 84.0  

143  Lamotrigine 300.0    
15    Zolpidem 7.5 
16 Olanzapine 20.0 Valproate 562.6   
17 Olanzapine 15.0     
18 Chlorpromazine 500.0   Lithium sulphate 166.0  Clonazepam 1.25 

Cetirizine 10.0  
Promethazine 25.0 

19 Olanzapine 6.9  
Quetiapine 600.0  

Valproate 450.0    

20 Olanzapine 25.0  Lamotrigine 200.0 Lithium sulphate, 192.6  Clonazepam 0.9 
21 Aripiprazole 10.0    
22 Chlorprothixene 100.0  

Olanzapine 40.0 
 Lithium sulphate, 249.0  Buspirone 30.0 

  Clonazepam 2.25 
23 Risperidone 0.6 Lamotrigine 162.5 Lithium sulphate 120.8  Alimemazine 3.75 

Mirtazapine 24.4 
 
 

24 Olanzapine 15.0  Valproate 600.0    

 

                                              
1 Patient 1-11:  patients wearing clear glasses (placebo) 
2 Patient 12-24: patients wearing orange glasses 
3 This patient was excluded from the study 
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3.3.1.1.5 Assessments  

Demography, illness characteristics and medical examination 

Information on demography (age, sex, education, employment, marital status) and 

illness characteristics were obtained from interviews and medical journals for each 

patient. The healthy controls were asked about psychiatric illness and use of 

medication besides the demographic data. Morning or evening preference and 

seasonality were assessed using the Horne-Östberg Morningness-Eveningness 

Questionnaire (HOMEQ) and Seasonal Pattern Assessment Questionnaire (SPAQ) 

[166-170]. 

With all subjects, the eyes were examined for transparency using ophthalmoscopy 

inspection of red reflex, and vision was confirmed by use of a finger-count-test.  

Assessment of symptoms 

Symptoms of mania were assessed using YMRS, which constitutes of 11 clinician-

rated items: 1) Elevated mood, 2) Increased motor activity and energy, 3) Sexual 

interest, 4) Sleep - duration and subjective need for sleep, 5) Irritability, 6) Speech-rate 

and amount, 7) Language-thought disorder, 8) Psychotic content of thought, 9) 

Disruptive or aggressive behavior, 10) Appearance, and 11) Insight [1]. Symptoms 

were rated daily at the end of each day shift (2:00 p.m.). The ratings were performed 

by doctors trained in use of the YMRS in consensus with at least one member of the 

nursing staff (who had attended the patient during the dayshift). Nurse reports were 

used as supportive information. The assessment period was 24 h, starting at midnight. 

Motor activity was recorded for the full seven-day observation period by using a wrist-

worn actigraph (Actiwatch Spectrum; Philips Respironics, USA) To inform on 

feasibility, a patient experience self-report form was developed for the trial and 

consisted of seven statements targeted so that patients could grade their agreement, 

using a scale response: fully disagree/somewhat disagree/neither disagree nor 

agree/somewhat agree/fully agree.  
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Finally, any observed or subjectively reported side effects were noted.  

3.3.1.2 Design of the Agitation at Admittance to a Psychiatric Acute 

Department study/Paper III 

This study utilized a cross-sectional design, sampling motor activity data from acutely 

admitted patients (with diagnoses of schizophrenia spectrum, mania, or unipolar 

depression with motor retardation) in a 24 h time window shortly after admittance. The 

24 h activity data from healthy controls were chosen from a seven- day recording 

period, based on the presence of 64 min sequences of continuous activity, which was 

required for the Fourier analyses. 

3.3.1.2.1 Assessments  

The demographic data on age, gender, body mass index (BMI), diagnosis, and medical 

treatment were used to characterize the patient samples. For the healthy controls, BMI 

data was not available. In addition, the HC subjects were interviewed for a medical 

history of psychiatric illness and current use of medications. Data on wrist movements 

were sampled by actigraphy as counts per minute (1 min epochs).  

3.3.1.2.2 Mathematical computation of data 

The data were computed using linear and non-linear mathematical analyses of the data 

over 24 h and in 64 min sequences for both morning and evening recordings. 

In addition to analyses of mean activity, mathematical analyses of variability and 

complexity (degree of irregularity) were applied: 

The standard deviation (SD) in given % of the mean expresses the general variability 

of the period of interest. 

The root mean square successive difference (RMSSD) expresses the difference 

between successive counts and is a measure of short term variability. 
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The RMSSD/SD ratio provides a measure of the relation between short term and 

overall variability of the time series. 

Three non-linear measures of activity patterns morning and evening sequences (each 

of 64 min) were applied. Periods of 64 min were selected according to the 

requirements for Fourier analyses: sequences of continuous activity in potencies of 2 

(2-4-8…..64-128). Based on previous experience, the maximum length of these 

continuous activity sentences was set to 64 min [158].  

Fourier analysis is a mathematical method of analyzing frequency patterns in time 

series. In paper III, this is presented as the relation between the variances in the high 

and low frequency activity spectra for the patient groups. Higher values indicate 

relatively higher variance in the high frequency spectrum.  

Autocorrelation at lag 1 expresses the correlation between numbers (here activity 

counts) in successive time series lagged one step further. More simply put, the 

autocorrelation analyses in paper III was the correlation between successive activity 

counts. Possible values are one or less, with low values indicating lower correlation 

and more variable activity patterns from minute to minute.  

Sample entropy is the negative natural logarithm of the estimated conditional 

probability that subseries of a certain length (m) that match point-wise, within a 

tolerance (r), also match at the next point. It is customary to use m = 2 and r = 0.2, and 

these values were also used in this study. Higher values of sample entropy indicate 

higher complexity of time series, while lower values indicate more regular time series. 
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3.3.2 Statistical analyses  
 

3.3.2.1 Paper I 

Power analysis was based on the outcomes of the dark therapy pilot study, with the 

power set to 0.8 and a significance level of 0.05 [128]. This yielded an estimated 

sample size of 21 patients for each group of the RCT. Demographic data, clinical 

characteristics, and use of medication were presented with descriptive statistics 

performed using SPSS 22.0 software (IBM Corporation USA) which was presented in 

tables. For effectiveness testing, mixed linear analyses were used with baseline data as 

single contrast. The YMRS total score and activity mean were primary and secondary 

outcomes respectively. The YMRS single items were not subject to statistical testing 

but were presented graphically with means and 95% confidence intervals (CI) for each 

day during follow-up. Scores from the patient experience self-report form were 

presented graphically, and side effects were descriptively reported. 

3.3.2.2 Paper II 

Prior to the analyses, the raw data were inspected. The main rest interval was set based 

on significant change in activity supported by light data and nurse reports on times for 

waking and sleeping. Manual inspection of actigraphy data and use of all available 

supplementary data is recommended in the context of sleep research [171].  

Demographic data, clinical characteristics, and medication treatment were computed 

using SPSS software 24.0, after adjustment for a change of sample due to three cases 

of missing actigraphy data. Group differences were analyzed using covariance 

(ANCOVA) analysis performed at night five and adjusted for outcomes at night one. 

Group comparison analyses were performed at night five because non-random drop-

outs occurred in the placebo-group at nights six and seven. Sleep patterns of 

interrupted sleep by longer wake periods were not subject to statistical testing but 

descriptively presented. In both papers I and II, the Actiware 6.0 software (Philips 

Respironics, USA) was used to calculate activity means (counts/min) for all subjects 
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before group analyses. In Paper I the analyses were performed using SPSS 22.0 and 

Matlab 7.1. (MathWorks Inc. USA). In paper II SPSS 24.0 and R.3.5.0. (R team, 

Austria) were used, whith the graphics produced in Matlab 9.0. [172-175] 

3.3.2.3 Paper III 

Analyses of variance (ANOVA), one-way, with least significant differences post-hoc 

test were used for analyses of group differences of means. To test within-group 

morning-to-evening differences in activity parameters, we used paired sample t-tests. 

To test group differences (for patients) in morning-to-evening changes in activity 

parameters, linear mixed model analyses were performed. When controlling for 

treatment with antipsychotic medications, analyses of covariance (ANCOVA) were 

performed. For all analyses, the significance level was set to p ≤ 0.05 and analyses 

were computed in SPSS software 24.0 [173]. 
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4.0 Results  

4.1 Paper I  

From 32 randomized patients included in the VATMAN trial, 12 patients in the BB 

group and 11 patients in the placebo group were analyzed for group differences in 

YMRS total scores. Both patient groups’ mean activity data were compared to the 

mean activity of 35 non-bipolar controls.   

More men than women were recruited to both patient-groups. Those in the placebo 

group were somewhat older than patients in the BB group (mean ages were 49.8 years 

and 43.0 years, respectively) and the mean baseline YMRS score was slightly higher 

for the placebo group (27.0) compared with the BB group (23.4). 

The mean decline in YMRS total score for the BB group was 14.1 (95% CI 9.7– 18.5) 

as compared to the placebo group mean decline of 1.7 (95% CI 4.0–7.39). The group 

difference and SD corresponded to a Cohen’s d effect size of 1.86. The difference was 

statistically significant after three days of intervention (p = 0.042) and after seven days 

the difference was highly significant (p = 0.001). The mean activity in the two 

analyzed intervals (6:00 p.m.–8:00 a.m. and 8:00 a.m.–6:00 p.m.) was lowest for the 

BB-group from the second night, compared with both the placebo-group and the 

healthy control group. Of the YMRS single item scores for the BB group, items 5 

(Irritability) and 6 (Speech, rate and amount) reduced most markedly from the first to 

second day.  

The BB group was in receipt of less polypharmacy treatment, expressed as number of 

different anti-dopaminergic medications and of anxiolytic/sedative/hypnotic 

medications per patient as shown in Table 1.  

Ratings from the patient experience self-report form suggested that that the concept of 

treatment by use of glasses was well perceived, and a high proportion of the patients in 

both group stated that they would like to use BB glasses as a treatment in the future if 



44 

 

proven effective. Two patients reported transient depressive symptoms that were 

relieved by postponing or discontinuing the intervention. These observations 

corresponded to reports of uncomfortable low energy levels for four participants in the 

healthy control group, and depressive symptoms were noted as a likely side effect. 

One patient experienced headache and three healthy controls reported the same. 

Headache was therefore also noted as a likely potential side effect of the BB 

intervention. 

  

 

Figure 1. Self-reported patient experience with participation in the VATMAN-

trial for patients in the BB group (n = 12) and placebo group (n = 11) [129].   

 

4.2 Paper II 

Twenty randomized consenting patients with valid actigraphy recordings night one and 

night five (10 patients in each group) were included in the analyses of group 

differences in actigraphy-derived sleep outcomes. The description of nights with 

longer wake periods included the recordings from 22 patients, which comprised 12 

patients in the BB group and 10 patients in the placebo group. 
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In the 20-patient sample for group comparison analyses in paper II, the demographic 

variables differed only slightly from those reported in paper I. With regards to 

morningness/eveningness and seasonality traits in the sample, the placebo group 

included more morning-type patients with a mean HOMEQ score of 60.4. The BB 

group scored 52.4, which is in the range of intermediate type. Both groups recorded 

less than the global seasonality score (GSS) cut-off value of 9 points for sub-SAD, and 

approximately the same proportion of patients in both groups reported a seasonal 

variation of 1 h or more for sleep duration. For half of the patients in the BB group 

(5/10), their intervention occurred during the fall (September–November), whereas 

participation for patients in the placebo group was more evenly distributed throughout 

the seasons.  

The primary outcome of sleep efficiency (SE) was demonstrated to have increased for 

the BB group from night one (mean SE 88.1%; 95% CI 82.4%–93.8%) to day five 

(mean SE 92.6%; 95% CI 89.4%–95.8%). In comparison, SE for the placebo group SE 

diminished slightly from night one (mean SE 83.4%; 95% CI 71.2%–95.6%) to night 

five (mean SE 83.1%; 95% CI 75.9 %–90.3%). The difference between the groups at 

night five, (adjusted for outcomes at night one) was significant (p = 0.027). The group 

difference was also significant for the second primary outcome of mean activity 

(counts per 30 s) in sleep intervals (p = 0.007 at night five). The activity count for the 

BB group almost halved from night one (20.0; 95% CI 9.1–30.9) to night five: 11.7 

(95% CI 5.6–17.8)  

By contrast, motor activity increased for the placebo-group from day one: (33.3; 95% 

CI 0.1–66.6) to day five (47.4; 95% CI 17.5–77.3). Wake after sleep onset (min) 

mirrored the decline in nightly mean activity for the BB group from night one (60.7; 

95% CI 23.6–97.7) to night five (33.5; 95% CI: 19.8–47.1), while for the placebo-

group, minutes in wake after sleet onset increased from day one (64.8; 95% CI 14.7–

114.9) to day five (79.2; 95% CI: 48–110.3). This difference was also statistically 

significant (p = 0.010). The sleep fragmentation index and wake bouts reduced 
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(improved) for BB group and increased (worsened) for the placebo group; however, 

the differences were not significant. Total sleep time increased by nearly one h for the 

BB group from day one (6.7; 95% CI 5.5–7.9) to day five: (7.6; 95% CI 6.4–8.8) 

compared to no change for the placebo-group from day one: (6.3; 95% CI 5.1–7.4) to 

day five: (6.3; 95% CI 5.3–7.4); however, the difference between the groups was not 

statistically significant. Sleep-onset, sleep offset, and mid-sleep times showed no 

group differences at night five.  

The patients in the BB-group had fewer nights of interrupted sleep. During five nights 

of actigraphy monitoring, 29.6% (16/54) of recorded nights for the BB group and 

43.8% (21/48) of nights for the placebo group contained 30 min or longer active wake 

periods. Several patients in both groups demonstrated high variability in wake/sleep 

timing during the intervention. A characteristic wake/sleep pattern was observed in 

several patients showing high variability of the sleep interval length. These patients 

showed either short sleep or interrupted sleep on alternate nights, which gave the 

impression of a 48-hour rhythm of nights with more disturbed sleep. 

4.3 Paper III  

Of the total of 71 included patients recruited from the Agitation at Admittance to a 

Psychiatric Acute Department study, 28 patients were diagnosed with a schizophrenia 

spectrum disorder, 25 were diagnosed with motor retarded unipolar depression, and 18 

had bipolar disorder, current episode manic. In the mania group, 11/18 (60.1%) was 

diagnosed with “manic episode with psychotic symptoms” (by an error, in paper III it 

says “nearly 70%” ). Trial profile is shown in Figure 2. 
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Figure 2. Trial profile for Paper III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patients recruited for the Agitation at Admittance to a Psychiatric 

Acute Department study (n= 280) 

Did not meet diagnostic criteria  

or 24 hour actigraphy data missing (n= 209) 

Primary diagnose of 

unipolar depression with 

motor retardation n=25 

F32.0 or F33.0 Mild depressive episode n=3 

 

F32.1 or F33.1 Moderate depressive 

episode n=15 

F32.2 or F33.2 Severe depressive episode 

n=7 

Analyses of 24 hour 
activity 

 Primary diagnose of 

bipolar disorder, 

current episode manic 

n = 18 

F31.1 Bipolar disorder, manic 

episode without psychotic 

symptoms n=7 

F31.2 Bipolar disorder, manic 

episode with psychotic symptoms 

n=11 

 

Primary diagnose of 

schizophrenia spectrum 

disorders n= 28 

F20.0 Paranoid schizophrenia n=13 

F20.1 Hebephernic schozophnrenia n= 3 

F20.6 Simple schizophrenia n=1 

F20.9 Schizophnreia unspecified n= 1 

F22.0 Persistent delutional disorder n=2 

F23 Acute and transient psychotic 
disorder n=3 

 F25 Schizoaffective disorder n=4 

F29 Unspecified nonorganic psychosis 
n=1 

 

F29 Unspecified psychosis n=1 

 

Healthy 

controls from 

the VATMAN 

trial   n=28                          

Morning sequences  

Evening sequences  

n=27 

Morning sequence missing n=1 

n=23  

Morning sequence missing n=2 

  

 

 

n=16 

Morning sequence missing n=2 

 

n=28 

n=27 

Evening sequence missing n=1 

n= 23  

Evening sequence missing n=2 

 

n=18 n=27 

Evening sequence 
missing n=1 
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The mean age for the patient groups ranged from 41.5 for the schizophrenia spectrum 

group to 51.2 years for the mania group, while the mean age for the healthy control 

group was 41.7 years. There were no major differences in the distribution of gender or 

body mass index (not obtainable for healthy control group). The patient groups 

received a variety of medications with much overlap between the groups. The highest 

percentage of patients using antipsychotic medication was in the mania group. 

Antidepressants were most often used among patients in the unipolar depression 

group; however only by 36% of these patients.  

Mean activity 

For all patient groups, 24 h mean activity was significantly lower than the mean 

activity for the healthy control group. The analysis of mean activity in morning periods 

demonstrated a significantly higher activity for the healthy control group compared to 

all patient groups but in contrast, there were no significant group differences in the 

evening periods.  

SD/minute in % of mean 

In the 24 h SD analyses, the unipolar depressed group showed a significantly higher 

SD/min (in % of the mean) compared to all other groups, which expressed higher 

variability of the activity pattern (larger fluctuations from the mean and greater 

alternation between inactivity and activity) per min. Also in the morning periods the 

unipolar depressed group demonstrated the highest SD/min, but after adjustment for 

use of antipsychotic medication the difference compared to the schizophrenia spectrum 

group was no longer significant.  

RMSSD/min in % of mean 

In the 24 hour analyses, the unipolar depressed group showed a significantly higher 

RMSSD/min compared with the mania and healthy control groups. The schizophrenia 
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spectrum group also exhibited high RMSSD/min which was also significantly higher 

than for the healthy control group. The pattern of higher RMMSD/min for the unipolar 

depressed and schizophrenia spectrum groups compared with the healthy control group 

persisted in the analyses of morning periods, but were absent in evening periods.  

RMSSD/SD 

In the 24 h analysis, all patient groups showed significantly higher values of 

RMSSD/SD compared with the healthy control groups. In the morning periods, the 

schizophrenia spectrum and mania groups similarly showed higher RMSSD/SD than 

the unipolar depressed and healthy control groups. These differences were more 

evident (lower p-value) after adjusting for the use of antipsychotic medication. 

Sample entropy 

In the morning periods, the schizophrenia spectrum and mania groups demonstrated 

significantly higher sample entropy values than the unipolar depressed group. In 

evening periods, there were no significant group differences. 

Fourier analysis 

The schizophrenia spectrum and mania groups demonstrated the highest values which 

were significantly higher compared with the healthy control group for the morning 

periods. Also, there was a significant difference in the Fourier analyses between the 

schizophrenia spectrum and unipolar depressed group in the morning periods, while 

there were no significant group differences in the evening periods.  

Autocorrelation 

The morning autocorrelation values for the schizophrenia spectrum and mania groups 

were similar and significantly lower than for the unipolar depressed and healthy 

control groups. There were no significant group differences in the evening periods.  
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Within group analysis of morning-to-evening differences in activity measures  

The healthy controls showed a marked decrease in morning-to-evening mean activity 

and a marked increase in the morning-to-evening SD/min, with both fluctuations being 

statistically significant. All patient groups demonstrated a lower fluctuation of 

morning-to-evening decline in mean activity, and a smaller increase in SD as 

compared to the healthy control group. However, the mania group differed from the 

other groups by lacking a diurnal fluctuation in these parameters. The schizophrenia 

spectrum group was the only group showing a significant decline in morning-to-

evening sample entropy, which means that the mania and schizophrenia spectrum 

groups shared the characteristic of high motor activity complexity only in the morning 

periods. Between the groups, there were no significant differences in morning-to-

evening change in activity variables (group by time analyses). Adjustment for use of 

antipsychotic medications did not alter these results.  
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5.0 Discussion 

5.1 Discussion of main results 

5.1.1 Effects of BB glasses on YMRS outcomes, motor activity and sleep  

In this first RCT on the effectiveness on BB glasses as adjunctive treatment for 

patients hospitalized with a manic episode, we found that the effect was rapid, and 

with a large effect-size. The main finding (a sharp decline of mean YMRS total score 

for the BB group) was supported by the objective actigraphy data showing abruptly 

reduced mean motor activity both during daytime and in the 14 h BB interval. The 

actigraphy sleep outcomes at night five showed significantly higher sleep efficiency, 

lower mean activity and less minutes of wake after sleep onset for the BB group 

compared with the placebo group. In all these measures, the placebo group worsened 

during the first five days of the follow-up.  

The placebo group also demonstrated more nights of sleep disrupted by long waking 

periods. In paper II, this was described as the percentage of nights containing one or 

more active waking periods lasting 30 min or longer during the first five nights of the 

intervention. The patients in the placebo group had biphasic or poly-phasic sleep 

patterns in 43.8% of the recorded nights compared with 29.6% of the nights for the BB 

group. 

The effect measured by change in YMRS corresponded to a Cohens’d effect size of 

1.86, which was very similar to the effect size of the dark therapy pilot study (1.6). To 

date, the study by Barbini et al. is the only study with which a reasonable comparison 

of effects size can be made, as no other controlled studies on BB interventions or (real) 

dark therapy for patients in a manic episode have been published. However, large 

effects-sizes have also been found in other studies on the effects of BB interventions 

(or with protocols including evening light avoidance) for patients with sleep problems 

[143, 176]. Large effect size increases the likelihood for reproduction in future studies 
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[177]. Unfortunately, we could not calculate the effect on sleep outcomes in paper II 

due to a lack of baseline data.  

The patients in the BB group demonstrated a uniform pattern of change for several 

YMRS items. Items reflecting brain activation declined first (Item 5: Irritability, Item 

6: Rate and amount of speech). Notably, these are core symptoms of mania [17, 25, 

178]. Over the following days of the intervention, there was a decline in item-scores 

reflecting higher cortical processes: cognition, salience, and valence (Item 8: Content 

of thought/psychotic symptoms and Item 10: Appearance). The clinical symptoms 

reflecting decline in activation was supported by actigraphy findings of reduced mean 

motor activity among the BB group.  

The worsening of the sleep parameters indicating increased activation for the placebo 

group could be an iatrogenic effect of hospital light environments. This interpretation 

may seem bold. Several environmental factors may counteract sleep within a hospital 

environment, such as unfamiliar surroundings or sounds, coercion and (temporary) 

loss of autonomy [179-182]. However, the sole difference between the two groups 

here was a difference in light exposure. Inspection rounds made at night may cause 

light flashes [182]. Even short light pulses have the capacity to create circadian 

responses [183]. Awake patients in a manic state are prone to turn on the light, and 

these are usually much brighter in hospitals than in the home environment. Light 

exposure at night (in the hospital) may unintentionally counteract the effect of TAU. I 

have found no published research on the naturalistic course of manic symptoms and 

motor activity during the first days of a hospital stay. However, it is a common clinical 

observation that patients in a manic state may present worsened symptoms during the 

first days of hospitalization. One illustrative case report of a patient with 

schizoaffective disorder described a switch to rapid cycling and insomnia after 

hospitalization. The wearing of sunglasses indoors was interpreted as motivated by 

delusions, and therefore prohibited. When the patient was able to resume wearing 

amber and green glasses at home on leave from the hospital, the insomnia improved 
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within a few days [184]. In our study, several patients spontaneously reported 

themselves to be particularly light sensitive. Within the usual clinical context, these 

complaints are prone to be interpreted as the patient’s delutional attribution of 

symptoms to random environmental factors, and as such a demonstration of lack of 

insight. It is also not uncommon to interpret a transient increase of manic symptoms as 

a function of psychological decompensation. Our data suggest that the hospital light 

environment could provoke a worsening of manic symptoms.   

Item four (Sleep) of the YMRS is a merge of two dimensions: the subjective need for 

sleep and total sleep duration. No difference between the groups was demonstrated for 

this item; however, when we analyzed the actigraphy data, we found significant 

differences in three outcomes reflecting activated and fragmented sleep. Although the 

total sleep time for the BB group increased by nearly one hour, there was no 

statistically significant group difference in the sample overall.  

Paper II also contributes to the literature on sleep fragmentation and inter-daily 

variability of sleep for patients with mania [60, 113]. These recent insights into the 

characteristics of sleep in mania patients suggest a need for revision of the sleep item 

of the YMRS. Alternatively, a supplementary sleep measure could be added to the 

scale. It is clear that Item 4 of the YMRS was not constructed to detect sleep 

fragmentation or poor sleep quality. Because improved sleep quality may reduce total 

sleep time, this measure may have particularly low validity during BB interventions. 

We made this interpretation in a previous case report demonstrating markedly shorter 

but subjectively deeper and objectively less activated sleep along with full recovery 

from mania during BB treatment [134].  

5.1.2 Feasibility of BB-glasses as treatment for manic patients 

The participants generally liked the concept of treatment glasses, as shown in the 

scores presented in Figure 2. The sample in our study had symptoms in the range of 

moderate mania (mean). Two otherwise motivated patients were unable to comply 
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with the protocol due to severe mania and hence very short attention span. Six eligible 

patients either declined to participate or withdrew consent at the first night. We 

considered that high levels of manic symptoms influenced their decisions. Only eight 

women were recruited, (of 24 patients), and several women responded that they found 

all models of the glasses “ugly”. We strived to provide many models to satisfy 

different style preferences; however, the rather sporty designs of most of the models 

seemed to be preferred by the men. A majority from both groups agreed with the 

statement: It was important to have several models to choose from. This observation is 

important for utility, particularly in departments without spectrum-controlled dynamic 

lighting systems. We observed headaches in one patient and three healthy control 

participants that were clearly associated with the use of the BB glasses. The headache 

emerged shortly after the start of use and diminished abruptly after discontinuation. 

Interestingly, two out of the four affected participants had comorbid migraine. 

Photophobia during migraine is linked to ipRGC signaling [185]. Depressive 

symptoms were observed in two patients towards the end of the intervention. The 

emerging depressive symptoms were reversed within hours of discontinuing use of the 

BB glasses for one patient and by delaying the start of use to 8:00 p.m. for the other. 

No patient switched to a severe depressive episode. To date, no other studies have 

reported of side effects of the BB intervention. In sum, we found that blue-blocking by 

means of wearable glasses was feasible and safe for moderately manic patients, and 

the design of the glasses might influence patient acceptance.  

5.1.3 Motor activity patterns in affective and psychotic disorders 

This might be the first study to compare three diagnostic groups (schizophrenia 

spectrum disorder, bipolar mania, and unipolar depression) from the same acute ward 

concerning diurnal motor activity patterns. The motor activity characteristics of this 

new sample of patients with schizophrenia spectrum disorders replicated previous 

findings with respect to low mean activity, high variability (in 24 h recordings and 

morning sequences), and high irregularity of the motor activity [152, 157, 186]. 
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However, there are inconsistencies in the literature about variability of motor activity 

for patients with schizophrenia, which may relate to the epoch-length, time of day, and 

length of studied time-series [152, 186].  

The schizophrenia spectrum patients shared a high minute to minute variability with 

the unipolar depressed patients (expressed as high RMSSD/minute) in 24 h and 

morning sequence analyses, but differed with respect to higher mean activity and 

higher activity irregularity in the same intervals. 

Both the schizophrenia spectrum and mania groups had more irregular activity patterns 

in morning periods compared with the unipolar depressed and the healthy control 

groups. This is in line with previous research findings, where high irregularity of 

activity is trans-diagnostically associated with psychotic symptoms and activated 

states [152, 157, 158, 165]. Notably, 11/18 of the manic patients in paper III had 

psychotic symptoms.  

The mania group were distinct from the other groups by displaying an abnormally 

constant level of mean activity throughout the day. The finding of a blunted diurnal 

motor activity rhythm is in line with previous research showing low circadian 

amplitudes for patients in a manic state [50, 187]. In contrast, the healthy control 

group demonstrated a markedly higher morning activity and lower evening activity 

(38% decline). This normal diurnal activity fluctuation was more preserved in the 

schizophrenia spectrum and unipolar depressed groups.  

We observed a characteristic 48 hour-like pattern of wake/sleep rhythms in both 

groups. The presence of 48-hour rhythms of mood swings and neuroendocrine 

fluctuations are reported in several previous case reports, and some of these papers 

included data on motor activity and sleep length [18, 63, 134, 159, 160, 188]. Because 

the majority of these reports were published before 1990, these patients were mostly 

described as manic-depressive or in some cases “unipolar” (but cycling). The latter 

patients would now be regarded as BD-II patients. Instability in wake/sleep cycles has 
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also been reported for patients with schizophrenia, but there are no similar reports of 

48-hour activity rhythms for this group [113, 189]. This particular activity rhythm may 

be characteristic of patients on the bipolar spectrum and could have potential as 

diagnostic support. However, before firm conclusions can be drawn regarding the 

specificity of 48-hour activity rhythms as a bipolar disorder trait, this phenomenon 

needs to be transdiagnotically researched. 

5.2 Methodological Considerations and Limitations 

5.2.1 Paper I and II 

5.2.1.1 The samples 

In all papers, the patient samples consisted of acutely admitted patients. The public 

hospital service in Norway allows for elimination of selection bias due to social 

disparity. In papers I and II the patient groups were diagnosed with bipolar disorder 

with a current manic episode. Use of the structured diagnostic interview tool MINI + 

was chosen to optimize the validity of the diagnosis [164]. The inclusion criteria were 

otherwise broad: an age-span of 18–70 years and written consent. Only near-complete 

blindness and ongoing withdrawal symptoms prohibited inclusion. This should speak 

for high generalizability to the BD-I patient group overall. The mean YMRS scores for 

both groups were in the moderately manic range, and as a rule, the glasses could not be 

used by the most severely manic patients. Even when severely manic patients seemed 

motivated to participate, it was most often impossible for them to adhere to the 

protocol due to fragmented thinking. The absence of the most severely manic patients 

in the sample (except for one patient) prohibits a firm conclusion on the effect of BB-

glasses for patients with YMRS > 35–60. However, non-inclusion of the most severely 

ill patients may well have resulted in an underestimation of the effect. Due to moderate 

YMRS scores as a baseline and a rapid decline in symptoms for the BB group, there 

may have been a flooring effect (scores could not reduce further) in several of the 

YMRS items before the end of the observation period.  
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It cannot be ruled out that the BB glasses might have appealed to a certain type of 

personality among patients. Differences in outcomes related to personality traits, other 

individual factors, and environmental factors that could possibly affect the outcomes 

need to be studied with a larger sample. The location of the VATMAN trial (in the 

southwest of Norway) should also be considered. Latitude and solar insulation seem to 

influence endophenotypes and the course of illness [92, 93]. The majority of 

participants in the VATMAN trial were born and raised at a rather extreme latitude 

(Norway), which may have had an influence on their responsiveness to the 

intervention. The patients were recruited all year round over three years, but the 

sample was too small to compare effect by season. One notion contrary to the large 

effect being related to latitude is the outcome of the dark therapy pilot study, 

conducted in Italy, which demonstrated similar results [128]. In the future, a 

comparison of effect according to latitude and season may be possible.  

Selection bias from previous knowledge and interest in BB interventions was unlikely. 

Only two patients were ineligible because of previous knowledge on the possible 

effect the BB glasses. Due to growing interest in the effects of blue light in the popular 

science media, the inclusion of patients in the study was terminated in February 2015 

because of the risk of a selection bias. Beyond this time, the study design would have 

been hampered by the systematic exclusion of the best-informed patients.  

The healthy controls were recruited from the VATMAN trial. Nearly all (42/45) were 

employed and as such may have been generally healthier than the normal population. 

The majority worked in hospital wards and some worked on alternating morning or 

evening shifts. This may have imposed a bidirectional influence on motor activity; 

both regularization because of daily obligations, but also more variability due to 

irregular work hours for some of the participants.  

 

 



58 

 

 5.2.1.2 Research design 

As the first attempt to measure the effect of BB glasses in a sample of manic patients, 

the RCT design was added to TAU in a naturalistic setting. The resulting study on 

effectiveness has a high degree of generalizability to the usual setting of clinical 

treatment for manic inpatients. The design however prohibited a precise effect-

estimate due to multiple confounding sources, in particular from variations in TAU.  

The choice of lens properties for the BB glasses was based on previous studies 

demonstrating preservation of melatonin by blocking nearly all light with wavelengths 

shorter than 530 nm [5, 6] Using the same intervention interval (6:00 p.m. to 8:00) 

a.m. as well as the adjunctive (to TAU) design optimized the comparative value.  

5.2.1.3 Treatment as usual 

Differences in medication per TAU are shown in Table 1. Because of the strictly 

naturalistic design, the medication was adjusted based on a day-to-day assessment of 

symptoms by the treating doctor who was not involved in the study. This meant that 

the placebo group was more intensively treated because they were persistently more 

symptomatic for the duration of the intervention. Conversely, two patients in the BB 

group were moved to a less-intensive level of care during the observation period. This 

coincided with a transient increase in YMRS scores. This obvious source of 

confounding variables was accepted in the planning and conduct of this trail, because a 

stricter efficacy study with no additional medication would have been unethical (based 

on there being no preceding studies on the effect of BB intervention for mania 

patients). In addition, no single TAU works for all patients, and standardized treatment 

for one week could have delayed improvement for some. However, relocating the less 

symptomatic patients out of the acute ward could have been avoided, and in this 

respect, the naturalistic design was somewhat excessive.   

 



59 

 

5.2.1.4 The placebo  

The placebo condition was given much consideration. In 2011, knowledge was still 

limited on of effects of various qualities of light, and any type of colored lenses could 

potentially produce physiological effects, thereby serving as an active intervention. On 

the other hand, it was essential for the study design that patients could perceive the 

intervention as a potential active intervention. We sought to solve this dilemma by 

choosing clear placebo glasses and inform the patients in both groups similarly; the 

study in which you participate aims to compare the effect of glasses that block 

different wavelength of light. This same approach was used in a more recent study 

involving a BB intervention and a placebo [143]. Very importantly, the nursing staff 

and treating doctors were instructed to treat both groups the same way concerning 

reminding them to adhere to the protocol. People in a manic state are more irritable 

and less socially conforming than their euthymic self; therefore we inferred that the 

placebo was valid as long as the patients adhered to the protocol. The by-chance event 

that no patient could observe the other type of glasses on a fellow participant eluded 

debate with regard to the color of lenses. 

5.2.1.5 Randomization and blinding 

Allocation to the groups was made simply by the manual drawing of folded patches, 

performed by someone not otherwise involved in the trial. The groups were similar 

with respect to medical history and lifetime severity of the illness. The placebo-group 

was slightly higher in YMRS rated symptoms at baseline and somewhat older than the 

BB-group; a difference we regarded could not explain the outcomes. In an ideal RCT 

design, participants and rater are both blinded to the group assignment; however, the 

VATMAN trial was only single-blinded. As for most other chronotherapeutic 

interventions, the visibility of the intervention made double blinding practically 

impossible. This problem together with the countermeasures taken to reduce the 

probability of rater bias are both thoroughly discussed in Paper I.  
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5.2.1.6 The validity of measures 

The Horne-Östberg Morningness-Eveningness Questionnaire is a validated and 

commonly-used rating scale for morning or evening preference, translated to 

Norwegian by Idalill Udnes et al. [166, 170]. The Seasonal Pattern Assessment 

Questionnaire was first published in 1984 and is widely used for assessing SAD 

symptoms [167-169]. From this questionnaire, the sub-score GSS is derived, which 

provides an operational score for assessing SAD symptoms [168]. 

The primary outcome in the VATMAN trial was YMRS total score. The YMRS is the 

most widely used mania rating scale, with high validity and substantial interrater 

reliability [1, 190]. Despite some weaknesses (such as the comprised item 8 that 

encompasses symptoms from hyper-creativity to grandiosity and hallucinations), by 

using this we were able to compare our results to the majority of previous studies on 

mania treatments. Most importantly, this scale was used in the preceding dark therapy 

pilot [128].  

The secondary outcome motor activity (by actigraphy) was added as an objective 

measure to support the clinical YMRS ratings in Paper I, and as such increased the 

validity of the findings. To increase the likelihood of patient acceptance, the placement 

on either wrist was accepted. Placement on either the dominant or non-dominant wrist 

is equivocal concerning wake/sleep estimates as validated by polysomnography; 

however, the position of the actigraph may have influenced other activity outcomes 

[191, 192].  

The actigrah device could potentially provoke suspicion, and thereby influence 

symptoms. To inform on this, a statement regarding the perception of the actigraph 

device was included in the patient experience self report form. Most patients disagreed 

to the statements: I was suspicious about the Actiwatch and Wearing the Actiwatch 

was irritating. This indicated that the actigraphy-recording did not increase psychotic 

or manic symptoms. 
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Actigraphy is regarded as a valid measure of motor activity and as a source of data for 

wake and sleep, but may overestimate sleep when the subjects are lying quietly but 

still wake [117, 155]. For the group of patients hospitalized with mania, some 

medications may have reduced locomotor activity but failed to induce sleep. To reduce 

error regarding estimated sleep intervals, the raw data was inspected and validated 

with data regarding lights being switched on and off, and nurse reports on wake and 

sleep [171, 192]. For the sake of transparency and reproducibility, the rules that were 

applied for setting manual rest intervals were detailed and published as supplemental 

material for Paper II. 

5.2.2 Paper III 

5.2.2.1 The sample  

To optimize diagnostic validity, at least three specialists provided a diagnose 

consensus for each patient (two specialists had thorough knowledge to the patient’s 

history and symptoms). With regard to the generalizability of finings, two aspects 

require consideration. The unipolar depressed patient group was selected based on 

clinically assessed motor retardation. As such, the outcomes in motor activity only 

applied to this endophenotype of unipolar depressed patients. The schizophrenia 

spectrum group was made very broad. In addition, there were some overlap with 

affective symptomatology due to the inclusion of the intermediate category of 

schizoaffective disorder. The finding of no significant differences in motor activity 

compared to the mania group may be a consequence of the heterogeneity of the 

schizophrenia spectrum group. 

5.2.2.2 Research design  

The cross-sectional design was suitable for the purpose of describing and comparing 

activity patterns of specific diagnostic categories. As such, the study was grounded 
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within a tradition of descriptive psychopathology advocated by Kraepelin more than 

100 years ago [15]. 

5.2.2.3 Validity of measures 

Actigraphy has limitations with regard to monitoring complex movements or local 

movements that do not involve the limb used for the placement of the recording device 

[155]. The device may also evoke suspicion with regard to surveillance beyond the 

presented purpose [155]. However, in the VATMAN trial, (where a majority of the 

patients had experienced psychotic symptoms), most patients indicated that the device 

did not make them suspicious. 

5.2.2.4 The treatments as a confounding source 

The somewhat constrained hospital environment could have contributed to the 

significantly lower levels of activity over the 24 h period in all patient groups 

compared with the heathy control group. The finding of low activity mean (even for 

the mania group), is in line with other research performed in hospital environments 

[59].  

The possible confounding of psychotropic medication was given much consideration. 

Besides targeting activation and affecting general cortical function, medication may 

produce side effects involving the motor system, such as tremor or involuntary 

movements [193, 194]. In modern practice, side effects causing motor disturbance are 

usually corrected quickly. Here, the question was whether medication was responsible 

for the group differences. Unsurprisingly, the medication profiles differed somewhat 

between patient-groups, with main differences being more antidepressants and less 

antipsychotics prescribed for patients in the unipolar depressed group and more 

patients using mood stabilizers in the mania group. For the affective disorders in 

particular, treatment is often aimed at normalizing dysregulated activation. This means 

activating motor retarded depressed patients and calm those who have manic 

symptoms; hence, to reduce the differences between the groups. We therefore argued 
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that the differences in the psychotropic medication could not fully explain the results. 

The literature provides little information on this issue; however, one study identified 

lower circadian amplitude in a sample of manic patients regardless of their medication 

profiles [187]. A degree of confounding influence from medication cannot be ruled 

out, but the fact that we could identify different constellations of activity patterns in a 

naturalistic environment of ordinary clinical practice argues for real motor activity 

differences, which the medications could not erase. Lastly, controlling for treatment 

with antipsychotics did not change the main findings.  

5.2 Statistical considerations   

The research in all three papers involved relatively small sample sizes prone to type II 

error (wrongly confirming of the nil hypothesis) due to lack of power. Analysis of 

actigraphy data is particularly susceptible to this issue because of the inherent large 

degree of variability.  

The demographic variables from patient groups in the VATMAN trial were not tested 

for statistically significant group differences. Because the procedure of allocation 

secured random group assignment, a statistically significant difference in demographic 

variables would be a by-chance event. Group differences in age and YMRS at baseline 

were regarded as insufficient for explaining the differences in outcomes.  

In Paper I, linear mixed model analysis was considered appropriate for the design and 

purpose of testing the effect of a novel intervention. The linear mixed model allows 

the inclusion of drop-outs in the intention to treat analyses for each analyzed time 

point (day) during the trial [195]. This method is conservative, being more likely to 

underestimate rather than overestimate effects [195].  

In Paper II, ANCOVA analysis at night five (adjusted for outcomes at night one) was 

chosen because of small sample size and no baseline data for sleep parameters. Night 

five was used as time-point for the analysis because of two drop-outs that occurred 

after that point. We regarded these drop-outs as a consequences of the patients 
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receiving placebo intervention rather than the BB intervention. In one case, the patient 

stopped believing in the placebo, and in the other case the increasingly manic patient 

demanded discharge from the hospital. At night five, the integrity of the design was 

still largely intact and the sample sizes were still sufficient for meaningful analysis of 

the actigraphy data.  

Paper III involved multiple analyses and it could be argued that the p-value should 

have been adjusted accordingly. Despite pre-planned analyses, multiple testing 

involves an increased chance of statistically significant findings from single analysis.  

However, the study was exploratory in nature, and the use of multiple mathematical 

analyses for studying the same phenomenon (such as activity complexity) was a means 

of increasing the interpretive value. 

5.3 Ethical considerations 

All studies included in this thesis were conducted in accordance with the Helsinki 

Declaration, and involved written inform consent from all participants who were 

allowed to redraw their participation at any time before the analyses [196]. To ensure 

that the patients had capacity to grant their written informed consent in the VATMAN 

trial, the full written information and consent was obtained when the patient was no 

longer in a manic state, as approved by the regional ethical committee (Regional Etisk 

Komite, REK). This meant that eligible patients were given limited information that 

was considered sufficient for preliminary decision to participate. If patients agreed to 

participate, they were then recruited and underwent the protocol; however, the data 

were not included in the analyses unless written consent was obtained. In the answers 

to the patient experience self-report form, a clear majority agreed to the statement: 

Participation in the project was a positive experience. This contributed to the general 

impression that the participation added meaning to the otherwise difficult situation. 

Also, the participation was voluntary and thereby fully controllable, unlike some other 

aspects of hospitalization.  
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6.0 Possible mechanisms 

 6.1 Activation and motor activity patterns  

First, the construct activation needs some elaboration. The definition by Scott et al. 

was strictly descriptive for the purpose of reviewing the objective evidence for motor 

activity disturbance in bipolar disorder [9]. The neuronal circuitry underlying normal 

and deviant activation is complex, and the term has several different aspects involving 

various neuronal circuits and functions, such as control, periodicity, dynamics and 

subjective experience of energy [9]. Net activation, as measured by actigraphy from 

some part of the body, is the result of the interplay between different systems as put by 

Steele and Mistlberger,”Activity is a slave to many masters” [197]. The arousal system 

is one of the most powerful of these, and serves as a prerequisite for consciousness [8]. 

The arousal system enables the individual to respond to stimuli from the environment 

[198]. If the individual perceives a major threat, the response options are freeze, fight 

or flight, through activation of the hypothalamic-pituitary-adrenal (HPA) axis and the 

symphatoadrenal system (SAS) [199]. Neuroanatomically, the system consists of 

ascending pathways providing sensory input through the medulla to the 

monoaminergic brain stem nuclei [198]. These nuclei have widespread axonal 

projections to the cerebral cortex, basal ganglia and forebrain, which–by the 

expression of the monamines noradrenaline, dopamine, serotonin, histamine and 

acetylcholine–promote wakefulness, alertness and goal- directed activity [198]. The 

descending pathways from the hypothalamic nuclei of the forebrain provide multiple 

homeostatic input to the monoaminergic nuclei, such as the orexin neurons of the 

lateral hypothalamic nucleus activating the monaminergic nuclei, which promote 

wakefulness [8]. This pathway is essential in the regulation of wake and sleep [200]. 

Activation of the arousal system during wake and non-REM sleep increase motor 

activity, and in particular the tone of posture muscles [198, 200].  
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The different brainstem nuclei of the arousal system have differential connectivity, and 

it is beyond the scope of this thesis to detail this extensively; however, some 

connections need more description. The locus coeruleus, which is central in bipolar 

disorder, is a hub of the arousal system activating the HPA axis and the sympathetic 

nervous system, and sensitizes the brain to novel stimuli [201, 202]. According to 

fMRI studies by Vandewalle et al., blue light stimulus seems to increase the signal 

from the locus coeruleus [203, 204]. The connectivity from the retinal ipRGCs to the 

locus coeruleus in the brain stem is not fully mapped; however, the hypothalamic 

nuclei of the arousal system projecting to the brain stem are extensively innervated by 

ipRGC projections [75]. The light information from the ipRGCs is in principal sensory 

(like information on sound, touch, pain, smell and taste) as in the ascending pathway, 

but same time (day)light signals relay through the hypothalamic nuclei of the forebrain 

involved in homeostatic control (descending pathway). Given recent insights on the 

activating effects of light stimuli, input from the ipRGC projections should be 

considered for inclusion in the schematic of the arousal system in the future [205]. 

The generalized arousal system can be differently tuned based on genetic variance, as 

illustrated by differences in sensitivity to stimuli observed in both humans and non-

human animals of the same species [8]. Also the net strength of the incoming signal 

may differ, as seen in conditions involving disturbances in the gating of sensory 

information such as in schizophrenia and autism [206]. Additionally, internal stimuli 

contribute to hyper-arousal in some mental illnesses, such as intrusive memories in 

post-traumatic stress syndrome and hallucinations in schizophrenia [17, 207]. 

One theory on the function of the generalized arousal system seems particularly useful 

for translating arousal functions to motor activity patterns [198]. The firing pattern of 

neurons in the resting state is complex and chaotic, but such a system can mobilize 

rapidly and facilitate rapid transitions from sleep to wake to goal-directed behavior 

[198]. Non-linear mathematical methods, as applied in Paper III, are useful for 

assessing the degree of complexity as in the resting pre-action state [8]. On the 
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transition to goal-directed activity, the firing pattern in neurons and the corresponding 

motor activity become regular; a transition which happen abruptly, and is similar to the 

phenomenon of chaotic molecules in the liquid phase turning into a very orderly solid 

structure at the critical temperature [8]. As water close to the freezing point, the resting 

arousal system seems to be tuned to the brink of “criticality”, to be ready at all times to 

take directed action. In the model by Pfaff et al., the threshold from rest to ordered 

goal-directed activity happens at a certain level of (sufficient) arousal [198]. However, 

as the same authors mention in a later paper, the optimal level of arousal is moderate, 

as hyper arousal leads to reduced function if a task is complex [8]. The empirical 

relationship between arousal and performance is called the Yerkes-Dodson law, which 

is usually presented as a dome, illustrating decrease in performance beyond an optimal 

level of arousal [208]. This law is particularly applicable for mental disorders that 

often involve hyper-arousal. Due to transient or chronic cognitive impairment, many 

tasks may be complex for the brain of a severely manic patient or for a patient with 

schizophrenia [209]. Hyper arousal prohibiting transition from the pre-action state to 

the active, goal-directed, ordered state could provide a theoretical explanation for the 

chaotic and complex motor activity patterns seen in the manic and the schizophrenia 

spectrum groups in Paper III and in previous literature. 

Several studies have reported a correlation between agitation and high activity 

complexity [157, 158, 165]. Mania usually presents with agitation, and approximately 

60% of the manic patients in Paper III had psychotic symptoms. Higher scores for 

positive symptoms (hallucinations and delusions) and excitement in schizophrenia 

(which may correspond to agitation in mania) have previously been found to correlate 

most strongly with high irregularity in activity patterns [157].  

Dopamine-dysregulation in the striatum (which is part of basal-ganglia) has been 

implied in psychosis since the discovery that chlorpromazine had anti-dopaminergic 

effects [210]. Motor dysfunction in schizophrenia has been linked to abnormal 

function in the cortico-basal ganglia motor pathways, but also more widespread effects 
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related to altered glutamatergic transmission and demyelination could affect motor 

function [145, 155, 210-212]. Dopamine receptors continue to be the main target for 

most anti-psychotic medications, which are the first line treatments for both acute and 

chronic psychosis as well as for mania [213]. In sharp contrast to mania, schizophrenia 

may involve negative symptoms, which refer to lack of initiative, interest and 

emotional response [25]. These symptoms are also part of the depressive syndrome. 

For both schizophrenia and depression, lack of initiative and low motivational drive 

have been linked to frontal cortex dysfunction which is associated with reduced 

locomotor activity [211, 214]. The similar patterns of high variability and low mean 

motor activity in the schizophrenia spectrum and unipolar depressed groups could 

reflect some shared dysfunction in the same frontal cortex circuits, however likely 

through different mechanisms. 

An overarching phenomenon that may influence the motor activity patterns for 

different diagnostic categories may be the differential interplay between circadian 

activity rhythms and ultradian (dopamine driven) activity rhythms [38]. Although 

ultradian refers to periods shorter than 24 h, in experimental conditions with 

increasing dopamine availability (in mice) the dopamine ultradian oscillator (DUO) 

rhythm is extended from 4 h up to 48 h [38]. In Paper II, we described a 48 h pattern of 

shorter or interrupted sleep, which was previously reported in several rapid-cycling 

bipolar disorder subjects [18, 38, 63, 188]. An explanation for this particular pattern 

could be a dysfunctional 48 h dopamine rhythm that disrupts sleep every second night 

[215].  

Since the DUO is tunable (as observed in an animal model), the DUO period could 

theoretically range from 4–48 hours in humans as well, which could produce a range 

of frequencies of DUO activity bursts superimposed on the circadian activity rhythm 

[38]. When adding dysregulated arousal and circadian desynchronization, this could 

create the variety of motor activity patterns observed; from reduced or blunted 

circadian amplitude to abnormally rhythmical activity with increased variability [152-
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154]. Even in patients with borderline personality disorder (with symptoms not usually 

perceived as being related to disturbances of biological rhythms), researchers have 

recently demonstrated abnormal activity variability as well as 4 h cycles of irritability 

and negative mood [216, 217]. Disrupted circadian function is associated with more 

severe symptoms, reduced function and reduced quality of life [105, 218]. Actigraphy 

could be a useful tool for monitoring effect of interventions directed to restore health-

promoting biological rhythm function. However, this dimension first needs to be 

acknowledged more in research and in practical mental health care.  

6.2 The BB intervention’s effect on manic symptoms 

It was not an aim of the VATMAN trial to study mechanisms; however, the results 

suggested that the BB intervention targeted some basic mechanism of mania. Without 

any direct neurobiological outcome measures, the following discussion on mechanisms 

is based on the temporal changes in the clinically observed symptoms, objectively 

measured motor activity and subjective feedback from the patients. In addition, 

preexisting theories and findings from both animal and human studies will be 

discussed, regarding the effects of light on mood, activation, and the bipolar switch 

process.  

6.2.1 Change in light input to the visual cortex 

The BB-intervention imposed an abrupt change in the patient’s light exposure in 

several ways. Firstly, could the change in visual perception from harsh white light to 

warm orange glow have caused a psychological soothing effect? The BB lenses 

reduced overall visual brightness, altered color perception to an amber hue, and 

enhanced contrast-vision. Altered stimulation of the visual cortex and psychological 

responses cannot be ruled out with regards to contribution to the effects, as opposed to 

ipRGC-influenced responses. To solve this methodological problem, researchers have 

developed a method of delivering light-stimuli that looks the same but have different 

melanopic lux, referred to as metameric light conditions [205, 219]. Objectively (EEG) 
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measured alertness has been shown to be significantly increased during light exposure 

with high melanopic irradiances, regardless of the visual perception of color [205]. 

Clearly, the difference between real darkness and virtual darkness is also considerable 

concerning visual orientation. We first guessed that the effect observed in the dark 

therapy pilot study was mediated partly by sensory deprivation and reduced mobility. 

This consideration was taken into account in the power calculation for the VATMAN 

trial, as the estimated power was set to 0.8, which was half the effect seen in the dark 

therapy pilot-study by Barbini et al. [128]. We discovered that the effect of virtual 

darkness on manic symptoms was similar in magnitude to the effect of real darkness. 

This is indicative that sensory deprivation was not the main mechanism for the effect 

of dark therapy, and that avoidance of blue light exposure was a likely major factor. 

However, the small sample sizes of both studies limits the interpretations based on 

effect size comparison [220].  

6.2.2 Improvement of sleep 

We observed increased sleep efficiency and improved sleep maintenance in the BB 

group. Could improvement of sleep be the mechanism through which the BB glasses 

had effect on overall manic symptoms? The idea that restored sleep mediates 

improvement in other affective symptoms (through resynchronization of circadian 

rhythms), has been proposed in several previous publications and is central to the 

rationale for application of cognitive therapy for insomnia in bipolar disorder [35, 119, 

124, 221]. Restauration of regular sleep was a central first hypothesis for the 

mechanism for the effect of dark therapy [126, 221]. However, this theory is not 

supported by strong evidence for the directed mechanistic relationship between 

restored sleep and circadian resynchronization. Sleep is found to yield a relatively 

week time signal to the SCN [222]. Based on the results in papers I and II, we cannot 

answer if improved sleep quality mediated improvement in other manic symptoms, or 

if improved sleep was a coinciding phenomenon mediated by another factor. Planned 
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analyses on directed associations between YMRS items and actigraphic sleep 

outcomes may inform on these questions.  

6.2.3 Change in timing and regularity of light signal to the SCN 

Restauration of a normal circadian rhythm could theoretically have been involved in 

the recovery mechanism. Notably, the study by Moon et al. suggested that wake/sleep 

rhythms for hospitalized manic patients were disassociated from the grossly advanced 

hormonal and peripheral circadian rhythms [50]. This means that with no other 

measure than motor activity, we do not have information on the effect of BB glasses 

on circadian rhythms or whether circadian resynchronization preceded mania recovery. 

Furthermore, the intervention in our study was probably too short to observe changes 

in circadian function at a group level. Derived from the findings of Moon et al., the 

imposition of regular darkness periods from 6:00 p.m. likely caused temporary 

circadian turmoil that would require some time to resolve. Because of the effect 

observed after only three days, we surmised that the main mechanism was unlikely 

mediated by circadian resynchronization. In other samples, it is a consistent finding 

that BB interventions have the capacity to strengthen circadian amplitude by 

promoting melatonin secretion [5, 6, 133, 135-137]. Future clinical studies on the 

effects and mechanisms of BB interventions should ideally include multiple measures 

of circadian rhythms (both central and peripheral rhythms) and longer observations 

[50].  

6.2.4 Deactivation by decrease in blue-light exposure 

Several findings accounted for a primary effect through deactivating mechanisms. 

Scores in YMRS items most related to activation declined first, followed by items 

assessing cognitive content and ideation. As such, the actigraphy data was in line with 

the pattern of the clinically rated symptoms as we observed rapid decrease of mean 

motor activity in the BB group. Several patients spontaneously reported a calming 

sensation shortly after starting to wear the glasses. Some reported a sudden awareness 
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of feeling sleepy or exhausted. The rapid calming effect seemed to encourage 

adherence to the protocol. With the exception of one patient who developed a 

headache, none of the patients adhering to one night of BB glasses later dropped out of 

the study.  

The direct activating and mood regulatory effects of light are seen in both human and 

non-human animals [76, 77, 203, 204, 223]. This challenges the current theoretical 

basis of the chronotherapies for mood disorders; effects through regularization of 

circadian processes. On the contrary, the mood regulatory effects of light seem to be 

independent of circadian regularization. Replicated animal studies have recently 

demonstrated that mood regulatory projections from the ipRGC simply bypass the 

SCN and project to the habenula/perihabenuar area, a brain area responsive to changes 

in light conditions and involved in affective regulation [77, 78, 224]. Conversely, it is 

reasonable to hypothesize that a halted signaling through these projections (due to the 

virtual darkness condition) could reduce abnormally high activation and elated mood 

in humans.  

Human fMRI studies have shown general brain activation following blue light 

exposure, starting within seconds as an increased signal in the hypothalamus and an 

area interpreted as locus coeruleus [203, 204]. From the brain stem, locus coeruleus 

produces and administers noradrenaline through widespread projections to the cortex 

and limbic system [201]. Antidepressants increasing noradrenaline availability are 

prone to provoke manic episodes [202]. Noradrenaline metabolites in the cerebrospinal 

fluid and urine are higher in manic subjects than in depressed bipolar subjects or 

healthy controls [62, 159, 202, 225]. Dopamine is another central monoamine in 

bipolar disorder pathophysiology and has recently been found to be co-expressed with 

noradrenaline from the locus coeruleus [213]. As such, the fMRI studies by 

Vandewalle et al. also yield indirect support of effect of blue-light exposure on 

dopamine availability [204, 226].  
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The deactivation hypothesis for the effect of BB glasses during mania conforms well 

to the results of sleep outcomes in Paper II, which showed rapid effects in outcomes 

related to activation in the sleep interval and sustainment of sleep. Hubbard et al. 

suggested a three-process model of sleep regulation that was an expansion from the 

original two-process model by Borberly et al. In the three-process model, 

environmental light is added as a third separate process to the sleep homeostat (process 

S) and the circadian component (process C) [227, 228]. This expanded model provides 

a good theoretical framework for discussing how the BB intervention could promote 

more sound sleep. Due to its alerting effects, light at night suppresses the effects of 

high sleep pressure (process S) [227]. Stimulation of the arousal system contributes to 

holding the wake/sleep “flip-flop switch” (of the hypothalamus and brain stem) in the 

position that promotes wake [229].  In addition, light at night suppresses melatonin 

and delays the circadian rhythm (process C) [227]. Again, our data mostly support 

deactivating mechanisms that may have increased sleep efficiency through 

disinhibition of the sleep homeostat factor S.  

6.2.5 Do the results contribute to insights in the bipolar switch process? 

Shortly after the publication of Paper I, Daniel Kripke sent me his paper on the 

circadian bifurcation theory [68]. I interpreted his communication as his understanding 

that our findings were somehow in line with his hypothesis on the manic switch 

mechanism. In the paper, he described a compelling theory of how a possibly unstable 

SCN of the BD-I phenotype may switch to a double-speed 12 h rhythm, resulting in a 

two-peak shallow melatonin rhythm and a resultant excessive brain triiodothyronine 

(T3) secretion via downstream effects [68]. Elevated brain T3 has the capacity to 

produce many of the core symptoms of mania [68]. This theory is supported by a 

human study that found two daily peaks of melatonin in a sample of manic patients 

[230]. There is a lack of other data on the occurrence of a bifurcated circadian rhythm 

in humans. However, shallow amplitudes of various circadian rhythms during mania 

are demonstrated, which could be the result of state-dependent bifurcation [50, 187]. 
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In Paper III, we found a constant mean level of morning and evening activity in the 

group of manic patients, as opposed to the normal morning-to-evening decline. This 

blunted diurnal activity fluctuation may as well be an expression of two consecutive 

12 h periods [231]. Bifurcation of circadian rhythms can be provoked in hamsters and 

mice by use of extreme photoperiods [232, 233]. After a few days in constant 

darkness, the bifurcated rhythm switches back to an ordinary 24 h rhythm. [233]. In 

the VATMAN trial (similar to in the previous dark therapy case reports and dark 

therapy pilot study) we imposed regular periods of 14 hour darkness from 6:00 p.m. 

[2, 126-128]. If the patients’ circadian rhythm was 2 x 12 h, the BB glasses may have 

stopped the day signal for the second day-phase of a bifurcated circadian rhythm and 

switched the patients back to a regular 24 h rhythm. This interpretation is in 

accordance with the theory of circadian bifurcation in humans by Daniel Kripke et al. 

[68]. Moreover, the switch back to a normal circadian rhythm could theoretically 

happen abruptly and provide an explanation for the rapid effects observed in our study.  

6.2.6 The essence of photoperiod 

Also involving extreme photoperiods, a breakthrough paper published in 2013 may 

have brought us closer to resolving the puzzle of affective switch mechanisms. The 

study by Dulcis and colleagues showed that in response to extreme photoperiods, 

mature hypothalamic interneurons of adult rats have the capacity to change 

morphology, and as such serve as a mood switch [67]. Later research has replicated the 

findings, and the neuronal mechanisms are now under further investigation [234-236]. 

These switching neurons are innervated by ipRGC projections. The long day 

photoperiod (19 h light (L)/5h dark (D) promoted a predominance of somatostatin 

expression, whereas the short day (5L/19D) promoted dopamine expression. This 

process of switching cell morphology required one week of the extreme photoperiod 

condition to happen. Behavioral testing showed that increased dopamine expression 

was associated with more running around, less anxious behavior and more risk taking, 

whereas somatostatin promoted opposite behaviors associated with depressive 
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functioning. The two cell-types of the switch have an antipode downstream effect on 

the corticotrophin releasing factor (CRF). Somatostatin increases CRF and 

corticosterone release in rats. In bipolar disorder, hypothalamic-pituitary-adrenal-axis 

abnormalities are evident [237, 238]. Interestingly, in several case reports on rapid 

cycling bipolar disorder, longitudinal monitoring of cortisol metabolites has 

demonstrated fluctuations in cortisol levels in line with the findings of Dulcis et al. 

showing lower cortisol-metabolites on days of mania and higher levels during days in 

depression [159, 188, 239-242]. Dulcis and colleagues infer that the findings in 

nocturnal animals could easily be translated to diurnal humans, only for humans a long 

photoperiod would elicit a switch to dopamine expressing cell morphology, suppressed 

CRF and vice versa. There might still be significant differences in neural function or 

neural connectivity between rodents and humans prohibiting firm translational 

conclusions regarding the issue of neuronal switching [243]. However, one post-

mortem human study from Scotland demonstrated clear seasonal variation in the 

number of mid-brain dopamine cells. In five people who had died in the summer, there 

was a significant and six-fold higher number of cells positive for tyrosine hydroxylase 

(the rate limiting enzyme for dopamine production), compared to five people who died 

during the winter months [244]. This first human study on photoperiod-associated 

differences in dopamine cell expression was clearly in support of the translational 

value of the animal studies on photo-period-induced transmitter switching.  

6.2.7 Manic state—light exposure positive feedback loop 

Taken together, results from many lines of clinical research and animal studies support 

that light is a central environmental trigger of manic episodes [68, 70, 90, 92]. Our 

data suggest that BB-intervention 6:00 p.m. to 8:00 a.m. alleviates mania and improves 

sleep, sequentially first through deactivating mechanisms.  

Light from electric sources is nearly always present in hospital wards. Patients in a 

manic state feel rested after a short sleep and are usually active shortly after waking 

regardless of the hour. It is therefore likely that wake and light exposure as a rule are 
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coupled for manic patients. The bifurcation hypotheses of Kripke, and the findings of 

photoperiod-induced switching of hypothalamic neurons imply that all sleep disturbing 

events could initiate a manic episode in BD-I phenotypes by causing aberrant light 

exposure and prolongation of the photoperiod [67, 68, 118]. Several researchers have 

described the likely existence of a mania self-sustaining process, involving poor sleep 

as both the trigger and sustainer of the manic state [119, 126, 221, 245, 246]. As an 

alternative common factor, light exposure (caused by wake at night), has previously 

been suggested by some authors [68, 189]. Nevertheless, this perspective has generally 

been missing. In the present hypothesis, (blue) light exposure (as a concomitant of 

wake/non-sleep) is replacing sleep problems (per se) as a causative mania-sustaining 

factor. Light is a much more potent disrupter of circadian rhythms than sleep-loss in 

isolation [222]. Light has rapid activating effects as well as transmitter-switching 

effects [67, 88, 204]. Change in sleep pattern will most often affect light exposure. For 

example, a 48 h wake/sleep pattern is prone to causing a long photoperiod every other 

day. An emerging manic state may be fueled by the continued reinforcing feedback 

loop created by the manic sleep disturbance and the resultant exposure to aberrant light 

cycles. The BB intervention could be effective by halting a manic state—light 

exposure feedback loop by providing (virtual) darkness during waking in the 

biological night. 
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Figure 3A. How stress, activating agents and change in light exposure may 

initiate a reinforcing mania-sustaining feedback-loop by the interaction of 

disrupted sleep–more light exposure and activating effects. 
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Figure 3B. How the blue-blocking glasses may stop the mania sustaining process 

by uncoupling wake and activating light-exposure in the evening and night.  
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7.0 Conclusions and implications 

We found that BB-glasses was effective and feasible as an adjunctive treatment for 

mania. Sleep efficiency was higher and sleep maintenance was better in the BB group 

than in the placebo group. The rapid and large effect on overall manic symptoms was 

likely mediated through deactivating mechanisms. The observation time was too short 

to detect changes in the circadian phase of the wake/sleep patterns. Concerning 

previous theories on basic pathophysiological mechanisms of mania, the actigraphy 

findings and observations in papers II and III could support both the circadian rhythm 

bifurcation theory and influence of a magnified and prolonged dopamine oscillator 

rhythm. The results in papers I and II, as well as new insights in the effects of light 

from multiple lines of research, suggest the presence of a manic state—light 

environment positive feedback loop. The BB intervention may be effective by 

uncoupling wake from (melanopic) light exposure.  

Paper III contributed more evidence for the utility of actigraphy to discriminate 

between different psychiatric symptoms and diagnostic entities. We replicated 

previous findings of high activity complexity and high activity variability in the 

schizophrenia spectrum group [152, 157]. All patient-groups demonstrated reduced 

morning-to-evening fluctuation in activity; however, for the mania group this rhythm 

was completely blunted. The diagnostic categories of schizophrenia spectrum 

disorders, bipolar mania and unipolar (motor retarded) depression all showed different 

constellations of motor activity patterns which we regard have discriminative 

potential. The inclusion of analyses on wake/sleep rhythms and circadian function may 

increase the utility of activity monitoring for diagnostic support and for assessment of 

treatment response [154, 155]. 

The results from the VATMAN trial have contributed to local changes in clinical 

practice both in Norway and abroad, and encouraged more research on effects of 

hospital light environments [144]. In April 2018, a Mini Metodevurdering (evaluation 
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of evidence, risks, costs, and ethics of a new therapeutic procedure) of Virtuell 

mørkebehandling ved bipolar lidelse (Virtual darkness therapy for bipolar disorder) 

was published at Folkehelseinstituttet, a governmental source of information on 

research, treatments and practices [247]. Paper I provided data on effectiveness and 

side effects (risks). Several Norwegian health authorities have decided to advice on 

implementing BB interventions in ordinary hospital practices for patients with bipolar 

disorder in a manic state. Paper I was also included in a recent review on 

chronotherapies for bipolar disorders from the ISBD Chronobiology Task Force, in 

which dark therapy (including BB interventions) were recommended as part of the 

ordinary hospital treatment for bipolar disorder mania [3].    

Besides the acute effects on manic symptoms, the BB intervention may change how 

people with a bipolar constitution perceive themselves. The narrative of having a 

disorder that involves “hyper-responsiveness” to a natural condition; light, is very 

different from being a victim of an incomprehensible illness causing meaningless 

unforeseen mood swings. 
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Blue-blocking glasses as additive treatment for
mania: a randomized placebo-controlled trial

Henriksen TEG, Skrede S, Fasmer OB, Schoeyen H, Leskauskaite I,
Bjørke-Bertheussen J, Assmus J, Hamre B, Grønli J, Lund A.
Blue-blocking glasses as additive treatment for mania: a randomized
placebo-controlled trial.
Bipolar Disord 2016: 18: 221–232. © 2016 The Authors. Bipolar
Disorders Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial License, which permits use, distribution
and reproduction in any medium, provided the original work is properly
cited and is not used for commercial purposes.

Objectives: The discovery of the blue lightsensitive retinal photoreceptor
responsible for signaling daytime to the brain suggested that light to the
circadian system could be inhibited by using blue-blocking orange tinted
glasses. Blue-blocking (BB) glasses are a potential treatment option for
bipolar mania. We examined the effectiveness of BB glasses in
hospitalized patients with bipolar disorder in a manic state.

Methods: In a single-blinded, randomized, placebo-controlled trial
(RCT), eligible patients (with bipolar mania; age 18–70 years) were
recruited from five clinics in Norway. Patients were assigned to BB
glasses or placebo (clear glasses) from 6 p.m. to 8 a.m. for 7 days, in
addition to treatment as usual. Symptoms were assessed daily by use of
the Young Mania Rating Scale (YMRS). Motor activity was assessed by
actigraphy, and compared to data from a healthy control group.
Wearing glasses for one evening/night qualified for inclusion in the
intention-to-treat analysis.

Results: From February 2012 to February 2015, 32 patients were
enrolled. Eight patients dropped out and one was excluded, resulting in
12 patients in the BB group and 11 patients in the placebo group. The
mean decline in YMRS score was 14.1 [95% confidence interval (CI):
9.7–18.5] in the BB group, and 1.7 (95% CI: !4.0 to 7.4) in the placebo
group, yielding an effect size of 1.86 (Cohen’s d). In the BB group, one
patient reported headache and two patients experienced easily reversible
depressive symptoms.

Conclusions: This RCT shows that BB glasses are effective and feasible
as add-on treatment for bipolar mania.
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BIPOLAR DISORDERS



Bipolar disorder is a serious mental illness with a
prevalence of approximately 1% (1). Bipolar I dis-
order is characterized by manic and depressive
mood swings. Patients in an episode of mania pre-
sent with symptoms of elevated mood, irritability,
increased energy, risk-taking behaviour, sleep dis-
turbances, and changes in thoughts and percep-
tion, sometimes to the level of psychosis. Patients
with bipolar disorder have the highest suicide rate
(20%) amongst all those with psychiatric disorders
(2). Manic episodes are associated with a particu-
larly high risk of injury and death from accidents,
as well as social, economic and professional dam-
age (3). A full-blown psychotic mania also
increases the risk of a subsequent depressive epi-
sode (4, 5). Effective treatment of manic episodes is
therefore of high clinical importance.

Current treatment of bipolar mania rests heavily
on the use of mood-stabilizing and antipsychotic
agents, the effects of which are slow in onset. The
duration of manic episodes is several weeks on
average (6, 7). This fact alone is a strong indication
that the current treatment options do not target
the most elemental mania-sustaining mechanisms.

Recent research supports the common clinical
experience that bipolar episodes are provoked by
changes in light conditions (8, 9). Also, there is
supporting evidence for seasonality in bipolar dis-
order, and symptoms of bipolar disorder are clo-
sely linked to abnormal circadian rhythms (10, 11).

The light/dark cycle is the strongest synchroniz-
ing environmental signal to the ‘master clock’ of
circadian rhythms, the suprachiasmatic nucleus
(SCN) located in the hypothalamus. Light through
the eye signals daytime to the SCN, which in turn
inhibits production of the ‘dark hormone’ mela-
tonin in the pineal gland (12).

Dark therapy (DT) aims to synchronize
circadian rhythms by placing patients with mania
in a completely dark room for 14 hours during the
night. DT has been described to have striking
effects in two case reports and one pilot study
(13–15). However, total darkness provides a broad
range of sensory deprivation that may cause seri-
ous adherence problems, particularly for patients
in a manic state.

During the last three decades, a specialized retinal
ganglion cell type responsible for detecting and con-
veying the daylight signal to the brain has been
identified and characterized. These cells, termed
intrinsically photo-responsive retinal ganglion cells
(ipRGCs), contain the blue light-sensitive photo-
pigment melanopsin (16). In addition to direct sig-
nalling of the light/dark status of the environment
via ipRGC-SCN projections, ipRGCs connect with

several other regions of the brain, including the lim-
bic system, striatum and brain stem (16). Aberrant
light conditions have been demonstrated to affect
mood and cognition both through the fast-acting
direct pathways in the ipRGC circuits and indirectly
via effects on circadian rhythms and sleep (16).

The fact that a narrow spectrum of light (blue
light) constitutes the daylight signal can be
exploited in a therapeutic setting. Preventing blue
light from entering the eye has been demonstrated
to create a state of virtual darkness in the brain.
Wearing orange glasses (blue-blockers) in white-
light environments (17, 18), or using light during
the night-time without wavelengths below 530 nm
(19), has been shown to preserve melatonin pro-
duction, similar to the melatonin profile for sub-
jects in darkness.

In a 21-patient case series describing euthymic
patients with bipolar disorder wearing orange
glasses in the evening, 50% of the patients reported
improved sleep during the intervention (20). Simi-
lar findings have been reported in one patient with
schizoaffective disorder (21), in one patient with
mania (22), and in one patient with bipolar II dis-
order (23).

In this RCT, we examined the effectiveness and
feasibility of blue-blocking (BB) glasses as an add-
on treatment in reducing symptoms of mania in
hospitalized patients with bipolar disorder. The
main hypotheses were: BB is effective in treating
manic symptoms and, furthermore, BB is feasible
as a treatment for patients in a manic episode. The
primary outcome was change in manic symptoms.
The secondary outcome was change in motor
activity. Finally, the feasibility of BB was assessed
through a patient experience self-report form and
monitoring of side effects.

Patients and methods

Study design

The study was a multicentre randomized
placebo-controlled single-blinded study. Patients
were recruited from five hospitals in the south-
west of Norway, latitude 58–590N. Patients were
recruited from Valen Hospital and Folgefonn
District Hospital from 1 February 2012, from
Haugesund Hospital and Haugaland District
Hospital from 20 August 2012, and from Sta-
vanger University Hospital from 20 August
2014. Healthy controls were recruited from the
same locations and in the same periods of time
as the patients. The study was terminated on 15
February 2015.
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Eligible patients were those admitted to hospi-
tal with manic symptoms and bipolar disorder
according to the Diagnostic and Statistical Man-
ual of Mental Disorders, 4th edition, Text Revi-
sion (DSM-IV-TR) criteria (24), and aged
18–70 years. Exclusion criteria were previous
knowledge of BB glasses, not consenting to par-
ticipate, daily use of beta blockers, nonsteroidal
anti-inflammatory drugs (NSAIDs) or calcium
antagonists, and severe eye disease or traumatic
injury affecting both eyes. In the case of with-
drawal symptoms from any drug or alcohol at
the time of admission, the start of the interven-
tion was delayed until withdrawal symptoms had
ceased. Recruiting doctors were not involved in
the ordinary treatment of the participants.
Inclusion criteria for healthy controls were age
18–70 years and written informed consent to
participation. Exclusion criteria were diagnosis of
bipolar disorder and previous or current night-
shift work, and were otherwise the same as for
patients. Previous knowledge of BB glasses was
not an exclusion criterion for healthy controls.

Data from the literature were scarce with regard
to previous trials using DT and nonexistent with
regard to BB in patients with mania, making power
analysis difficult. Based on the DT study (large
effect sizes 0.9–1.6; Cohen’s d), a power analysis
indicated that, for a probability level of 0.05 (two-
tailed) and power set at 0.80, 21 patients in each
group would be sufficient to detect a significant dif-
ference (15).

However, after 3 years of recruitment and with
a total number of 24 patients included for the
intention-to-treat analysis, inclusion was ended
due to the increasing risk of a selection bias
because of the growing public awareness of the
effects of blue light and BB glasses.

All patients who adhered to the protocol (used
the glasses from 6 p.m. to 8 a.m.) for at least one
evening, night and early morning were included in
the intention-to-treat analysis. One patient in the
BB group was excluded from the analysis because
of withdrawal symptoms from benzodiazepines at
the start of the intervention.

Ethics

The procedures were approved by The Regional
Ethical Committee in Norway (REK) and were in
accordance with the Helsinki Declaration. REK
approved the use of delayed consent for the partici-
pating patients. All subjects granted written
informed consent after receiving a full description
of the study.

Randomization and masking

Included patients were randomly assigned to wear-
ing either orange glasses (BB) or clear glasses (pla-
cebo), by use of manual drawing from a fixed
number of folded patches. Secretaries not other-
wise involved in the trial made the allocation. The
participants were masked to group assignment by
receiving identical limited information about the
purpose of the study: testing the effectiveness of
different types of glasses in reducing manic symp-
toms by blocking different wavelengths of light.
No patient observed other patients wearing glasses
of a different colour during the trial. Patients did
not have access to the internet. The persons assess-
ing day-to-day mania symptoms and analysing the
data were not blinded to group assignment.

Procedures

Patients were diagnosed by experienced psychia-
trists trained in the use of the Mini International
Neuropsychiatric Interview-Plus (25). All patients
were physically examined for severe impairment of
vision. The BB group wore orange glasses
(LowBlueLights.com, University Heights, OH,
USA), and the placebo group wore clear-lensed
glasses (Uvex, Furth, Germany and 3M, Austin,
TX, USA) from 6 p.m. to 8 a.m. for seven consecu-
tive days. The transmittance spectra of the inter-
vention glasses are shown in Supplementary Fig. 1.
For both groups, the intervention was given in
addition to treatment as usual (TAU) (Table 1).
Participants were instructed that the glasses could
be taken off when turning out the light at bedtime
and should be put on if turning on the light before
8 a.m. In both groups, the patients were offered a
choice between different models of glasses.

The patients’ manic symptoms were scored daily
by use of the Young Mania Rating Scale (YMRS)
(26) at the time of nurse reports from the day shift
(2 p.m.). Doctors trained in YMRS scoring rated
all participants and all ratings were performed as a
consensus together with at least one trained mem-
ber of the nursing staff who had attended the
patient on the day of assessment. The score for
each item was assigned on the basis of the highest
level of symptoms, regardless of duration, during
the 24-hour interval starting at midnight. If symp-
toms increased from 2 p.m. to midnight, the score
was adjusted by the doctor responsible for the
scoring.

By use of a wrist-worn actigraph (Actiwatch
Spectrum; Philips Respironics, Inc., Murrysville,
PA, USA), motor activity was continuously
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recorded for all groups (patients and healthy con-
trol subjects). An actigraph contains a piezoelectric
accelerometer recording movements in all direc-
tions and stores the registered activity count (per
defined epoch) in an internal memory unit (27).
The patients were monitored during the seven days
of intervention. Healthy controls were monitored
for a seven-day baseline period without any

intervention, followed by a seven-day period of
daily BB from 6 p.m. to 8 a.m.

The BB/placebo interval (intervention interval)
was defined in the Actiwatch software as lasting
from 6 p.m. to 8 a.m. for patients and for healthy
controls. The interval without glasses was defined
as 8 a.m. to 6 p.m. Based on nurses’ reports for
patients and self-report forms for healthy

Table 1. Individual medications and outcomes for patients assigned to blue-blocking glasses or clear glasses (placebo)

Patient no.

Antipsychotics

Mean dosage (mg/day)

Anticonvulsants

Mean dosage

(mg/day)

Lithium

Mean dosage

(mg/day)

Anxiolytics/hypnotics/sedatives

Mean dosage (mg/day)

Day of

study exit

Delta

YMRS

Clear glasses (placebo)

1 Olanzapine 5.6

Quetiapine 600.0

Valproate 837.5 Diazepam 21.3

Zopiclone 15

7 !5

2a Quetiapine 200.0 7 !12

3 Valproate 3300.0 Li sulfate 84.0 Zopiclone 7.5

Alimemazine 40.0

7 0

4 Valproate 600 Oxazepam 31.25

Cetirizin 10.0

1 17

5a Haloperidol 6.25

Levomepromazine 50.0

Valproate 1537.5 Diazepam 10.0

Zopiclone 7.5

7 11

6 Haloperidol depot

50.0 (every 14 days)

Chlorpromazine 162.5

Li sulfate 119.9 Diazepam 16.3 7 !1

7 Haloperidol 0.75

Olanzapine 22.5

Carbamazepine

325.0

Diazepam 34.4 7 1

8 Olanzapine 20.0

Quetiapine 100.0

Li carbonate 1200.0 Oxazepam 17.0

Zopiclone 3.3

Alimemazine 10.0

Cetirizine 10.0

6 !15

9 Chlorprothixene 123.1

Olanzapine 23.6

Oxazepam 10.0 7 !7,5

10 Levomepromazine

6.3 Olanzapine 3.8

Li sulphate 166.0 Diazepam 5.0

Melatonin 0.5

7 0

11 Aripiprazole 9.0

Quetiapine 30.0

Zuclopenthixol 10.0

Valproate 936.0 Cetirizine 10.0 5 12

Blue-blocking glasses

12 Quetiapine 250.0 Valproate 1200.0 Diazepam 10.0 1 !8

13 Quetiapine 350.0

Zuclopenthixol 20.0

Li sulphate 84.0 7 !17

14b Lamotrigine 300.0 2 15

15 Zolpidem 7.5 7 !19

16 Olanzapine 20.0 Valproate 562.6 7 !4

17 Olanzapine 15.0 7 !2

18 Chlorpromazine 500.0 Li sulphate 166.0 Clonazepam 1.25

Cetirizine 10.0

Promethazine 25.0

7 !24

19 Olanzapine 6.9

Quetiapine 600.0

Valproate 450.0 7 !14,5

20 Olanzapine 25.0 Lamotrigine 200.0 Li sulphate 192.6 Clonazepam 0.9 7 !11

21 Aripiprazole 10.0 7 !12

22 Chlorprothixene 100.0

Olanzapine 40.0

Li sulphate 249.0 Buspirone 30.0

Clonazepam 2.25

7 !17

23 Risperidone 0.6 Lamotrigine 162.5 Li sulphate 120.8 Alimemazine 3.75

Mirtazapine 24.4c
7 !17

24 Olanzapine 15.0 Valproate 600.0 7 !17,5

Li = lithium; YMRS = Young Mania Rating Scale.
aPatients 2 and 5 were administered ibuprofen 250 mg/day. Ibuprofen can affect melatonin production.
bThis patient was excluded from the analysis because of withdrawal symptoms at the start of the intervention.
cSedation is a recognized side effect of the antidepressant mirtazapine.
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controls, any reported deviation from the proto-
col was corrected by changing the start and end
times of the interval accordingly. If BB glasses
were taken off temporarily during the interven-
tion interval, the period of nonuse was excluded,
and the remaining interval analysed. Intervals
with more than 50% invalid time (activity) were
excluded from the analysis. Pre-treatment activity
intervals of more than 70 min were included in
the analysis.

The feasibility of the intervention was assessed
using a patient self-report form developed for the
trial. Patients were instructed to rate five state-
ments about the study and the intervention on a
five-point scale ranging from ‘fully disagree’ to
‘fully agree’. Additionally, all subjects had the
opportunity to add individual comments detailing
their experiences in the trial.

Outcomes

The primary outcome was change in the YMRS
score. The secondary outcomes were change in
motor activity recorded by means of an acti-
graph and scores from the patient experience
self-report form. Side effects were recorded if
present.

Statistical analyses

Descriptive statistical methods were used to char-
acterize the sample. The association between treat-
ment and the primary outcome YMRS total score
as well as secondary actigraph outcomes was
assessed in a linear model with repeated measures,
with time, treatment and their interaction as pre-
dictors using simple contrasts (all time-points com-
pared with the baseline value). The single items
were assessed by graphical methods and means
with 95% confidence intervals (CIs) at each
time-point. Average activity (counts/min) was
calculated for all subjects by use of the Actiware
Statistics program. Computation was otherwise
performed using SPSS 22 (IBM Corp., Armonk,
NY, USA) and Matlab 7.1 (Mathworks, Inc.,
Natick, MA, USA) and all graphics were produced
in Matlab 7.1.

Results

The trial profile is shown in Figure 1. A total of 32
patients were randomized to one of the two
groups. Six patients withdrew consent on the first
night of the intervention and two were unable to
adhere to the protocol, yielding an intention-to-
treat group of 24 patients in total, 13 patients in

the BB group and 11 patients in the placebo group.
Actigraph recordings from 22 patients (12 in the
BBT group and 10 in the placebo group) and 35
healthy controls were analysed.

Demographic variables and baseline clinical
characteristics for all groups are shown in Table 2.
There were more men than women in both patient
groups. The pre-treatment mean YMRS score for
the control group was 27.0 as compared to 23.4 in
the BB group. The healthy control group differed
from the patient groups with respect to a more
equal distribution of sexes, a higher level of educa-
tion and a higher level of employment. During the
intervention week, pharmacological treatment was
less intensive for the BB group than for the placebo
group (Table 1); that is, only three of 12 patients
in the BB group received two or more different
types of antipsychotic drugs as compared to eight
of 11 in the placebo group. Only six of 12 patients
in the BB group received an anxiolytic, hypnotic or
sedative drug, as compared to all patients in the
placebo group.

A significant difference in YMRS score change
between the BB and placebo groups was apparent
after three days of intervention (p = 0.042, partial
g
2
= 0.222), and continued to increase throughout

the intervention, reaching p = 0.001 (partial
g
2
= 0.49) after seven days (Fig. 2). The mean

change in total YMRS score after seven days of
intervention was 14.1 (95% CI: 9.7–18.5) in the BB
group as compared to 1.7 (95% CI: !4.0 to 7.39)
in the placebo group. This yielded a Cohen’s d of
1.86 (Supplementary Table 1).

The single YMRS item scores are shown in
Figure 3. There was a pronounced and rapid
decline in eight out of 11 items in the BB group
compared to the placebo group. There was an
immediate decline in scores for items 5 (Irritability)
and 7 (Language-thought disorder), followed by a
stable difference as compared to placebo, while
other items showed a progressive decline over the
entire time period, for example, items 6 (Speech:
rate and amount) and 10 (Appearance). For two of
the items showing no change, items 3 (Sexual inter-
est) and 9 (Disruptive and aggressive behavior),
both groups scored very low at the start of the
intervention. For item 4 (Sleep) there was no
change in symptoms between groups.

Actigraph data showed that the average activity
counts/min, in the intervention interval 6 p.m. to 8
a. m., was consistently lower in the BB group as
compared to the placebo group from the second
night of the intervention, although the difference
was not statistically significant (Supplementary
Fig. 2). There was a marked decline in activity
from the first to the second night of the
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intervention in the patient BB group, and com-
pared to healthy controls also wearing BB glasses,
the difference was already significant from the first
to the second BB interval (p = 0.018). Further-
more, for activity during daytime (without glasses),
there was a significant difference between the
patient BB group and healthy controls on days 2–
4, where activity decreased in the patient group
and increased in the healthy control group as com-
pared to pre-treatment day 0 (for days 0–2:
p = 0.028).

Scores from the patient experience self-report
form showed that wearing glasses was generally

well tolerated by patients in a manic episode
(Fig. 4). Patients in the placebo group found the
glasses somewhat more irritating than patients in
the BB group. In both groups, some patients
reported paranoid thoughts regarding the Acti-
watch Spectrum device.

With regard to side effects, two patients in the
BB group reported emerging depressive symptoms
on days 6 and 7, respectively. For one patient,
these instantly diminished after a two-hour short-
ening of the duration of BB by delaying the start
to 8 p.m. For the second patient, a break from
BB lasting one evening and one night was

Assessed for eligibility (n = 40)

Excluded (n = 8)

• Did not meet inclusion criteria (n = 3)

• Declined to participate (n = 3)

• Knowledge of blue-blockers (n = 2)

Analysed (n = 12)

• Excluded from analysis (n = 1)
Withdrawal symptoms at start of intervention
(n = 1)

Discontinued intervention (n = 1)

• Discontinued after one night (headache) (n = 1)

Allocated to orange glasses (BB) (n = 18) 

• Received allocated intervention (n = 13)

• Did not receive allocated intervention (n = 5)
Withdrew consent on first night (n = 3)
Unable to keep glasses on according to 
protocol for the minimum of one night (n = 2)

Discontinued intervention (n = 3)

• Discontinued after one night (n = 1)  

• Discontinued after 5 nights, patient demanded 
discharge from hospital (n = 1) 

• Discontinued after 6 nights, no subjective effect (n
= 1) 

Allocated to clear glasses (placebo) (n = 14)

• Received allocated intervention (n = 11)

• Did not receive allocated intervention (n = 3)
Withdrew consent on first night (n = 3)

Analysed (n = 11)

Allocation

Analysis

Follow-up

Randomized (n = 32)

Enrolment

Fig. 1. Trial profile in a randomized controlled trial of blue-blocking (BB) glasses versus placebo glasses for patients with bipolar
mania.
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followed by a rapid elevation of mood to hypo-
mania on the following day. No patients had a
switch to a severe depressive episode during or
immediately after the intervention. One patient,
with comorbid migraine, reported headache asso-
ciated with the use of BB glasses, causing drop-
out on the second night of the intervention. In
the healthy control group, three subjects reported
headache attributed to BB. One of these reported
having migraine. Four healthy control subjects
reported uncomfortably low energy and two of
these also reported lowered mood that was
reversed after the discontinuation of the use of
BB glasses.

Discussion

This is the first placebo-controlled RCT examining
the effectiveness and feasibility of blue-blocking
orange glasses (BB glasses) as an add-on treatment
for patients diagnosed with bipolar mania com-
pared to the placebo condition clear glasses.
Patients wore glasses from 6 p.m. to 8 a.m. for
seven consecutive days, but were otherwise treated
as usual.

BB glasses were highly effective as an add-on
treatment for patients in a manic episode, with a
significant difference in total YMRS score between
the BB and placebo groups as early as three days

Table 2. Characteristics of patients with mania assigned to blue-blocking glasses or placebo and the healthy control group

Patient group/placebo

(n = 11)

Patient group/blue-blocking

(n = 12)

Healthy controls

(n = 45)

Current episode

YMRS score at start of intervention, mean (SD) 27.0 (7.1) 23.4 (8.0)

Psychotic symptoms 9/11 8/12

Hospitalized against own will 8/11 6/12

Demographic variables

Age, years, mean (SD) 49.8 (13.8) 43.0 (11.0) 42.3 (10.8)

Sex, male 9/11 7/12 22/45

Highest level of education completed

High school 4/11 4/12 6/45

High school/vocational studies 3/11 6/12 7/45

University/higher education 4/11 2/12 32/45

Employment status

Unemployed 2/11 1/12 0/45

Student 1/11 0/12 1/45

Employed 3/11 6/12 42/45

Retired 1/11 1/12 2/45

Disability benefit 4/11 4/12 0/45

Marital status

Single 3/11 4/12

Cohabiting 1/11 2/12

Married 2/11 3/12

Divorced 5/11 3/12

Clinical characteristics from medical history

Family historya 6/10 4/12

Self-reported age at first affective episode, years, mean (SD) 24.7 (12.1) 23.0 (10.9)

Age at first psychiatric hospital stay, years, mean (SD) 32.9 (4.0) 31.7 (3.5)

Duration of illness, years, mean (SD) 22.8 (3.8) 18.0 (3.1)

Psychotic mania in medical history 10/11 10/12

Self-reported no. of depressive episodes, mean (SD) 7.2 (2.8)b 12.0 (8.0)b

No. of previous psychiatric hospital stays, mean (SD) 7.2 (2.2) 4.6 (1.2)

No. of psychiatric hospital stays for mania, mean (SD) 7.0 (2.2) 2.9 (0.8)

No. of psychiatric hospital stays for depression, mean (SD) 0.7 (0.3) 1.0 (0.5)

Previous suicide attempts 2/11 3/12

Lifetime medication use

Antidepressants 2/11 7/12

Antipsychotics 9/11 10/12

Anticonvulsants 8/11 9/12

Lithium 7/11 6/12

Hypnotics/sedatives 8/11 7/12

Anxiolytics 4/11 6/12

SD = standard deviation; YMRS = Young Mania Rating Scale.
aRelatives with bipolar disorder, affective/anxiety disorders, psychotic disorders or psychiatric hospital stays.
bData missing for one subject.
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after the start of the intervention. The effect sizes,
ranging from 1.05 to 1.86 during the last
three days of the intervention, were extraordinarily
high, and were strikingly similar to the effect sizes
reported in a previous DT study (15). Unlike the
outcome in the DT study, we did not find any rela-
tionship between pre-intervention duration of epi-
sode and outcome (15).

Remarkably, some symptoms of mania (YMRS
single item scores) were clearly attenuated after a
single night of intervention. This pattern of YMRS
single item scores was supported by actigraph
recordings showing a significant drop in motor
activity in the patient BB group from the first to
the second BB interval, as compared to a healthy
control group also receiving BB. With regard to

Fig. 2. (A) Young Mania Rating Scale (YMRS) total scores for patients assigned to blue-blocking (BB) glasses (n = 12*) or clear
glasses (placebo) (n = 11**). Values are reported as means with 95% confidence intervals (CIs). The p-values are reported for the
effect of the interaction (change of treatment effect between baseline and each time-point) in a linear model. (B) Spaghetti plot of
YMRS individual scores for patients assigned to BB glasses (n = 12*) or clear glasses (placebo) (n = 11**). *One dropout on day 1.
**Three dropouts on days 1, 5, and 6, respectively.
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the somewhat surprising finding of no change in
item 4 (Total hours of sleep/subjective need for
sleep), it has previously been suggested that this
item may not be suitable for BB conditions (22).

BB glasses were generally well perceived by the
patients, and their use was found to be feasible
even for several manic patients with psychotic
symptoms. The observed side effects, namely head-
ache and uncomfortably lowered mood and
energy, were observed at approximately the same
frequencies in the patient BB group and in healthy
controls receiving BB. Notably, two of the four
individuals reporting headache had previously
been diagnosed with migraine. Headache and low-
ered mood diminished rapidly for all subjects when
BB was discontinued.

This study was not double-blinded as the nature
of the intervention (coloured glasses) made mask-
ing practically impossible. Even if raters had been
blinded, it would have been difficult to blind the

reporting staff, and patients in a manic state can-
not be instructed to withhold information concern-
ing treatment from the rater. To limit the danger
of rater’s bias, all YMRS ratings were made as a
consensus between at least two persons. In our
opinion, consensus decisions partially based on
observations throughout the 24-hour period were
crucial for counteracting the effects of patients’
tendency to compose themselves when interacting
with a doctor. Ultimately, YMRS ratings were
supported by objective actigraph monitoring show-
ing marked decline in motor activity corresponding
in time with the drop in YMRS items related to
activation.

The sample size was relatively small, but never-
theless sufficient to test the hypothesis. The sample
size and naturalistic design may, however, have
influenced the precision of the effect size, as illus-
trated in Supplementary Table 1 showing the varia-
tion of effect sizes during the intervention. In a

Fig. 3. Young Mania Rating Scale (YMRS) item scores for patients assigned to blue-blocking (BB) glasses (n = 12; one dropout on
day 1) or clear glasses (placebo) (n = 11; three dropouts on days 1, 5, and 6, respectively). Values are reported as means with 95%
confidence intervals (CIs). Items 5, 6, and 9: scale range 0–8 points; for other items, scale range 0–4 points.
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large sample, a slightly better outcome in the pla-
cebo group would be expected and hence some-
what less dramatic effects size than 1.86.
Unfortunately, because of the growing awareness
of blue light and blue-blockers, it may prove diffi-
cult to reproduce this study with the exact same
design with a larger sample. The sample size
yielded insufficient statistical power for detecting
significant differences in average Actigraph-
recorded activity between the patient groups.

The slow decline in YMRS score in the placebo
group is a disturbing, but not surprising, finding.
The somewhat higher age and longer illness dura-
tion of the placebo group may have contributed to
this. It is, however, well known that acute episodes
of mania, even first episodes, respond slowly to
TAU (7). It should also be mentioned that our
study was performed in a true naturalistic setting
with few exclusion criteria, yielding high generaliz-
ability for the population of patients with bipolar
disorder. Similar study designs are rarely seen in
pharmacological efficacy studies, and this issue
should be kept in mind when interpreting the
YMRS pattern in the placebo group.

In fact, one consequence of the strict naturalistic
design was that treatment was continually adjusted
according to the patients’ clinical state. The poten-
tial confounding of less intensive treatment in the
improving BB group may have contributed to
underestimation of the effect of BB glasses. For
instance, due to rapid improvement of symptoms,
two patients in the BB group were moved from the
acute ward to a local hospital during the interven-
tion. For both patients, transfer was followed by a

transient worsening of symptoms. In contrast, no
patients in the placebo group were transferred.

Interestingly, in the BB group, YMRS item
scores related to increased activation, and acti-
graph-recorded motor activity, declined before
items related to symptoms of distorted thought
and perception. This led to the hypothesis that the
primary anti-manic effect of BB is deactivation.
The mechanisms that may underlie such a relation-
ship have been elucidated through functional mag-
netic resonance imaging (fMRI) studies, where
exposure to blue light, within seconds, activated
areas in the brain stem corresponding to the nora-
drenergic nucleus locus coeruleus (LC) (28, 29).
Noradrenergic pathways project from the LC to
most of the brain, particularly to the forebrain,
and their activation leaves neurons more excitable
to novel synaptic stimuli (30). Additionally, the LC
activates the hypothalamic-pituitary-adrenal
(HPA) axis, which many studies have found to be
dysfunctional in bipolar disorder (31). Interest-
ingly, an fMRI study showed that the effect of blue
light during an executive task depended on circa-
dian phase and sleep homeostasis (32). Patients in
a manic episode are indeed out of their homeo-
static balance with regard to rest and sleep as well
as circadian rhythmicity (11). Thus, the manic
symptoms may be fuelled by blue light via excita-
tory pathways from the brainstem.

The last few decades have seen growing interest
in the role of dopamine in the pathophysiology
of mania, and it is not disputed that elevated
dopamine levels are reflected in many symptoms
of mania (4). However, our findings imply that

Fig. 4. Self-reported patient experience with intervention and participation in study for the patients assigned to blue-blocking (BB)
glasses (n = 12) or clear glasses (placebo) (n = 11).
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changes in cognition and perception during
mania (i.e., psychotic symptoms) may be sec-
ondary effects of increased activation. This obser-
vation is in accordance with the sequence of the
developing symptoms during the build-up of
manic episodes. Interestingly, the original
catecholamine hypothesis proposed that manic
symptoms may be caused by high levels of nora-
drenalin (33). If, however, the dopaminergic drive
during mania is secondary to persistently high
activity of noradrenergic systems, this could
explain the slow onset of overall improvement for
patients in a psychotic manic episode, where the
current conventional treatment mainly relies on
dopamine-blocking agents (4).

The rapid reduction in YMRS item scores
related to activation in the BB group gives us rea-
son to state the hypothesis that the anti-manic
effect seen during BB treatment is due to silencing
of signalling in the ipRGC circuits directly influ-
encing mood and cognition, rather than indirect
effects via melatonin secretion, sleep or increased
circadian synchrony. A subsequent contribution
from impact on melatonin secretion and circadian
rhythmicity is very likely, but cannot be confirmed
by the present data. In a recent case report describ-
ing a patient with bipolar II disorder using BB
glasses over 2 weeks, the onset of nocturnal mela-
tonin secretion was advanced by 1 hour 18 min,
along with improved mood and relief from anxiety
(23). Several other studies have shown preservation
of melatonin during BB in light conditions for
healthy individuals (17, 18, 34), and in one case
report the sleep!wake cycle was rapidly and mark-
edly regularized during BB for a patient in a manic
episode (22).

Ultimately, the basic mechanisms underlying the
effects of BB in mania need further investigation.
Our results are strongly indicative that light, more
specifically blue light, is a major environmental
factor maintaining bipolar mania through the mel-
anopsin!ipRGC systems. Our results provide a
new opportunity for bridging both theoretical and
therapeutic gaps related to bipolar disorder. Most
importantly, however, this study implies that BB
glasses, used in accordance with our protocol, are
a safe and efficient intervention for bipolar mania
that should be utilized in treatment efforts. In par-
allel, follow-up studies are needed for replication
of findings and refinement of this novel treatment
option.
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Supporting Information

Additional Supporting Information may be found online in the

supporting information tab for this article:

Fig. S1. Transmittance (%) of light versus wavelength (nm)

through blue-blocking (BB) glasses and clear glasses (placebo).

Fig. S2. Actigraph-assessed motor activity in intervals wearing

glasses (6 p.m.–8 a.m.) and daytime intervals (8 a.m.–6 p.m.)

for patients assigned to blue-blocking (BB) glasses (n = 12) or

clear glasses (placebo) (n = 10), and the healthy control group

wearing BB glasses (n = 35). p gr = p-value for time indepen-

dent group effect.

Table S1. Means and standard deviations (SDs) for YMRS

total score for patients assigned to blue-blocking (BB) glasses

or clear glasses (placebo) and corresponding Cohen’s d effect

sizes for all days during the intervention.
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A B S T R A C T

The purpose of this study was to compare 24-h motor activity patterns between and within three groups of

acutely admitted inpatients with schizophrenia and psychotic disorders (n=28), bipolar mania (n=18) and

motor-retarded unipolar depression (n=25) and one group of non-hospitalized healthy individuals (n=28).

Motor activity was measured by wrist actigraphy, and analytical approaches using linear and non-linear

variability and irregularity measures were undertaken. In between-group comparisons, the schizophrenia group

showed more irregular activity patterns than depression cases and healthy individuals. The schizophrenia and

mania cases were clinically similar with respect to high prevalence of psychotic symptoms. Although they could

not be separated by a formal statistical test, the schizophrenia cases showed more normal amplitudes in morning

to evening mean activity and activity variability. Schizophrenia constituted an independent entity in terms of

motor activation that could be distinguished from the other diagnostic groups of psychotic and non-psychotic

affective disorders. Despite limitations such as small subgroups, short recordings and confounding effects of

medication/hospitalization, these results suggest that detailed temporal analysis of motor activity patterns can

identify similarities and differences between prevalent functional psychiatric disorders. For this purpose, irre-

gularity measures seem particularly useful to characterize psychotic symptoms and should be explored in larger

samples with longer-term recordings, while searching for underlying mechanisms of motor activity disturbances.

1. Introduction

Disturbed motor activity is a frequently occurring symptom in

psychotic disorders (APA, 2000; WHO, 1993). Motor behavior in schi-

zophrenia is traditionally detected clinically through observation and

rating scales, even though clinical evaluation in general and individual

rating scale items in particular appear to correlate poorly with objective

quantifications of movement (Walther et al., 2009c). If assessment of

motor symptoms was made more comprehensive and reliable, specific

motor characteristics related to psychosis could help distinguish sub-

types within the schizophrenia spectrum and delineate the boundaries

to other psychiatric illness categories (Hauge et al., 2011; Walther

et al., 2009b).

Actigraphy is a validated approach to record movement as

longitudinal rest-activity patterns (Ancoli-Israel et al., 2003). Most de-

vices are wrist-worn and well-tolerated by patients in psychiatry. Re-

latively few studies have applied actigraphy to samples with schizo-

phrenia and psychotic disorders, usually to assess sleep estimates or

mean activity levels (Docx et al., 2013; Tahmasian et al., 2013;

Wichniak et al., 2011). Actigraphy studies that consider motor activity

patterns in more complex time series analyses do, however, seem to be

more promising regarding correlation with specific symptom char-

acteristics. These studies have predominantly come from one group in

Switzerland (Walther et al., 2009a; Walther et al., 2009b; Walther et al.,

2014; Walther et al., 2015), and our collaborators in Bergen, Norway

(Berle et al., 2010; Fasmer et al., 2016; Hauge et al., 2011). This re-

search shows that negative symptoms correlate with reduced activity

and inversely, that less rest is common during marked positive
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syndromes (Walther et al., 2009b). In a group of patients with chronic

psychosis, activity patterns were more variable and more irregular

compared to healthy individuals, but in contrast, contained longer

periods of inactivity and lower variability compared to depressed pa-

tients (Fasmer et al., 2016; Hauge et al., 2011).

In several publications on acutely ill inpatients with affective dis-

orders, we have applied linear and nonlinear analytical methods to 24-h

actigraphy recordings (Krane-Gartiser et al., 2015; Krane-Gartiser et al.,

2014; Krane-Gartiser et al., 2016). For mania, we found irregular ac-

tivity patterns that are stable within 24 h, whereas depressed subgroups

demonstrated low total activity, higher variability between active and

inactive periods and several changes in activity parameters within 24 h

(Krane-Gartiser et al., 2014; Krane-Gartiser et al., 2017). As schizo-

phrenia cases in other studies have shown motor features that resemble

our findings for both mania and depression, the aim of the current study

was two-fold: first, to characterize 24-h motor activity patterns in a new

group of inpatients with schizophrenia and psychotic disorders, and

second, to compare them to inpatients from the same setting with bi-

polar mania and motor-retarded unipolar depression and to a non-

hospitalized group of healthy individuals. We hypothesized that cases

with depression would have lower activity levels and more regular

patterns compared to the other groups, and that cases with mania and

schizophrenia would show similar features of irregularity in activity

patterns. Because our application of linear and nonlinear dynamics in

between-group comparisons as well as in within-group analyses from

morning to evening has proven valuable, we wanted to undertake the

same procedure for the group with schizophrenia and psychotic dis-

orders.

2. Materials and methods

2.1. Sample

Inpatients were asked to participate in the study as they were

consecutively admitted to Østmarka Department of Psychiatry,

Trondheim University Hospital, Norway. This is the only department

for acute psychiatric admissions in the catchment area, and all psy-

chiatric emergency services in Norway are public. The only exclusion

criterion was inability to grant informed consent. Patients were asked to

wear an actigraph for 24 h on one of the first days after admission, and

a total of 280 actigraphy recordings were undertaken between

September 1st, 2011 and March 31st, 2012. Diagnoses were set in an

expert consensus meeting according to ICD-10 research diagnostic cri-

teria (WHO, 1993), by at least three specialists in psychiatry of whom

one had been the patient's therapist and another personally knew the

patient. The experts reviewed all available information when setting the

diagnosis. Twenty-eight patients with a 24-h actigraphy recording had a

primary diagnosis of schizophrenia and other psychotic disorders.

Eighteen of them fulfilled the criteria for schizophrenia (13 paranoid

schizophrenia (F20.0), 3 hebephrenic schizophrenia (F20.1), 1 simple

schizophrenia (F20.6) and 1 schizophrenia unspecified (F20.9)), 2 pa-

tients had persistent delusional disorders (F22.0), 3 had acute and

transient psychotic disorders (F23), 4 had schizoaffective disorders

(F25) and 1 had an unspecified nonorganic psychosis (F29). Thus, 28

cases with schizophrenia spectrum disorders were compared to 18 in-

patients with a primary diagnosis of bipolar disorder, current episode

manic (7 patients without psychotic symptoms (F31.1) and 11 with

psychotic symptoms (F31.2)) and 25 inpatients with unipolar depres-

sion (UP) and psychomotor retardation. UP cases with any observable

motor retardation were classified as motor-retarded, as defined by the

Symptomatic Organic Mental Disorder Assessment Scale, item B: “De-

gree of motor retardation, rated during the period or periods of the

previous 24 h in which the patient was most depressed.” (Krane-

Gartiser et al., 2015). Three of the patients with unipolar depression

were in a mild depressive episode (F32.0 or F33.0), 15 in a moderate

episode (F32.1 or F33.1) and 7 in a severe episode without psychotic

symptoms (F32.2 or F33.2).

2.2. Recordings of motor activity

Motor activity was recorded by wrist-worn actigraphy (Actiwatch

Spectrum, Philips Respironics Inc., Murrysville PA, USA). The actigraph

integrates the intensity, amount and duration of wrist movement in all

directions into an activity count per time unit. Patients and healthy

controls were instructed to wear the actigraph continuously during 24

h, constituting 1440 min for analysis for complete recordings. Three

cases from each patient-group had recordings with a duration<22 h;

the median recording was 1429 min (schizophrenia group), 1436 min

(mania group) and 1439 min (UP group).

Activity counts were recorded for one-minute intervals (epochs).

Data were analyzed for the total time of recording (24 h). For each case,

we also selected morning and evening epochs by inspecting each re-

cording for the first 64-min period of continuous activity in the morning

after 6 AM and for the last 64-min period of continuous activity in the

evening before midnight. 64 min were chosen because the Fourier

analysis requires sequence lengths to be potencies of 2 (32, 64, 128…)

and from previous experience, it can be difficult to find periods of

continuous activity that are longer than one hour.

One patient from the schizophrenia/psychotic disorders group

lacked a 64-min active sequence in the morning, as well as two patients

with mania and two UP patients. These patients were omitted from

morning series analyses, reducing the group with psychotic disorders to

27, the group with mania to 16 and the group with UP to 23 patients.

One patient with a psychotic disorder, two UP patients and one healthy

control lacked a 64-min active sequence in the evening. Thus, in the

evening series analyses, 27 patients with psychotic disorders were

compared to 18 patients with mania, 23 patients with depression and

27 healthy individuals.

2.3. Mathematical analyses

We calculated means for the whole recording period and for the 64-

min periods of continuous motor activity. As measures of variability in

activity counts, for each time series we also calculated:

a) the standard deviation (SD) as an intra-individual measure of fluc-

tuations from the mean

b) the root mean squared successive difference (RMSSD), which de-

scribes the difference in successive counts from minute to minute

c) the RMSSD/SD ratio

For the 64-min periods we further assessed:

a) sample entropy as a measure of complexity or irregularity

b) autocorrelation (lag 1)

c) ratios between high-frequency and low-frequency variance in a

Fourier analysis

All these mathematical approaches characterize different phe-

nomena of a time series: mean levels, variability and complexity fea-

tures. For the calculation of sample entropy and the Fourier analysis,

free software is available from the Physio Toolkit Research Resource for

Complex Physiologic signals (Goldberger et al., 2000), see http://www.

physionet.org.

2.3.1. Sample entropy

Sample entropy is a nonlinear measure that indicates the degree of

regularity (complexity) of a time series. A low sample entropy value

corresponds to a more regular series. It is the negative natural loga-

rithm of an estimate of the conditional probability that subseries of a

certain length (m) that match point-wise, within a tolerance (r), also

match at the next point. We chose the following values, m=2 and

K. Krane-Gartiser et al.



r=0.2. Data were normalized by transforming the time series to have

sample mean 0 and sample variance 1 (Richman and Moorman, 2000).

2.3.2. Autocorrelation at lag 1

The autocorrelation at lag 1 is the correlation of a time series with

itself lagged one step, in this case from minute to minute. Values closer

to one indicate a stronger correlation. Autocorrelation analyses were

performed using SPSS version 24.0.

2.3.3. Fourier analysis

Results are presented as the relation between variance in the high

frequency part of the spectrum (0.0021–0.0083 Hz, corresponding to

the period from 2–8 min) and the low frequency part

(0.00026–0.0021 Hz, corresponding to 8–64 min). Data were normal-

ized before analysis, and no windows were applied.

2.4. Statistics

Statistical analyses were planned in advance, based on previous

studies (Krane-Gartiser et al., 2017) and carried out using SPSS version

24.0. For comparison of counts of categorical data we used chi-square

tests, and for comparison of means, we used one-way analyses of var-

iance (ANOVAs) with Least Significant Difference (LSD) post-hoc tests

to obtain differences between groups. In covariance analyses (AN-

COVAs), we controlled for antipsychotic medication treatment. To ob-

tain within-group differences between variables in the morning and

evening, we used paired samples T-tests. Finally, we tested group dif-

ferences in changes from morning to evening using linear mixed models

for patient groups only. A p-value≤ .05 was considered significant.

2.5. Ethics statement

The patient study and healthy control study were approved by the

Regional Committee for Medical and Health Research Ethics of Central

Norway and Western Norway, respectively. All participants gave

written informed consent to participation before inclusion. The pa-

tients’ capacity to consent was established by a senior psychiatrist or a

specialist in clinical psychology.

3. Results

Subject characteristics are shown in Table 1. There were no sig-

nificant between-group differences in age or gender distribution. Body

mass index (BMI) data were not available for the healthy controls, but

the patient-groups did not differ in BMI. Psychotropic drug treatment

for the three patient-groups is summarized in Table 2. We were unable

to compare medication statistically between groups due to a variety of

medications used and uneven and/or small numbers per category. As

can be expected, a larger proportion of cases with schizophrenia and

mania were prescribed antipsychotics and cases with depression anti-

depressants; cases with mania received mood stabilizers most often.

24-h actigraphy recordings for one representative subject from each

group are presented in Fig. 1. All patient-groups showed a significantly

reduced mean level of activity over 24 h compared to healthy in-

dividuals, the depressed cases demonstrated the lowest mean level

among all groups (Table 3). In addition to lower mean activity, the

depression cases further displayed increased fluctuations from the mean

and more shifts between inactivity and activity, as given by an in-

creased SD/min. In terms of successive count variability (RMSSD/min),

both the schizophrenia/psychotic disorders group and the UP group

showed increased levels compared to healthy controls, and all patient-

groups had higher RMSSD/SD ratios than healthy individuals.

In the 64-min periods of continuous motor activity, there were more

between-group differences in the morning than in the evening period

(Table 4). Patients were significantly less active in the morning com-

pared to healthy individuals. Again, the UP cases showed an increased

SD/min compared to other groups in both the morning and evening

periods. The schizophrenia and UP groups had higher RMSSD values

than healthy individuals in the morning, indicating more minute-to-

minute differences in activity counts. With regards to the relationship

Table 1

Demographic data.

Variable Schizophrenia (n=28) Mania (n=18) Unipolar depression (n=25) Healthy controls (n=28)

Age (years) (mean ± SD) 41.5 ± 11.5 51.2 ± 15.4 43.8 ± 15.9 41.7 ± 11.6

Gender (female, n (%)) 15 (54%) 11 (61%) 15 (60%) 13 (46%)

Body Mass Index (mean kg/m2 ± SD) 27.9 ± 6.6 27.0 ± 5.8 25.1 ± 5.6 –

Table 2

Medical treatment.

Treatment Schizophrenia

(n=28)

Mania

(n=18)

Unipolar

depression

(n=25)

Antipsychotics 20 (71%) 15 (83%) 6 (24%)

Hypnotics/anxiolytics 10 (36%) 9 (50%) 12 (48%)

Anticonvulsants 4 (14%) 7 (39%) 3 (12%)

Lithium 0 2 (10%) 0

Antidepressants 3 (11%) 1 (5%) 9 (36%)

Antihistamines 2 (7%) 0 2 (8%)

ECT 0 0 1 (4%)

No psychotropic drug

treatment

5 (18%) 1 (5%) 5 (20%)

All values are shown as n (%).

Fig. 1. 24-h actograms from a representative subject in each group. Actogram A

is from a patient with schizophrenia, Actogram B from a patient with mania,

Actogram C from a patient with motor-retarded unipolar depression and

Actogram D from a healthy control subject. Time of day is shown at the top

from 12 h to 12 h the next day (24-h clock). Activity counts are shown as black,

vertical lines on a scale from 0–1000 counts. One square in the grid thus re-

presents one hour on a horizontal axis and 250 activity counts on a vertical axis.
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between RMSSD and SD, cases with mania or schizophrenia had in-

creased RMSSD/SD ratios compared to UP cases and healthy in-

dividuals in the morning and compared to healthy individuals only in

the evening. Variation in the high-frequency part of the spectrum re-

lative to the low-frequency part in the Fourier analysis in the morning

was higher for the schizophrenia group compared to UP cases and

healthy controls. The mania group also had a significantly increased

Fourier finding compared to healthy controls. The cases with schizo-

phrenia and mania further showed more irregular patterns in the

morning period, as given by increased sample entropy levels and lower

autocorrelation compared to the two other groups.

After adjustment for antipsychotic medication treatment, there were

fewer or less significant differences between UP cases versus schizo-

phrenia or mania cases (mean activity over 24 h, SD in % in morning

and evening periods), whereas other differences remained highly sig-

nificant (RMSSD/SD, sample entropy, Fourier analysis and auto-

correlation in the morning). The differences in sample entropy in the

morning between schizophrenia or mania cases compared to healthy

controls were no longer significant. On the other hand, other differ-

ences between schizophrenia or mania cases versus healthy controls

became more significant after adjustment for antipsychotics (24-h mean

activity, RMSSD/SD morning and evening, Fourier analysis and auto-

correlation morning). (See Supplementary Tables S1 and S2.)

There was a greater morning to evening reduction in mean activity

for healthy controls (38%) than in the schizophrenia group (20%), the

UP group (20%) and the mania group (increase of 4%) (Table 5). In the

evening, the schizophrenia group had increased fluctuations in activity

(increased SD/min) and reduced sample entropy. The UP group showed

significant changes in several variables from morning to evening: in-

creased RMSSD and thus an increased RMSSD/SD ratio and a higher

Fourier value. The healthy individuals also displayed more variability

in the evening, as given by both increased SD and RMSSD levels, while

there were no significant changes from morning to evening in the mania

group.

In group-by-time analyses for the three patient groups only, there

were no significant differences in any of the activity variables, but trend

findings (p< .1) for Fourier analysis (p= .065) and autocorrelation

(p= .095). (Supplementary Table S3.) Adjusting for antipsychotic

medication treatment did not alter the results of morning to evening

activity differences for any of the patient groups (data not shown).

4. Discussion

In this study, we wanted to explore whether activity patterns in

schizophrenia and psychotic disorders are more similar to bipolar

mania or motor-retarded unipolar depression, and if and how they

differ from healthy individuals. In between-group analyses, the schi-

zophrenia cases separated themselves from inpatients with depression

and non-hospitalized healthy controls. Neither variable could distin-

guish schizophrenia from mania during 24 h, or in active periods. These

groups characteristically showed higher activity complexity in the

morning periods than depressed and healthy individuals. However, in

the within-group analyses of morning to evening differences in activity,

schizophrenia cases showed larger differences in several variables

compared to patients in a manic episode, who were strikingly stable in

activity measures from morning to evening. These within-group dif-

ferences were however not statistically significant in group comparison

analyses. We found that the schizophrenia and psychotic disorders

group constituted an independent entity in terms of motor activity

patterns, relative to inpatients with affective disorders as well as to

healthy individuals.

Activation has gained renewed attention as a central phenomenon

of bipolar disorder in particular, but remains understudied in psychia-

tric research as a whole (Scott et al., 2017a). Activation seems to re-

present a distinct dimension according to a recent meta-analysis of

factor analytic studies, and actigraphy as an objective measure mayT
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provide more knowledge about the dynamics of motor activation

(Scott et al., 2017a). Along these lines, actigraphy analyses may help

identify similarities and differences between functional psychiatric

disorders. Ultimately, classification according to activity characteristics

may complement current diagnostics of psychiatric disorder sub-

categories (Scott et al., 2017b). The current study is yet another con-

tribution to decipher the linear and non-linear dynamics of motor ac-

tivity between prevalent psychiatric conditions, this time with a

particular emphasis on schizophrenia.

All patient groups were less active than healthy individuals, even

the mania cases, which is a consistent finding in comparisons of hos-

pitalized to non-hospitalized individuals (Burton et al., 2013) and can

be due to the state of illness, medical treatment or a restricted living

space. The depressed cases had significantly lower mean activity than

other patient groups, but this was to be expected, as they were speci-

fically selected for displaying motor retardation. A reduction in mean

activity from morning to evening seems to be a normal feature, as found

in healthy individuals. All patient groups displayed less variation/am-

plitude in activity from morning to evening and in particular, the mania

group lacked a morning to evening variation. One can speculate whe-

ther this reduced amplitude of mean activity during active wake periods

is caused by the hospital setting or influenced by medication. However,

with respect to the latter, adjusting for antipsychotic medical treatment

did not change the significance of within-group activity changes from

morning to evening.

All patients showed increased RMSSD/SD ratios compared to

healthy individuals during 24 h, which suggests that it is not a trait of

any specific diagnostic group, although the ratios were significantly

more elevated for psychotic disorders. A particular characteristic of the

schizophrenia and depression cases was increased minute-to-minute-

variability or a more fragmented pattern in the overall 24-h analysis

and in the active morning period compared to other groups. While there

were no significant differences to mania, schizophrenia cases showed

more variable patterns as given by an increased SD/min. Osipov et al

found that the standard deviation of activity was one of the most pre-

dictive motor activity features of schizophrenia (Osipov et al., 2015),

which was only a trend in the current study, but the former recorded

activity in 5-min intervals, as opposed to our use of 1-min intervals.

The schizophrenia and manic groups presented more complex pat-

terns compared to both depressed patients and healthy individuals in

active periods, particularly in the morning: increased short-term

variability as given by findings for RMSSD/SD ratios and the Fourier

analysis, and more irregularity as given by the increase in sample en-

tropy and lower autocorrelation from minute to minute. This com-

plexity in activity is a repeated finding for several activated states:

chronic and acute psychotic disorders, acute mania, and depression

with increased motor activity (Hauge et al., 2011; Krane-Gartiser et al.,

2015; Krane-Gartiser et al., 2014). It is thus possible that psychotic

symptoms are reflected as a higher degree of disorder in activity pat-

terns, particularly considering that nearly 70% of manic cases presented

with psychotic symptoms. This corroborates indications from the Bern

group that positive syndromes and general psychopathology severity

may be predicted by less structured movement patterns irrespective of

the overall level of motor activity (Walther et al., 2014). Walther et al

hypothesized that such disorganized motor behavior results from a

conceptual disorganization that prevents proper action planning, and

future studies that combine imaging and actigraphy can provide more

insight into the correlation between brain activity and motor behavior

(Farrow et al., 2005).

It is thinkable that more negative symptoms correspond to more

prominent reductions in activity, whereas more positive symptoms ra-

ther affect other activity parameters. Consequently, with access to

concurrent symptom ratings, we could have attempted to consolidate

the findings of the Bern group by complementary measures

(Walther et al., 2009b). Other approaches to describe variability in

activity should also be pursued more definitely for schizophrenia, e.g.

Van Someren's measures of intradaily variability and interdaily stability

(Berle et al., 2010; Castro et al., 2015; Gonçalves et al., 2014) and the

distribution of active and inactive periods (Fasmer et al., 2016; Sano

et al., 2012). However, added together, these studies using slightly

different methods of temporal analysis suggest that changes in psy-

chiatric symptoms may be objectively validated by activity monitoring

in future clinics. For now, actigraphy and its analytical approaches

remain to be properly explored on a systematic research level to obtain

a consensus on the most appropriate methodology.

In this regard, we have replicated findings for schizophrenia in the

Bergen study by applying similar nonlinear measures of analysis

(Hauge et al., 2011), namely increased irregularity in activity patterns.

Differences, e.g. in the level of fragmentation, may be due to a more

general psychotic disorders group in the current study and not simply

schizophrenia, different time frames and/or the emergency inpatient

setting. Furthermore, we included a within-group comparison that

showed differences in the way activity profiles change from morning to

evening between schizophrenia and depression, and in fact, none of

these changes applied to the same variables between the two disorders.

In a study of the distribution and characteristics of active and inactive

periods, longer periods of inactivity were found for schizophrenia

compared to depression and controls (Fasmer et al., 2016; Sano et al.,

2012). It is clear that while both disorders are clinically characterized

by low or disrupted movement, the microstructure of activity patterns

reveals distinct differences.

A possible mechanism for the normal fluctuation in motor activity

in healthy people and the pathological activity patterns seen in the

patients, could be found in the interplay between the circadian (near 24

Table 5

Within-group analysis of activity variables from morning to evening.

Activity variable Within-group analysisa Schizophrenia (n=26) Mania (n=16) Unipolar depression (n=21) Healthy controls (n=27)

Mean activity count/ minute Paired difference −47 9 −41 −152

p-value 0.038 0.750 0.192 <0.001

SD/minute in % of mean Paired difference 16.1 7.7 21.8 24.0

p-value 0.023 0.329 0.097 0.008

RMSSD/minute in % of mean Paired difference 14.0 9.1 30.1 22.7

p-value 0.067 0.405 0.011 0.004

RMSSD/SD Paired difference −0.010 0.018 0.102 0.024

p-value 0.771 0.809 0.042 0.586

Sample entropy (m=2, r=0.2) Paired difference −0.377 −0.133 0.006 −0.133

p-value 0.017 0.593 0.969 0.272

Fourier analysis Paired difference −0.16 0.22 0.29 0.16

p-value 0.243 0.401 0.016 0.242

Autocorrelation Paired difference 0.019 −0.012 −0.103 −0.046

p-value 0.552 0.862 0.023 0.249

a Paired Samples T-test (morning vs. evening).
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h) and ultradian (near 4 h) rhythms of arousal and motor activity

(Blum et al., 2014). In nearly all species, there are regular fluctuations

in arousal and motor activity influenced by endogenous chronobiologic

rhythms. The most striking of these rhythms is the sleep/wake cycle,

the rhythmicity of which is partly regulated by the circadian rhythm of

cellular function, orchestrated by the suprachiasmatic nucleus (SCN).

Less known is the existence of a faster (near 4 h) so-called ultradian

rhythm of arousal and motor activity superimposed on the 24-h circa-

dian rhythm. The ultradian rhythm is proposed to be generated by a

striatal dopamine oscillator that is not controlled by the SCN

(Blum et al., 2014). An intriguing recent theory is that the desynchro-

nization of the circadian and ultradian rhythms is the cause of the pa-

thological rhythms of motor activity and sleep/wake cycles in serious

mental disorders (Blum et al., 2014). In animal studies, increased

striatal dopaminergic tone causes lengthening and increased amplitude

of the ultradian rhythms, producing strikingly similar activity patterns

as seen in patients with rapid cycling bipolar disorder (Blum et al.,

2014; Wehr et al., 1998). A complex dysregulation of dopamine in the

striatum and prefrontal cortex is implied in schizophrenia, and elevated

dopaminergic tone is believed to be central for the manifestation of

manic symptoms (Abi-Dargham et al., 2000; Berk et al., 2007; Stahl,

2007). Conversely, symptoms correlated with low dopaminergic tone

are central symptoms of depression; lack of initiative and anhedonia. As

such, the different characteristics of activity patterns seen for the dif-

ferent categories of disorders in the present study may reflect differ-

ences in dopaminergic tone, thus causing a different amplitude and

length of the ultradian motor activity rhythm and different patterns of

asynchrony in relation to the more stable circadian rhythm governed by

the SCN.

A potentially contrasting theory on the development of manic epi-

sodes is the theory of bifurcation of the circadian rhythm from a 24-h

cycle to a 12-h SCN-generated cycle, in other words, two days and two

nights per 24 h (Kripke et al., 2015). During exposure to 12-h light/dark

cycles, this bifurcation can be provoked in Siberian hamsters and as-

tonishingly, in a human study of 24-h melatonin samples from patients

in a manic episode, two peaks of melatonin were found, supporting this

compelling theory (Novakova et al., 2015; Raiewski et al., 2012). The

abnormally stable activity patterns from morning to evening for the

patients with mania in the present study may this way reflect the pre-

sence of two consecutive endogenous days with similar activity struc-

tures.

Obviously, we need to take into account that medications could

confound the results through effects on motor activation. In an effort to

meet this problem, analyses where repeated with adjustment for anti-

psychotic medication. Most antipsychotics are antidopaminergic com-

pounds with potential to influence motor activity. The main findings in

the study remained unaltered after controlling for effect of anti-

psychotics. In our view, this strengthens the validity of results, having

in mind the relatively small sample and the likelihood of correlation

between use of antipsychotics and severity of illness. The patient groups

in our study differed somewhat with regard to medication, most im-

portantly the unipolar depression cases compared to cases with mania

or schizophrenia. The unipolar depressed group received more anti-

depressants, less antipsychotics and less anticonvulsants. It is however

less likely that the lower activity for the unipolar depressed group is

caused by these differences in medication alone for the following rea-

sons: Antidepressants can be activating (e.g. venlafaxine) or sedative

(e.g. mianserin). The sedative antidepressants are usually prescribed for

the nighttime in the subjects’ resting phase, so the impact on mean

activity would be small. If any effect of the higher percentage of anti-

depressant users in the unipolar depressed group, one would expect a

moderating effect toward normalized activity with higher mean activity

and normalized activity patterns. Also, any confounding effects from

less antipsychotics and less anticonvulsants in the unipolar depressed

group would make group differences of mean activity smaller since

these substances are usually sedative and not activating (except for

aripiprazole). With regards to potential effects of medication on mean

activity in the patients with mania, a previous study of recovered bi-

polar I patients still using medication found no relation between type or

dose of psychotropic medication and actigraphic measures (mean ac-

tivity and measures of circadian rhythm) compared to during the illness

episode (Salvatore et al., 2008). Also, among the few investigations of

the relative contribution of psychiatric symptoms and psychotropic

medications on the sleep-wake cycle, one study found that mania

symptoms were predictive of lower circadian amplitude and rhythmi-

city, independently of medications (Robillard et al., 2016). Anti-

psychotics and certain antidepressant agents had an effect on several

sleep parameters, but not on activity rhythms. Moreover, lower activity

in mania is in line with other studies (De Crescenzo et al., 2017). In the

patients with schizophrenia, the percentage of potentially sedative

medications (antipsychotics, hypnotics/anxiolytics and antihistamines)

was the same or lower than in the mania group and higher than in the

unipolar depressed group (except for slightly fewer patients receiving

hypnotics/anxiolytics than in the UP group). Therefore, this cannot

explain the second lowest mean level compared to the other patient

groups. Effects of medication on other aspects of activity patterns

cannot be ruled out. Given that certain antidepressants and anti-

psychotics alter dopaminergic tone, they could influence on ultradian

rhythms that are potentially generated by the dopamine oscillator

(Blum et al., 2014). Our findings are in line with previous studies on

motor activity patterns in psychotic and affective disorders

(Walther et al., 2014; Hauge et al., 2011). Also, there is extensive

overlap of medication used for psychotic and affective disorders and

much heterogeneity of psychotropic medication as well. All in all, we

consider that the medication profile of the subgroups suggests that

there are disorder-specific motor activity markers that cannot be fully

explained by psychotropic medication. However, we also acknowledge

that there is a general lack of large studies that could provide valid

answers on the moderating effects of different psychotropic drug classes

on motor activity patterns. Our study was too small to allow for further

stratification of the sample and cannot resolve to which extent medi-

cation influenced on different patterns between separate acute psy-

chiatric states.

There are other limitations than psychotropic drug treatment and

differential medication per subgroup that should be considered, the

most important being: short recordings (24 h) and relatively small

subgroups. Future studies should have larger sample sizes and longer

recordings that enable multilevel modeling or mixed analyses, in order

to formally test diagnosis x time interaction effects on activity rhythm

differences. In this study, which was probably underpowered to detect

such interaction effects, there were some trend differences in mixed

analyses. Also, there is no consensus on the ideal monitoring metho-

dology or epoch length. While our use of 1-min epochs seems inter-

esting given the findings and in comparison to studies that have usually

looked at activity per hour, it is possible that shorter intervals would

yield other results. No symptom ratings or information on illness

duration were available, which prevents further exploration of effects

on activity due to symptoms or course of illness, as well as comparison

of more homogenous groups. Analyzing wake periods separately from

sleep periods could have given a better signal-to-noise ratio, but this

was not possible in the current study. However, hospital routines were

the same for all patients (including social rhythms, meals and bed-

times), and sleep is more likely to affect mean activity than other

parameters. Abnormal circadian rhythms between patient-groups are

therefore believed to be of less importance than in a naturalistic setting

outside hospitals. Similarly, weekdays and weekends differ less during

hospitalization. Being hospitalized and/or medication could, however,

explain the observed differences between patients and healthy in-

dividuals, but considering that patients differed from controls in dif-

ferent variables, it is unlikely to be the only explanation. For instance,

the stability in activity profiles from morning to evening in the mania

group is uniquely different to other inpatients and to healthy
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individuals.

The main finding of this study is that schizophrenia and psychotic

disorders can be separated from motor-retarded unipolar depression

and healthy individuals by detailed analysis of motor activity patterns.

Using linear and nonlinear analytics, the activity patterns for a group of

inpatients with schizophrenia spectrum disorders are more complex or

irregular compared to depression and healthy individuals in several

measures, such as Fourier analysis, sample entropy and autocorrelation.

While schizophrenia could not be distinguished from mania in between-

group or mixed analyses, the schizophrenia cases showed more normal

amplitudes of motor activity variables from morning to evening, con-

trasting manic cases who remained strikingly stable during the course

of day. In summary, these findings encourage the continued exploration

of actigraphy to characterize diagnostic entities in clinical psychiatry.

Measures of motor activity complexity may be particularly useful to

assess psychotic symptoms in affective and non-affective psychosis.
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Errata 

Page 3 Missing word: “Mental Health” – corrected to “ Mental health Care” 

Page 21 Grammatical error “The circadian phases of patients with mixed symptoms was…”     

– corrected to “ The circadian phases of patients with mixed symptoms were…” 

Page 22 Full stop missing: “ … independent of SCN involvement [77, 78].” 

Page 23 Grammatical error: “Furthermore, solar insulation at the latitude of residence and 

season of birth seem to modulate the course of illness [92-94].”  – corrected to              

“ Furthermore, solar insulation at the latitude of residence and season of birth seems 

to modulate the course of illness [92-94].” 

Page 25 Excessive word: “These interventions have modest effects as compared with those 

light and wake therapies,…” – corrected to “ These interventions have modest effects 

as compared with light and wake therapies,…” 

Page 26 Missing word and reference error: “In spite of relatively small sample sizes, all 

published studies have described improvement in psychiatric outcome measures, 

sleep outcomes, melatonin profile or cognitive performance [130, 133-143].” – 

corrected to “In spite of relatively small sample sizes, all published studies have 

described improvement in either psychiatric outcome measures, sleep outcomes, 

melatonin profile or cognitive performance [130-143].” 

Page 45 Wrong word: “Both groups recorded less than the global seasonality score (GSS) cut-

off value of 9 points for sub-SAD,…” – corrected to “Both groups reported less than 

the global seasonality score (GSS) cut-off value of 9 points for sub-SAD,…” 

Page 53 Wrong word: “No difference between the groups was demonstrated for this item; 

however, when we analyzed the autography data,…” – corrected to “No difference 

between the groups was demonstrated for this item; however, when we analyzed the 

actigraphy data,…” 

Page 56 Excessive words: “This should speak for high generalizability to sample to the BD-I 

patient group overall.” – corrected to “This should speak for high generalizability to 

the BD-I patient group overall.” 

Page 62 Missing word: “This means activating motor retarded depressed patients…”– 

corrected to “This means activating the motor retarded depressed patients…” 

Page 69 Wrong word/misspelling: “It was not and aim of the VATMAN trial to study 

mechanisms;…”– corrected to “It was not an aim of the VATMAN trial to study 

mechanisms;…” 

Page 71 Missing words and suboptimal synonym: “YMRS items most related to activation 

decreased first,..” – corrected to “Scores in YMRS items most related to activation 

declined first,..” 

 



Page 73 Wrong word: “There is a lack of other data in the occurrence of a bifurcated circadian 

rhythm in humans.” – corrected to “There is a lack of other data on the occurrence of 

a bifurcated circadian rhythm in humans.” 
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