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ABSTRACT 
An effective medium model for the stress-dependent seismic properties of fractured reservoirs is developed 
here on the basis of a combination of a general theory of viscoelastic waves in rock-like composites with 
recently published formulae for deformation of communicating and interacting cavities (interconnected 
pores/cracks and fractures at finite concentration) under drained loading. The inclusion-based model 
operates with spheroidal cavities at two different length scales; namely, the microscopic scale of the 
pores and (grain-boundary) cracks, and the mesoscopic scale of the fractures (controlling the flow of fluid). 
The different cavity types can in principle have any orientation and aspect ratio, but the microscopic 
pores/cracks and mesoscopic fractures were here assumed to be randomly and vertically oriented, 
respectively. By using three different aspect ratios for the relatively round pores (representing the stiff part 
of the pore space) and a distribution of aspect ratios for the relatively flat cracks (representing the 
compliant part of the pore space), we obtained a good fit between theoretical predictions and ultrasonic 
laboratory measurements on an unfractured rock sample under dry conditions. By using a single aspect ratio 
for the mesoscopic fractures, we arrived at a higher-order microstructural model of fractured porous media 
which represents  a generalization of the first-order model developed by Chapman et al. (2002,2003). The 
effect of cavity size was here modelled under the assumption that the characteristic time for wave-induced 
(squirt) flow at the scale of a particular cavity (pore/crack vs. fracture) is proportional with the relevant 
scale-size. In the modelling, we investigate the effect of a decreasing pore pressure with constant confining 
pressure (fixed depth), and hence, increasing effective pressure. The analysis shows that the attenuation-
peak due to the mesoscopic fractures in the reservoir will move downward in frequency as the effective 
pressure increases. In the range of seismic frequencies, our modelling indicates that the P-wave velocities 
may change by more than 20% perpendicular to the fractures and close to 10% parallel to the fractures. In 
comparison, the vertical S-wave velocities change by only about 5% for both polarization directions 
(perpendicular and parallel to the fractures) when the effective pressure increases from 0 to 15 MPa. This 
change is mainly due to the overall change in porosity with pressure. The weak pressure dependence is 
a consequence of the fact that the S waves will only sense if the fractures are open or not, and since all the 
fractures have the same aspect ratio, they will close at the same effective pressure (which is outside the 
analysed interval). Approximate reflection coefficients were computed for a model consisting of the 
fractured reservoir embedded as a layer in an isotropic shale and analysed with respect to variations in 
Amplitude Versus Offset and aZimuth (AVOZ) properties at seismic frequencies for increasing effective 
pressure. For the P-P reflections at the top of the reservoir, it is found that there is a significant dependence 
on effective pressure, but that the variations with azimuth and offset are small. The lack of azimuthal 
dependence may be explained from the approximate reflection coefficient formula as a result of cancellation 
of terms related to the S-wave velocity and the Thomson’s anisotropy parameter d. For the P-S reflection, 
the azimuthal dependence is larger, but the pressure dependence is weaker (due to a single aspect ratio for 
the fractures). Finally, using the effective stiffness tensor for the fractured reservoir model with a visco-
elastic finite-difference code, synthetic seismograms and hodograms were computed. From the 
seismograms, attenuation changes in the P wave reflected at the bottom of the reservoir can be observed as 
the effective pressure increases. S waves are not much affected by the fractures with respect to attenuation, 
but azimuthal dependence is stronger than for P waves, and S-wave splitting in the bottom reservoir P-S 
reflection is clearly seen both in the seismograms and hodograms. From the hodograms, some variation in 
the P-S reflection with effective pressure can also be observed. 
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Modelling re
ection signatures of pore 
uidsand dual porosity in carbonate reservoirsRemy Agersborg1;2, Tor Arne Johansen1 and Bent Ole Ruud21 Department of Earth Science and 2 Centre for Integrated Petroleum Research,University of Bergen All�egt. 41, 5007 Bergen, Norway.AbstractThe motivation for this synthetic Amplitude Versus Angle (AVA) study of anisotropic carbonate reservoir consisting of a dual porosity on two scales is to iden-tify possible seismic signatures of carbonate rocks containing various 
uids and poreconnection models. The reservoir is modelled for four scenarios on the basis of ageneral theory for visco-elastic waves, where the inclusion-based model operates withspheroidal cavities on two scales. While the total porosity of the reservoir is consid-ered constant, the pores and cracks at the di�erent scales are designed to be eitherconnected or isolated. The pore systems are saturated with either gas, oil or water.Re
ection coeÆcients are computed for a 2-layer model consisting of a cap rock ofshale above the reservoir in order to analyze the e�ects of various pore to pore con-nection and pore 
uid models in the double porosity systems.The modelling shows how the AVA parameters change both due to varying poreto pore connection and various pore 
uid saturation scenarios. If we assume esti-mated AVA parameters with some uncertainties, the study indicates that it shouldbe possible to obtain measurable changes in the re
ectivity due to changes of thepore connectivity also when the introduced 
uid has almost equal acoustic proper-ties as the displaced one. Such modelling studies should be of particular relevancefor studying diagenetic e�ects on seismic signatures, as for instance, water and oilmay have similar acoustic properties, but di�erent impact on the pore system overtime.Keywords: Dual porosity, carbonate reservoir, AVA, 
uid substitution, pore struc-ture. 1
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IntroductionThe aim of seismic reservoir monitoring and time lapse studies is to follow how the 
uidsdisplace within the reservoir unit. It is essential to have the information about the poregeometry and how the pores are connected with respect to 
uid 
ow as accurate as possiblein order to di�erentiate between e�ects due to alterations in 
uid saturation and pressure.The variations in the seismic properties of carbonate rocks are mainly caused by theircomplex pore structure (Eberli et al., 2003) where pores and cracks can co-exist on manyscales, from microscopic pores/cracks to huge macroscopic fractures (Anselmetti et al.,1998; Wang, 1997). In the context of 
uid substitution, where the reservoir is water
ooded, the pore geometry and wettability of the rock can cause the water �rst to 
oode.g. the cracks and smaller pores or this may cause the oil to be trapped in the larger poreswhich again may leave a considerable amount of residual oil in the reservoirs (Chatzis etal., 1983). A study of the Eko�sk �eld (Sylte et al., 1999) showed that injection of waterin the calcite-reservoir caused compaction and porosity loss. They concluded that thesensitivity of the chalk to injected water most probably resulted from an intimate chemicalinteraction between the injected water and the calcite.For predicting the P-wave velocity and the seismic e�ects of 
uid substitution, it iscommon to use Gassmann's equation (Gassmann, 1951). However, for carbonate rocksthis relation is not always applicable (Adam et al., 2006; Anselmetti and Eberli, 1999;Assefa et al., 2003; Baechle et al., 2005; Rosseb� et al., 2005; Wang, 1997; 2000) and thiscan to a large extent be caused by the complex pore structure and chemical interactionbetween the 
uid and the carbonate minerals. Modelled velocity and attenuation e�ectscaused by a porosity system on di�erent scales have been discussed by Agersborg et al.(2007a). Here, the seismic properties were modelled using a visco-elastic rock physicstheory, referred to as the T-matrix formulation (Jakobsen et al., 2003a,b). This method was2
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also applied in Agersborg et al. (2007b) for modelling ultrasonic velocity and attenuationdata for calcite samples. Various characteristic pore types for carbonate rocks describedby Wang (1997) and Choquette and Pray (1970) are referred to as grain-boundary cracks(intercrystaline and interparticle porosity), porous inclusions (intraparticle porosity) androunded pores (vugs and fenestral porosity). The in
uence of complex pore structures onseismic velocities is often modelled by using inclusion based theories. Then cavities aremodelled as spheroids, where cracks have aspect ratios (�: ratio between minor and majoraxis) less than 0.001, and compliant pores to spherical pores have aspect ratio from 0.001to 1.In this study, we discuss how various pore 
uid distributions in a dual porosity systemof di�erent scales will in
uence the seismic signature, and in particular, on AmplitudeVersus Angle (AVA) attributes. Similar studies have been done for various microscopicand macroscopic 
uid distributions (Johansen et al., 2002), however, in their study thepores were regarded as isolated to 
uid 
ow. For AVA characterization we apply bothexact and approximate formulas for the re
ection coeÆcients of PP and PS waves.Elastic properties of the dual porosity reservoirConsider a reservoir modelled with the porosity distributed on mesoscopic (meso) and mi-croscopic (micro) scale. The pore systems may be individually connected or unconnected,but they are unconnected with respect to each other. Additionally, each pore system con-tains cracks. We consider four scenarios revealing various connectivity models: Model 1:Connected micro pores and connected meso pores; Model 2: Unconnected micro poresand unconnected meso pores; Model 3: Unconnected micro pores and connected mesopores; and �nally, Model 4: Connected micro pores and unconnected meso pores. Thefour models are conceptually de�ned in Figure 1. The pores and the cracks on each scale3
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are saturated with either gas (methane), oil or water with the properties given in Table 1.The aspect ratios of the pore model are de�ned in Table 2. The permeability was set to50 mD and the mineral matrix for each scale is calcite with properties as listed in Table 1.The e�ective sti�ness tensor for the reservoir is found from the T-matrix approach forr = 1; :::; Nc cavities and r = Nc + 1; :::; N visco-elastic inclusions according to Jakobsenet al. (2003a,b) C� = C(0) +C1(I4 +C�11 C2)�1; (1)C1 = NXr=1 v(r)t(r); (2)C2 = NXr=1 NXs=1 v(r)t(r)G(rs)d t(s)v (s); (3)where C(0) is the fourth-rank sti�ness tensor of the homogeneous matrix material, I4 is theidentity for fourth-rank tensor, v(r) is the volume concentration for inclusion of type r, t(r)is the T-matrix (de�ned below in terms of sti�ness 
uctuations),G(rs)d is given by the strainGreen's function integrated over a characteristic ellipsoid having the same symmetries asp(sjr)(x � x0) which, in turn, gives the probability density for �nding an inclusion of types at point x0 given there is an inclusion of type r at point x. The 1st order correction C1depends on the concentrations, shapes and orientations of the inclusions. The 2nd ordercorrection C2 also takes into account the mechanical interaction between pairs of di�erentinclusions.The T-matrix of a single isolated cavity of type r can be written as (Jakobsen et al,.2003b) t(r) = (C(r) �C(0))[I4 �G(r)(C(r) �C(0))]�1; (4)where G(r) is a fourth-rank tensor depending only on C(0) and the shape/orientation ofthe inclusion of type r and C(r) is the sti�ness tensor of the inclusion. If r represents a4
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fully 
uid saturated cavity that is isolated with respect to 
uid 
ow, C(r) is simply relatedto the bulk modulus of the 
uid. If r represents a dry cavity, C(r) is equal to zero. Theformulae for a single fully 
uid saturated communicating cavity can be found in AppendixA, and the P velocity (VP ), S velocity (VS) and attenuation parameters de�ned from thesti�ness tensor in Appendix B.To account for the two porosity scales we �rst model the visco-elastic properties ofthe micro porous material with porosity �micro. The micro porous material are used asspherical isolated visco-elastic inclusions with concentration vinc, which implies that thee�ective micro porosity is ��micro = �microvinc. Then the properties of the medium includingthe meso porosity �meso are calculated. The total porosity is thus �tot = ��micro + �meso.The cavities in the T-matrix approach are assumed to be of equal size (Jakobsen et al.,2003b) which implies that domains of the material with the micro pores and cracks areconsidered to be on the same size as meso pores and cracks. By treating the micro porousmaterial as isolated inclusions in calculating the mesoscopic e�ective sti�ness tensor, themicro cavities are thereby implicitly of much less size than the meso cavities.An empirical relaxation time constant � (Appendix A) describing pore 
uid 
ow, mustideally be determined for each pore 
uid and pore scale under consideration from velocityand attenuation measurements. However, here we have chosen to use � = 10�7s to representthe case of a porous rock saturated with water. Furthermore, we have assumed that � canbe related to 
uid viscosity (Agersborg et al., 2007c)� fluid1 = Cm�fluid1; (5)
5
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where Cm depends on the pore structure and is independent of the pore 
uids. From thisexpression we approximate � for other pore 
uids by (Agersborg et al., 2007c)� fluid2 = � fluid1 �fluid2�fluid1 : (6)
The porosities on each scale (see Table 3) are constant in all the models. The variouspore 
uid distribution models considered are summarized in Table 4. Some small attenu-ation just below 100 Hz is due to wave-induced 
uid 
ow caused by the cracks with thesmallest aspect ratios. Otherwise the parameters are close to constant and treated as inde-pendent of frequency. In Figure 2 density (�) versus VP is plotted for the various models.The VP varies from 2900 m/s (for model 1 with gas) to about 5000 m/s (model 2 withwater). Also seen, when ��micro contains water and �meso contains gas, the P velocities formodels 3 and 4 are very similar. The same is seen when ��micro is gas saturated and �mesois water saturated. From the VP versus VS plot in Figure 3 the various models and satu-rations are revealed. One cluster appears where �meso is gas saturated and three clustersappears where �meso is oil or water saturated. It is hard to discriminate between modelswhere the pore 
uids are various combinations of water and oil saturating ��micro and �mesoporosities. Because the S-velocity is not very sensitive to 
uids other than the changes ofthe 
uid densities, the changes in the S-velocity are mostly due to changes in the pore con-nection properties. The P-velocity is sensitive both to the connection properties and thesaturating 
uids. In Figures 2 and 3 there are indicated some general trends for the e�ectsof altering pore 
uid and the pore to pore connectivity. Decreasing connectivity leads toan increase in both P and S velocities, while the density remains unchanged. The pore
uid mainly a�ects the P-velocity and the density, but has a less e�ect on the S-velocity.However, the larger pore to pore connection the larger is the pore 
uid e�ects on velocities.6
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It is important to notice that the magnitude of velocity variations with altering pore 
uiddepend on the pore models.AVA signaturesFor the modelling of the re
ectivity and AVA properties, we consider a 2 layer model asgiven in Table 5. The P-P and P-S re
ection coeÆcients are calculated both using theZoeppritz equations (Aki and Richards, 1980) and approximate formulae valid for smallincidence angles and small impedance contrasts by (Johansen et al., 2004)RPP (�) � RP +GPP sin2(�); (7)RPS(�) � GPS sin(�) cos(�); (8)where the intercept RP and the gradients GPP and GPS are given byRP = 12 ��� + ��� !; (9)GPP = 12"��� � 4����2���� + 2��� �#; (10)GPS = �12"�1 + 2������ + 4����� #: (11)Here P-P and P-S re
ections are labelled PP and PS, respectively, and � is the incidenceangle of the P-wave. �� = �2 � �1 and � = 12(�1 + �2), where �1 and �2 denote theP-velocity above and below the interface. Similar relations apply to the S velocities byusing � and the densities by �.P-P and P-S re
ection coeÆcients for the four models are shown in Figures 4 - 7. It canbe seen that the approximate P-P and P-S re
ection coeÆcients start to deviate from theexact ones from incidence angles about 20Æ and 10Æ, respectively. From the �gures we can7
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observe that each P-P re
ection can distinguish between the considered properties of thevarious reservoir models. i.e. the P-P re
ections of models 1 and 4 are di�erent for all thesaturation distributions, while for models 2 and 3 there are almost no di�erence. We seethat the pore 
uid saturating �meso provides the largest e�ect. In this case �meso > ��microwhich makes a large volume e�ect for the 
uid in the meso pores. However, the 
uid withinthe cracks may sometimes give dominant overall velocity e�ects. The P-S re
ections showgentle variations for low incidence angles, while for large angles it is possible to di�erentiatebetween pore 
uids in ��micro and �meso for model 3.The intercepts of the four models are shown in Table 5. For models 1 and 3 the varia-tions are mainly caused by altered P velocities, while for models 2 and 4 the variation aremainly due to altered density inferred by the di�erent 
uid distributions. The P-P AVAgradients for all the models are also seen to vary along with their intercepts.P-P and P-S re
ection coeÆcients after substitution of oil with water for an initially oil�lled reservoir are shown in Figure 8. In this case the pores and cracks on both scales areinitially connected (model 1). If pores start to isolate due to geochemical reactions we needto also change from one model to another. Figure 8 reveals how the P-P and P-S re
ectionscoeÆcients resemble various transitions in both pore 
uid and connection properties. TheP-P re
ections enable us to discriminate between models 1, 2 and 3. Models 3 and 4 showsimilar intercepts and gradients, but di�er at large incidence angles and also for the P-Sgradients.VP=VS versus impedances both for P and S waves are shown in Figure 9. The impedancescorrelate to VP=VS for models 2 and 4 and in the case for the other models where �meso isgas saturated. Models which have oil or water in �meso appear in clusters. In the case ofgas in �meso the clusters are more di�use and when water also saturate ��micro it is almostimpossible to distinguish between models 2 and 3. A similar picture is revealed in Figure10 displaying the P-P and P-S AVA gradients versus intercept. Furthermore we see that8
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the P-S AVA plot resembles Figure 3.DiscussionThe objective of this paper is to discuss possible seismic signatures of various porosityand 
uid models. By imposing the dual porosity we try to mimic e�ects of heterogeneous
uid substitution, e.g. when only a fraction of the pore systems undergo 
uid substitution.Complex pore systems, both with respect to shapes and sizes, are often seen in carbonates.In the previous section various seismic signatures versus saturation and pore structurewere modelled. In practice, AVA and AVO analyses su�er from uncertainties related toseveral aspects such as the signal to noise ratio, the processing sequence and structuralcomplexity. Estimated intercepts and gradients are always uncertain to some degree. Ifwe assume an uncertainty of, say, 0.02 for the estimated re
ection coeÆcients, it is hardto di�erentiate between the various 
uid models within each of the connection models(Figures 4 to 7). Also the uncertainties will overlap in models 1 to 4 in those cases whereeither oil or water saturates the meso pores and one of them the micro pores. However,when the 
uid in the meso pores is substituted the re
ectivities di�er.For a situation where water is injected in order to maintain the pore pressure in anoil column with initially well connected pores (Figure 8), the re
ection signatures are dif-ferent for the various 
uid distributions. The �gure furthermore shows that the re
ectioncoeÆcients are only insensitive to the substitution process when water saturates the micropores and where micro and meso porosity are individually connected (model 1). However,if we know that water is injected into the reservoir, unaltered re
ections could indicatethat the water has displaced oil in the micro pores. Similar combinations of the re
ectioncoeÆcients for each model and 
uid saturation (Figure 4 to 7) can be made for reveal-ing the sensitivity of the seismic parameters in monitoring 
uid substitution processes incarbonates. 9
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ConclusionsIn this modelling study we have focused on possible seismic e�ects of 
uid substitutionsin reservoirs with dual porosities on di�erent scales. Furthermore, our modelling aimsto investigate e�ects of various 
uids in the porosity system and various connectivityproperties of the pores. Such models are relevant for understanding seismic e�ects ofcomplicated 
uid substitution processes, as for instance when water or gas are injectedinto the reservoir for maintaining the pore pressure. Geochemical reactions can result incompaction, and pores or cracks that originally were well connected can become isolatedwith respect to 
uid 
ow. Also when a 
uid is injected into the reservoir, pores of a certainscale can be 
ooded before others due to capillary forces.Our modelling indicates that the various connectivities and 
uids saturating poreson di�erent scale can reveal measurable di�erences in seismic parameters. Although pore
uids of similar acoustic properties may generally not give any signi�cant attainable seismicsignal, geochemical e�ects can alter the pore systems so the pore 
uids can over time revealdi�erent seismic expressions. This furthermore points to the necessity of understandingpore 
uid and mineral interactions, both in terms of visco-elasticity and geochemistry.They do for some materials relate over time.AcknowledgmentsR.A. gratefully acknowledges Hydro for �nancing his Ph.D. scholarship.
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A Single fully 
uid saturated communicating cavityFor a single fully 
uid saturated communicating cavity of type r, the T-matrix can beexpressed through a dry T-matrix with a term considering the e�ect of 
uid 
ow due tothe passing wave (Jakobsen et al., 2003b)t(r) = t(r)d + �Z(r) + i!��fX(r)1 + i!
(r)� ; (12)X(r) = t(r)d S(0)(I2 
 I2)S(0)t(r)d ; (13)Z(r) = t(r)d S(0)(I2 
 I2)S(0)� NcXn=1 v(n)t(n)d1 + i!
(n)� �; (14)� = �fn(1� �fS(0)uuvv)� NcXr=1 v(r)1 + i!
(r)� �+ �f� NcXr=1 v(r)(K(r)d )uuvv1 + i!
(r)� �� ikukv�uv�f�f! o�1: (15)Here ! is the angular frequency of the wave, �f is the bulk modulus for the 
uid, � is therelaxation time constant. S(0) is the fourth-rank compliance tensor of the matrix, I2 is theidentity for second-rank tensor, the symbol 
 denotes the dyadic tensor product, �f is theviscosity of the 
uid, ku and kv are components of the wave number vector. Subscripts uand v represent summation over u and v, respectively (u,v = 1,2,3), �uv is the permeabilitytensor of the reservoir, 
(r) = 1 + �f(K(r)d � S(0))uuvv; (16)and the K-tensor for the dry cavity is (Jakobsen et al., 2003b)K(r)d = (I4 +G(r)C(0))�1S(0): (17)
Equations (12) - (15) were derived under the assumption that the cavities are of the14
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same scale size and that the � -constant is independent of shape and orientation (Jakobsenet al., 2003b).B Velocities and attenuations of the reservoirThe velocity and attenuations can be found from the e�ective sti�ness tensor and densityof the isotropic reservoir as (Jakobsen et al., 2003b)VP = "Re�C�11�� �� 12 #�1; (18)VS = "Re�C�442���� 12 #�1; (19)QP = Re(C�11)Im(C�11) ; (20)QS = Re(C�44)Im(C�44) : (21)(22)
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List of Figures1 Conceptual sketches of the four reservoir-models where the pores exist bothon micro (black inclusions) and meso scale with di�erent connection. . . . 192 a) Density versus P-wave velocity for the di�erent models. Model 1 (green);Model 2 (blue); Model 3 (black); and Model 4 (red). Gas - Gas (dot); Gas -Water (cirle); Water - Gas (x); Water - Water (cross); Water - Oil (star); Oil- Water (square); and Oil - Oil (diamond). First 
uid denotes 
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uid the meso porosity. b) Schematics ofpore 
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ectioncoeÆcients and dashed lines the approximate ones. . . . . . . . . . . . . . 247 Re
ection coeÆcients of model 4. Solid lines represent the exact re
ectioncoeÆcients and dashed lines the approximate ones. . . . . . . . . . . . . . 2516
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Figure 7: Re
ection coeÆcients of model 4. Solid lines represent the exact re
ectioncoeÆcients and dashed lines the approximate ones.
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Figure 8: P-P and P-S re
ections for the models with either oil or water in the di�erentporosity systems as indicated in the �gure. First and second 
uid labels the 
uid in themicro porosity and meso porosity, respectively. Model 1: Pores in both micro and mesoscale are connected; Model 3: The micro pores are isolated and meso pores are connected;Model 4: Micro pores are connected and meso pores are isolated.
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Figure 9: Vp=Vs versus impedance of the P- and S-wave. Model 1 (green); Model 2 (blue);Model 3 (black); and Model 4 (red). Gas - Gas (dot); Gas - Water (cirle); Water - Gas (x);Water - Water (cross); Water - Oil (star); Oil - Water (square); and Oil - Oil (diamond).First 
uid denotes 
uid saturating the micro porosity and second 
uid the meso porosity.
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Figure 10: P-P and P-S AVA gradients versus intercept. Model 1 (green); Model 2 (blue);Model 3 (black); and Model 4 (red). Gas - Gas (dot); Gas - Water (cirle); Water - Gas (x);Water - Water (cross); Water - Oil (star); Oil - Water (square); and Oil - Oil (diamond).First 
uid denotes 
uid saturating the micro porosity and second 
uid the meso porosity.
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Calcite Water Oil Gas (Methane)VP (m/s) 6640 1554 1424.3 688.7VS (m/s) 3440Density (kg/m3) 2710 989.1 854.2 206.5Viscosity (cP) 1 6.4 0.029Table 1: Properties of the mineral (Mavko et al., 1998) and 
uid (Batzle and Wang, 1992)for temperature at 80ÆC and pressure at 40 MPa used in the calculations.
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Micro Porosity Meso Porosity� v �1 0.21(�) 0.5010.1 0.01(�) 0.02390.001 0.00042 0.1(�)0.0005 0.00021 0.1(�)0.0001 0.00004 0.1(�)
� v �1 0.3(�) 0.07161 0.099 (�) 0.02360.01 0.01 (�) 0.23870.001 0.00042 0.1(�)Table 2: Concentration (v), aspect ratio (�) and crack density (� = 3v4��) of the microand meso porosity.(�) The value used in the calculation (v or �). The micro porosity wasincorporated in the mesoscopic calculation as spherical inclusions with concentration equalto 0.3.
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�micro (%) vinc (%) ��micro (%) �meso (%) �tot (%) �micro(relative) (%)23 30 6.9 11 17.9 38.5Table 3: The porosities of the di�erent scales. ��micro = �microvinc and �micro(relative) =(��micro=�tot) � 100.
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Micro MesoGas GasOil OilWater WaterOil WaterWater OilWater GasGas WaterTable 4: Pore 
uid distributions in the two pore scales.
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Model Saturation VP (m/s) VS (m/s) � (kg/m3) RP GPP GPS1 Gas - Gas 2906.6 2247.7 2261.9 -0.0900 -0.3781 -0.22311 Gas - Water 3673.7 2206.1 2348.0 0.0455 -0.1991 -0.21641 Water - Gas 3026.1 2221.3 2315.9 -0.0582 -0.3444 -0.22961 Water - Water 3823.3 2181.1 2402.0 0.0768 -0.1676 -0.22261 Water - Oil 3565.6 2187.9 2387.1 0.0389 -0.2189 -0.22681 Oil - Water 3783.9 2185.4 2392.7 0.0697 -0.1755 -0.22191 Oil - Oil 3529.4 2192.2 2377.8 0.0318 -0.2268 -0.22602 Gas - Gas 3743.3 2382.0 2261.9 0.0362 -0.2848 -0.27192 Gas - Water 4842.3 2480.5 2348.0 0.1822 -0.1549 -0.32202 Water - Gas 3830.6 2370.4 2315.9 0.0595 -0.2735 -0.28792 Water - Water 4964.9 2468.5 2402.0 0.2057 -0.1390 -0.33502 Water - Oil 4856.7 2464.4 2387.1 0.1919 -0.1521 -0.33062 Oil - Water 4963.6 2472.8 2392.7 0.2037 -0.1396 -0.33322 Oil - Oil 4855.6 2468.7 2377.8 0.1899 -0.1526 -0.32873 Gas - Gas 3350.6 2318.7 2261.9 -0.0192 -0.3269 -0.25043 Gas - Water 4203.8 2275.8 2348.0 0.1127 -0.1452 -0.23953 Water - Gas 3433.5 2307.7 2315.9 0.0048 -0.3163 -0.26723 Water - Water 4310.5 2266.0 2402.0 0.1364 -0.1334 -0.25503 Water - Oil 4020.1 2273.0 2387.1 0.0987 -0.1874 -0.26083 Oil - Water 4309.4 2269.9 2392.7 0.1344 -0.1337 -0.25303 Oil - Oil 4019.4 2277.0 2377.8 0.0967 -0.1878 -0.25884 Gas - Gas 3277.0 2311.0 2261.9 -0.0303 -0.3384 -0.24854 Gas - Water 4251.9 2410.4 2348.0 0.1183 -0.2223 -0.30844 Water - Gas 3402.0 2283.9 2315.9 0.0002 -0.3051 -0.25444 Water - Water 4417.3 2383.2 2402.0 0.1485 -0.1865 -0.31224 Water - Oil 4324.4 2378.9 2387.1 0.1349 -0.1978 -0.30674 Oil - Water 4373.2 2387.9 2392.7 0.1416 -0.1956 -0.31214 Oil - Oil 4281.9 2383.6 2377.8 0.1281 -0.2067 -0.3066Table 5: Properties of the reservoir and AVA parameters for the reservoir with di�erentconnections and saturations. Model 1: Cavities in both micro and meso scale are connected;Model 2: Pores in both micro and meso scale are isolated; Model 3: Micro pores are isolatedand meso pores are connected; Model 4: Micro pores are connected and meso pores areisolated. First 
uid in the table denotes the 
uid in the micro porosity and second 
uiddenotes the 
uid in the meso porosity. The properties of the overburden: VP = 3500m/s,VS = 1900 m/s and � = 2250 kg/m3.
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9 Summary and perspective

The aim of this Ph.D. study is to characterize the acoustic properties of carbonate

rocks with use of a recent developed visco-elastic e�ective medium theory, the T-matrix

approach. The study involves predictions of the acoustic properties by considering di�erent

porosity models, pore sizes and types, crack and fracture orientations together with pore


uid saturation and pressure. By using dual porosity models with di�erent pore types

at two scales, it is shown in paper 1 that large scattering of the velocities observed for

carbonates with equal porosity and mineralogy can be modelled. Also, when predicting

velocity and attenuation for ultrasonic experiments of calcite core plugs in paper 2, the

dual porosity model where the porosity was divided into a dry and a 
uid �led part, is

able to reproduce the measurements, both for the dried and saturated core plugs. In paper

3, the e�ect of large fractures is studied and it was shown how these fractures can cause

attenuation due to wave induced 
uid 
ow even at seismic frequencies. It is di�cult to

di�erentiate between the re
ection coe�cients for the various reservoir model from paper 1

with an overburden of shale. However, by considering di�erent cross plots of the properties

extracted from the re
ection coe�cients, in paper 4, the di�erent reservoir models with

various 
uid distributions was revealed. In the modelling, the characteristic pore types of

carbonates were depicted as cracks, compliant and sti�er pores.

Considering the porosity at di�erent scales and how the pores are connected can account

for many observed acoustic properties of carbonate rocks. Further work in this direction

would be to account for diagenetic processes into the T-matrix approach. Also in this study

we did not take into consideration any chemical interaction between the rock mineral, which

can be chemical unstable, and the pore 
uid. It would be interesting to study this with

respect to be able to predict e.g. the observed shear modulus weakening due to softening

of the rock frame.
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A Derivation of the e�ective sti�ness tensor

The derivation of the e�ective sti�ness tensor of the T-matrix approach is taken from

Jakobsen et al. (2003a). By assuming an elastic sample with a complex microstructure

occupies a large spherical region 
, the stress tensor �(x) and strain tensor �(x) at point x,

under a deformation with in�nitesimal strain, can be related by the linear transformation

�(x) = C(x)�(x): (13)

Here C(x) is the local tensor of elastic constants. The complex microstructure of the

sample is re
ected in the fact that C(x) varies with x in a random manner, on a scale that

is small compared with all other length-scales. For the heterogeneous material as a whole,

similar relation in terms of the average stress tensor h�(x)i and strain tensor h�(x)i gives

(Jakobsen at al., 2003a)

h�(x)i = C�h�(x)i: (14)

By assuming that the material is statistical homogeneous, which means that any su�ciently

large subregions of 
 is statistical identical with the whole specimen, all ensemble-averaged

material quantities such as C� are independent of position.

By introducing an integral equation for the strain �eld

�(x) =
1

2

n
ru(x) + [ru(x)]T

o
; (15)

under a known displacement u(x) of the surface @
 of the sample 
:

u(x) = U(x); x 2 @
: (16)
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We can evaluate the tensor of the e�ective elastic constants from Equation (14). With

equilibrium equation

r � �(x) = 0; (17)

and since the material is homogeneous on the macroscopic scale, we can write

C(x) = C(0) + �C(x); (18)

where �C(x) is the 
uctuation of C(x) from a quantity C(0) which is uniform in space.

From Equations (13), (17), and (18) we now have

r � [C(0)
�(x)] = �r � [�C(x)�(x)]: (19)

From this di�erential equation there can be derived an integral equation for the strain �eld

�(x) = �
(0) +

Z


dx0G(0)(x� x0)�C(x0)�(x0); (20)

where �(0) is the strain tensor due to the boundary displacements in a material with proper-

ties given by C(0). G(0)(x) is the strain Green's tensor function for a translation-invariant

system where the components are given by

G
(0)
ijkl(x) = �

1

4

2
4g(0)ik (x)

@xj@xl
+

g
(0)
jk (x)

@xi@xl
+

g
(0)
il (x)

@xj@xk
+

g
(0)
jl (x)

@xi@xk

3
5 : (21)

Here g
(0)
ik (x) is a component of the displacement Green's tensor function g(0)(x) which

vanishes at the boundary of 


C
(0)
ijkl

@2g
(0)
km(x)

@xj@xl
+ �im�(x) = 0; g(0)(x) = 0 if x 2 @
: (22)
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Following Zeller and Dederichs (1973), and introducing a fourth-rank tensor �eld T(x)

which, when contracted with �
(0) on the right, yields the stress di�erence �C(x)�(x)

�C(x)�(x) = T(x)�(0): (23)

�(x) is linearly dependent on �(0) through the boundary condition (Equation (16)), so T(x)

depends only on the material properties and not on �(x) or �(0). Similar to Equation (20),

we �nd the integral equation for T(x) by using Equation (23) in Equation (20) and write

�(x) = �
(0) +

Z


dx0G(0)(x� x0)T(x0)�(0): (24)

By multiplying Equation (24) with �C(x) from the left and using Equation (23) again, we

get

T(x)�(0) = �C(x)�(0) + �C(x)
Z


dx0G(0)(x� x0)T(x0)�(0): (25)

The elements Tijkl of T is chosen to be symmetric in (i,j) and (k,l) and, since �(0) may be

chosen to be an arbitrary symmetric matrix, it follows that

T(x) = �C(x) + �C(x)
Z


dx0G(0)(x� x0)T(x0): (26)

The tensor �eld T(x) speci�es the `transitions' out of the reference �eld �
(0) and gives

the complete information about the strain tensor �eld distribution �(x) in the micro-

inhomogeneous material, provided that we can solve the integral equation (Equation (26)).

For �nding the e�ective elastic constants in terms of T, we get from Equations (13)

and (18)

h�i = C(0)h�i+ h�C�i: (27)
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By combining Equations (23) and (27) we get

h�i = C(0)h�i+ hTi�(0): (28)

From Equation (24) it is clear that

h�i = �
(0) + �GhTi�(0); (29)

where

�G =
Z


dx0G(0)(x� x0); x 2 
; (30)

is a constant tensor (Eshelby, 1957). Equation (29) gives �(0) in terms of h�i

�
(0) =

�
I+ �GhTi

��1
h�i; (31)

where I is the identity tensor. Equations (14), (28), and (31), imply that

C� = C(0) + hTi
�
I+ �GhTi

��1
: (32)

Now having obtained a formal exact solution for the case of local elasticity in terms of

the T-matrix for the material, we consider a material in which the elastic constant C(x) is

piecewise constant, speci�cally we consider media with inclusions that are either embedded

in a homogeneous matrix material or else make up a granular aggregate. The population

of inclusions is divided into families of inclusions having the same shape/orientation and

sti�ness tensor C(r), labelled by r = 1; 2; :::; F . Dry cavities may formally be treated as

inclusions having vanishing sti�nesses (see Nemat-Nasser and Hori, 1993; Ponte Castaneda

and Willis, 1995). We assume that there are n(r) inclusions of type r, occupying identical
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regions 
(r)
� of the space 
, centred at random points x(r)� (� = 1; :::; n(r)). Denote by

�(r)(x) the characteristic function of the domain 
(r)
� (that is, �(r)(x�x(r)� ) = 1, if x 2 
(r)

�

and 0 otherwise). It follows that the 
uctuation �C(x) may be decomposed as

�C(x) =
FX
r=1

n(r)X
�=1

�C(r)
� (x); (33)

�C(r)
� (x) = �C(r)�(r)(x� x(r)� ); (34)

�C(r) = C(r) �C(0): (35)

A decomposition of the T-matrix for the material, which is analogous with that of �C(x)

in Equation (33), is given by

T(x) =
FX
r=1

n(r)X
�=1

T(r)
� (x); (36)

T(r)
� (x) = T(x)�(r)(x� x(r)� ): (37)

Equations (26), (33), and (36), imply that the T(r)
� (x) must satisfy

T(r)
� (x) = �C(r)

� (x) + �C(r)
� (x)

Z


dx0G(0)(x� x0)

X
s;�

T
(s)
� (x0): (38)

If we let t(r)� (x) denote the solution of the integral equation

t(r)� (x) = �C(r)
� (x) + �C(r)

� (x)
Z


dx0G(0)(x� x0)t(r)� (x0); (39)

then we may rewrite expression (38) for Tr
�(x) exactly as

T(r)
� (x) = t(r)� (x) + t(r)� (x)

Z


dx0G(0)(x� x0)

X
s;�

T
(s)
� (x0)(1� �rs���); (40)
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A single iteration of Equation (40) yields

T(r)
� (x) � t(r)� (x) + t(r)� (x)

Z


dx0G(0)(x� x0)

X
s;�

t
(s)
� (x0)(1� �rs���): (41)

Now assuming that the inclusions are ellipsoidal in shape, we can �nd the T-matrix for

a single inclusion. The transition tensor t(r)� (x) satis�es (see Equation (23))

�C(r)
� (x)�(r)� (x) = t(r)� (x)�(0); (42)

where �(r)� (x) is the strain �eld for a single inclusion of type r embedded in the homogeneous

matrix. If �(r)� (x) is constant within the inclusion, then t(r)� (x) must also be; and it is zero

outside, so we may write

t(r)� (x) = t(r)�(r)(x� x(r)� ); (43)

where t(r) is a constant tensor. Inserting this into the integral equation (Equation (39)),

we get

t(r)�(r)(x� x(r)� ) = �C(r)�(r)(x� x(r)� )

+ �C(r)�(r)(x� x(r)� )
Z


dx0G(0)(x� x0)t(r)�(r)(x0 � x(r)� ): (44)

Integrating over 
 we get

t(r) = �C(r) + �C(r)G(r)t(r); (45)

or

t(r) = (I� �C(r)G(r))�1�C(r); (46)

where

G(r) =
1

j
(r)j

Z

(r)

dx
Z

(r)

dx0G(0)(x� x0); (47)
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and 
(r) is the region of an inclusion of type r centred at the origin. Clearly, G(r) is a

contant tensor, and its components can be evaluated by using the formulae discussed in

Appendix B.

From Equations (36), (41), and (43), we �nd that

T(x) � T1(x) +T2(x); (48)

where

T1(x) =
X
r

t(r)��(r)(x); (49)

T2(x) =
X
r

X
s

t(r)
Z


dx0G(0)(x� x0)��(r)(x)��(s)(x0)t(s)

�
X
r;�

t(r)�(r)(x� x(r)� )
Z


dx0G(0)(x� x0)�(r)(x0 � x(r)� )t(r); (50)

and

��(r)(x) =
X
�

�(r)(x� x(r)� ); (51)

is the indicator function for phase r.

In order to evaluate the e�ective elastic constants from Equation (32), or from some

equation implied by it, we need to construct an equivalent hTi. From Equation (48) we

get

hTi � hT1i+ hT2i: (52)

Equation (49) yields

hT1i =
X
r

t(r)v(r); (53)

where

v(r) = h��(r)(x)i; (54)
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is the relative volume concentration of phase r. From Equation (50) we get

hT2i =
X
r

X
s

t(r)
Z


dx0G(0)(x� x0)h��(r)(x)��(s)(x0)it(s) �

X
r

t(r) ~G(r)t(r); (55)

where

~G(r) =
X
�

1

j
j

Z


dx�(r)(x� x(r)� )

Z


dx0G(0)(x� x0)�(r)(x0 � x(r)� ); (56)

and we have replaced the ensemble average of the second term on the right-hand side of

Equation (50) by its volume average. Equations (47) and (56) imply that

~G(r) = v(r)G(r); (57)

since

v(r) =
X
�

j
(r)j

j
j
= n(r)

j
(r)j

j
j
: (58)

The exact expression (32) for the e�ective elastic constant C� can be rewritten exactly

as

(�C�)�1 = hTi�1 + �G; (59)

where

�C� = C� �C(0): (60)

Multiplying Equation (59) with hT1i from the left and using the standard rule for inversion

of tensor inner products, we get

hT1i(�C
�)�1 =

h
hTihT1i

�1
i�1

+ hT1i �G: (61)
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Combining Equations (52) and (61) we get

hT1i(�C
�)�1 �

h
I+ hT2ihT1i

�1
i�1

+ hT1i �G: (62)

If we now assume that

jjhT2ihT1i
�1jj < 1; (63)

where jj � jj denotes a suitable tensor norm, then it follows from Equation (62) that �C� �

�C�
T where

hT1i(�C
�
T )

�1 = I� hT2ihT1i
�1 + hT1i �G: (64)

After some tensor algebra, we can rewrite this expression for the e�ective material param-

eters:

�C�
T = hT1i(I� hT1i

�1X)�1; (65)

where

X = hT2i � hT1i �GhT1i: (66)

From Equations (30), (53), (54), (55), (57), and (66), we get

X =
X
r

X
s

t(r)hA(rs)it(s) �
X
r

t(r)v(r)G(r)t(r); (67)

where

hA(rs)i =
Z


dx0G(0)(x� x0)

h
h��(r)(x)��(s)(x0)i � h��(r)(x)ih��(s)(x0)i

i
; (68)

depends only on C(0) and the stochastic geometry of the microstructure. hA(rs)i can be

written as (Ponte Castaneda and Willis, 1995; Jakobsen et al., 2003a)

hA(rs)i = �rsv
(r)G(s) � v(r)v(s)G

(rs)
d ; (69)
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where

G
(rs)
d =

Z



(rs)
d

dx0G(0)(x� x0); x 2 

(rs)
d ; (70)

is a spatially invariant tensor since 

(rs)
d represents an ellipsoid having the same symmetry

as p(sjr)(z � z0) which, in turn, represents the probability density for �nding an inclusion

of type s centred at point z0 given that there is an inclusion of type r centred at point z.

Since p(sjr)(z � z0) = p(rjs)(z0 � z) it follows that G
(rs)
d = G

(sr)
d . We have assumed that

the inclusions do not overlap because an ellipsoid of type r is surrounded by a `security'

ellipsoid 

(rs)
d , in the sense that p(sjr)(z00) = 0 if z00 2 


(rs)
d . From Equations (67) and (69)

we �nd that

X = �
X
r

X
s

t(r)v(r)G
(rs)
d t(s)v(s): (71)

From equations (53), (60), (65), and (71), have a new expression for the e�ective elastic

constants

C� = C(0) +
X
r

t(r)v(r)

2
4I+

 X
s

t(s)v(s)
!�1X

u

X
v

t(u)v(u)G
(uv)
d t(v)v(v)

3
5
�1

; (72)

setting

C1 =
X
r

v(r)t(r); (73)

C2 =
X
r

X
s

v(r)t(r)G
(rs)
d t(s)v (s); (74)

we can express the e�ective sti�ness tensor as

C� = C(0) +C1(I+C�1
1 C2)

�1: (75)



B The tensors G(r) and G
(rs)
d

Jakobsen et al. (2003a,b) show that G(r) for an ellipsoidal inclusion can be written as

G(r)
pqrs = �

1

4
(E(r)

pqrs + E(r)
pqsr + E(r)

qprs + E(r)
qpsr); (76)

where

E(r)
pqrs =

Z �

0
d�sin�

Z 2�

0
d�D�1

qs (k)kpkrA
(r)(�; �); (77)

and D�1
qs (k) is the invers matrix of the Fourier transform of the displacement Green's

function, and

A(r)(�; �) =
1

�j
(r)j

Z 1

0
dkk2

Z

(r)

dxe�ik�x
Z

(r)

dx0e�ik�x
0

(78)

where k, � and � are the spherical coordinates in k space, and ki the Cartesian components

of k. A(r) represent a shape/orientation factor independent of the elastic constant.

The tensor G(r) can also be expressed by the Eshelby (1957) tensor of an ellipsoid, S(r),

given by (Torquato, 2002)

G(r) = �S(r)S(0): (79)

In the case a matrix material containing spheroidal inclusions with semiaxies a
(r)
1 = a

(r)
2 =

ar and a
(r)
3 = br and whose symmetry axis is aligned in the x3-direction, the Eshelby's

tensor (which generally is given in terms of elliptic integrals) can be evaluated analytically

(Mura, 1982). If the matrix material is isotropic then the components of S
(r)
ijkl are given by

(Torquato, 2002)

S
(r)
1111 = S

(r)
2222 =

3

8(1� �)

�2
r

�2
r � 1

+
1

4(1� �)

"
1� 2� �

9

4(�2
r � 1)

#
q; (80)
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S
(r)
3333 =

1

2(1� �)

(
1� 2� +

3�2
r � 1

�2
r � 1

�

"
1� 2� +

3�2
r

�2
r � 1

#
q

)
; (81)

S
(r)
1122 = S

(r)
2211 =

1

4(1� �)

(
�2
r

2(�2
r � 1)

�

"
1� 2� +

3

4(�2
r � 1)

#
q

)
; (82)

S
(r)
1133 = S

(r)
2233 =

1

2(1� �)

(
��2

r

�2
r � 1

+
1

2

"
3�2

r

�2
r � 1

� (1� 2�)

#
q

)
; (83)

S
(r)
3311 = S

(r)
3322 =

1

2(1� �)

(
2� � 1�

1

�2
r � 1

+

"
1� 2� +

3

2(�2
r � 1)

#
q

)
; (84)

S
(r)
1212 =

1

4(1� �)

(
�2
r

2(�2
r � 1)

+

"
1� 2� �

3

4(�2
r � 1)

#
q

)
; (85)

S
(r)
1313 = S

(r)
2323 =

1

4(1� �)

(
1� 2� �

�2
r + 1

�2
r � 1

�
1

2

"
1� 2� �

3(�2
r + 1)

�2
r � 1

#
q

)
(86)

where � is the Poisson ratio of the matrix, �2
r = br=ar is the aspect ratio f the rth spheroid,

and q is given by

q =
�r

(1� �2
r)

3=2
[cos�1�r � �r(1� �2

r)
1=2]; (87)

when �r � 1.

For an sphere (�r = and q = 3=2) the components of the Eshelby's tensor simpli�es

even more

S
(r)
ijkl =

5� � 1

15(1� �)
�ij�kl �

4� 5�

15(1� �)
(�ik�jl + �il�jk) (88)

The above expressions for the G(r) tensor can also be used to evaluate the G
(rs)
d tensor

and the tensor G(r) is identical to �P(r), where P(r) is a tensor well known for the works

of Willis and his associates (see e.g. Ponte Castaneda and Willis, 1995).



C Derivation of the equations for a single communi-

cating cavity

The derivation is taken from Jakobsen and Hudson (2003) and Jakobsen et al. (2003b).

The t-matrix in Appendix A can be expressed with a K-tensor which relates the strain,

�(r), within an inclusion to the imposed stress at in�nity (Jakobsen et al., 2003b; Jakobsen

and Hudson, 2003)

�(r) = K(r)�(0); (89)

where the K-tensor can be written as (Jakobsen et al., 2003b)

K(r) = [I4 �G(r)(C(r) �C(0))]�1S(0); (90)

such that the t-matrix is

t(r) = (C(r) �C(0))K(r)C(0): (91)

By linear superposition (Jakobsen et al., 2003b), the strain inside a fully saturated

cavity of type r with pore 
uid pressure p
(r)
f , under imposed stress �(0), is given by the

strain of the same dry cavity minus the strain within a similarly shaped and oriented

cavity with hydrostatic stress I2p
(r)
f applied both at in�nity and inside the cavity. I2 is

the second-rank identity tensor. By this argument and Equations (89) and (90) we get

(Jakobsen et al., 2003b; Jakobsen and Hudson, 2003)

K(r)
�
(0) = K

(r)
d (�(0) + I2p

(r)
f )� S(0)I2p

(r)
f : (92)

Here K
(r)
d is the dry response of the K-tensor.

Following Hudson et al. (1996), we require that the 
uid mass in an arbitrary volume

is conserved and that the average 
ow of 
uid is regulated by Darcy's law (Jakobsen et al.,
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2003b)

@mf

@t
= r

 
�f
�f
� � rpf

!
: (93)

Here mf is the total 
uid mass, �f is the 
uid mass density, �f is the viscosity of the


uid, � is a second-rank tensor of permeability parameters and pf is the average 
uid

pressure. The 
uid pressure and density of the r'th cavity are related by (Hudson et al.,

1996; Jakobsen et al., 2003b; Jakobsen and Hudson, 2003)

�0

�
(r)
f

= 1�
p
(r)
f

�f
; (94)

where �0 is the density of the unstressed 
uid and �f is the 
uid bulk modulus. The mass


ow out of the r'th set of cavities is assumed to be controlled by the expression (Hudson

et al., 1996; Jakobsen et al., 2003b; Jakobsen and Hudson, 2003)

@(�
(r)
f �v(r))

@t
=

v(n)�0
�f�

�
p
(r)
f � pf

�
; (95)

where � is the relaxation time constant.

The changes in the porosity can be be found from Equations (89) and (92) (Jakobsen

et al., 2003b; Jakobsen and Hudson, 2003)

�v(r) � v(r)

v(r)
= (Kd)uupq

�
�(0)pq + �pqp

(r)
f

�
� S(0)

uupq�pqp
(r)
f : (96)

Here v(r) is the unstressed porosity of the r'th cavity set.

By introducing a second-rank tensor 	 which relate the average 
uid pressure and

applied stress by (Jakobsen et al., 2003b; Jakobsen and Hudson, 2003)

pf = 	�(0); (97)
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and assuming the propagating plane wave has frequency !, we �nd from Equations (94) -

(97) that (Jakobsen et al., 2003b; Jakobsen and Hudson, 2003)

	(r) =
	� i!��fI2K

(r)
d

1 + i!
(r)�
; (98)


(r) = 1 + �f
�
K

(r)
d � S(0)

�
uuvv

; (99)

to �rst order in p
(r)
f =�f and

�
�v(r) � v(r)

�
=v(r). After some manipulation the above equations

can be written as (Jakobsen et al. 2003b; Jakobsen and Hudson, 2003)

	 = ��
NcX
r=1

v(r)I2K
(r)
d

1 + i!
(r)�
; (100)

where

� = �f

2
64(1� �fS

(0)
uuvv)

NcX
r=1

v(r)

1 + i!
(r)�
+ �f

NcX
r=1

v(r)
�
K

(r)
d

�
uuvv

1 + i!
(r)�
�

ikukv�uv�f
�f!

3
75
�1

: (101)

Here ku and kv are components of the wave number vector. The summation is over all

the cavities (r = 1; :::; Nc). From these equations the t-matrix for a single communicating

cavity (listed in papers 1-4) is given as

t(r) = t
(r)
d +

�Z(r) + i!��fX
(r)

1 + i!
(r)�
; (102)

X(r) = t
(r)
d S(0)(I2 
 I2)S

(0)t
(r)
d ; (103)

Z(r) = t
(r)
d S(0)(I2 
 I2)S

(0)
� NcX
n=1

v(n)t
(n)
d

1 + i!
(n)�

�
: (104)
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