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Preface

It all started back in 2014, when I was enrolled in the master’s program of statistics at
the University of Bergen. I was appointed Hans Arnfinn Karlsen as my main supervisor
and Bård Støve as co-supervisor. My master’s thesis (Hølleland, 2016) was about a
spatio-temporal extension of GARCH models. One month after presenting my work, I
started my Ph.D. position with Karlsen as my supervisor, continuing in the disciplinary
intersection of space, time and GARCH. Now, four years later, I am submitting my
Ph.D. thesis with both great joy and gratitude.

The present work has been produced during my four years of employment as Ph.D.
student at the Department of Mathematics, University of Bergen – from July 2016 to
July 2020.

The thesis conventionally consist of two parts. The first part introduces univariate
GARCHmodels with fundamental theory of stationarity and asymptotic properties of the
quasi maximum likelihood estimator. We also present an empirical example modelling
the S&P500 index series. Relating to Paper B, we have a brief discussion on GARCH
in temperature modelling. The multivariate CCC-GARCH model is discussed and we
give a bivariate empirical example. Spatial (G)ARCH is presented and we explain the
boundary problem of spatial statistics. The circular model and half-space models are
finally presented, before we introduce the papers and some computer code.

The second part consists of the following four papers:

Paper A Sondre Hølleland and Hans A. Karlsen, A spatio-temporal GARCH model.
Journal of Time Series Analysis 41, 2, 2020.

Paper B Sondre Hølleland and Hans A. Karlsen, Decline in temperature variability
on Svalbard.
Revision submitted to Journal of Climate, 2020.

Paper C Sondre Hølleland and Hans A. Karlsen, Space-Time ARMA-GARCH models
with applications.

Paper D Hans A. Karlsen and Sondre Hølleland, Spatial GARCH processes.
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Abstract

This thesis contributes to the scientific community in several aspects. We introduce both
spatial- and spatio-temporal extensions to the family of GARCH and ARMA-GARCH
models and present asymptotic statistics for the quasi maximum likelihood estimators
[QMLE] for the GARCH extensions. An important property of these extensions are
their spatial- and spatio-temporal stationarity, which is part of the model specifications.
The models all exist on an equidistant d-dimensional grid, be it purely spatial or spatio-
temporal. Volatility modelling is important in finance, but we also present applications
from other fields of study, e.g. climate, meteorology and even cell biology. In stationary
spatial statistics on infinite lattices, a boundary problem arises. This is dealt with, in
two of the papers, by assuming a circular model. This means wrapping the spatial part
of the grid of observation onto a torus surface by connecting opposing edges, and effec-
tively removing the boundaries so that each site’s neighbours are observed. The torus
space is good for visualization and the point is that we regard sites on opposite sides
of the rectangle we observe as neighbours. Circulation changes the area of observation
from infinite to being closed and finite, and proving asymptotic results becomes easier.
Consistency and asymptotic normality of the QMLE is established in the circular situ-
ation for GARCH models. The circular model can be used as an approximation of an
infinite grid model, in which the circular estimator will be biased. In this setting, we
suggest a parametric bootstrap bias correction to compensate for the false links between
boundary sites due to circulation. In simulation studies, this approach provides good
results for both GARCH and ARMA-GARCH models. For ARMA-GARCH, it is not
uncommon to fit an ARMA model to data and a GARCH model to its residuals, but si-
multaneously estimating all parameters is better. We show by a simulation experiment
that the variance of the ARMA-part of the QMLE can be reduced by doing this. The
second paper of this thesis is an application of non-stationary GARCH modelling in cli-
mate research. We investigate how volatility has developed in a daily temperature series
at Svalbard Airport over the last 44 years. During this period the temperature there
has increased intensively. We model the volatility using a GARCH model with a trend,
where the slope depends on the day of the year. Except for the summer, we find a de-
creasing temperature variability, i.e. a negative trend. The temperature on Svalbard is
getting higher and more stable at the same time and we believe this is due to the reduced
sea ice extent in the region. Without the circulation, on an infinite grid and in a po-
tentially purely spatial setting, we turn to half-space GARCH models in the final paper.
These models use an ordering of the spatial locations, extending non-deterministic time
series to space. The MLE used is based on a modified likelihood, and we show that it
is consistent and asymptotically Gaussian. Instead of the standard Lyapunov condition
for existence of a stationary solution, a generalization of Nelson’s criteria is used.
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Part I

Introduction





Chapter 1

Theory review

The common thread of this thesis is GARCH, or generalized autoregressive conditional
heteroskedasticity, models. Although this full name may seem like a mouthful, it is
quite accurate. When Engle (1982) suggested the ARCH model, for which he won the
2003 Nobel Prize in economic sciences together with Clive W.J. Granger, it was an
autoregressive model for conditional heteroskedasticity, i.e. time varying conditional
volatility. Later, Bollerslev (1986) generalized the models by adding a recursive term,
hence the G in GARCH.

The models are mainly applied in finance and econometrics, where modelling volatil-
ity of returns on e.g. stocks, currency rates and bonds are relevant. A reason for this is
that the models capture many characteristics of financial returns. McNeil et al. (2005,
p.117) list the following empirical observations about return series, which are so en-
trenched in econometric science that they are referred to as stylized facts:

SF1: Return series are not iid although they show little serial correlation.

SF2: Series of absolute or squared returns show profound serial correlation.

SF3: Conditional excepted returns are close to zero.

SF4: Volatility appears to vary over time.

SF5: Return series are leptokurtic or heavy-tailed.

SF6: Extreme returns appear in clusters.

GARCH models are designed to mimic all of the above. A GARCH series is uncorrelated
(SF1), while the squared series has a correlation structure similar to that of an ARMA
model (SF2). The conditional expectation of the observations is zero (SF3) and the
conditional volatility is time dependent (SF4). Since the conditional volatility depends
on previous squared returns, an extreme return yesterday will give a high volatility for
tomorrow as well, leading to volatility clusters (SF6). Volatility clustering is the tendency
for extreme returns to be followed by other extreme returns. GARCH models are heavy-
tailed (SF5), even when the innovations are Gaussian. Using a Student’s t-distribution
instead will further strengthen the leptokurtic property.

We start by considering relevant theory for univariate GARCH models.
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1.1 Univariate GARCH

Let {Xt} denote a time series of uncorrelated variables with expectation zero. Then a
GARCH(p, q) model is defined by

Xt = σtZt, σ2
t = ω +

p∑
j=1

αjX
2
t−j +

q∑
j=1

βjσ
2
t−j , (1)

where {σt} is the conditional volatility series, {Zt} the innovations and θ = (ω, α1, . . . , αp,
β1, . . . , βq) is the parameter vector, contained in the parameter space Θ. The restric-
tions on Θ include that all the parameters must be non-negative and ω > 0. Let θ0 ∈ Θ
denote the true parameter vector generating the observations. The innovations are in-
dependent and identically distributed (iid) with EZt = 0 and EZ2

t = 1. If βj ≡ 0, (1) is
an ARCH(p) model.

A squared GARCH process has an ARMA representation, which can be useful for
studying the fourth order properties of the model. Let Ut = σ2

t (Z
2
t − 1), then X2

t =
σ2
tZ

2
t = σ2

t + σ2
t (Z

2
t − 1) = σ2

t + Ut, and

X2
t = ω +

p∑
j=1

αjX
2
t−j +

q∑
j=1

βjσ
2
t−j + Ut

= ω +

p∨q∑
j=1

(αj + βj)X
2
t−j −

q∑
j=1

βjUt−j + Ut,

(2)

which we recognize as an ARMA(p∨q, q) with a non-zero intercept. Here we have defined
αj = 0 and βj = 0 for j > p and j > q, respectively.

Second order stationarity If we assume that the GARCH process is second order stationary,
this implies that VarXt = EX2

t = Eσ2
t = τ2 is constant, and we get that

τ2 = ω +

p∑
j=1

αjEX
2
t−j +

q∑
j=1

βjEσ
2
t−j = ω +

( p∑
j=1

αj +

q∑
j=1

βj

)
τ2,

τ2 =
ω

1−
∑

αj −
∑

βj
.

Clearly this indicates that for τ2 <∞, it is necessary that

p∑
j=1

αj +

q∑
j=1

βj < 1. (3)

In fact, (3) is equivalent to second order stationarity.

Theorem 1. The GARCH(p, q) process defined by (1) is a white noise process if and
only if (3) holds.

Proof. See Bollerslev (1986, Theorem 1).
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Nelson and the Lyapunov exponent Nelson (1990) showed that a GARCH(1, 1) model is
strictly stationary if and only if

E log(α1Z
2
t + β1) < 0. (4)

Applying Jensen’s inequality and using that EZ2
t = 1, we get

E log(α1Z
2
t + β1) ≤ log(α1 + β1) < 0,

which is equivalent to (3) for p = q = 1. That is, (3) ⇒ (4). As noted by Straumann
and Mikosch (2006), the same condition can be derived using a stochastic recurrence
equation [SRE] argument. The SRE for σ2

t is given by

σ2
t = (α1Z

2
t−1 + β1)σ2

t−1 + ω = Atσ
2
t−1 +Bt,

where At = α1Z
2
t−1 + β1 and Bt = ω. Then, the sequence (At, Bt) is iid and it follows

from Brandt (1986) that E log |A0| < 0 and E log+ |B0| < ∞ guarantee existence and
uniqueness of a strictly stationary solution to the SRE Yt = AtYt−1 + Bt. In a sense,
Nelson (1990) reinvented the wheel, although he was probably the first to put this in a
GARCH context.

When p ∨ q ≥ 2, stationarity conditions go from a univariate formulation to a mul-
tivariate one and thus become harder to establish. A necessary and sufficient condition
for existence of a unique, non-anticipative, strictly stationary solution to (1) was shown
by Bougerol and Picard (1992a, Theorem 1.3). The condition is that the top Lyapunov
exponent of the sequence of matrices {Qt} is strictly negative at θ0, where

Qt(θ0) =


α1Z

2
t + β1 β2 · · · βq−1 βq α2 · · · αp−1 αp

Iq−1 0 0(q−1)×(p−2) 0

Z2
t 0 · · · 0 0 0 · · · 0 0

0(p−2)×(q−1) 0 Ip−2 0


(p+q−1)×(p+q−1).

When E log+ ‖Q0‖ <∞, the top Lyapunov exponent, γQ, is defined by

γQ = lim
n→∞

n−1 log ‖QnQn−1 · · ·Q1‖ a.s.

For p = q = 1, the condition γQ < 0 reduces to (4). That γQ < 0 is sufficient follows
immediately from Brandt (1986). Bougerol and Picard (1992b) establish that it is also
necessary, though with a rather involved proof.

1.1.1 Quasi maximum likelihood estimation

Parameter estimation of GARCH models is often done by quasi maximum likelihood.
This means using a Gaussian distribution for the innovations, irrespective of their true
distribution. It is done by defining a likelihood process

ht(θ) = ω +

p∑
j=1

αjX
2
t−j +

q∑
j=1

βjht−j ,
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with ht(θ0) ≡ σ2
t . Let n ∈ N+ denote the sample size. The theoretical quasi log-likelihood

is then given by

Ln(θ) =

n∑
t=1

`t(θ), `t(θ) = −1

2

(
log ht +

X2
t

ht

)
, (5)

where X2
t does not depend on θ and is generated under θ0. Corresponding to ht and `t,

we define ĥt and ̂̀t in the same manner, except that these are to be initiated for t ≤ 0,
while ht assumes an infinite history for {Xt}. By replacing ht and `t in (6), we get L̂n.
The quasi maximum likelihood estimators (QMLEs) are the parameters that maximize
L̂n and (5), respectively, i.e.

θ̂n = argmax
θ∈Θ

L̂n(θ) and θ̃n = argmax
θ∈Θ

Ln(θ). (6)

The empirical likelihood, L̂n, is an approximation of the theoretical Ln. We denote
L(θ) = Eθ0`(θ) as the asymptotic likelihood, where ` = `t(θ) for an arbitrary t ∈ Z. We
use the same notation for h = ht and σ2 = σ2

t .

Consistency and asymptotic normality

Under specific regularity conditions, θ̂n is consistent and asymptotic normally dis-
tributed. This was first established by Weiss (1986) for ARCH models under fourth
order moment conditions on Xt. Lee and Hansen (1994) and Lumsdaine (1996) devel-
oped asymptotic statistics for GARCH(1, 1), while Boussama (1998, 2000), Jeantheau
(1998), Berkes et al. (2003), Straumann and Mikosch (2003, 2006) and Francq and Za-
koïan (2004) cover the general GARCH(p, q). The number of publications in this rela-
tively short time period indicates a strong competitive fight to be the first to rigorously
prove precise asymptotic results for GARCH(p, q). Jeantheau (1998) considers consi-
tency for multivariate GARCH, while Straumann and Mikosch (2003, 2006) prove con-
sistency and asymptotic normality for more general conditionally heteroskedastic time
series, with GARCH(p, q) as a special case. We present consistency and asymptotic
normality results as given by Francq and Zakoïan (2004), which could be seen as an
accumulation of knowledge from the others.

Let A(z) =
∑p

j=1 αjz
j and B(z) = 1 −

∑q
j=1 βjz

j , where A(z) = 0 if p = 0 and
B(z) = 1 if q = 0. The list of assumptions are:

A1: θ0 ∈ Θ and Θ is compact.

A2: γQ < 0 and
∑q

j=1 βj < 1 on Θ.

A3: Z2
t has a non-degenerate distribution with EZ2

t = 1.

A4: At θ0, if q > 0, A(z) and B(z) have no common root, A(1) 6= 0 and αp + βq 6= 0.

A5: θ0 ∈ Θ◦, where Θ◦ is the interior of Θ.

A6: κZ = VarZ2
t <∞.

Theorem 2. Under A1-A4, we have strong consistency; θ̂n → θ0 almost surely.

Proof. See Francq and Zakoïan (2004) or Straumann and Mikosch (2006).



1.1 Univariate GARCH 7

For their consistency conditions, Berkes et al. (2003) assume that EZ2+δ
t < ∞ for

some δ > 0. The additional δ is assumed here, because the authors use the uniform
convergence approach for their consistency proof. We will return to this shortly. As
the corresponding consistency result of Straumann and Mikosch (2006) covers a more
general situation, their assumptions are less specific to the GARCH(p, q) model.

Theorem 3. Under A1-A6,
√
n(θ̂n − θ0) is asymptotically distributed as

N (0, 2−1κz I−1
0 ), where

I0 = 2−1Eθ0∇ log ht∇′ log ht.

Proof. See Francq and Zakoïan (2004) or Straumann and Mikosch (2006).

The assumption A5 is clearly necessary, since the asymptotic distribution cannot be
Gaussian with expectation at a boundary point. Compared to A6, Berkes et al. (2003)
assume that E |Zt|4+ε < ∞ for some ε > 0, while Boussama (2000) assume EZ6

t < ∞.
Straumann and Mikosch (2006) avoid this epsilon by using SRE theory.

Proving consistency For proving strong consistency of the QMLE in a GARCH setting
there is a recipe. You first prove that θ̃n is strongly consistent and then you show that
θ̂n also must be. The last connection is established by showing that n−1‖L̂n−Ln‖Θ → 0
a.s. where ‖ · ‖Θ = supθ∈Θ | · | denotes the sup norm. In addition, you need to show that
the maximum is identifiable and unique, meaning that L(θ) < L(θ0) for all θ ∈ Θ\{θ0},
with equality if and only if θ ≡ θ0.

There are two main strategies of consitency proofs used in the GARCH literature –
with and without uniform convergence of n−1Ln. This is illustrated by Straumann and
Mikosch (2006), who consider both approaches. With uniform convergence, consistency
is established by applying a version of the uniform strong law of large numbers (Rao,
1962). It requires the finiteness of E ‖`‖Θ < ∞, which Straumann and Mikosch (2006)
solve by assuming that E ‖σ2/h‖Θ <∞ and E ‖ log h‖Θ <∞. Finite variance is sufficient
for the former condition.

The other approach uses a result established by Pfanzagl (1969, Lemma 3.11) and
avoid this moment condition. The basic idea dates back to Wald (1949) and the lemma
of Pfanzagl is essentially the same as Lemma 5 of LeCam (1953), although LeCam does
not address some of the relevant measurability questions. The lemma shows that under
weak conditions, n−1Ln → L a.s., L is upper semi-continuous and that

lim ‖n−1Ln‖Θ′ ≤ ‖L‖Θ′ (7)

holds for any compact subset Θ′ ⊆ Θ. With (7) established and since an upper semicon-
tinuous function attains its maximum on compact sets, one can use standard arguments
as presented by e.g. Ferguson (1996, pp. 114-115) for arguing that θ̃n is consistent.

The two approaches divide the literature of consitency proofs in the GARCH setting
with Lee and Hansen (1994), Lumsdaine (1996) and Berkes et al. (2003), who use the
first approach, while Jeantheau (1998), Straumann and Mikosch (2003, 2006) and Francq
and Zakoïan (2004) rely directly on Pfanzagl (1969). In this context, Francq and Zakoïan
(2004) construct their own version of that lemma. This is somewhat surprising, since
the approach for consistency based on Pfanzagl (1969) was established prior to their
publication.
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Proving CLT Asymptotic normality of the QMLE typically rest on a Taylor expansion of
the score function at θ0. Since θ̃n satisfies the likelihood equations ∇Ln(θ̃n) = 0, and by
dividing by n1/2, we get that

(Jn + Rn)n1/2(θ̃n − θ0) = n−1/2∇Ln(θ0), Jn = n−1Jn, Rn = n−1Rn,

where Jn = −∇2Ln(θ0) and Rn is the remainder term from the Taylor expansion. Prov-
ing asymptotic normality of θ̂n then follows by showing that;

i) The remainder Rn can be neglected.

ii) The observed information matrix, Jn converges to a positive definite matrix; I0.

iii) The observable estimator θ̂n and its theoretical counterpart θ̃n are square root
n-equivalent.

iv) The score function, ∇Ln(θ0), is asymptotically normal.

As often is the case; the devil is in the details, but this list, or variations of it, cover the
main ingredients. An obstacle for (i) is to verify the existence of higher order moments
of the score function.

Let us consider an empirical example illustrating GARCH modelling.

Example 1. The classical application for univariate GARCH models is stock- or finan-
cial index data. We consider the Standard & Poor’s 500 stock index, acquired from
Yahoo Finance using the R package quantmod (Ryan and Ulrich, 2020), from January
1st 2005 to April 30th 2020 giving 3 857 observations, presented in Figure 1. This pe-
riod includes the financial crisis of 2008 and the SARS-CoV-2 (Covid-19) pandemic of
2020, for which governments around the world shut down large parts of their activities
to stop the spread. There are also some events which seem to correspond well with the
US presidential elections. We estimate a GARCH(1, 1) model to the return data. Let Vt
denote the value of the index at time t. The return series is then calculated as

Xt =
Vt − Vt−1

Vt−1
=

Vt
Vt−1

− 1, (8)

and modelled by
Xt = σt Zt, σ2

t = ω + αX2
t−1 + β σ2

t−1.

We use the QMLE given by (6) to estimate the parameters and the results are presented
in Table 1. We see that α+β = 0.978 < 1, indicating weak stationarity and the variance,
τ2, is estimated to ω̂/(1− α̂ − β̂) = 1.17 · 10−4, which is a bit lower than the empirical
variance of 1.55 · 10−4.

In Figure 2A we have plotted the return series with {±1.96h
1/2
t (θ̂n)}. This seems to

cover the data quite well and you may especially notice how it captures the increased
volatility in the volatile periods, e.g. leading up to the 2008 financial crisis. In Figure 2B
and C we consider the standardized residuals, Ẑt = Xt h

−1/2
t (θ̂n). The sample autocor-

relation function indicates only smaller deviations from insignificant serial correlation
(B), while the qq-normality plot (C) especially indicates a heavier lower tail than the
Gaussian. The asymmetry may be an indication of the tendency of losses having heavier
tails than gains. The economic interpretation is that a fall in equity value increases the
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Figure 1: Closing price and daily returns of the Standard & Poor’s 500 index.

Estimate Standard errors T-score P-value

ω 2.56 · 10−6 0.35 · 10−6 7.34 0.00
α 1.31 · 10−1 0.11 · 10−1 11.70 0.00
β 8.47 · 10−1 0.12 · 10−1 71.97 0.00

Table 1: Parameter estimates with standard errors, t-scores and p-values for the S&P
500 return series.

debt-to-equity ratio, i.e. the leverage of a company, and should consequently make the
stock more volatile (McNeil et al., 2005, p. 149). This characteristic has therefore been
called a leverage effect, for which an exponential- (Nelson, 1991) or threshold GARCH
(Glosten et al., 1993) could be better suited.

1.1.2 GARCH in temperature modelling

As we have just seen an example of, GARCH models are mainly applied to financial- or
econometric time series, but not exclusively. GARCH can also be used in other contexts,
often as a residual model for situations where the residuals are heteroskedastic or show
signs of volatility clustering.

One application outside finance is temperature modelling. Tol (1996) uses an AR(2)-
GARCH(1,1) model on a daily temperature series from De Bilt, The Netherlands. He
concludes that the heteroskedastic models outperform their homoskedastic versions.
Franses et al. (2001) model weekly mean temperatures, also with an AR-GARCH and
in The Netherlands, including seasonal components. Their model allows for asymme-
try in the conditional volatility, which they conclude is present in the data. Taylor and
Buizza (2004) compare the predicting performance of these models against ensemble
prediction methods, but conclude that the ensemble approach is preferred. In prepro-
cessing temperature series for studying their tail distribution, Dupuis (2012, 2014) uses
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Figure 2: Model evaluation plots for the S&P 500 return series. See text for details.

a deterministic seasonal- and an exponential GARCH model, respectively.
In the intersection between finance and meteorology, we find weather derivatives.

To set a price on a weather derivate, you need a model for the weather. Campbell
and Diebold (2005) suggest a temperature model for predicting the temperature in four
major US cities; Atlanta, Chicago, Las Vegas and Philadelphia. Their model consists
of an autoregressive term, a trend and a seasonal part. The residuals are modelled as a
GARCH with seasonal intercept using sine and cosine functions. In Paper B, we take a
similar approach to model development in temperature variability on Svalbard, although
our volatility model includes a trend that depends on the day of the year.

1.2 CCC-GARCH

For multivariate GARCH, the applications have traditionally been in the same areas as
univariate; finance and econometrics. In the GARCH literature there exits a large num-
ber of alternative formulations with their very own acronym. In fact, Bollerslev (2008)
wrote a 42 pages long glossary for ARCH and GARCH acronyms with explanations,
many of which are multivariate models.

We will focus our attention on the subclass of multivariate GARCH [MGARCH]
models that is most relevant for this thesis; the constant correlation coefficient [CCC]
model. This model was introduced by Bollerslev (1990) and extended by Jeantheau
(1998) to the form we use today. Let

Xt =


Xt,1

Xt,2
...

Xt,m

 , σt =


σt,1
σt,2
...

σt,m

 , Zt =


Zt,1
Zt,2
...

Zt,m

 and Dt =


σt,1 0 . . . 0
0 σt,2 . . . 0
...

... . . . ...
0 0 . . . σt,m

 ,
with m ∈ N+. When we write a squared vector, we mean this in a Hadamard way, i.e.
for a = (a1, a2, . . . , am) ∈ Rm, let a2 = a ◦ a = (a2

1, a
2
2, . . . , a

2
m). A CCC-GARCH(p, q)
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process, {Xt ∈ Rm}, is defined by

Xt = H1/2
t Zt, Ht = Dt R Dt,

σ2
t = ω +

p∑
j=1

AjX
2
t−j +

q∑
j=1

Bjσ
2
t−1,

(9)

where R is a correlation matrix, ω a m × 1 vector with positive coefficients, Aj and
Bj are m × m matrices with non-negative coefficients, {Zt ∈ Rm} is a sequence of iid
standardized variables. We can write Xt = DtWt, whereWt = R1/2Zt is a centred vector
with covariance matrix R. The components of Xt will then have the usual form Xt,j =
σt,jWt,j , but the conditional variance σ2

t,j depends on the past of all the components of
X2
t .
By requiring that Aj and Bj consist of nonnegative coefficients and that R is positive

definite, Ht is positive definite. However, less restrictive conditions can be found (Con-
rad and Karanasos, 2010). Strict stationarity conditions based on a Lyapunov condition
generalize directly from the univariate case (Bougerol and Picard, 1992a), which cannot
be said for general MGARCH models. There also exist representations of (9) where the
matrices Bj are diagonal. Limitations of these models are non-stability by aggregation
and the arbitrary nature of assuming constant conditional correlations (Francq and Za-
koian, 2019, pp. 279-280), which is often violated in applications. For instance, when
the entire market crashes, correlations are typically higher than in a normal state. Thus,
a CCC-GARCH has too little flexibility in the conditional volatility.

Jeantheau (1998) gave general conditions for strong consistency of the QMLE for
MGARCH, while Ling and McAleer (2003) established consistency and asymptotic nor-
mality of vector ARMA-GARCH for the CCC formulation. For the pure CCC-GARCH
case, see Francq and Zakoian (2019, Thm 10.8 and 10.9). Aue et al. (2009) established
a sufficient condition for strict stationarity and the existence of fourth-order moments of
the process (9).

We illustrate usage of CCC-GARCH by an empirical example.

Example 2. We model two series of stock returns simultaneously using a CCC-GARCH
model. The companies we consider are Amazon.com Inc. and Microsoft Corporation
and the data is acquired from Yahoo Finance using the R package quantmod (Ryan and
Ulrich, 2020). The returns are calculated by (8) and mean subtracted prior to modelling.
With a bivariate model the correlation matrix R is reduced to one parameter ρ to be
estimated. The model can be formulated as

σ2
t = ω + AX2

t−1 + Bσ2
t−1, A =

[
a11 a12

a21 a22

]
, B =

[
b11 0
0 b22

]
, R =

[
1 ρ
ρ 1

]
,

with ω = (ω1, ω2)′. We have assumed B diagonal to simplify the model. In Figure 3,
we have plotted the two series with the fitted volatility as confidence bands. Parameter
estimation is done by a QMLE similar to (6). We start out with the parameter vector
θ = (ρ, ω1, ω2, a11, a12, a21, a22, b11, b22)′ and gradually remove insignificant parameters
with a significance level of 5%. We use AIC for model selection and a sandwich estimator
to estimate the covariance matrix of the estimator. With AIC, the initial model is the
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Figure 3: Return series of Amazon.com Inc and Microsoft Corporation from 2005 to
April 2020 with ±1.96 σ̂t,j from the fitted CCC-GARCH model.

Estimates Standard errors T-score P-value
ρ 4.43 · 10−1 2.34 · 10−2 18.91 0.00
ω1 5.03 · 10−5 1.54 · 10−5 3.27 0.00
ω2 1.93 · 10−5 6.03 · 10−6 3.20 0.00
a11 5.93 · 10−2 3.83 · 10−2 1.55 0.12
a12 9.34 · 10−2 5.41 · 10−2 1.73 0.08
a21 8.15 · 10−3 7.54 · 10−3 1.08 0.28
a22 1.23 · 10−1 2.99 · 10−2 4.10 0.00
b11 8.15 · 10−1 3.37 · 10−2 24.17 0.00
b22 7.90 · 10−1 4.61 · 10−2 17.14 0.00

Table 2: Estimation results for Example 2.

preferred one. The resulting parameter estimates with t-scores and p-values are reported
in Table 2. If we were to use the inverted Hessian as estimate for the covariance matrix,
all estimates would be significant at the 5% level, but using the more robust sandwich
estimator gives p-values above 5% for a11, a12 and a21. Removing any of these will
however increase the AIC. The sandwich estimator does not require knowledge of the
residual distribution. Note that the constant correlation coefficient, ρ, is estimated to
0.443, between Microsoft and Amazon returns.

These multivariate models are well suited for applications such as the one in Example
2, but if we were to use them directly in a spatio-temporal setting with many spatial
locations, the number of parameters to be estimated would be large. This can be solved
by assuming Aj and Bj to be sparse matrices, where only neighbouring locations influence
each other. This will work in the spatio-temporal setting and is what we do in Paper A
and Paper C. In the purely spatial setting, the link to CCC-GARCH is no longer relevant.
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1.3 GARCH in space

The title of this thesis includes both time and space. Up until now we have only consid-
ered volatility modelling in time, but spatial volatility modelling is also possible.

Let X = {X(s), s ∈ R} be a spatial process defined on a discrete spatial network R
that have a neighbourhood geometry. We classify these processes in two bins, when the
spatial area of observation, R, is irregular or regular. The irregular cases are often found
in domains like econometrics, environmental studies, epidemiology or geography, with
sites s ∈ R representing centroids of geographical units, such as municipals, counties
or countries. The variable of interest at site s is X(s). In the other class, where R is
regular, we find domains such as imaging, radiography and remote sensing. Here R will
typically be a subset of Zd and this enables the process to be stationary. For d = 1,
these are the closest to time series. The fundamental difference is the lack of a natural
ordering of R that is inherent in time series.

Otto et al. (2018, 2019) introduce a spatial ARCH model formulated as

X = σ ◦ Z, σ2 = ω + WX2, (10)

with X = (X(s1), . . . , X(sm)) and correspondingly for σ, Z and ω ≥ 0. The m sites
{sj ∈ R} denote locations in a finite d dimensional space and the m×m spatial weight
matrix W, is assumed to have zeros on the diagonal, be non-stochastic and nonnegative.
The spatial weight matrix is further parametrized in some way, e.g. W = αW̃ or W =
diag(α1, . . . , αm)W̃, where W̃ is a known spatial weight matrix and α and {αj} are
parameters. For existence of a unique solution of (10), the support of the squared
innovations has to be bounded, i.e. Z2(sj) ≤ a for all j = 1, . . . ,m, where a is a positive
real number (Otto et al., 2018, Theorem 1). This is a strong restriction.

The spatial weight matrices are often used as a convenient notation for vectorized
spatial models. If the observations are on a regular grid W̃ can be defined by contiguity
matrices, such as the queen- or rook contiguity matrices. These are constructed based
on the movement patterns of the respective chess pieces as illustrated in Figure 4 and
are used in Paper A and Paper C. If R is irregular, W̃ can be a k-nearest neighbours
matrix, an inverse distance matrix or a contiguity matrix in the Hotelling sense.

If you use a contiguity neighbourhood on R ⊂ Zd, such as the rook or queen in Fig-
ure 4, and you desire for a stationary model, this implies that the dependence structure
should be the same no matter which site you are considering. That is; the neighbour-
hood structure is translation invariant. If you are considering a point at the boundary,
say h1 on the chessboard in Figure 4 with a first order rook contiguity neighbourhood.
The process at h1 depends on g1 and h2, but also i1 and h0, which both are outside the
chessboard. This is the boundary problem of spatial statistics.

1.3.1 The boundary problem and circulation

The boundary problem in spatial statistics arise in stationary spatial- and spatio-
temporal processes with a translation invariant neighbourhood structure. In the center
of the spatial region you will most likely have observations for all dependent variables,
but as you move your focus closer to the boundary, dependent neighbours will eventu-
ally be outside your area of observation. For d ≥ 2 this is a potentially big problem, as
the edge effect will be the dominating source of bias (Guyon, 1982).
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Figure 4: Rook- and queen contiguity neighbourhoods up to order three on a chessboard.
The numbers and colours indicate the order of neighbourhood, defined by the number
of moves necessary by the respective chess pieces if you move one tile at the time.

In Paper A we introduce the terms circular, circulation and circulating. By this we
mean treating a spatial rectangle as if it was a torus when it comes to neighbourhood
relations. This is a common approach in a purely spatial context and is sometimes
referred to as wrapping the space onto a torus. The benefit of having a toroidal surface
is the lack of boundary effects – simply because a torus surface has no boundary. This
can be seen in Figure 5, where we have circulated the rook and queen contiguities from
Figure 4. This does not imply any changes to the observations, but in e.g. (10), we will
use a circular spatial weight matrix, W̃, that connects opposing edges in the spatial area
of observation. The weight matrix is particularly useful for the torus model, since the
circulation method can be implemented by a careful specification of this matrix. For
d = 1, circulating implies connecting the edges of a line – forming a circle.

In the spatial statistics literature the circular assumption is mentioned by Cressie
(2015, p. 438) for dealing with the boundary problem on infinite lattices. Moran (1973a)
considered a stationary Gaussian process with first-order neighbourhood structure on a
square torus lattice and let the size of the torus tend to infinity. He later extended to
certain non-Gaussian processes (Moran, 1973b). Others who have assumed a circular
model are e.g. Rue and Tjelmeland (2002), Allcroft and Glasbey (2003) and Thon
et al. (2012) for spatial processes and Glasbey and Allcroft (2008) for spatio-temporal.
Circulation is also used in convolutional neural networks (Goodfellow et al., 2016; Maron

Figure 5: Circular rook- and queen contiguity neighbourhoods, corresponding to Fig-
ure 4, illustrated on the 8× 8 torus surface.
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et al., 2017). The spdep R package (Bivand and Wong, 2018) contains functions for
making spatial weight matrices with a torus option for circulation.

As alternatives to circulation, Cressie (2015, p. 422) also suggest integrating out the
unobserved data from the conditioning event or constructing a guard area inside the
perimeter of the area of interest, where observations contribute to the likelihood only
through their neighbourhood relations with internal locations. Griffith (1983) and Grif-
fith and Amrhein (1983) compare different strategies for dealing with the boundary
problem and in short conclude that no method is all that satisfactory. A version of the
guard area approach is used in Paper D, where we introduce half-space GARCH models.

1.3.2 Half-space models

Half-space models oppose the lack of ordering in spatial processes. By defining an or-
dering of the spatial locations, one can define a causal relationship much like the one we
know from time series. In a spatial situation it is rare that a process only is influenced
by other variables from a certain direction, but you can imagine for instance a process on
a river where the stream floats in a certain direction. Observations up-stream influences
those further down the stream, but not the other way around. However, this should not
be the selling-point of half-space models. These models should probably not be used in
settings where the interpretation of the parameters is a vital part of the modelling. If the
goal is a parametrization of the correlation structure on a grid, the half-space method
can be an efficient way to achieve this. The autocorrelation function itself does not rec-
ognize its half-space heritage. A characteristic of half-space models is that the spatial
area is infinite, i.e. R = Zd.

Half-space representations were introduced by Whittle (1954), who considered the
two dimensional case. Helson and Lowdenslager (1958, 1961) developed a mathemati-
cal theory for half-space representations and Tjøstheim (1983) established asymptotic
inference for half-space autoregressive models. A half-space S+ ⊂ Zd, is defined by
Zd = S+ ∪ S− ∪ {0} being a partition, S− = −S+ and S+ being closed under addition.
A half-space structure defines a total ordering giving a past, present and future at each
site. For s, t ∈ Zd, we write s ≺ t if t − s ∈ S+ and s � t including the case s = t.
A common choice for S+ is the lexicographical half-space. If d = 2, s = (s1, s2) ∈ Z2

and t = (t1, t2) ∈ Z2, we have that s ≺ t if s1 < t1 or if s1 = t1 and s2 < t2. The lexi-
cographical half-space is visualized in Figure 6 for d = 2. An autoregressive half-space
spatial model at location t only depends on variables at locations s for which s ≺ t, i.e.
observations in the past. This is the natural generalization of time series to spatial mod-
els and, for d = 1, a half-space model is a univariate time series. For d ≥ 2, one can
define the dominant index as time and get a spatio-temporal series. Half-space mod-
els belong to the class of unilateral models and causal quadrant models are a subclass
of half-space models for which dependent variables are located at points where sj ≤ tj ,
j = 1, . . . , d, except for s ≡ t. The unilaterial processes have been studied by Tjøstheim
(1978, 1983), Korezlioglu and Loubaton (1986), Basu and Reinsel (1993) and Yao and
Brockwell (2006) to mention a few. On a more practicle note, Mojiri et al. (2018) com-
pare the use of unilateral spatial models for predicting unobserved areas to traditional
kriging in a simulation study and conclude that these models are able to compete.

Although the half-space model formulation signifies a directional dependence, the
following example, inspired by Gaetan and Guyon (2010, Example 1.9-1), illustrates
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Figure 6: Lexicographic half-spaces S+ and S− = −(S+) for Z2.

that a half-plane (d = 2) SAR model can be expressed as a CAR model with more
symmetries.

Example 3. Let s = (s1, s2) ∈ R = Z2 and

X(s1, s2) = αX(s1 − 1, s2) + βX(s1, s2 − 1) + Z(s1, s2), Z(s1, s2) ∼ iid WN(0, σ2
Z),

be a causal quadrant SAR model. Note that (s1 − 1, s2) ≺ (s1, s2) and (s1, s2 − 1) ≺
(s1, s2), i.e. this is a half-space model under the lexicographical ordering. We will find
a symmetric CAR representation of this process. With (s1, s2) fixed, we have three
equations involving X(s1, s2);

X(s1, s2) = αX(s1 − 1, s2) + βX(s1, s2 − 1) + Z(s1, s2),

X(s1 + 1, s2) = αX(s1, s2) + βX(s1 + 1, s2 − 1) + Z(s1 + 1, s2),

X(s1, s2 + 1) = αX(s1 − 1, s2 + 1) + βX(s1, s2) + Z(s1, s2 + 1).

Solving this system for X(s1, s2), we get, with κ2 = (1 + α2 + β2)−1,

X(s1, s2) = ακ2(X(s1 − 1, s2) +X(s1 + 1, s2)) + βκ2(X(s1, s2 − 1) +X(s1, s2 + 1))

− αβκ2(X(s1 + 1, s2 − 1) +X(s1 − 1, s2 + 1)) +W (s1, s2),

where σ2
W = κ2σ2

Z and W (s1, s2) = κ2(Z(s1, s2) − αZ(s1 + 1, s2) − βZ(s1, s2 + 1)) is
a so-called coloured noise. The two sets of variables are illustrated in Figure 7. The
half-plane SAR (green ellipse) has a more symmetric CAR representation (blue ellipse).
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Figure 7: The points in the green ellipse are those included in the SAR representation
of Example 3, while the ones in the blue are in the CAR.
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Chapter 2

Introduction to the papers

Paper A: A spatio-temporal GARCH model

In this paper we introduce a stationary spatio-temporal GARCH model on an infinite
gridded spatial surface. The spatio-temporal stationarity is achieved due to a translation
invariant neighbourhood system. The model and its neighbourhood system is wrapped
around a torus to get a model with finite spatial domain, referred to as a circular model,
avoiding the boundary problem of spatial statistics (see Section 1.3.1). The circular pro-
cess is related to the corresponding non-circular, but their relationship is non-trivial and
partly unsolved. The circular estimator can be used as an approximation for non-circular
data with a parametric bootstrap bias correction (PBBC). A simulation experiment is
presented to illustrate that the PBBC may successfully compensate for the wrongful cir-
culation due to the approximation, when the data is generated non-circularly. However,
it is a challenge to establish all theoretical arguments supporting this method.

Corresponding results to those for univariate GARCH given in Section 1.1 are pre-
sented for the circular spatio-temporal setting. That is, we generalize the Lyapunov con-
dition for stationarity, and prove consistency and asymptotic normality of the QMLE.
The proofs are inspired by Straumann and Mikosch (2006) and Francq and Zakoïan
(2004) and follow the recipes in Section 1.1.1. As the paper shows, the CSTGARCH is
a special case of CCC-GARCH (Section 1.2), but the stationary context makes this less
relevant. We also derive an ARMA representation corresponding to (2) and use it for
studying the spatio-temporal correlation structure of the squared processes.

Finally, the paper demonstrates usage of these models on a real data example.
Namely, the classical dataset of sea surface temperature anomalies in the Pacific Ocean,
used as example by Cressie and Wikle (2011) and others (see references in Paper A).
Here a circular spatio-temporal ARMA model is used as preprocessing to obtain an
uncorrelated residual series. A CSTGARCH model is then fitted to these residuals.

Paper B: Decline in variability on Svalbard

Here we consider an application of GARCH models in a somewhat new setting; climate.
For the most part, GARCH models are applied to financial time series, but here we apply
them to a temperature time series, namely the Svalbard Airport daily mean temperature
series. The data used span over 44 years, from 1976 to 2019. Over this period, the mean
temperature has increased extensively on Svalbard, by a rate of 12.1◦C per century,
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which is much higher than the global mean. This is a well-known phenomenon called
Arctic amplification and many have looked into why this happens. The most obvious
reason is due to sea ice melting. When the sea ice melts, it is replaced by open sea water,
which absorbs more heat from the sun than the ice and snow did. Open sea water also
increases heat transfer to the Arctic regions and to the atmosphere there. We believe
that this sea ice reduction also has consequences for the variability in temperature on
Svalbard.

Usually, extreme temperature anomalies are large deviations from an expected tem-
perature from a reference period. We refer to these as climatic extremes. Opposed to
these, are distributional extremes, which are relative to the marginal distribution of the
temperature. After preprocessing the data using an ARMA model, we use a GARCH
model with seasonal components and a trend, where the slope parameter depends on
the day of the year, to model conditional and unconditional temperature volatility on
Svalbard. For comparison, we also fit a nonstochastic model. The climate change of
volatility is estimated to zero during summer and −0.1(◦C)2 per year in February, which
has the largest decline. Our main conclusion is that the volatility has been decreasing at
Svalbard Airport except for during summer, likely due to reduced sea ice extent. Open,
ice free water makes the temperature more stable, transitioning the climate to a more
coastal one.

Paper C: Space-Time ARMA-GARCH models

We extend the circular spatio-temporal GARCH models from paper A to CSTARMA-
GARCH. Spatio-temporal ARMA models have a wider application potential compared
to pure GARCH models and this extension provides a family of models with high flexibil-
ity. In the real data example of Paper A, we fitted a CSTARMA model as preprocessing
before fitting a CSTGARCH to the residuals. Here, we redo the analysis and estimate
the two parts simultaneously. Although the two parts are asymptotically uncorrelated,
the inclusion of GARCH to an ARMA influences the asymptotic covariance matrix of
the ARMA part. We illustrate this by a simulation experiment, where the inclusion
of GARCH reduces the asymptotic variance of the ARMA part of the estimator. We
also investigate how the parametric bootstrap bias correction from paper A performs on
the STARMA-GARCH situation for both one and two dimensional space by simulation
experiments. To simulate non-circular data, we use an efficient half-space simulation
procedure inspired by Paper D. Finally a real data example from cell biology is consid-
ered.

Paper D: Spatial GARCH processes

This paper studies a half-space formulation (see Section 1.3.2) of spatial GARCH models,
abbreviated as SGARCH. When the spatial region is infinite, the STGARCH introduced
in Paper A is no longer a CCC-GARCH type of model. In particular, the Lyapunov
condition is apparently not relevant and has to be replaced. In this purely spatial set-
ting, where spatio-temporal is a special case, existence of a solution is guaranteed by
a generalization of Nelson’s condition (see (4) in Section 1.1). Similar to Paper A and
Paper C, the SGARCH model is spatially stationary with a half-space neighbourhood
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structure. Statistical inference is based on a modified likelihood and we prove consis-
tency and asymptotic normality of this maximum likelihood estimator. The conditions
are pretty close to the time series list of assumptions presented in Section 1.1.1, although
a spatial setting is necessarily more complicated. To deal with the boundary problem, a
guard area similar to the one mentioned in Section 1.3.1 is used. The paper opens up for
interesting applications. In particular, empirical residuals can be tested for heteroskedas-
ticity. We also believe this work quite easily can be extended to SARMA-GARCH. This
is an ongoing work. Other extensions are also possible.
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Chapter 3

Computer Code

All the code used in this thesis has been written in or for the programming language R
and I want to pay tribute to the developers behind some of the great software packages
that I have used. I have developed an R package called starmagarch, published on github,
for simulating and estimating spatio-temporal ARMAGARCH models. This can be used
for reproducing results of Paper A and Paper C, although Paper A does not use the
ARMA part. The package can be installed using the following lines of code, employing
the devtools package (Wickham et al., 2020):

library(devtools)
install_github("holleland/starmagarch")

The package uses the TMB (template model builder) package developed by Kristensen
et al. (2016). TMB enables users to easily formulate their model, i.e. their objective
function, in C++ and it calculates the first and second order derivatives of the objective
function using automatic differentiation. The objective function and its derivatives can
be called by the user in R and estimation of parameters is easily done using built-
in optimizers of R, such as the nlminb. TMB was made for fitting statistical latent
variable models to data, making use of the Laplace approximation, but we only use it
as a convenient way of implementing a likelihood estimation routine for R, with C++
implementation for efficiency.

The spdep package, developed by Bivand and Wong (2018), is used in starmagarch for
generating rook- and queen contiguity matrices. It conveniently has an option for circular
matrices, which is useful for our purposes. The current implementation of starmagarch
does not exploit the sparsity of these matrices, and can be further improved by accounting
for this.

Almost every graphic or figure in this thesis and its containing papers are produced
using the ggplot2 package of Wickham (2016). This is an extremely powerful, useful and
flexible R package for creating figures and illustrating data and is hereby recommended
to all users of R.

The computer code for the other papers can also be found on github for reproducibil-
ity. These are not made as R packages, but as a collection of scripts and functions. For
Paper C the mentioned starmagarch package is used, but the specific code examples can
be found at

https://github.com/holleland/Space-time-ARMAGARCH.

Also the cell datasets are published here, by courtesy of Lee et al. (2015), along with
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the spatially differenced sea surface temperature anomalies dataset. For the latter, the
original dataset can be found here:

ftp://ftp.wiley.com/public/sci_tech_med/spatio_temporal_data.

While working on Paper C, I implemented simulation routines using the Rcpp pack-
age (Eddelbuettel et al., 2011). This package allows the user to write C++ functions
executable from R. R is known for being a slow software for doing serious computations
and by writing subroutines executable from R, one can save time and resources. By sim-
ulating more effectively, the computational costs of the simulation experiments in this
paper was reduced notably.

For the analysis in Paper B we also use TMB for the likelihood estimation and the
R- and C++ code are available at

https://github.com/holleland/VariabilityOnSvalbard.

The temperature time series from Svalbard Airport can be downloaded here, but is also
available from

http://eklima.met.no.

The same holds for the reconstructed monthly series going back to 1898 (Nordli, 2010;
Nordli et al., 2014). These are both published with permission of the Norwegian Meteo-
rological Institute under a Creative Commons BY 3.0 licence (see Paper B for details).
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A STATIONARY SPATIO-TEMPORAL GARCH MODEL

SONDRE HØLLELAND*AND HANS ARNFINN KARLSEN
Department of Mathematics, University of Bergen, Bergen, Norway

We introduce a lagged nearest-neighbour, stationary spatio-temporal generalized autoregressive conditional heteroskedasticity
(GARCH)model on an infinite spatial grid that opens for GARCH innovations in a space-time ARMAmodel. This is illustrated
by a real data application to a classical dataset of sea surface temperature anomalies in the Pacific Ocean. The model and its
translation invariant neighbourhood system are wrapped around a torus forming a model with finite spatial domain, which
we call circular spatio-temporal GARCH. Such a model could be seen as an approximation of the infinite one and simulation
experiments show that the circular estimator with a straightforward bias correction performs well on such non-circular data.
Since the spatial boundaries are tied together, the well-known boundary issue in spatial statistical modelling is effectively
avoided. We derive stationarity conditions for these circular processes and study the spatio-temporal correlation structure
through an ARMA representation. We also show that the matrices defined by a vectorized version of the model are block
circulants. The maximum quasi-likelihood estimator is presented and we prove its strong consistency and asymptotic normality
by generalizing results from univariate GARCH theory.
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1. INTRODUCTION

A spatio-temporal generalized autoregressive conditional heteroskedasticity (Spatio-temporal GARCH
(STGARCH)) model is a time-space extension of the univariate GARCH models (Engle, 1982; Bollerslev, 1986),
but why do we need GARCH in space-time models? For the same reasons we would in time series: whenever
we suspect that a white noise series does not have a constant conditional volatility and we want our model to
capture this. Characteristics of GARCH are little or no autocorrelation, yet profound correlation of the squared or
absolute series. Varying conditional volatility, heavy tailed marginal distribution and clustering of extremes are
other traits. The fact that we have a spatial component means that these features also appear in space, that is, the
conditional volatility depends on where and when, and extremes cluster in space-time. Utilizing GARCH errors
for another model, for example, as innovations in an ARMA model, is a common practice in time series and this
can surely also be done in space-time. The models can be used for volatility forecasting and thus improve the
quality of prediction intervals by accounting for conditional heteroskedasticity.
The STGARCH model we present has translation invariant neighbourhoods at different time lags that deter-

mine the set of variables influencing the future volatility in a traditional GARCH manner. The model is defined
on the infinite lattice Zd, which leads to a boundary problem for a statistical analysis with data confined to a
fixed finite spatial region. When a neighbourhood is translation invariant, you lack observations for some of the
neighbours at the boundary. A circular modification of the model suggested here both solves the boundary prob-
lem and retains a projected version of the translation invariant neighbourhood system. We call this new model
circular spatio-temporal GARCH (CSTGARCH). It is clear that it is closely related to the original model and

* Correspondence to: Sondre Hølleland, Department of Mathematics, University of Bergen, Allégaten 41, 5020 Bergen, Norway.
E-mail: sondre.holleland@uib.no
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reproduction in any medium, provided the original work is properly cited.
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CSTGARCH could be seen as an approximation of STGARCH. As far as we know, alternative approaches also
rely on approximations and our simulation experiments indicate that the circular one is a good choice.
The circularity of a CSTGARCH is a feature of the spatial part of the model. A circular spatial model means

that points on opposite sides of the area of interest are considered neighbours. The term circular comes from
the one-dimensional situation, where we regard spatial locations as points on a line. For a circular model, the
two endpoints are neighbours and this can be seen as bending the line into a circle. Certainly, this will have
consequences for the structure of the spatial dependencies, but here we will assume that the circular model is
the actual situation. In two dimensions, this means wrapping a rectangular grid onto the surface of a torus. For
purely spatial processes, Cressie (2015, p. 438) mentioned the circular approach as a possibility for dealing with
the boundary problem on infinite lattices. Moran (1973a) constructed an initial circular model on a square torus
lattice and let the size of the torus tend to infinity. He considered a stationary Gaussian process with first-order
neighbourhood structure, but later extended to certain non-Gaussian processes (Moran, 1973b). The stationary
STARMA models considered by both Ali (1979) and Pfeifer and Deutsch (1980) can be circular by specifying
a circular neighbourhood matrix. This is done in our real data example in Section 6. The circulation is however
more important in the STGARCH case, because we do not observe the conditional volatility process directly. This
leads to a more severe boundary problem.
The circular model is elegant in its own right, where a neighbourhood can be translated everywhere on a torus

without disturbing its geometrical shape. In this way, the model is within a finite region, but it is still spatially
stationary because the gridded torus surface is a groupwith respect to addition.Moreover, if we view the circulation
as a projection of the STGARCH model onto a finite spatial region, while keeping the time dimension, this is the
one projection that maintain stationarity. It is difficult to find an alternative projection sharing this property.
Others have proposed models for volatility in a spatial- and spatio-temporal context. Sato and Matsuda (2017)

suggested a spatial ARCH model with applications toward land prices in the Tokyo area of Japan, while the
spatio-temporal GARCH models of temporal order one proposed by Borovkova and Lopuhaä (2012) is more like
a spatially weighted constant correlation coefficient (CCC) GARCHmodel (Bollerslev, 1990). The ARCHmodels
considered by Otto et al. (2018) are primarily spatial, but can also be formulated as spatio-temporal by defining one
of the spatial dimensions as time. Such a spatio-temporal formulation is related to the models we consider. They
applied the model as innovations of a spatial simultaneous autoregressive model for mortality of lung or bronchus
cancer across U.S. counties in their real data example. Robinson (2009) uses a spatial version of stochastic volatil-
ity models to demonstrate that lack of spatial correlation does not in general imply spatial independence. He also
establishes asymptotic theory for the pseudo-Gaussian maximum likelihood estimator. However, the above men-
tionedmodels are not expandable to the infinite space case and not formulated as stationarymodels with translation
invariant neighbourhood systems. In this respect, what we suggest is fundamentally different.
The theory of GARCH models is vast and extensive, so we focus our attention on the most relevant theoret-

ical works here. Nelson (1990) found a criteria for the existence of a unique, ergodic and stationary solution
for GARCH(1,1) models and Bougerol and Picard (1992) generalized these results to GARCH(p, q) models.
Berkes et al. (2003) proved consistency and asymptotic normality of maximum quasi-likelihood estimators for
GARCH(p, q). Francq and Zakoïan (2004) removed a smoothness- and a moment restriction on the innova-
tion process, while Straumann and Mikosch (2006) established similar results for a wider class of conditional
heteroskedastic time series models. Jeantheau (1998) established strong consistency of the minimum contrast
estimator for multivariate GARCH models, especially for the CCC-GARCH. Ling and McAleer (2003) proved
consistency and asymptotic normality of the QMLE for a vector ARMA-GARCH using the CCC-formulation. A
review of CCC-GARCH was given by Francq and Zakoïan (2011, pp. 279–307), where they also presented proofs
of consistency and asymptotic normality for CCC-GARCH models.
Compared to related multivariate GARCH models, CSTGARCH is substantially simpler in several aspects

and, in particular, it has fewer parameters due to the specific stationary spatial dependency structure with circular
boundaries. Since the spatial region is finite, the model could be motivated as a subclass of CCC-GARCH, but our
perspective is more towards the infinite STGARCH model. In addition, it is not a CCC-model in the sense that the
number of parameters is independent of the dimension. In C- and STGARCH only quadratic terms are explicitly

wileyonlinelibrary.com/journal/jtsa © 2019 The Authors. J. Time Ser. Anal. 41: 177–209 (2020)
Journal of Time Series Analysis published by John Wiley & Sons Ltd DOI: 10.1111/jtsa.12498
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expressed in the model and thereby avoiding cross terms, same as for the univariate- and CCC models. This is an
essential advantage both for revealing theoretical properties and for estimation of the model. It is also inherent in
the model as an extension of the univariate GARCH.
We will, in Section 2, introduce both STGARCH and CSTGARCH, and discuss some features especially of the

latter. An illustrating example is presented. Then we derive the Gaussian quasi-likelihood in Section 3. In Section
4 we present consistency and asymptotic normality of the maximum quasi-likelihood estimators. A simulation
experiment with circular and non-circular data is carried out in Section 5. Following this, a real data application
to sea surface temperature anomalies in the Pacific Ocean is presented in Section 6. We make some concluding
remarks in Section 7 and the more technical parts are put together in Section 8.

2. SPATIO-TEMPORAL GARCH MODELS

We introduce the spatio-temporal GARCH before turning to the circular version. Neighbourhood systems are
defined and we discuss some interesting features of the circular model, such as conditions for stationarity and the
spatio-temporal dependence structure imposed by the model.

2.1. Spatio-temporal GARCH

Let 𝛼∶ Z × Zd ⇝ R0 be a function with finite support. For fixed i, 𝛼i ∶ Zd ⇝ R0. The function 𝛽 is defined in the
same way. We refer to 𝛼, 𝛽 as the parameter functions. The STGARCH model is given by

Xt(u) = 𝜎t(u)Zt(u), u ∈ Zd

𝜎2
t (u) = 𝜔 +

∑
i

∑
v

𝛼i(v)X2
t−i(u − v) +

∑
i

∑
v

𝛽i(v)𝜎2
t−i(u − v), u ∈ Zd,

(2.1)

for t ∈ Z. The modelled process is {Xt(u)}, while {Zt(u)} is a residual process and {𝜎t(u)} is the volatility process.
Let Δ1i = {v ∈ Zd ∶ 𝛼i > 0} and Δ2i = {v ∈ Zd ∶ 𝛽i > 0} for i ≥ 1. For i < p, the model allows for some
zero-valued 𝛼i(v) for v ∈ Δ1i and likewise for the 𝛽’s. The order of the model is defined as the largest (p, q) so that
Δ1p and Δ2q are non-empty. With the order defined, the second part of (2.1) is expressed more specifically as

𝜎2
t (u) = 𝜔 +

p∑
i=1

∑
v∈Δ1i

𝛼i(v)X2
t−i(u − v) +

q∑
i=1

∑
v∈Δ2i

𝛽i(v)𝜎2
t−i(u − v). (2.2)

Let 𝜶 def
= {𝛼i(v), v ∈ Δ1i, i = 1,… , p}, 𝜷 def

= {𝛽i(v), v ∈ Δ2i, i = 1,… , q} and write 𝜃 def
= (𝜔,𝜶,𝜷) for the parameter

vector contained in the parameter space Θ, with the restriction that 𝜔 > 0.

2.2. Circular Spatio-Temporal GARCH

Let m = (m1,… ,md) ∈ Zd
+ and  = (m) = Zd∕(mZd) be the quotient group of order m. We get the circular

version of (2.1) by replacing the infinite spatial index partZd with. In doing this we do not change the parameter
functions but restrict the model so that for u, v ∈ , the difference (u− v) and the sum (u+ v) are to be understood
modulus m and are therefore also points in . This means that the stochastic processes involved are indexed on
Z ×. We will identify [0,m − 1] with . For v ∈ Zd, we use the notation (v|m) def

= v − ⌊v∕m⌋ ◦m ∈ , where
◦ and ∕ are elementwise or Hadamard multiplication and division respectively, and ⌊⋅⌋ means rounding down to
the nearest integer elementwise. We write v′ ∼ v if (v′|m) = (v|m). In the circular model, we replace X2

t−i(u − v)

J. Time Ser. Anal. 41: 177–209 (2020) © 2019 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12498 Journal of Time Series Analysis published by John Wiley & Sons Ltd
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with X2
t−i(u − v|m), and likewise for the last part of (2.2). Thus, the circular model is given by

Xt(u) = 𝜎t(u)Zt(u), u ∈ ,

𝜎2
t (u) = 𝜔 +

p∑
i=1

∑
v∈Δ1i

𝛼i(v)X2
t−i(u − v|m) +

q∑
j=1

∑
v∈Δ2i

𝛽j(v)𝜎2
t−j(u − v|m), u ∈ ,

(2.3)

for t ∈ Z. Note that in general, Δki ⊈ . When the indexes are irrelevant, we refer to the process dummies
X = {Xt(u), (t, u) ∈ Z ×} and likewise for 𝜎 and Z.
Some characteristics of the circular model are:

(i) The circular model may be seen as a torus approximation of the infinite model.
(ii) The advantage of the circular model comes from the group structure of  which retains stationarity in a

beneficial way.
(iii) The infinite model and the finite model are different, but share the same parameter vector and residual

process.
(iv) Ifm is not very small, a window of the infinite process confined towould be quite similar to the circularly

defined process. The differences that may be seen are mainly at the boundaries of the rectangle.
(v) Both models are designed to be strictly stationary.
(vi) The circular model could be conceived as a mathematical construction to handle the boundaries that are

generated from a finite window of the infinite model in a smooth way.
(vii) Estimate of a circular model from data generated by an infinite model can be bias corrected to a meaningful

estimate of the true model (cf. Section 5).
(viii) Estimation obstacles created by the boundaries of finite samples from the infinite model is amainmotivation

for the circular model. In that sense, it could be viewed more as a method than an alternative model. On
the other hand, a stationary solution of the circular model does not necessarily rely on a corresponding
stationary solution of the infinite model.

LetXt = {Xt(u), u ∈ } be a vector of sizem, wherem def
= || =∏d

i=1 mi is the number of spatial locations, and
likewise for Zt and 𝝈2

t . We also need X2
t = Xt◦Xt. Throughout the article, we use the convention that all vectors

are column vectors.
In spatial statistics, a neighbourhood set is a collection of sites that influence a given point. There are two

requirements to a neighbourhood set: A site cannot be its own neighbour and neighbourhood relations are mutual.
In spatio-temporal statistics with time-lagged nearest neighbour dependence, the first condition is not necessary,
because we do not have instantaneous spatial dependency. In fact, the opposite is encouraged. Hence, for our
neighbourhood systems, which are collections of neighbourhood sets for different temporal lags, we only require
that neighbour relations are mutual. In the following theorem, we need a condition on each Δki to ensure that our
neighbourhood systems fulfil this property.

A1: Each parameter domain Δki is symmetric in the sense that −Δki = Δki.
The neighbourhood systems for STGARCH are defined byki(u)

def
= u⊖ Δki. The spatial part of X that explicitly

influences 𝜎t(u) is located at ∪i1i(u) and, in parallel, the direct effect from previous spatial values of the volatility
have sites ∪i2i(u). We see that these systems are translation invariant, that is,ki(u + h) = ki(u)⊕ h.

Theorem 2.1. The circular version of the STGARCH model is a CCC-GARCH model of dimension m,

Xt = 𝝈t◦Zt,

𝝈2
t = 𝜔1m +

p∑
i=1

AiX
2
t−i +

q∑
i=1

Bi𝝈
2
t−i,

(2.4)
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with components

𝜎2
t (u) = 𝜔 +

p∑
i=1

∑
v∈1i(u)

ai(u, v)X2
t−i(v) +

q∑
i=1

∑
v∈2i(u)

bi(u, v)𝜎2
t−i(v),

ai(u, v)
def
=
∑
v′∼v

𝛼i(u − v′), Ai = {ai(u, v), (u, v) ∈ 2},
(2.5)

and likewise for the bi’s. For the spatial neighbourhood systems we have

(i) Same structure as ki(u):ki(u)
def
= u⊖ Λki, u ∈  with Λki

def
= (Δki|m) ⊆ .

(ii) Translation invariance:ki(u + h) = ki(u)⊕ h for u, h ∈ .
(iii) Mutual neighbourhood relations under A1: v ∈ ki(u) ⇔ u ∈ ki(v).
(iv) Relation to STGARCH: ki(u) = (ki(u)|m).

Proof. Let u ∈  be fixed. Since X2
t−i( ⋅ ) = X2

t−i( ⋅ |m),∑
v∈Z

𝛼i(v)X2
t−i(u − v) =

∑
v∈Z

𝛼i(u − v)X2
t−i(v) =

∑
v∈

∑
v′∼v

𝛼i(u − v′)X2
t−i(v

′)

=
∑
v∈

[∑
v′∼v

𝛼i(u − v′)
]
X2
t−i(v) =

∑
v∈

ai(u, v)X2
t−i(v).

The neighbourhood system at 1i is for u ∈ ,

{ai(u, ⋅) > 0} =
{
v ∈ ∶

∑
v′∼v

𝛼i(u − v′) > 0
}

= {v ∈ , ∃h ∈ Zd ∶ u − v + h ◦m ∈ Δ1i}
= {v ∈ , ∃h ∈ Zd ∶ v ∈ u⊖ Δ1i ⊕ h ◦m}
= {v ∈ ∶ v ∈ (u⊖ Δ1i|m)} = u⊖ Λ1i = 1i(u).

The translation invariance holds since

ki(u + h) = (u⊕ h⊖ Λki|m) = (ki(u)⊕ h|m) = ki(u)⊕ h, u, h ∈ ,

where the addition in the last equality is the group addition since we consider a neighbourhood system on .
Remains to show that neighbourhood relations are mutual. Let u ∈  and v ∈ ki(u) = (u ⊖ Δki|m). Then,

there exists h ∈ Δki such that (u − h|m) = v. Thus u = (v + h|m) ∈ (v⊕ Δki|m) = ki(v) due to A1. □

Remark 2.1. It is possible that Δki does not depend on (k, i), that is, Δki = Δ and ki =  for all (k, i). This is
the case in Example 1.

Remark 2.2. If the projection of Δ1i ⇝ Λ1i into  is one-to-one, the sum
∑

v′∼v 𝛼i(u − v′) in (2.5) contains at
most one non-zero term. Otherwise, the dimension of the parameter space is reduced. It is likewise for Δ2i.

Before continuing to more theoretical aspects of the model, we present a simple example to illustrate what we
have discussed so far.

Example 1. Let d = 2 and let the spatial region be a 4 × 4 grid with a circular neighbourhood structure. This
means that m = (4, 4), m = 16 and the index set  = [0, 3] × [0, 3]. As a quotient group,  is a toroidal surface

J. Time Ser. Anal. 41: 177–209 (2020) © 2019 The Authors. wileyonlinelibrary.com/journal/jtsa
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Figure 1. (a) Illustration of the circular neighbourhoods  (u), on another index set  = [0, 6]2, for three different values of
u. These are marked as the larger sized points and their neighbourhoods are indicated by the different coloured squares. Next,
these are two ways of visualizing the area of interest: (b) An equidistant grid and (c) a quotient group, which is a toroidal

surface when d = 2. [Color figure can be viewed at wileyonlinelibrary.com]

a1 a1 a1

a1

a1a1a1

a1 a0

b2

b2 b2

b2

b1 b1

b1

b1

b0

Figure 2. Parameter specification and dependency structure at one time lag. [Color figure can be viewed at wileyonlinelibrary.
com]

for d = 2. In Figure 1(b,c) we have visualized both as an index set and a quotient group respectively, where the
16 points on the equidistant grid corresponds to the points on the torus surface. The circular neighbourhood set is
visualized on a larger area of interest, that is, [0, 6]2, in Figure 1a for three different locations.
We present two different ways of parametrizing; one for 𝜶 and one for 𝜷. Considering a CSTGARCH(1,1)

model, we need to specify 𝛼(v) and 𝛽(v). In the notation of (2.3) and Remark 2.1, let Δ = Δ11 = Δ21 = {(v1, v2) ∈
Z2 ∶ |vi| ≤ 1, i = 1, 2}, or more explicitly

Δ =
{
(−1, 1), (0, 1), (1, 1), (−1, 0), (0, 0), (1, 0), (−1,−1), (0,−1), (1,−1)

}
.

It makes sense to have more or less symmetry in the spatial part of the model. Let therefore

𝛼(v) =
⎧⎪⎨⎪⎩
a0, if v = (0, 0),
a1, if maxi |vi| = 1,

0, otherwise,

and 𝛽(v) =

⎧⎪⎪⎨⎪⎪⎩
b0, if v = (0, 0),
b1, if

∑
i |vi| = 1,

b2, if |v1| = 1, |v2| = 1,
0, otherwise.

which means that the parameter vector, 𝜃 = (𝜔, a0, a1, b0, b1, b2)′, consists of in total 6 parameters. The
parametrization of 𝜶 gives equal weight to each neighbour (a1) and another weight to the site of the observa-
tion (a0). For 𝜷 we have one parameter for vertical and horizontal direction (b1), one for all diagonal neighbours
(b2) and the point itself has its own weight (b0). The specification of the model is illustrated in Figure 2. This is
sometimes called a queen contiguity neighbourhood, as opposed to a rook contiguity, named after the possible
movements of the respective chess pieces.

wileyonlinelibrary.com/journal/jtsa © 2019 The Authors. J. Time Ser. Anal. 41: 177–209 (2020)
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We can also specify the model using (2.5). Let  = 11 = 21, since Δ11 = Δ21. In this case,

 (u) = (u⊖ Δ|m) = {u} ∪ (1)(u) ∪ (2)(u), u ∈ ,

where  (1)(u) = {(u + v|m)∶
∑

i |vi| = 1} and  (2)(u) = {(u + v|m)∶ |v1| = 1, |v2| = 1}. Then,

a(u, v) =
⎧⎪⎨⎪⎩
a0, if v = u,
a1, if v ∈  (u)∖{u},
0, otherwise,

and b(u, v) =

⎧⎪⎪⎨⎪⎪⎩
b0, if v = u,

b1, if v ∈  (1)(u),
b2, if v ∈  (2)(u),
0, otherwise.

In the vector notation of (2.4), 𝝈2
t = 𝜔1m + AX2

t−1 + B𝝈2
t−1, where B is given by

B =
⎡⎢⎢⎢⎣
S T 0 T
T S T 0
0 T S T
T 0 T S

⎤⎥⎥⎥⎦ , S =
⎡⎢⎢⎢⎣
b0 b1 0 b1
b1 b0 b1 0
0 b1 b0 b1
b1 0 b1 b0

⎤⎥⎥⎥⎦ , T =
⎡⎢⎢⎢⎣
b1 b2 0 b2
b2 b1 b2 0
0 b2 b1 b2
b2 0 b2 b1

⎤⎥⎥⎥⎦ . (2.6)

The matrix A is obtained by setting b0 = a0 and b1 = b2 = a1 in B. Notice that the matrix also illustrates
the neighbourhood structure. We have ordered the rows and columns of B lexicographically according to the
coordinates of . The block matrix S represents relations between sites in the same row, while T represents
relations between sites of adjacent rows.

Remark 2.3. Ifm becomes larger, the order of A and B, which ism×m, increases. However, the row and column
sums will remain the same, a0+8a1 and b0+4b1+4b2 respectively, and the number of non-zero terms in each row
is constant. Therefore, the sparsity of the matrix will increase with m. The example illustrates that the number of
parameters does not depend on the actual size of the spatial region. We consider m fixed, but in contrast to other
multivariate GARCH models, a larger m is beneficial.

2.3. Generalized Circulant and Stationary Structure

It turns out that the model has an interesting circulant algebraic structure which is neither obvious nor intended.
Circulant matrices of order n are matrices that can be written on the form

C = circ(c0,… , cn−1) =
⎡⎢⎢⎢⎣
c0 c1 · · · cn−1
cn−1 c0 · · · cn−2
⋮ ⋮ ⋱ ⋮
c1 c2 … c0

⎤⎥⎥⎥⎦ = {cij} = {c(i − j|n)}.
A block circulant is a circulant block matrix whose blocks again are circulants. This is also called a circulant of
level 2. In general a circulant of level d is a block circulant whose blocks are circulants of level d−1 (Davis, 1994,
pp. 184–91).
We will show that the parameter matrices Ai and Bi are circulant matrices for d = 1. Since we index the matrices

on 2 we use a circulant concept that does not depend on dimension.

Definition 2.1. A matrix A = {a(u, v), (u, v) ∈ 2} is a generalized circulant on if a(u, v) = a(u − v|m).

Definition 2.2. Amatrix A defined on2 is stationary if for any element a(u, v) = a(u+v′, v+v′) for all v′ ∈ .

Proposition 2.1. The set of stationary matrices is closed under matrix addition and multiplication.
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Proof. For addition, it is obvious. For multiplication, let C = AB. Then

C[u + v′, v + v′] =
∑
w

A[u + v′,w]B[w, v + v′] =
∑
w

A[u + v′,w + v′]B[w + v′, v + v′]

=
∑
w

A[u,w]B[w, v] = C[u, v].
□

Proposition 2.2. Generalized circulants are stationary matrices.

Proof. Let A = {a(u, v), (u, v) ∈ 2} be a generalized circulant. Then a(u + v′, v + v′) = a(u + v′ − v − v′|m) =
a(u − v|m) = a(u, v) and A is stationary. □

Theorem 2.2. The model matrices in the CCC-GARCH representation (2.4) have specific algebraic structure.
They are:

(i) Generalized circulants.
(ii) Circulants for d = 1.
(iii) Block circulants with circulant blocks of level d − 1, for d ≥ 2, if  is ordered lexicographically.

Proof. Let A be any of the model matrices. We have that A is a generalized circulant by definition and stationary
by Proposition 2.2. For d = 1, A is therefore a circulant. For d = 2, we have m = (m1,m2) and we organize 
lexicographically, that is, u = (u1, u2) < v = (v1, v2) if and only if u1 < v1 or u1 = v1 and u2 < v2. Then A is a block
circulant with circulant blocks, also called circulant of level 2. This can be seen in (2.6) of Example 1, where S
and T are circulant blocks of B, that is, B = circ(S,T,0,T). For d ≥ 2, A is a block circulant whose blocks are
circulants of level d − 1, when the rows and columns are ordered lexicographically, by an induction argument.□

2.4. Stationarity

For p, q ≥ 1, let Qt be a square block matrix of order (p + q − 1) defined as

Qt =

⎡⎢⎢⎢⎢⎢⎣

A1Z
2
t + B1 B2 · · · Bq−1 Bq A2 · · · Ap−1 Ap

Iq−1 ⊗ Im 0 0 · · · 0 0

Z2
t 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 0 Ip−2 ⊗ Im 0

⎤⎥⎥⎥⎥⎥⎦
, (2.7)

where each block is of dimension m×m, Z2
t = diag

{
Z2
t

}
, Ik is a k× k identity matrix and 0 is a null matrix. Apart

from the first row, the matrix Qt is defined by Qt[q + 1, 1] = Z2
t , Qt[i, i − 1] = Im for i ∈ [2, q] ∪ [q + 2, p + q − 1]

and 0 otherwise. Let Vt and c both be vectors of dimension (p + q − 1)m, defined by

Vt =
[
St
Yt

]
, c =

[
𝜔1m
0

]
, (2.8)

where St
def
= (𝝈2

t+1,… ,𝝈2
t−q+2) and Yt

def
= (X2

t ,… ,X2
t−p+2). If p = 1 and q = 0, Qt = [A1Z

2
t ], Vt = St = 𝝈2

t+1

and c = 𝜔1m. The same is true for p = q = 1, except that Qt = [A1Z
2
t + B1]. Combining (2.7) and (2.8), we have

that the CSTGARCH model can be expressed as a stochastic recurrence equation (SRE),

Vt = QtVt−1 + c, t ∈ Z. (2.9)
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Under an i.i.d. assumption on the residuals, this is the state space representation of the CSTGARCH model since
the sequence {(Qt, c)} is i.i.d. and any reasonable solution {Vt} is Markov. From the SRE in (2.9), we formally get

Vt =
∞∑
k=0

k−1∏
𝓁=0

Qt−𝓁 c.

When Elog+‖Q0‖ < ∞, the Lyapunov exponent is defined and satisfy

𝛾Q = inf
{

E
[
n−1 log‖Q0Q−1 · · ·Q−n+1‖], n ∈ N

}
= lim

n→∞
n−1 log‖Q0Q−1 · · ·Q−n+1‖,

for any matrix operator norm. The maximum absolute row sum, defined below, is a convenient choice in this
context.

Definition 2.3. Let ‖M‖ def
= ‖M‖∞ = sup{‖Mx‖∞∶ ‖x‖∞ = 1} for a matrix M.

We will refer to the following assumptions, where 𝜃0 denotes the true parameter.

A2: The residual process Z is i.i.d. and Z ∈ L2𝛿 for some 𝛿 > 0.
A3: At 𝜃0, the Lyapunov exponent is strictly negative, 𝜔 > 0 and E log+‖Q0‖ < ∞.

Remark 2.4. The condition E log+‖Q0‖ < ∞ is implied by A2 together with 𝜔 > 0.

An important submatrix of Qt is the q × q non-negative block matrix

B = B(𝜃) def
=

[B1 B2 · · · Bq−1 Bq

Iq−1 ⊗ Im 0

]
= {Bij, 1 ≤ i, j ≤ q}, (2.10)

where each block is m × m. When the model has an ergodic solution, this matrix will be the driving force for the
vectorized form of the forthcoming likelihood process in Section 3.

Theorem 2.3. Let sB
def
=
∑q

j=1
∑

v 𝛽j(v) and 𝜌B be the spectral radius of B.

(i) If 𝜌B < 1, then sB = ‖Bq‖ and sB ≤ 𝜌B ≤ s1∕q
B

.

Assume that A3 holds. Then for 𝜃 = 𝜃0,
(ii) 𝜌B < 1.
(iii) There is a unique adapted ergodic solution of (2.3).
(iv) If also A2 is satisfied, then X ∈ L2𝛿 and 𝜎 ∈ L2𝛿 .

Proof. By Bougerol and Picard (1992) (iii) is true and by Berkes et al. (2003) we get (iv). For (ii) we see that‖∏n−1
j=0 Qt−j‖ ≥ ‖Bn‖. It remains to prove (i).

Assume that 𝜌B < 1. Then
∑q

j=1 Bj1m = sB1q and B1mq ≥ (sB ∧ 1)1mq, which shows that sB ≤ 𝜌B < 1. Let

S(k)
i =

∑q
j=1 B(k)

ij be the ith block row sum of Bk with Si = S(1)
i and S(k) = vecblock

[
S(k)
1 … S(k)

q

]
, a block matrix

of dimension q × 1. Now,

S(k+1)
i =

q∑
𝓁=1

[ q∑
j=1

B(k)
ij Bj𝓁

]
=

q∑
j=1

B(k)
ij Sj,

‖‖S(k+1)
i

‖‖ = ‖‖‖ q∑
j=1

B(k)
ij Sj

‖‖‖ ≤ ‖‖S(k)
i
‖‖ ‖S‖ = ‖‖S(k)

i
‖‖,
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since

‖‖‖ q∑
j=1

B(k)
ij Sj

‖‖‖ =
‖‖‖‖‖‖
[
B(k)
i1 · · · B(k)

iq

0 Iq−2 ⊗ 0 0

][
S1 0
⋮ Iq−2 ⊗ 0 ⋮
Sq 0

]‖‖‖‖‖‖ .
From the definition of B, we see that

Bij =

{
Bj, for i = 1,

Im𝛿i−1,j, for i ∈ [2, q],
=⇒ B(2)

ij =
⎧⎪⎨⎪⎩
B(2)
1j , for i = 1,

Bj, for i = 2,

Im𝛿i−2,j, for i ∈ [3, q],

=⇒ B(k)
ij =

⎧⎪⎨⎪⎩
B(k)
ij , for i ∈ [1, k − 1],

Bj, for i = k,

Im𝛿i−2,j, for i ∈ [k + 1, q],
and ‖S(k)

i ‖ ≤ sB, i ∈ [1, k],

(2.11)

for k ∈ [2, q − 1], where the implication is revealed by tracking what happens with the rows going from Bk−1 to
Bk when multiplying by B. From (2.11), a last matrix multiplication gives B(k)

qj ≡ Bj for all j ∈ [1, q] and

‖‖S(q)
i
‖‖ ≤ sB, i ∈ [1, q − 1] and ‖‖S(q)

q
‖‖ = sB,‖Bq‖ = ‖‖S(q)‖‖ = max

i
‖‖S(q)

i
‖‖ = sB.

Since ‖Bnq‖1∕nq ≤ ‖Bq‖1∕q = s1∕q
B

, we must have 𝜌B ≤ s1∕q
B

. □

Remark 2.5. Theorem 2.3 will also hold locally for all 𝜃 in a sufficiently small compact neighbourhood of the
non-zero part of 𝜃0. We also see that 𝜌B < 1 is a necessary, but not sufficient condition for the existence of a
stationary solution of {Xt}.

As long as A3 is fulfilled, {Xt(u)} is a strictly stationary process in the sense that, for all n ≥ 1 and for any
(k, v) ∈ Z ×,

{Xt(u), (t, u) ∈ [1, n] ×} d
= {Xt+k(u + v), (t, u) ∈ [1, n] ×},

by Theorem 2.3(iii). Like for univariate GARCH(p, q) models, a CSTGARCH(p, q) is weakly stationary if and
only if E Z2 is finite and

sAB
def
=
∑

𝛼i(v) +
∑

𝛽j(v) < 1. (2.12)

This condition is much easier verified and does not depend on, but it is somewhat more restrictive than A2–A3
with 𝛿 = 1. We will prove this fact next.

Theorem 2.4. Suppose that A2 holds for a 𝛿 ∈ (0, 1]. Let Qt = {qt(v, v′), (v, v′) ∈ 2} and Q◦𝛿
t = {q𝛿t (v, v

′)}.
Then

1′EkQ◦𝛿
0 1 = (1) w.r.t. k, (2.13)

is sufficient for the Lyapunov part of A3.
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Proof. Let Fk =
∏k−1

j=0 Qt−j and F◦𝛿
k =

∏k−1
j=0 Q◦𝛿

t−j. By the row-sum norm,

‖Fk‖ = ‖‖‖ k−1∏
j=0

Qt−j
‖‖‖ = max row sum Fk,

‖Fk‖𝛿 = [max row sum Fk]𝛿 ≤ max row sum F◦𝛿
k = ‖F◦𝛿

k ‖.
Thus

E‖Fk‖𝛿 ≤ E‖F◦𝛿
k ‖ ≤ E

∑
v0,…,vk

k−1∏
j=0

q𝛿t−j(vj, vj+1) =
∑

v0,…,vk

k−1∏
j=0

Eq𝛿t−j(vj, vj+1)

=
∑

v0,…,vk

k−1∏
j=0

Eq𝛿0(vj, vj+1) = 1′EkQ◦𝛿
0 1 < 1,

for k large enough. □

Remark 2.6. This is a replacement inequality. We can replace all stochastic terms in Q◦𝛿
t−j by their respective

expected value.

Corollary 2.1. Let a = q ∨ (p − 1), r = p + q − 1 and G = EQ0. Suppose that sAB < 1. Then sAB = ‖Ga‖ and‖Fk‖ < 1 for k = ha with h > − log(rm)∕ log sAB.

Proof. Denote the first row of G as the 𝜌-row. We have that

Gij =

⎧⎪⎪⎨⎪⎪⎩
Im𝛿1,iG1j for i = 1, j ≥ 1,

Im𝛿i−1,j, for i ∈ [2, q],
Im𝛿1,j, for i = q + 1,

Im𝛿i−1,j, for i ∈ [q + 2, r].

The interesting rows consist of the two sets [2, q] and [q + 2, r] which have only one non-zero block equal to the
unit matrix Im. We consider Gk for k ≥ 1. The row q + 1 changes to the first row after one iteration. For each
iteration the two sets of interesting rows are reduced by one row as their respective top row is removed and the
non-zero block in each of the remaining rows is shifted one step to the left. So for k = 2 these sets are [3, q] and
[q + 3, r]. This process continues until both sets are empty and that happens exactly after k = a steps. In this
situation either row q or row r in Gk equals the 𝜌-row. During this sequence of iterations all rows have been a
𝜌-row. Since ‖∑j Gij‖ ≤ ‖I‖ for all i, any block row sum is decreasing by each iteration. Now, let k = ha,

1′EkQ01 ≤ rm ‖Gk‖ ≤ rm ‖Ga‖h = rm shAB < 1,

for h > − log(rm)∕ log sAB. □

Corollary 2.2. Let s(𝛿)AB =
∑

E|𝛼j(v)Z2
j (v) + 𝛽j(v)|𝛿 . Suppose that s(𝛿)AB < 1. Then s(𝛿)AB = ‖Eq∨(p−1)Q◦𝛿

0 ‖ and

E‖Fk‖𝛿 < 1 for k = ha with h > − log(rm)∕ log s(𝛿)AB.

Proof. Invoke the previous proof. □
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Remark 2.7. The sufficient condition in Corollary 2.2 does not depend onm.

Remark 2.8. For p = q = 1, we get from (2.13) with k = 1,

s(𝛿)AB =
∑
v

E|𝛼(v)Z2
1 (v) + 𝛽(v)|𝛿 < 1,

which corresponds to the stationarity requirement of Nelson (1990) for univariate GARCH(1, 1).

2.5. Spatio-temporal Dependency

Since CSTGARCH is a spatio-temporal model, the spatial dependence structure is particularly interesting. It is
well known that a GARCH(p, q) process has an ARMA(p ∨ q, q) representation. Here we use such an ARMA
representation for a CSTGARCH process to study the spatio-temporal dependence structure implied by the model.
We derive the ARMA representation, find an expression for the autocovariance function for the squared process
and illustrate the dependence structure for the CSTGARCH(1,1).

Theorem 2.5. Suppose that (2.12) holds and let r = p ∨ q. Then an extended spatio-temporal autocorrelation
function exists and is given by

𝜌(h, v) = R(h)[u + v, u], (h, v) ∈ Z ×, (2.14)

for any u ∈ , where

R(h) = diag−1
( ∞∑

j=0
ΨjΨ

′
j

) ∞∑
k=0

Ψk+hΨ
′
k,

Ψk =
⎧⎪⎨⎪⎩
0, for k < 0,

Im, for k = 0,∑r∧k
j=1(Aj + Bj)Ψk−j − Bk, for k > 0.

(2.15)

Proof. It is well known that we can rewrite a CCC-GARCH model as a VARMA(r, q) model,

X2
t = 𝝈2

t ◦Z
2
t = 𝝈2

t + Ut, Ut
def
= 𝝈2

t ◦(Z
2
t − 1m), so that 𝝈2

t = X2
t − Ut,

= 𝜔1m +
r∑
i=1

(Ai + Bi)X
2
t−i +

q∑
i=1

(−Bi)Ut−i + Ut

= 𝜔1m +
r∑
i=1

ΦiX
2
t−i +

q∑
i=0

ΘiUt−i, say.

This is a second order stationary causal VARMA(r, q) model if the roots of the corresponding determinant of
the characteristic matrix polynomial are strictly outside the unit circle and the residual process {Ut} has finite
second-order moment (Brockwell and Davis, 1991, Theorem 11.3.1, p. 418). Moreover, by the same theorem,
X2
t = 𝝁 +

∑∞
j=0 ΨjUt−j, where the filter is given by (2.15) and 𝝁 is the expectation of X2

t . The root condition
is implied by (2.12) and for the moment one we proceed by assuming it holds. Later on we will relax this
assumption.
Now, the covariance matrix ofUt is proportional to the unit matrix and therefore the multivariate autocovariance,

Γ, function for {X2
t } is given by

Γ(h) = Cov(X2
t+h,X

2
t ) ∝

∑
k

Ψk+hΨk. (2.16)
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Journal of Time Series Analysis published by John Wiley & Sons Ltd DOI: 10.1111/jtsa.12498



47

A STGARCH MODEL 189

By definition,

R(h) = [diag−1∕2 Γ(0)]Γ(h) [diag−1∕2 Γ(0)],

and that gives the first part of (2.15). We see that (2.15) itself does not rely on the assumption of finite variance
of X2

t . It just requires (2.12) to make sense and for that purpose we use Im for the covariance matrix of Ut.
It remains to show that R(h) is a stationary matrix for any h in the sense of Definition 2.2. All matrices in (2.4)

are stationary (Theorem 2.2), which in turn implies that all the coefficients in the VARMA(r, q) formulation are
stationary (Proposition 2.1). Hence, {Ψj} is stationary. By the same argument now used on (2.16), we see that Γ(h)
is also stationary and therefore (2.14) holds. The stationarity implies that Ψk(u, u) = Ψk(u + v, u + v) = Ψk(v, v),
which also means that diagΓ(0) is proportional to the unit matrix. □

Remark 2.9. If X2
t has finite variance, then 𝜌(h, v) = Cor(X2

t+h(u + v),X2
t (u)).

Remark 2.10. Alternatively to (2.15), we can use themultivariate Yule–Walker equations (Brockwell andDavis,
1991, 11.3.12, 11.3.15, pp. 419–20) to describe and compute R,

Γ(h) =
r∑
j=1

ΦjΓ(h − j) +
q∑
j=1

ΘjΨ
′
j−h, for h ≥ 0.

Example 2. For p = q = 1 with S = Γ(0),

S = Γ(0) = ΦΓ′(1) + Im + Θ(Φ′ + Θ′), Γ(1) = ΦS + Θ, Γ(h) = ΦΓ(h − 1), h ≥ 2,

which gives C = Im + (ΦΘ′ + ΘΦ′) + ΘΘ′ and S = ΦSΦ′ + C. For R this means

R(h) =

{
diag−1(S)S, for h = 0,

diag−1(S)Φh−1 [ΦS + Θ], for h ≥ 1,
S =

∞∑
k=0

ΦkCΦk′.

h = 4 h = 5 h = 6 h = 7

h = 0 h = 1 h = 2 h = 3
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Figure 3. Correlation as function of spatio-temporal lag (h, v) with h ∈ [0, 7] and v ∈ [−3, 3] × [−3, 3]. At h = 0, the
square at (0, 0) is white, because this correlation is 1 and would inflate the scale if included. [Color figure can be viewed at

wileyonlinelibrary.com]
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Example 3. For  = [0, 6] × [0, 6]. we visualize the spatio-temporal correlation 𝜌(h, v) = Cor(X2
t+h(u +

v|m),X2
t (u)), with time lag h ∈ [0, 7] and spatial lag v = (v1, v2) ∈ [−3, 3] × [−3, 3], in Figure 3. The ACF is

given by (2.14) and the model specifications are the same as Example 1, with a0 = 0.1, a1 = 0.4∕8, b0 = 0.06
and b1 = b2 = 0.3∕8, giving

∑
v 𝛼(v) +

∑
v 𝛽(v) = 0.86 < 1. The scale parameter 𝜔 does not influence the corre-

lation, thus it is not specified. For h = 1, the nine dark blue squares are the nine neighbours. As the temporal lag
increase, the correlation spreads out and fades. An interesting element is the low magnitude of the correlations,
peaking around 0.13. This is most likely due to the high number of neighbours and the chosen parameters.

3. CONDITIONAL MAXIMUM QUASI-LIKELIHOOD ESTIMATION

In the first part of this section, we introduce a version of the volatility process that is defined by a free parameter.
With this framework established, we derive the conditional quasi-likelihood.
Let 𝜃0 be the true parameter vector which has generated the {Xt} process and the not directly observable squared

volatility process {𝜎2
t (u)}. Related to the last one is {ht(u, 𝜃), 𝜃 ∈ Θ} which we call the likelihood process. It

extends the squared volatility process {𝜎2
t (u)} to a function-valued process. Define equivalently to (2.4),

ht
def
= 𝜔1 +

p∑
i=1

AiX
2
t−i +

q∑
j=1

Bjht−j, t ∈ Z. (3.1)

with ht = ht(𝜃) = {ht(u, 𝜃), u ∈ } ∈ Rm. Note that 𝜃 = (𝜔,𝜶,𝜷) ∈ Θ, while {Xt} is generated by 𝜃0. Thus,
we have that ht(𝜃0) = 𝝈2

t a.s. By the forthcoming assumptions A4 and A5, it will become clear that {ht(u, ⋅)} is
a spatio-temporal process with values in C[Θ,R], the space of real continuous functions defined on Θ, uniquely
defined by (3.1).
We vectorize (3.1) with B defined in (2.10) and the mq × 1 vector processes

Ht
def
=
[
ht ht−1 · · · ht−q+1

]
, Ct

def
=
[
Dt 0

]
, (3.2)

where

Dt
def
= 𝜔1m +

p∑
i=1

AiX
2
t−i and ht =

q∑
j=1

Bj ht−j + Dt (3.3)

from (3.1). If q ∈ {0, 1}, let B = B11 = B1, Ct = Dt and Ht = ht with B1 = 0 for q = 0. Note that we have
suppressed the dependency of 𝜃, but B, Ht and Ct depend on 𝜃. From (2.10) and (3.1)–(3.3), we get a first order
SRE for the likelihood process given by

Ht = BHt−1 + Ct, t ∈ Z. (3.4)

Note that Ht(𝜃0) = St−1 in the context of (2.8). The special case when q = 0 gives ht = Dt in (3.4) and ht is then
fully observable from the observations. Most of what we discuss here is only relevant when q > 0, namely when
the model is not a pure ARCH.
An important concept for SRE’s is convergence with exponential rate.

Definition 3.1. For a sequence {Xn}, we write Xn
e.a.s.
−−−→ 0 or Xn = (1) e.a.s. if Xn = (an) a.s. for some fixed

a ∈ (0, 1).

Lemma 3.1. Suppose that Xn = (1) e.a.s and {Yn} is bounded in L𝛿 for a 𝛿 > 0. Then XnYn = (1) e.a.s.

Proof. The proof is straightforward (Straumann and Mikosch, 2006). □

wileyonlinelibrary.com/journal/jtsa © 2019 The Authors. J. Time Ser. Anal. 41: 177–209 (2020)
Journal of Time Series Analysis published by John Wiley & Sons Ltd DOI: 10.1111/jtsa.12498



49

A STGARCH MODEL 191

Remark 3.1. If Xn = (an) a.s. for a fixed a ∈ (0, 1), then Xn = (1) e.a.s.

By carrying out the recurrence in (3.4), we get

Ht =
∞∑
k=0

BkCt−k. (3.5)

The infinite sum in (3.5) converges e.a.s. uniformly with respect to 𝜃 contained in any compact subset of the
neighbourhood described in Remark 2.5. To make sure that this holds globally on Θ, we need the following
assumptions:
A4: On Θ, ‖∑q

j=1 Bj‖ < 1.
A5: The parameter space Θ is compact.

We extend Definition 2.3.

Definition 3.2. For g∶ Θ ⇝ Rr×s, r, s ≥ 1,  ⊆ Θ, let ‖g‖ def
= sup𝜃∈ ‖g(𝜃)‖.

Since we do not observe the infinite past of {Ct}, let

X̂t
def
=

⎧⎪⎨⎪⎩
0, for t < 1 − p,

x̃t, for t = 1 − p,… , 0,

Xt, for t = 1,… , n,

ĥt
def
=

⎧⎪⎨⎪⎩
0, for t < 1 − q,

h̃t, for t = 1 − q,… , 0,

D̂t +
∑q

i=1 Biĥt−i, for t = 1,… , n,

(3.6)

with D̂t
def
= 𝜔1m+

∑p
i=1 AiX̂

2

t−i andwhere {x̃t} and {h̃t} are initial values. The theoretical counterpart of this definition
is (3.3). Note that D̂t ≡ Dt for t ≥ p + 1.

Remark 3.2. The initial values represent fixed values that are different from the observations. However, our
subsequently derived results allow h̃t to be stochastic as long as E‖h̃t‖𝛿Θ < ∞ for some 𝛿 > 0. The same applies

to x̃2t .

In Proposition 3.1 we prove that the difference between the empirical ĥt and the stationary process ht will
converge e.a.s. to zero uniformly onΘ. This implies that the effect of the initial values is asymptotically negligible.

Proposition 3.1. If A2–A5 are satisfied, then ‖‖ht − ĥt‖‖Θ = (1) e.a.s.

Proof. Let Ĉt
def
= (D̂t, 0,… , 0) ∈ Rmq and Ĥt

def
= (ĥt,… , ĥt−q+1). Then for t ∈ [p + 1, n], we have that Ĉt = Ct, and

Ĥt = BĤt−1 + Ĉt = Bt−p−1Ĥp+1 +
t−p−2∑
j=0

BjCt−j.

Thus

Ht − Ĥt = Bt−p−1(Hp+1 − Ĥp+1). (3.7)

Using the triangle inequality on (3.7), we have

‖Ht − Ĥt‖Θ ≤ ‖Bt−p−1‖Θ(‖Hp+1‖Θ + ‖Ĥp+1‖Θ), (3.8)
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and by A4 and A5 together with Theorem 2.3(i),

‖Bt‖Θ ≤ ‖Bq‖⌊t∕q⌋Θ max
0≤r<q‖Br‖Θ = (1) e.a.s.

The other terms are finite with probability one, so (3.8) must go to zero with an exponential rate as t → ∞. □

3.1. Conditional Quasi-likelihood

Assuming that Z is a spatio-temporal sequence of i.i.d. standard normally distributed variables opens the door to
Gaussian quasi-likelihood estimation. If the distribution of Z is truly standard normal, what we derive here will be
the true conditional likelihood. If not, we call it quasi-likelihood.
Let Wk

def
= (Xk,… ,X−p+1,𝝈

2
0,… ,𝝈2

−q+1), k = 0,… , n. The density of Xn
def
= [X1 …Xn] conditional on W0, can

be written as

fXn|W0
(xn|w0) = fX1|W0

(x1|w0)fX2|W1
(x2|w1)… fXn|Wn−1

(xn|wn−1).
By using the first part of (2.4), we see that

fXk|Wk−1
(xk|wk−1) =∏

u∈
1

𝜎k(u)
fZ
( xk
𝝈k

)
,

where the vector division is a Hadamard one. Given Wk−1, 𝝈k is successively given from the second part
of (2.4).
We get the quasi-likelihood from the conditional simultaneous density with fZ as the standard normal density

and where the empirical likelihood process ĥ replaces 𝜎2. Taking the logarithm of this likelihood gives

L̂n(𝜃)
def
=

n∑
t=1

∑
u∈

𝓁t(u, 𝜃), 𝓁 def
= −1

2

{
log ĥ + X̂2

ĥ

}
, (3.9)

with the processes X̂ and ĥ given by (3.6).

Remark 3.3. In (3.9) we have denoted 𝓁t(u, 𝜃), ĥt(u, 𝜃) and X̂t(u), without their respective space-time locations
(t, u) and parameter inputs. This works since the involved processes are simultaneously strictly stationary and the
actual expression does not depend on a particular point (t, u). We will use this convention when considering an
arbitrary variable, but also when we discuss the processes as one unit, for example, 𝓁, ĥ and X̂.

We use the previously specified ĥ as the empirical counterpart of h. Substituting h for ĥ and X for X̂, defines the
theoretical likelihood Ln and its terms 𝓁t. From Proposition 3.1 we have that ‖ĥt(u) − ht(u)‖Θ converges e.a.s. to
zero. Therefore, L̂n is usable as an approximation of the theoretical log likelihood function as the notation indicates.
The two likelihoods have the respective maximum likelihood estimators

𝜃n
def
= argmax

Θ
Ln and 𝜃n

def
= argmax

Θ
L̂n.

The distinction between Ln and L̂n is important. The difference lies in the h-functions and X’s used.

Remark 3.4. Note that the likelihood function in (3.9) is closer to the univariate GARCH likelihood than to the
multivariate CCC-GARCH likelihood.
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4. LARGE SAMPLE PROPERTIES

Here we present asymptotic results for the maximum quasi-likelihood estimator, both consistency and asymptotic
normality, under certain regularity conditions. Proofs are found in Section 8.
Let(𝜃, z) def

=
∑p

i=1 Aiz
i and(𝜃, z) def

= I−
∑q

j=1 Bjz
j be the matrix polynomials associated with the model. Then

and are left coprime if any matrix polynomial factorizations(𝜃1, ⋅) =  (⋅)(𝜃2, ⋅) and(𝜃1, ⋅) =  (⋅)(𝜃2, ⋅)
with 𝜃1, 𝜃2 ∈ Θ, imply that  is unimodular, that is, that the determinant of  is a non-zero constant.
The following list of assumptions will be used.

A6: The projections Δki ⇝ Λki into preserve cardinality.
A7: At 𝜃0, and  are left coprime and either [Ap |Bq] or [A

′
p |B′

q] has full rank.
A8: The squared residual process Z2 is non-degenerate with expectation 1.
A9: The interior of Θ as a subset of the Euclidean space contains 𝜃0.
A10: The variance of the squared residual process, 𝜏Z

def
= Var Z2, is finite.

For consistency we need A2–A8, while in addition A9 and A10 are needed for the central limit theorem.
These assumptions are similar to those of the univariate GARCH literature, especially Berkes et al. (2003),

Francq and Zakoïan (2004) and Straumann and Mikosch (2006). Our assumptions are also related to Francq and
Zakoïan (2011, Ch. 11) for the CCC-GARCH, but the comparison to univariate theory is more appropriate (see
Remark 3.4) perhaps with the exception of identifiability.
The conditions A2 and A3 ensure stationarity and ergodicity of the process, while A4 and A5 ensure the global

existence of the likelihood process on Θ. The compactness of Θ in A5 is also needed for the maximization of the
likelihood. The identifiability of the model follows from A6 and A7. As discussed in Remark 2.2, the dimension
of the parameter space will necessarily be reduced unless A6 is satisfied. The coprime part of assumption A7 is
not enough to guarantee identifiability. Identifiability means here that −1(𝜃, z)(𝜃, z) = −1(𝜃0, z)(𝜃0, z) does
not have any solution in Θ except 𝜃 ≡ 𝜃0. With  and  coprime, additional conditions must ensure that the
only possible unimodular matrix , as a common factor, is the identity matrix. The full rank assumption is easily
confirmed after estimation, but can in some cases also be confirmed a priori. A sufficient condition is that for any
pair of corresponding eigenvalues of the two circulant matrices Ap and Bq, at least one of them is nonzero. The
condition for identifiability of CCC-GARCH models corresponds to A7 (Francq and Zakoïan, 2011, p. 295), but
it is quite possible that A7 can be simplified since our model is not really multivariate. The non-degeneracy in A8
is clearly necessary. Otherwise, X2 will be constant and the model degenerates.
Condition A9 is also necessary, because if for instance 𝛼1(v) = 0 for some v ∈ Δ11, N

1∕2(𝛼1(v) − 𝛼1(v)) with
N def

= N(n) = nm, cannot be normal with zero expectation because it can only take non-negative values. Berkes
et al. (2003) assumed A9 for consistency as well, but like Francq and Zakoïan (2004, 2011) and Straumann and
Mikosch (2006), we avoid that. A10 is necessary for the finiteness of the asymptotic covariance matrix.

Remark 4.1. The condition A6 means that each Δki can be contained in [0,m − 1] by a translation.

With the assumptions above, we can present the asymptotic results. The first being consistency and the second
asymptotic normality of the QMLE. Convergence in distribution of Xn to X is written as Xn ⇒ X.

Theorem 4.1. Under the assumptions A2–A8, 𝜃n is strongly consistent; 𝜃n
a.s.
−→ 𝜃0.

Theorem 4.2. Under the assumptions A2–A10, 𝜃n is strongly consistent and asymptotic normally distributed:
N1∕2(𝜃n − 𝜃0) ⇒  (0, 𝜅 I−10 ), where 𝜅 = 2−1𝜏Z and I0 is the information matrix given by

I0 = 2−1E(∇ log h0)(∇ log h0)′, h0 = h(𝜃0). (4.1)
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Remark 4.2. When the residual process is Gaussian, the constant 𝜅 = 1 and I0 is the Fisher information matrix.
Note that I0 depends only on the marginal distribution of (h0,∇h0) and thus it is influenced by the squared residual
distribution beyond its first two moments.

Although it is not quite clear from the expression, the matrix I0 depends on, but the model parameters do not,
though the model does.

Remark 4.3. Under A2–A10, 𝜃n will eventually satisfy the likelihood equations ∇L̂n=0, since 𝜃n is consistent
for the interior point 𝜃0 and L̂n is smooth and takes its maximum in an open ball around 𝜃0. The same relation is
of course true for 𝜃n and ∇Ln.

5. SIMULATION EXPERIMENTS

We conduct a simulation experiment to see how well the estimation procedures described in previous sections
perform on finite samples. We will both consider circular and non-circular data.
Based on circular data, we should get consistent and asymptotic normally distributed estimates, 𝜃n, according

to Theorems 4.1 and 4.2. On non-circular data however, the circular estimator will be biased due to the projection
of the neighbourhoods, but this bias may be compensated by a parametric bootstrap bias correction (PBBC). For
this procedure to be successful, we need that E𝜃0

(𝜃n − 𝜃0) ≈ E𝜃n
(𝜃∗ − 𝜃n), where 𝜃∗ denotes the mean estimate of

the parametric bootstrap samples.
The parameters are estimated by maximizing the likelihood L̂n. The case d = 1 is not so interesting since we

know that the circular approximation will perform well. We therefore focus on d = 2. The model we consider is
the same as in Example 1, with a0 = a1 = 𝛼 and b0 = b1 = b2 = 𝛽. Thus, we only have three parameters, 𝜔, 𝛼 and
𝛽, giving equal weight to all nine members of the neighbourhood. The true parameter vector that generates all the
datasets is 𝜃0 = (0.31, 0.024, 0.070) and we can write the models in the vector notation of (2.4) with A1 = 𝛼W
and B1 = 𝛽W, as

Xt = 𝝈t◦Zt, 𝝈2
t = 𝜔 + 𝛼WX2

t−1 + 𝛽W𝝈2
t−1,

where W[u, v] = 1(v ∈  (u)) is a neighbourhood matrix. The independent innovations are sampled from a
standard normal distribution. We use 200 bootstrap replicates in the bias correction, 500 Monte Carlo repetitions
and three different sample sizes. The performance is primarily evaluated by the mean square error (MSE) of the
estimates, but we also report the bias, standard deviation, the squared bias divided by the variance, marginal and
simultaneous coverage. MSE can be decomposed into the sum of squared bias and variance. The squared bias to
variance ratio is therefore useful to better understand what drives the development in MSE. Coverage means the
proportion of the 500Monte Carlo simulations where the 95% confidence interval based on the parameter estimate
contains the true parameter. The simultaneous coverage is found by checking the condition

(𝜃n − 𝜃0)′ Σ̂
−1

(𝜃n − 𝜃0) ≤ 𝜒2
0.95(3) ≈ 7.81,

where Σ̂ is the Monte Carlo approximated covariance matrix of 𝜃n, while the marginal checks whether |𝜃n,i −
𝜃0,i|∕ŜD(𝜃n,i) ≤ z0.975 ≈ 1.96 for every parameter estimator 𝜃n,i, where ŜD(𝜃n,i) is the square root of the diagonal
elements of Σ. For comparison purposes, we use Monte Carlo estimates for the covariance matrices. We could
use an approximation of the information matrix in (4.1), but this will only be correct in the circular case where
the Monte Carlo estimate and the information matrix approximation give similar results. We will refer to circular
estimates of circular data by CC, circular estimates of non-circular data by CNC and the parametric bootstrap bias
corrected CNC by PBBC.
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Table I. Estimation results based on 500Monte Carlo simulations of both circular and non-circular processes of different spatial
dimension. [Color figure can be viewed at wileyonlinelibrary.com]

atadralucric-noNatadralucriC

Circular estimates Circular estimates PBBC

Dimension Parameter

100 0 31.00 2.400 7.000 31.00 2.400 7.000 31.00 2.400 7.000
(Scale MSE) (10−3) (10−5) (10−5) (10−3) (10−5) (10−5) (10−3) (10−5) (10−5)

5 × 5 × 3000 100BIAS( ) 1.064 0.012 −0.070 12.63 −0.489 −0.209 −0.270 −0.075 0.089
100 SD( ) 4.289 0.121 0.299 6.254 0.119 0.392 7.070 0.147 0.463
MSE 1.949 0.147 0.944 19.84 2.529 1.970 4.995 0.271 2.219
BIAS2

⁄ SD2 0.062 0.010 0.056 4.084 16.98 0.283 0.001 0.260 0.037
Marg. Cov 0.942 0.952 0.942 0.488 0.012 0.916 0.942 0.932 0.946
Simult. Cov. 0.942 0.000 0.936
Uncond. SD 1.419 (9.318 × 10−3) 1.419 (6.350 × 10−3) 1.419 (6.441 × 10−3)

10 × 10 × 3000 100BIAS( ) 0.871 0.007 −0.055 2.947 −0.260 0.096 −0.432 −0.029 0.052
100 SD( ) 2.909 0.060 0.190 3.097 0.060 0.199 3.152 0.069 0.211
MSE 0.920 0.036 0.391 1.826 0.710 0.488 1.010 0.055 0.470
BIAS2

⁄ SD2 0.090 0.013 0.085 0.907 18.44 0.235 0.019 0.178 0.062
Marg. Cov 0.938 0.950 0.948 0.852 0.008 0.926 0.954 0.940 0.958
Simult. Cov 0.960 0.006 0.932
Uncond. SD 1.419 (4.326 × 10−3) 1.419 (3.780 × 10−3) 1.419 (3.831 × 10−3)

15 × 15 × 3000 100BIAS( ) 0.775 0.005 −0.048 2.125 −0.173 0.057 −0.109 −0.014 0.020
100 SD( ) 1.971 0.038 0.127 2.083 0.040 0.131 2.080 0.043 0.135
MSE 0.448 0.015 0.184 0.885 0.315 0.203 0.433 0.021 0.185
BIAS2

⁄ SD2 0.155 0.016 0.141 1.042 19.16 0.187 0.003 0.101 0.023
Marg. Cov. 0.928 0.940 0.936 0.822 0.012 0.934 0.956 0.932 0.954
Simult. Cov 0.940 0.002 0.946
Uncond. SD 1.419 (2.896 × 10−3) 1.419 (2.648 × 10−3) 1.419 (2.661 × 10−3)

standard deviation in parenthesis.

In Table I, the blue and red numbers are the most and least optimal values respectively, for each parameter
(𝜔, 𝛼, 𝛽) in each row. This colour coding makes it quite clear that the circular model is best on circular data, which
should be no surprise to anyone. As expected the absolute bias, the standard deviation and the MSE goes down
as the spatial sample size increases in almost all cases. The exception is 𝜔 in the PBBC, where the bias increases
slightly from spatial dimension 5×5 to 10×10. The standard deviations of the circular estimates are about the same
based on circular and non-circular data, and higher for the PBBC estimates. For non-circular data it is interesting
to compare the pre- and post PBBC estimates. In all cases, the PBBC successfully reduces the bias of the original
estimate extensively. With the exception of 𝛽 in the smallest sample size, this leads to a smaller MSE. For CC,
the squared bias goes down slower than the variance for 𝜔 and 𝛽, while for 𝛼 the bias is practically zero in all
cases. For the CNC estimates, the squared bias goes down faster than the variance for 𝜔, while for 𝛼 the small
standard deviation and the large bias is inflating the ratio evidently. For 𝛽 the relationship between squared bias
and variance is quite stable. In the PBBC case, we find all the blue numbers for 𝜔 and 𝛽 with values close to zero.
For 𝛼 we see a reduction in the squared bias to variance relation as the sample size increase. For the coverage, we
are quite pleased with getting results around 95% for the CC and PBBC estimates.
The kernel density estimates in Figure 4 are green for the CC estimator, blue for CNC and orange for the bias

corrected estimator. The red dashed vertical lines indicate the correct value of each parameter. By visual inspection,
the circular estimator on circular data is centred around 𝜃0 with decreasing spread as spatial sample size increases.
For 𝜔, it seems that the CNC is moving towards the correct value. One may think that the constant term should
not be influenced by the circular assumption, but due to strong correlation with the other estimators it is. In fact,
the unconditional standard deviation exists, since (2.12) is fulfilled under 𝜃0, that is, 9(𝛼 + 𝛽) = 0.846 < 1, and
E(𝜎2

t )
1∕2 = (𝜔∕(1−9𝛼−9𝛽))1∕2 is 1.419 under 𝜃0. The table shows that this quantity is, to some surprise, preserved

in all different simulations with high accuracy. For the 𝛼 column in Figure 4, we see why the coverage in Table I
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Figure 4. Kernel density estimates based on 500 Monte Carlo simulations with increasing spatial dimension on the vertical
and 𝜃n on the horizontal axes. In each frame there are densities of three variables: the circular estimator on circular data (CC),
circular estimator on non-circular data (CNC) and the parametric bootstrap bias corrected CNC (PBBC). The red dashed vertical

lines are the true values. [Color figure can be viewed at wileyonlinelibrary.com]

is so low for the CNC. The bell curve does not even touch the red line, although it seems to be moving towards
it with increasing sample sizes. The effect of the bias correction is largest in this column, where the improvement
in location is substantial and the cost in terms of higher variance is definitely worth its price. The 𝛽 column is not
as influenced by the circular assumption. Especially for the largest sample, there is very little difference pre- and
post PBBC.
This experiment shows that the estimation of circular models is meaningful for circular and non-circular data,

but in the latter case it is important to include a parametric bootstrap bias correction step if you want to reproduce
the non-circular parameters.

6. REAL DATA EXAMPLE: SEA SURFACE TEMPERATURE ANOMALIES

The data we consider has been studied in great detail by Berliner et al. (2000) and used as an example byWikle and
Hooten (2010), Cressie and Wikle (2011), Wikle and Holan (2011) amongst others. These are monthly averaged
sea surface temperature (SST) anomalies dating from January 1970 toMarch 2003,measured on a 2◦×2◦ resolution
grid in the tropical Pacific Ocean. This is not intended to be a comprehensive example, but merely an illustration
of how one can implement CSTGARCH on real non-circular data. In this regard, the model is mainly descriptive
here. However, the GARCH part could be used to improve prediction intervals by volatility forecasting. The
data is available for download as supplementary material to the book by Cressie and Wikle (2011) (link at the
end).
We choose a rectangle area without observations over land (see Figure 5) and reduce the data to a 4◦ × 4◦

grid by mean aggregation. This reduction in sample size is to make the computations less demanding. Finally,
we spatially difference the data to get a stationary series. That is, let {Yt(u1, u2)} denote the observations,
then

∇1∇2Yt(u1, u2) = Yt(u1, u2) − Yt(u1, u2 − 1) − Yt(u1 − 1, u2) + Yt(u1 − 1, u2 − 1),

wileyonlinelibrary.com/journal/jtsa © 2019 The Authors. J. Time Ser. Anal. 41: 177–209 (2020)
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Figure 5. Area of interest: Rectangle without land observations. Longitudes should normally be between −180 and 180, but
we have extended the scale to make it easier to visualize. [Color figure can be viewed at wileyonlinelibrary.com]

Table II. Parameter estimates of the CSTARMA model in (6.1) and of the CSTGARCH model for the SST anomalies dataset.

CSTARMA CSTGARCH

Estimates SD Estimates SD

𝜙1,0 0.361 2.87 × 10−3 𝜔 5.06 × 10−4 8.02 × 10−5

𝜙1,2 0.225 1.28 × 10−2 𝛼0 6.25 × 10−2 3.91 × 10−3

𝜙5,0 0.026 2.81 × 10−3 𝛼1 6.57 × 10−2 3.82 × 10−3

𝜙11,0 0.360 9.89 × 10−3 𝛼2 3.68 × 10−2 3.62 × 10−3

𝜙12,1 −0.248 2.04 × 10−2 𝛼3 4.05 × 10−2 4.23 × 10−3

𝜃2,1 0.163 9.28 × 10−3 𝛽0 2.66 × 10−1 7.4 × 10−2

𝜃3,1 0.143 9.29 × 10−3 𝛽1 5.09 × 10−1 6.94 × 10−2

𝜃11,0 −0.378 1.06 × 10−2

𝜃12,1 0.205 2.29 × 10−2

where ∇1 and ∇2 denote the spatial difference operators in the two spatial dimensions respectively. The data we
are left with is of dimension 20 × 14 × 399 (longitude × latitude × time) or 111720 data points, with longitudes
from 165◦E to 241◦E (119◦W) and latitudes from 24◦S to 28◦N.
The differenced data is correlated and shows signs of a 12 month season (see Figure 7b), so we fit a circular

spatio-temporal ARMA (CSTARMA) model using the starma R-package (Cheysson, 2016). The CSTARMA
model is, by adapting the definition of Pfeifer and Deutsch (1980),

Yt =
12∑
j=1

2∑
k=0

𝜙jkW
(k)Yt−j +

12∑
j=1

2∑
k=0

𝜃jkW
(k)Xt−j + Xt, (6.1)

where W(k) is a circular queen-contiguity neighbourhood matrix, characterized by the movement patterns of a
chess queen, with k as the spatial lag. The construction of such a circular neighbourhood matrix for a regular grid
is implemented in the spdep package (Bivand and Wong, 2018). Here, the spatial lag refers to how many tiles
the chess queen moves over and is illustrated in Figure 6a. We use backward-stepwise model selection, that is,
we start with temporal order 12 and spatial order 2 and fit the model (6.1) with (12 × 2 × 3 =)72 parameters.
Then, gradually remove the least significant one and estimate the model again, until only one parameter remains.
We then have 72 model candidates and choose the one that minimize Akaike’s information criterion (AIC). This
model, which also minimize BIC, has only nine parameters and the largest p-value is of order 10−19. The nine
parameter estimates with their corresponding standard deviations are given in the left column of Table II.
The residuals of the CSTARMA model is modelled using a CSTGARCH(1, 1) model with one spatial lag,

corresponding to the one used in Example 1. We allow for different parameters in the different directions and it
turns out that for the GARCH part, a rook contiguity neighbourhood only in the longitudinal direction is sufficient,
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Figure 6. (a) This illustrates how the spatial lags are defined for a queen contiguity neighbourhood, used for the CSTARMA
model and autocorrelation plot in Figure 7b. Parameter specification and dependency structure at one time lag for the (b) ARCH-
and (c) GARCH parts of the CSTGARCH model applied to the SST anomalies data. The horizontal and vertical directions

correspond to longitudinal and latitudinal respectively. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 7. (a) Marginal kernel density estimate for the standardized residuals, Z, along with a standard normal density in red.
Below it is a QQ-normality plot of Z. (b) Sample autocorrelation functions of the processes Y , X, X2 and Z. The spatial lag is
given in Figure 6a. The 12-month seasonal effect is seen as the stronger colours around temporal lag 12. [Color figure can be

viewed at wileyonlinelibrary.com]

while for theARCHpart a queen neighbourhood fits best. Themodel specificationwe end up choosing is visualized
in Figure 6(b,c), corresponding to the illustration used in Figure 2.
The CSTGARCH parameter estimates are presented in the right column of Table II. The empirical variance

of the data is ≈ 0.025, which fits well with 𝜔̂∕{1 −
∑

j(𝛼j + 𝛽j)} ≈ 0.027. Plotting four-dimensional processes

is difficult, and animations of all the fitted spatio-temporal series Y , X = Y − Ŷ , ĥ and Z = X∕ĥ (cf. Remark
3.3), are therefore given as supplementary material (details at the end). In these animations, notice how the fitted
conditional volatility clusters in space and time. The spatio-temporal autocorrelation of Y , X, X2 and Z are plotted
in Figure 7b. Here we see that the original data and the squared fitted GARCH process are correlated with points
close in space and time, while the GARCH process and the standardized residuals are not. This relates to one of the
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stylized facts about GARCH processes: Little autocorrelation in the process itself, yet profound correlation in the
squared process. When comparing autocorrelation of X2 to that of Z, it seems the model fits well. The empirical
distribution of the standardized residuals is close to the standard normal (see Figure 7a). We have not performed
any correlation tests here, but since the sample size is so large, we do not expect to reject a hypothesis of correlated
residuals.

7. CONCLUDING REMARKS

Finite area models are common in spatial statistics and wrapping a spatial model onto a toroidal surface is a known
strategy for forming spatially stationary models in this field. The construction of a circular model is not limited
to GARCH models and can be applied to other spatial- and spatio-temporal models. The circular assumption
is fruitful for calculations, simulation and asymptotic theory. It is also crucial for having an explicit efficient
likelihood with a fixed temporal boundary not depending on the sample size.
We consider CSTGARCH as a model in its own right, but it can definitely be used as an approximation of

a non-circular situation as well. Estimating an STGARCH model will lead to a boundary issue due to unob-
served sites outside the area of interest, and our simulation experiment indicates that a bias corrected circular
approximation is a viable alternative. The upside to the circular method is a utilization of all data points with a com-
plete disappearance of spatial boundaries. The circular processes are Markov, which is not the case for other ways
of approximating an STGARCH. The downside is its misspecification, mostly accentuated near the boundaries, if
the true model is not circular.
The boundary problem of spatial and spatio-temporal processes is well known and different approaches have

been proposed. Guyon (1982) showed that the edge effect goes to zero like (nm)−1∕(d+1) in our notation. It is
therefore necessary to handle the edge effect in a proper way. For dealing with the boundary issue in spa-
tial processes, Cressie (2015, p. 422) mentioned integrating out the unobserved data from the conditioning
event, but warned that this might lead to a complicated likelihood. We clearly find his warning justified for
the STGARCH model. Another suggestion of his is to form a guard area inside the perimeter of the area of
interest, where observations contribute to the likelihood only through their neighbourhood relations with inter-
nal sites. The volatility process must be estimated within the guard area, which means the guard area has
to be quite wide and the practitioner must set boundary values for the volatility at every time point. For a
pure STARCH model, the guard area approach is an alternative and a possible next step is to approximate an
STGARCH with an STARCH. However, this procedure will inevitably lead to biased estimates and a sacrifice
of a significant proportion of the observations, depending on the sample size. Estimation of GARCH models is
infamous for requiring large samples and we cannot afford losing too much data. The circular model leaves none
behind.

8. PROOFS

The main structure of the proofs for Theorems 4.1 and 4.2 is an adaptation of established theory. In particular
we are influenced by Straumann and Mikosch (2006) and Francq and Zakoïan (2004). There are also some new
elements.
The circular projection, as we have seen, makes an STGARCH model into a CCC-GARCH with a specific

circular neighbourhood structure (Theorem 2.1). Asymptotic theory exists for CCC-GARCH models (Ling and
McAleer (2003), Francq and Zakoïan (2011, pp. 289–307)), but the stationary spatio-temporal context here is quite
far from that framework. The following proofs of consistency and asymptotic normality are adapted to the current
context and therefore considerably simplified in comparison to the multivariate case. The proofs are relevant for
further work on GARCHmodels in the space-time domain, with and without the circular assumption. In particular,
in a working paper by Karlsen and Hølleland (2019), these proofs are used as a framework for the likelihood
estimation.
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8.1. Proof of Consistency

Throughout this subsection, we assume that A2–A8 hold.
The subscript 0 refers to 𝜃0 for quantities depending on 𝜃, for example, h0 = h(𝜃0). An arbitrary, but fixed point

(t, u) is suppressed whenever that is convenient to do (cf. Remark 3.3). We use 𝜚𝜔 = minΘ 𝜔(𝜃) so that h ≥ 𝜚𝜔.
The total number of observations is N = nm with n, m as the number of time- and spatial points respectively.

8.1.1. Identifiability
Proposition 8.1. The model is identifiable; h ≡ h0 a.s. if and only if 𝜃 = 𝜃0.

Proof. Due to A6, the VARMA form of (3.1) is fully parametrized and therefore possibly identifiable. The con-
ditions are therefore in terms of the associated matrix polynomials  and . By A4,  is causal and A7 states
the coprime property. Since Ap and Bq are circulants of level d (Theorem 2.2) and simultaneously diagonalizable
(Davis, 1994, Thm. 5.8.4), the two alternative conditions in A7 are equivalent, and the full rank requirement on
[Ap, Bq] is satisfied. These three properties guaranties identifiability (Reinsel, 2003, p. 37). □

8.1.2. The Asymptotic Likelihood has a Unique Global Maximum
Proposition 8.2. The asymptotic likelihood,

L def
= E𝓁 = −2−1E

(
log h + X2

h

)
,

has a unique global maximum at 𝜃0, that is, L(𝜃) < L(𝜃0) for 𝜃 ∈ Θ∖{𝜃0}.

Proof. The proof is an adapted version of an argument by Straumann and Mikosch (2006). Let

Q def
= 2L + E log h0 = E(log h0 + 2𝓁) = E

(
log h0 − log h − X2

h

)
= E

(
log

h0
h

−
h0
h

)
,

since X2 = h0Z
2. Now, log x − x < −1 unless x = 1. This means that Q(𝜃) < Q(𝜃0) with equality if and only if

h = h0 a.s. □

8.1.3. The Observable and Non-observable Likelihood are Equivalent
Proposition 8.3. ‖‖L̂n − Ln‖‖Θ = (1) e.a.s. (8.1)

Proof. By the mean value theorem | log y − log x| ≤ min−1(y, x) and

|𝓁 − 𝓁| ≤ | log ĥ − log h| + X2(ĥh)−1|ĥ − h|,‖𝓁 − 𝓁‖Θ ≤ (𝜚𝜔 ∨ 1)−2(1 + X2)‖ĥ − h‖Θ,
so that

‖L̂n − Ln‖Θ ≤
n∑
t=1

∑
u∈

(𝜚𝜔 ∨ 1)−1(1 + X2
t (u))‖ĥt(u) − ht(u)‖Θ.

By Proposition 3.1 and Theorem 2.3 the conditions in Lemma 3.1 hold and (8.1) follows. □
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8.1.4. Consistency by the Upper Semicontinuous Framework
The following important result is a device to face the possibility of non-uniform convergence.

Theorem 8.1 (Pfanzagl, 1969, Lemma 3.11). Let Θ ⊂ Rk be compact and let Θ′ denote an arbitrary compact
subset of Θ, T be an ergodic transformation on a probability space (Ω, ,P) and 𝜉0(𝜃) be a stochastic variable in
[−∞,∞] for all 𝜃 ∈ Θ. Define 𝜉t(𝜃) = 𝜉t(𝜔, 𝜃) = 𝜉0(Tt𝜔, 𝜃) for t ≥ 1 and 𝜔 ∈ Ω.
Assume that

(i) 𝜉0(⋅) is upper semicontinuous (usc) with probability one.
(ii) For all Θ′ ⊆ Θ: ‖𝜉0‖Θ′ is a stochastic variable.
(iii) For all Θ′ ⊆ Θ: E‖𝜉+0 ‖Θ′ is finite.

Let 𝜇 = E𝜉0 and 𝜉n = n−1
∑n

t=1 𝜉t. Then

(iv) 𝜉n
a.s.
−−→
n

𝜇.

(v) For all Θ′ ⊆ Θ: lim‖𝜉n‖Θ′ ≤ ‖𝜇‖Θ′ .

Proof of 4.1. Let 𝜉t = m−1∑
u∈ 𝓁t(u). Then {𝜉t} is ergodic and (i) and (ii) of Lemma 8.1 is satisfied, since 𝓁 is

continuous. For (iii) 𝓁+ ≤ − log h ≤ − log 𝜚𝜔 < ∞. From (iv), we get Ln = 𝜉n = 𝜇 + (1) = L + (1) a.s. and (v)
lim‖Ln‖Θ′ ≤ ‖L‖Θ′ . Since L̂n = Ln + (L̂n − Ln) we get from Lemma 8.3 that {L̂n} also satisfies (iv) and (v). With
(iv) and (v) and Lemmas 8.1–8.3 at hand, the arguments presented by for instance Ferguson (1996, pp. 114–5) do
the rest for us. □

8.2. Proof of the CLT

Throughout this subsection, we assume A2–A10.
Let 𝜃(𝜅) be an open ball with centre in 𝜃 ∈ Θ and radius 𝜅 > 0. When A9 holds, let 0 = 0(𝜅) = 𝜃0

(𝜅) be
contained in Θ for some 𝜅 > 0 and let 0 be the closure of this open ball. We use 𝛾 both as a component of the
parameter vector 𝜃 and its reference index. As an index, we write 𝛾 ∈ 𝜃 and for multiple indexes 𝜸 = (𝛾1,… , 𝛾k) ∈
𝜃k. The following properties of the model inherent in the assumptions are important input for the CLT proof.

(i) There exist a closed ball with center 𝜃0 in the parameter space Θ. Without loss of generality we can assume
that the radius is one; 0(1) ⊆ Θ.

(ii) When we consider a fixed outcome outside a fixed null set, then both 𝜃n and 𝜃n converges to 𝜃0. Hence for
any 𝜅 > 0, both these estimators are inside 0(𝜅) and satisfies their respective log likelihood equation for all
n large enough.

(iii) The components ofΘ are uniformly bounded in both directions; 𝜚 def
= ‖𝜃‖0

∨‖1∕𝜃‖0
so that 0 < 𝜚−1 ≤ 𝛾 ≤ 𝜚

for any component 𝛾 ∈ 𝜃 on 0.
(iv) The elements of Bk, b(k), decrease with an exponential rate to zero as k goes to infinity;

b(k) ≤ 𝜌k−q with 𝜌 = 𝜌
1∕q
B

, where 𝜌B is the spectral radius of B.

The proof goes along relatively standard lines. The starting point is a Taylor expansion of the theoretical log
likelihood.

8.2.1. Taylor Expansion
Proposition 8.4.

−(Jn + Rn)N1∕2(𝜃n − 𝜃0) = N−1∕2∇Ln(𝜃0), (8.2)
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where

Rn = Rn(𝜃n, 𝜃0)
def
= ∫

1

0

(
∇2Ln(𝜃0 + s(𝜃n − 𝜃0)) − ∇2Ln(𝜃0)

)
ds,

Jn = Jn(𝜃0)
def
= −∇2Ln(𝜃0), Jn = N−1Jn, Rn = N−1Rn.

Proof. Let 𝛿n = 𝜃n − 𝜃0. We use an integrated mean value theorem for the vector-valued multivariate ∇Ln.

∇Ln(𝜃n) = ∇Ln(𝜃0) +
[
∫

1

0
∇2Ln(𝜃0 + s 𝛿n)ds

]
𝛿n

= ∇Ln(𝜃0) +
[
∇2Ln(𝜃0) + ∫

1

0

(
∇2Ln(𝜃0 + s 𝛿n) − ∇2Ln(𝜃0)

)
ds

]
𝛿n

= ∇Ln(𝜃0) + (Jn + Rn)𝛿n.

Since 𝜃n satisfies the log likelihood equations, that is, ∇Ln(𝜃n) = 0, the left-hand side is zero and (8.2) follows by
a simple rearrangement and dividing by N1∕2. □
The main points to show are:

(i) The remainder term Rn can be neglected.
(ii) The observed information matrix, Jn, converges to a positive definite matrix.
(iii) The observable estimator 𝜃n and its theoretical companion 𝜃n are square root N equivalent.

8.2.2. The Remainder Term
Recall that h = ht(u) and B(k)

11 is the first block of Bk.

Lemma 8.1.

h =
∞∑
k=0

fk, fk(t, u, 𝜃)
def
= B(k)

11Dt−k(u) (8.3)

𝜚−1gk ≤ fk ≤ 𝜚 gk, gk(t, u, 𝜃)
def
= B(k)

11Dt−k(u, 𝜃0). (8.4)

Proof. From (3.2)–(3.5), we can write

ht(u) = ht(u) =
∞∑
k=0

B(k)
11Dt−k(u) =

∞∑
k=0

fk(t, u).

For the second part,

𝜚−1Dt(𝜃0) ≤ Dt(𝜃) ≤ 𝜚Dt(𝜃0). □

The main influence on h from the parameter 𝜃 goes through B. It is therefore advantageous to neutralize the
impacts from the Dt’s. This is the content of the second point in the lemma above.

Lemma 8.2. Let 𝛾 = 𝜕∕𝜕𝛾 for 𝛾 ∈ 𝜃 and successive first order partial derivatives is denoted by 𝜸 =
∏

i𝛾i

with 𝜸 = {𝛾i}. Let r = dim(𝜸) and k(r) =
∏r−1

j=0 (k − j) ∨ 1. Then

0 ≤ 𝜸Bk ≤ 𝜚rk(r)B
k, 0 ≤ 𝜸Dt(u) ≤ 𝜚rDt(u). (8.5)
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Proof. Each element of Bk is a multivariate polynomial in the variables of {𝛽j(v)} and has at most degree k. In
addition, each non-zero term in the polynomial has coefficient 1. Due to A4 the actual values of any of the variables
cannot exceed 1. Doing r successive differentiations of an element will at most give the factor k(r) and, at the same
time, a size increase due to a reduction of total power of the factors that constitute the term. The size increase is
therefore at most 𝜚r. The power reduction is r if and only if the result is greater than zero. The left-hand side is
trivial, since each factor in each element is non-negative. The second part of (8.5) is straightforward. □

Lemma 8.3. For any 𝜸 ∈ 𝜃r with r ∈ N,

0 ≤ h(𝜸) ≤ 𝜚r+1
∞∑
k=0

k(r)gk.

Proof. Let 𝜸 be fixed. We split this vector so that 𝜸(1) is the B-part and 𝜸(2) is the remaining part. Corresponding
to this structure, we write (j) for j = 1, 2. By (8.3),

𝜸h =
∞∑
k=0

𝜸 fk,

and by Lemma 8.2

𝜸 fk(t, ⋅ ) = 𝜸B(k)
11Dt−k = (1)B(k)

11(2)Dt−k

≤ 𝜚rk(r)B
(k)
11Dt−k ≤ 𝜚r+1k(r)B

(k)
11Dt−k(𝜃0)

= 𝜚r+1 k(r) gk(t, ⋅ ).

The lower bound also follows from Lemma 8.2. □
The following definition extends Definition 3.2.

Definition 8.1. Let V = V(𝜃) be a stochastic matrix depending on 𝜃 ∈ . Then ‖V‖,p def
= E1∕(p∨1)‖V‖p for any

p > 0. If V is independent of 𝜃, we may drop the subscript .
Remark 8.1. ‖V‖,p fulfils the triangle inequality for p ∈ (0,∞).

Lemma 8.4. For any 𝜸 ∈ 𝜃r, with r ∈ N and anymoment p ∈ N+, there exists a 𝜅 > 0 such that, with0 = 0(𝜅),

i)
‖‖‖‖h0h ‖‖‖‖0,p

< ∞.

ii)
‖‖‖‖h(𝜸)h ‖‖‖‖0,p

< ∞.

Proof. The proof of the two statements is quite similar. Let p be fixed and choose 𝛿 > 0 so that p𝛿 > 0 satisfy
Theorem 2.3(iv). Let 𝜌 = 𝜌(B0).

Step 1: Expansion and simplifications of the two fractions.
Let g0k = gk(𝜃0) = fk(𝜃0). By (8.4),

f𝓁 ≥ 𝜚−1g𝓁 and g0 = g00 ≥ 𝜚−1,
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and from (8.3), we can write

h0
h

=
∑∞

k=0 g0k∑∞
𝓁=0 f𝓁

≤ g00
f0

+
∞∑
k=1

g0k
f0 +

∑∞
𝓁=1 f𝓁

≤ 𝜚2
(
1 +

∞∑
k=1

g0k
1 +

∑∞
𝓁=1 g𝓁

)
≤ 𝜚2

(
1 +

∞∑
k=1

g0k
1 + gk

)
.

(8.6)

For (ii) we get from Lemma 8.3,

h𝜸

h
≤ 𝜚r+1

∑∞
k=0 k(r)gk∑∞
𝓁=0 f𝓁

≤ 𝜚r+2
(
1 +

∞∑
k=1

k(r)gk

g0 +
∑∞

𝓁=1 g𝓁

)

≤ 𝜚r+2
(
1 +

∞∑
k=1

k(r)gk

1 +
∑∞

𝓁=1 g𝓁

)
≤ 𝜚r+2

(
1 +

∞∑
k=1

k(r)gk
1 + gk

)
.

Step 2: Part (i)
We start with the first part. Let (t, u) be fixed. Let gk(𝜃)

def
= gk(t, u, 𝜃), B

(k)
11 = {b(k)11 (u, v, 𝜃)}, Vk(v)

def
= Dt−k(v, 𝜃0) and

bk(v, 𝜃)
def
= b(k)11 (u, v, 𝜃), ak(v)

def
= bk(v, 𝜃0). (8.7)

By (8.4) and (8.7),

gk(t, u) = B(k)
11Dt−k(u, 𝜃0) =

∑
v∈

b(k)11 (u, v)Vk(v) =
∑
v∈

bk(v)Vk(v). (8.8)

Inserting (8.7) and (8.8) into (8.6) gives

∞∑
k=1

g0k
1 + gk

=
∞∑
k=1

∑
v∈

akVk
1 + bkVk

.

Let 𝜅 > 0, 0(𝜅) def
= 0(𝜅‖𝜃0‖) and

k(𝜅)
def
= {𝜃 ∈ Θ∶ (1 − 𝜅)kBk

0 ≤ Bk ≤ (1 + 𝜅)kBk
0}, k ≥ 1.

Then by looking at Bk+1 = BkB, we see that

0 ⊆ ∪kk. (8.9)

Choose 𝜅0 so that 0(𝜅0) ⊂ Θ. By (8.9), we have for any 𝜅 ∈ (0, 𝜅0],

(1 − 𝜅)kak ≤ bk ≤ (1 + 𝜅)kak, ak ≤ 𝜌k−q on 0(𝜅). (8.10)

On 0(𝜅) and ak > 0, this gives

akVk
1 + bkVk

=
(
ak
bk

)(
bkVk

1 + bkVk

)
≤
(
ak
bk

)
b𝛿kV

𝛿
k = akb

𝛿−1
k V𝛿

k

≤ 𝜌−q𝛿
(

𝜌𝛿

(1 − 𝜅)1−𝛿

)k

V𝛿
k = 𝜌−q𝛿𝜏kV𝛿

k , say,
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since x(1 + x)−1 ≤ x𝛿 for x ≥ 0 and by (8.10). Choose 𝜅 < (1 − 𝜉) ∧ 𝜅0 with 𝜉 = 𝜌𝛿∕(1−𝛿). Then 𝜏 < 1. It is clear
that our choice of 𝜅 is independent of u and v and {bk > 0} = {ak > 0} on 0(𝜅). Thus,

𝜚−2
‖‖‖‖h0h ‖‖‖‖0,p

≤
∞∑
k=1

∑
v∈

‖‖‖‖ akVk
1 + bkVk

‖‖‖‖0,p
≤

∞∑
k=1

∑
v∈

𝜌−q𝛿𝜏k‖Dt−k(v, 𝜃0)‖0,p𝛿

=
[
𝜌−q𝛿𝜏(1 − 𝜏)−1 m] ‖Dt(v, 𝜃0)‖p𝛿 < ∞,

which ends the proof of part one.

Step 3: The second part.
For (ii), we use that bk ≤ (1 + 𝜅)ak,

k(r)bkVk
1 + bkVk

≤ k(r)b
𝛿
kV

𝛿
k ≤ 𝜌−q𝛿k(r)[(1 + 𝜅)𝛿𝜌𝛿]kV𝛿

k .

This is convergent for 𝜅 < (𝜌−1 − 1) ∧ 𝜅0 and in that case ii) holds. □

Lemma 8.5. For any 𝜸 and for 𝜅 > 0 sufficiently small, ‖𝓁(𝜸)‖0(𝜅),1 < ∞.

Proof. It is easy to verify that

𝓁(𝜸) =
M∑
k=1

akUk +
L∑
k=1

bkVk,

for appropriate constants where the structure of the Uk’s and Vk’s can be written as

U =
r∏
j=1

h(𝝃j)

h
, V = U′ X2

h
,

∑
dim(𝝃j) ≤ dim(𝜸),

with U and U′ in general different, but of the same type.
Now, with 0 = 0(𝜅),

‖U‖0,p
≤ max

j

‖‖‖‖h(𝝃j)h ‖‖‖‖0,rp
, p = 1, 2,

‖V‖0,1
≤ ‖U‖0,2

‖‖‖‖h0h ‖‖‖‖0,2
‖Z2‖2,

which is finite by Lemma 8.4 and A10. □

Proposition 8.5. Rn = (1) a.s.
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Proof. Let 𝛿n = 𝜃n − 𝜃0. We start by applying an integrated version of the multivariate mean value theorem, this
time on vec∇2Ln,

vec∇2Ln(𝜃0 + s 𝛿n) = vec∇2Ln(𝜃0) + ∫
1

0

[
∇vec∇2Ln(𝜃0 + rs 𝛿n)dr

]
s 𝛿n,

vecRn = ∫
1

0 ∫
1

0
∇vec∇2Ln(𝜃0 + rs 𝛿n)s 𝛿ndsdr.

Hence,

‖vecRn‖ ≤ ∫
1

0 ∫
1

0
‖∇vec∇2Ln(𝜃0 + rs 𝛿n)‖dsdr ‖𝛿n‖,

‖vecRn‖0
≤ (

N−1
n∑
t=1

∑
u∈

∑
𝜸∈𝜃3

‖𝓁𝜸

t (u)‖0

)‖𝛿n‖ = Vn ‖𝛿n‖, say,
where {Vt} is stationary. By Lemma 8.5,

‖V‖1 ≤ ∑
𝜸∈𝜃3

‖𝓁𝜸‖0,1
< ∞. (8.11)

Therefore, Vn = (1) a.s. by the ergodic theorem and 𝛿n = (1) a.s. since 𝜃n is strongly consistent. This gives

‖vecRn‖0
= (1)(1) a.s. = (1) a.s.,

and the assertion holds. □

8.2.3. The Asymptotic Information Matrix
Proposition 8.6.

Jn = 𝜏Z I0 + (1) a.s.,

I0 = 2−1E∇ log h0∇′ log h0 > 0.

Proof. The asymptotic covariance matrix takes the standard form E−1∇2𝓁0 E∇𝓁0∇′𝓁0 E−1∇2𝓁0 which can be seen
from (8.2). By some calculations, this reduces to 𝜏ZI0. The first statement is a consequence of the ergodic theorem
with Lemma 8.5 guaranteeing that the first moments are finite.
From its definition the matrix I0 is positive semidefinite. Assume 𝜉′I0𝜉 = 0 for some non-zero vector 𝜉 =

{𝜉𝛾 , 𝛾 ∈ 𝜃}, indexed by the elements of 𝜃. We choose 𝜉 such that 𝜃0 − 𝜉 is an interior point of Θ. This leads to
E|𝜉′∇ log h0|2 = 0 which implies that 𝜉′∇h0 = 0 a.s. and by stationarity of the process 𝜉′∇ht(u, 𝜃0) ≡ 0 a.s. for
all (t, u). From the component form of (3.1), we see that h is linear in 𝜃, that is, ht(u, 𝜃) = y′𝜃 for some vector y.
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Hence, for (t, u) ∈ Z ×, the following holds almost surely:

0 = 𝜉′∇ht(u, 𝜃0) =
∑
𝛾∈𝜃

𝜉𝛾

{
𝛿(𝛾, 𝜔) +

p∑
i=1

∑
v∈Λ1i

𝛿(𝛾, 𝛼i(v))X2
t−i(u − v)

+
q∑
j=1

∑
v∈Λ2i

𝛿(𝛾, 𝛽j(v))ht−j(u − v, 𝜃0)
}
+

q∑
j=1

∑
v∈Λ2i

𝛽j(v)𝜉′∇ht−j(u − v, 𝜃0)

= y′𝜉.

By adding zero, we have almost surely 𝜎2
t (u) = y′𝜃0 − y′𝜉 = y′(𝜃0 − 𝜉) = ht(u, 𝜃0 − 𝜉). This holds if and only if

𝜃0 − 𝜉 = 𝜃0 by Lemma 8.1, which is only possible if 𝜉𝛾 ≡ 0. □

8.2.4. Square Root n Equivalence of the Two Estimators
Lemma 8.6. ‖∇Ln − ∇L̂n‖Θ = (1) e.a.s.

Proof. Let A = ∇ log h and U = 1 − X2∕h with Â and Û for the corresponding hatted versions. Now,

−2𝓁 = log h + X2

h
=⇒ −2∇𝓁 = AU. (8.12)

Most of the simple computations below are carried out in terms of differences of the kind𝜉 = 𝜉− 𝜉. We proceed
with this notation. By combining the hatted and the unhatted (8.12), we get

−2∇𝓁 = AU − ÂÛ = AU +A Û,
‖∇𝓁‖Θ ≤ ‖A‖Θ‖U‖Θ + ‖A‖Θ‖Û‖Θ. (8.13)

Direct computation gives

‖A‖Θ ≤ 𝜚‖∇h‖Θ, ‖Û‖Θ ≤ 𝜚X2, U = X2

hĥ
h, ‖U‖Θ ≤ 𝜚2X2‖h‖Θ,

and

A = ∇h
h

+ ∇ĥh
ĥh

.

We know that all the denominators are bounded below by 𝜚−1. By Lemma 8.4 and Proposition 3.1, both terms on
the right-hand side of (8.13) is (1) e.a.s. □

Proposition 8.7. N1∕2(𝜃n − 𝜃n) = (1) a.s.

Proof. This time, we use 𝛿n = 𝜃n − 𝜃n. As in Proposition 8.4, we use a version of the integrated vector-valued
multivariate mean value theorem,

∇Ln(𝜃n) − ∇Ln(𝜃n) =
[
∫

1

0
∇2Ln(𝜃n + s 𝛿n)ds

]
𝛿n. (8.14)
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Now, ∇Ln(𝜃n) = 0 = ∇L̂n(𝜃n), so the left-hand side of (8.14) equals ∇L̂n(𝜃n) − ∇Ln(𝜃n). For the right-hand side,
we have [

∫
1

0
∇2Ln(𝜃n + s 𝛿n)ds

]
𝛿n =

[
Jn(𝜃n) + Rn(𝜃n, 𝜃n)

]
𝛿n.

Normalizing both sides of the modified (8.14) with N−1∕2 gives

N−1∕2[∇L̂n(𝜃n) − ∇Ln(𝜃n)] =
[
Jn(𝜃n) + Rn(𝜃n, 𝜃n)

]
N1∕2 𝛿n. (8.15)

By the same arguments used in Lemma 8.5, we find that Rn = (1) a.s., Jn = I0 + (1) a.s. This is working since
for any 𝜅 > 0 both 𝜃n and 𝜃n will stay in 0(𝜅) for all n large enough with probability one. This means that (8.11)
holds here and the first factor of the right-hand side converges with probability one to a positive definite matrix.
Since the left-hand side of (8.15) is (1) with probability one by Lemma 8.6 with necessity the same must be true
for the right-hand side. This means that the rightmost factor is (1) with probability one. □

8.2.5. Proof of Theorem 4.2
By Proposition 8.4–8.7,

N1∕2(𝜃n − 𝜃0) = N1∕2(𝜃n − 𝜃0) + P(1) = I−10 N
1∕2∇Ln(𝜃0) + P(1).

Now,

∇Ln(𝜃0) = 2−1
n∑
t=1

∑
u∈

∇ log ht(u, 𝜃0)(Z2
t (u) − 1) =

n∑
t=1

∑
u∈

Wt(u), say, (8.16)

with W = 2−1∇ log h(Z2 − 1). Let

Wt = vec {Wt(u), u ∈ }. (8.17)

From Lemma 8.4 and A10, it follows that {Wt} is a multivariate square integrable ergodic martingale which
satisfies a martingale CLT (Hall and Heyde, 1980, Thm. 3.2, p. 58),

n−1∕2
n∑
t=1

Wt ⇒ N(0, 𝜅 Im ⊗ I0). (8.18)

Combining (8.16)–(8.18) completes the proof.
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SUPPLEMENTARY MATERIAL

Two animations from the real data example in Section 6: (i) The fitted processes, X, ĥ, Z: Animation_
fitted_processes.avi. (ii) The mean aggregated and differenced SST anomalies Y: Animation_
Y.avi.
Additional Supporting Information may be found online in the supporting information tab for this article.
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Errata for proof section of Paper A

Sondre Hølleland and Hans A. Karlsen

July 2020

p. 201 In the proof of Theorem 4.1, the references to Lemma 8.1 and Lemma 8.3 should be to
Theorem 8.1 and Proposition 8.3, respectively.
"Lemmas 8.1-8.3" should be "Propositions 8.1-8.3".

p. 202 The matrix Jn = −∇2Ln(θ0) is defined with the minus sign, while in the calculations
below do not account for this. The definition with minus is used elsewhere in the paper
and Proposition 8.4 should be corrected accordingly.

p. 206 Proposition 8.6: The first line should be Jn = I0 + o(1) a.s.
In the proof below: "By some calculations this reduces to 2−1τZ I

−1
0 ".

p. 207 In the proof of Proposition 8.6, the reference to Lemma 8.1 should be to Proposition 8.1.
Although, the final argument does not hold, since y = y(θ0) and y′(θ0−ξ) , ht(u, θ0−ξ).
This should be replaced by the argument used in the proof of Proposition 7 in Paper D.

p. 207 Lemma 8.6 should be local, i.e. ‖∇Ln − ∇L̂n‖S0 = o(1) e.a.s.
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