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My PhD is affiliated with the dCod 1.0 project (https://www.uib.no/en/dcod): decoding
the systems toxicology of Atlantic cod (Gadus morhua), which aims to better under-
stand how cods adapt and react to the stressors in the environment. One of the research
topics is to discover the biomarkers which discriminate the fish under normal biological
status and the ones that are exposed to toxicants.

A biomarker, or biological marker, is an indicator of a biological state in response
to an intervention, which can be for example toxic exposure (in toxicology), disease
(for example cancer), or drug response (in precision medicine). Biomarker discovery
is a very important research topic in toxicology, cancer research, and so on. A good set
of biomarkers can give insight into the disease / toxicant response mechanisms and be
useful to find if the person has the disease / the fish has been exposed to the toxicant.

On the molecular level, a biomarker could be "genotype" - for instance a single nu-
cleotide variant linked with a particular disease or susceptibility; another biomarker
could be the level of expression of a gene or a set of genes. In this thesis we focus on
the latter one, aiming to find out the informative genes that can help to distinguish sam-
ples from different groups from the gene expression profiling. Several transcriptomics
technologies can be used to generate the necessary data, and among them, DNA mi-
croarray and RNA sequencing (RNA-Seq) have become the most useful methods for
whole transcriptome gene expression profiling. Especially RNA-Seq has become an
attractive alternative to microarrays since it was introduced.

Prior to analysis of gene expression, the RNA-Seq data needs to go through a series
of processing steps, so a workflow which can automate the process is highly required.
Even though many workflows have been proposed to facilitate this process, their ap-
plication is usually limited to such as model organisms, high-performance computers,
computer fluent users, and so on. To fill these gaps, we developed a maximally general
RNA-Seq analysis workflow: RNA-Seq Analysis Snakemake Workflow (RASflow),
which is applicable to a wide range of applications and requires little programming
skills. It takes the sequencing data as input, and maps them to either transcriptome or
genome for quantification, and after that the gene expression profile can be achieved
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which afterwards goes through normalization and statistical tests to find out the differ-
entially expressed genes. This work was presented in Paper I and Paper II.

Differential expression analysis used in RASflow, together with other univariate
methods are widely used in biomarker discovery for their simplicity and interpretabil-
ity. But they rely on a hypothesis that variables are independent, so they can only iden-
tify variables that possess significant information by themselves. However, biological
processes usually involve many variables that have complex interactions. Multivariate
methods which take the interactions between variables into consideration are therefore
also popular for biomarker discovery. To study whether there is a significant advantage
of one over the other, we conducted a comparative study of various methods from these
two categories and evaluated these methods on two aspects: stability and prediction ac-
curacy, we found that a method’s performance is quite data-dependent. This work was
presented in Paper III.

Since the biomarker discovery methods perform quite differently on different
datasets, then how to choose the most appropriate one for a particular dataset? One
solution is to use the function perturbation strategy to combine the outputs from multi-
ple methods. Function perturbation is capable of maintaining prediction accuracy com-
pared with the original individual methods, but its stability is not satisfactory enough.
On the other hand, data perturbation uses a similar ensemble learning logic: it firstly
generates multiple datasets by resampling the original dataset and then combines the re-
sults from those datasets. Data perturbation has been proven to improve the stability of
the biomarker discovery method. We therefore proposed a framework which combines
function perturbation with data perturbation: Ensemble Feature Selection Integrating
Stability (EFSIS) which achieves both high prediction accuracy and stability. This work
was presented in Paper IV.
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Chapter 1

Introduction

1.1 Genomics

Genome is the genetic information stored in the DNA (RNA for some virus) of an or-
ganism. And genomics is the subject which studies the whole genome of an organism
and then makes use of its information. It differs from genetics which focuses on indi-
vidual genes. Instead, genomics focuses on the whole genome and studies its structure,
function, evolution, mapping and editing.

Genomics harnesses the availability of complete genome sequences. A genome
sequence is a list of the nucleotides (A, C, G, and T for DNA genomes and U for
RNA genomes). Genome sequencing reveals the order of the nucleotides present in the
genome. The effort traced back to 1976 when Walter Fiers at the University of Ghent
established the complete genome sequence of a viral RNA genome (bacteriophage
MS2), and the next year Fred Sanger completed the first DNA genome sequence (bac-
teriophage ΦX174) [1]. Later on, distinguished from the earlier methods like Sanger
sequencing, second-generation sequencing or next generation sequencing was devel-
oped and led to increasingly faster, low-cost, and high-throughput genome sequencing,
and has been dominating the genome sequencing field since its development [2]. Re-
cently, third generation sequencing was introduced which can produce longer reads
than second-generation sequencing [3].

Officially launched in 1990, the Human Genome Project aimed to obtain a highly
accurate sequence of the vast majority of the euchromatic portion of the human genome
[4]. The drafts of the human genome were published by Celera Genomics [5] and
the International Human Genome Sequencing Consortium [6] scientists in 2001, us-
ing whole-genome shotgun sequencing method and hierarchical shotgun sequencing
method respectively. A more complete draft was published in 2003 [7]. In this pro-
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cess, the development of new technologies for large-scale, high-throughput generation
of biological data at low cost ensured the completion of the project [7]. Since then,
more and more sequencing technologies and machines which are capable of generat-
ing high-quality sequencing data have been developed to correct errors in the human
genome sequence and to sequence the genomes of other species.

Lots of efforts have been devoted to sequencing the genome of Atlantic cod (Gadus
morhua). The first Atlantic cod genome assembly (gadMor1) was published back in
2011, obtained by 454 sequencing [8] of shotgun and paired-end libraries and 22,154
genes were identified by automated annotation [9]. An improved genome assembly
(gadMor2) was generated by combining data from Illumina, 454 and the longer PacBio
sequencing technologies, as well as integrating the results of multiple assembly pro-
grams in 2017 [10]. The recently released gadMor3 assembly (GenBank assembly
accession: GCA_902167405) was developed based on long-read sequencing technol-
ogy. The genome assembly used in the dCod 1.0 project was also updated as the new
release came out. gadMor3 was used in the late stage of dCod 1.0 project due to its bet-
ter quality than the previous two versions [11]. However, despite the efforts and quality
improvement of Atlantic cod genome assembly, as a non-model organism, Atlantic cod
is still less annotated and less resources are available compared with the model organ-
isms, such as human (Homo sapiens), mouse (Mus musculus), and zebrafish (Danio
rerio). This has been a very challenging issue for the dCod project. The genome anno-
tation leads us to the next subsection.

1.2 Functional genomics

As the mapping and sequencing (structural genomics) phase of the Human Genome
Project came to an end, a new era of functional genomics focusing on the study of
gene function came to shape [12]. Unlike structural genomics, functional genomics
focuses more on dynamics of gene expression and regulation of it, involving genomics,
transcriptomics, proteomics, metabolomics and their interactions [13].

1.2.1 Gene expression

Gene expression is the process by which the genetic information stored in DNA is used
to direct the synthesis of functional gene products. Gene expression is summarized in
the central dogma of molecular biology firstly presented by Francis Crick in 1970 [14].
Central dogma states that DNA, as the repository of genetic information, can replicate
itself (DNA replication) and can also pass the genetic information to (messenger) RNA
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which occurs in the process called transcription. The messenger RNA (mRNA) then
serves as a template to direct the synthesis of protein which is called translation. The
central dogma was later expanded by adding RNA replication [15] and reverse tran-
scription [16] (dotted arrows in Figure 1.1).

RNA

Protein

DNA Shotgun sequencing

DNA microarray
RNA sequencing

Mass spectrometry
Edman degradation

Figure 1.1: Central dogma of molecular biology with some important technologies in each level.

In Figure 1.1, next to each level, some important technologies are given. Shotgun
sequencing method was widely used in the Human Genome Project as mentioned in
the previous section. DNA microarray and RNA sequencing (RNA-Seq) are the most
useful methods for whole transcriptome gene expression profiling [17], and RNA-Seq
will be discussed in more details in the next subsection. The two major methods of
protein sequencing are mass spectrometry and Edman degradation [18].

1.2.2 RNA sequencing analysis

RNA sequencing (RNA-Seq) has overcome many limitations of DNA microarray and
has become an attractive alternative since it was introduced over a decade ago [19–
28]. Lots of studies have been conducted using RNA-Seq and most of the generated
datasets are shared in public repositories such as the Gene Expression Omnibus (GEO)
[29] and ArrayExpress [30]. The underlying sequencing reads are typically archived on
the Sequence Read Archive (SRA) [31]. The growth of deposited RNA-Seq samples
on SRA is shown in Figure 1.2. There are currently more than 1.9 million samples
(https://www.ncbi.nlm.nih.gov/sra/?term=RNA-Seq, accessed on 30 June 2020).

The RNA-Seq datasets obtained from the public repositories mentioned above or
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Figure 1.2: Growth of RNA-Seq sample entries on Sequence Read Archive (SRA) over years.

from a sequencing center are usually raw reads, which need to go through a series of
processing steps. The raw sequence information is usually saved in FASTQ file format.
There are four line types in the FASTQ format describing one read / sequence at a time.
First comes a "@" title line with a record identifier. Second is the sequence itself and
white space such as spaces or tabs is not allowed. Third comes the "+" line which is
a signal of the end of the sequence and optionally with a full repeat of the title line.
Finally is the quality line which must be equal in length to the sequence string [32].

There is no optimal workflow for various different applications and analysis sce-
narios in which RNA-Seq can be used. We focus on the standard and typical RNA-Seq
analysis workflow including quality control of raw reads, trimming, quantification of
transcripts or genes, differential expression analysis, and visualization.

An overview of the steps and some popular tools for each step are given in Fig-
ure 1.3 (adapted from [33]). Some detailed introduction will be given in the following
subsections.

Quality control of raw reads and trimming

Quality control of the raw reads includes the analysis of sequence quality, GC
content, the presence of adaptors, and so on [34]. FastQC is a popular open-
source software for quality control and will generate a quality control report in-
cluding investigation on: (1) per base sequence quality, (2) per sequence quality
scores, (3) per base sequence content, (4) per base GC content, (5) per base N con-
tent, (6) sequence length distribution, (7) duplication level, (8) overrepresented se-
quences, (9) adapter content, (10) kmer content, and (11) per tile sequence qual-
ity (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Generally speaking,
read quality decreases towards the 3’ end, and if the quality of some bases become
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start

Counting Reads
featureCounts, HTSeq

Alignment
HISAT2, STAR, BWA, 

Bowtie 2, TopHat2

DEA
DESeq2, edgeR

Quality Control
FastQC

pass quality control?

Trimming
Trim Galore, 
Trimmomatic

Yes

No

map to genome or
transcriptome?

Transcript-level DEA
DESeq2, edgeR

Transcript Quantification
Salmon, Kallisto, Sailfish

Gene-level DEA
DESeq2, edgeR

end

genometranscriptome

Visualization
Volcano plot, Heatmap

ABC Step title

ABC Tools

ABC Decision

Figure 1.3: Overview of the steps performed in a typical RNA-Seq analysis workflow and some popular
tools used in each step. DEA: Differential Expression Analysis. Adapted from Fig. 1 of Paper II.
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too low, they should be removed [34]. Tools such as Trimmomatic [35] and Trim Ga-
lore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) can be used to
discard low-quality reads, trim adaptor sequences and eliminate poor-quality bases.

Quantification of transcripts or genes

The high-quality reads can then be mapped to either a transcriptome or a genome.
The traditional way is to map the reads to the genome and this process is usually called
alignment. Many tools such as HISAT2 [36], STAR [37], BWA [38], Bowtie 2 [39], and
TopHat2 [40] are popular aligners. Alignment is followed by counting reads associated
with genes which can be done by featureCounts [41] or HTSeq [42]. They take both
the output from alignment (BAM files) and General Feature Format (GFF) / General
Transfer Format (GTF) file as input.

Recently, several transcriptome-based novel tools introduced alignment-free tran-
script quantification utilizing k-mer-based counting algorithms becoming more and
more popular such as Salmon [43], Kallisto [44], and Sailfish [45]. Mapping to a tran-
scriptome is generally faster than to a genome but it does not allow de novo transcript
discovery [34].

Differential expression analysis

The quantification of transcripts or genes is followed by Differential Expression Anal-
ysis (DEA) where the purpose is to identify genes that are expressed at different levels
between two classes of samples (e.g. healthy, disease) [46].

The raw read counts can not be used directly for statistical tests, because of some
systematic variations including between-sample differences such as library size or se-
quencing depth [25], within-sample differences such as gene / transcript length [47],
and technical effects such as library preparations [48]. Normalization is therefore nec-
essary to remove those unwanted variations. Many different ways of normalization
have been proposed so far [49]. Normalization by library size and gene (transcript)
length includes Reads Per Kilobase per Million (RPKM, for single-end sequencing)
[25], Fragments Per Kilobase per Million (FPKM, for pair-end sequencing) [50], Tran-
scripts Per kilobase Million (TPM) [51], and so on. Normalization by distribution
includes Trimmed Mean of the M-values (TMM) [52] which is used in edgeR [53],
median-of-ratios method which is used in DESeq [54], and so on.

With the raw reads normalized, statistical tests can be done afterwards to find out
the differentially expressed genes.
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We give a typical experimental design example here: there are fish exposed to sea-
water and chemical solution and these two groups are considered as control and treat-
ment groups respectively. We have measured the expression values of a particular gene
of all samples and we would like to know whether this gene expresses differently be-
tween these two groups.

The Fold Change measuring the difference of the gene expression values between
control and treatment groups can be calculated as Equation 1.1.

FC =
X2

X1
(1.1)

where X1 is the mean expression values of control samples, and X2 is the mean expres-
sion values of treated samples.

Usually a Log2 Fold Change is used so that a positive value indicates that the gene
is up-regulated and a negative value indicates that the gene is down-regulated.

The Fold Change can measure the magnitude of difference between groups, but it
ignores the variance within each group, so it fails to find out the genes of high repro-
ducibility with comparably low differentiality [55]. A statistical test is usually applied
to measure the significance of how the gene is differentially expressed between these
two groups. A basic Student’s t-test calculates a t-score which is the ratio of differ-
ence between groups’ mean values and the variability within groups. The t-score can
be calculated as Equation 1.2.

t-score=
|X1−X2|√

s12
n1

+ s22
n2

(1.2)

where s1 and s2 are the standard deviations of two groups, and n1 and n2 are the sample
sizes of two groups. Referring to a T-Distribution table, a corresponding P-value can
be got. The P-value is the probability of obtaining an experimental result at least as
extreme as observed under the null hypothesis, that there is no difference in expression
between the experimental conditions.

Another typical experimental design for biomarker discovery is to design the ex-
periment in a pair-wise way. In medical study, it can be instances of the same patient
being tested repeatedly - before and after receiving a particular treatment; in toxicology
study, it can be tissue slices of the same fish being exposed to seawater and chemical
solution. An example is given in Table 1.1. There are 6 samples which are liver slices
cut from 3 fish: A, B and C. S1 and S4 are from fish A, S2 and S5 are from fish B,
and S3 and S6 are from fish C. S1, S2, and S3 are exposed to seawater (control group),
and S4, S5, and S6 are exposed to chemical solution (treatment group). The purpose
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Sample
(liver slice)

Group Fish

S1 Control A
S2 Control B
S3 Control C
S4 Treat A
S5 Treat B
S6 Treat C

Table 1.1: An example of experimental design in a pair-wise way.

is to find out the differentially expressed genes comparing treatment group and con-
trol group. In this case, a paired t-test is preferred. And the corresponding t-score is
calculated by Equation 1.3.

t-scorepair =
XD

SD/
√
n

(1.3)

where XD and SD are the mean and standard deviation of the differences of all pairs and
n is the number of pairs.

We have only talked about one gene or one comparison test above, but in the gene
expression data, there can easily be over ten thousand genes. The P-value needs to
be adjusted to account for the multiple testing issue. The simplest way to adjust the
P-values is to use the conservative Bonferroni correction method which multiplies the
raw P-values by the number of tests [56].

A statistical test usually requires specific distributional assumptions, for example,
the basic Student’s t-test requires a normal distribution [57], Fisher’s exact test and
likelihood ratio test (applied by R package DEGseq) require a Poisson distribution [58],
Generalized Linear Model methods (GLMs) (applied by R packages DESeq, DESeq2,
and edgeR) require a negative binomial distribution [53; 54; 59; 60].

Due to the application of different normalization methods and statistical tests, and
some other more detailed aspects, different DEA tools can give very different results
for the same dataset [61]. Merely based on the citation, DESeq2 [59] and edgeR [53]
are the most popular tools for DEA.

Visualization

The results of DEA can be visualized in several ways and two popular ones are pre-
sented here: Volcano plot and Heatmap.

Volcano plot is a scatter-plot that summarizes both statistical significance and the
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magnitude of the change. It plots the negative log of P-value (usually base 10) on the
y axis, so the genes (or transcripts) towards the top are the ones showing statistical
significance. On the x axis is the log of fold change (usually base 2), so the points
with large magnitude of change are either to the left (down-regulated) or to the right
(up-regulated). The interesting genes are therefore at the top-left and top-right corners
as shown in Figure 1.4.
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Figure 1.4: Fig. 3a of Paper II. Volcano plot of genes presented by Log2 Fold Change and −Log10
P-value.

Heatmap is useful for visualizing the expression of genes across samples from dif-
ferent conditions, and specifically, the cluster heatmap can also indicate how well the
samples from the same condition are grouped together by the expression pattern of the
genes selected (usually top differentially expressed genes from the results of DEA).
Figure 1.5 shows that the genes in this cluster Heatmap express very differently in the
samples from those two groups (a control group and another group exposed to low-dose
oil).
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Figure 1.5: Fig. 3b of Paper II. Heatmap of samples from two conditions using the top differentially
expressed genes.

1.3 Toxicogenomics

Toxicology is a multidisciplinary subject that studies the harmful interactions be-
tween chemicals and biological systems [62]. Toxicogenomics combines toxicology
with genomics or other high-throughput molecular profiling technologies to study how
genomes respond to toxicant exposure [63].

Toxicogenomics aims to understand and predict toxicity in order to understand how
organisms respond to toxicant exposure or compound treatment using omics data, es-
pecially gene expression data due to its rapidly increasing amount in recent years [64]
thanks to the new sequencing technologies. It utilizes the comprehensive gene expres-
sion data to identify gene expression signatures that highly relate to genetic toxicity
[65], which are also referred as biomarkers. A biomarker is an indicator of a biologi-
cal state in response to intervention, which is toxic exposure in this case, and can also
be a disease (such as cancer), or drug response in precision medicine. The use of these
approaches has a long history and rapidly developed in the past decade due to develop-
ment in gene expression technologies such as DNA microarray, RNA-Seq.

In a toxicant exposure study, the differentially expressed genes can be regarded as
the biomarkers of the particular toxicant. A further study of those genes can shed some
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light on how the organism reacts to the interruption of that toxicant.

To be noted, the significance of a differentially expressed gene is usually defined by
the P-value or Q-value calculated from statistical tests [66] which is univariate because
each gene is treated independently, ignoring the reality that genes interact with each
other. Hence, some multivariate methods should also be introduced in the study of
biomarker discovery.

1.4 Machine learning

Machine learning applies mathematical approaches to train the machine to learn from
data for some particular tasks. It is often divided into supervised learning, semi-
supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning is fed with input and the corresponding labeled output. The
task is to find the best function that can map input with output. When the output is
categorical, it is a problem of classification; and when the output is real-valued, it is
then a problem of regression [67]. In the real world, the outputs are not necessarily
available for all inputs, for example when labeling the samples is very expensive, so
only a small part of the input is labeled. Semi-supervised technique is then required
in this situation to make the best out of the available data [68]. When the samples are
not labeled at all, unsupervised learning is applied to find out the inherent pattern of
the data [69]. Reinforcement learning continuously takes into new observations and
adjusts the current model to maximize the reward or minimize the risk [70].

In this thesis, we focus on supervised classification where a model (or classifier) of
distribution of class labels in terms of predictor features is built. The resulting classi-
fier is then used to assign class labels to unknown instances [71]. For example, a tumor
classifier can be trained from the gene expression profiles of some patients diagnosed
with benign and malignant tumor, where the genes are features and "benign" or "ma-
lignant" tumor is class label. When the gene expression profile of an unknown patient
is provided, the trained classifier can be used to predict whether the patient is carrying
the malignant tumor.

The trained classifier is usually evaluated before it is applied to real cases based
on prediction accuracy (some common performance metrics will be introduced later).
There are at least three techniques to calculate a classifier’s accuracy. One technique
is to split the samples into a training set for model training and a testing set for perfor-
mance evaluation. Another technique called cross-validation is to divide the samples
into mutually exclusive and equal-sized subsets and for each subset as testing set the
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classifier is trained on the union of all the other subsets. The average prediction accu-
racy of each subset is therefore the overall estimate of the prediction accuracy of the
classifier. Leave-one-out cross-validation is a special case of cross-validation, where all
testing sets consist of only one sample. This type of testing scheme is of course more
computationally expensive, but useful when the number of samples is quite limited or
the most accurate estimate of a classifier’s prediction accuracy is required [71].

1.5 Feature selection

In the real world, the collected data for training the classification model usually comes
with lots of noise. The reasons causing the noise are many and the major two rea-
sons are the imperfection of the technologies collecting the data and the data source
itself [72]. For example, DNA microarray experiments suffer from noise from sample
preparation steps and the subsequent readout processes [73]. The RNA-Seq technology
overcomes those problems and is capable of detecting genes with low expression [74],
but those low-expression genes are again a problem in differential expression analysis
[75].

Feature selection can be applied to remove the noise before training the classifiers.
By doing that, feature selection can improve the prediction performance of the classi-
fier, contribute to faster and more cost-effective prediction, and provide a better under-
standing of the input data [76].

There are many different algorithms for feature selection. Take one for example
called minimal-redundancy-maximal-relevance criterion (mRMR) [77]. Information
theory is used in this method. Given two random variables x and y, their mutual in-
formation is defined in terms of their probabilistic density functions p(x), p(y) and
p(x,y):

I(x;y) =
∫ ∫

p(x,y)log
p(x,y)
p(x)p(y)

dxdy (1.4)

Apparently, mRMR includes two parts: maximal relevance and minimal redun-
dancy. Maximal relevance is to search a feature subset F withm features ( f1, f2, . . . , fm)
satisfying Equation 1.5 which maximizes the mutual information between the features
in subset F and class label c.

max D(F,c), D=
1
m∑ fi∈F

I( fi;c) (1.5)

where i ∈ {1,2, ...,m}.
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It can be ensured that the features selected above are highly relevant to the
class label, but the information they store may be redundant. Therefore, the class-
discriminative power would not change much if one of them was removed. So minimal
redundancy is added to select mutually exclusive features:

min R(F), R=
1
m2 ∑ fi, f j∈F

I( fi; f j) (1.6)

where i, j ∈ {1,2, ...,m}.

The criterion combing these two constraints and satisfying Equation 1.7 is then
called "minimal-redundancy-maximal-relevance" (mRMR).

max Φ(D,R), Φ = D−R (1.7)

Since feature selection is capable of selecting the features highly relevant to the class
labels, it can be applied to a toxicogenomics study to select the biomarkers indicating
the toxicity. In our toxicant exposure study, the cod fish from both control and treated
groups are the input samples, and the gene expression profiles are the features. But
quite often, the feature dimension is very high but the sample size is very small in
omics data [78; 79]. For example, in one of our exposure experiments, there are 6 to 8
samples from each group but there are 19,000 genes left even after filtering out the low-
expression ones [80]. Too many features can make the computation complexity very
high, and can also lead to overfitting, meaning that the trained model performs well
on the known samples, but very badly on unseen new samples. So feature selection is
often applied before classification to get rid of the unimportant features.

To be noted, feature selection is different from feature extraction even though both
of them can reduce the dimensionality of the feature list. Feature selection picks out
the important features that are a subset of the original feature set, but feature extraction
generates new features. Two popular examples are unsupervised technique Principle
Component Analysis (PCA) [81] and supervised technique Partial Least Square Re-
gression (PLS-R) [82]. PCA is applied without considering the correlation between
the dependent and the independent variables (or to say features and class labels), while
PLS-R is applied based on the correlation. But both of them generate new features
which are linear combinations of the original features which can not be directly used
as biomarkers.

Feature selection can mainly be divided into three families: filter methods which
focus on the correlation between variables and targets; wrapper methods which use
an objective function (such as classification accuracy) to evaluate the importance of
features; embedded methods where the feature selection procedure is embedded with
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classification procedure and the features are selected automatically during the classifi-
cation process [83]. Filter methods are independent of classification procedure, but not
the other two families. Biomarkers should be independent of the classification algo-
rithm, so we only focus on filter methods in this thesis.

1.6 Evaluation of feature selection

Many feature selection methods have been proposed by researchers so far, and more
are being and will be proposed. Quite often the feature selection methods are proposed
for a specific research question or some type of datasets. Then how to select the best
feature selection method for a given context?

1.6.1 Prediction accuracy

Feature selection is very often used upstream of classification problems. The purpose of
applying feature selection prior to classification is to improve the prediction accuracy.
So a good feature selection method should be able to improve the prediction accuracy
compared to using the whole original feature set.

A Receiver Operating Characteristics (ROC) graph is a technique for visualizing
the performance of classifiers, and the area under an ROC curve (AUC) is usually used
as a scalar to evaluate a classifier’s performance [84]. Some relevant concepts will be
introduced in this subsection.

Figure 1.6 shows the confusion matrix and some common performance metrics that
can be calculated from it. The two green cells along the diagonal, True Positive (TP)
and True Negative (TN), represent the correct predictions. The two red cells, False Pos-
itive (FP) and False Negative (FN), represent the errors. Next to the confusion matrix,
some common performance metrics are calculated. Among them, the two metrics re-
lated to ROC graph are True positive rate (also called Recall, Equation 1.8) and False
positive rate (Equation 1.9).

True positive rate=
Positives correctly classi f ied

Total positives
(1.8)

False positive rate=
Negatives incorrectly classi f ied

Total negatives
(1.9)

ROC graph is a two-dimensional graph in which False positive rate is plotted on
the X axis and True positive rate is plotted on the Y axis as Figure 1.7 shows. For
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Figure 1.6: Confusion matrix and some performance metrics calculated from it.

a classifier, when its True positive rate against its False positive rate is plotted in the
ROC graph along a curve as shown in Figure 1.7, the area under it (the grey shadow in
the figure) is called Area Under the Curve (AUC). The AUC value indicates a tradeoff
between benefits (true positive) and costs (false positive). The dotted line shows the
worst case where AUC is 0.5 and it means that the model has no discrimination capacity
to distinguish between positive class and negative class.
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Figure 1.7: A Receiver Operating Characteristics (ROC) graph and the Area Under the Curve (AUC).
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1.6.2 Stability

Stability shows the ability of a feature selection method to give a consistent set of
features when the training data changes [85].

One application of feature selection in medical science is biomarker discovery. The
stability of biomarker discovery is a challenging task since the sources of instability in
biomarker discovery are many:

• Algorithm design without considering stability

– Only aiming to find a feature subset to construct a classifier of the best pre-
diction accuracy

• Existence of multiple sets of true biomarkers

– Highly correlated features, different ones may be selected under different
settings

– No redundant features, but existence of multiple non-correlated sets of real
biomarkers is also possible

• Small sample size vs. High dimensional features

– In analysis of gene expression data and proteomics data, there are typically
hundreds or even less than one hundred samples but thousands of features

Figure 1.8 shows an example of stability of feature selection methods. In the study
of the same disease, the gene expression profiles of some patients from two hospitals
are collected which can be used as training data for biomarker discovery. Two feature
selection methods are applied to these two datasets. Method 1 gives two identical gene
lists but method 2 gives two different gene lists. Theoretically the biomarkers for a
disease should be independent of the training data. In this example, we say that feature
selection method 1 is more stable than method 2.

Then we need a metric to evaluate the stability of a feature selection method. Let
A be the training set and the samples are presented by M features ( f1, f2, . . . , fM). N
resampling steps generate N training subsets and after applying the feature selection
method to them, N selected feature subsets are obtained: (F1,F2, . . . ,FN).

X=


x1,1 x1,2 . . . x1,N
x2,1 x2,2 . . . x2,N
...

... . . . ...
xM,1 xM,2 . . . xM,N

 (1.10)
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Feature selection method 1 Feature selection method 2

Figure 1.8: Illustration of stability of feature selection. With two training sets, method 1 always selects
the same gene list as biomarkers, but method 2 gives two different lists.

where the element xm,n (m ∈ {1,2, . . . ,M},n ∈ {1,2, . . . ,N}) in matrix X : {0,1}M×N

indicates whether feature fm is included in selected feature subset Fn. So we have:

F = (F1,F2, . . . ,FN) = ( f1, f2, . . . , fM)×X (1.11)

Let kn = |Fn| be the cardinality of feature subset Fn. For two feature subsets Fi and
Fj ({i, j} ∈ {1,2, . . . ,N}), ri, j = |Fi∩Fj| is the cardinality of the intersection.

Kalousis et al. [86] introduced the similarity index of two feature subsets, Fi and Fj,
as:

SKalousis(Fi,Fj) =
|Fi∩Fj|
|Fi∪Fj|

=
ri, j

ki+ k j− ri, j
(1.12)

Kuncheva [87] pointed out that given a fixed k for two feature subsets (ki = k j = k),
the expected value of r is E(r) = k2

M and max(r) = k. In this case, the above similarity
index becomes:

S
′
Kalousis(Fi,Fj) =

k2
M

2k− k2
M

=
k

2M− k
(1.13)

which has a tendency to increase with increasing k. So they proposed to use the ex-
pected value as a modified index:

SKuncheva(Fi,Fj) =
ri, j−E(ri, j)

max(ri, j)−E(ri, j)
=

ri, j− k2
M

k− k2
M

(1.14)
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Both of the metrics mentioned above are used to measure the similarity between two
feature subsets. If there is a sequence of feature subsets, (F1,F2, . . . ,FN), the stability
index can be calculated by averaging all pairwise similarity indices [87]:

S
′
Kuncheva(F) =

2
N(N−1)

N−1

∑
i=1

N

∑
j=i+1

SKuncheva(Fi,Fj) (1.15)

Davis et al. [88] proposed a more straightforward and flexible metric to measure
the stability regarding multiple feature subsets and various number of features in them
(various k in those feature subsets):

SDavis(F) =
∑ f∈F(ω( f )/N)

|F |
(1.16)

where F is the set of features that appear in at least one of the N subsets (F = F1∪F2∪
. . .FN); |F | indicates the cardinality of F ; ω( f ) is the frequency of feature f ∈ F that
appears in those N subsets.

1.7 Ensemble feature selection

Ensemble feature selection includes two strategies: function perturbation and data per-
turbation. To be noted, many feature selection methods calculate a score for each fea-
ture which indicates its importance. The features then can be ranked based on that
score. So this type of feature selection methods are also called rankers.

1.7.1 Function perturbation

With so many different feature selection methods which are often data-dependent, pick-
ing out the best one for a specific research topic or data can be very challenging. With
the idea of ensemble learning, we can combine the outputs from multiple feature se-
lection methods and this strategy is called function perturbation [89–92]. Figure 1.9
illustrates function perturbation. Many different rankers are applied to the same train-
ing data and their ranking results of the features are then combined into one ranked list
which is used as the final result of function perturbation.



1.7 Ensemble feature selection 19

Ranker 1

Training data

...... Ranker N

Ranked feature list 1 ...... Ranked feature list N

Aggregated list

Figure 1.9: Function perturbation.

1.7.2 Data perturbation

As mentioned above, when the sample size is small and feature dimensionality is high,
the stability of an algorithm is subject to being low. Data perturbation was introduced
which can increase the stability [88; 92–95]. Figure 1.10 illustrates data perturbation.
Only one ranker is used in data perturbation, but many resampled training datasets
are generated from the original training data and the results from all those resampled
datasets are combined into the final result.

1.7.3 Aggregation strategy

Similar to the notations introduced in section 1.6.2, assume that the samples in the
training set A are presented by M features ( f1, f2, . . . , fM). Either in the framework
of function perturbation or data perturbation, there are N ranked feature lists, L =

(L1,L2, . . . ,LN) to be aggregated.

R=


r1,1 r1,2 . . . r1,N
r2,1 r2,2 . . . r2,N
...

... . . . ...
rM,1 rM,2 . . . rM,N

 (1.17)

where rm,n (m ∈ {1,2, . . . ,M},n ∈ {1,2, . . . ,N}) in matrix R : {1,2, . . . ,M}M×N indi-
cates the ranking position of fm in ranking list Ln.
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Figure 1.10: Data perturbation.

To aggregate the ranked feature lists, Chiew et al. proposed to use the intersection
and union operations to aggregate the lists [96]. With a pre-defined k (1 < k <M, the
number of selected features), we have:

xm,n =

{
0 if rm,n > k

1 if rm,n ≤ k
(1.18)

In this case, L is transformed into F. The aggregated feature lists using the two
strategies proposed by Chiew et al. [96] can be illustrated as:

Fintersection = F1∩F2∩ . . .FN (1.19)

Funion = F1∪F2∪ . . .FN (1.20)

But if there are very few common features shared by those N feature subsets,
|Fintersection| will be very small and |Funion| will be very large. Another shortcoming
of these two strategies is that the original ranking information of fm in Ln is not used
while aggregating the feature lists in F.

Breitling et al. proposed a more robust and informative strategy: Rank Products
(RP), using the ranking product to score each feature which avoids the problems men-
tioned above [97]. RP aggregates the ranked feature lists in L into one ranked list L in
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which the ranking position of a feature fm is calculated as:

rm = (
N

∏
n=1

rm,n)1/N (1.21)

With a given k, only the top k features in the aggregated ranked feature list L are
kept as selected features, meaning that fm is kept only if rm ≤ k.
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Chapter 2

Aim of the study

As the fast advances of high-throughput transcriptomics technologies, increasing
amounts of RNA sequencing (RNA-Seq) data are being generated, which provides
enormous resources for biomarker study. The dCod 1.0 project has been using RNA-
Seq data to identify the biomarker genes for some pollutants of particular concern,
using Atlantic cod (Gadus morhua) as the study species which is of great importance
to the North Atlantic fisheries.

The processing of RNA-Seq data involves many steps. To automate that work, many
workflows have been developed. But most of them are designed for model species and
do not support paired test in the differential expression analysis step, and some of them
are hard to be scaled up for large dataset. So the first aim of this study was to develop
a maximally generalized RNA-Seq analysis workflow which can solve all the issues
mentioned above and can be applied to a wide range of applications.

In the differential expression analysis step, statistical tests are utilized to find out
the genes that express differently in different groups. Those genes can be considered
as biomarker gene candidates. But similar to other univariate methods, statistical tests
have the issue that they treat each gene independently, but genes actually have complex
interactions. The multivariate methods take those interactions into consideration. So
the second aim was to study the difference of those methods for biomarker discovery.

Our study showed that a method performs quite differently on different datasets
along the two evaluating dimensions: stability and prediction accuracy. The strategy
of function perturbation has been proposed to combine different biomarker discovery
methods, or feature selection methods. But the stability of function perturbation is
still in question. It has been claimed that data perturbation can improve a method’s
stability. Our final aim was to design a framework combining these two strategies that
possesses the advantages of both, so that the aggregated biomarker discovery method
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is not data-dependent any more and also has a high stability and prediction accuracy.



Chapter 3

Results

3.1 RNA-Seq analysis and differential expression analysis

Prior to analysis of gene expression data, the RNA sequencing (RNA-Seq) data needs
to be processed through a series of procedures resulting in quantification of transcript
abundance and gene expression.

In the dCod 1.0 project, lots of RNA-Seq data were generated. The need of a workf-
low which can automate the whole process was crucial. After some review of the
published workflows and several failed attempts to use some of them, we decided to
develop our own workflow which can satisfy all our requirements. The workflow was
published on GitHub (https://github.com/zhxiaokang/RNA-Seq-Snakemake) and
applied in the attached Paper I.

Paper I studied the toxicogenomics of Atlantic cod (Gadus morhua) by mapping
its transcriptomics changes in response to exposure of benzo[a]pyrene (BaP) and 17α-
ethynylestradiol (EE2) which are model compounds in environmental toxicology. In
the experiments, slices from the same liver sample were assigned to each of the ex-
posure groups in a paired-sample design. In the study of differential expression anal-
ysis of these exposure experiments, we found that paired test [98] which makes use
of the information that some of the slices in different groups are from the same fish,
can highly improve the statistical test strength, resulting in more significantly differen-
tially expressed genes. But very few current RNA-Seq analysis workflows provide this
option.

That experience made us aware that a generalized workflow which could be ap-
plied to various contexts was still needed. We therefore developed a maximally general
RNA-Seq analysis workflow, RASflow (an RNA-Seq Analysis Snakemake Workflow)
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(Paper II, source codes available at https://github.com/zhxiaokang/RASflow).
An overview of the steps performed in RASflow can be found in Figure 1.3.

Before RASflow, some other workflows making the similar efforts had already been
published. We reviewed seven workflows published between 2017 and 2019 [99–105].
Compared with them, some characteristic features of RASflow are listed as follows:

• RASflow provides quality control of the sequencing data both before and after
trimming. It also provides quality control of alignment.

• RASflow can be applied to any organism, no matter if it is a model or non-model
organism.

• Both genome and transcriptome can be used as mapping reference.

• Differential expression analysis can be done on both transcript- and gene-level,
and options of both single- and paired- test are provided.

• It has relatively modest memory requirements ( 4.3GB for the human genome).

• Using Conda [106], RASflow is very easy to install and has no version conflicts
problems.

• Using Snakemake [107], RASflow is highly modular, so that replacing tools used
in the workflow can easily be done.

• Very little programming skills are required from the users.

• RASflow can be run on all the mainstream operating systems: Linux, macOS,
Windows.

Differential expression analysis can be done on both transcript- and gene-level if
transcriptome is used as mapping reference. Two most popular tools for RNA-Seq dif-
ferential expression analysis, edgeR [53; 60] and DESeq2 [59], are provided in RASf-
low. RASflow was evaluated on a benchmarking dataset (SRA accession: SRP082682)
[61] for which we assume that the biomarkers (significantly differentially expressed
genes) are already known. The results show that edgeR has a higher precision and DE-
Seq2 has a higher recall, meaning that edgeR is more conservative in reporting a gene
as differentially expressed.

Besides the benchmarking dataset mentioned above, RASflow was also tested on
three other real datasets of three organisms: human (ArrayExpress accession: E-
MTAB-567) [108], mouse (GEO accession: GSE141199), and Atlantic cod (GEO ac-
cession: GSE106968) [80]. The sequencing data were mapped to both the genome and
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the transcriptome and the job was run on both a High Performance Computing (HPC)
machine (1TB RAM 60 cores Dell PowerEdge R910) and an ordinary desktop com-
puter (8GB RAM 4 cores Intel Core 2). The runtime of the alignment step which is
the most time-consuming part of the workflow was recorded. As expected, mapping to
a genome takes much longer than to a transcriptome, especially when the raw data is
large or the job is run on an ordinary computer.

3.2 Comparative study of feature selection methods for bio-
marker discovery

Differential expression analysis corresponds to performing univariate statistical tests.
An adjusted P-value is calculated for each gene or transcript, then the genes or tran-
scripts with the top lowest adjusted P-values are picked out as biomarkers. The problem
for univariate methods is that they treat features as independent which is not necessar-
ily true especially in the context of genomics study, since genes usually interact with
each other. Multivariate methods which take the interactions between variables into
consideration do not have that problem and are therefore also popular for biomarker
discovery. To study whether one performs significantly better than the other, we con-
ducted a comparative study of various methods from these two categories and evaluated
those methods on two aspects: stability and prediction accuracy.

Significance Analysis of Microarrays (SAM) was picked as the representative of
univariate methods. SAMwas originally designed for detecting differentially expressed
genes in DNAmicroarray data but was later widely used in differential expression anal-
ysis and biomarker discovery [61; 109–111]. For multivariate methods, minimum Re-
dundancy Maximum Relevance (mRMR) and Characteristic Direction (GeoDE) were
used. mRMR is based on information theory and it finds out the features that are least
redundant and most relevant with the class labels [77]. Inspired by graphical perspec-
tive, GeoDE defines a separating hyperplane using linear discriminant analysis and uses
the orientation of the hyperplane to identify the differentially expressed genes [112].

The stability is calculated using Equation 1.16. To evaluate the prediction accuracy,
several classification algorithms were applied and they are: Support Vector Machine
(SVM) [113], Random Forest (RF) [114], and extended two-class logistic regression
(RIDGE and LASSO) [115].

We evaluated the methods on the datasets from two experiments of toxicant-treated
Atlantic cod liver. In each experiment, the samples were exposed to different toxicant
doses. We found that the methods perform quite differently (both on stability and
prediction accuracy) in the datasets from these two experiments and different doses.
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No method always outperforms the others across all circumstances. GeoDE performs
better in stability than SAM and mRMR. Regarding the ability to improve a classifier’
s prediction accuracy, mRMR performs the best in high-dose condition, but in low-
dose condition, GeoDE outperforms the other two methods. So the performance of a
biomarker discovery method quite depends on the dataset that it is applied to. The work
was presented in Paper III.

3.3 An ensemble feature selection framework integrating
stability

As we have discussed in the previous subsection, biomarker discovery methods (feature
selection methods) perform very differently on different datasets, so choosing the most
appropriate method for their datasets becomes a challenging problem for researchers.
One solution is to apply function perturbation, which is a strategy to combine the out-
puts from several methods. And it has been approved to maintain or improve the pre-
diction accuracy. But we found that function perturbation can hardly achieve satisfac-
tory stability. With a similar logic as function perturbation, data perturbation applies
the feature selection method on several datasets that are generated from the original
dataset and then combines the outputs from them. Data perturbation is capable of im-
proving the stability of that feature selection method. Considering the characteristics
of these two strategies, we proposed an Ensemble Feature Selection Integrating Stabil-
ity (EFSIS) framework combining both strategies and using stability of each individual
method as their weight to make use of the advantages of both.

We included four varied feature selection methods in EFSIS but of course it is not
limited to four. To demonstrate the generality of EFSIS, the four methods are based
on very different sets of assumptions. They include SAM and GeoDE which were
mentioned in the previous subsection, together with Information Gain which applies
the entropy concept of information theory to evaluate the features [116], and ReliefF
[117] which is a more robust version of Relief algorithm [118; 119] which evaluates a
feature by how well it distinguishes the samples that are near to each other.

EFSIS, together with those individual methods and basic function perturbation of
them, were evaluated by stability and prediction accuracy using six gene expression
datasets produced using DNA microarray. The stability is calculated by Equation 1.16
and prediction accuracy is evaluated by SVM. Across all the 54 experiments, the en-
semble methods, basic function perturbation and EFSIS, are slightly better than the
individual methods in prediction accuracy. EFSIS performs much better than basic
function perturbation in stability. The work was presented in Paper IV and the source
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codes are available on GitHub (https://github.com/zhxiaokang/EFSIS).
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Chapter 4

Discussion

4.1 Challenges of working with a non-model species

The dCod 1.0 project focuses on Atlantic cod (Gadus morhua). Atlantic cod is one
of the most commercially important species for North Atlantic fisheries and is also
commonly used in marine pollution monitoring and environmental toxicology studies
[80; 120–125]. Furthermore, its genome has been continuously sequenced and anno-
tated [9; 10] which makes it possible to study its systems toxicology using the omics
approaches.

But as a non-model species, the effort and work devoted to the study of Atlantic cod
and the available resources are still limited, compared with the model species, such as
human (Homo sapiens), mouse (Mus musculus), and zebrafish (Danio rerio). In Paper
II, we studied 7 RNA-Seq analysis workflows in the past three years, and three of them
only support the two model species: human and mouse. In a study to reconstruct the
metabolic pathway model for Atlantic cod [11], we found that the potential options of
computational tools that can help automate the reconstruction process are also highly
limited.

As more work is being done aiming for a better sequenced and annotated Atlantic
cod genome, since 2011 when the first version of Atlantic cod genome (gadMor1) was
published [9], two new versions have been published in 2017 (gadMor2) [10] and 2019
(gadMor3) respectively. At the early stage of the dCod 1.0 project, we mainly used
gadMor1 (Paper I). Later on, we also generated a de novo assembly integrating gad-
Mor1, gadMor2 and lots of RNA-Seq data from different developmental stages and
tissues of Atlantic cod [11]. After gadMor3 was released, we started using gadMor3
[11]. Considering that the genome of such non-model species is being updated rapidly,
we designed the workflow (RASflow in Paper II) in a modular way so that each func-
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tional part of the whole workflow can easily be changed, and the application of Conda
[106] and Snakemake [107] makes the workflow highly reproducible.

4.2 Biomarker discovery using gene expression data

An important data analysis of gene expression data is biomarker discovery, and is typi-
cally performed on a set of gene expression profiles of samples from different groups.
The mainstream is Differential Expression Analysis (DEA) which finds out the signif-
icantly differentially expressed genes across different groups using statistical tests. It
has been popular for its simplicity and interpretability. But there are also some draw-
backs of such methods. Fold Change can measure the magnitude of difference between
groups, but it ignores the variance within each group, so it fails to find out the genes
of high reproducibility with comparably low differentiality. The statistical test such as
Student’s t-test requires a specific distribution of samples which can not always be satis-
fied [55]. Recent debates include alleged misuse of P-value [126–131]. The thresholds
for Fold Change and P-value also significantly alter the gene expression data interpre-
tations [132].

In recent years, machine learning techniques have been gaining popularity in gene
expression data analysis for biomarker discovery. The two relevant machine learning
techniques are feature selection and classification.

Lyons-Weiler et al. proposed to combine statistical tests with classification [55].
Targeting at achieving the highest classification accuracy, they choose the threshold
for P-value (or Fold Change). Van IJzendoorn et al. proposed to combine statistical
tests with feature selection [133]. They apply Random Forest to the significantly dif-
ferentially expressed genes (adjusted P-value < 0.05) to pick out the most important
genes.

Some other researchers compared statistical tests and feature selection to see which
one performs better. Blanco et al. studied the application of both classical statistical
approaches and machine learning methods on RNA-Seq data for cancer research, and
found that there is a big overlap between the biomarker genes identified by Random
Forest and classical statistical approach (edgeR), but GLMNET is different in terms
of the choice of genes [134]. Clark et al. claimed that their multivariate approach
(Characteristic Direction method) outperformed all the tested univariate statistical test
approaches, including Significance Analysis of Microarrays (SAM) and Linear Models
for Microarray Data (limma) [135] for DNAmicroarray data, and DESeq and edgeR for
RNA-Seq data [112]. In the study of human preimplantation development using single-
cell RNA-Seq data, Liang et al. found that the F-score algorithm (from Support Vector
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Machine) achieves the highest prediction accuracy with the least genes compared with
classical statistical tests provided by DESeq, edgeR, and limma, and the functional en-
richment analysis showed that the F-score algorithm can obtain key signaling pathways
related to embryo development [136].

4.3 Evaluation of biomarker discovery methods

Regarding the evaluation of performance while comparing statistical tests and feature
selection, no standard way has been broadly approved. Many evaluation metrics have
been proposed so far, and they can be summarized into three categories which are
described as follows.

The most straightforward way is to compare the selected genes to an already known
list of true biomarkers. But the difficult part for this is to establish such a "gold stan-
dard". Williams et al. produced a test dataset generated using highly purified hu-
man classical and nonclassical monocyte subsets from a clinical cohort [61]. They ap-
plied two approaches, SAM and limma, to pick out the differentially expressed genes.
The genes at the intersection of these two methods are used as the "gold standard" to
evaluate the performance of other differential expression analysis tools. Clark et al.
[112] used the genes associated with binding regions which are differentially bound by
STAT3 as the "gold standard" of differentially expressed genes supported by a relevant
finding by Hardee et al. [137]. Di Camillo et al. generated a simulated dataset so that
the biomarkers are already known which can then be used as the "gold standard" [138].

Another strategy is to generate multiple biomarker lists and simply compare be-
tween them. The comparison is carried out along two dimensions: compare the sets
of genes selected as biomarkers by the different methods [134]; apply one method to
the resampled data subsets generated from the original dataset and compare the results
from those subsets which is widely used to evaluate the method’s stability. Most re-
searchers calculate the stability of a method by looking at the overlap of gene sets that
it selects from different data subsets [86–88; 139–141]. Dessì et al. proposed to com-
pare the gene lists in functional terms based on the molecular function GO annotations
[142].

As defined, a biomarker is an indicator of biological states. So a good set of
biomarker genes should be discriminative genes that can characterize samples from
different biological states. Therefore, using the biomarker genes, a classifier should
obtain high prediction accuracy. This is widely used to evaluate the performance of a
biomarker discovery method [136; 139–142].
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However, each of these approaches have challenges. For the first strategy, it is diffi-
cult to establish a convincing "gold standard". Comparing the gene sets from different
methods can only indicate that some methods tend to select some common genes, but it
can not tell which method is better. There are many ways proposed for calculating the
stability, but some of them tend to give a higher stability when there are more genes in
the lists [87], which is unfair for the methods that are more strict in selecting redundant
genes. The evaluation of the ability of a biomarker discovery method to improve a clas-
sifier’s prediction accuracy is influenced by the choice of classification algorithm. For
example, the SVM would be expected to work better with a feature selection method
implemented in its own package [136]. Or to be more general, the choice of the classi-
fication algorithm can affect the evaluation of the biomarker discovery methods [140].



Chapter 5

Conclusions and future prospects

In this thesis, we have mainly focused on biomarker discovery using gene expression
data. Two main approaches are statistical tests and machine learning or rather feature
selection. Prior to applying statistical tests to RNA-Seq data to select the differentially
expressed genes as biomarkers, the sequencing data needs to be pre-processed through
a series of procedures. We developed a maximally generalized and modular RNA-Seq
analysis workflow, which can be applied to a wide range of applications and can easily
be extended to new functions. On the feature selection aspect, we found that the method
performs quite differently depending on the particular datasets. To address that issue,
we proposed an ensemble framework combining several individual feature selection
methods. The results showed that our proposed method achieves both high stability
and prediction accuracy.

For the future prospects, the proposed ensemble framework may be applied to sta-
tistical tests, instead of feature selection. Since there has been a worry about misuse
of P-value and the choice of its threshold, the P-value can be used as an intermediate
parameter instead of the final evaluation metric of whether a gene is significantly dif-
ferentially expressed. But in the end, it will again come to the issue of how to evaluate
the performance of the method or the quality of the selected genes. So more efforts
should be devoted to that direction.

In this thesis, we separate the steps of biomarker discovery and classification to se-
lect the biomarkers independent of the classifier, so that the selected biomarkers are as
generalized as possible and can be applied to more circumstances and in different re-
search topics. But when it comes to disease diagnosis, classification of disease types is
of the main interest [143; 144]. So in this case, the biomarker discovery and the clas-
sification steps should be evaluated together: to achieve a high and stable prediction
accuracy. The stability here means that the prediction accuracy is stably high regard-
less of the change of training samples, instead of the stability of biomarker discovery
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methods which has been discussed in the thesis. Deep learning is not used in this thesis
for its low interpretability, but with the research focus switched, deep learning becomes
a good choice for its robust and high prediction performance [145–148].

The whole thesis has been focusing on using gene expression data itself to dis-
cover biomarkers, but some prior knowledge and other data may also be incorporated
to indicate the importance of genes. Systems biology models can be used to identify the
mechanistically essential genes in distinguishing different biological states or the genes
involved in the core metabolic pathways of a toxicant [149–151]. The known chemical
defensome genes can also be used as prior knowledge in identifying biomarker genes in
response to a chemical [152; 153]. Integration of multi-omics data can also strengthen
the predictive power of identifying biomarkers at a more systematic level [154–156].

Regarding the challenges of working with non-model species, we have gone through
many problems in dCod 1.0 project, and have also put our efforts in solving them, such
as developing RNA-Seq analysis workflow applicable to non-model species [33], and
generating a draft liver reconstruction model of Atlantic cod (Gadus morhua) [11].
There will be more and more novel genomes being analyzed motivated by initiatives
such as the Earth BioGenome Project [157]. We anticipate that more research on non-
model species will be conducted. Some efforts can be devoted to but not limited to the
following directions: annotating the novel genomes because a high-quality annotated
genome is a basis of many other studies, and the use of updated Atlantic cod assem-
bly in dCod 1.0 project is one example; developing methods applicable to non-model
species such as RASflow; and so on.
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A B S T R A C T

Polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) that activate the aryl hydrocarbon receptor
(Ahr) pathway, and endocrine disruptors acting through the estrogen receptor pathway are among environ-
mental pollutants of major concern. In this work, we exposed Atlantic cod (Gadus morhua) precision-cut liver
slices (PCLS) to BaP (10 nM and 1000 nM), ethynylestradiol (EE2) (10 nM and 1000 nM), and equimolar mix-
tures of BaP and EE2 (10 nM and 1000 nM) for 48 h, and performed RNA-Seq based transcriptome mapping
followed by systematic bioinformatics analyses. Our gene expression analysis showed that several genes were
differentially expressed in response to BaP and EE2 treatments in PCLS. Strong up-regulation of genes coding for
the cytochrome P450 1a (Cyp1a) enzyme and the Ahr repressor (Ahrrb) was observed in BaP treated PCLS. EE2
treatment of liver slices strongly up-regulated genes coding for precursors of vitellogenin (Vtg) and eggshell zona
pellucida (Zp) proteins. As expected, pathway enrichment and network analysis showed that the Ahr and es-
trogen receptor pathways are among the top affected by BaP and EE2 treatments, respectively. Interestingly, two
genes coding for fibroblast growth factor 3 (Fgf3) and fibroblast growth factor 4 (Fgf4) were up-regulated by EE2
in this study. To our knowledge, the fgf3 and fgf4 genes have not previously been described in relation to
estrogen signaling in fish liver, and these results suggest the modulation of the FGF signaling pathway by es-
trogens in fish. The signature expression profiles of top differentially expressed genes in response to the single
compound (BaP or EE2) treatment were generally maintained in the expression responses to the equimolar
binary mixtures. However, in the mixture-treated groups, BaP appeared to have anti-estrogenic effects as ob-
served by lower number of differentially expressed putative EE2 responsive genes. Our in-depth quantitative
analysis of changes in liver transcriptome in response to BaP and EE2, using PCLS tissue culture provides further
mechanistic insights into effects of the compounds. Moreover, the analyses demonstrate the usefulness of PCLS in
cod for omics experiments.

1. Introduction

Among environmental pollutants of particular concern are carci-
nogenic polycyclic aromatic hydrocarbons (PAHs), dioxins and dioxin-
like polychlorinated biphenyls (PCB), as well as estrogenic endocrine
disruptors. PAHs such as benzo[a]pyrene (BaP), dioxins and dioxin-like
compounds activate the aryl hydrocarbon receptor (Ahr) pathway
(Hahn, 2002), and estrogen mimicking endocrine disruptors such as
ethynylestradiol (EE2), act through the estrogen receptor pathway

(Goksøyr, 2006b). In fish, Cyp1a enzymes induced by exposure to
pollutants such as dioxin and PAHs have long been in use as biomarkers
(Goksøyr and Förlin, 1992; Stegeman and Lech, 1991). The increased
synthesis of mRNA and protein levels of genes encoding vitellogenins
and eggshell zona pellucida/ radiata proteins in response to estrogenic
compounds has led to their use as biomarkers of endocrine disruptors in
male and juvenile fish (Arukwe and Goksøyr, 2003; Sumpter and
Jobling, 1995).

In recent years, the wide availability of omics techniques has
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opened for deeper investigations into effects of pollutants at the
genome scale, promising a more complete mapping of effects (Denslow
et al., 2007; Hahn, 2011; Martyniuk et al., 2011). Omics techniques are
increasingly recognized as useful tools for identifying perturbed path-
ways and discovery of new potential biomarkers of exposure. Using
omics methods, studies in many fish species have characterized gene
expression in response to various environmental pollutants (such as
activators of the transcription factors Ahr and estrogen receptors) in the
liver of fish or primary hepatocytes (Baker et al., 2013; Colli-Dula et al.,
2014; Hahn et al., 2014; Williams et al., 2013).

For many animals such as large fish species, toxicological studies
using in vivo methods are often cumbersome, expensive and low
throughput, and can be ethically challenging. Therefore, there is an
increasing need for efficient in vitro methods, computational models
and systems biology approaches that can replace or minimize the use of
animal models (Krewski et al., 2010). Precision-cut liver slice (PCLS)
culture is an efficient method for in vitro or ex vivo toxicological studies
(Eide et al., 2014; Miller et al., 1993; Singh et al., 1996). PCLS methods
can be better alternatives to primary hepatocyte cultures methods for
many studies because the former method maintains intact cellular ar-
chitecture similar to in vivo condition. It has also been shown that
compared to primary hepatocyte cultures, gene expression patterns in
liver slices are more similar to in vivo liver gene expression patterns
(Boess et al., 2003). PCLS in conjunction with omics technologies can
be used to generate high throughput data for a large number of che-
mical exposures. Such data may lead to further mechanistic studies and
generate computational models employing systems biology approaches
and the adverse outcome pathway (AOP) framework to facilitate che-
mical risk assessment (Ankley et al., 2010; Brockmeier et al., 2017).

The objective of this study is to map transcriptome changes in
Atlantic cod liver tissue in response to BaP and EE2 exposure using
PCLS. We used BaP and EE2 as model compounds that activate the Ahr
and estrogen receptor pathways, which are among the most important
pathways in environmental toxicology. BaP is a ubiquitous environ-
mental pollutant and activator of the Ahr (Hahn, 2002). EE2 is a potent
estrogen receptor-activating pharmaceutical estrogen used in contra-
ceptive pills that is commonly detected in aquatic environments con-
taminated with domestic sewage (Larsson et al., 1999). The Atlantic
cod is one of the most important fish species in North Atlantic fisheries
that is also used in environmental monitoring programs (Balk et al.,
2011; Hylland et al., 2008). Atlantic cod is a well-studied species and
the availability of a sequenced and annotated genome (Star et al., 2011;
Torresen et al., 2017) has facilitated use of omics approaches in tox-
icological studies (Bratberg et al., 2013; Karlsen et al., 2011; Yadetie
et al., 2013, 2017).

2. Materials and methods

2.1. Experimental design

Fish sex was determined by dissection and inspection of the gonads.
All fish were juveniles with immature gonads. A total of 8 (3 females
and 5 males) juvenile cod were used for liver slicing for RNA-Seq ex-
periment. The seven treatment groups of PCLS consist of DMSO (vehicle
control), 10 nM (2.52 μg/L) BaP, 1000 nM (252.31 μg/L), BaP, 10 nM
(2.96 μg/L) EE2, 1000 nM (296.40 μg/L) EE2, 10 nM Mix (BaP+EE2,
10 nM each) and 1000 nM Mix (BaP+EE2, 1000 nM each).
Concentrations and exposure time used in these experiments were
based on preliminary experiments (performed with different con-
centrations of BaP) and data from a previous study (Eide et al., 2014).
Accordingly, to be able to map gene expression responses without
causing significant cytotoxicity, two concentrations (low and high)
were used for each compound in 48-hour exposure experiments. Slices
from the same liver sample were assigned to each of the seven groups in
a paired sample design and received corresponding treatments. Each
group contained slices from 6 to 8 fish, which are biological replicates

(n= 6–8). In total of 47 RNA samples were sequenced at a depth of
approximately 50 million 75 bp paired-end reads per sample.

An additional experiment was performed to evaluate anti-estrogenic
effects of BaP at different concentrations and BaP:EE2M ratios using 4
(3 females and 1 male) juvenile Atlantic cod for liver slicing and qPCR
assay. In this experiment, there were four treatment groups of liver
slices that consisted of DMSO (vehicle control), 50 nM EE2, 50 nM
EE2+1 μM BaP, and 50 nM EE2+10 μM BaP. Slices from each re-
plicate liver sample were assigned to each of the four groups in a paired
sample design and received the corresponding treatments.

2.2. Fish

The fish were obtained from the Institute of Marine Research
(Austevoll station, Norway) and maintained at the Industrial and
Aquatic Laboratory (Bergen, Norway). Juvenile Atlantic cod (G.
morhua) approximately 1.5 years old used for the experiment were kept
in 500 L tanks in 10 °C seawater with a 12 h light/l2 h dark cycle. The
fish were fed with a commercial diet (Harmony Nature 500, EWOS,
Bergen, Norway). The mean body weight of the fish was 498 g (stan-
dard deviation=163 g). The fish were sexually immature, as con-
firmed during dissection. The fish were maintained and treated in ac-
cordance with the guidelines of the Norwegian Board of Biological
Experiments with Living Animals.

2.3. Chemicals

DMSO (CAS No: 67-68-5), Benzo[a]pyrene (BaP) (CAS No: 50-32-8),
17α-ethynylestradiol (EE2) (CAS No: 57-63-6) and Thiazolyl Blue
Tetrazolium Bromide (MTT) (CAS No: 298-93-1) were purchased from
Sigma-Aldrich (Sigma-Aldrich, Oslo, Norway).

2.4. Preparation of PCLS

PCLS preparation was performed as previously described (Eide
et al., 2014), with the main modification being agarose embedding of
the liver tissue as described below. Briefly, the fish was killed by a blow
to the head and the liver was dissected out and kept in ice-cold PCLS
buffer containing NaCl (122mM), KCl (4.8 mM), MgSO4 (1.2 mM),
Na2HPO4 (11mM) and NaHCO3 (3.7mM), pH 8.4. Cylindrical cores
(8 mm diameter) were excised from the central part of the liver and
kept in the culture medium, which is Leibowitz-15 medium (Life
Technologies™ Gibco®, Paisley, UK) supplemented with 10% charcoal-
stripped and heat-inactivated fetal bovine serum and 1% penicillin–-
streptomycin–amphotericin (10,000 U/mL potassium penicillin,
10,000 μg/mL streptomycin and 25 μg/mL amphotericin B; Sigma-Al-
drich). Agarose gel embedding of the cylindrical core was performed as
follows. The core was placed at the bottom of an inverted 15mL falcon
tube (with the lid on) cut at the 12mL mark. The tube (placed on ice)
was filled with 3% ultra-low gelling temperature agarose gel (CAS
Number 9012-36-6, Sigma-Aldrich, Oslo, Norway) at a maximum
temperature of 25 °C, to completely cover the core. After about 10min
gelling on ice, the resulting cylindrical block (about 2 cm long) was
glued to the sample holder and cut into 250 μm slices using Leica vi-
brating blade microtome VT1200 (Leica, Wetzlar, Germany) at a speed
of 0.9 mm/s and amplitude 3mm in ice-cold PCLS buffer. The slices
were kept in the culture medium at 4 °C, then pre-incubated at 10 °C for
2 h in the culture medium before exposure.

2.5. PCLS culture and exposure assays

Cod liver slices were cultured in 24-well plates (Costar, Corning,
New York, USA) in 1mL of the culture medium per slice in an incubator
at 10 °C with shaking at 50 rpm. After 2 h of pre-incubation, the growth
medium was replaced by medium containing either DMSO vehicle,
10 nM (2.52 μg/L) BaP, 1000 nM (252.31 μg/L) BaP, 10 nM (2.96 μg/L)
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EE2, 1000 nM (296.40 μg/L) EE2, 10 nM mixture (BaP+EE2, 10 nM
each) or 1000 nM mixture (BaP+EE2, 1000 nM each). The con-
centration of DMSO solvent in each group was 0.01%. After 48 h in
culture, parallel slices were either collected for viability assay (MTT
assay) or snap frozen (two slices per sample, about 20mg) in liquid
nitrogen and stored at −80 °C for RNA extraction.

2.6. PCLS viability test using MTT assay

Individual slices were rinsed in a 24-well plate (1 slice per well)
containing 1mL PBS per well, at 4 °C. The PBS was replaced by ice-cold
MTT solution (dissolved in L-15 medium at 2mg/mL) and incubated for
90min at 10 °C with shaking at 50 rpm. Then the MTT solution was
removed and the slice in each well was washed by 1mL PBS. After
removing the PBS, 1mL DMSO was added to each well and the plate
was incubated at room temperature for 20min with shaking at 50 rpm.
Absorbance was measured in 100 μL of the DMSO solution in each well,
in triplicates at 590 nm with an EnSpire plate reader (Perkin Elmer).

2.7. RNA extraction

Total RNA was isolated from frozen slices (two slices pooled per
treatment for each liver sample, n= 6–8 per group) using mirVana™
miRNA Isolation Kit with phenol (Cat# AM1560, Ambion, Austin, TX,
USA). To remove any DNA contamination, total RNA was treated using
TURBO DNase (TURBO DNA-free kit, Ambion) and further purified
using RNA Clean & Concentrator-5 (Zymo Research Corp, Irvine, CA,
USA) and eluted with RNase-free water. The concentration of total RNA
was measured using NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA). The RNA integrity was assessed
using agarose gel electrophoresis. The RNA samples were submitted to
the Genomics Core Facility at the University of Bergen for RNA se-
quencing.

2.8. RNA sequencing

RNA samples were submitted for sequencing to the Genomics Core
Facility at the University of Bergen. RNA quality was assessed using the
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Each
RNA sample (0.4 μg) was processed and sequenced using Illumina®
TruSeq® Stranded mRNA Sample Preparation Kits according to Illumina
TruSeq® Stranded mRNA Sample Preparation Guide (October 2013) on
Illumina HiSeq 4000 (Illumina, Inc., San Diego, CA, USA). Poly(A)+
RNA was purified, fragmented and converted to first strand and second
cDNAs. The second strand cDNA was amplified using PCR (15 cycles) to
create the final cDNA library, which was sequenced to generate 50
million 75 bp paired-end reads per sample.

2.9. RNA-Seq read mapping and analysis of differential expression

The quality of the sequenced RNA samples was verified using
FastQC v0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc). In total, we had 47 high-quality samples, which were aligned to
the published CDS of Atlantic cod (ftp://ftp.ensembl.org/pub/release-
90/fasta/gadus_morhua/cds/Gadus_morhua.gad) using HISAT2 v2.1.0
(Kim et al., 2015). Counts were generated from the alignments using
SAMtools v1.4.1 (Li et al., 2009). The RNA-Seq reads mapped to about
22,100 unique Atlantic cod CDSs in Ensembl (http://www.ensem-
bl.org/) of which, about 19,000 genes were obtained after filtering out
genes with zero counts in all samples.

Differential expression analysis was performed using edgeR v3.18.1
(McCarthy et al., 2012) between control group and each treated group
using “TMM” normalization method and paired test, after removing the
genes with zero counts across all samples of the two compared groups.
Differentially expressed genes were defined by p-value< 0.05 after
adjustment using the Benjamini-Hochberg multiple testing correction.

Only genes with average counts per million/cpm>1 in at least one of
the control or treated groups and with fold changes> 1.5 (for up-
regulated) or< 0.67 (for down regulated) were included in the final list
of differentially expressed genes. A Snakemake (Koster and Rahmann,
2012) workflow was implemented and is available at https://github.
com/zhxiaokang/RNA-Seq-Snakemake. This allows the whole analysis
to be reproduced and the workflow to be applied in similar studies. The
RNA-Seq data has been deposited in GEO (accession: GSE106968).

2.10. Pathway analysis

For pathway analysis, human and zebrafish (Danio rerio) orthologs
of the Atlantic cod genes were obtained using the BioMart tool in
Ensembl (https://www.ensembl.org). Pathway enrichment and net-
work analyses were performed in DAVID (Database for Annotation,
Visualization and Integrated Discovery) (Huang et al., 2009), Enrichr
(Kuleshov et al., 2016), STRING and STITCH protein–protein and che-
mical-protein interaction network analysis tools (Szklarczyk et al.,
2015, 2016) and MetaCore (https://portal.genego.com/). For the in-
teraction network construction in STRING and STITCH databases,
zebrafish orthologs of the differentially expressed genes were used with
the low-confidence interaction option. In MetaCore (which does not
allow pathway analysis for fish), the human orthologs of the differen-
tially expressed genes were used. Visualization and analysis of networks
generated using STRING and annotated with expression data was per-
formed using Cytoscape (Cline et al., 2007). For all pathway enrich-
ment analyses, a false discovery rate (FDR)<0.05 was considered as
significant enrichment. For Gene Set Enrichment Analysis (GSEA),
Atlantic cod genes reliably quantified by RNA-Seq (with average nor-
malized CPM > 1 in either control or treated group) in PCLS (treated
with 1000 nM BaP and DMSO) that could be mapped to human or-
thologs in Ensembl (about 13,000 genes) were used (Subramanian
et al., 2005). GSEA software and gene sets KEGG and Hallmarks in the
Molecular Signatures Database (MSigDB) (Liberzon et al., 2011) at
Broad Institute (http://www.broadinstitute.org/gsea/index.jsp) were
used. GSEA was performed with 1000 permutations of phenotypes with
default settings. Gene sets enriched with FDR < 0.25 were considered
significant as recommended (Subramanian et al., 2005).

2.11. Hierarchical clustering

Hierarchical clustering analysis (Euclidian metric, complete
linkage) was performed in Qlucore Omics Explorer, using log2-trans-
formed expression ratio values (library-size normalized cpm in treated/
DMSO control). Genes differentially expressed in Multi Group
Comparison paired-test analysis (Qlucore Omics Explorer, q-value<
0.05) were used for hierarchical clustering. Paired test was performed
to account for the fact that slices from the same fish were used in each
of the seven treatment groups. Possible sex-related effects were also
evaluated using Qlucore Omics Explorer. There were no significant
differences in gene expression responses to EE2 or BaP between the
liver slices from male and female juvenile fish (data not shown).

2.12. Quantitative polymerase chain reaction (qPCR)

For qPCR, cDNA was prepared from 1.0 μg of each total RNA sample
in 20 μL reactions using iScript cDNA Synthesis Kit (Bio-Rad, Hercules,
CA, USA). The reverse transcription reaction mix containing 1 μL of the
reverse transcriptase (RT) provided in the kit was pre-incubated at
25 °C for 5min (priming), at 46 °C for 30min (reverse transcription)
and at 95 °C for 1min (RT inactivation). The cDNA was diluted (1:20)
and 5 μL was used in a 20 μL PCR reaction mix containing 0.5 μM of
each of the forward and reverse primers. PCR was performed on BioRad
CFX96 real-time PCR detection system (Bio-Rad Laboratories). The re-
action conditions were as follows: an initial incubation at 95 °C for
10min, followed by 40 cycles of denaturation at 95 °C for 10 s,

F. Yadetie et al. Aquatic Toxicology 201 (2018) 174–186

176



annealing and elongation at 60 °C for 30 s. Negative controls with no
reverse transcriptase enzyme were run for each primer pair. For each
primer pair, serial dilutions of cDNA prepared from pooled RNA sam-
ples from the same experiment were used to construct a standard curve
to estimate amplification efficiency. qPCR assays were performed in
triplicates. The actb gene was used as a reference for normalization. To
check primer specificity, melting curve analysis was performed and PCR
products were also analyzed by agarose gel electrophoresis. Expression
levels were compared between controls and treated samples using the
ΔΔCq method (Schmittgen and Livak, 2008) and further statistical
analysis was performed using the log2-transformed fold-changes in
expression.

2.13. Statistical analysis

Statistical analyses of MTT data and log2-transformed fold-changes
(treated/control) from qPCR were performed with GraphPad Prism
Software version 7 (GraphPad Prism, La Jolla, CA, USA). Data were
checked for normality using Kolmogorov–Smirnov test. Repeated
measures one-way ANOVA with Greenhouse–Geisser correction fol-
lowed by Dunnett’s test (for normally distributed data), and Friedman
test followed by Dunn's test (for non-normally distributed data) were
used. Data are reported as mean ± standard deviation (SD), and
p<0.05 was considered significant. Further statistical analysis and
hierarchical clustering analysis of RNA-Seq data was performed using
Qlucore Omics Explorer version 3.2 (Qlucore AB, Lund, Sweden). Slices
from the same individual fish were used in each of the seven treatment
groups and paired test was performed in Qlucore Omics Explorer.
Possible sex-related effects on gene expression were also evaluated
using Qlucore Omics Explorer.

3. Results

3.1. Genes differentially expressed in BaP treated PCLS and enriched
pathways

The read counts generated from RNA-Seq mapped to about 19,000
unique Atlantic cod genes. Based on differential expression analysis
using edgeR (McCarthy et al., 2012), 13 unique genes (13 genes by the
1000 nM and 1 gene by the 10 nM BaP concentrations) were sig-
nificantly differentially expressed (paired test, FDR < 0.05) (Table 1,
Supplementary Table S1). Out of these 13 genes, all except two (vtg1-1
and znf366) were up-regulated. The Ahr pathway and other related or
interacting pathways were among the top pathways significantly en-
riched (Table 2). The top enriched gene ontology (GO) biological pro-
cess (BP) terms and pathways are those related to xenobiotic and
steroid metabolism, attributed to Cyp1a, Cyp1b1 and Ahrr encoding
genes up-regulated here (Table 2A–C). Other pathways affected by BaP
treatment include immune response (attributed to genes such as il1b

and ccr9a), steroid metabolism, chemical carcinogenesis and oxidative
stress (Tables 1, 2A–C). A heatmap generated at a more relaxed cutoff
(unadjusted p < 0.01) shows more differentially expressed genes
(Supplementary Fig. S1). For example, the heatmap shows three genes
encoding vitellogenin are slightly down regulated in BaP-treated slices.
To supplement the pathway analysis performed with the small number
of genes differentially expressed by BaP, GSEA (with input of all
quantified genes) was also performed. GSEA showed significant en-
richment of gene sets and pathways related to those identified for the
13 differentially expressed genes (Table 2A–C, Supplementary Fig. S2A-
F, Supplementary Table S8A and B). The heatmap from GSEA analysis
shows expression profiles of the top ranked genes (Supplementary Fig.
S3), and as expected, many of the differentially regulated genes in
Table 1 are seen in the top ranks.

3.2. Genes differentially expressed in EE2 treated PCLS and enriched
pathways

Fig. 1 shows a Venn diagram of genes differentially expressed in
EE2-treated PCLS. Out of about 19,000 unique Atlantic cod genes, the
total number of differentially expressed genes (FDR < 0.05 and
minimum 1.5 fold-change) by EE2 was 79. The 10 nM and 1000 nM EE2
concentrations resulted in 17 and 72 differentially expressed genes,
respectively, with 11 genes differentially expressed by both con-
centrations (Fig. 1). Genes differentially expressed in PCLS treated with
the different concentrations of EE2 and BaP and EE2 mixtures are listed
in Supplementary Tables S2-4. All except 7 EE2 modulated genes were
up-regulated (Supplementary Tables S2 and S3). Many well-known
oogenesis related estrogen responsive genes such as those encoding
estrogen receptor alpha (esr1), vitellogenins (vtg), and genes coding for
eggshell zona pellicuda (ZP)/ zona radiata proteins were up-regulated in
the PCLS treated with EE2 and mixture of EE2 and BaP (Supplementary
Tables S2-5, Figs. 1–3). For pathway analysis in DAVID and STRING,
zebrafish or human orthologs of the differentially expressed genes were
used. For pathway analysis in MetaCore, the human orthologs of the
differentially expressed genes were used. Functional enrichment ana-
lysis in DAVID using zebrafish orthologs of the differentially expressed
genes showed that the top significant pathways are related to vitello-
genins, eggshell zona pellucida proteins and cellular response to es-
trogen (Table 3). Protein domains for Zp and Vtg were also highly en-
riched (Table 3). Many vtg and zp genes were up-regulated in the EE2 or
mixture groups (Table 3, Supplementary Tables S2-5, Figs. 1–3).
Pathway analysis of their human orthologs of the EE2-responsive cod
genes in MetaCore also showed enrichment of many pathways, parti-
cularly pathways and processes that appear to be related to growth
promoting effects of estrogens in some mammalian tissue (Supple-
mentary Tables S6 and S7). Significantly enriched (FDR < 0.05) Me-
tacore Map Folders include estrogen signaling, reproductive tissue
neoplasms, mitogenic signaling, as well as tissue remodeling and
wound repair (Supplementary Table S6).

For network analysis in STRING, the zebrafish orthologs of EE2-
modulated genes were used because of its richer annotation compared
to cod. Network analysis in STRING and visualization using Cytoscape
revealed subnetworks of the core estrogen receptor pathway genes
consisting of vtgs and zps, within the esr1 hub (Fig. 4). Expression levels
(log2cpm) and fold-changes of expression of the genes were also in-
dicated by color gradients in the network (Fig. 4).

3.3. Comparison of genes differentially expressed in BaP, EE2, and mixture
treated PCLS

The total number of significantly differentially expressed genes in
the low and high concentration mixture group was 31 and 36, respec-
tively, and 13 genes were differentially expressed in both low and high
mixture groups (Supplementary Tables S4 and S5). The differentialy
regulated genes in the BaP-, EE2- and mixture-treated PCLS were

Table 1
Genes differentially expressed in BaP treated PCLS.

Cod gene ID Zebrafish symbol fold-change FDR

ENSGMOG00000000855 avpr1ab 53.0 1.43E-23
ENSGMOG00000009114 ahrrb 17.1 5.15E-22
ENSGMOG00000000318 cyp1a 59.2 5.01E-16
ENSGMOG00000006842 cyp1b1 39.8 5.44E-08
ENSGMOG00000020520 ccr9a 4.0 3.31E-05
ENSGMOG00000001034 tll1 4.3 4.97E-04
ENSGMOG00000001139 slc43a3b 2.6 1.01E-03
ENSGMOG00000002589 ctss1 3.5 7.86E-03
ENSGMOG00000005676 dcstamp 2.8 1.08E-02
ENSGMOG00000016347 si:dkey-4c23.3 (vtg1-1) −3.1 1.21E-02
ENSGMOG00000000345 il1b 2.7 1.21E-02
ENSGMOG00000001247 tpte 2.4 3.74E-02
ENSGMOG00000007538 znf366 −2.2 4.47E-02
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compared in a Venn diagram (Fig. 2). More genes were differentially
expressed in EE2 treated PCLS compared to BaP. Only one gene
(si:dkey-4c23.3/vtg1-1) was differentially expressed in all three groups.
Interestingly, the vtg1-1 gene was down regulated by BaP and up-
regulated in the EE2 and Mix groups (Supplementary Tables S1-5). Only
6 of 13 BaP-regulated genes are common with the mixture group,
whereas a higher number of EE2-responsive genes (35 of 77) were
found in the mixture group. Closer inspection of Fig. 2 showed that the
14 genes exclusively differentially expressed in the mixture group are
likely EE2-responsive since they show similar changes (but not sig-
nificant; FDR > 0.05) in the EE2 groups and not in the BaP-treated

groups (data not shown). Thus the number of differentially regulated
EE2-responsive genes was 77 and 49 (36% reduction) in the EE2-
treated and mixture group, respectively. The corresponding reduction is
about 44% when we compare differentially expressed EE2-responsive
genes only in the high concentration (1000 nM) BaP, EE2, and mixture
group (Supplementary Tables, S1, S3 and S5).

A two-way hierarchical clustering analysis of the samples and the
differentially expressed genes shows two major clusters largely corre-
sponding to BaP-responsive and EE2-responsive genes (Fig. 3). The top
up-regulated genes in BaP alone treated group (cyp1a, cyp1b1, ahrrb,
tll1 and ccr9a) show similar changes in the mixture treated group

Table 2
Top pathways enriched in genes differentially expressed in BaP treated PCLS.a.

A) KEGG Term Adjusted P-
value

Genes

Tryptophan metabolism_Homo
sapiens_hsa00380

0.007 CYP1A1;
CYP1B1

Ovarian steroidogenesis_Homo
sapiens_hsa04913

0.007 CYP1A1;
CYP1B1

Steroid hormone biosynthesis_Homo
sapiens_hsa00140

0.007 CYP1A1;
CYP1B1

Metabolism of xenobiotics by cytochrome
P450_Homo sapiens_hsa00980

0.008 CYP1A1;
CYP1B1

Chemical carcinogenesis_Homo
sapiens_hsa05204

0.008 CYP1A1;
CYP1B1

Cytokine-cytokine receptor interaction_Homo
sapiens_hsa04060

0.065 IL1B; CCR9

B) Wikipathway Term Adjusted P-value Genes

Aryl Hydrocarbon Receptor Pathway_Homo sapiens_WP2873 4.3E-07 IL1B; CYP1A1; AHRR; CYP1B1
Aryl Hydrocarbon Receptor_Homo sapiens_WP2586 5.0E-05 CYP1A1; AHRR; CYP1B1
Benzo(a)pyrene metabolism_Homo sapiens_WP696 1.8E-04 CYP1A1; CYP1B1
Estrogen metabolism_Mus musculus_WP1264 2.0E-04 CYP1A1; CYP1B1
Estrogen Receptor Pathway_Homo sapiens_WP2881 2.3E-04 CYP1A1; CYP1B1
Estrogen metabolism_Homo sapiens_WP697 3.8E-04 CYP1A1; CYP1B1
Tamoxifen metabolism_Homo sapiens_WP691 4.4E-04 CYP1A1; CYP1B1
Melatonin metabolism and effects_Homo sapiens_WP3298 7.0E-04 CYP1A1; CYP1B1
Oxidation by Cytochrome P450_Mus musculus_WP1274 1.2E-03 CYP1A1; CYP1B1
Tryptophan metabolism_Mus musculus_WP79 1.3E-03 CYP1A1; CYP1B1
Tryptophan metabolism_Homo sapiens_WP465 1.4E-03 CYP1A1; CYP1B1
Oxidation by Cytochrome P450_Homo sapiens_WP43 2.3E-03 CYP1A1; CYP1B1
Peptide GPCRs_Mus musculus_WP234 2.4E-03 CCR9; AVPR1A
Peptide GPCRs_Homo sapiens_WP24 2.8E-03 CCR9; AVPR1A
Metapathway biotransformation_Mus musculus_WP1251 8.2E-03 CYP1A1; CYP1B1
GPCRs, Class A Rhodopsin-like_Mus musculus_WP189 1.2E-02 CCR9; AVPR1A
Metapathway biotransformation_Homo sapiens_WP702 1.2E-02 CYP1A1; CYP1B1
Non-odorant GPCRs_Mus musculus_WP1396 2.1E-02 CCR9; AVPR1A
GPCRs, Class A Rhodopsin-like_Homo sapiens_WP455 2.1E-02 CCR9; AVPR1A
Oxidative Stress_Homo sapiens_WP408 3.1E-02 CYP1A1

C) GO BP Term Adjusted P-value Genes

cellular response to organic cyclic compound (GO:0071407) 2.6E-06 IL1B; CYP1A1; CYP1B1
omega-hydroxylase P450 pathway (GO:0097267) 4.7E-04 CYP1A1; CYP1B1
epoxygenase P450 pathway (GO:0019373) 1.8E-03 CYP1A1; CYP1B1
positive regulation of vascular endothelial growth factor production (GO:0010575) 1.8E-03 IL1B; CYP1B1
steroid metabolic process (GO:0008202) 2.1E-03 CYP1A1; CYP1B1
positive regulation of angiogenesis (GO:0045766) 1.3E-02 IL1B; CYP1B1
xenobiotic metabolic process (GO:0006805) 1.3E-02 AHRR; CYP1B1
oxidation-reduction process (GO:0055114) 1.8E-02 CYP1A1; CYP1B1
positive regulation of granulocyte macrophage colony-stimulating factor production (GO:0032725) 1.8E-02 IL1B
cellular response to organic substance (GO:0071310) 1.8E-02 IL1B
positive regulation of heterotypic cell-cell adhesion (GO:0034116) 1.8E-02 IL1B
retinal metabolic process (GO:0042574) 1.8E-02 CYP1B1
positive regulation of JAK-STAT cascade (GO:0046427) 1.8E-02 CYP1B1
positive regulation of protein export from nucleus (GO:0046827) 1.8E-02 IL1B
positive regulation of histone acetylation (GO:0035066) 1.8E-02 IL1B
estrogen metabolic process (GO:0008210) 1.8E-02 CYP1B1
nitric oxide biosynthetic process (GO:0006809) 1.8E-02 CYP1B1
positive regulation of monocyte differentiation (GO:0045657) 1.8E-02 DCSTAMP
positive regulation of histone phosphorylation (GO:0033129) 1.8E-02 IL1B
positive regulation of bone resorption (GO:0045780) 1.8E-02 DCSTAMP

a For B and C, only the top 20 terms significantly enriched (Adjusted P-value< 0.05) are shown.
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(Table 1, Fig. 3, A). The other genes affected by BaP in Table 1 also
show changes in the same direction (not shown), except il1b (up-
regulated by BaP and no change in mixture groups) and si:dkey-4c23.3/
vtg1-1 (down-regulated by BaP and up-regulated in mixture groups).
The top differentially expressed vitellogenesis-related genes were in-
dicated as core estrogen receptor pathway genes (zp, vtg and esr1 genes)
with similar expression profiles in both EE2-treated and mixture groups
(Fig. 3, B).

To see possible interaction of the two chemicals (BaP and EE2) and

the genes differentially expressed in liver slices exposed to the binary
mixture, we used the STITCH database that enables combined view of
protein-chemical and protein-protein interactions (Fig. 5). Enrichment
analysis in STITCH showed that Interpro protein domains for Vtg, Zp
and Cyp1 were significantly enriched in the genes differentially ex-
pressed in the mixture groups (FDR < 0.05) (not shown). Distinct es-
trogen receptor pathway and the Ahr pathway modules connected by
the esr1 hub can be seen in the network (Fig. 5).

Fig. 1. Venn diagram showing genes differentially expressed in 10 nM and 1000 nM EE2 treated PCLS. Zebrafish or human orthologs of the differentially expressed
cod genes (edgeR, FDR < 0.05 and minimum fold-change 1.5) are presented in Venn diagram. Gene with no zebrafish or human orthologs are listed with their
Ensembl cod gene ids. In case of more than one zebrafish ortholog, only one is listed here.

Fig. 2. Venn diagram comparing differentialy expressed genes in BaP, EE2 and Mix (mixture) treatments. Genes significantly responding to treatments of PCLS by
BaP (10 nM and 1000 nM), EE2 (10 nM and 1000 nM) and mixture (10 nM and 1000 nM, each of BaP and EE2) (edgeR, FDR < 0.05) were compared. The number of
differentially expressed genes indicated for each of BaP, EE2 and Mix represents combined unique genes from both low and high concentration treatments.
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3.4. PCLS viability

MTT assay was performed with slices from each treatment and no
statistically significant change in viability was observed in any of the
treatment groups compared to the DMSO control (Fig. 6).

3.5. qPCR assay

Expression levels of eight genes from the list of genes differentially
expressed in liver slices treated with BaP (cyp1a and ahrrb) (Table 1)

and EE2 (esr1, vtg1, zp2l1, fam46bb, fgf3 and fgf4) (Supplementary Ta-
bles S2 and S3) were also assessed using qPCR to confirm the RNA-Seq
data (Fig. 7A–H). All the genes tested were significantly up-regulated in
a similar manner to the RNA-Seq results, but in general lower fold-
changes were obtained using qPCR compared to RNA-Seq (Fig. 7A–H,
Table 1, Supplementary Tables S1-5). The amplicon sizes and sequences
of primers used in the qPCR assays are given in Supplementary Table
S9.

The anti-estrogenic effect of BaP was further investigated in addi-
tional PCLS exposure experiments using qPCR analysis of estrogen

Fig. 3. Hierarchical clustering analysis of differentially expressed genes. Genes differentially expressed in DMSO control, low (10 nM) concentrations (LC) of BaP,
EE2 and mixture (BaP and EE2), high (1000 nM) concentrations (HC) of BaP, EE2 and mixture treated groups. Analysis was performed based on log2-transformed
ratio (treated/control) values of differentially expressed genes (q-value< 0.05) in Multi Group Comparison (Qlucore Omics Explorer). Rows represent genes and
columns represent samples. The vertical lines indicate the top Ahr pathway (A) and core estrogen receptor pathway (B) genes. The group with low (10 nM) BaP
concentrations with little effect on gene expression was removed for clarity. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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receptor pathway (vtg1 and esr1) (Supplementary Fig. S4A and B) and
Ahr pathway (cyp1a) genes (Supplementary Fig. S4C). Exposure ex-
periments with lower EE2 concentration (50 nM) and two different BaP
concentrations (1 and 10 μM) showed stronger anti-estrogenic effects of
BaP at the higher BaP: EE2M ratios (Supplementary Fig. S4A and B). In
the mixture treatments, higher induction of cyp1a is negatively asso-
ciated with induction of vtg1 and esr1 genes (Supplementary Fig. S4A-
C).

4. Discussion

4.1. Analysis of differential expression in PCLS exposed to BaP and EE2

In this study, we performed an in-depth mapping of transcriptome
responses in Atlantic cod liver tissue treated with BaP and EE2 (singly
and in combination) in vitro using PCLS. The number of genes reliably
quantified here in Atlantic cod liver slices that could be mapped to
human orthologs (about 13,000) is much higher compared to the cor-
responding number of genes quantified using microarrays in the cod
liver (about 8300) (Yadetie et al., 2014). RNA-Seq appears to have
enabled detection and quantification of low-expressed genes such as
fgf3 and fgf4. Our results are in agreement with the differential ex-
pression of several genes encoding proteins in the Ahr pathways by Ahr
ligands (Jenny et al., 2009; Karchner et al., 2002), and oogenesis-re-
lated estrogen receptor pathway gene products by estrogens reported in
previous studies (Arukwe and Goksøyr, 2003; Tyler and Sumpter,
1996). qPCR analysis of selected genes confirmed differential expres-
sion of the genes by RNA-Seq, but the RNA-Seq method resulted in
higher fold-changes compared to qPCR, consistent with higher preci-
sion and dynamic range of the former (Wang et al., 2009). The results
also demonstrate the usefulness of PCLS culture previously developed
for Atlantic cod (Eide et al., 2014) in high throughput toxicogenomics
studies. An important advantage of the slice culture method is the
ability to perform large number of exposure experiments with only a
limited number of animals in a paired sample experimental design, as
demonstrated here. Although high variability was observed in gene
expression responses in the slices from different fish, the paired sample

test considerably improved the analysis of differential expression.
Possible sex differences in gene expression responses to BaP or EE2
were also tested, and there were no significant differences in liver gene
expression responses to BaP or EE2 between slices from the sexually
immature male and female juvenile fish (data not shown). Juvenile
male and female fish respond similarly in liver gene expression in re-
sponses to estrogenic compounds in many fish species such as salmo-
nids (Shilling and Williams, 2000; Yadetie and Male, 2002).

4.2. Effects of BaP

The differentially expressed genes in the BaP exposed liver slices
include cyp1a, cyp1b and ahrrb. Four genes encoding Cyp1 subfamily
members (Cyp1a, Cyp1b, Cyp1c and Cyp1d) are present in Atlantic cod
and other fish genomes (Goldstone et al., 2010; Goldstone and
Stegeman, 2008; Karlsen et al., 2012). The cyp1a, cyp1b and cyp1c
genes were previously shown to be inducible by Ahr ligands (Jonsson
et al., 2007). In the present experiment, the cyp1a gene was the most
abundantly and highly differentially expressed (fold-change 59.2), fol-
lowed by cyp1b (fold-change 39.8) (Supplementary Table S1). Two
other genes cyp1c1 and cyp1c2 were not significantly up-regulated
(FDR > 0.05) (not shown). Although cyp1d is present in the cod
genome (https://www.ensembl.org), its transcript was not detectable
by the RNA-Seq experiment here. However, it has been shown that
cyp1d is not inducible by Ahr ligands in zebrafish (Goldstone et al.,
2009). Atlantic cod Cyp1a has long been widely used as a biomarker
(Goksøyr, 1995; Goksøyr and Förlin, 1992). One of the up-regulated
genes, the gene encoding aryl hydrocarbon receptor repressor (ahrr), is
also known to be induced by Ahr ligands (Jenny et al., 2009; Karchner
et al., 2002). Both ahrra and ahrrb genes are inducible by 2,3,7,8-tet-
rachlorodibenzo-p-dioxin (TCDD) in an Ahr-dependent manner in
zebrafish (Jenny et al., 2009). Of the differentially expressed genes by
BaP treatment, most were up-regulated, and only two genes (znf366
and vtg1-1) were down regulated (Table 1). Notably, ZNF366 protein is
a repressor of ERα (Lopez-Garcia et al., 2006), and down regulation of
the znf366 gene might be related to the cross-talk between the aryl
hydrocarbon receptor and estrogen receptor pathways (Ohtake et al.,

Table 3
Functional annotation clusters for genes differentially expressed in EE2 treated PCLS.a.

Cluster 1 Enrichment Score: 10.0

Category Term FDR
INTERPRO IPR015258:Vitellinogen, beta-sheet shell 5.26E-11
INTERPRO IPR015255:Vitellinogen, open beta-sheet 8.62E-10
INTERPRO IPR015817:Vitellinogen, open beta-sheet, subdomain 1 8.62E-10
INTERPRO IPR015818:Vitellinogen, open beta-sheet, subdomain 2 8.62E-10
INTERPRO IPR001747:Lipid transport protein, N-terminal 1.72E-09
INTERPRO IPR011030:Vitellinogen, superhelical 1.72E-09
INTERPRO IPR015816:Vitellinogen, beta-sheet N-terminal 1.72E-09
INTERPRO IPR015819:Lipid transport protein, beta-sheet shell 1.72E-09
GOTERM_BP_FAT GO:0006869∼lipid transport 0.00369
GOTERM_BP_FAT GO:0010876∼lipid localization 0.00539
GOTERM_BP_FAT GO:0033036∼macromolecule localization 42.92

Cluster 2 Enrichment Score: 7.1

Category Term FDR
INTERPRO IPR000519:P-type trefoil 5.59E-05
INTERPRO IPR001507:Zona pellucida domain 6.62E-05
INTERPRO IPR017977:Zona pellucida domain, conserved site 2.29E-04

Cluster 3 Enrichment Score: 3.2

Category Term FDR
GOTERM_BP_FAT GO:0071391∼cellular response to estrogen stimulus 0.264
GOTERM_BP_FAT GO:0043627∼response to estrogen 0.449
GOTERM_BP_FAT GO:0070887∼cellular response to chemical stimulus 6.378

a Annotation clusters were obtained using gene ontology biological process (GOTERM_BP_FAT) and protein domains (INTER-
PRO) enrichment analysis in DAVID.

F. Yadetie et al. Aquatic Toxicology 201 (2018) 174–186

181



2003). Genes encoding the inflammatory mediators IL1-β and CCR9a
were also up-regulated, suggesting effects on immune modulation. IL1-
β is has been recently shown to be up-regulated via AHR (Jacob et al.,
2017). Thus, these results are consistent with reports that the aryl hy-
drocarbon receptor also has a role in immune modulation (Esser and
Rannug, 2015). Among pathways significantly enriched in BaP-treated
liver slices include chemical carcinogenesis and oxidative stress
(Table 2A and B). This is likely related to possible metabolic activation
of BaP by Cyp1 enzymes induced in the liver slices. Metabolic activa-
tion of BaP by Cyp1 enzymes can lead to formation of carcinogenic
metabolites such as benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE)
(Nebert and Dalton, 2006; Stansbury et al., 1994). Many of the Ahr
pathway genes described here have also been shown to be affected by
BaP exposure and RNA-Seq analysis of zebrafish embryos and mam-
malian a cell line (Fang et al., 2015; van Delft et al., 2012).

4.3. Effects of EE2

The major pathways affected by EE2 treatment in PCLS in this ex-
periment are related to vitellogenesis and zonagenesis processes taking
place in fish liver during oocyte maturation. The Atlantic cod has at
least 3 vitellogenin genes that map to orthologs in zebrafish, which has
at least 8 genes (https://www.ensembl.org). Most fish species have at
least three vitellogenin genes, with lineage-specific gene duplications in
some species including zebrafish (Finn and Kristoffersen, 2007; Finn
et al., 2009). There are also more zp and zp-like genes in the zebrafish
genome (12 paralogs) compared to cod (9 paralogs) (https://

www.ensembl.org). Vitellogenin mRNA and proteins are known to be
highly up-regulated in the liver of oviparous fish in response to estro-
gens (Arukwe and Goksøyr, 2003; Tyler and Sumpter, 1996). Genes
encoding eggshell proteins and their protein products are also induced
in the liver in response to estrogens in many fish species such as Atlantic
cod and Atlantic salmon (Arukwe and Goksøyr, 2003; Arukwe et al.,
1997; Hyllner et al., 1991; Oppen-Berntsen et al., 1999, 1992). The
gene encoding estrogen receptor alpha (esr1), which was up-regulated
here and appears as a hub in the core EE2-responsive module of the
network (Fig. 4) is also known to be induced by estradiol and en-
vironmental estrogens in fish liver and primary hepatocytes (Marlatt
et al., 2008; Pakdel et al., 1991; Yadetie et al., 1999). In addition to the
core estrogen receptor pathway genes, many genes in these modules
(e.g. nots, fam20c and rtn1b) are previously shown to be modulated in
fish liver by estradiol (Levi et al., 2009; Uren Webster et al., 2015).
Many genes related to vitellogenesis and zonagenesis that were differ-
entially expressed in this study have also been shown to be differen-
tially regulated in microarray analysis of primary hepatocyte cultures
treated with EE2 (Hultman et al., 2015). The gene expression responses
in EE2 treated cod liver slices correlated well with in vivo responses. For
example, many of the top up-regulated genes constituting the core es-
trogen-responsive genes in fish liver (Feswick et al., 2017) were also
differentially expressed in EE2-treated cod liver slices, which should
facilitate the use of multiple biomarkers of exposure to estrogens in
Atlantic cod.

MetaCore pathways and processes related to estrogenic effects in
mammals were also enriched (Supplementary Tables S6 and S7). Many

Fig. 4. Network of genes differentially expressed in EE2 treated PCLS. The network was generated using STRING (https://string-db.org/) and imported in Cytoscape
for visualization. Color range green to deep red (node fill) and white to deep cyan (node border) indicates log2-transformed fold-changes (log2FC) and log2-
transformed counts per million reads (log2cpm), respectively. Disconnected nodes were removed from the network. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

F. Yadetie et al. Aquatic Toxicology 201 (2018) 174–186

182



of the gene products involved in MetaCore pathways and processes
(Supplementary Tables S6 and S7) are shown to interact with esr1 in the
network of differentially expressed genes (Fig. 4). Among these, for
example the fgf3 and fgf4 genes were highly up-regulated in EE2-ex-
posed PCLS. This appears to be consistent with modulation of fgf genes
by estrogen receptors in some mammalian cells (Smith et al., 2002).
The mammalian FGF family growth factors are involved in a range of
processes that include development, proliferation, survival and differ-
entiation (Ornitz and Itoh, 2015). Estrogens are known to induce
growth-promoting genes in normal and cancerous cells and tissues of
reproductive organs in mammals (Hewitt et al., 2003; Platet et al.,
2004). Indeed, increase in liver weight is one of the effects of estrogens

related to vitellogenesis in fish (Emmerson et al., 1979; Skillman et al.,
2006). Further, estrogens have been reported to be liver tumor pro-
moters (Nunez et al., 1989; Cooke and Hinton, 1999). Thus, growth-
promoting effects of estrogens appear to be conserved in fish. However,
to our knowledge, up-regulation of the fgf3 and fgf4 genes by estrogens
has not been shown before and suggests estrogen dependent activation
of the FGF signaling pathway in fish liver. Further experiments are
warranted to investigate the implications of the possible activation of
the FGF signaling by estrogens.

4.4. Effects of BaP and EE2 mixtures

From our analysis BaP appears to have resulted in a lower number
of differentially expressed putative estrogen-regulated genes in the liver
slices exposed to mixture of and BaP and EE2, suggesting ant-estrogenic
effects. In addition, two genes vtg1-1 (an estrogen responsive gene) and
znf366, coding for an estrogen receptor co-repressor (Lopez-Garcia
et al., 2006) were down regulated by BaP treatment (Table 1). Down
regulation of znf366 and an estrogen responsive vtg-1 gene seems to be
consistent with known anti-estrogenic effects of Ahr ligands (see
below). This was observed in samples that were not treated by EE2 and
it suggests inhibition of background estrogen receptor activity by BaP
treatment, which may have environmentally relevant implications since
Ahr activating pollutants may interfere with the functioning of the
endocrine system of fish.

The anti-estrogenic effect of BaP was further confirmed using qPCR
analysis of estrogen receptor (vtg1 and esr1) and Ahr pathway genes
(cyp1a) after PCLS treatment with higher BaP: EE2M ratios. The anti-
estrogenic effect of BaP observed here is consistent with known cross-
talk between the Ahr and estrogen receptor pathways (Goksøyr, 2006a;
Safe and Wormke, 2003; Wormke et al., 2000). Mechanisms involved in
anti-estrogenic effects of ligand-activated Ahr include inhibition of
binding of the estrogen receptor to its response elements in the pro-
moters of estrogen-responsive genes, through direct binding of Ahr to
estrogen receptor and Ahr-mediated degradation of estrogen receptor
(Matthews and Gustafsson, 2006; Ohtake et al., 2011, 2003). Many
studies have documented anti-estrogenic effect of Ahr ligands in fish
(Bemanian et al., 2004; Navas and Segner, 2000). In Atlantic salmon
primary hepatocytes, TCDD showed anti-estrogenic effects by reducing
expression of a gene encoding vitellogenin in primary hepatocytes
treated with 17β-estradiol (E2) through inhibition of estrogen receptor
binding to estrogen responsive elements (ERE) (Bemanian et al., 2004).
Treatment of zebrafish by TCDD resulted in decreased serum E2 levels
and vitellogenin synthesis (Heiden et al., 2006). More recently, TCDD
has been shown to inhibit vitellogenin induction in EE2-treated zeb-
rafish in an Ahr-dependent manner (Bugel et al., 2013).

Network analysis of BaP and EE2 mixture-affected genes in STITCH
database suggested interactions of the estrogen receptor and Ahr
pathways, that reflects known cross-talk between the two pathways
(Goksøyr, 2006a; Safe and Wormke, 2003). For example, the interac-
tion network shows interaction between the up-regulated ahrrb and esr1
genes (Fig. 5). AHRR has been shown to have anti-estrogenic effects by
binding to estrogen receptor 1 in human breast cancer MCF-7 cells
(Kanno et al., 2008). Anti-estrogen effects may also be attributed to
increased metabolism of estradiol by Cyp1 enzymes induced by Ahr
ligands (James, 2011; Scornaienchi et al., 2010), as suggested in the
network by the interactions of the Cyp1a and Cyp1b1 enzymes and EE2
(Fig. 5).

5. Conclusion

Combining high throughput RNA-Seq analysis and PCLS ex vivo
tissue culture in Atlantic cod, we have mapped the transcriptome re-
sponses to BaP and EE2 treatments, offering further mechanistic in-
sights into effects of these chemicals. BaP and EE2 treatments resulted
in differential expression of several genes in the Ahr and estrogen

Fig. 5. Network of genes differentially expressed in mixture (BaP and EE2)
treated PCLS. The network was generated using STITCH v5.0 (http://stitch.
embl.de). The network represents “confidence view” with stronger associations
represented by thicker lines. Protein-protein interactions are shown in grey, and
chemical-protein interactions in green. Disconnected nodes were removed from
the network. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. MTT assay of PCLS. Cell viability test by MTT colorimetric assay after
treatment with DMSO, low (10 nM) and high (1000 nM) concentrations of BaP,
EE2 or mixture (BaP and EE2) for 48 h. Liver slices from each of the seven
treatment groups (n= 8) were used in the MTT assay and statistical tests were
performed using repeated measure ANOVA. No significant differences were
found between controls and any of the treatments in viability. Data points re-
present mean ± SD of absorbance values.
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receptor pathways, respectively. The up-regulation of fgf3 and fgf4
genes in EE2-treated liver slices suggests new mechanistic insights into
effects of estrogens in fish liver. Finally, the functional significance of
the changes detected at transcript levels needs to be further studied.
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Supplemental materials

MIQE checklist for authors, reviewers and editors.
Figure S1. Heatmap of expression profiles of top differentially expressed genes in BaP
treated liver slices.
Figure S2. Gene set enrichment analysis (GSEA) of genes quantified by RNA-Seq in
PCLS treated with BaP (1 µM) and DMSO.
Figure S3. Heatmap fromgene set enrichment analysis (GSEA) of genes quantified by
RNA-Seq in PCLS treated with BaP (1 µM) and DMSO.
Figure S4. qPCR analysis of genes differentially expressed in PCLS treated with BaP
and mixtures of BaP and EE2.
Table S1. Genes differentially expressed in BaP (10 and 1000 nM) treated PCLS.
Table S2. Genes differentially expressed in 10 nM EE2 treated PCLS.
Table S3. Genes differentially expressed in 1000 nM EE2 treated PCLS.
Table S4. Genes differentially expressed in 10 nM Mix (BaP + EE2, 10nM each)
treated PCLS.
Table S5. Genes differentially expressed in 1000 nM Mix (BaP + EE2, 10nM each)
treated PCLS.
Table S6. Enriched MetaCore map folders for genes differentially expressed in EE2
treated PCLS.
Table S7. Enriched MetaCore gene ontology (GO) biological process (BP) for genes
differentially expressed in EE2 treated PCLS.
Table S8. The top gene set enrichment results for BaP treated liver slices.
Table S9. qPCR primer sequences, amplicon lengths and PCR efficiencies.
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Figure S1. Heatmap of expression profiles of top differentially expressed genes in BaP 

treated liver slices. The top differentially expressed genes (p < 0.05)  in DMSO control 

compared to BaP (1uM) were used in heirarchical cluster analysis performed based on log2-

transformed ratio (treated/control) values with Two Group Comparison (Qlucore Omics 

Explorer). Rows represent genes and columns represent samples. Legend bar on the right 

indicates colour codes for log2-fold-changes ranging from deep red (2.0) to deep blue (-2.0). 

 

  



 

 

 

 

Figure S2. Gene set enrichment analysis (GSEA) of genes quantified by RNA-Seq in 

PCLS treated with BaP (1 μM) and DMSO. Significantly enriched KEGG gene sets (A-D) 

and Hallmarks gene sets (E and F) are shown here. In each case (A-F) the left and right panel 

represents enrichment plot and heatmap for the top leading edge genes. GSEA was performed 

with human orthologs of Atlantic cod genes. NES, Normalized Enrichment Score; FDR-q 

value, False Discovery Rate q-value. See Figure S3 for heatmap legends. 

 

 



 

Figure S3. Heatmap from gene set enrichment analysis (GSEA) of genes quantified by RNA-

Seq in PCLS treated with BaP (1 μM) and DMSO. 
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Figure S4. qPCR  analysis of genes differentially expressed in PCLS treated with BaP 

and mixtures of BaP and EE2. The plots show fold-changes in mRNA levels for vtg1 (A) 

and esr1 (B) and cyp1a (C) genes in slices treated with the compounds as shown. RNA 

samples from liver slices of 4 fish liver samples (n = 4) were used for qPCR assays. The 

significant changes indicated are for comparison with DMSO control. *p < 0.05; **p <  0.01 

(one-way ANOVA followed by Dunnett’s multiple comparison test). Data points present 

mean ± SD. 



Table S1. Genes differentially expressed in BaP (10 and 1000 nM) treated PCLS.  
 

 
 
Table S2. Genes differentially expressed in 10 nM EE2 treated PCLS. 
 

 
 
Table S3. Genes differentially expressed in 1000 nM EE2 treated PCLS. 
 

 



Table S3 (cont.). 
 

 
 
Table S4. Genes differentially expressed in 10 nM Mix (BaP + EE2, 10nM each) treated PCLS. 
 

 
 

 



Table S5. Genes differentially expressed in 1000 nM Mix (BaP + EE2, 10nM each) treated PCLS. 
 

 
 

 
Table S6. Enriched MetaCore map folders for genes differentially expressed in EE2 treated PCLS. 
 

 
 
Table S7. Enriched MetaCore gene ontology (GO) biological process (BP) for genes differentially expressed in EE2 treated PCLS. 
 

 
 



Table S8. The top gene set enrichment results for BaP treated liver slices. 
 

 
 
 
 
 
 
 
 
 
 
  



Table S9. qPCR primer sequences, amplicon  lengths and PCR efficiencies. 
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Abstract

Background: With the cost of DNA sequencing decreasing, increasing amounts of RNA-Seq data are being
generated giving novel insight into gene expression and regulation. Prior to analysis of gene expression, the RNA-Seq
data has to be processed through a number of steps resulting in a quantification of expression of each
gene/transcript in each of the analyzed samples. A number of workflows are available to help researchers perform
these steps on their own data, or on public data to take advantage of novel software or reference data in data
re-analysis. However, many of the existing workflows are limited to specific types of studies. We therefore aimed to
develop a maximally general workflow, applicable to a wide range of data and analysis approaches and at the same
time support research on both model and non-model organisms. Furthermore, we aimed to make the workflow
usable also for users with limited programming skills.

Results: Utilizing the workflow management system Snakemake and the package management system Conda, we
have developed a modular, flexible and user-friendly RNA-Seq analysis workflow: RNA-Seq Analysis Snakemake
Workflow (RASflow). Utilizing Snakemake and Conda alleviates challenges with library dependencies and version
conflicts and also supports reproducibility. To be applicable for a wide variety of applications, RASflow supports the
mapping of reads to both genomic and transcriptomic assemblies. RASflow has a broad range of potential users: it
can be applied by researchers interested in any organism and since it requires no programming skills, it can be used
by researchers with different backgrounds. The source code of RASflow is available on GitHub: https://github.com/
zhxiaokang/RASflow.

Conclusions: RASflow is a simple and reliable RNA-Seq analysis workflow covering many use cases.

Keywords: RNA-Seq, Workflow, Snakemake

Background
RNA sequencing (RNA-Seq) was introduced more than
ten years ago and has become one of the most important
tools to map and identify genes and understand their reg-
ulation and roles across species [1, 2]. A large number of
studies have been performed using RNA-Seq and resulted
in gene expression datasets available in databases such
as GEO [3] and ArrayExpress [4]. Underlying reads are
typically deposited to the Sequence Read Archive (SRA)
[5], currently containing reads for more than 1,7 million

*Correspondence: inge.jonassen@uib.no
Computational Biology Unit, Department of Informatics, University of Bergen,
Thormohlens Gate 55, 5009 Bergen, Norway

samples (https://www.ncbi.nlm.nih.gov/sra/?term=RNA-
Seq). One of the most popular applications of RNA-
Seq is for Differential Expression Analysis (DEA) where
one identifies genes that are expressed at different levels
between two classes of samples (e.g., healthy, disease) [6].
When RNA-Seq is used in a DEA project, the sequenc-

ing reads need to be taken through several steps of
processing and analysis. Often, the steps are organized
into a workflow that can be executed in a fully or par-
tially automated fashion. The steps include: quality con-
trol (QC) and trimming, mapping of reads to a reference
genome (or transcriptome), quantification on gene (or
transcript) level, statistical analysis of expression statis-
tics to report genes (or transcripts) being differentially

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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expressed between two predefined sets of samples, along
with associated P-values or False Discovery Rate (FDR)
values. Aligning reads to the genome is the most com-
putationally intensive and time-consuming step. An alter-
native approach is to perform a pseudo alignment to a
transcriptome. This has gained more popularity recently,
due to its high speed and high accuracy [7–9]. It has
been shown that lightweight pseudo alignment improves
gene expression estimation and at the same time is com-
putationally more efficient, compared with the standard
alignment/counting methods [10]. But if the purpose
of analysis is to call genomic variants, then it is still
better to map the reads to the genome [11]. Consid-
ering this, a workflow should provide both quantifica-
tion strategies to satisfy users with different research
interests.
There is a large number of RNA-Seq analysis work-

flows and many have been published and made avail-
able to the user community. We reviewed seven work-
flows published in the past three years [12–18] (see
“Discussion” section for more details). We found that
none of these workflows cover all the needs outlined
above while also being usable for less computer fluent
users. So more complete and easy-to-use workflows are
still needed.
In this article, we present RNA-Seq Analysis Snake-

make Workflow (RASflow) that is usable for a wide range
of applications. RASflow can be applied to data from
any organism and can map reads to either a genome
or a transcriptome, allowing the user to refer to pub-
lic databases such as ENSEMBL [19] or to supply their
own genomes or transcriptomes [20, 21]. The latter
can for example be useful for projects on non-model
species for which there is no public high-quality refer-
ence genome/transcriptome. RASflow is scalable: it can
be run on either supercomputers with many cores (which
enable parallel computing) or on a personal computer
with limited computing resources; it can process data
from hundreds of samples and still consumes very little
storage space because it temporarily copies or down-
loads the FASTQ file(s) of one sample (one file for single
end and two files for pair end) to the working directory
at the time, and it stores only the necessary interme-
diate and final outputs. Using Conda [22], the whole
workflow with all dependencies (version already speci-
fied) can be installed simply with one single command
in a virtual environment. This ensures quick and smooth
installation. Using Snakemake [23], the whole analysis
is completely reproducible and highly user-friendly also
for users with limited programming skills. In the DEA
step, RASflow supports use of paired tests that can
help to strengthen the statistical power and bring out
expression differences related to the phenomenon under
study [24].

Implementation
Figure 1 shows a schematic representation of the RAS-
flow workflow. It starts with performing QC of the raw
FASTQ files using FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). The QC report is
presented to the user along with a question of whether
the reads should be trimmed. When opted for, trimming
is performed using the tool Trim Galore (https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/)
and subsequently, an additional QC report is generated.
When the user is satisfied with the quality of the reads,

the workflow proceeds to the next step: quantification
of read abundance or expression level for transcripts or
genes. The user decides whether to map the reads to a
transcriptome or a genome depending on the goal of the
analysis and availability of data. If the purpose of the anal-
ysis is to identify differentially expressed genes, it is sug-
gested to map the reads to a transcriptome using pseudo
alignment with Salmon [9]. A quantification table of the
transcripts is generated from this step. Alternatively, the
user can choose for the reads to be mapped to a genome.
The aligner used in RASflow is HISAT2 [25] which has
relatively modest memory requirements (∼4.3GB for the
human genome) compared with for example the STAR
aligner (requiring ∼27GB for the human genome) [26].
The alignment step is followed by a quality evaluation per-
formed by Qualimap2 [27] and feature counting done by
featureCounts [28] or htseq-count [29]. To be noted, after
most of the steps, a summary report is generated using
MultiQC [30].
When a quantification matrix for the genes/transcripts

has been produced, RASflow can proceed to perform a
DEA analysis using edgeR [31, 32] or DESeq2 [33]. RAS-
flow supports both single and paired statistical tests. The
user specifies which statistical test mode to be applied in
the configuration file based on their experimental design.
If the reads were mapped to a transcriptome, DEA will
be done on both transcript- and gene-level. In any case,
the outputs of DEA include three types of tables: normal-
ized quantification tables, some important statistics for
the whole gene or transcript list, and the list of signifi-
cantly differentially expressed genes or transcripts (with
default threshold of FDR < 0.05). The raw count is nor-
malized based on Trimmed Mean of M values (TMM)
[34] (if edgeR is used) or the median-of-ratios method
[35] (if DESeq2 is used) when the reads are mapped to
a genome. But if the reads are mapped to a transcrip-
tome, the normalized values are estimated Transcripts
Per Million (TPM) from Salmon scaled using the aver-
age transcript length over samples and then the library
size by "tximport" [36]. The results of DEA is also visual-
ized with a volcano plot enabling visual identification of
genes with high fold change whose differential expression
is also statistically significant, and a heatmap that not only
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Fig. 1 Overview of the steps performed by RNA-Seq Analysis Snakemake Workflow (RASflow)
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visualizes the expression pattern of the identified differen-
tially expressed genes, but also a clustering of the samples
based on those genes, so that the user can get an idea of
how well separated the groups are.
To ensure smooth installation and reproducibility of the

workflow, all the tools included are fixed to a specific ver-
sion which can be found in the environment configuration
file (env.yaml).

Results
To show users how RASflow works and to familiarize
them with RASflow, we provide some small example
datasets. They are generated as subsets of the original
real data [37]. The figures in this section were gen-
erated by RASflow using the example data as input.
RASflow was also tested on four real datasets: pair-
end RNA-seq of prostate cancer and adjacent nor-
mal tissues from 14 patients (ArrayExpress accession:
E-MTAB-567) [38], single-end RNA-Seq of mesenchy-
mal stem cells (MSCs) and cancer-associated fibroblasts
(CAFs) from EG7 tumor-bearing mice (GEO acces-
sion: GSE141199), pair-end RNA-Seq of Atlantic cod
liver slices exposed to benzo[a]pyrene (BaP) and 17α-
ethynylestradiol (EE2) (GEO accession: GSE106968) [39],
and a benchmarking dataset, single-end RNA-Seq of
highly purified human classical and nonclassical mono-
cyte subsets from a clinical cohort (SRA accession:
SRP082682) [40].
The output of the example dataset can be found on the

GitHub page of RASflow and an overview of the output
folder is shown in Additional file 1: Fig. S1. The output of
the four real datasets can be found here: https://git.app.
uib.no/Xiaokang.Zhang/rasflow_realdata.

Quality control of raw reads and alignments
FastQC checks the quality of the sequencing reads and
produces one report for each FASTQ file. MultiQC is used
to summarize all the reports and merge them into one
document, as shown in Fig. 2a and b. Users are asked to
check the report and decide whether trimming is needed.
If the quality of the reads is good enough, it is recom-
mended that trimming should not be performed since it
would lead to loss of information; but if the quality is low,
trimming is suggested to improve the quality. The raw
reads quality of the human prostate dataset is not good
enough and trimming was therefore performed. The QC
reports of raw reads and trimmed reads can be found in
Additional file 2: Fig. S2.
After the alignment to the genome, the intermediate

output, the BAM files, will be provided to Qualimap2
to evaluate the alignment quality. Figure 2c shows an
example report from Qualimap2.
MultiQC is used to generate a report on the mapping

ratios using the output of feature counting (Fig. 2d).

Quantification of transcripts or genes
If a transcriptome was used as mapping reference, a file
containing the estimated relative abundance and length of
the target transcript is generated for each sample. If the
reads were aligned to a genome, the direct outputs from
alignment are genes’ raw count tables for each sample.

Differential expression analysis
In the first step, the user-specified information on sam-
ple groups is used to produce one count or abundance
file for each group. The raw count or abundance in those
files is then normalized by either edgeR or DESeq2 gen-
erating a corresponding file for each of them. When a
transcriptome is used as mapping reference, depending
on user parameters, gene-level raw and normalized abun-
dance can also be generated, and the downstream DEA
will also be done on both transcript- and gene-level.
During DEA, a statistical test is performed on the raw

abundance (both edgeR and DESeq2 prefer raw other
than normalized abundance) tables of transcripts/genes.
The result includes important statistics such as Log Fold
Change, false discovery rates (FDRs) or adjusted P-value
for each transcript/gene. With a predefined threshold of
FDR (default value is 0.05), the transcripts/genes with
a lower FDR are reported as significantly differentially
expressed, and they are included in a second table. Besides
the tables mentioned above, DEA also generates visual-
izations including a volcano plot (Fig. 3a) and a heatmap
(Fig. 3b).
Williams et al. evaluated hundreds of combinatorial

implementations of the most commonly used tools for
their impact on DEA results, and they concluded that the
method of differential expression analysis exhibited the
strongest impact compared with the choice of tools in
the other steps [40]. We have evaluated RASflow on the
benchmarking dataset they generated using both the tran-
scriptome and the genome as mapping reference, and in
both cases, DESeq2 has a higher recall and edgeR has a
higher precision, meaning that edgeR ismore conservative
in reporting a gene as differentially expressed in this study
case. The differentially expressed gene list of each work-
flow and their performance, including values and ranks
for recall and precision against the evaluated workflows in
[40], can be found in Additional file 3.

Runtime
The most time-consuming part of the whole workflow is
the alignment step. As already mentioned, pseudo align-
ment to a transcriptome is much faster than alignment
to a genome. RASflow was run on four real datasets
using a 1TB RAM 60 cores Dell PowerEdge R910 machine
and the runtime is shown in Table 1. RASflow was also
tested on the mouse dataset using Windows Subsystem
for Linux on an 8GB RAM 4 cores Intel Core 2 machine,
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Fig. 2 Quality control of raw reads and alignment. a The mean quality value across each base position in the read. b The average GC content of
reads. A normal random library typically has a roughly normal distribution of GC content. c Distribution of estimated insert sizes of mapped reads. d
A brief mapping summary

Fig. 3 Visualization of DEA results. a Volcano plot with labeled genes who pass the thresholds of both Fold Change and P-value. b Hierarchical
clustering heatmap with samples along the x-axis and differentially expressed genes along the y-axis
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Table 1 Alignment runtime of three datasets

Dataset Number of samples Size of raw data (GB)
Runtime of alignment (HH:MM)

Transcriptome as reference Genome as reference

Cod 47 244 05:32 69:18

Human 28 137 03:14 20:03

Benchmark 32 36 02:37 11:22

Mouse 8 9.3 00:28 03:46

Mouse_pc∗ 8 9.3 01:11 19:31

*This was run on a personal computer

and the runtime is shown in Table 2. As Table 1 shows,
alignment using a genome as reference takes much longer
than using a transcriptome, especially when the dataset is
large (datasets “Cod" and “Human") or the job is run on a
personal computer (dataset “Mouse_pc").

Discussion
Virtual environment by Conda
The whole workflow is installed and run in a virtual envi-
ronment created by Conda. While creating the virtual
environment, all dependencies using the specified ver-
sions are installed at once. This ensures not only the
smooth installation and running of RASflow, but also a
reproducible analysis independent of the operating system
and machine.

Snakemake as framework
Snakemake is a scalable workflow engine that helps to
manage workflows in an easy way. It divides the whole
workflow into rules with each rule accomplishing one
step of the workflow. The input of one rule is the output
from the rule corresponding to the previous step, mak-
ing the dataflow easy to track. Thanks to this logic, the
whole workflow becomes highly modular, so users can

easily expand the workflow or replace part of it, also for
complicated workflows.
RASflow organizes the rules carrying out one big step

of the workflow in one file (with extension .rules). All the
files are then integrated into one main file (main.py). For
the users who are satisfied with RASflow’s default setting,
they can manage the workflow simply through the con-
figuration file to tell RASflow which pipeline and which
tools they want to use. Advanced users may change the
settings and parameters in the .rules files and may also
substitute tools for example to try out new methods as
they are published.

Transciptome and genome as reference
RASflow allows users to supply their own genomic or
transcriptomic reference. This enables users to study
expression in species where no public reference is avail-
able or the users have alternative references that they
wish to utilize. It should be noted that if one aims for
transcript-level analysis, a transcriptome should be used
as reference.
But some analyses other than DEA require the reads

to be mapped to a genome and gene-level DEA is more
robust and experimentally actionable, so RASflow still

Table 2 Comparison of RASflow with the other workflows published between 2017 and 2019

workflow quality
control

organism mapping reference workflow
for DEA∗

hardware
requirement

installation programming
requirement

year ref

RASflow yes all genome
transcriptome

GB & TB low easy low 2020 NA

UTAP yes 5 genome GB high easy low 2019 [12]

ARMOR yes all genome
transcriptome

TB high easy low 2019 [13]

VIPER yes 2 genome GB high easy low 2018 [14]

BioJupies no 2 genome GB low web application low 2018 [15]

hppRNA yes 2 genome
transcriptome

GB & TB low medium medium 2018 [16]

aRNApipe yes all genome GB high hard high 2017 [17]

RNACocktail no all genome
transcriptome

GB & TB low hard high 2017 [18]

*GB: genome based— gene/transcript quantification and DEA based on reads mapped to a genome; TB: transcriptome based
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provides the traditional workflow of genome alignment
and DEA based on gene counts.

Comparison with other tools
We compared RASflow to other existing workflows as
shown in Table 2. As we can see from the table, some
workflows do not include QC steps [15, 18]. Some of
the workflows are limited to specific organisms typi-
cally human or mouse and in some cases other model
organisms [12, 14–16]. Some of them have functional-
ity only for mapping reads to a reference genome and
do not support the use of a transcriptome reference
[12, 14, 15, 17]. ARMOR includes both genome and tran-
scriptome as mapping reference but does not support
genome-based quantification of expression and subse-
quent DEA.
Considering hardware requirement, BioJupies is marked

as “low" because it is a web application and the com-
pute capacity is offered on the server side. The work-
flows marked with “high" use STAR for genome alignment
which requires about 27GB of RAM to align reads to the
human genome. hppRNA and RNACocktail support both
STAR and other aligners which require comparably low
RAM, such as HISAT2 which is used in RASflow. Tests
performed show that RASflow can be used to run human
genome alignment smoothly on a personal computer with
only 8GB of RAM.
As for workflow installation, RASflow, UTAP, ARMOR,

and VIPER all use Conda to create a virtual environment
and to install the required software, making workflow
installation easy and robust. hppRNA provides scripts to
automatically install all the required software but as it is
not done through the use of a virtual environment, some
software may conflict with software already installed on
the machine. The aRNApipe and RNACocktail workflows
require the user to install all the software manually which
is time-consuming and can also easily lead to version
conflicts.
After installation, executing the workflow can also

present challenges. In order to use the aRNApipe and
RNACocktail workflows on their own data, the user needs
to know programming very well. The hppRNA workflow
comes with a very detailed and useful manual for the
user to follow which helps a lot. The UTAP and Bio-
Jupies workflows both provide graphical user interfaces
and can be used without any programming skills. While
the remaining workflows do not provide graphical inter-
faces, they use Snakemake to manage all the steps in the
workflow, making them easy to use also for those with
limited programming skills.

Extension of RASflow
Thanks to the high modularity of RASflow, it is very
easy to exchange the tools applied in RASflow with

other tools if they are more appropriate for specific
research interest or they are newly developed. Thanks
to the feedback from users, we have already added the
htseq-count tool for feature counting and the DESeq2
tool for DEA as extra options since the first version
of RASflow. Advanced users can also do this by them-
selves without much effort. We welcome any feed-
back and contribution through GitHub page to improve
RASflow.
RASflow can also be extended to realize other func-

tions, such as Single Nucleotide Variant (SNV) detection,
pathway analysis, and so on.

Conclusions
RASflow is a light-weight and easy-to-manage RNA-Seq
analysis workflow. It includes the complete workflow for
RNA-Seq analysis, starting with QC of the raw FASTQ
files, going through optional trimming, alignment and fea-
ture counting (if the reads are mapped to a genome),
pseudo alignment (if transcriptome is used as mapping
reference), gene- or transcript- level DEA, and visualiza-
tion of the output from DEA.
RASflow is designed in such a way that it can be

applied by a wide range of users. It requires little pro-
gramming skills and a well-written tutorial helps users
go through the whole workflow making it very easy to
set up and run RASflow from scratch. RASflow has
low hardware requirements so that it can be run on
almost any personal computer. It can also be scaled up
to make full use of the computing power of a super-
computer or cluster. RASflow can be applied to data
of any organism and the user can choose to map the
reads to a transcriptome or a genome. It also sup-
ports the use of user-supplied transcriptome or genome
references.
RASflow is built on the basis of Conda and Snake-

make, making installation and management very easy.
All the required tools are available on the Anaconda
cloud (https://anaconda.org/) and are wrapped in a vir-
tual environment managed by Conda, making RASflow
independent of the underlying system thus avoiding pack-
age/library version conflicts. The whole workflow is
defined by rules managed by Snakemake, which makes it
highly modular. This means that the advanced users can
easily extract parts of the workflow or expand it based
on their own research needs, and replace the tools used
in RASflow with other tools to explore new pipelines for
analyzing RNA-Seq data.

Availability and requirements
Project name: RASflow.
Project home page: https://github.com/zhxiaokang/RASflow
Operating system(s): Linux, macOS and Windows.
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Programming language: Python, R, Shell
Other requirements: Conda
License: MIT License
Any restrictions to use by non-academics: N/A.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-3433-x.

Additional file 1: Figure S1. An overview of output folder of example data.

Additional file 2: Figure S2. (a) The mean quality scores of raw reads from
human prostate cancer data. (b) The mean quality scores of trimmed reads
from human prostate cancer data.

Additional file 3: Tables of differentially expressed gene lists of RASflow
using both the transcriptome and the genome as mapping reference and
using DESeq2 and edgeR as differential expression analysis methods and
their performance.
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Figure S1. An overview of output folder of example data. 
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Table S1.* Differentially expressed gene lists of RASflow using the transcriptome as
mapping reference and using DESeq2 as differential expression analysis method.

Table S2.* Differentially expressed gene lists of RASflow using the transcriptome as
mapping reference and using edgeR as differential expression analysis method.

Table S3.* Differentially expressed gene lists of RASflow using the genome as map-
ping reference and using DESeq2 as differential expression analysis method.

Table S4.* Differentially expressed gene lists of RASflow using the genome as map-
ping reference and using edgeR as differential expression analysis method.

* Full tables can be found at https://doi.org/10.1186/s12859-020-3433-x.
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Abstract. Univariate and multivariate feature selection methods can
be used for biomarker discovery in analysis of toxicant exposure. Among
the univariate methods, differential expression analysis (DEA) is often
applied for its simplicity and interpretability. A characteristic of meth-
ods for DEA is that they treat genes individually, disregarding the cor-
relation that exists between them. On the other hand, some multivariate
feature selection methods are proposed for biomarker discovery. Provided
with various biomarker discovery methods, how to choose the most suit-
able method for a specific dataset becomes a problem. In this paper,
we present a framework for comparison of potential biomarker discovery
methods: three methods that stem from different theories are compared
by how stable they are and how well they can improve the classification
accuracy. The three methods we have considered are: Significance Anal-
ysis of Microarrays (SAM) which identifies the differentially expressed
genes; minimum Redundancy Maximum Relevance (mRMR) based on
information theory; and Characteristic Direction (GeoDE) inspired by
a graphical perspective. Tested on the gene expression data from two
experiments exposing the cod fish to two different toxicants (MeHg and
PCB 153), different methods stand out in different cases, so a decision
upon the most suitable method should be made based on the dataset
under study and the research interest.

Keywords: Feature selection · Stability · Classification · Biomarker
discovery

1 Introduction

Atlantic cod (Gadus morhua) is one of the most important commercial fish species
in Norway [1], forming the basis for fisheries, trade, and, historically, civilization.
Unfortunately, cod is increasingly susceptible to marine pollution from petroleum
activities [2,3]. Atlantic cod is commonly used as an indicator species in marine
environmental monitoring programs, and a useful model organism to investigate
c© Springer Nature Switzerland AG 2019
K. Bach and M. Ruocco (Eds.): NAIS 2019, CCIS 1056, pp. 114–123, 2019.
https://doi.org/10.1007/978-3-030-35664-4_11
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the effect of toxicants [4–6]. Finding the best set of biomarkers for Atlantic cod
exposed to toxicants is of high research and commercial value. Biomarkers can
for example be defined based on the expression level of a set of genes or proteins.
Biomarker discovery is an essential part in study of toxicant exposure, and many
methods have been proposed to find biomarkers [7]. However, a remaining ques-
tion is, provided with numbers of biomarker discovery methods, which method is
the most suitable one for a particular dataset. This paper provides a framework to
compare potential biomarker discovery methods and to give researchers a better
basis for choosing which one to use for the task at hand.

In the context of statistics and machine learning, biomarker discovery cor-
responds to a feature selection problem, where the purpose is to identify the
most distinguishing features, for example, distinguishing normal and toxicant-
treated cod livers. The task of feature selection is to identify, from a wide range
of features, those that are best suited for classification.

The strategies of feature selection methods can be divided into two cate-
gories [7]:

1. Classical univariate statistical methods, where the features are considered
as independent from each other. Genes that are differentially expressed are
regarded as biomarkers.

2. Multivariate methods, which take the interaction between features into con-
sideration when selecting the important features allowing to distinguish sam-
ples coming from different groups.

The classical univariate methods try to find the features having significantly
different values between the different groups, e.g. control group and treated
group. One of the most popular and basic methods is Student’s t-test [8]. Some
similar research also adopted Analysis of Variance (ANOVA) and Significance
Analysis of Microarrays (SAM) to find the differential expressed genes [9–13]. A
main drawback of such approaches is that they rest on the assumption that all
the genes or proteins are independent from each other, which is clearly not true,
since both genes and proteins are part of a biological system where they interact
with each other [14,15].

On the other hand, multivariate methods will take the interaction among
features into consideration, reflecting that the features are acting in groups.
Many feature selection and machine learning methods try to find the features
most correlated with the class labels and take the interaction among features
into consideration at the same time.

Feature selection methods are often divided into three categories: filter meth-
ods which focus on the relation between feature values and class labels; wrapper
methods which use an objective function (can be the classification accuracy of the
classifier) to evaluate features; and embedded methods where the classifier selects
the features automatically [16]. The latter two are both classifier-dependent, and
filter methods are more like a one-way decision without feedback from prediction
accuracy. In order to find a more general feature selection method, which does
not only work well with one specific classifier, we will only focus on the filter
methods.
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In toxicant exposure study, or more generally, in the context of biology,
very often, researchers are faced with the high-dimension-small-sample-size issue,
since it is hard and expensive to get a high number of samples (it is often around
10 or even lower), but the number of features (genes or proteins) is usually very
high (over one thousand). In such cases, two problems are difficult to avoid:
finding a reliable feature subset, as in this case the possibility of chance cor-
relation is quite high; assuring that the selected features are true biomarkers.
The true biomarkers should be data-independent, meaning that a small change
in the samples should not lead to a large change in the selected features, which
requires the feature selection method to be stable. Besides of that, they should
also be qualified to be treated as the representatives of the whole feature list and
should therefore be able to improve a classifier’s prediction accuracy while clas-
sifying samples from different biological conditions. Therefore, we will compare
the feature selection methods based on two aspects of their performance: stabil-
ity to find a reliable feature subset and ability to improve a classifier’s prediction
accuracy.

To make the work reproducible, all the data sets and source codes are publicly
available at https://github.com/zhxiaokang/FScompare.

2 Methods

2.1 Data Sets

Two datasets from study of toxicant-treated Atlantic cod liver are used here.
One is from the study of the hepatic proteome of MeHg-exposed Atlantic cod,
where there are 10 samples in control group, 9 samples in low-dose treated
group (0.5 mg/kg Body Weight MeHg), and 9 samples in high-dose treated group
(2 mg/kg BW MeHg). The abundances of 1143 proteins were measured after the
samples were exposed in vivo to MeHg for two weeks [12]. The other study is from
the quantitative proteomics analysis of Atlantic cod livers treated with PCB 153
of various doses of PCB 153 (0, 0.5, 2 and 8 mg/kg BW PCB 153) for two weeks.
There are 10 samples in each control group, low-dose treated group, medium-
dose treated group, and high-dose treated group. Then 1272 liver proteins are
quantified [13].

2.2 Principle of Method and Notations

Consider a set of m samples {xi, yi} (i = 1, 2, . . .m). Each sample has n input
variables xi,j (j = 1, 2, . . . n) and one output variable yi. From the original
feature set F , a feature selection method will select a subset S of k variables.

Suppose that there are P feature selection methods to be compared. Using
Leave-One-Out Cross-Validation (LOOCV), m feature subsets will be generated
for each pre-defined value of k. The stability of each feature selection method
Stabp,k (p = 1, 2, . . . P ) can be calculated based on those m subsets.
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To test their ability to improve a classifier’s prediction accuracy, the gen-
erated feature subsets will then be applied to train a classifier and the predic-
tion accuracy of the corresponding classifier will also be measured. Area Under
the Curve (AUC) is used to measure the classifier’s prediction accuracy [17].
If tested on Q classifiers, the prediction accuracy of each classifier can be cal-
culated AUCp,q,k (q = 1, 2, ...Q). Considering both matrices Stab and AUC, a
general evaluation of each feature selection method can finally be achieved so
that researchers can choose a proper method for their data.

But the stability does not necessarily agree with the prediction accuracy:
the most stable feature selection method may not achieve the highest prediction
accuracy. Then the researchers need to balance between these two measures
according to their preference and the needs of the project.

2.3 Feature Selection Methods

Some representatives of those two strategies (univariate and multivariate) are
compared. For the univariate methods, SAM is applied here, since it was used
in the literature from where our data comes. SAM was designed to identify
genes with significantly differential expression in microarray experiments. For
the multivariate methods, we utilize minimum Redundancy Maximum Rele-
vance (mRMR) [18] and Characteristic Direction from a geometrical aspect
(GeoDE) [19]. mRMR is based on information theory. It tries to find out the fea-
ture subset in which the redundancy among the features are minimized and the
relevance of features and the targeted classes are maximized. GeoDE uses linear
discriminant analysis to define a separating hyperplane and the orientation of
the hyperplane is used to identify the differentially expressed genes.

Those methods are selected for our comparison because they are based on
different theories so that our results are more likely to be valid in general, and
they are all widely used biomarker discovery methods. So P equals 3 in this case,
but researchers can always compare as many feature selection methods as they
want.

2.4 Performance Measurement

Performance of feature selection methods is measured by two factors: stability
and accuracy.

Many measures of stability have been proposed. Nogueira et al. studied 15
different measures proposed between 2002 and 2018 and also proposed their
novel measure [20]. In our case where the purpose is to compare the stability of
different feature selection methods, the absolute values of stability are not that
important as long as they are comparable for different methods under the same
settings. In each round of comparison, the number of selected features k is a
constant, so the stability measure does not need to be able to cope with various
numbers of features. LOOCV will generate more than two feature sets based on
which the stability is calculated, so the measures which are defined for a pair of
feature sets are not proper choices. Considering the measures that satisfy all the
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requirements, we chose StabPerf [21] for its simplicity and interpretability. The
stability is defined as:

Stabp,k =

∑
f∈F (freq(f)/m)

|F | (1)

Where Stabp,k is the stability of a given feature selection method p with a pre-
defined k; m is the number of feature subsets analyzed; F is the set of features
that appear in at least one of the m subsets and |F | indicates the cardinality of
F ; freq(f) is the frequency of feature f ∈ F that appears in those m subsets.

To test the ability to improve a classifier’s prediction accuracy, four popu-
lar classification methods are utilized here: Random Forest (RF) [22], Support
Vector Machine (SVM) [23], and extended two-class logistic regression (RIDGE
and LASSO are applied) [24].

2.5 Cross-Validation Approach

We characterize our problem as a two-class classification problem: the control
group versus the treated group. In the process of classification, we need to divide
the samples into training set and testing set. But since the number of samples
is quite limited, we apply the strategy of LOOCV, which means that in every
training-prediction process, we leave one sample out as testing set, and use the
other samples as training set to search for the most important features and to
train a classifier. With m samples, we will use the ith sample to test the pre-
diction accuracy of the classifier trained from the other m − 1 samples. The
average of performance observed over all m predictions will be regarded as the
estimate of the performance of the model trained over the whole sample set. To
avoid overfitting or an overly optimistic estimate, it should be noted that the
feature selection and training of classifiers are only limited to the training set,
to avoid the information from the testing set leaking into the model training
procedure [25]. That makes the size of testing set decided by the number of sam-
ples in one classification problem, e.g. 19 in MeHg’s high-dose case. Moreover,
19 samples indicate 19 rounds of feature selection and prediction, resulting in
19 selected feature subsets and 19 * 4 classifiers. Therefore, if a feature selec-
tion method is stable enough, there should be a big overlap among these 19
selected feature subsets; at best the feature subsets would be identical. And if
the selected features are true biomarkers, the resulting 76 classifiers should yield
high prediction accuracies.

To make our comparison more stable, avoiding the accidental findings, and to
analyze the characteristic of the feature selection methods, we repeat the above
process with different numbers of selected features (ranging from 40 to 400 with
a step of 40, but also including 12 and 24 to look into more details with small
numbers of selected features where the output varies a lot).

Tukey’s Honestly Significant Difference Test (Tukey HSD Test) [26] is also
applied to test the significance of the differences between different methods’
performance on stability and prediction accuracy.
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Fig. 1. Stability of feature selection methods on MeHg data. (a) Experiment on high-
dose group versus control group. (b) Experiment on low-dose group versus control
group.
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Fig. 2. Stability of feature selection methods on PCB 153 data. (a) Experiment on
high-dose group versus control group. (b) Experiment on medium-dose group versus
control group. (c) Experiment on low-dose group versus control group.

3 Results

3.1 Stability

We can see from Figs. 1 and 2 that the performance of GeoDE is more stable
than SAM and mRMR across different numbers of selected features (with the
smallest variance). Another big difference between GeoDE and the other two
methods can be seen in low-dose condition of both MeHg and PCB 153: with all
numbers of selected features, GeoDE consistently outperforms SAM and mRMR
(Figs. 1b and 2c).

The results from Tukey HSD Test on stability are shown in Table 1. We limit
the family error rate to 0.05, so the cases with an adjusted p-value (p-adj) smaller
than 0.05 are regarded as significantly different. In accordance with the previous
analysis, in low-dose condition both for MeHg and PCB 153, GeoDE is much
more stable than the other two feature selection methods.

Table 1. Tukey HSD test on stability

Toxicant Dose condition Comparison p-adj

MeHg low GeoDE is better than SAM 0.0006

MeHg low GeoDE is better than mRMR 0.0005

PCB 153 low GeoDE is better than SAM 0.0014

PCB 153 low GeoDE is better than mRMR 0.0007
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Table 2. Tukey HSD test on prediction accuracy

Toxicant Dose condition Classifier Comparison p-adj

MeHg high RIDGE mRMR is better than GeoDE 0.0107

MeHg high RIDGE mRMR is better than SAM 0.0344

MeHg high LASSO mRMR is better than GeoDE 0.0002

MeHg high RIDGE SAM is better than GeoDE 0.0003

MeHg low LASSO GeoDE is better than SAM 0.0004

PCB 153 high LASSO mRMR is better than GeoDE 0.0003

PCB 153 high LASSO SAM is better than GeoDE 0.0006

PCB 153 medium SVM mRMR is better than GeoDE 0.0077

PCB 153 medium LASSO SAM is better than GeoDE 0.0009

PCB 153 medium LASSO mRMR is better than GeoDE 0.0009

PCB 153 low RF GeoDE is better than mRMR 0.0002

PCB 153 low RF GeoDE is better than SAM 0.0082

PCB 153 low SVM GeoDE is better than SAM 0.0183

3.2 Accuracy

We find that the results of accuracy are not straightforward, since we will get
different answers when asking which feature selection method performs the best.
In each dose condition, all four classification methods are applied to assess the
feature selection methods’ ability to improve the prediction accuracy. Across
different numbers of selected features, the AUCs of prediction are calculated.
Figure 3 is an example in the condition of low-dose MeHg. It shows that SAM
performs the best when the classifier is SVM, but GeoDE turns out to be the best
with the other three classifiers. To make it simple, for every experiment (each
dose of each toxicant), we select the best classification method for it: a classifier
that can give a high prediction accuracy for all three feature selection methods.
For example, in low-dose condition of MeHg (Fig. 3), RIDGE gets the highest
prediction accuracy compared with the other three classifiers regardless of the
used feature selection method. Then Fig. 4 gives us all results for all conditions.
As we can see, different feature selection methods stand out as the best. In low-
dose condition of MeHg and PCB 153 (Figs. 4b and e), GeoDE performs the
best, because it has a higher AUC than the other two in most cases of different
numbers of selected features. For the other conditions, in high-dose condition
of both MeHg and PCB 153 (Figs. 4a and c), and medium-dose condition of
PCB 153 (Fig. 4d), mRMR stands out, especially with a low number of selected
features.

Another phenomenon we can see from Fig. 4 is that based on gene expression
data and our analysis, MeHg appears to influence cods more than PCB 153 does,
since it is easier for classifiers to distinguish between control group and treated
group with a small number of features (higher prediction accuracy), and the
performance is also more stable.
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Fig. 3. Prediction accuracy on MeHg low dose data. (a) using RF (b) using SVM (c)
using RIDGE (d) using LASSO.
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Fig. 4. Prediction accuracy. (a) in high-dose condition of MeHg (b) in low-dose condi-
tion of MeHg (c) in high-dose condition of PCB 153 (d) in medium-dose condition of
PCB 153 (e) in low-dose condition of PCB 153.

According to the result of Tukey HSD Test on prediction accuracy (Table 2),
in different dose conditions and with different classifiers, different feature selec-
tion methods will stand out. However, generally speaking, in high-dose condi-
tion, mRMR seems to outperform the other two feature selection methods, and
in low-dose condition, GeoDE outperforms the other two.

4 Discussion and Conclusion

In this article, we have presented a framework to choose the most suitable
biomarker discovery method for a specific dataset by comparing the poten-
tial candidates from two aspects: stability, reflecting whether the selected fea-
ture subset is robust to changes in the training data, and resulting prediction
accuracy.
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On the aspect of stability to find a reliable feature subset, our results show
that GeoDE is more stable than SAM and mRMR in two ways: its stability
varies little across different numbers of selected features for all conditions, and
the absolute values of stability are always the highest for all numbers of selected
features in low-dose condition.

On the aspect of feature selection methods’ ability to improve a classifier’s
prediction accuracy, in different dose conditions, different feature selection meth-
ods show up as the best. mRMR performs well in high-dose condition, but in
low-dose condition, GeoDE outperforms the other two.

To conclude this case study, the choice of the most suitable biomarker dis-
covery method quite depends on the dataset under study. If the experiments are
conducted in high dose, then mRMR is the best choice, since it gives the highest
prediction accuracy and its stability is comparable with the other two. If it’s
in low dose, then GeoDE is definitely the best choice, considering its excellent
performance both in stability and prediction accuracy.

The framework of the comparative analysis is not limited to only this case
study, but can be applied to any other similar study.
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Abstract—Ensemble feature selection has drawn more and
more attention in recent years. There are mainly two strate-
gies for ensemble feature selection, namely data perturbation
and function perturbation. Data perturbation performs feature
selection on data subsets sampled from the original dataset and
then selects the features consistently ranked highly across those
data subsets. Function perturbation frees the user from having
to decide on the most appropriate selector for any given situation
and works by aggregating multiple selectors. Our study showed
that function perturbation resulted in a low stability. We therefore
propose a framework, Ensemble Feature Selection Integrating
Stability (EFSIS), combining these two strategies and integrating
stability during the aggregation of selectors. Empirical results
indicate that EFSIS highly improves stability and meanwhile,
maintains the prediction accuracy.

Index Terms—feature selection, ensemble learning, stability

I. INTRODUCTION

Feature selection is a crucial technique in machine learning

especially for high-dimensional data [1]. It is widely used

in many fields to help to find the most important features.

In classification tasks, feature selection can help to improve

the prediction accuracy by removing the noisy features and

avoiding overfitting [2], [3]. But feature selection can also be

very challenging, especially when there are a large number

of features (high-dimension) and very few training samples

(small-size), which is quite often the case in biomedicine and

genomics [3]. In such cases a small change in the samples

used as training set, can sometimes lead to a large change in

the set of selected features. The ability of a feature selection

method to give a consistent set of features when the training

data changes, is called stability [4]. So a good feature selection

method should enable the chosen classifier to obtain high

prediction accuracy and also be stable to provide similar

selected feature subsets.

In the field of prediction, ensemble learning has been

shown to improve the stability and prediction accuracy of the

individual learners [5]. The ensemble logic has been more and

more applied to feature selection problem in recent years.

Ensemble feature selection methods can mainly be divided

into two categories: data perturbation and function perturbation

[6], [7].

In data perturbation (sometimes referred to as the homo-

geneous ensemble approach), feature selection is performed

on several subsets of the samples, each analysis generating

potentially different feature subsets. In this case the same

feature selection method is used to analyze all subsets. The

resulting feature subsets are then aggregated into one final

feature subset [8]–[12]. Pes et al. showed that data perturbation

can improve the stability of the original feature selection

method [12].

Function perturbation (also referred to as the heterogeneous

ensemble approach) combines the outputs from several feature

selection methods - to free the user from having to choose

one selection method and to benefit from the strengths of

a set of methods [11], [13]–[15]. In this approach, a set of

selected feature selection methods are all applied on the same

training set. According to the literature, function perturbation

can maintain or improve classification performance.

However, we have not been able to find in the literature any

study of the stability of function-perturbation based methods

for feature selection.

The concern is that each feature selection method makes

different sets of assumptions and rationale for choosing the

important features; combining selected features from across

different selectors may give inferior performance including

decreased stability. Especially in the field of biomedicine or

genomics, where the feature dimension is very high but the

sample number is comparably low, such as microarray data,

a small change in the dataset may produce large change in

the resulting features. Therefore, we find it highly relevant to

investigate the issue of stability in ensemble feature selection

and especially in context of function perturbation approaches.

Through our preliminary experiments, we found that function

perturbation could indeed result in low stability. Since data

perturbation has been shown to improve stability, we propose

a framework to combine these two strategies to solve the

stability issue of function perturbation.

The framework includes two phases. In the first phase, data

perturbation is applied to generate a number of data subsets978-1-7281-1867-3/19/$31.00 ©2019 IEEE
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and each of these is given to a number of feature selectors (also

referred to as rankers since they rank the features). For each

ranker, the results across data subsets are aggregated to pro-

duce one ranked list of features. In addition, for each ranker, a

statistic reflecting its stability is calculated. In the second phase

which is function perturbation, the results from each ranker

are aggregated - using the estimated stability of each ranker

to weigh their votes - to produce a final ranking and a final

feature subset. The framework is named Ensemble Feature

Selection Integrating Stability (EFSIS) and the source code is

available on GitHub (https://github.com/zhxiaokang/EFSIS).

As benchmarks for our experiments, we tested our method

on six cancer datasets coming from microarray experiments.

To better understand its performance, we compared EFSIS

with each of the methods aggregated in EFSIS and also

with basic function perturbation. The result showed that the

stability was highly improved by using EFSIS. Meanwhile, the

prediction accuracy was also maintained well.

The rest of the article is organized as follows: Section II

describes the proposed EFSIS framework, along with basic

function perturbation, the individual feature selection methods,

and the metrics applied to evaluate stability and prediction

accuracy; Section III introduces the experimental study, in-

cluding experimental settings and results; Section IV discusses

the experiments and concludes the work.

II. METHODS

A. Methodology of EFSIS

Our proposed ensemble feature selection framework in-

cludes two phases: data perturbation and function perturbation

[6], [7]. The framework is illustrated in Figure 1.

Fig. 1. The framework of EFSIS

Given the original dataset D, we use bootstrapping [16]

to get M perturbed variants of D ({D1, ...Dm, ...DM}) for

the dataset D with p samples: we randomly draw p samples

from D with replacement, allowing some samples to be picked

multiple times while some samples may be absent in Dm.

Each bootstrap dataset Dm is then passed to each of the

included individual feature selection methods, each performing

a ranking of all the features based on how well they distinguish

samples from different groups. For simplicity, in the following,

we call each feature selection method a ranker.

In the first phase which is data perturbation, let us take

ranker n (n ∈ {1, ...N}) as a general representative to explain

the idea of data perturbation. Ranker n will rank the features

based on the bootstrap datasets. Corresponding to each boot-

strap dataset, one ranked list will be generated. Therefore, each

ranker will end up with M ranked lists {L1
n, ...L

m
n , ...LM

n }.

With an aggregation strategy which we introduce in Subsection

II.C, the M lists can then be combined into one list (Ln). In

addition to Ln, a side product, the stability of ranker n, that

we will denote as Sn, can be calculated using the stability

definition described in Subsection II.B: with a pre-defined

threshold t, the top t features in Lm
n will be picked to constitute

a feature subset, and then the M feature subsets will be used

to calculate the stability of ranker n. The data perturbation

procedure above will be applied to all N rankers to generate

N sub-final ranked feature lists {L1, ...LN}.

In the phase of function perturbation, another aggregation

strategy which integrates the stability of the rankers (we

introduce in Subsection II.C) combines those N sub-final

ranked feature lists into one final list L. The top t features

are kept as the selected important features by EFSIS.

B. Stability

A stable feature selection method should give similar feature

subsets even given varying samples. We use the similarity

between feature subsets derived from different sample sets to

measure the stability of the corresponding feature selection

method. We used the stability definition proposed by [8]:

Sn =

∑
f∈F (ω(f)/M)

|F | (1)

Where Sn is the stability of a given feature selection method

n; M is the number of feature subsets analyzed; F is the set

of features that appear in at least one of the M subsets and

|F | indicates the cardinality of F ; ω(f) is the frequency of

feature f ∈ F that appears in those M subsets.

C. Aggregation strategies

There are two aggregations in the EFSIS paradigm shown

in Figure 1. A very recent study [17] used intersection and

union operations to aggregate the lists. But there is an extreme

case where there is no intersection of the sub-lists. So we

used another more robust strategy, Rank Products (RP) [18],

to score each feature: the product of ranking positions of

one feature in different ranked lists is used as its aggregated

ranking score. This strategy was applied in data perturbation.

The ranking score of a feature f from ranker n can be

calculated as follows:

Rf,n =

M∏

m=1

Rm
f,n (2)
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where Rm
f,n is the rank of feature f from ranker n on bootstrap

set m. Based on this score, an aggregated ranked feature list

Ln for ranker n can be obtained.

In function perturbation, to address the issue of stability, we

extended the RP aggregation strategy so that the rankers with

higher stability have greater weights. We refer to this strategy

as stability-weighted RP utilizing the following equation for

aggregating the ranks:

Rf =

N∏

n=1

(Rf,n)
(1−Sn) (3)

where 1 − Sn is defined as the weight of ranker n, so that a

more stable ranker is assigned a higher weight. Ranking the

features based on this score, we get the final ranked list.

In fact, the basic function perturbation is a special case of

the second phase in EFSIS: each ranker ranks the features

based on the original dataset D, afterwards, it will apply

the RP aggregation strategy, aggregating the rankings from

different rankers in a similar way as EFSIS does in the second

phase, except that there is no weight for each ranker (Sn = 0
in Equation (3)).

D. Individual feature selection methods

In general, there are three categories of feature selection

methods: filter methods which rank the features only based

on their correlation with the targeted classes, wrapper methods

which use an objective function (can be the prediction accu-

racy obtained by the classifier using the selected features) to

evaluate features, and embedded methods where the classifier

itself performs feature selection.

Since one motivation of the ensemble framework is to

make it as general as possible, we want to make it classifier-

independent. Therefore, we consider only filter methods in this

context.

In our experiment, we used four very diverse feature selec-

tion methods which are based on different sets of assumptions,

to demonstrate the generality of the proposed framework. In

particular, we employed both univariate techniques which treat

the features as independent from each other and multivariate

techniques which take the interaction between features into

consideration.

As representatives of univariate techniques, we used:

• Significance Analysis of Microarrays (SAM) that was

originally designed to identify genes with significantly

differential expression in microarray experiments [19]. It

assigns a score to each gene based on the change in gene

expression relative to the standard deviation of repeated

experiments.

• Information gain which is one of the most popular

univariate methods [20]. It evaluates each feature based

on the entropy concept from information theory.

As representatives of multivariate techniques, we applied:

• The Characteristic Direction method (GeoDE) which is

a geometrical multivariate approach [21]. It defines a

separating hyperplane using linear discriminant analysis

to characterize the differential expression of microarray

or RNA-Seq data.

• ReliefF [22] is an extension of the original Relief algo-

rithm [23], [24] that evaluates a feature according to how

well it can distinguish among instances that are near to

each other. Compared to Relief, ReliefF is more robust

to noisy and incomplete datasets.

E. Classification algorithm

In evaluating the predictive performance of the selected

feature subsets, we applied the classification algorithm Support

Vector Machine (SVM) [25] to learn a classifier based on

the selected feature subsets. Provided with a training dataset

of samples marked with group labels (samples are charac-

terized by the selected features), SVM will learn an optimal

hyperplane separating the samples from different groups. And

the optimal hyperplane will be used to predict the labels

of the samples from test set. A prediction accuracy can be

calculated comparing the predicted labels with the true labels.

A better feature subset will enable the SVM to achieve a

higher prediction accuracy. For simplicity, we chose a linear

kernel for SVM and we used Area Under Curve (AUC) [26]

to summarize the obtained prediction accuracy.

III. EXPERIMENTAL STUDY

A. Datasets

EFSIS was tested on six gene expression datasets pro-

duced using microarrays to study different forms of cancer

(datasets were collected by [27]). The main characteristics

of the datasets, including numbers of features and samples,

are given in Table I. Feature selection can provide valuable

information in such applications. The selected features can

be regarded as biomarkers and they reflect characteristics

of the studied cancer forms and can help to classify the

patients. Feature selection can allow the cancer researcher or

clinician to focus on a small number of biomarkers instead of

thousands of features, which can save lots of money and time

for further studies. Biomarkers can also help to improve the

understanding of the cancer forms on a molecular level.

TABLE I
Datasets used in the experiments

Name Features Samples Refs
AML 12 625 54 [28]
CNS 7 129 60 [29]
DLBCL 7 129 77 [30]
Prostate 12 600 102 [31]
Leukemia 7 129 72 [32]
ColonBreast 22 283 52 [33]

B. Experimental procedure and settings

To evaluate the performance of EFSIS, it was compared

with the aggregated individual rankers and the corresponding

basic function perturbation aggregating the same four rankers.

The performance was evaluated in two aspects: stability and

prediction accuracy. Both stability and prediction accuracy
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depend on how many features are to be selected and used for

classification (denoted t), hence we performed the assessment

with a range of values for t.
In order to obtain an unbiased estimation of performance,

we performed the experiments using a ten-fold cross-validation

scheme [34], [35]. Thus, we obtained 10 selected feature

subsets for each pre-defined threshold t, for each dataset and

for each ranker. By doing classification analysis with those

10 feature subsets, we obtained 10 prediction accuracy scores.

At the same time, by calculating the similarity of those 10

feature subsets using Equation (1), we obtained an estimate of

the stability of the corresponding ranker.

Considering the highly variable number of features in each

dataset (as shown in Table I), instead of using an absolute

number of features t, we used a percentage of the original

number of features. We explored a range of values from 0.3%

to 5%.

The main parameters for EFSIS are the number of bootstrap

datasets M and number of rankers N . M was chosen based

on the recommendation in [12] (M = 50). In our analysis,

N = 4, the rankers are described in Subsection II.D. The

competitors of EFSIS would therefore be the four individual

rankers and the basic function perturbation of the same four

rankers.

To speed up the computation, parallel computing can be

applied to EFSIS taking advantage of its structure. The paral-

lelization can be done in multiple ways. What we have tried

was to split the jobs by bootstrap datasets so that the job

corresponding to one dataset was performed by one node.

C. Experimental results of stability performance

In this section, we will study the stability of the rankers. The

stability was tested on 6 datasets with 9 different percentages

of selected features.

Figure 2 shows the performance of the four individual

rankers and the two ensemble rankers. Let us firstly look at

the individual rankers. GeoDE has the same problem as in the

previous section: it achieves a very high stability in the CNS

dataset but a very low one in the DLBCL dataset. ReliefF

seems to be a very unstable method with the lowest stability

score across all datasets, even in the dataset DLBCL where

it showed great predictive performance (as mentioned in the

previous section).

When we compare basic function perturbation with the four

individual rankers across the 6 datasets as shown in Figure

2, we can find that basic function perturbation is either the

second or the third worst one. In comparison, the performance

of EFSIS is much more satisfactory: it is the second best

one in the first 3 datasets (Figure 2 A-C), and it performs

consistently better than all the individual rankers in the latter 3

datasets (Figure 2 D-F). If we compare between basic function

perturbation and EFSIS, Figure 2 shows clearly that EFSIS

performs always better than basic function perturbation. The

box plot in Figure 3 shows the comparison between these two

ensemble rankers on 6 datasets with the star (∗) indicating

the significance of difference (P -value was calculated using
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Fig. 2. Stability performance of six rankers on six datasets, tested with differ-
ent percentages of selected features. For each dataset, four individual rankers
(SAM, GeoDE, ReliefF, Information Gain), basic Function Perturbation, and
EFSIS are considered.

Fig. 3. Comparison of basic Function Perturbation and EFSIS in stability
performance on six datasets. ** = P -value < 0.005, * = P -value < 0.01.

Wilcoxon Signed-Ranks Test [36]). We can see that the

stability of EFSIS is significantly higher than basic function

perturbation in all 6 datasets.

D. Experimental results of predictive performance

Even though stability is important, prediction accuracy

cannot be ignored. The mean AUC (averaging the AUCs from

ten-fold cross-validation) and associated standard deviation

of four individual rankers and two ensemble ones (basic

function perturbation and EFSIS) tested on datasets CNS and
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TABLE II
Predictive performance of six rankers on dataset CNS with different percentages of selected features: mean AUC and standard deviation.

Ranker Percentage of selected features (%)
0.3 0.5 0.7 1 1.5 2 3 4 5

SAM 0.72± 0.22 0.69± 0.22∗ 0.71± 0.20 0.72± 0.17 0.71± 0.21∗ 0.72± 0.17∗ 0.73± 0.18∗ 0.69± 0.19∗ 0.73± 0.18∗
GeoDE 0.63± 0.16 0.76± 0.08 0.81± 0.16† 0.82± 0.13† 0.82± 0.18† 0.88± 0.17† 0.89± 0.16† 0.88± 0.14† 0.90± 0.14†
ReliefF 0.69± 0.18 0.72± 0.14 0.75± 0.16 0.68± 0.15∗ 0.74± 0.19 0.70± 0.19∗ 0.75± 0.16∗ 0.79± 0.21 0.73± 0.15∗

Info Gain 0.69± 0.17 0.78± 0.18† 0.76± 0.19 0.71± 0.19 0.65± 0.17∗ 0.70± 0.13∗ 0.66± 0.18∗ 0.71± 0.16∗ 0.78± 0.15∗
Func Pert 0.72± 0.12 0.77± 0.18 0.68± 0.21 0.68± 0.21∗ 0.77± 0.15 0.80± 0.21 0.80± 0.11∗ 0.80± 0.13 0.80± 0.16∗

EFSIS 0.74± 0.22† 0.69± 0.16 0.68± 0.19 0.75± 0.15 0.79± 0.16 0.83± 0.14 0.82± 0.14 0.78± 0.11∗ 0.79± 0.15∗
†The best ranker in one experiment (one specific percentage of selected features).
∗The rankers that are significantly worse than the best one.

TABLE III
Predictive performance of six rankers on dataset DLBCL with different percentages of selected features: mean AUC and standard deviation.

Ranker Percentage of selected features (%)
0.3 0.5 0.7 1 1.5 2 3 4 5

SAM 0.91± 0.13 0.90± 0.12 0.96± 0.08 0.96± 0.06 0.97± 0.07 0.97± 0.07 0.95± 0.11 0.94± 0.11 0.97± 0.07†
GeoDE 0.86± 0.10∗ 0.87± 0.10∗ 0.86± 0.12∗ 0.89± 0.10∗ 0.88± 0.16∗ 0.86± 0.22∗ 0.85± 0.22∗ 0.89± 0.11∗ 0.92± 0.10
ReliefF 0.96± 0.08† 0.94± 0.11 0.99± 0.03† 0.96± 0.09 0.98± 0.06 0.94± 0.10 0.99± 0.03† 0.99± 0.03† 0.97± 0.07†

Info Gain 0.95± 0.11 0.95± 0.09† 0.95± 0.11 0.96± 0.08 0.96± 0.08 0.96± 0.08 0.96± 0.08 0.97± 0.08 0.96± 0.06
Func Pert 0.91± 0.12 0.92± 0.09 0.96± 0.08 0.96± 0.06 0.98± 0.05† 0.98± 0.05† 0.96± 0.07 0.94± 0.10 0.93± 0.11

EFSIS 0.92± 0.10 0.94± 0.08 0.93± 0.10∗ 0.97± 0.06† 0.97± 0.06 0.97± 0.06 0.96± 0.07 0.97± 0.07 0.97± 0.07†
†The best ranker in one experiment (one specific percentage of selected features).
∗The rankers that are significantly worse than the best one.

DLBCL with 9 different percentages of selected features are

shown in Table II and Table III. For each experiment with

a specific percentage of selected features, the best ranker (the

one with the highest mean AUC and lowest standard deviation)

is marked with dagger, and the ones that are significantly

worse than the best one are marked with star and are in bold

font (P -value < 0.05, Wilcoxon Signed-Ranks Test [36]). It

shows a problem of the individual rankers: some individual

rankers perform quite well in some datasets but poorly in some

others. For example, GeoDE performs quite well in dataset

CNS (it achieves the highest prediction accuracy among all

rankers 7 times out of 9), but performs unsatisfactorily in

dataset DLBCL (it achieves a significantly lower prediction

accuracy than the best one 8 times out of 9, which makes

it the worst for this dataset). But ReliefF performs contrarily

to GeoDE in these two datasets. Since the performance of

feature selection methods varies from dataset to dataset, it is

difficult for researchers to choose an adequate one for their

dataset. That problem is actually a big motivation for function

perturbation since it can free researchers from that difficult

decision. Ensemble rankers (function perturbation and EFSIS)

combine the results from all candidate rankers.

The results of the other four datasets are given in the

Appendix Table IV. Table II-IV show that the predictive

performance of ensemble rankers is more stable across the

different datasets analyzed. Function perturbation and EFSIS

are slightly better than the individual rankers: they are signifi-

cantly worse than the best ranker in 4 out of the 54 experiments

(6 datasets × 9 percentages of selected features), while four

individual rankers are worse in 8, 10, 6, 7 experiments,

respectively.

IV. CONCLUSION

We have described a new framework for ensemble feature

selection, which combines data perturbation and function

perturbation and utilizes the stability of the individual methods

as weights. The new framework utilizes data perturbation’s

ability to improve stability to solve the low-stability issue

of function perturbation. It possesses the advantages of both

function perturbation and data perturbation: it combines the

results from different individual feature selection methods and

shows robust predictive performance, and it also provides

more stable selected feature subsets. Therefore, it frees the

researchers from choosing the most suitable feature selection

method for their datasets. Also, compared to basic function

perturbation, it provides higher stability. To be noted, EFSIS

is a framework, meaning that researchers can put whatever

they like in the framework. For example, they can replace the

individual rankers with some specific ones that are commonly

used in their research field or add new ones as more and more

feature selection methods are being proposed.

In the EFSIS framework, we have chosen to perform data

perturbation in the first phase so that each ranker (feature

selection method) is performed on all bootstrap datasets to

produce one ranking that is next combined with rankings from

the other rankers. In this way we can obtain the stability of

each individual ranker based on the same subsets of samples,

enabling us to use the stability estimates when combining

results across the rankers. However, it would be interesting to

explore an alternative approach where function perturbation

is applied to each bootstrap dataset, which will produce M
ranked lists. In the next step, these M lists will be combined

(using for example Rank Products) to obtain the final ranked

list. The idea behind this strategy is to make use of data

perturbation’s ability to improve the stability of function per-

turbation. Future studies will include this and other directions.

APPENDIX
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TABLE IV
Predictive performance of six rankers on four datasets with different percentages of selected features: mean AUC and standard deviation.

Dataset Ranker Percentage of selected features (%)
0.3 0.5 0.7 1 1.5 2 3 4 5

AML

SAM 0.69± 0.17∗ 0.73± 0.16 0.73± 0.20 0.76± 0.14 0.78± 0.17 0.75± 0.18 0.74± 0.20∗ 0.76± 0.17 0.77± 0.16
GeoDE 0.74± 0.16 0.69± 0.25 0.76± 0.20† 0.76± 0.16∗ 0.80± 0.16† 0.80± 0.18† 0.84± 0.15† 0.79± 0.18 0.79± 0.22
ReliefF 0.76± 0.21 0.73± 0.15 0.68± 0.21 0.69± 0.14∗ 0.75± 0.15 0.76± 0.18 0.72± 0.14∗ 0.74± 0.18 0.76± 0.15

Info Gain 0.81± 0.16† 0.75± 0.18† 0.74± 0.16 0.73± 0.17∗ 0.79± 0.14 0.76± 0.17 0.77± 0.17 0.79± 0.16 0.80± 0.17
Func Pert 0.75± 0.16 0.73± 0.23 0.74± 0.15 0.81± 0.14† 0.79± 0.13 0.79± 0.17 0.75± 0.21∗ 0.80± 0.18† 0.81± 0.14†

EFSIS 0.73± 0.20 0.74± 0.17 0.72± 0.22 0.75± 0.17 0.72± 0.18 0.73± 0.19 0.77± 0.16∗ 0.75± 0.19 0.76± 0.17

Prostate

SAM 0.95± 0.08† 0.95± 0.08 0.95± 0.08 0.96± 0.06† 0.96± 0.07 0.95± 0.07 0.96± 0.07 0.96± 0.07 0.96± 0.07†
GeoDE 0.90± 0.15 0.93± 0.09 0.94± 0.09 0.95± 0.08 0.95± 0.09 0.94± 0.08∗ 0.95± 0.06 0.95± 0.06 0.96± 0.06
ReliefF 0.94± 0.08 0.96± 0.08† 0.96± 0.06† 0.94± 0.10 0.97± 0.04 0.96± 0.06 0.94± 0.08 0.96± 0.07 0.94± 0.09

Info Gain 0.94± 0.11 0.94± 0.10 0.94± 0.10 0.95± 0.09 0.95± 0.09∗ 0.96± 0.07 0.97± 0.06† 0.97± 0.06† 0.96± 0.08
Func Pert 0.95± 0.09 0.94± 0.10 0.95± 0.10 0.95± 0.09 0.96± 0.06 0.96± 0.07 0.96± 0.06 0.95± 0.08 0.95± 0.09

EFSIS 0.95± 0.09 0.94± 0.10 0.95± 0.09 0.95± 0.08 0.97± 0.07† 0.97± 0.07† 0.95± 0.08 0.94± 0.09 0.94± 0.09

Leukemia

SAM 0.99± 0.04 0.98± 0.05 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02†
GeoDE 0.98± 0.05 0.99± 0.02† 0.99± 0.04 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02†
ReliefF 0.99± 0.02† 0.99± 0.02† 0.99± 0.04 0.99± 0.04 0.99± 0.02† 0.99± 0.04 0.98± 0.04 0.98± 0.05 0.98± 0.04

Info Gain 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02†
Func Pert 0.97± 0.08 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02†

EFSIS 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02† 0.99± 0.02†

ColonBreast

SAM 0.98± 0.08 0.98± 0.08 0.97± 0.06 0.98± 0.05† 0.99± 0.03† 0.97± 0.07 0.97± 0.06 0.97± 0.06 0.97± 0.06
GeoDE 0.99± 0.04† 0.99± 0.04† 0.99± 0.04† 0.98± 0.05 0.95± 0.08 0.95± 0.08 0.95± 0.08 0.95± 0.08 0.98± 0.05
ReliefF 0.95± 0.08 0.95± 0.12 0.95± 0.11 0.94± 0.12 0.98± 0.05 1.00± 0.00† 0.97± 0.08 0.96± 0.08 0.97± 0.05

Info Gain 0.98± 0.05 0.95± 0.08 0.95± 0.08 0.95± 0.08 0.98± 0.08 0.98± 0.08 0.99± 0.04 0.98± 0.08 0.95± 0.12
Func Pert 0.98± 0.08 0.99± 0.04† 0.98± 0.05 0.98± 0.05 0.97± 0.06 0.99± 0.03 0.99± 0.03† 0.98± 0.05 0.98± 0.05

EFSIS 0.98± 0.08 0.98± 0.08 0.99± 0.04† 0.98± 0.05 0.96± 0.07 0.98± 0.05 0.98± 0.05 0.99± 0.04† 0.99± 0.04†
†The best ranker in one experiment (one specific percentage of selected features).
∗The rankers that are significantly worse than the best one.
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