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Summary

The advance of DN A sequencing technologies has dramatically expanded our
knowledge of microbial community composition and their functions from diverse
environments. The most common Next Generation Sequencing (NGS)-based methods
used for this purpose are marker genes (165 ribosomal RNA (rfRNA), 185 rRNA and
Internal transcribed spacer (ITS)), metagenome and metatranscriptome, which all have
wide applications with different prominence. Meanwhile, numerous bioinformatic
tools and workflows have been developed for a complete and comprehensive analysis
of above approaches, which makes it relatively easy to achieve basic results with
standard procedure. However, current workflows can only provide generic analyses for
well-studied environments, and the choice of methods affect results significantly. In
this thesis, [ explore best analytical practices and address bioinformatic challenges in
MNGS-based microbiome research, with emphasis on low-biomass and poorly

charmacterized environments.

Paper | and Paper II investigated microbial community composition in human
obstructive lung diseases through marker gene sequencing. First, we established robust
methods for marker gene sequencing analysis in Chronic Obstructive Pulmonary
Disease (COPD) microbiome research both experimentally and in silico. Second, we
investigated the stability of airway microbiota in COPD patients and healthy control
subjects over time using our procedures. In Paper I, we evaluated susceptibility of
oropharyngeal contamination with three bronchoscopic sampling techniques: small-
volume lavage (SVL), protected bronchoalveolar lavage (PBAL), bilateral protected
specimen brush (PSB). We emphasized the impact of laboratorial and bronchoscopic
contamination in COPD microbiome study; and demonstrated that protected
approaches (PBAL and PSB) could discover more unique operational taxonomic units
{OTUs) than unprotected lavage through the bronchoscope working channel. Due to
the rapid advancement of microbiome analysis methods, Paper II further improved
our bicinformatic processing, including replacing OTUs with amplicon sequence

variants (ASVs) and removing potential contamination in silico. In Paper I1 we also



evaluated how microbial composition changed among groups by comparing both alpha
and beta diversity quantitatively with advanced statistical methods. We observed that
diversity between the two procedures was higher in the airway samples than in the oral
samples and more so in the PSB samples than in the PBAL samples, which indicated
the varnance of microbiota between examinations. However, we found a significantly
lower diversity within-individuals than between-individuals, supporting the existence

of a core airways-residing microbiota.

In Paper Il and Paper IV, we investigated microbial community composition and
their functional potential from permafrost soil at Svalbard Norway, through a deep
Whole Genome Metagenomics (WGMS) analysis. Paper I reporied 56 metagenome-
assembled genomes (MAGs) from 13 phyla recovered from Svalbard permafrost cores.
Paper IV focused on revealing the key microbial community composition and
combined this with metabolic potential in Svalbard permafrost by using novel
bicinformatic methods. First, we explored the best practice of MAG refinement for
complex environments like permafrost, proposing an improved workflow which could
recover more MAGs that would otherwise be discarded due to the high contamination
level. Second, we developed a novel computational approach for comparing functional
potential across multiple samples from a MAG centric view, which integrated
coverage distribution and KEGG module (MO) information. This approach enabled a
deeper understanding of functions linked with soil depth and MAGs, in addition to
discover new trends between active layer (AL) and permafrost layer (PL). Through
these approaches, we found that microbial community composition shifted markedly
with depth; we highlighted key metabolic characteristics in Svalbard MAGs, such as
aerobic respiration and soil organic matter decomposition, that may play a crucial role
in Svalbard permafrost. Our findings provided a novel view of how microbiome
survive and acquire resources in an extremely limited resource condition like

permafrost.

In Paper V we introduced a novel bioinformatic tool — MetaRib — for rRNA gene
assembly. Accurate reconstruction of rRNA genes is essential to taxonomic

identification within a microbial community. However, current rRNA assembly tools



vi

are restricted to metagenomics or marker gene analysis, similar tools are lacking in
total RNA metatranscriptomics due to the increasing size and complexity of the
sequence data generated. In this work we developed MetaRib, aiming to fast and
accurate reconstructing full-length RN A sequences optimized for total RN A
metatranscriptomic data. MetaRib implements an iterative process to reconstruct rRNA
gcenes, and a post-assembly process to reduce false-positive sequences and estimate
relative abundance. We applied it to both simulated and real-world total RN A
metatranscriptomic datasets. Compared with other existing tools, we show that using
MetaRib we are able to perform fast rRNA reconstruction across multiple samples
with a low false positive rate, even in very large datasets, in addition it provides

accurate taxonomy-independent relative abundance estimation.
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1. Introduction

1.1 Microbiome research methods

1.1.1 Early history

The history of microbiology can be tracked back to the 1670s, when Antonie van
Leeuwwenhoek, known as “the father of microbiology’, studied microbes with his self-
made microscope [1]. Since then, diverse microbes have been found to play crucial
roles in the environment and in human health. Microbiome refers to all genetic
material of microbes (bacteria, archaea, protists, fungi and virus) that live in a given
ecosystem. Methods for investigating microbiomes could be either culture-dependent
or culture-independent. Culture-dependent methods, such as physiological
characterisation, isolation and cultivation, were dominant over a long period in the
past. However, the microbial universe is enormous; still it is estimated that less than
1% natural indigenous microbes could be cultivated using standard techniques [2].
Other restrictions include biased growth during culiurnng and fail to capture symbiotic

and diverse relationships in complex environments [3].

Culure-independent techniques are mostly based on the sequences of ribosomal RN A
{rRMA), a type of non-coding RN A with prevalent and conserved nature across all
organisms because of its fundamental role in translation of transcribed genes. In the
1970s Woese et al. discovered that the sequences of rRNA genes could be used as an
efficient evolutionary chronometer to analyse the phylogenetic relationships among all
living organisms [4]. Since then, culture-independent methods have been further
developed to overcome the drawbacks of culture independent methods. They have
been widely used in investigating microbial communities, especially with the
application of polymerase chain reaction (PCR) to amplify targeted rRNA genes.
Several such PCR-based methods have been developed, including terminal restriction
fragment length polymorphisms (T-RFLP) [5], denaturing gradient gel electrophoresis
(DGGE) [6] and quantitative PCR (qPCR) [7]. Others are PCR-independent, such as

fluorescence in sitn hybridization (FISH) [8] and microarrays [9]. Although those



approaches have been widely used and propelled the field greatly, some limitations
still remain. For example, those techniques lack the detailed genomic information on
the whole microbial community and their individual members, making it difficult to
obtain a deep understanding of diverse and or complex communities. Furthermore,
these methods are primarily low-thronghput techniques. However, the advent and
application of next-generation sequencing (NGS) methods have revolutionized
microbial research and given birth to many exciting new fields, such as metagenomics,

metatranscriptomics and single-cell metagenomics [10] .

1.1.2 The rise of sequencing technology

DNA sequencing is the process of determining the order of nucleotides (A, T, C, G) in
a given DNA. From the discovery of DNA structure by Watson et.al in 1953 [11],

there have been incredible improvements in sequencing technologies.

Sanger sequencing

In 1977, Frederick Sanger and colleagues published the firsi-generation sequencing
technology [12]. It is based on sequencing by replication of DNA and

the incorporation of dideoxynuclectides (ddNTPs: ddATP, ddCTP, ddGTP, ddTTP)
that will stop the replication once a ddNTP has been incorporated, so each fragment
will end with a labeled ddNTP. This was for many years the dominant sequencing
method until the next generation methods were developed. Yet even now Sanger
method remains a popular technique in many laboratories, especially for targeting and

validating short sequences.

Next-generation sequencing

Several new methods were developed in the mid to late 1990s as alternatives to Sanger
Sequencing. These so called *next-generation” (NGS) methods are massively parallel,
allowing the entire genome to be fragmented and sequenced in one sequencing run by
oenerating large number of short reads (typically 100~300 base-pairs) for each genome
fragment. There are many differences between NGS technology and Sanger

sequencing, but a key distingunishing chamacteristic is multiplexing. Multiplexing



allows large numbers of DNA fragments to be pooled and sequenced simultaneously
during a single mn, by using attached barcode (sample marker) sequences. The main
advantage of this technology is high-throughput of samples without drastically

increasing cost or time.

The 454 DNA sequencer was the first commercial NGS instrument released in 2005,
with the re-sequencing of the Mycoplasma geniialium genome [13]. It was based on a
pyrosequencing approach [ 14], which amplifies fragmented DN A in water-in-oil beads
with PCR. 454 instruments could generate up to a million reads with average read
length of 400 bases, but each run is expensive and generates significant homopolymer

errors [15].

The Nlumina platform is based on *sequencing by synthesis’ (SBS) method [16]. The
prnciple is to use a reversible chain-terminating reaction. Nucleotides are
fluorescently labelled and can be used to sequence DNA base by base. A library is
constructed by adding universal adapter to both ends of each DNA fragment, then
loaded onto the sequencing flow-cell. Each library fragment is amplified by bridge
PCR to form a cluster. SBS is used durng the sequencing step: each cyclic reaction
can only extend one comrect complementary base that is identified by imaging to
determine four different fluorescent signals. The complete nucleic acid sequence

{200~-300 bp) is detected after corresponding cycles matched with sequence length.

The rapid development of NGS platforms, including 454, Complete Genome, SOLID,
lon torrent and Mumina, led to a wide application of NGS and continuous reduction of
sequencing cost. Therefore, the pace of advances in genome sequencing technology
has accelerated. The speed of genome sequencing has more than doubled every two
years since 2003 while the cost of DNA sequencing is dropped significantly [17].
Accompanied by the pace of improvement of NGS has slowed down, 454 and SOLID
are no longer supported, and [llumina platform is dominant nowadays. Their latest
sequencer model, Ilumina Novaseq, can generate over one billion reads in two days

for a few thousand dollars with 99 9% accuracy.



However, NGS has also some disadvantages. One of the main limitations is the short-
read lengths. [llumina sequencers can only produce short reads (up to 500bp): the
accuracy of nucleotide identification drops due to the error accumulation and signal
degradation [18]. The information and variation in repetitive regions are missed as
well, as it cannot cover the whole region. This problem can be parially overcome by
paired-end sequencing which is the most common sequencing strategy. Compared with
single-read data, paired-end sequencing enables more accurate alignment and the
ability to detect more variations type such as insertion/deletion [19], and it allows
correction of sequencing artefacts such as apparent insertions or deletions. It produces
two paired-end reads with a known distance that can span a larger region of genomes
than single-end reads in order to include more unique sequences. Another limitation is
that almost all of NGS platforms require an amplification step, which could introduce

potential problems, like errors, amplification biases and information loss [17].

Third-generation sequencing

To overcome previous issues in NGS, several groups have explored alternative
approaches. Single-molecule real-time (SMRT) sequencing developed by PacBio is
one of the representatives that may revolutionize the field again. The PacBio platform
is based on the properties of zero-mode waveguides (ZMW) [20]. ZMW is a very
small hole less than half the light wavelength, which creates a tiny volume to observe
only a single nucleotide of DN A being incorporated by DNA polymerase. Four
different fluorescent dyes are used to represent four DN A nucleobases. A detector will
detect fluorescently labelled nucleotides incorporated into the growing DNA chain,
and the base call is made according to the corresponding fluorescence. The PacBio
sequencer is able to produce extremely long reads (10kb - 100kb) that allows easier de
novo genome assemblies, especially for many species which have long repetitive
regions. Besides that, PacBio has other advantages: minimal bias {no amplification
step, tolerance of high GC content), random errors distribution, and direct detection of
base modification like methylation [21]. These characteristics enable broad

applications of PacBio sequencing, although some drawbacks remain, including higher



error rate, lower throughout and higher cost compared to NG5S platforms such as
IMlumina. In practice, hybrid sequencing strategies are more affordable and scalable
making use of both accurate short [llumina reads and PacBio long reads instead using

PacBio sequencing alone [21].

Another promising approach is nanopore sequencing. The idea is detecting the primary
sequence when a single-strand DN A molecule passes through a nanopore channel
using electrophoresis transportation [22]. It is most developed by Oxford Nanopore
Technologies (ONT), founded in 2005. Nanopore can generate extremely long reads
up to 00 kb. Other advantages include miniaturization, amplification free, fast
detection and low sample materials preparation. Compared to other platforms, a major
difference is the extreme portability of nanopore devices which can be placed in a USB
stick as the detection is based on electronic single mather than reaction or optical.
Although some challenges remain (lower accuracy and efficiency), it shows great
potential in many fields, like DNA methylation, structural varation calling, pathogen

surveillance and bacterial/viral outbreak investigation [23].

1.1.3 Sequencing Methods in microbiome research

Environmental genomics is the research of genetic material recovered from samples
containing microbes of different species. Handelsmann et al. raised the term
‘Metagenomics® for the first time by cloning the DNA fragments of collective soil
cenomes into BAC vectors and exploring the metabolic functions [24]. Metagenomics
has had a rapid development since the emergence of NGS and the number of published
metagenomics papers has an exponential growth (Figure 1.1).
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Figure 1.1: Number of Published papers which contain *metagenome’ or
‘metagenomics’ in PubMed (bttpsy/www.ncbi.nlm.nih.gov/pubmed).

Sequencing technologies have a wide application in profiling of microbial
communities, which provide the information about composition and dynamics of the
total community from multiple perspectives (Figure 1.2), spanning from DNA to
protein level. In this chapter, I will give a brief introduction of the most used
techniques such as marker gene sequencing, whole genome metagenomics and
metatranscriptomics, which also lay the foundation and are highly relevant with my

projects.
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Figure 1.2: Overview of the application of sequencing technologies in microbiome
research. Each approach reveals different layers of information (DNA, RNA, single cell,
protein) of charactensation the microbiome community.

Marker gene sequencing

Marker genes represent special gene groups that could be used to distinguish between
taxonomic lineages [25]. Most of them are from conserved genes, such as 165
ribosomal RNA (rRNA), 185 (RNA and internal transcribed spacer (ITS). Marker
gene sequencing utilizes PCR to amplify specific marker gene regions, followed with
NGS technologies to generate sequences of mixed samples. This approach provides a
fast and cost-effective way to investigate microbial phylogeny and diversity, and has
been well-tested and widely used in many stdies [26]. 165 rRNA sequences is one the
most commonly used marker genes. A typical 165 rRNA gene is approximately 1500
bases long and include 9 conserved regions (C1-CY9) and hypervariable regions (V1-
V) (Figure 1.3). Generally speaking, a selected target hyper-variable region of 165
rRNA gene (normally V3-V4) will be amplified and sequenced, as shown in Figure
1.3.

10
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Figure 1.3: Conceptual representation of the 165 rRNA gene sequences. Yellow boxes
indicate conserved regions and pmk boxes vanable regions.
A major advantage of marker gene sequencing is the ability to detect and target non-
culturable microbiota. It also allows for the estimation of relative abundance of species
in multiple samples simultaneously. Thus, it is widely used in taxonomy analysis of
microbiome diversity as a cost-efficient method to assess different types of habitats
[27-30]. However, this method also has some limitations. For example, primers used
to amplify targeted sequencing regions will introduce biases as PCR. efficiency varies
and these regions are not totally conserved across all bacteria. Thus, marker gene
sequencing has a relatively low resolution due to the high similarity of 165 rRNA
zenes in close species [31]. Particularly, low-biomass samples are susceptible to be
affected with over-amplification: contaminating microorganisms become over-

represented as the number of PCR cycles increase [32].

Whole genome metagenomics

Whole genome metagenomics (WGMS) refers to the application of NGS to sequence
the whole DNA content in a community directly without marker gene amplification.
WGMS shears DNA extracted from habitat randomly, then sequences and assembly
into long contigs and scaffolds. Comparing with marker gene sequencing, it enables
not only a deeper taxonomic identification but also additional functional knowledge
[33]. The first WGMS study conducted using NGS was published in 2006 using 454
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pyrosequencing [34]. With the decreasing sequencing cost and improved throughput,
WGMS has been applicable in many large scale investigation of complex microbiomes
[35-38].

The advantage of WGMS is to investigate the general diversity of all microbiomes,
however, it has some limitations [39]. The main challenge of WGMS approach is the
large amount of sequence data generated and complexity of computational anal ysis.
Besides, the lack of reference databases makes it is challenge to interpret resulis

biologically.

Metatranscriptomics

There are some limitations of WGMS and marker gene analysis. For example, they
cannot discriminate if sequences that are observed in a community are from active
members or just merely present. Metatranscriptomics (MTS) uses RN A sequencing to
record expressed transcript within a microbial community at a given time point, which
provides a more direct measurement of functional activity and actively expressed
zenes in a community. Stdies with MTS have dramatic increase with a wide range of
applications, such as active member characterization [40], Antisense RNA detection
[41] and host-parasite integration. Some adapters for third-generation sequencers like
Manopore also allow the direct sequencing of BN A. An rRNA depletion step is
typically included in MTS studies in order to focus on expressed message RNA
{mRNA) encoding proteins, but a more direct alternative is “total RNA sequencing”,
where this is not carried out [42]. More detailed information of total RN A sequencing
is descrbed in section 1.3. While WGMS focuses on cataloging the present
microbiomes within a community, MTS is able to quantify the expression level and
monitor the variance of functionality of microbial communities, which provides
detailed information in understanding the interaction between a microbial community
and its host [43]. A special advantage of MTS is studying different active

functionalities with similar microbiome composition [44].
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Like general transcripts, MTS has the disadvantages since there is a gap between
actively expressed genes and final metabolic products, and it will lose the information

of those microbiome which were not active in that time point.

Summary

All approaches introduced above are widely used from surveying microbial
communities with their strengths and weaknesses. Table 1.1 summarizes the
advantages and disadvantages of different sequencing approaches. In practice, the

choice of methods depends on your research question, hypothesis, sample type and

Methods

FESOUICEs.
Advantages Limitations
» Potential biases: amplification, selected
* (uick and cheap for sample varable regions)
prepara[iml and gequeuciug ¢ [Low resolution best to Fenus level

Marker gene sequencing | e Many available public datasets and |* Limited functional information
(Who is there?) bioinformatic tools » [Unable to identify microbiota

» Verifiable ability for detecting both states(live/dead/active)
abundant and rare taxa * (Contaminations from host/laboratory
may affect microbial signatures

* More complex and expensive for

= High resolution to species and sample preparation and sequencing
strain level * Require heavy computational resource
Metagenomics » Detect novel species/genes and bioinformatic analysis
(What are they doing?) |e Infer relative abundance and * I[Inable to identify microbiota
functional potential simultaneously states(live/dead/active)
s  Avoid PCR-related biases » (Contaminations from host/laboratory

may affect microbial signatures

Metatranscriptomics
{How do they respond?)

* Most complex and expensive for

* Provide information of active sample preparation and sequencing
functions directly * Potential biases from host
Identify microbiota states contamination and high transcription
Capture dynamic variations among rate of microbiota
samples » Requires high quality sample

collection and storage

Table 1.1: Comparison of different sequencing methods in microbiome study. Here are
the mam advantages and disadvantages of NGS approaches applied in my thesis, based on
previous publications [45.46].
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1.2 Bioinformatics

In this section we will give an overview of the most common bioinformatic steps and

tools involved in marker gene, WGMS and MTS analysis.
1.2.1 Marker gene analysis

Quality control

The first step before starting analysis is to assess the quality of the reads. Removing or
trimming of low quality reads is the fundamental process to output reliable resulis, as
most biased diversity analysis are caused by sequencing errors [47]. Several tools are
available: some are general quality control (QC)-filter tools for NGS data, like FastQC
[48], FASTX-Toolkit [49]; some are specifically developed for marker gene
sequencing, such as AmpliconNoise [50] or PRINSEQ [51].

Furthermore, it should be pointed out that identification and removal of possible
contamination sequences is a necessary but easily neglected QC step in marker gene
analysis. However, contamination sequences may obscure microbial signatures. It may
come from various sources, including PCR reactions, reagent, cross-contamination and
environment. Previous research demonstrated that contaminants could impact the
result critically thus lead to inaccurate conclusion [32], especially for low-biomass
environments. In addition to careful library preparation, several bioinformatic tools
were developed to address this issue. For example, Decontam is an open-source R
package to classify contaminations based on a statistical model of OTU frequency
distribution in low-biomass and negative control samples [52]. It requires the use of
negative controls, which uses the same procedures as a primary experiment with a
placebo or no treatment and is always recommend in marker gene analysis. Other tools
like SourceTracker [53] implement with a Bayesian approach that estimates the

proportion of contaminants in a community.
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Chimeras removing

Chimeras are sequences formed from two or more biological origins incomrectly joined
together. These sequences can artificially change the microbiome composition thus
need to be removed. There are two major approaches to detect chimeras. One is
reference-based detection, all reads will be screened for chimeras using a well-
established, non-chimeric reference database, like UCHIME [54] and ChimeraSlayer
[55]. Another is de nove detection. A chimera-free reference database will be
oenerated for each NGS data according to their abundance, assuming that the most
abundance sequences are unlikely to be chimeras thus could be used as reference.
UCHIME provides this approach too. UCHIME is the most widely applied tool as it
supports two modes and is also implemented in comprehensive pipelines like QIIME
{Quantitative Insights Into Microbial Ecology) [56] and MOTHUR [57]. DECIPHER
[58] is another popular tool in chimeras detection, which is applicable for long

sequences (== 500 bp).

Sequence clustering

One common approach in marker gene sequencing is to cluster short sequences into
Opemrational Taxonomic Units (OTUs) based on sequence similarities. Each OT1 is
intended to represent a taxonomic unit depending on the similarity threshold. The
sample-by-OTU table can then be used to investigate microbial “species™, diversity
and composition, ete. Many available tools are proposed for OTU clustering, which
can be categorized into reference-based OTU and de nove OTU approaches: a more
detailed comparison is available in [59]. For the past years clustering reads into OTUs
has been the standard process in marker gene sequencing analysis [60]. However, OTU
clustering is typically used arbitrarily with limited resolution: the common 97%

similarity can often only distinguish taxa at genus level.

Recently, new methods have been developed to address OTU issues. Amplicon
sequence variants { ASVs) methods attempt to model the sequencing error and apply
the model within clustering, which could distinguish single sequence varant [61,62].

Tools like Deblur [63] and DADAZ [64] already implement ASVs as standard
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workflows. Considering both sequence similarity and abundance in a model, ASV
methods have shown improved sensitivity and specificity in marker gene sequencing
analysis compared to OTU-based methods in recent benchmark studies [65]. Another
hybrid clustering methods are SWARM [66] and SWARM?2 [67], which define an unit

in between ASVs and OTUs, with consideration of abundance patterns.

Taxonomy classification

Taxonomy classification is to assign taxonomic names to biological sequences. This
step is typically achieved either by aligning sequences against a reference database or
using k-mer based techniques. There are several commonly used MRNA databases
including Silva [68], Greengenes [69] and the Ribosomal Database Project (RDP) [70].
The choice of databases has been found to affect the final taxonomy result [71]. Silva,
the largest database, includes the most taxonomic units and has the best overall

performance, but it requires more computational resource [71].

Pipelines

Several marker gene pipelines allow the user to perform the whole analysis workflow,
from raw DN A sequence data to publication-ready resulis. QIIME is one of the major
packages for marker gene analysis published in 2010 that has been applied to many
studies [56]. QIME 2 is a updated version available since 2018 [72]. It addresses
several limitations of QIIME 1 with many new features like improved methods,

graphic interface, plugin architecture, etc.

MOTHUR. is another open-source project aiming to analyze and compare microbial
communities as a single piece software [57].The main difference is the philosophy:
MOTHUR is a standalone executable program which has integrated many excellent
algorithms into one, while QIIME is a python interface connecting a large number of
disparate programs with great expansibility and freedom. A recent published
benchmark study evaluated the performance of QIIME 2, MAPseq [73] and
MOTHUR, demonstrating that QIIME 2 was optimal in marker gene profiling while

also most computationally expensive tool [74].
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1.2.2 Whole genome metagenomics

WGMS targets the complete sequences of all microbial genomes within a community,
thus it yields board range of taxonomic, functional and evolutionary information. All
shotgun reads are used to determine composition and function in a community, either

by read-based or assembly-based analysis (Figure 1.4).

Read-based analysis Assembly-based analysis

' reference reference  fo—",
H H

.ﬂ.\_*/,._l

Figure 1.4: Summary of bivinformatic workflow in WGMS analysis. The WGMS data
could be analysed using read-based approach or assembly-based approach, depending on the
research objectives. Read-based analysis takes the unassembled reads and compares them
with the reference directly; assembly-based analysis attempts to assemble and bin genomes
firstly, then analyse the genes and contigs with reference databases.
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Read-based analysis
Read-based analysis utilizes raw sequence reads after QC. The core idea is to map

reads against reference databases and extract information based on alignment hits.
Because each read is considered independently in this approach, it allows to perform
large-scale metagenomic profiling efficiently and provide a rapid profiling of
community composition and function. Furthermore, it can capture the information of

reads that cannot be assembled.

Though plenty of reads alignment tools are available, mapping numerous reads directly
to reference is typically not the best solution for such analysis: not only concerns about
extensive CPU usage but also inevitable high false positive hits. To reduce
computational resource and false positive rate, many tools utilize sequence character
{like k-mer) or string compression (like Burrows-Wheeler transform: BWT ) to

preprocess reads and references [75].

Assembly-based analysis

Comparing with read-based analysis, the assembly-based approach is more
complicated with several steps, including assembling the reads into contigs, ‘bin’
contigs into metagenome-assembled genomes (MAGs), gene prediction and functional
annotation. This approach enables to reveal previously unknown and uncharacterized
senomes and pathways and thus provide novel biological insights into complex
communities, but it typically requires heavy computational resources (especially

memory) and additional analytic processes.

Quality control

WOGMS analysis needs careful QC as an initial step, which aim to identify and remove
low-quality sequences and contaminants. There are several tools that are available to
perform QC in WGMS, including FastQC [48], MultiQC [76], Fast() Screen [77],
BBDuk [78], Khmer [79], etc. Table 1.2 summarizes their key characteristics. In
addition, as WGMS is the study of the entire environmental microbial community

directly, identification and filtering of possible host/contamination sequences is a

18



19

necessary QC step. For example, it is useful to screen sequences against human

reference in a human-related microbiome study, like human gut or skin microbiome.

Tools Features Website
FastQC Provide several graphic QC https://www bicinformatics babraham ac. uk/proj
“as
statstics information ects/fastqe/
Agoregate results from multipe
MultiQ)C ) ) https://multige. info/
samples into one single report
Fast() Screen sequences against a set | https://www _bioin formatics babraham ac.uk/proj
Screen | of reference database ects/fastq screen/
— Decontaminate sequences using | hitps:/jgi.doe gov/data-and-tools/bbioolsbb-
Kmer-based operations tools-user-guide/bbduk-guide/
Trim and normalize sequences )
Khmer https://khmer readthedocs.io
for Kmer-based analysis

Table 1.2: A list of tools for quality control in WGMS., The table contains some of the

most commonly used tools for WGMS analysis.

Assembly

In bioinformatics, assembly refers to aligning and merging short reads into long DNA

fragment called contigs, a set of overlapping segments that represent a consensus

region of DNA. Two different al gorithms are commonly used in assembly [80]:

overlap based algorithm — including traditional overlap-layout consensus (OLC)

method [81] or recent string graph [82], and de Bruijn graph [83]. Numerous

approaches for assembly have been published and the choice of methods depends

heavily on your research purpose and sample type. Overdap based algorithms are

suitable for long sequencing reads, like Sanger or PacBio, but the computational

requirements become impractical with enormous reads. De Brujin graph addresses this

issue partially by splitting each read into overlapping subsequences of fixed length k

{k-mer), that enables efficient assembly for llumina short reads sequencing.
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It is known that genome assembly is challenging due to many factors, like
heterogeneity, sequencing errors and long repeat regions, which may lead to mis-
assembly and fragmentation. However, WGMS assembly is more challenging due to
its particularity. Firstly, a metagenomic sample represents a group of species with
different abundance rather than uniform distribution in typical single genome
assembly, meaning that low abundant genomes may barely assemble due to
insufficient data. Picking a lower k-mer may help, but it will have a higher chance of
oetting repetitive k-mers that leads to mis-assembly of the genomes. Thus, there is a
tradeo ff between covering low abundant genomes with accurate assembly for high
abundant genomes. Another problem is the phylogenetic distance. A metagenome
sample may include some highly similar sequences — such as different strains from
same species — that only a few nucleotide variances. It can cause the assembly to

cenerate many fragmented contigs instead of complete drafis.

Several metagenome-specific assemblers have been developed to tackle these
challenges. For example, Meta-IDBA attempts to cover for both high and low
abundant genomes by iterating with multiple k-mer size [84]. Its extension, IDBA-UD,
uses similar strategy with special optimization to handle uneven distributed sequences
[85]. MetaVelvet-SL is an extension of Velvet that integrating a Support Vector
Machine (SVM) — is trained by a similar population of samples — to increase the
performance [86]. MEGAHIT uses increasing k-mer strategy with suecinct de Bruijn
data structure to reduce computational cost [87]. metaSPAdes is a mode of the
assembly software SPAdes for metagenomic assembly, using a heuristic method to
distinguish interspecies repeats [88]. It was reported that MEGAHIT had the best
overall performance based on their benchmark data sets in Critical Assessment of
Metagenome Interpretation (CAMI) challenge [89]. Another benchmark study
sugoested that MEGAHIT together with metaSPAdes may be the best choice [90]. In
general, different programs have their own strengths and weaknesses with specific
datasets. Picking the proper tool is depending on several factors (e.g, research purpose,

sample type, platform, coverage).
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Binning

The aim of binning is to group contigs into MAGs: each bin will represent one single
species or strain ideally. In short, two types of binning methods are available:
supervised approaches align contigs against reference databases and assign them into
related taxonomy labels, unsupervised methods cluster contigs into groups based on
sequence chamacteristics (e.g., tetranucleotide frequency, homology, GC content).
Supervised methods rely on search homology against known genomes, however, only
a small fraction of microbiome have been sequenced, thus most contigs derived from a
metagenomic sample, especially novel genomes, may barely map to the reference.
Therefore, currently most binning methods are developed based on the sequence

composition, especially k-mer frequency [91].

MetaBAT uses a k-medoid clustering method to bin contigs by calculating pair-wise
distance based on tetranucleotide frequency [92]. Maxbin and its updating version,
MaxBin2, employs an Expectation-Maximization (EM) algorithm to cluster contigs
after co-assembly of multiple metagenomic datasets [93]. Recently, coverage were
found as a very strong characteristic in binning contigs when multiple sequence
samples were produced in a WGMS [94]. CONCOCT [95] and GroopM [96] are two
automated binning tools that utilize both sequence composition and coverage

informat ion.

Existing binners are developed based on different clustering methods and sequence
features, and evaluated with their respective benchmark data sets. DASTool is an post
binning method that integrates output from a flexible number of current binning tools

to calculate an optimized, non-redundant set of bins [97].

CheckM is common used to evaluate the quality of recovered MAGs, like
completeness and contamination, based on the frequency of single-copy marker genes
[98]. Genomic Standards Consortium (GSC) present a standard for assessing and
estimating the quality of MAGs [99]. Comparing with contigs, recovered MAGs could
provide more detailed information for downstream analysis, such as phylogenetic

analysis, functional profiles and abundance estimation across samples.
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Gene prediction

Predicting genes or other features, like CRISPR. repeats, tRNA, and non-coding RNA,
is a common prerequisite step to functional annotation. It is noted that assembly is not
a necessarily precondition for this procedure: raw reads can also be used to predict
genes directly. For example, FragGeneScan [100] is a tool that predicts genes from
shon reads incorporating a sequence error model and codon usage statistics. This
approach is able to provide an overview of functionality quickly. However, it is highly
depending on the length and quality of raw reads, which is impractical to obtain
detailed functional information from a biological perspective. Therefore, most gene

prediction tools focus on long contigs deriving from assembly or binning procedure.

Metagenomic gene prediction is more challenging compared with single genomes, due
to the diversity of microbial composition, sequencing errors and fragmented contigs
[101]. Several tools have been specific developed to address this issue, such as
Glimmer-MG [102], MetaProdigal [103], MetaGeneMark [104], Orphelia [105] and
Prokka [106]. In summary, most of them are contexi-based methods that uses different
models to detect inherent varations between coding and non-coding regions by
selected sequence properties, like GC-content, codon usage, k-mer frequency [107].
Advantages of context-based approaches include reference-free, fast process and
detection of novel genes. Others are similarity-based approaches searching for similar
existing gene sequences in reference, like BLAST [108]. However, this approach is
computational expensive and cannot discover novel genes, thus is not recommended in

most situations.

Taxonomic profiling

The aim of taxonomic profiling is to identify the composition and abundance of
microbiome in a community. Compared with marker gene analysis, WGMS can
perform comparative analysis across samples in a better resolution with less bias either
by read-based or assembly-based approaches. All of these approaches heavily rely on
reference catalogs, against which either reads or assembled contigs are matched.

BLAST [108] was widely used to assign taxonomy with NCBI GenBank in the early
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stage of WGMS, while it is no longer applicable due to the dramatic increasing size of
reference databases and sequencing data. Taxonomic profilers are developed to
overcome the above-mentioned difficulty. To do so, several sequential approaches are
introduced to reduce query time and potential hits in the reference, like k-mer
analysis, Burows-Wheeler Transform (BWT) and full-text index (FM index). As a
resuli, they are able to provide taxonomic assignment in a much faster way but usually
less sensitive than BLAST. Depending on the type of databases, these tools can be
further divided into two categories: nucleotide (blasin) and protein (blastp) classifiers,
to search against reference databases of DNA sequences or protein sequences

respectively.

Most nucleotide-based classifiers utilize k-mers to assign taxonomy. In brief, these
tools search k-mer hits against a predefined database which stores k-mer with
corresponding taxonomic identifier of every genome. The selection of k-mer number
reflects the trade-off between sensitivity and specificity: short k-mers may generate
many non-specific matches (multiple hits) while long k-mer may fail to match. Several
tools are available for fast taxonomic profiling in nucleotide database. For example,
Kraken [109] and its derivative tools (Kraken2 [110], KrakenUniq [111], Bracken
[112]) identifies a sequence’s taxa by searching exact k-mer match with lowest-
common ancestor (LCA) records in the database. CLARK [113] (and CLAREK-S
[114])is a similar approach but using discriminative k-mers at genus/species level
only. k-SLAM [115] is a novel approach that uses k-mer to find assignment firstly and
then peforms local alignment and pseudo-assemble to increase specificity. Except k-
mer based technique, other tools like Centrifuge [116] utilizes BWT and FM index to
compress the database to reduce redundancy and increase specificity.

Protein sequences are composed of 20 amino acid characters rather than 4 nucleotides.
Proteins are also more conserved compared to the DNA sequence that encodes them.
Thus, protein-based classifiers can be more sensitive. However, this approach is
normally more computationally intensive due to the six frame translations from DNA
to protein, and information of non-coding sequences is absent [117]. DIAMOND [118]

uses double index for both a protein reference database and translated sequences firstly
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and finds potential matches in parallel after sorting the index. Kaiju [119] utilizes
different indexing strategy: it indexes a protein reference using BWT while translated
sequence with FM index. This approach enables Kaiju to search against large protein

database efficiently.

The choice of classifier depends on a number of factors, including research subject,
data size, computational resource, etc. Broadly speaking, nucleotide classifiers have
better performance than protein classifiers for well-characteristic environments, as the
absence of non-coding sequences in protein databases [117]. On the other hand,
protein classifiers provide more sensitive hits thus could be considered for poorly
characterized environments (like soil) with the usage of large databases (like NCBI nr
database). Computational burden is another limitation. For most classifiers, there is a
trade-off between computing cost and accuracy. For example, Kraken series will have
a very good performance and fast identification if the server has very large memory (=
100G b); similar with CLARK-S compared to CLARK [117]. If it is not the case,
Centrifuge is a good altemative with limited computational resource [116]. Table 1.3
summarizes a few common tools and their key features for taxonomic profiling, a more

comprehensive evaluation could be found here [117].

Database |Tools Key features Reference
Kraken Exact k-mer search in memory [109]
Kraken? New version of Kraken with improvement of [110]
speed and memory
KrakenlUniq Specm! verﬂmu_nf Kraken using the stream [111]
sketching algorithm HyperLogLog (HLL)
Bracken gomp?lte rel:?twe_abmldauce of species using [112]
Nucleotide 3}"&"\'“&_"1 estimation _ _ _
CLARK Sylpe_rw_ﬁed_ﬂaqueuce classification using [113]
discriminative k-mers
CLARK version with spaced k-mers. It
CLARK-S5 |requires more RAM but offers a higher [114]
sensitivity
K.SLAM K-mer search with additional validation using [115]
pseudo-assembly




. Fast and memory-efficient tools for taxonomic
Centrifyge profiling using BWT [116]
DIAMOND Pr_meiu homology _saarcl% using spaced seeds (18]
; with a reduced amino acid alphabet
Protein Fast for large-scale profiling in protein
.. “as -
Kaiju database [119]

Table 1.3: A list of commaonly used classifiers and their key features in taxonomic
profiling. These tools can be mamly divided mto nucleotide-based and protein-based
classifiers, using different sources of reference databases and indexing strategies.

Functional annotation

Microbial communities are not only a group of taxonomic species, but also represent a
collection of biochemical functions that interact with environment. WGMS provides a
novel approach to answer the question “What are they doing?” by preforming

functional profiling depend either reads or predicted genes within assembled contigs.

Read-based functional profiling utilizes raw reads to map to functional reference
databases. In this approach, each read is considered independently to find best hits in
annotated genes, proteins or pathways, and then it could be used to provide an
aggregated picture of community function. For example, HUMAnN (HMP Unified
Metabolic Analysis Network) [120] and its updated version HUMAnN2 [121] utilizes
a tiered search strategy that aggregates single protein hits into higher-level functional
units {metabolic modules or pathways), providing comprehensive reports of metabolic
presence, absence and abundance. The read-based approach is efficient to perform a
quick functional profiling for a complex dataset, but it depends heavily on hits of
homologous genes thus choose a proper database is the most critical step. In general,
curated databases — like RefSeq [122] and Uniref [123] — are more applicable to well-
smudied samples such as human microbiome considering the accuracy and efficiency;
whereas large databases such as NCBI NR could be considered for poorly annotated
samples like permafrost soil. Besides, several specialized tools have been created for
specific annotation: like FOAM [124] with environmental focus, PHASTER [125] for

identifying putative prophages, and Resfams [126] for antibiotic resistance function.
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Assembly-based annotation requires a gene prediction step (see above), followed with
assigning predicted genes to functional categories by either homology-based or
pattem-based search. This approach is able to reveal previously uncharacterized
functions or pathways with constructed genomes, which provides novel biological
insights into complex communities. Specific tools like AntiSMASH [127] could be
used to predict biosynthetic or metabolic pathways for bacteria and fungi. However,
this approach does not apply to all studies. Firstly, many factors — such as low-
coverage data, mixture of close species — will affect the performance of assembly,
generating many fragmented and mis-assembled contigs, which could obscure
functional annotation for downstream analysis. Next, only part of the metagenomic
oenomes can be capmured by assembly and still many genes are uncharacterized in

reference databases.

Regardless of whether read-based or assembly-based approach is adopted, the crucial
step in functional analysis is the choice of databases. They could be divided into two
categories: homology-based and pattern-based. Homology-based approach is the most
common method with relative high accuracy [128] by searching homologous genes
between query sequences and existing reference databases. Several public resources
are available with different priorities. Non-redundant protein databases are most
common, including NCBI NR [122], SMART [129] and UniProt [130]. Besides,
ornhologous genes represent special gene clusters that exist in different species while
are originated by a common ancestor gene, thus often have similar functions [131].
Several specialized databases — like COG [132] and eggNOG [133] — have been
organized to infer sets of orthologous groups. KEGG [134] and SEED [135] databases
are usually used to annotate pathway and subsystem information. Gene ortholog (GO
[136] provides a set of hierarchical graphs describing the functions of genes related
with biological process, cellular component and molecular function. Conserved
domains reveal aspects of functional and/or structural units of a protein, therefore may
pinpoint precise function transfer across species. Databases like Pfam [137] and CDD
[138] provide comprehensive annotation and evaluation for conserved domains of
proteins. Pattern-based approach could be considered when protein sequences show

poor results using homology search. InterPro [139] is an integrated database of protein
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domains, motifs and functional units that can be applied to characterize functions. It
consists of many diagnostic signatures with different scopes: from high-level
superfamily (like CATH-Gene3D [140]) to specific subfamily (like PRINTS [140]).

Both homology-based and pattern-based approach needs tools to search against
databases. These searches generally come in two algorithms: BLAST-like [108]
(BLASTX , BLASTP, etc) and HMMER-like [141] (Hidden Markov Model). The
former is the most preferred algorithms while the latter is used in protein families and
pattem-based search. Web-based servers such as MG-RAST [142] and IMG/M [143]
enable users to access multiple database and perform comparative analysis with other
published studies easily. IMG/M integrates most comprehensive analysis, but it
requires strict data organization and has long waiting time; while MG-RAST is able to
provide a fast feedback with selected databases. Other tools like MEGAN [144]is a
standalone software that supports functional anal ysis using InterPro2G0O, SEED,
egeNOG or KEGG. Figure 1.5 summarizes commonly used databases and tools in
functional annotation. However, it is noted that the main limitation now in functional
profiling of a community is still the lack of annotation in most microbiomes except a
few selected model species, which means only highly conserved pathways and genes
could be detected in functional profiling [128]. It is partially explained confusing
results between high taxonomic diversity and low functional variance in metagenomic

stdies.

27



28

¥ ¥ ¥
ot [ | o]
L SR, Uiy v v
v v v
Tratés rotagzacmi dasazs v v
2| Homelogy-based
(Pl Ttm, €01 v
e - ”
R v v v
v
e Patiom-baed
Vot W W

E
s

Figure 1.5: Summary of common databases and tools in metagenomic functional
annotation. Most tools are achieved usmg homology-based approaches agamst specific
domains of databases; pattemn-based approaches provide an alternative method when
homology-based approaches have poor similanties.

Pipelines

WGMS analysis is a complicated process involving many different steps. Several
pipelines have been developed to facilitate the whole analytic workflow. Tools like
EBI metagenomics [145] and MG-RAST [142] are web-based services could provide a
basic overview analysis but may be short of detailed information. MetAMOS [146]
and MOCAT?2 [147] are command line based pipelines that integrate major steps in
WGMS analysis with different tools. Anvi'o platform [148] has an user-friendly
interface that allows users to optimize the assembly and binning approach with an
major advance of flexibility and visualization. KBase [149] is developing a suite of
microbiome analysis apps with a graphic interface that has a handy way to import,

extract, and edit data with various apps.
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1.2.3 Metatranscriptomics

Bioinformatics in MTS generally could be divided in two types: mRNA analysis and
rRNA analysis.

mRNA analysis

To date, most MTS studies have focused on mRNA analysis, as transcriptomes could
offer more detailed functional variance within individuals than WGMS [150].

Pre-processing

Similar to WGMS datasets, QC step is necessary to minimize errors. A specific step
that should be taken into consideration is the removal of rRNA | as they often dominate
in samples (~ 90%). In addition to physical remowval in library preparmation, some
bioinformatic tools, like SortMeRNA [151], can be used to identify and remove rRNA
reads after QC.

Transeripts assembly

Preprocessed reads can be assembled into full length transcripts. It is noted that MTS
assembly has some unique challenges like uneven sequencing depth and conserved
regions of mRNA across species. Thus, traditional single-genome transcript
assemblers may have poor performance. Several tools are designed specifically for
MTS, such as IDBA-MTP [152], Trinity [153] and TAG [154], but still efficient
assembly tools in MTS are lacking and have many remaining issues, especially for

complex and large volume datasets [155].

rRNA analysis

Although rRNA reads are frequently removed in MTS, it has a few advantages in
accessing taxonomy diversity of a community. Firstly, rRNA in MTS is able to detect
species in all three domains of life, meanwhile avoiding amplification bias, compared
to PCR-based marker gene surveys. Further, it allows for the reconstruction of full
length rRNA sequences, enabling a higher resolution for taxonomy profiling.
Moreover, rRNA is also essential for protein synthesis in all organism, therefore its

relative abundance across taxa generally reflects overall community structure.
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rRNA sequence reconsiruction

To have a high resolution of taxonomic classification, recovering the full-length rRNA
is the crucial step in rRN A analysis. There are many tools to extract SSU RNA
sequences from total reads, such as SoriMeRNA [151 Jand phyloFlash [156], more
challenges would come in the reconstruction process. Existing de noveo assembly tools
were designed primarily for genomic or metagenomic data and do not perform well on
rRNA due to their complex structure including both conserved and hypervariable

regions [157].

Specific tools for reconstructing rRNA sequences can be divided into two groups:
reference-based and assembly-based approaches. For example, EMIRGE [158] utilizes
an expectation maximization approach with known rRNA sequences to reconstruct
rRNA genes from a community. REGAO [157] is an optimized de noveo assembly tool
that reconstructs rRN A sequences with overlaps between reads using a suffix/prefix
array. However, these tools were designed for analysis of smaller datasets with
limitations in terms of high error rates as well as computational resources, thus cannot
be used directly to analyze rRNA in total metatranscriptomics due to the extreme high
volume of rRNA reads in total RN A data (97-98%).

1.2.4 Downstream analysis

Downstream analysis uses statistical tools to investigate the relationship between
sample metadata and microbial features, mainly including taxonomic and functional
matrices generated by primary analysis. Main challenges come from highly
dimensional and sparse property of microbiome dataset, which requires careful
statistics to avoid wrong conclusions. Common downstream analyses include alpha
and beta diversity, differential analysis, machine leaming approaches and omics data

integration.

Alpha diversity

Alpha diversity quantifies mean diversity of microbiomes within specific sites or
habitats. It answers the question “how many species in a microbial community* by

calculating features of data frame within individual samples. A variety of
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measurements have been created to infer the diversity. For example, species richness is
the count of species in a community and evenness represents how evenly the
individuals in a community are distributed among the different species. Species
richness and Faith's phylogenetic diversity are closer to real diversity whereas they are
susceptible to sequencing depth. In practice, Shannon index is one of the most
common used measurements with consideration of both richness and evenness [159].

Motably, alpha diversity measurement is usually applied in marker gene analysis.

Beta diversity

Beta diversity compares the differentiation between two sites or communities by
oenerating a distance matrix between pairs of samples. It answers the question *how
different is the microbial composition in one community compared to another” by
quantifying the dissimilarity metrics between sample pairs. Beta diversity metrics can
be divided into two groups: quantitative and qualitative. Quantitive metrics, like Bray-
Curtis or weighted UniFrac, uses feature abundance to calculate; while qualitative
metrics like binary Jaccard or unweighted UniFrac only consider the feature s
presence—absence. Bray—Curtis is calculated based on abundance or read count data
while UniFrac is based on the fraction of branch length of sequence distance. Currently
there is no consensus best metric. For example, some studies showed that metrics like
UniFrac outperformed others as they also consider biological phylogeny [160] while
others indicated the opposite [161]. Differences in metrics will lead to a performance
trade-off between sample size bias and rare species mrnover. More detailed

comparison and evaluation is described elsewhere [162].

Regardless of metric selection, the result of a beta diversity analysis will be a multi-
dimensional complex matrix, which cannot be interpreted immediately. Ordination
methods, such as principal coordinates analysis (PCoA) or principal component
analysis (PCA), are commonly used to reduce the metrics into a low-dimensional (2D
or 3D) representation. Later it can be integrated or visualized with various categories
of meta data to investigate the correlation between samples phenotype and microbial
diversity using unsupervised clustering. More information about ordination and

visualization of beta diversity is described in this review [163].
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Differential analysis

Differential analysis is to identify if there are specific microorganisms or functional
elements (genes or annotations) over- or under-abundant in some interesting groups
(like disease) relative to a reference group (like control). For example, one of the main
tasks of mRNA analysis in MTS is to study the differential gene expression patterns
after transcript assembly. Several tools originally developed for single genome RNA-
seq can be leveraged for differential analysis in MTS, such as edgeR [164] and
DESeq2 [165]. Similarly, these approaches have also been applied to identify
significantly differentially abundant OTUs [166].

Statistical methods such as multivariate analysis of variance { ANOVA) could be
further used to test if differences between groups are statistically meaningful, but
ANOWVA requires a normal distribution of the data which restricts its widespread
application. Non-parametric tests, such as ANOSIM (analysis of similarity) [167] and
PERMANOVA (permutational ANOWVA) [168], are distribution-free methods

therefore more widely used and robust in microbial ecology [169].

Data mining in microbiome dataset is quite challenging due to the sparse and high
dimension of the input. Therefore, classical statistical methods may lead to erroneous
conclusions due to compositionality and sparsity of microbiome datasets [170].
Previous research pointed out that NGS-based microbiome studies should always be
considered as compositions at all stages of analysis [171]. The main idea is that the
total number of counts (reads, OTUs, or genes) is constrained: an increase of one
variable implies the decrease of another one so that the total number does not exceed
to 1. Several compositional methods have been developed and applied in analyzing
microbiome datasets. One approach is to use isomeric log-ratio transformation (ILR) to
transform the data into relative abundance, then test with standard statistical tools
[172]. Tools like SPARCC [173] and SPIEC-EASI [174], assume a sparse data matrix
that few species are correlated. BAnOCC is a novel Bayesian framework to estimate
correlations assuming a log-nommal on datasets [175]. ANCOM makes no
distributional assumption and can be used to compare microbiome differential

abundance in consideration of compositional constraints [176]. In summary, the
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composition nature of microbiome data should be emphasized to researchers, a

detailed guidance of compositional microbiome analysis is available here [171].

Machine learmning approaches

The emerging machine learning approaches have shown great potential in microbiome
downstream analysis, especially for classifying current status or predicting future
status by combining microbiome data with their metadata category [177,178]. For
example, 165 Classifier [179] uses Random Forests (RF) to perform taxonomy
classification with Greengenes database while TAC-ELM [180] is a kmer-based
method that uses a Neural Network (NN to assign taxonomy. Pasolli [181]
systematically evaluated the performance of the machine leaming methods SVM, RF,
Lasso, and ENet in predicting the status of six different diseases using metagenomic
datasets from eight studies, which demonstrated that RF obtained the best overall
performance followed by SVM. DeepARG [182] is another tool developed for
identifying potential novel antibiotic resistance genes in metagenomics data with a
Deep Leaming (DL) approach. Regardless of methods, one particular consideration in
machine learning is to avoid overfitting. The dataset needs to be substantial and
representative, and the analysis needs to be combined with cross-validation and

independent test.

Omics data integration

The integration of multi-omic approaches — including marker gene analysis, WGMS,
MTS, metaproteomics, metabolomics and other techniques — enable a more
comprehensive understanding of a microbiome community. However, integrating
omics datasets has immense challenges in many aspects. For example, there are
different time scales between mRNA expression and metabolite, as well as protein
[183]. In addition, metaproteomics and metabolomics is still quite low-throughput
comparing with NGS-based approaches: the latter is much sparser and high-

dimensional.

Correlation analysis, such as Pearson or Spearman, is the most straightforward and

commonly used approaches for omics data integration. However, they are error-prone
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due to the sparsity and high dimensionality of the omics dataset. Advanced statistical
approaches like Procrustes analysis[ 184], calculating correlation at the low-
dimensional space rather than using raw data matrix. For example, McHardy et.al
[185] utilized Procmstes analysis to investigate the relationship between metabolome
and microbiome, and observed a stronger inter-omic connection in cecum than sigmoid
colon. Other methods such as co-inertia analysis [186], which consider not only
datasets correlation but also their relevant metadata categories. It should be noted that
critical corrections, such as Bonferroni or Benjamini-Hochberg correction, in
conjunction with statistical models can further increase the overall performance in

multi-omic comparsons [187].

Several integrative analysis tools are available, including easy-to-use online tools as
well as versatile tools with computational experience. For example, web-based tools
like XCMSOnline [ 188], which allows integration with metabolomic, transcriptomic
and proteomic data. Omicslntegrator [ 189] is another online tool that applies network
analysis to identify interpretable pathways by combining transcriptomic data with

protein interaction data.

Several studies have shown great success of omics data integration in characterizing
the composition, functional, and metabolic activity of microbiomes. For example,
Heintz-Buschart et al. [19%] demonstrated a correlated variation between
oastrointestinal microbiomes and families with type 1 diabetes mellitus (T1DM)
through a multi-omics approach. Jason et al. [191] detected some novel clades which
were highly associated with inflammatory bowel disease (IBD) by integrative analysis
of multi-omics measurements. In summary, these achievements highlight the

importance of omics data integration in microbiome research.
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1.3 Applications of NGS-based approaches in microbiome

research

The optimal sequencing strategy depends on the complexity of samples and your
scientific goal, both single and muli-omic approaches have wide applications in
different microbial ecosystems, such as human, soil, water, food, plant and animal
among others. In this section [ give a bref scientific and biological introduction of

studies related with our projects during my PhD period.

1.3.1 Bergen COPD microbiome study

Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disease
affecting about 2.4% of the global population [192]. Although the risk factors of
developing COPD — such as smoking, occupational exposures, air pollution and
asthma — have been characterized many years, we have limited knowledge about why
only some individuals will develop the disease under similar exposed risk conditions.

Genetics can only explain a small fraction (1-53%) [193] of the risk.

Our understanding of the human microbiome has rapidly expanded in the past decade.
Especially the gut microbiota has turned out to be associated with many human
diseases — such as obesity, colorectal cancer, and inflammatory bowel disease [194—
196]. These studies highlight the imporance of the microbiome in human disease and
encourage similar applications in COPD research. Previous studies observed the
correlation of respiratory microbiome both between healthy/COPD subjects and COPD
exacerbation stages [197-199], indicating a close association between the lung
microbiome and COPD development. However, many of previous studies were
restricted by either the low number of samples or contamination-prone sampling
methods. The low biomass in the lung and airways increases the importance of the
latter issue: contamination is likely to occur during both sampling of the airway
microbiome and in the laboratory, including PCR reagents, DNA extraction kits and
ground water [32]. Compared with gut microbiota, the understanding of lung

microbiota is still in an earlier stage of development, and many uncertainties remain.

35



36

For example, previous studies have demonstrated the complexity of lung microbiome
about different respiratory microbiota between COPD and healthy subjects
[192,193][200-202], however, some of their findings were partly contradictory due to
the limited number of samples and different sampling materials [203]. So far, we are
still lacking established methods and large-scale datasets to obtain a deep

understanding of the relationship between lung microbiome and COPD.

To address current issues in COPD microbiome research, Bergen COPD microbiome
study (MicroCOPD) has been designed to investigate the compositional and functional
roles of airways microbiome in COPD development [203]. MicroCOPD is an on-going
cohort study aiming to provide a large-scale dataset with a particular focus on
minimizing contamination in a follow-up periods, the detailed design of the entire

study has been published previously [203].

1.3.2 Svalbard permafrost metagenomic study

Permafrost, a type of soil with a temperature that remains at or below 0 °C at least two
consecutive years, constitutes almost a quarter of the northem hemisphere. Meanwhile,
it represents a unique ecosystem of extreme cold and low nutrient condition for cold-
adapted microbiomes [204]. Permafrost contains almost half of soil organic matter
{SOM), that consists of plant or animal detritus in various stages of decomposition and
tissue of soil microbes as a major carbon sink on Earth [205]. As a result of rises in
global temperature, permafrost thaw becomes a serious concem due to the increasing
s0il microbial activity may lead to release more greenhouse gases (GHGs), such as
carbon dioxide (COx) and methane (CHa), thus amplifying the effects of global
warming in a positive-feedback loop [206]. Consequently, a better understanding of
microbial composition and activity in permafrost is essential to predictive global
climate change models. However, we had limited knowledge on permafrost
microbiomes until recent years, as most of the microbes fail to be cultivated under
laboratory conditions. Advances in NGS-based approaches has thus significantly
strengthened our skills to investigate the compositional and functional trait of

microbiomes from permafrost.
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The Svalbard archipelago is the largest permafrost area in Europe outside of Russia.
Svalbard permafrost is proposed to be more sensitive to climate change due to the
yvoung age (i.e. Holocene) of the area and the effect of North Atlantic Current [207]. In
a previous publication from the same Svalbard permafrost core, we observed a diverse
and gradual shift of microbial community spanning from the active layer ( AL) at the
surface into the deeper permafrost layers (PL) via 165 RNA analysis [208]. However,
the previous study focused on the measuring soil characteristics and identifying taxa
via 165 rRNA analysis, which had some limitations. Currently most of our cument
knowledge of permafrost microbiome is still based on studies using marker gene
analysis [209-212], which is informative for describing a microbial community in a
low-resolution view but not really applicable for exploring functional potential and
novel species [213]. In this project, we performed a deep comparative study through

one permafrost core from Svalbard via whole genome metagenomic analysis.

1.3.3 Reconstructing ribosomal genes from total RNA
metatranscriptomic data

Metatranscriptomics, the direct sequencing and analysis of all RNA in a microbial
community, has been widely used in determining microbiota gene expression and
regulation [214-216]. Compared to genomic approaches (marker gene and
metagenomics), it offers a more informative perspectives of direct functional output in
a given context and is extremely useful in understanding the environment-microbe
interactions [155]. The whole microbial RNA pool is dominated by rRNA and iRNA
{95-99%) while only small fractions is mRNA (1-5%). So far, most
metatranscriptomic studies have focused on mRNA only, depleting rRN A both
experimentally and in silico. However, tRNA and its abundance could provide novel
insights into dynamic structure of microbial community and specific function of
protein synthesis [217]. “Total RNA metatranscaptomics™ involves the isolation and
sequencing of total RNA pools — including mRNA, rRNA, tRNA and other non-
coding RN A — from samples directly without any PCR or cloning step. It enables us to
obtain both straoctural (rRNA) and functional information (mRNA) simultaneously of a

microbial community in one experiment [218].
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Many bioinformatic tools have been developed for metatranscriptomic data, such as
IMP [219], SAMSA [220,221], MetaTrans [222], but they are mainly used for
studying the functional profiling. However, structural profiling in total RNA
metatranscriptomics brings its own advantages. Compared to PCR-based marker gene
surveys, rRNA sequences obtained by this approach can access taxonomic diversity in
all three domains of life while avoiding amplification bias [28]. Furthermore, it allows
for the reconstmction of full length rRNA sequences, enabling a higher resolution for
taxonomy profiling. This is typically not feasible in metabarcoding: using short read
sequencing technologies results in amplicons with insufficient phylogenetic signal,
while long read sequencing allows for longer amplicons but is currently restricted by
higher emror rates. Last, the relative abundance of rRNA sequences across taxa
ocenerally reflects the overall structural activity as well [217]. Existing de novo
assembly tools for shotgun sequence reads are primarily applicable for genomic or
metagenomic data while are not suitable for recovering (RN A genes [157]. Instead,
there are several tools developed specifically for rRNA recovery — like EMIRGE
[158], REAGO [157], RAMBL [223], and MATAM [224] —but they are designed for
smaller datasets thus cannot be used directly to analyze total RN A metatranscriptomic
data. To address those issues, we developed MetaRib, a novel tool for constructing
full-length ribosomal gene sequences optimized for total RN A metatranscriptomic
data. MetaRib is based on the popular fRNA assembly program EMIRGE [158],

together with several improvements.
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2. Aims of the thesis

The thesis aims to apply and develop state-of-art bioinformatic methods for NGS-
based microbiome research. With the rapid development of bicinformatics and
metagenomics, there are numerous tools available for each step of standard analysis,
more challenges come from how to optimize current workflows and combine proper
tools to meet specific requirements in microbiome study. To take full advantage of
data and maximize the valuable information driven from samples, deep understanding
of both biological questions and bioinformatic methods are needed. With a close
collaboration between bioinformatians, biologists and clinicians, we addressed the

following issues in my thesis:

1. Establish a customized bioinformatic workflow for marker gene analysis in Bergen

COPD project (Papers I and IT).

2. Evaluate susceptibility of contamination and methods of depleting contamination

both experimentally and in silico (Papers I and IT).

3. Investigate the stability of airway microbiota in health and obstructive lung disease

with repeated bronchoscopy (Paper IT).

4. Improve cumrent bioinformatic work flow for recovering high quality Metagenome-
Assembled Genomes (MAGs) with a new taxonomy-based refinement approach
{Papers Il and V).

5. Develop a novel comparative strategy for assessing functional potential
quantitatively based on genome coverage and KEGG modules in a MAG-centric view
{Papers Il and V).

6. Develop a novel bioinformatic tool for reconstructing full-length ribosomal gene

sequences from large-scale total RNA meta-transcriptomic data (Paper V).

39



40

3. Results and Discussion

3.1 Characterizing the role of airway microbiota in the

development of pulmonary diseases

3.1.1 Conducting a robust experiment in COPD microbiome

research

One of the main aims of Bergen MicroCOPD project is to establish a high-quality
cohort dataset for human COPD microbiome research. Minimizing the contamination
issues is critical in the process. To do so, we explored the best practice for human
COPD microbiome research both experimentally and in sifico. Collecting high quality
biological samples is quite challenging in pulmonary disease research. Most of the
previous COPD studies used sputum samples due to the cost and efficiency [225-227].
However, they are susceptible to contamination from the oral cavity [228].
Bronchoscopy (endoscopic examination of the airways) offers a method to obtain
visually confirmed samples from the airways, but it is more invasive and is associated
with technical issues as well. In particular the bronchoscope has to be inserted through
the mouth or the nostrils, and unless protected sampling is applied, contamination may
still stem from upper airways and/or the oral cavity [229]. However, how different
sampling modes will affect the microbiome composition is largely unknown. In this
project we evaluated both protected and unprotected methods and compared with OW
samples of more than 120 participants. The MicroCOPD project is the largest single

site study aiming to investigate the airway microbiota by bronchoscopic sampling.

In paper I, we investigated the impact of contamination with three sampling
techniques— protected specimen brush (PSB), protected bronchoalveolar lavage
{(PBAL) and small volume lavage (SVL) — including healthy (67) and COPD (64)
participants. Seven samples — negative controls (NCS), oral wash (OW), right lower
lobe PSB (rPSB), left upper lobe PSB (1PSB), first fraction of PBAL of the right
middle lobe (PBALL1), second fraction of PBAL of the right middle lobe (PBALZ), left
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upper lobe SVL (SVL) —were evaluated by marker gene analysis per subject. In brief,
we found that alpha diversity decreased in the order OW, SVL, PBAL and PSB while
beta diversity showed a distinct distance between OW and other samples. Further PCA
analysis indicated a closer similarity (beta-diversity) between OW/SVL and
OW/PBAL than OW/PSB. Besides, sampling order (left/right) did not affect the
diversity of PSB samples, again indicating that PSB samples enabled a clearly
separation from OW samples than SVL and PBAL. Our results highlighted the issue of
ormopharyngeal contamination in COPD research, and showed that protected sampling

approaches were preferred in airway microbiota investigation.

However, some remaining issues should be mentioned. A main limitation is the
potential biases introduced by marker gene sequencing, like PCR, which could reduce
the accuracy of the result to some extent. Second, to keep the results comparable
among groups, we applied mostly standard settings of the QIIME pipeline with no
special optimization. However, fine-tuning the QIIME default parameters with mock
datasets have been proved a useful method to achieve better performance, especially
for the Illumina datasets [230,231]. Third, we considered all OTUs in the NCS as
contaminations and simply excluded all of them in the downstream analyses, which
could discard some useful information (e.g., species /taxa present in the negative
control also present in the lungs). In paper I1, we made several improvements of our

bioinformatic workflow, summarized and discussed in section 3.1.2.

3.1.2 Investigating the stability of airway microbiome by repeated
bronchoscopy in healthy and COPD subjects

Previous studies have demonstrated a strong correlation between the shift of lung
microbial community composition and the development of obstructive lung disease
[229,232.233]. However, we have little knowledge about the stability of airway
microbiome over time. In paper I1, we tracked how microbial communities changed
between healthy and COPD subjects who have completed two bronchoscopies during
the MicroCOPD project.
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21 subjects without 41 patients with COPD were subject to repeated examinations.
Seven samples per subject were sequenced as described previously in section 3.1.1. In
total 551 amplicon sequence variants (ASVs) were constructed from 19 million
sequences in 727 samples. We observed a decreasing trend of alpha diversity in the
second examination of OW and PBALI, and larger differences in subjects not having
received intercurrent antibiotics. Comparing within-individual and between-
individuals beta-diversity using permutation-based tests indicated that within-
individual diversity is significantly lower than between-individual diversity.
Comparing sampling methods, non-parametric tests showed that beta diversity
between the two examinations followed a pattem of PSB=PBAL2=PRBAL1=0W.In
summary, our resulis indicated that although airway microbiota vared over time and
other key environmental factors, still a core microbial community may exist over time

within each individual.

To date, only a few studies have investigated the stability over time of the lung
microbiome with repeated samples. Sinha et al investigated the variability in sputum
samples [234], showed differences in both diversity and more variation as sampling
interval increased, but they were limited by low sample sizes (less than 10) and
potential contaminations during sampling. Here we reported the first relatively large-

scale investigation of the stability of airway microbiota with repeated bronchoscopies.

For this project we optimized our bioinformatic analysis in many aspects taking
advantages of the rapid advancing of metagenomic analysis methods. First, recently
there have been multiple studies recommending to use ASVs rather than OTUs in
marker gene analysis [46,61]. Andrei et al evaluated performance between OTU-based
workflows (QIIME, MOTHUR, etc) and ASV-based workflows (QIIMEZ2, DADAZ,
etc), and concluded that ASV-based approaches offered better sensitivity, specificity
and reproducibility [65]. In addition to default chimera removal with QIIME2, we
performed additional chimera detection using VSEARCH [235] and excluded spurious
ASVs according to their distribution across samples [236]. Second, we applied a
specialized database — human oral microbiome database (HOMD) [237] — for

taxonomic annotation instead of the default, which provided curated species

42



43

information in human respiratory tract. Third, we addressed the contamination issue in
silico and mamally as well. In addition to reduce potential contamination using
Decontam [52], we further checked the top 50 most abundant taxa and removed
species likely to be a be a contaminant judging by other publications [32]. More,
advanced methods were applied in comparative diversity analysis. For example, we
used Yue-Clayton index in beta diversity [23 8], which considers the number of
bacterial species present and their relative abundances simultaneously. We also
introduced random permutation test to assess whether samples from the same

individual were significantly more similar than samples from different individuals.

In the current study, samples were dominated by Firmicutes, Actinobacieria,
Baciernideies and Proteobacieria in phylum level, and by Sirepiococci, Veillonella,
Prevoiella, Rothia and Haemophilus in genus level, which was similar with previous
observations [200,232,239]. However, we noticed some interesting shifts among
groups. For example, OW samples were most stable while PSB samples fluctuated
dramatically between two examinations in terms of diversity. This could be a result of
more stable status in oral microbiota, or that airway microbiota is more susceptible to
random flucmations due to the low-biomass nature. Further, random permutation test
indicated a significantly lower beta diversity within an individual than between
individual. Dickson et al proposed an ecological modeling of the respiratory
microbiome that the respimatory tract is comprising a continuous immigration of
microbes rather than a stable residence [229]. Our results complement this model, in
that there were indeed great changes by time, but there were also signs of a small

stable core microbiome within individuals, especially in the lower airways.

Yet, some methodological weaknesses need to be mentioned. Although we did not
observe covariations between the length of exam intervals and diversity, it does not
necessarily mean that there is no correlation. The ideal interval of reexamination of
COPD patients is unknown. In our dataset the interval varied substantially (88 - 349
days). No mock community analysis was performed in the current analysis but other
authors in the MicroCOPD study have demonstrated fair performance when

sequencing mock communities [240].
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3.2 Disentangling the complexity of permafrost microbiota

with metagenomics

3.2.1 Recovery and distribution of MAGs informed community

composition patterns with depth

Recovering metagenomic assembled genomes (MAGs) from metagenomes, especially
permafrost metagenomes, is quite challenging due to the extreme complexity and
novelty of the microbiota [213,241,242]. Several bicinformatic tools, like MetaBAT2
[92] and MaxBin2 [93], have been widely used for binning contigs into MAGs (bins).
DASTool [97], a recently published bin refinement tool, has shown significant
improvement of MAGs refinement in many studies [243—245]. However, there is still
room for improvement. For example, we still observed 21 out of 64 metagenome bins
remained highly contaminated (==10%) [99] after DASTool screening in our project.
As we know, each bin represents an individual genome with single-taxon annotation in
theory. However, recovered bins may contain mis-assigned contigs from other taxa, as
close species always shared some conserved domains. Thus, it is possible to remove
those contaminations by integrating the taxonomic classification result into MAG
refinement. To avoid simply discarding these highly contaminated MAGs and improve
the quality of MAGs, we developed a seript to subset each MAG into collections of
contigs from the same taxonomic classification. Our script is able to provide multiple
contig subsets corresponding to different ranks for each bin, the user could then
evaluate all refined subsets using MAG quality check tools like CheckM [98], and find
best tradeoff between completeness and contamination. A detailed description of our
MAG refinement workflow is described in paper I'V and deplovyed at:

hitps://github.com/vixue/Recovery-and-refinement-of-MAGs-for-permafrost-

MELa Senome.

Utilizing our refined work flow, we successtully reported 56 out of 64 MAGs with low
contamination (<=10%). These 56 MAGs were from 13 phyla, including 8 high, 44
medinm and 4 low quality draft according to MIMIG standards [99]. In total the

analyzed MAGs constituted around 11.3% of the reads in each sample (min. 7.1%,
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max. 13.4%). A detailed description of each MAG was published in Paper ITI. We
found MAGs belonging to Actinobacieria, Proteobacieria, Baciervidetes,
Acidobacteria and Chloroflexi were dominant in Svalbard samples. In Paper IV, we
further investigated microbial community composition based on changes in the MAG
abundance.

Our results showed distinet composition differences between permafrost active layer
{AL) and permatrost layer (PL) where predominant MAGs also changed with depth. In
the AL, the most abundant phyla were dcidobacteria and Proteobacteria while PL
MAGs were dominated by Actinobacieria, Bacteroidetes, Chloroflexi and
Proteobacieria. Members of Proieobacteria, Verrucomicrobia and Chloroflexi, were
ubiquitous in PL and had similar abundances in the upper PL (PL1 and PL2) than deep
PL samples (PL3 and PL4). We also observed a declined trend in Acidobacteria and
Aciinobacteria abundances with increasing depth. Interestingly, more unique but
highly represented MAGs were found in the deepest samples, such as Chloroflexi in
PL3 and Bacteroidefes in PL4. Particularly, a previous marker gene analysis in the
same core detected Inirasporangiaceae to be strongly dominant in the PL [208].

However, we could not detect similar trends in this dataset.

While several MAG refinement strategies are already deployed by IMG/M [143] and
Anvi'o [148], our workflow provides a scalable and flexible approach where thousands
of'bins could be analyzed and screened. More importantly, previous bin refinement
programs only consider contamination at phylum level, but it could be detected at all
taxonomic levels based on our observation. Our script traces the hierarchical
relationships using a user defined percentage threshold and subset bins spanning from
phylum to species level. Siill, some limitations remain. First, the performance of our
bin refinement strategy heavily depends on the accuracy of the taxonomic annotation.
In the current study we applied Kaiju [119] to annotate contigs against the NCBI nr
database, as Kaiju is extreme fast for large contig sets and there is no specialized
databases for permafrost. However, many tools are available to taxonomically annotate
metagenomic data and we have not benchmarked them. Simon et al. evaluated the

performance of 20 metagenomic classifiers, and pointed out that there was no single
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best option: the choice of classifiers depends heavily on the scientific question,
computational environment and target taxonomic domains, etc [117]. The rmapid growth
of reference databases will change the performance dramatically, and it is worth
pointing out that removing contigs from a MAG may reduce completeness in some
cases due to mis-assembly and annotation. Instead, we subset all possible cleaned
MAGs and let users to decide the best tradeoff between completeness and

contamination.

3.2.2 Coverage-based functional analysis in a MAG-centric view

revealed key metabolic functions in Svalbard permafrost

There are two primary methods for metagenomic functional analysis: mapping the
predicted genes against reference databases and then parsing the functional annotation
result in either gene or pathway level [208.246]. However, both have some drawbacks.
Gene-based approaches utilizes most dominant gene products, but they may over ook
biological functions rely on multiple genes and focus on significantly abundant subset
only. For another, pathway-level analysis can miss nuanced differences in functional
variance as some pathways, especially core pathways, contain many shared sub-
pathways or genes. To address above issues, we developed a novel comparative
analysis strategy that utilizes KEGG Module (MO), a collection of manually defined
functional units each encompassing a set of genes - represented by KO identifiers
[247]. Compared to pathway or gene enriched analysis, module-based analysis directly
links to specific metabolic capacity. Another issue is how to perform quantitative
functional comparisons. Contig coverage is another important metagenomic
characteristics [90,248], however, that is currently not used beyond binning
[92,93,95,96]. In paper IV we utilized coverage patterns of presence/absence to split
contigs into several pre-defined groups: each group represent a pattern across the
samples with respect to their depth distribution, and further investigated the variance
of key MO abundance across groups in a MAG-centric view. The source code and
detailed description of our coverage-based functional anal ysis workflow is deployed at

hitps://eithub. com/vxxue/'Coverage-based-functional-analy isis-in-a-MA G-centric-

View.
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Here we only include contigs originating from refined MAGs. 20,573 contigs were
then assigned to coverage-based classification groups (Table 3.1) according to their
coverage distribution in the core. PL groups (PL_SUB, PL. ALL, PL Pi) represented
the largest portion by covering 60% of all contigs. Around 10% of them were shared in
both layer (BO) while 13% were only found in AL. 18% was found in all PL while the
majority was scattered in a smaller subset (PL_SUB, PL Pi). We identified only a
small fraction of contigs that had a strong correlation (0.9) with depth profile: 5% KI

and 1% KD.
Groups Defmition Criteria Percentage
AL Presence in AL AL >=THand ALL(PL)<=TH [13.1
BO Presence Both in AL and PL AL ==TH and ALL(PL) =>=TH 102
LO Absence Both m AL and PL AL ==TH and ALL{PL)==TH 14.1
PL SUB Presence in subset (2 or 3) PL AL ==TH and SUB(PL)>=TH |264
PL_ALL | Presence inall PL AL <= THand ALL(PL)>=TH |[1838
PL_Fi Presence m unigque PL(PI, ... ,P4) and ) g_; E:E%:’
UNIQUE(PL _Pi)==TH 5.5 (P4)
K1 Increasing trend in PL_ALL or In (PL_ALL or PL_SUB) 4.9
PL_SUB and
CORR(PL, DEPTH) == 0.9
KD Decreasing trend in PL_ALL or In(PL_ALL or PL_SUB) 0.3
PL_SUB and
CORR(PL, DEPTH) == -0.9
UN Unknown groups Others 27

Table 3.1: Contig distribution across groups. AL: normahized coverage in Active layer, PL:
nomalized coverage in permafrost layer samples. TH: threshold (median of normahized
coverage). DEPTH (cm under surface): 110, 122, 135, 170. CORR: Pearson correlation.

In total 451 out of 808 MO were detected in Svalbard MAGs. We manually selected
102 important MO with 8 pathways and observed distinct MO abundance among
groups. We examined the trend in several key permafrost related pathways among
different groups. MAGs belonging to group BO and PL showed a strong representation
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of aerobic respiratory processes, such as F-type ATPase and NADH: quinone
oxidoreductase (NQR). We further confirmed the aerobic respiration as the dominant
carbon cycling pathway in this core, as dehydrogenases involved modules were in
neither high abundance nor showed strong grouping trends. Polymer hydrolysis and
CAZY functions were also found in abundance especially in core in PL groups

{(PL ALL and PL. SURB). Several key metabolic functions of nitrogen and sulfur cycles
were detected, whereas another key biogeochemical process methane metabolism was
missed. Besides, we observed a suite of MO related with stress responses and
antibiotic resistance — including KdpDE:potassium transport system, phosphate
starvation response system (PhoR—PhoB), and redox response and chemotaxis, which
may indicate how microbiota counter the extreme environmental stress in permafrost.

Detailed result about variance of key metabolic functions was described in paper IV.

One of the most interesting findings in this study was that Svalbard MAGs were
mostly aerobic and showed enriched functional potentials involved in ammonium,
sulfur and phosphate metabolism. These results indicate that a substantial investment
in energy production is required for permafrost microbiome. Our results are also in
concurrence with previous activity measurements from the same location where Miiller
etal. [208] showed that permafrost thaw up to four times higher CO: respiration rate
were observed under aerobic than anaerobic conditions through a series of incubations.
Our analysis also indicated that one of the key permafrost microbiome traits is to

obtain effective resources via various metabolic reactions.

In this study, we proposed a computational method that combine metagenomic and
biological information in a MAG-centric view. Although we focused on Svalbard
permafrost depth profile, our method enabled us to determine core functions and trends
of multiple samples in a study. However, some limitations need to be discussed. First,
it should be pointed out that the presence and abundance of MO within permafrost
microbiota does not mean they are truly active or expressed, as our approach is based
on genomics rather than transcriptomics. Therefore, these results only represent
functional potential in the environment and provide supporting information of gene

activities. But this limitation holds for all metagenomic datasets, even
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metatranscriptomics is influenced by the time that sample is collected. In addition,
metatranscriptomics is only applicable under some circumstances, it may fail due to
the difficulty of extracting RN A from extreme environment like permafrost [213].
Second, compared with contig-based or gene-based functional profiling that utilized
most of the reads, we focused on contigs that were able to be binned in a MAG-centric
view. We excluded unbinned contigs as they can lead to erroneous conclusions or
misinterpretations [249]. Focusing on MAGs enabled us to recover genomic
information precisely and ensure pathway completion when caleulating MO
abundance. As described in many published metagenome sudies, either read-based or
assembly-based methods can annotate 20-30%, of the data from the complex soil type
environments. As a result, all these approaches bring their own biases in interpreting

functional potential.

3.3 Reconstructing full-length rRNA sequences from total

RNA metatranscriptomics

In Paper ¥V we present the tool MetaRib for reconstructing rRNA genes from large
scale total RN A metatranscriptomic data. Compared with existing tools, MetaRib is
able to recover full-length rfRNA contigs with a low false positive rate across multiple
samples, even for very large datasets, together with accurate taxonomy-independent
abundance estimation. We address the challenge posed by large complex datasets by
integrating sub-assembly, dereplication and mapping in an iterative approach, with
additional post-processing steps. Our approach utilized the uneven taxon-abundance
distribution common for microbial communities [250], which makes it possible to
reconstruct most abundant species with a small subset in a first few iterations,
meanwhile reduces the redundancy the dataset iteratively helps to capture rarer
species. To produce only full-length sequences, we applied overlap-based cluster to
process fragmented contigs and duplicates. In addition, sample-based mapping
statistics is not only used for estimating abundance, but also helps to filter false

positive records. Although total RN A metatranscriptomics has not been widely used,

49



50

especially structural profiling, our approach opens up several new perspectives and

enables a deeper understanding of how microbiota is structured and distributed.

To simulate the complexity of real microbiome communities, three simulated datasets
were built, each dataset included 5 million reads, which was generated by 1000
randomly selected full-length MNA contigs following a log-normal abundance
distribution. In dataset a, all contigs were included in the corresponding reference. In
dataset b, contigs were not identical but highly similar (between 95% to 99%) with the
reference. Dataset ¢ was the opposite case of dataset a that all contigs were removed

from the reference.

In simulated datasets, MetaRib demonstrated significant speedup (60X) compared to
EMIRGE using the same parameters, which could process 5 million reads in a few
minutes instead of days. We further evaluated the performance of two tools in terms of
Precision, Sensitivity and Fl-score for all three simulated datasets. EMIRGE had a
higher sensitivity compared to MetaRib, but the main issue was that it also produced a
large number of *false’ contigs which lead to a quite low precision even in an ideal
case (Dataset a). Conversely, MetaRib was able to recover almost all source contigs if
they were represented in the reference while produced far fewer such *false’
sequences. In summary, MetaRib showed the best overall performance in all datasets

with Fl-score evaluation.

The AshBack project is a large-scale total RN A metatranscriptomic study — composed
of 325 Gb rRNA sequences — to assess the impact of wood ash on agricultural and
forest soil microbial communities [251]. Due to the lack of bioinformatic tools and
computational constraints, previous rRNA analysis was performed on a small subset
(1.5 million reads) of each sample [251]. We reanalyzed the full dataset using
MetaRib. We observed more rRNA contigs but similar trends of richness and Shannon
diversity as revealed by previous analyses. However, our MetaRib-based re-analysis
indicated considerably less fluctuation of diversity in agricultural soil samples.
MetaRib was also able to recover more rRNA sequences across all domains and

capiure more taxa than previous analysis. For example, we detected fungal
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Mucoromycota, which appears to be dominant in high dose ash concentration at forest
soil, although overlooked in the original analysis [251]. In addition, MetaRib could
perform taxonomy-independent abundance estimation that were not possible when
assembling reads sample-by-sample. We observed several interesting correlations
between dominant contigs and metadata: As an example, Proieobacteria were
ubiquitous in both soils and showed more vadation in the forest. Further,
Acidobacieria were dominant in the forest soil but dropped significantly at the highest

ash concentration.

Still, some challenges remain. Both EMIRGE and consequently MetaRib perform best
when reconstructing full-length contigs similar to sequences represented in the
reference database. The contrasting results of simulated datasets indicate that MetaRib
is largely applicable to relatively well-characterized environments, and emphasis the
importance of reference database. Increasing the size of reference database would
address the issue partially, but it will also result in longer execution time. Besides,
since EMIRGE is limited to construct contigs with a maximum 97% similarity to each
other [158], we recommend to use a non-redundant reference database with threshold
similar to this. More recent tools such as MATAM [224] have been shown to perform
better than EMIRGE in small datasets, and could be considered as a further
improvement of MetaRib. An advantage of total RNA metatranscriptomics is to
estimate relative abundances of rRNA sequences as proxies of microbial taxa without
PCR bias. Notably, Blazwicz et al. pointed out that rRNA sequences were not an
unbiased estimates of neither metabolic activity nor species growth in some cases,
since rRNA gene copy number and patterns of ribosomal transcription and retention

vary between species [217].
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4. Concluding remarks

Advances in sequencing technology has greatly expanded our understanding of the
fascinating microbial universe. The studies presented in this thesis address the
extensive applications and challenges of NGS-based approaches, including marker
oene, metagenomic and metatranscriptomic techniques, in microbiome research. The
work of this thesis contributes novel insights in community composition and functional
potential of various ecosystems, including human respiratory tract, permafrost, and
wood ash by addressing bioinformatic challenges and suggesting solutions when

working with such diverse environment.

The study on human airway microbiota explores the effect of contamination in COPD
microbiome research, both experimentally and in silico. Our results underscore the
importance of sampling methods and oropharyngeal contamination issues, and inform
the use of protected specimen brushes in airway microbiota. This large-scale smudy
examines the stability of airway microbiota over time utilizing optimized experimental
protocols and bioinformatic workflows, demonstrating that the composition of airway
microbiota changes overtime. Nonetheless, there seem to exist a core microbiome
community. Future research should focus on identifying core microbiota and its
correlation with COPD development with other omics technologies, as the current

study is limited by the marker gene approach.

Predicting the metabolic response is one of the main challenges nowadays due to the
enormous diversity and complexity in microbial communities. Soil represents one of
the most complex environments and thus very challenging to study. Our analysis of
Svalbard metagenomic samples provides novel methods and insights for understanding
metabolic functionality in permafrost microbiota. The Metagenome Assembled
Genomes (MAGs) centric strategy developed here enables us to focus on genomic
contigs within biological context, and enables application of quantitative comparison
of functional potential within pathway completion. Our results reveal novel metabolic
potentials in Svalbard permafrost MAGs, especially aerobic response, including

ammonium, sulfur and phosphate metabolism that have hitherto not been reported in a
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permafrost environment. Further research could also focus on investigating aerobic
metabolism in more detail, integrating with other omics, like metatranscriptomics,

which could reveal functional activity and response in a more direct fashion.

rRNA sequences in metatranscriptomics provides novel insights about the structural
information of active microbial communities. We have implemented MetaRib to
enable reconstruction of full-length rRNA contigs from large-scale RN A
metatranscriptomic data, achieving a comparably efficiency and accuracy in
benchmark performance, with the added taxonomy-independent abundance estimation.
Further improvements could include the ability to handle novel rRNA contigs and
unmapped reads, as current version of MetaRib is still a reference-based approach.
Although total BN A analysis has not been widely used in microbiome research, we
hope our approach will encourage researchers to make more use of the valuable rRNA
sequences generated, which enables a deeper understanding of the structural

information of microbial communities.

Conducting a robust bioinformatic analysis in microbiome research requires many
steps and high degree of accuracy as the choice of proper approaches and parameters
in each step can impact the final results and the biological interpretation significantly.
In this thesis we explored the best practices to mining the valuable information from
complex ecosystems, with a specific focus on poory-characterized and low-biomass
environments. We are still lacking standardized protocols right now to compare
different studies, which is one of the most urgent things to be resolved. Multi-omics
integration represents another approach in this field as this enable us to provide a more
complete picture of the whole system beyond the capacity of any single approach,
however there is no “golden standard” certain method at present due to the challenges
of integrating different types of data. Despite these challenges, I am confident there
will be coming more exciting discoveries from the microbiome research field in the
future, given the rapid development of biological technologies and bioinformatics

tools.
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ABSTRACT The alm was to evaluate susceptibility of oropharmgeal contamination with varipus
bronchoscople sampling techniques

&7 patients with obstructive lung disease and 58 control subjects underwent bronchoscopy with small-
volurme lavage (SVL) through the working channel, protected bronchoalveclar bivage (PBAL) and bilateral
protected specimen brush (PSB) sampling. Subjects also provided an oral wash (OW) sample, and negative
control samples were gathered for each bronchoscopy procedure. DNA encoding bacteral 165 ribosormal
RMA was sequenced and bloinformatically processed to duster into operational taxonomic units (OTU),
asdgn taxonomy and obtaln measures of diversity.

The proportion of Protechacteria increased, whereas Firmicutes diminished in the order OW, SVL,
PBAL, PSB (p<0u01). The alpha-diversty decreased in the same order {p<0001). Also, beta-divesity vared
by sampling method ( p<a0.01), and visealisation of principal coordinates analyses indicated that differences
in diversity were sraller between OW and SVL and OW and PBAL samples than for OW and the PSB
samples The order of sampling (left wrsus dght first) did not influence apha- or beta-diversity for PSB
samples

Studies of the alrway microblota need to address the potential for ompharymgeal contarnation, and
protected sampling might represent an acceptable measure to minimise this problem.

@ERSpublications
Protected bronchoscopic sampling & most suitable for identification of a diginct alrway
micmbiome hitp-fow ly'g Iy 3legBUhd

Cite this article as: Granseth B, Drengenes C, Wiler HG, et a. Protected sampling s preferable in
bronchoscoplc studies of the alrway microblome. ERT Open Res 2007 3: 00019-2017 [https:/ dolorg
10,1183/ 231 20541 (0019-2017].

This article has suppd y material available from joumnals.com

w?ﬁuml?lﬁmﬂﬂ'mﬁm]mzlzﬂl?

5 statement: The cument work has been funded hough unnstricied grants and fllowships from Helse Vest,
Gmhhmuimhmﬁ.mﬂ“"ﬁ the Norwegian Medical
Asodation and Bergen Medial R h Foundetion. Funding infs ion for this article has bemn deposited with the
Conflict of interest: Disdasures @n be found alongside this article at apenresemjoumakcom

Copyright ©EBRS 2017. This artick is open acorss and distributed under the terms of the Crestive Commans Attribation
Maon Commerncial Licence 40

https:/fdolorg 101 163/231 20541, 00019 -2017 ERJ Open Res 20T, 3. 000T9-20017



AlRWAY MICROBIOME | R. GRBNSETH ET AL.

Introduction

High-throughput sequencing has opened up a new window in microbial ecology, emabling the
charactersation of microbial communities in biclogical compartments thought to be completely sterlle
only a few years ago. The implications for health and disease are widely unexplored, but are likely to be
significant [1]. Recent studles have found compelling evidence for the lungs to have a distinct mderoblome [2],
providing a bacterial presence with which our immune sstern interacts [3, 4] As almost all pulmonary
diseases have a local Inflammatory component, there is a possibility of a disrupted microbiome belng
integral to disease pathogenesks.

Thus, there ks a current push to chamctedse the pulmonary microblome, and its relation to different
pulmonary diseases. However, sampling the pulmorary microblome ls difficult. Sputum is franght with
significant contamiration from the oral cavity, and percutaneous sampling Is unpractical with a high dsk of
complications like pneursothorax or bleeding. The emerging gold standard for sampling b bronchoscopy.
But bronchoscopy also has its technical challenges, besides Issues of discomfort, cost and sedation. The
bronchoscope must pass through elther the oral or masal cavity in addition to the pharyngeal cavity, and
might carry contaminants from the upper alrways to the lower blomass compartment of the lower airways.
Samples are collected through the same bronchoscope working channel through which fluid is suctioned up
and out. The different modes of sampling (bronchoalveclar bivage (BAL) brushings, blopses) might be
carrled through catheters, which may or may not have a wax-sealed tip to ensure sterillity. Added to this i
the conundrum csused by the constant influx of microblota by micreasplration and inhalation that
probably is responsible for madnte nance and crestion of a large fraction of the lung microblome [5].

In 25 sudies of the human lung microblome sampling the alrway microblome by bronchoscopy of healthy
sublects [2-4, 6-9] and patlents with chronlc obstructive pulmonary disease (COPD) [10-14], asthma
[15, 18], interstitial lung disease [17, 18], cystic fibrosks (CF) [19], HIV [20-23] and lung-transplanted
subjects [24-27]; only five used protected sterile brushes (PSB) to avoldd contamination from the working
channel [7, & 16, 19, 22]. Some authors reported that suction was not wsed prior to entering the trachea
[2-4, 6-10, 20, 22], and three studles used separate bronchoscopes for ansesthesa and sampling of some
or adl participants [3, 4, 7] Mo swdy performed bronchoalveolar lavage (BAL) through a protected
catheter { protected BAL), and no study with more than 20 sampled subjects has compared protected with
unprotected sampling methods

In preparstion for the analyses of a large, ongoing COPD microblome study [28], we sought to reduce
contamination as well a5 assess the perfbrmance of different sampling technigues. In the current paper we
present analyses to exarine the degree of oropharmgesl influence on the alrway microblome applying

protected bronchoscople sampling techniques. In addition we present an analysis on the effect of sampling
the left or right ung frst.

Material and methods

The design of the entie MicroCOOPD study has been published previously [28]. The current analysis
includes 58 control subjects, 64 subjects with COPD and three subjects with asthesa. All participants were
at least 35 years old and were recruited from previous longitudingl case-control studies in addition to a
few volunteers [29]. Subjects had nelther acute respiratory symptoms nor any reported wse of antibiotics or
oral corticorticosternlds within the last 14 days prior to bronchescopy. Other indusion/excusion criteria
are listed in the supplementary material

The Reglomal Committee for Medical and Health Research Ethics approved the study (REK Nond, project
number 2011/ 1307). All participants provided written informed consent.

All participants recetved at least O.4mg of salbutamol throwgh a spacer before the bronchoscopy
procedure. Flexible video-bronchoscopy was performed via the ol route In supine postion No suctlon
was used pror to having entered the trachea All subjlects recelved local ansesthesa with ldocaine both
before and during the procedure. All but 18 subjects recelved mild sedation {al@ntanil) parenterally.
Particlpants were monltored according to current guldelines, and were observed for at least 2 h after the
procedure [3. Six procedural samples, of which five were obtained during bronchoscopy, were analysed
for each participant: oral wash (OW); three protected specimen brushes (P5Bs) from the right lower lobe
(dght P5B) and three from the lefi upper lobe (left PSBY two 50-ml frctions of protected
bronchoalveclar lavage of the right middle lobe (PBALL and PBALZY and small-volume kavage (SVL) In
the left upper lobe. In addition, we induded negative control samples (NCSs) from the same bottle of
phosphate -buffered saline that was wsed for the procedure of the corresponding individusl. For 49
subjects, we examined the left lung before the right lung. BAL and SVL were always collected after
obtaining PSB samples. Protected specimen brushes and protected bronchealveolar lavage are ilustrated in

supplementary figures 51 and 52

[
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Bacterial DNA was extracted using a combination of ereymatic lysis with lysceyme, mutanolysin and
Iysostaphin, and mechanical lyds methods using the FastPrep-24 as described by the manufacturers of the
FastD'NA Spin Kit (MP Blomedicaks, LLC, Solon, OH, USA).

Library preparation and sequencing of the V3-V4 region of the 165 fANA gene was carried out according
to the Mumina 165 Metagenomic Sequencing Library Preparation guide (Part no. 15044223 Rev. B). The
V3-V4 reglon was PCR amplified {45 cycles) and prepared for a subsequent index PCR step using primers
adapted from Kmvoworrs et al [31] as follows. 165 amplicon PCR forward primer (overkang adaptor
sequences  are  undedined):  5-TOGTCGGCAGOGTCAGATGTGTATAAGAGACAGCCTACGGG
NGGCWGCAG. 165 amplicon PCR reverse primer (overhang adaptor sequences are underlined):
5-GICICGTG GGCTOGGAG ATGT GTATAAG AG ACAG GACTACHVGGGTATCTAATCC. The samples
were pooled and prepared for 2300 cycles of paired-end sequencing on the Dlumina Miseq sequencing
phitform usng reagents from the Miseq reagent kit v3 (Ilumina Inc, San Diego, CA, USAL

The chosen bloinformatic pipeline was Quantitative Ingghts Into Microblal Ecology (QIME, hitpoqlinse.
org) vL9 1 After creating a library of jolned reads, operstioml taxonomic units {OTUs) were picked at a
97% similarity threshold, small OTUs and OTUs seen in negative control samples were removed,
taxononyy was assigned to the OTUs and a phylogenetic tree was constructed after alignment. We used the
GreenGenes version 138 as reference database [32]. Further detals on the bisinformatic procedures can
be found in the supplementary material

Differences in relative sbundance of taxa were evalusted by applying a beta distibution and
non-parametric trend tests. Alpha-divesity was evaluated using Faith's phylogenetic diversity (PD), or
“PD wholetree®. Beta-divesity was estimated with unwelghted UniFrac and vissalbed by principal
coondinates amalyses (FCoA) [33]. Diversity amalyses require a similar number of sequences in each
sample, which was ensured by mrefaction Statistical significance for alpha-diversity and beta-diversity
between sampling methods was evaluated by Bonferoni-corrected Wikcoxon matched-pairs test in Stata
verson 132 (Statscorp, Texas, USA) and permutational ANOVA (permanova) tests in QIME

respectively.

Results
Only three subjects had asthrea: two men and one woman. The 64 COPD subjects were slightly older,
incuded more men and had a larger tobacco-smoking burden than the 58 control subjects (table 1)

For each of the 125 participants, seven samples were sequenced (negative control sample, OW, right P5B,
PBALL, PBALZ, left PSB, SVL)L A total of 125 millon sequences were obtalned from the six procedural
samples after bloinformatics dean-up, as described in the methods section. For alpha- and beta-diversity,
we rarefled our data at 1) sequences.

Taxonomy

Figure 1 shows the taxonomie dassification by sampling method at the phylum level. As the degree of
protection from inflsence of oral environment incressed, the proportion of Protechacterla increased,
whereas Fimmicutes diminkhed (p<001). At the genus level all sample types where domirated by
streptococch but the mean proportion of the largest Streptoarceus OTU showed the same dedining pattern
by sample type (OW 145%, SVL 13.6%, PBALL 11.8%, PBAL2 11.3%, rght PSB 8.6% and left PSB 54%
non-parametric trend test p000dl ).

TABLE 1 Characteristics of 125 subjects of the MicroCOPD study

coPD Asthma Control
Subjects b 3 58
Males 3 [53.1%] 2 7. 7%I 3 [58.6%]
Current smokers 15 [23.4%] 1] 18 [27.4%]
Ex-smokers. 48 [75.0%] 2 [67.7% 35 |60.3%]
Hever-smokers 1 [1.4%] 1 [33.3%) T2 1%)
Smoking exposure pack-years 284941608 08824 22 2 83+1855
FEW: % predicted 56 8321630 BH.31£11.37 1001 +11.00
Age years 68732703 b 41291 b4 B8 43
Use of inhaled corticostemids 44 [68.8%] 1 B33%] 1 11.7%I

Data are presented as mesnsso unless otherwise stated. COPD: chronle obstrective pulmonary disesse;
FEW: forced expiratory volume in 1 5.

(%)
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FIGURE 1 Mean taxonomic distribution st the phylum level, by sampling method, for all 125 individuals
|unrarefied]. OW: oral wash; SVL: small-volume levage inthe left upper lobe; BAL 1: first fraction of protected
bronchoakeolar lavage [BAL] from rght middie lobe; BALZ: second fraction of protected BAL from right
middle lobe; PSB: protected specimen brush from right lower lobe and left upper lobe Mo legend for
smallest phylae

Alpha-diversity

Figure 2 shows a bowplot of the alpha-diversity metric, Faith’s phylogenetic diversity, by sampling method
and by disease category, excluding the three asthma subjects. The phylogenetic diversity within a sample s
an indication of richnes as the diversity increases both when a higher number of different OTUs are
present, and when the phylogenetic distance ks larger within the phylogenetic tree (less genetically similar).
Bonferroni-corrected Wikoxon matched-pairs signed-ranks tests showed that the ol wash samples were
meore alpha-diverse than all other sampling methods (p<0.01). The diversity was lower in COPD patients
than conteols, for most all sample types (figure 2) Importantly, the diversity decreased as the samples
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FIGURE 7 Beox-plot of alpha-diversity measured by wholetree phylogenetic differences grouped asccording to sampling method and chrone
oletructive pulmonary dsease [COPD] status. Rarefied st 1000 sequences. OW: oral wash sample; SVL: small-wolume lavage from Left upper lobe;
PEAL1: first fraction of protected bronchoalveolar lavage |BAL]; PBALZ: second fraction of protected BAL; nght PSB: protected specimen brush
from right lower lobe; left PSB: protected specimen brush from left upper lobe.
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were less exposed to  potentlal oral and bronchoscope  contamimation  [(OW=SVL-PBALL-
PBALZ-rghtPSB=leftPSE, non-parametdc trend test p<uil)

Beta-diversity

To compare between sample compositions (beta-diversity), we constructed principal coordinates amalysis
(PCoA) plots of unwelghted UniFrac distances including all procedural samples. Figure 3 shows the PCoA
plots for the orl wash wrsus each of the other sampling methods. Bach dot represents a diversity
measurement for one sample, and the OW sample k always shown in green. As can be seen, most
respleatory tract samples dustered differently from the OW samples, but the visual impression b that the
differences in diversity were smaller between OW and 5VL and OW and PBAL samples than for OW and
the PSE samples. Another way of comparing the beta-diversity was employed using a permanova test;
estimating the beta-diversity between OW samples and each of the other sampling methods. This method
tests to which degree the varlation in a matrix of UniFrac digtances can be explained by an imposed
categorsation (Le sampling method). Overall permanova test confirmed that the beta-diversity difered by
sampling method (pseudo F 873, p=0u1, %99 permutations). When the distance matrix was split
according to the compadsons in figure 3, all were significant {p<0.01, permanova, comected for multiple
compadson), with the permanova pseudo F-statistic gradually Increasing for the comparlson of OW with
SVL, PBALL, PBAL2, right PSB and left PSB respectively, again indicating that PSB samples were more
cleady separated from OW samples than 5VL and PBAL

Finally we investigated whether the order of sampling (left versus dght hung first) influenced alpha- and
beta-diversity in PSB samples We found no significant difference in alpha- or beta-diversity for the dght or

the left PSBs as judged by phylogenetic diversity and unweighted UniFrac {sup plementary figures 53 and 54).

Discussion

We have shown that protected BAL and protected brush samples differed more from oral wash samples
than unprotected lavage through the bronchoscope working channel. Thus, unprotected sampling of the
alrway microblome might convey an image of a microblome that is more similar to the oral microblome,
than it would have been with protected sampling
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FIGUKE 3 Principal coordinates analyses on unwelghted UniFrac distance matrix companng sampling methods in the MicroCOPD to oral wash
samples. Rarefied at 1000 sequences. LUL: left upper lobe; BAL : bronchoalveslar lavage; RML: right middle lobe; RLL: right lower Lobe.
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To our best knowledge this is the firgt study that presents both protected brush and protected lavage
sampling as compared with both the oral microblome and unprotected sampling. With more than 120
examined subjects it Is by today the largest single ste bronchoscopy study of the lung microblome.

As other authors we find evidence of a lung microblome separated from the oral microblome by a larger
fraction of Protechactera and a proportionately lower fraction of Firmicutes [2 8, 15, 20]. However, Seaar
and assoclates [3, 4] malnly found that the alrway microblome was charmcterised by enrichment from
supraglottic aress of the resplestory tract, and in particular by Prevotells and Vedlonella OTUs which are
Bacterdodetes and Firmicutes, respectively. They exmined 49 subjects, with supraglottic brushes and BAL
through the working channel, and observed that two dusters dominated alrway samples: one dominated
by OTUs present in negative control samples, and one domdrated by OTUs present in supraglottic
brushes. One interpretation might be that these two clusters represent two different modalities of
contamination, the first one from laboratory procedures and the second from bronchoscople carryover.
SecaL ef al. argue that If it was bronchoscople carry-over, they would have observed a dilutional effect
when they compared a fist BAL of the Ungula, with the second BAL of the dght middle lobe. However,
this comparkon was done for only 15 indbvidusls, and anatorslcally one might expect lower blomass in
the lingula than the right middle lobe.

Orther authors have also investigated the possibility of bronchoscopic carryover. Basas et al. examined oral
wash samples of 12 subjects and compared them with a firgt BAL of the lngula and a second BAL of the
right middle lobe [6]. They did not find any difference In quantitstive PCR between the fist and second
BAL and no difference in beta-diversity when comparng the OW with the two BALs Their interpretation
was that If there was significant carryover, there should have been observed some sort of dilutional effect.
Mevertheless, the two sampled stes are separsted by the carma, and the bronchoscope must be
repositioned between sampling, and these two sites are indeed in different communication with the
outside world, possibly leading to an a prior larger blomass in the dght lung. Also, Diowsow et al.
compared supraglottc brushes with PSB and BAL through the working channel [8]. In principal
component aralyses of beta-diversity they found no dusterdng by sample type, except that the supraglottic
samples differed from the intrapulmonary sample communities However, by perfbrming unprotected BAL
before PSB, residual BAL fluld might have affected the brush aress making them more similar to the BAL
sample sites. Fimally, 15 sampled subjects might not be sufficlent to detect the differences we observed in
the current study with more than 100 participants

It Is quite plausible that microbes migrate from the oroplaryngesl cavity to the alrways, generating a
normal overlap between the oropharmgeal and alrway microblomes [5]. But & we have shown, co-existing

sample contamination lkely also b an issue. The oropharymgeal microblome has a known large blomass,
with a high diversity. By passing through this cavity, contamination to the outside of the bronchoscope
induding its tp is inevitable. Use of suction will contaminste the working channel [7]. Since the oral
blomass Is much greater than the alrway biomass, even a small contamination will have a dispropaort lonate
effect on the supposed alrway microblome If the unprotected measurersents are performed through the
waorking channel. Using the working channel for unprotected bivage repeatedly at different lobes will lead
to contamination from one lobe to another. Using larger volume lavage may negate this effect to some
degree, but not eliminate the problem.

Results from the current study suggest that protected sheet sampling is the superior sampling
methodology. Comparing unprotected SVL and PSB both taken from the upper left lobe in our study, SVL
was most simiar to the ol sample by visual assessment of the 10 most sbundant taxa, and lkewlse both
by alpha- and beta-diversity. A direct comparkon of protected and unprotected lavage from the same lobe
is impossible, a5 any washing will impact the contents of later washings. However, the diversity of PBAL
from the right middle lobe was intermediate between that found in OW and that found in the PSB

Besides the above-mentioned study by Dicwmon and colleagues [8], only two other studles have com pared
PSBs to other sampling methods [7, 19] Chrarson ef al. [7] sampled bboratory reagents, the
bronchoscope itself durng varlous parts of the procedure, and the cropharyngeal microblome in addition
to BAL through the woddng channel and PSBs. They concluded that the microblome from the lower
resplratory tract was indiscriminste from the oroplaryngesl microblome irrespective of sampling method.
However, the study induded only one PSB per sampling, had lower sequencing depth than the current
study, induded only six healthy individusls and there were no adjustments made for OTUs seen in the
negative control samples [7]. Hooaw ef al. compared PSB, and SVL samples of nine CF patients [19]. For
elght CF patients who had PSB and SVL taken from the same lobe, diversity was consigtently higher in the
PSB samples [19, the opposite of our findings. Hocaw ef a. employed the PSB only at visible muscus
plugs, and the alrways of adult CF patients are perhaps no longer representing a low biomass
environment. In addition the number of study subjects was limited.
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The main srength of our study was comprehensive sampling of a large, heterogeneous sample of subjects
with and without COPD, while taking precautions to avold excessive influence from hbortory and
bronchoscople contamination However, some potential weaknesses should be acknowledged First, we
have not performed gquantitstive PCR, and thus cannot concude reganding the amount of 165 rRNA gene
coples in the samples before amplification. Second, our amalyses do not include 2 modk community, and
we are therefore not able to provide sequencing error rates for the current study. We could also have
spiked our samples with bacteria that would have indicated the efficlency of our DNA extraction. Third,
pre-bronchoscopy  all participants  recetved O4mg salbutamol Thi was done for obtaining
pre-bronchoscopy post-bronchodilator lung function values, but kad the added benefit of protecting
againgt procedural bronchospasm. Salbutarnol was given as an aersol through large volume spacers that
are cleaned dally, and we are not aware of reports on contamination through metered dose inhalers
Furthermore, since both patients and controks recelved salbutarmol, our condusions should not be affected.
Fourth, some results are difficult to compare with those of other authors because of differences in DMNA
extraction, PCR amplification, sequencing and blolnformatic approach. This is the result of a field where
standands for 165 rRNA gene amplicon studles of microblal communities currently do not exigt. To
facllitate reproducibility we have used well-docursented amalytic approaches and mostly default settings for
our blolnformatic pipeline (QIME), in addition to using pAmers and PCR recommendations from a
major pext-generation sequencing provider (IMurina). Regardless of this we cannot rule out that some of
our findings only pertain to the current set of methodological cholces such as the cholce of sequencing
hypervarable reglon V3V4 [3M4]. To minimise the influence of small/spurious OTUs we have excluded
singletons by using default settings in our OTU plcking, and removed OTUs that constituted less than
0.005% of the total number of sequences.

Insights concerning the airway microblome in disease and health might provide vital understanding of
disease mechanisms and provide new targets for treating lung diseases such as COPD, asthma, cystic
fibrosls and interstitial lung diseases. However, to date only a minodty of studies have performed
protected sampling, and might have been affected by exposure to exposure to microblota encountered
before reaching the sampled sites We have shown that unprotected sampling k likely to be affected by this
phenomenon, and we encourage the use of protected specimen brushes when sampling the airway
microblota
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Protected sampling is preferable in bronchoscopic studies of the airways

microbiome

MATERIAL AND METHODS

Study design

The design of the MicroCOPD study has been published previously [1). The current
analysis includes 58 control subjects, 64 subjects with COPD, and 3 subjects with
asthma, all examined between 11th of April, 2013 and 14% of April, 2015 at the
outpatient clinic of the Department of Thoracic Medicine at Haukeland University
Hospital. All participants were at least 35 years old, and were recruited from previous
longitudinal case-control studies (2], and a few volunteers, Participation was postponed
for subjects who had an ongoing respiratory symptom exacerbation or had used
antibiotics or oral corticostercids within the last 14 days. Subjects using anti-coagulants
or double platelet inhibition, subjects with unstable coronary heart disease, hypoxemia
(5p02 <= 90% when receiving 3 liters of oxygen/minute through a nasal canula),
hypercapnia at rest (pC02 = 6.65 kPa), or with known allergies against lidocaine or

alfentanil were not included.

Control subjects had a post-bronchodilator (BD) FEV1/FVCra ti d)&F 0 and no clinical
diagnosis of obstructive lung disease as evaluated by the study physician. COPD cases
had a post-BD FEV3/FVC < 0.70, and a clinical diagnosis of COPD. Moderate, severe and
very severe COPD was defined as post-BD FEV1 between 50 and 80% of predicted, <

50% of predicted and < 30% of predicted by Norwegian pre-BD reference values,
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respectively (3). The Begional Committee for Medical and Health Research Ethics
approved the study (REK Nord, project number 2011/1307). All participants provided

written informed consent.

Sample collection

All participants received at least 0.4 mg of salbutamol through a spacer before the
bronchoscopy procedure. Sterile phosphate-buffered saline (PBS) in bottles of 500 mL
were unsealed maximum 24 hours before the procedure. Immediately before
bronchoscopy all participants delivered an oral wash [0OW) sample by gargling 10 mL
PBS. 1 mL of PBS from the same bottle was used as a negative control sample, and all

PBS fluid used for samples for one subject came from the same bottle.

Flexible video-bronchoscopy was performed via the oral route in supine position. No
suction was used prior to having entered the trachea. All subjects received local
anesthesia with lidocaine both before and during the procedure. All but 18 subjects
received mild sedation alfentanil parenterally. Participants were monitored according to

current guidelines, and were observed for atleast 2 hours after the procedure (4).

The following samples were taken in the same consecutive order during bronchoscopy:
1. Three wax-plug protected specimen brushes [P5B) from the right lower lobe
(Conmed, Utica, NY, USA). The three brushes were cut off with sterile scissors, and
placed together in an Eppendorf tube with 1 ml PBS.

2. Protected bronchoalveolar lavage (PBAL) of the right middle lobe by instilling two
fractions each of 50 mL PBS (PBAL1 and PBAL2) using a wax-plug protected catheter

(Plastimed Combicath, Le Plessis Bouchard, France).
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3. Three wax-plug protected specimen brushes [P5E) from the left upper lobe, treated as
the right lobe P5Bs.

4. Small-volume lavage [SVL) of 20 mL PBES in the left upper lobe, from the same
segment as the left PSB was taken. This lavage was sampled using the suction from the

broncoscope’s working channel, thus mimicking the way BAL is most often sampled.

For 49 participants we examined the left side before the right (i.e according to the

numbering above we performed sample 3., 4., 1.. 2.].

DNA Extraction

1800 pl of OW, PBAL and SVL samples and 450 pl PSB and PBS NC samples were used
for DMA extraction. An equal volume of Sputasol (Oxoid) was added to the samples
followed by a 15 minute incubation in a thermomixer (1000 rpm) at 37 °C. The bacterial
cells were then pelleted by centrifugation at 15700 g for 8 minutes. The supernatant was
discarded and the bacterial cells were resuspended in 250 ul PBS.

Bacterial DNA was then extracted from the cells using enzymatic and mechanical lysis
methods. As mechanical lysis methods tend to result in the shearing of free DNA, the
samples were first treated with an enzyme cocktail consisting of 25 pl lysozyme (10
mg/mL, Sigma-Aldrich), 3 pl mutanolysin (25 KU/mL, Sigma-Aldrich), 1.5 pl lysostaphin
(4000 U/mlL, Sigma-Aldrich) and 20.5 pl TES buffer (10 mM Tris-HCl, 5mM EDTA, pH 8)
and incubated at 37°C for 1 hour in a thermomixer (350 rpm). Before proceeding with
mechanical cell lysis, the samples were centrifuged at 15700 g for 15 minutes to pellet
any bacterial cells not sufficiently lysed by the enzymes. The supernatant containing the
extracted DNA was transferred to a new eppendorf tube and stored at 4 °C while further

processing of the bacterial cell pellet. The pellet was resuspended in 800 pl CLS-TC lysis



Grenseth et al. Contamination in airway microbiome studies. Online supplement. Page4

buffer from the FastDNA 5pin Kit (MP Biomedicals, LLC, Solon, OH, USA) and transferred
to a Lysing Matrix A tube [FastDNA Spin Kit). The sample was then subjected to
mechanical lysis using the FastPrep-24 instrument (MP Biomedicals) at a speed setting
of 6.0 m/s for 40 seconds. The lysate was then pooled with the supernatant from the
enzyme lysis step and DNA further purified as described by the manufacturers for the

FastDNA Spin Kit.

165 rRNA library preparation and high-throughput sequencing
Library preparation and sequencing of the V3-V4 region of the 165 rRNA gene was
carried out according to the llumina 165 Metagenomic Sequencing Library Preparation
guide (Part # 15044223 Rev. B). The V3-V4 region was PCR amplified and prepared for a
subsequent index PCR step using primers adapted from Klindworth et al. (5):
= 165 Amplicon PCR Forward Primer (overhang adaptor sequences ynderlined) =

S TCGTCGGCAGCGTCAGATOTGTATAAGAGACAGCCTACGGGNGGCWGCAG

= 165 Amplicon PCR Reverse Primer (overhang adaptor sequences ypderlined) =

S GICTCGTGGGCTCOCAGATCTGTATAAGAGACAGGACTACHVGGGTATCTAATCC

The PCR reaction was carried out using the following cycling conditions: an initial cycle
at 95°C for 3 minutes followed by 45 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds,
72 °C for 30 seconds and a final extension cycle at 72 °C for 5 minutes. The incorporation
of dual indexes to the library in the subsequent 8 cycles of Index PCR step was carried
out using primers from the Nextera XT Index Kit (Illumina Inc., San Diego. CA, USA) and
enabled the sequencing of 96 samples in each setup. The samples were DNA quantified
using the Qubit dsDNA HS Assay Kit (Life Technologies) and normalized to 4nM. The

samples were pooled and prepared for 2 x 300 cycles of paired-end sequencing on the
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Mumina Miseq sequencing platform using reagents from the Miseq reagent kit v3

(Mumina).

Statistics and bioinformatics

The chosen bioinformatic pipeline was Quantitative Insights Into Microbial Ecology
(QIIME - http://qiime.org) version 1.9.1, run on Macintosh 05X using the MacQIIME
package. Two files per sample from the [llumina MiSeq, one forward read, and one with
reverse read was first joined with at least an overlap of 100 base pairs. The resulting
files were merged to one library and sequences of poor quality were discarded,
demaning a base quality score (phred score) of 19 or higher. Operational taxonomic
units (0TUs) were picked using the open reference based approach in QIIME using
Uclust with a 97% sequence similarity threshold [6) and GreenGenes version 13.8 as the
reference database (7). All 0TUs that constituted less than 0.0005% of the total
sequence number were removed (8). The GreenGenes database (v.13.8) was also used
for taxonomic assignment of O0TUs (7) with the Ribosomal Database Project (RDP)
classifier (9). All sequences from OTUs seen in corresponding negative control samples
were deleted for the downstream analyses (10). Phylogenetic tree construction was

performed with FastTree (11), after alignment using PyNAST (12).

In order to assess similiarity between samples obtained by different bronchoscopic
sampling techniques and the oropharyngeal microbiome, the taxonomic distribution and
diversity of OTUs from the OW samples were compared to all other sample types. Alpha-
diversity was evaluated using Faith's phylogenetic diversity (PD), or “PD wholetree”.

Beta-diversity was estimated with unweighted UniFrac, as well as visualization of
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taxonomic distribution of 0TUs and beta-diversity with principal coordinates analyses
(PCoA) of UniFrac distance matrices for the entire data-set (13). Diversity analyses
require a similar number of sequences in each sample, which was ensured by setting
rarefaction levels. Samples with fewer sequences than the rarefaction level were
excluded, whereas a number of sequences equal to the rarefaction level was chosen at
random from the remaining samples. Due to the previous removal of a large number of
sequences [the negative control sample 0TUs), the rarefaction levels were relatively
low. The proportion of taxa by sample type was tested using the betafit command in
Stata as well as non-parametric trend tests. Statistical significance for alpha-diversity
and beta-diversity between sampling methods was evaluated by Bonferroni-corrected
Wilcoxon matched-pairs test in Stata version 13.2 (Statacorp, Texas, USA) and
Bonferroni-corrected permutational ANOVA [permanova) with 1000 permutations in

QIIME, respectively.
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FIGURE LEGENDS
Figure 51: lllustration of protected bronchoalveolar lavage (PBAL) with phosphate

buffered saline [PBS).

Figure 52: lllustration of protected specimen brush (P5B) sampling.

Figure 53: Box-plot of alpha-diversity measured by wholetree phylogenetic differences
by which lung that was sampled first and right/left protected specimen brush (P5EB).

Rarefied at 1000 sequences.

Figure 54: Principal coordinates analyses of unweighted UniFrac distances by which
lung that was sampled first (red dots - left side first, blue dots — right side first) in right

protected specimen brushes (P5B) from the right lower lobe and left P5Bs from the left

upper lobe. Rarefied at 1000 sequences.
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Bacterial and Archaeal Metagenome-Assembled Genome

Sequences from Svalbard Permafrost
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ABSTRACT Permafrost contains one of the least known soil microbiomes, where
microbial populations reside in an ice-locked environment. Here, 56 prokaryotic
metagenome-assembled genome (MAG) sequences from 13 phyla are reported.
These MAGs will provide information on metabolic pathways that could mediate
bisgeochemical cycles in Svalbard permafrost.

Permafmrst covers over 25% of the exposed land surface of the Northern Hemisphere
and hasts a diversity of microbes proposed to be unigue to cold habitats (1). These
frozen soils contain a large reservoir of soil organic matter (SOM) that can have a
significant impact on global dimate upon thawing (Z. The permafrost thaw may
stimulate microbial activity and thus enable 50M decomposition. Previous studies have
shown differences in microbial diversity between active layer (seasonally thawed and
refrozen topseil) and permafrost microbial communities (1-5L Although permafrost
microbiomes are known to be highly diverse (1), they are largely undemepresented in
global surveys. In this study, we investigated the microbial communities through a
depth profile from Svalbard, and we report the binned metagenomic coassembly of five
metagenome samples (6) and 56 metagenome-assembled genome (MAG) sequences.

Soil samples were obtained from an ice-wedge polygon site in the Adventdalen Valley
in Svalbard, Norway (78.186M, 15.9248E). The site soil geochemistry was describad previ-
ously (6). Five depth segments, namely, one active layer mineral horizon and four perma-
frost layers, were collected at the following depths 0 to 14, 101 t 118, 118 to 126, 126 to
144, and 161 to 181 cm bebow the soil surface. Totl community genomic DMA was
extracted using a PowerSoil DMA isclation kit, and sequencing lbraries were prepared using
& TruSeq DNA library kit. An llumina Hiseq 2500 instrument was used to acquire paired-end
150-bp metagenomic sequences, generating 20Gb of raw reads per sample (7). The
microbial community diversity and compaosition were reported elsewhere (6.

After adapter and low-quality reads were trimmed using MOCATZ v2.0.0 (7), all
deaned reads were merged and then coassembled with MEGAHIT w1.1.3 (8], resulting
in 566254 contigs of =1kb. We binned the contigs with MaxBin2 v2.2.5 {9) and
MetaBAT2 v2.12.1 (10) and then dereplicated and aggregated them into MAGs using
DAS Tool w1.1.0 {11), which resulted in 64 MAGs. We used ChedkM v1.0.11 (12} to
detarmine the completeness and contamination of these MAGs. We further examined the
taxonomic distribution of contigs within each MAG based on Kaju v1.6.2 (13} annotations
and removed contaminating contigs. This process resulted in a total of 56 MAGs with
contamination less than 10%. Default parameters were used with zall software. We recow-
ered & high-, 44 medium-, and 4 low-quality draft MAGs in accordance with minimum
information about metagenome-assembled genome (MIMAG) standards (14). The MAGs
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TABLE 1 Detailed completeness and contamination results, genome size, GC content, MIMAG status, taxonomy, and EMA accession

information of MAGs
Completeness Contamination Genome  GC content  MIMAG ENA accession

MAG allas %) %) size (bp) (%) dassification  Taxonomy® no.
Maxbinz039_sub 982 93 3147504 555 Meadiusm Acidobacteria sp. ERZA70056
Metabat.113 968 0o 20959789 679 High Actinobacteria sp. ERZA70N00
Metabat.158 965 24 4406707 630 High Alphaproteobocteria sp. ERZa70094
Metabat.151 964 51 44E2 7B6 360 Meadium Bacteroidetes sp. ERZA70080
Metabat 89 963 232 2753811 536 High Verrucomicrobia sp. ERZa70097
Metabat.179 953 0o 2724314 692 High Chioroflexi sp. ERZA70110
Metabat.143 o944 0 2442540 660 High Chioroflexi sp. ERZa70099
Metabat.177_sub 943 6.7 4572140 592 Medium Proteobactenia ERZBTOOT4
Metabat 40 9315 34 3602750 654 High Betoprotenbadteria ERZA70086
Metabat123_sub 9332 95 4243256 6B2 Meadium Actinobacteria sp. ERZa70064
Metabat.14 915 3o 2553466 66.1 High Chioroflexi sp. ERZa70083
Metabat.133 915 19 2305255 673 High Candidate Dormibacteroecta sp.  ERZE70101
Metabat.147 93 759 4040741 559 Medium Verrucomicrobia sp. ERZBTOOTD
Metabat 57 899 55 1,906,190 6B3 Meadiusm Actinobacteria sp. ERZa70077
Maxbinz.041 BO.7 232 3901541 593 Meadiusm Acidobacteria sp ERZA70096
Metabat.164_sub  89.4 47 2849413 642 Meadiusm Chioroflexi sp. ERZE700E1
Maxbin2.071_sub  B6.5 83 3144416 TFOA Medium Actinobacteria sp. ERZBTOOGT
Metabat.51 B5.9 82 2827458 608 Meadiusm Gemmatimonadetes sp. ERZA70069
Maxbinz.021_sub  B5.7 6B 2132093 700 Meadiusm Chioroflexi sp. ERZa70073
Metabat.154 B48 15 2330430 695 Meadiusm Actinobacteria =p ERZ&E70091
Metabat.156 847 1.5 2372385 355 Medium Bocteroidetes sp. ERZBTONOF
Maxbin2.102_sub 846 1.E 273713 642 Medium Acidobacteriacene sp ERZBTON02
Metabat.138 844 0 2813002 551 Meadiusm Verrucomicrobia sp. ERZa70098
Metabat.172_sub 832 24 2237812 651 Medium Rhizobiales sp. ERZBT0053
Maxbinz.128 821 9E 2270234 517 Meadiusm Alphaproteobocteria sp. ERZ870062
Maxbinz.086_sub 819 a7 3605620 579 Meadiusm Acidobacteria sp. ERZa70063
Metabat.159_sub  81.7 BT 2093345 559 Medium Verruoomicrobia sp. ERZBT0066
Metabat.121 802 35 2452147 358 Medium Bocteroidetes sp. ERZBTO0ES
Metabat.122 773 83 2004053 679 Medium Actinobacteria sp ERZBTO0GE
Metabat.163_sub 738 20 2166091 711 Medium Sofirubrobacterales sp. ERZBTON00
Metabat. 72 719 32 3967186 408 Medium Bocteroidetes sp. ERZBTOOET
Metabat. 167 715 23 2102832 707 Medium Actinobacteria sp ERZBT0095
Metabat. 115 731 51 1705856 702 Meadiusm Actinobacteria =p ERZa70079
Metabat.174 7.6 15 2317750 354 Medium Bocteroidetes sp. ERZa70052
Metabat.53 3 8.2 5534727 370 Medium Bocteroidetes sp. ERZETI091
Metabat.100 608 0o 2344086 GBS Meadiusm Sofirubrobacterales sp. ERZE70111
Metabat 25 679 0E 2094082 6B3 Meadiusm Actinobacteria =p ERZ870112
Metabat.119 672 0.0 731,988 474 Medium Saccharibacterio sp. ERZBTON15
Metabat.140 &67.1 6.0 1,381,010 650 Medium Chioroflexi sp. ERZBT0O7S
Metabat.16 662 1.5 844132 413 Medium Thaumarchaeota sp. ERZBTON08
Maxbinz.015 65.5 40 2138105 493 Meadiusm Protecbacternia sp. ERZ8700E2
Maxbinz 090 642 50 2561445 652 Meadiusm Gemmatimonadetes sp. ERZB70076
Metabat.48 63.6 1.7 741,844 3E9 Medium Candidate LE\'}MEHG =p. ERZBTOI04
Metabat 28 635 26 2845538 670 Meadiusm Burkholderiales sp. ERZA70090
Metabat.166 633 0.2 735,124 45.6 Medium Saccharibacterio sp. ERZBTON14
Maxbinz.012 6332 6.9 2750113 551 Medium Proteoboctenia sp. ERZBT0072
Metabat.12 63.0 1.6 223,067 393 Medium Bocteroidetes sp. ERZBTON06
Metabat.155_sub 586 px:] 147976 568 Medium Nitrosomonadales sp. ERZBTOOES
Metabat o4 587 31 3546342 597 Meadiusm Acidobacteria sp. ERZA70068
Maxbinz.095_sub 534 BE 2850860 566 Meadiusm Nitrospirge sp. ERZB70065
Metabat.1 519 06 1,114730 510 Meadiusm Mitrosospira sp. ERZ&70113
Metabat.170 514 36 3578256 596 Meadiusm Acidobacteria sp ERZa70084
Metabat.175 483 1.6 1,833 825 418 Low Bocteroidetes sp. ERZBTON05
Maxhinz.011 424 52 2463859 615 Low Rhizobialks sp. ERZa70078
Maxbin2.064_sub 409 74 1652927 434 Low Firmicutes sp. ERZBT00T1
Maxbinz.096_sub  31.1 1E 1233990 545 Low Acidobacteria sp ERZa70103

= Uncultured isolates were ussd.

were distributed across the following phyla: Actinobactera, 11; Protechactera, 11; Bacte-
roidetes, 8; Acdobacteria, 7; Chiovoflexi, & Vemucomicrobia, 4; Saccharibacteria, 2; Germimiati-
monadetes, 2; candidate phylum Dormibacteraeota (AD3), 1; candidate phylum Levybacteria,
1; Firmicutes, 1; Nitrospirae, 1; and Thaumarchaeota, 1 (Table 1). Here, we report MAGs with
31.07 to 98.20% estimated completeness, and therefore the MAG sizes range from 731 988
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to 5534727 bp. The MAGs will be used to investigate metabolic pathways that could
impact S0M decomposition in permafrost soils. Results from the comparative genomic

analyses of these MAGs will be published elsewhere.

Data availability. The shotgun sequence data were deposited in the European
Mucleatide Archive (ENA) database under the study number PRIEB30BTZ with the
accession numbers ERR3078909 to ERR3078913. The MAGSs are publicly available in the
EMA under the analysis accession numbers ERZS70056, ERZET0062 to ERZET0115, and

ERZBT9091.
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One sentence summary: Two novel computational methods were developed to condoct a deep metagenomic analysis of Svalbard permafiost samples,
resulting in previowsly T 1 trends in permad especially the inportance of a=robic metabolisms.

Editar: Max Haggblom

Tieslihan Tag, http/ioncd org/0000-0001.- 7525 2931

ABSTRACT

Permafrost underlies a large portion of the land in the Morthern Hemisphere. It is proposed to be an extreme habitat and
home for cold-adaptive mictobial communities. Upon thaw permafrost is predicted to exacerbate increasing global
temperature trend, where awakening microbes decompose millennia old carbon stocks. Yet our knowledpe on composition,
functional potential and variance of permafrost microbiome remains limited. In this study, we conducted a deep
comparative metagenomic analysis through a 2 m permafrost core from Svalbard, Norway to determine key permafrost
microbiome in this climate sensitive island ecosystemn. To do 5o, we developed comparative metagenomics methods on
metagenomic-assembled genomes (MAG). We found that community composition in Svalbard seil horizons shifted
markedly with depth: the dominant phylum switched from Acidobacteria and Froteobaecteria in top soils (active layer) to
Actinobacteria, Becteroidetes, Chlorofiexd and Proteobacteria in permafrost layers. Key metabolic potential propagated through
permafrost depths revealed aerobic respiration and soil organic matter decomposition as key metabolic traits. We also
found that Svalbard MAGs were enriched in genes involved in regulation of ammonium, sulfur and phosphate. Here, we
provide a new perspective on how permafrost microbiome is shaped to acquire resources in competitive and limited
resource conditions of deep Svalbard soils.

Keywords: Svalbard; permafrost; microbiome; metagenome-assembled genomes; aercbic metabolism

0z0Z wnbny £ uo senb g MLZWLQOTS‘-WWJMH LI D SLUD LU0 B D LUSDEDE S I LU PRPBOIUMO]

Received: 31 October 2019; Accepted: 9 April 2000

(5 FEMS 2020. This is an Open Access article distributed under the terms of the Creative Commans Attribation License
{httpe/eativecommans.arglicensssy/d. V), which permits unrestricted rease, distzibution, and reproduction in any medium, provided the
ariginal work is properby dted.



2 | FEMS Microhiology Ecology, 2020, Viol. 96, No. 5

INTRODUCTION

Permafrost covers nearly one quarter of Earth's terrestrial sur-
fare and stores &an estimated amount of 20%-50% of global soil
organic matter (S0M) (Schuur et al. 2008; Tarnocsi et al. 2009). In
the Morthern Hemisphere &8 much of 24% of the soil is perma-
nently frozen (Alley et al. 2007). These ecosystems are proposed
to provide a unigue environment for cold-sdapted microorgan-
isms and shown to contzin highly diverse microbial commu-
nities (Jansson and Tag 3014). Global warming is expected to
hawve its largest impact through thawing of permafrost and the
scale of this impact depends strongly on the amount and ver-
tical distribution of ground ice (Kokel et ol. 3017). Durng the
past decade, with stesdily rising temperatures, permafrost thew
has secelersted aoross the Arctic areas (Hayes et al. 2014). The
effect of large-scale permafrost thaw becomes a serious con-
cem &5 it may increase the microbial sctivity leading to SOM
degradation and release of more greenhouse gases (GHGS) - such
as carbon dicedde (C07) and methane (CHy) — hence contribut-
ing to further global warming (fansson and Tag 3014). There-
fore, it is highly relevant to chamacterize the bacterial commu-
nity residing in the permafrost in terms of spedes composition
and its metabolic and functional potentizl. Advances in next-
peneration sequencing (MGS) has expanded our sbility to char-
acterize the microbiome and investigate potential metabolisms
from permafrost samples. For example, metagenomics was Crit-
ical to identify substantial functional and compositional dif-
ferences between active layer (AL: experiences seasonal thaw-
refreeze) and permafrost layer (PL: constantly frozen for more
than two consecutive years), which showed that transition from
frozen to thaw state stimulates S0M-degrading microbes (Madk-
elprang et al. 3011). While metagenomics continues to transform
our understanding of microbial functions upon thew (Jansson
and Tag 2014; Hultman et gl. 2015; Woodcroft et al. 301E) most of
our current knowledge is still based on studies that are forused
on 165 rRMA gene-sequencing analysis (Wilhelm et al. 2011; Git-
tel et al. 3014; Koyama et al. 2014 Deng et al. 2015; Mackelprang
et al. 2rlGa). These studies are informative for describing spedies
or groups of species in 3 community permafrost microbiome but
is less suited for exploring functonal potential and novel species
distribution (Knight et al. 2018).

The Svalbard archipelago is 3 unigque permafrost environ-
ment located at Arctic-Atlantic Ocean border. About 60% of the
land is covered by glaciers but remainder periglacial emviron-
ment contzins the larpest permafrost ares in Europe outside of
Russia. In contrast to other regions with extensive permafrost
aress, such &s Siberia and Morthern Alasks, permafrost in Swval-
bard is presumably of young age (i.e. Holocene) specifically at low
altitude areas around central Spitsbergen. Howewver, high alti-
tude permafrost in Svalbard may represent &n exception to this
[Humlum, Instanes and Sollid 2003). The Morth Atlantic Current
dampens polar influence in Svalbard where especially winter
temperatures could be up to 30¢C higher than similar latitudes
in Russia and Canada (Humlum, Instanes and Sollid 2003). As &
result, permafrost in Svalbard is proposed to be more sensitive
to changes in temperature and soil thickness (Humlom, Instanes
and Sollid 3003). Research in Svalbard provides an opportunity
to study the immediate effects climate change and permafrost
thew. Svalbard had been a focal point of studying gladal, sub-
glacial (recently deglaciated), cryoconite sediments (Kastovekd
et al. 2005; Edwards et al. 3011) and tundra microbiomes (Tweit
et al. 2013; Schostag et ol. 2015; Bang-Andressen e al. 2017}
The Arctic tundra in Svalbard contains diverse microorganisms

which are active throughout the winter despite the freezing con-
ditions (Schosteg et al. 2015). Peatlands of Svalbard are shown
to be inhabited by microbes governing biogeochemical cyces
through hydrolysis of plant polymers, fermentation, methano-
genesis and methanotrophy where Actinobacteria was identified
a5 & key phylum carrying out S0M degradation (Tveit et al. H013).
However, in comparison with other soils, our knowledge of the
Swalbard permafrost microbiome is limited. In a previous publi-
cation from Adventdalen Valley permafrost, we showed that PL
were significantly different from the AL, where microbial com-
munity structure changed strongly with depth and Actinobacte-
rio were identified as the dominant microbial phylum of PL via
165 rRMA gene sequencing (Moller et al. 2018). However, others
also showed that Actinobacterio, Bacteroidetes, Firmicutes and Pro-
teobacteria are major parts of the microbiome (Bang-Andreasen
et al. 3017) of near surface permafrost at this location suggest-
ing that Adventdalen valley permafrost is likely to have a highly
heterogeneous composition.

In this study, we investigated the microbial composition and
functionzal potential through & permafrost core from Svalbard's
Adventdslen valley in order to determine key microbial func-
tional potential. Although metagenomics provides holistc view
to microbial functions from largely unculturable permafrost
microbiome (Mackelprang et al. 2016b), several aspects of bioin-
formatic analysis remain challenging. For example, we are still
lacking an effective and robust workflow for recovering guality
metagenome-assembled genomes (MAGs) from the permafrost
communities due to the large complexity and heterogeneity
present in these soils. More importantly tools enabling sys-
tematic comparison among metagenomes by taking full advan-
tage of data and maximize the information driven from sam-
ples, are urgently needed. To address these issues, we devel-
oped computational tools to 2id high-quality MAG recovery and
to identify key functions through comparative functional analy-
5i5. We aimed to capture the variances in microbizl composition
and trends in functionsl potential throughout the depth pro-
file (AL to PL). We hypothesized that (i) phylogenetically related
MAGE resides in PL where (i) S0M-degradation pathways in key
permafrost microbiome are represented by mix of aerobic and
anasrobic ProCESEES.

MATERIALS AND METHODS
Sample collection

Soil zamples were obtained from an ice-wedge polygon site in
the Adventdalen Valley in Swalbard, Morway (78.186 M, 15.9248E)
in 2011. Adventdalen represents @ classic high-arctc ford-
walley, which are sediment filled paleo fords characteristic to
formerly glaciated mountsin cozstal aress. Detailed description
and procedures for core collection and characterizing soil sam-
ples were described previously (Miller et al. 201E). In short, the
permafrost core was collected in by automated drilling in April
3011 in Adventdalen, Svalbard. The total length of the core was
198 om, end the core was immediately frozen at —20°C, until fur-
ther processing. The entire core was scanned by X-ray computed
tomography (CT) imaging, and cut into 1-2 cm slices using saw
blades sterilized with ethanol. To remove potential surface con-
taminants (Bang-Andreasen et al. 2017) from the core fragments
the outermost 2 cm were cut off using sterile blades. Based on
the results from the temperature loggers, CT scanning and water
content of the permafrost core (Mitller et al. 201E) active and PL
depths were decided. Five fragments, one from AL and four PL,
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with different depths AL1 (7 cm), PL1 (110 cm), PL2 {122 cm), PL3
(135 cm), PL4 (170 om) below the soil surface were subjected to
metegenomics analyses. Both AL and PL soils were acidic (pH:
4.6 AL; pH: 4.5-5.0 PL) and contzined 1.3%~1.7% C gr soil (Miller
et ol. 2018).

Metagenomic sequencing, recovery and refinement of
MAGs

DA was extracted and libraries prepared using procedures
desoribed previously (Xue et al. 2019). Metagenome sequencing
was performed using the Mumina HiSeq 2500 instrument to
acquire 150 bp paired-end sequences, generating around 20Gbp
per sample after quality control (trim and discard low-quality
sequences) with MOCAT2 v2.00 (Kultima et al. 2016). The analy-
sis workflow used here organizes severzl bisinformatic scripts
to recover and refine MAGE (Fig. 1A). Firstly, all guality con-
trolled resds were co-assembled with MEGAHIT w1.1.3 (Li et al.
2015). Two binning tools, MaxBinZ? v2.2.5 (Wu, Simmons and
Singer 2016) and MetaBAT? v2.12.1 (Kang et al. 3015), were usad
and output bins were further dereplicated and sggregated with
DASTool v1.1.10 (Sieber et gl. 2018). The chedkM v1.0.11 (Parks
et al. 2015) was used to determine completeness and contam-
ination of MAGE. We observed that a large portion of bins had
3 high contamination percentage even after using DASTool. To
improve the guality of MAGs, we developed a script, called
‘Decon MAG by_taxa py’, that will subset each bin into collec-
tions of contigs from the same taxonomic dessification. In the-
ory each bin represents an individual genome with single-taxon
annotation. However, in practice bins contain contigs from other
taa due to the complexity of microbial communities. Yet it is
possible to remove those contaminations by parsing their tax-
onomic classification. First, each bin was annotated with Kaiju
v1.6.2 (Menzel, Mg and Krogh 3016) using default parameters uti-
lizing the NCBI nr database to classify each contig into a taxo-
nomic rank, from phylum to species. Then script extracts con-
tigs with the same taxonomic classification at esch rank and
generates multiple subsets of fasta files comesponding to each
rank.

By defsult, Kaiju will return a "MA" if it cannot find & tax-
onomic classification &t certain ranks, which results in many
‘MA's at lower rank and loss of hierarchics]l taxonomic struc-
ture while contamination may happen in &ny rank. To max-
imum utilize the texonomic snnotation, here we considered
"MA’ in Kaiju annotation as a special taxonomic rank, and sus-
tained the hierarchical structure under the following rules: §)
when "MA" observed in a non-phylum level, a 1abel is generated
via combining higher taxonomic rank information with ' MA
denotation as a rank identifier (P: Phylum, C: Class, O Order,
F: Family, G: Genus, 5: Species), (i) if 'MA’ appeared at the phy-
lum level @ label is generated &s “P_MA'". For example, if a contig
is ennotated as: “C1; Proteobacteris; Alphaprotecbacteria; Rhi-
zobiales; NA; MA; Unknown species’, then it will be converted
to: “C1; Protecbacteria; Alphaproteobacteria; Rhizobiales; Rhizo-
bizles MA_F; Rhizobiales MA FNA G; Unknown speces’. Later,
the script calculates the percentage of every taxa label in each
rank and keeps labels whose percentage were higher than a
user-defined threshold (default - 0.5). As the scoript provides
multiple subsets of fasta comesponding to different ranks for
each bin, the user can run CheckM with all of these subsets
and evaluate the best tradeoff between completeness and con-
tamination. More detailed description of our MAG refinement
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method is available at: https.fgithub.comfyomueRecovery-and-
refinement- of - MAGS- for- permafTost- metagenome.

MAGS were annotated to & taxonomic rank based on Kaiju
and GTDE-Tk w0.3.3 (Parks et al. 2018) annotstion. For each
sample, we aligned seguence dats against all refined MAGS
using BEMAP v37.36 (httpsyYsourceforge net/projects/bbmapy]
with default parameters. The relative sbundance of each MAG
was caloulated by aggregating the mapping retio of contigs per-
tained to this MAG. RAST annotations for the MAGS are publicly
available at KBase narmrative (Arkin et al. 301E): httpsynarrative.
kbase usnarmativews. 50152.0bj 370 (KBase sccount required).

Coverage-based functional analysis in a MAG-centric
view

Normalization coverage

To perform guantitative comparative analysis, we utilized a nor-
malization strategy — TFM (Transcripts Per Kilobase Million) -
which is commonly used in normalizring gene expression in
FMA-seq analysis (Wagner, Kin and Lynch 2012). Our normal-
ization method consists of three steps. Firstly, we considered
coverage of contige as RPK value of contigs, a5 coverage repre-
sent the number of mapped reads divided by the length of the
contig, which is analogous to be the concept of PRE value. Sec-
ond, we calculated the ‘per million” scale factor by dividing total
mapped read counts with 1 million in each sample. For example,
the mapped reads count in AL1 was 9 171 534, thus the scaling
factor in AL1 would be 9.171534 (9171,534/1000,000). Finally, cov-
erage was normalized by dividing corresponding scaling factor,
respectively.

Definition of groups

We pre-defined several groups combining the coverage patterns
with geographical significance (Table 1). To capture the distinct
variation in terms of coverage profiles among contigs, we chose
median of the normalized coverage as a global threshold to das-
sify contigs and remowved low coverage contigs (LO). Active layer
(AL} was simple case in our data sets since there was only one
sample representing the active layer while we found that cover-
age distribution in PL were more complicated and needed to be
considered separately: some contigs were only present in spe-
cific zamples, while others appeared in full or in part in all PL
samples. Therefore, we defined three groups for PL samples:
FL_Pifonly present in specific samples), FL_SUB (present in some
of the samples) and PL_ALL(present in all samples). Besides, we
derived contigs that had & strong correlation (0.9) between depth
and coverage from PL samples, namely K1 and KD. Group BO rep-
resented the ubiguitous contigs in Svalbard AL and PL, remain-
ing contigs were assigned to UN (unknosm).

Colrulating KEGG Module abundance of MAGS

We considered each MAG 35 an independent unit and normal-
ized coverage was used to represent KEGS Orthology (K0) abun-
dance. An illustration of our strategy is shown in Fig. 1B. First,
we used Prodigal v2.6.3 (Hyatt et al. 2012) with meta procedure
to predict genes for all MAGs. Predicted protein file was then
uploaded to perform KO ennotation using GhostKOALA (Kane-
hisa, Sato and Morishima B016). Later, we converted the gene-
based KD annotation to & MAG-centric hierarchical structure and
calrulated KEGG module sbundance. KEGG Module (MO) is a col-
lection of KOs, which represents tight functionzl components
with a clearer biological significance comparing with KO identi-
fiers. In each MAG, sbundance of KEGG Modules (MOs) was cal-
culated by summing the average existing KO and then dividing
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Tabie 1. Definition of sample groups. AL: normalized coverage in active layer, PL: normallzed Ccoverage In permaftost layer samples. TH: thresh-
03 (median of normalized coverage). DEFTH (om under surfsce): 110, 122, 135, 170, CORE: Pearson oomelation.

TIoaps Dehnsticn [T

AT P 1 AL A= = TH i AP = = IR

BO Prasanca Both in AL and FL AL = = TH and ALL[FL) = = TH

1] Ahsanca Bath in AL and FL AL = = TH and ALL[FL) = = TH

FLSUE Prasancy in subsat (2 or 3) FL AL < = TH and SUB(FL) = = TH

FLALL Prasancu in all FL AL = = TH and ALL[FL) = = TH

FLF Presancu in unigua FL [FL. ... P4} AL= = TH and UNIQUEFL Fj) = = TH

] Incraasing trand in FL_ALL or FLSLE In (FL_ALL ar FL 5B} and COBR{FL. DEFTH] = = 0.9
o Dacaasing tend in FLALL or FLELE In (FL_ALL ar FL 5UB} and COBR{FL. DEFTH] < = —0.3
N Unlnown groups Othars

by total nomber of KO identifiers in this module. MO abundsnce
in each group was measured by aggregating MO sbundance of all
MAGE presented st each group, respectively. As the demonstra-
tion shown in Fig. 18, M1 consists of 3 K0 (1-X3) and M2 of 4 KO
(¥4-K6). Bin_1 includes tao weighted {normalized coverage) con-
tigs with 5 KO: C1 {wn K1, un K2) and ©2 (we K1, wrK3, wzKE). Based
on the definition of MAG, we suppose that contigs in the same
MAG are shle to share their K0: we further use sverage if there
are multiple hits for identical KO in the same MAG. Therefore,
M1 sbundance in Bin1 is SUM{AVGin K1, wekl), wik2, wkd)
/ 3. Similarly, only K4 in M2 is detected in Bin 1 while M2 con-
sists of 4 K0, thus M2 sbundance in Bin 1 is: SUM{wKEE) £ 4.
Finally, M1 sbundance in this group is simply aggregating all
M1 sbundance of each MAG. A detailed demonstration of per-
forming our coverage-based analysis and source code are avail-
able at https{github. comfyxxue/Coversge- based- funcional-a
nalyisis-in-a-MAG- centric-view.

RESULTS

Unique MAGs become sbundant with depth in
Svalbard permafrost

We reconstructed 56 MAGs from 13 phyla, induding 2 high, 42
medium and 4 low-guality draft in accordance with MIMIG stan-
dards (Bowers et al. 2017). In total, the analyzed MAGS consti-
tuted on aversge 11.3% of the reads obtsined for each sam-
ple (min. 7.1% and max. 13.4%). In this location, we found
several MAGS belonging to Actinobaocteria, Protepbocterio, Boc-
teroidetes, Acdobocteric and Chlorofiexd to be most abundant
(Fig. 7). Additionally, MAGs belonging to Verrucomicrobio, Soc-
chribacteria, Gemmotimonadetes, Firmicutes, Nitrospirae, Thaumar-
chzeota, candidate phylum Dormibacteroeots (AD3) and candidote
phylum Levybacteria were found in lower sbundance. We did not
recover any methanogenic archaes in this location. Detailed
description of MAGE were published previously (Xue et al. 2019).
MacGs showed low similarity to publicly availsble penomes
(Table 51, Supporting Information) supgesting that they repre-
sent novel species. We also compared these MAGS to micTo-
biomes of recent stable isotope probing showing ectivity at
subzero conditions (Tworte et ol 2014; Gadksrd et al 2019).
Svalbard MAGs were distantly related to these nowel popu-
lations and showed 75%-BE¥ similarity on 165 TRMA genes
(Table 52).

Microbial community composition based on changes in MAG
abundance showed distinct differences between AL snd PL
where predominant MAG also changed with depth (Fig 2, Fig.
51, Supporting Information). In the AL, the most sbundant phyla
were Acidobacterio and Protechaderio while PL MAGs were dom-
inated by Actinohocterio, Bacterpidetes, Chioroflexd and Protecbac-
terig. The most dominant MAGS in AL - maxbin? 039 sub (Ad-

dohacterin), metsbat 158 (Proteobacteria), metabat 89 (Verrwoomi-
crobia) - declined to nearly undetectsble levels in the PL. Mem-
bers of Proteobacteria, Verrucomicrobia and Chloroflexd, were ubig-
uitous in PL and had similar sbundances in the upper PL (PL1 and
PLEF) than deep PL samples (PL3 and PL4). We observed a decline
in Acidobacteria and some Adinobaderio MAG abundances with
depth. Previous 165 rRMA based analysis detected a single Acti-
nobacteria family - Intresporangincese - to be strongly dominant
throughout the PL (Moller et al. 301E). However, we could not
detect similar populations in this data set. We further examined
both assembled contigs end un-assembled rew reads by Kaiju
annotation and BEMAP slignment and found that Intresporan-
giaceae constituted a relatively small portion of the contigs in
assembled reads (1.2%) and in general of metagenomes as Tep-
resented by raw reads (total of 3.3% in all metagenomes). More
unique but highly represented MAGs were found in the deep-
est samples, like metabat. 179 (Chlorofiexi) in PL3 and metabat. 151
(Bacteroidetes) in PL4. Likewise Saccharibacteria, candidate phylum
Dormibacterneota (AD3) and candidate phylum Levybacteria had
their highest abundance in deep permafrost

Determining the complexities of the Svalbard
permafrost by coverage-based groups

Many permafrost studies are focused on sample specific com-
parative analysis [Yergeau et al. 3010; Mackelprang et al. 2017;
Mitller et al. 301E), however, sample-based analysis is not sble to
reflect the complexity of microbizl spatial arrangement directly.
Muoreover, we observed that there were some regular pattems
in coverage distribution scross multiple samples. To utilize to
the maximum the information and enable a deeper understand-
ing of permafrost microbial universe at & high-resolution, we
developed & comparative strategy to investigate the variance of
functional potential combing the genomic (coverage) and func-
tonal (KEGG) information in a MAG-centric view. Only contigs
from MAGS were included in this analysis. 20,573 contigs origi-
nating from refined MAGS were sssigned to classification groups
(Table 1). PL group represented the largest portion of the data
by covering 607 of the contigs (Fig. 3). About 10% of the contigs
were shared between both AL and PL and ubiquitous at all sam-
ples (BO) while 13% of the contigs were only found in AL After
filtering 14% of low sbundance contigs (LO), only 3% could not
be assigned to any of the above groups (UM). Within PL 26% of
the contigs fell under subset of PL (FL_SUB) category, 19% of the
contigs was found in a1l 4 PL (PL_ALL) and represent the key func-
tions in Svalbard permafrost. Only & small portion of the contigs
were specific to each depth (a quarter of contigs were exclusively
observed in only one sample (PL_P1, PLPZ, PL_P3, PL_P4) cover-
ing 2%—5% of the total contigs. We identified only & small frac-
tion of contigs in PL_ALL and PL_SUB that hed a strong correla-
tion with depth profile: sbout 5% of contigs decreased (KD) and
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Figure 2. Tha elative abundance of MACs shifts batwean samples. Pormnt MAC sbundanos in five soil layers, one sctive kyar (AL, biue color) and four parmedfrost layars
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likalibood phylogenstic tree was constructod by using 49 highly coosarved CDG families from publidy availzble genomes.

1% function represented in contige incressed (KI) with depth.
Group-based abundance distribution showed & clear distinect dif-
ference of dominant phylum among groups (Fig. 51, Supporting
Information): Acidobocteria and Proteohacteria in AL; Proteobacte-
riz in BO; Actinobacteria, Bacteroidetes, Chloraftexd and Protechacteria
inPL

Eey metabolic functions governing carbon and nutrient
cycles in Svalbard permafrost

About 451 out of B8 MO in the datsbase were detected in Sval-
bard MaAGs, several pivotal MO were selected and assigned into
corresponding metabolic pathrrays manuslly, finally 8 pathwrays
with 102 MO were retzined (Table 53). Here we report MO of

different pathways showed distinct abundance among groups
(Fig. 4, Fig. 52).

Carbon cyding and energy production

‘Wi examined the trends in carbon cycle and energy produc-
tion genes among different groups by focusing on hydrolysis of
polymers, carbohydrate active enzymes (CAZY), sugar utiliza-
tion, fatty acid ceddation, cxidative phosphorylation and energy
production categories. One of the most sbundant MO was F-
type ATPase (F-ATPase), which was present in both BO and
PL_ALL This process is important because in Bacteria most ATP
is produced by F-ATPase in the cytoplasmic membrane under
serobic condidons (otherwise by glycolysis and fermentation
under anaerobic conditions) (Kthlbrandt 2019). MAGS belonging
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CONTIG DISTRIBUTION ACROSS GROUPS
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PL_3u8
26%

Figurna 2. Contig distibution across groups. In totzl, 20573 contigs from all MACS wore sssigned to each group based co pre-defined oritaria (Tebls 1). KT (I%) and ED

(5% ware not presantad in the pio dhart.

to group BO and PLALL slso incduded a large number of sero-
bic respiratory chain complex modules, such as MADH: quinone
ooddoreductase (MOQR). Most living systems prefer to use con-
served energy currencies, including proton motive force (FME),
MADH and ATE. MQR connects these energy currencies by using
NADH produced during nuirient breakdown to generate a PMF,
which is subsequently used for ATP symthesis (Barquera 2014).
Collectively these trends show strong representstion of sero-
bic respiratory processes in Svalbard permafrost, however, we
also observed & decreasing trend in their abundance with depth
(KD=KI, Fig. 52, Supporting Information). We further inwvest-
gated dehydrogenases involved in fermentation, however, these
were neither in high abundance nor showed strong grouping
trends hence confirming the aerobic respiretion as the domi-
nant carbon cycling pathway in this location (Fig- 53, Supporting
Information).

Polymer hydrolysis and CAZY functions were also found in
abundance especially in core in PL groups (PL_ALL and PL_SUE).
We found that galactose could be utilized to glocose (via Lelodr)
or to pyruvate (via De Ley) as both pathways were well rep-
resented in permafrost MAGs. Though & known bottleneck in
Leloir is galactose transportation from outside of the cell, we
also observed an over-representation of ABC ransporters in PL
group (Pathway: Transporters), which demonstrated the genetic
potential of permafrost microbiomes to degrade galactosein car-
bohydrate metsbolis. MAGS also showed potential to degrade
muore complex carbon sources all the way to COq (Figs 54 and
55, Supporting Information). For example, the most abundant
MAG in this set Chloroflexi MAG metsbat 179 (Genus: UEAS189)
had xylulose kinzse and xylose transporters (Tsble 54, Sup-
porting Information), but lacked genes encoding xylose iso-
merase, the first enzyme of the isomemse pathway of xylose
metabolism. Therefore, it was likely that only xylulose could be
utilized. MAG metabat 179 also had three copies of GH3 fam-
ily beta-hexosaminidase (chitinolytic) and related M-acetyl-D-
glucosamine (GleMAC) transporters. These enzymes can cleave
monomers of GleMAc from the non-redudng end of chitin

olipomers. Additionally, this MAG contained a CO dehydroge-
nase and could use organic ecids (L-Lactate dehydrogenase and
Aconitate hydratese) hence showing the potentizl to utilize a
range of polymeric carbon to CO;. Trehalose bicsynthesis, a
kniowm carbon source and oryoprotectant, was also highly repre-
sented in PL (FL_ALL and PL_SUB). Pyruvate oxidation genes were
found in both BO and PL indicating its importance for both AL
and PL. We observed a decreasing trend (KD, Fig- 52, Supporting
Information) in almost all polymer hydrolysis and CAZY func-
tions except trehalose bicsynthesis and pyruvete oxidation.

Nitrogen, methane and sulfur metabolisms

Wwithin Svalbard MAGs nitrogen cycle was restricted to denitri-
fication and dissimilatory nitrate reduction to ammonia. Both
pathways were sbundant in both BO and PL yet in compari-
son with other MOs, nitrogen cycling genes constituted a small
portion of the genetic potential. Even so, some MAGE, like Bac-
teroidetes MAG metabat 151, showed a potentizl of full deni-
trification (Fig. 56, Supporting Information). We did not detect
MO and genes involved in nitrification. At least one copy of glu-
tamine synthetase (EC 6.3.1.7), glutamate synthase (EC 1.4.1.13)
and ammonium transporters (Amt) were found in most sbun-
dant MAGE and were also well represented in both AL, BO and
PL groups. All together, these results show the potential to use
orgamic nitrogen and available ammonia in the environment
through the depth profile in Swalbard soils. In this sat only Firmi-
cutes MAG maxbin?.064_sub [Genus: Desulfisporosimes) was found
to be capable of nitrogen fixation, whereas another key biogeo-
chemical process methane metabolism was not found in Swval-
bard MAGS.

Genes for dissimilatory sulfite reduction, the sulfur oxida-
ton (S0X) gene complexes mediating thiosulfate oxidation and
assimilatory sulfite reductase MOs were present in Svalbard
MAGE. These MOs were in low abundance, but internal com-
parison among the groups revealed distinct trends. For example,
assimilatory sulfate reduction was abundant in all groups while
dissimilatory sulfate reduction had its strongest trend in PL.
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Hiowever, we also detected co-ocourrence of these pathways. For
example, one of the most sbundant MAGS, Proteobacteria MAG
maxbin?.012 (Genus: Gallionefls) contained genes immolved both
in assimilatory and dissimilatory sulfate reduction (Figs 57 and
58, Supporting Information). Additionally, thiosulfate cxidation
by S0X complex was found mainly dominant in PLALL This
complex has been showm to produce either sulfate (complete
pathway) or elemental sulfur (incomplete pathway) in diverse
organisms (Houghton et al. 2016). We detected 3 decreasing
trend (KD, Fig. 52, Supporting Information) in assimilatory sul-
fate reduction with increasing depth but not with dissimilatory
sulfite reduction. These findings underlined the importance of
ability to metabolize sulfur in Svalbard MAG lifecyde.

Stress responses and antibiotic resistance

Paermafrost micreorganisms have reportedly been showm to con-
tain a suite of systems to deal with environmental stressors,
such as cold-shodk proteins and osmotic stress proteins, to
counter the extreme physical and chemicsl stresses, including
freezing temperastures, oligotrophic conditions and high salinity
(Madkelprang et al. 2016a). We observed enrichment of KdpDE:
potassinm transport system in PL (PL_ALL and PL_SUB), which
is required for maintaining the intracellular pH by buffering
the negative charge of amino acids and used in many bacte-
riz 35 & compatible solute to counteract osmotic stress (Gund-
lach, Commichau and Stulke 2018). Additionally, we found sev-
eral two component regulatory transport systems involved in
cell processes and cycle control, redox response and chemo-
taxis in high sbundance in PL (PL_ALL and FL SUB). Another
major stress response MO was phosphate starvation response
system (PhoR—FhoB), which was highly sbundant in PL (PL_ALL
and PL_SUR) groups, especially in FL4. Concomitantly, phosphate
transport systems were among highly abundant transporters
shared between AL and PL groups. These findings indicate that
regulation intracellular pH and phosphorus availability are piv-
otal for Svalbard MAGs.

Besides MO managing environmental stressors, seweral
antibiotic resistance genes acting against aminoglycosides and
fluoroguinolones were highly sbundant in PL. The aminogly-
cosides are natural antbiotics produced by soil bacteria where
broad-spectrum bactericidal activity is achieved by interference
with protein synthesis, induding cormmuption of the genetic code
viz bind to rRMA and proteins within the 305 subunit of the
ribosome (Cox et al. 3015). Fluorogquinolones are another class
of broad-spectrum antibiotics that target the type II topoiso-
merases (DMA gyrase and topoisomerase IV) imeolved in the
maintenance of DMA topology (Rutgersson et al. 3014). In a previ-
ous work, gnr has been found as a3 novel mechanism of natural
fluoroguinolones resistance in bacteria (Chen et al. 2013).

DISCUSSION

Complexity and unmatched diversity in soil metagenomes pro-
vide many challenges to data analysis; espedzlly to those
seeking to recover high-guality MAGs. DASTool (Sieber et ol
2018}, & recently published bin refinement tool, aims to recover
muore near-complete genomes by aggregating and integrating
bins generated from established binning algorithms (Kang et al.
2015; W, Simmons and Singer 3016). Applications of DASTool
(Danczak et al. 2019 Imperato et al. 2019 Seitz et al. 2019) showed
significantly improved MAG refinement and recovery. Yet when
reconstructing permafmost MAGs these efforts might still not be
sufficient. For example, in this study we observed that 21 out of
&4 metapenome bins remained highly contaminated (= = 100
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even after using DASTool. We developed a soript to recover bins
that would be otherwise discarded (Fig 14). While several bin
refinement strategies are deployed by IMGM (Chen et al. 3019)
and Anvi'o (Eren et al. 3015) our workflow provides & scalable
and flexible slternative where thousands of bins could be ana-
lyzed systematically. We picked Kaiju &s taxonomic classifier
due to its extensibility as it provides fast and sensitive anno-
tations of large contig sets. With our script, the user can choose
different taxonomic reference databases - such as RefSeq, MCBI
nr database or local - depending on their research goals. More
importantly, contaminated contigs could be detected at all tax-
onomic levels and bins could be refined up to species level.
Our script traces the hierarchical relationships using & user
defined percentage threshold and subset contaminated bins for
all ranks from phylum to species level. Removing possible con-
taminated contige from 3 MAG may reduce completensss in
some cases due to the inacouracy in the @Exonomic assign-
ments. With our improved workflow for MAG refinement, we
successiully reported 56 out of 64 MAGS with low contamination
[ = 20AE).

Here, we also developed & new comparative strategy for
investigating functionzl potentizl based on cowverage with a
MAG-centric view (Fig 1E). Generally, metagenomic functional
analysis was achieved by mapping short reads or assembled
contigs with predicted genes against reference databases fol-
lowred by parsing the result in gene or pathwray level approaches
(Madcelprang et al. 2017; Moller et al. 2018). Gene-by-gene
approaches utlizes most dominant gene products while over-
looking the fact that biological functions rely on multiple genes
while only a subset of them may be significantly abundant. For
another, pathway-level analysis can miss nuanced differences
in functional variance a5 & key pathway could contain many
shared sub-pathways or genes. Motivated by this, we deployed a
comparative analysis strategy that utilizes KEGG Module, a col-
lection of manually defined functional units each encompass-
ing a set of genes - represented by KO identifiers (Kanehisa
et al. 2012). Comparing with pathway or gene enriched analy-
sis, module-based analysis directly links to specific metabolic
capadty (Kanehisa et al. 3014). Coverage is another important
metagenomic characteristic (Albertsen et al. 2013; Sharon et al.
2013 Quince et al. 2017) that is currently not used beyond
binning assembled contigs into MAGS (Alneberg et ol 2014
Imelfort et al. 2014; Kang et al. 2015; Wu, Simmons and Singer
2016). Our approach takes into sccount coverage and patterns
of presence/absence and changes in coversge betwesen samples
through defining profiles or groups (Table 1) and analyzing KEGG
Module-based functionsl information across these groups. In
Syalbard permafrost this approached allowed identification of
functions linked with depth in addition to aiding capture of
new trends distinguishing AL and PL (Fig. 4). Although we have
forused on permafrost metagenomics in this work, strategies
similar to those applied here are appliceble to other metage-
nomic studies, especially for well-characterized environments
such as human gut with more acourate taxonomic classifics-
tion and available MAGs as well as additional information on
samples.

Swvalbard soil and PLs were previously described via 165 rRMA
gene amplicon sequencing up to a3 depth of 2 m where micro-
bizal communities in PL were dominated by the Actinobacteria
(family Intrasporengiseeas). Intrasporangioces: 165 rEMNA gene was
found in an average sbundance of 70% in PL; however, we only
found this group to account for 3.3% of the all aw reads and
1.2% of assembled contigs. This could be caused by differences
in biases between the two sequencing methodologies. Currently
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sequenced Intresporangioceae penomes (G IMGM) contain 1-
5 copies of 165 rAMA gene which could cause an oversstima-
tion when anslyzed viz amplicon sequencing. Another rea-
son for this mismatch can originate from under-sampling of
Intrasporangiacens populations during MetEgenome SeqUENCINE.
Intrasporangiacens genomes are really high-GC content popula-
Hons (68%-74% of GC range 63 genomes in G IMGM), hence
such high-GC rich fragments can be under-sampled during
metagenomic library preparation, fail to pass quality checks dur-
ing base calling and hawe difficulties during assembly (Bowers
et al. B15).

The grouping approach proposed here enabled us to deter-
mine key functions and trends in different cell and biechemical
cycles propegated by each MAG through a permafrost depth pro-
file. The most strikingly sbundant microbial metabolism in this
set of MAGS was asrobic. Vertical soil profiles are often depicted
a5 aerobic zones transitoning neatly into anserobic zones where
terminal electron accepting processes and fermentation govern
carbon decomposition (Mackelprang et al. 2016b). Yet soil sys-
tems, especially permafrost, are shown to be more complex. In
permafrost aerchic microsites can exist within ice where low-to-
freazing temperatures enable coygen transfer into water (fans-
son and Tag 2014). Via use of ¥C-acetate and M C-glucese micro-
bial communities in permafrost from Canedian high Arctic were
shown to be active at near ambient subzero temperatures (—5°C
to —15°C) (Steven et al. 2008). More recently activity of both
tundra and permafrost microbes st subzero temperatures were
shown via stable isotope probing (Tuorto et ol 2014; Gadkari
et al. 2019). Carbon degradation pathways identified in cold soils
and permafrost show sbundance and activity of verious serobic
and anaerobic pathways at different locations. Genes imvolved
in starch, lignocellulose, chitin, cellulose and trehalose degra-
dation in both the sctive layer and permafrost (Yergeauo et al.
2010; Mackelprang et al. 2011; Gadkari et al. 2019) and anaero-
bic metabolism was identified &5 3 common microbizl trait in
permafrost metagenomes (Lipson et al. 2013; Hultman et al. 3015;
Woodoroft et al. 2018). Our current knowledge of intact and thaw-
ing permafrost points to a large variance in metabolic poten-
tal and its uhlization among different peographical locations
[Mackelprang et al. 2016b). In Svalbard permafrost, we found ser-
obic processes as the key metabolism (Fig. 4) of recovered MAGS
which showed previously unreported metsbolic potential in per-
mafrost. Besides genes involved 50M degradation (Fig. 53, Sup-
porting Information), we found that in permafrost MAGS for ser-
obic processes dominating cellular metsbolism. These results
indicate that & substantial investment by permafrost MAGE in
energy production is required to maintain reactions in order to
survive at low temperatures. These results are also in conour-
rence with previous activity messurements from the same loca-
tion where through & series of incubations Maller et al. (Moller
et al. 2018) showed upon permafrost thaw up to four times higher
COy respiration rate were observed under asrobic then anasno-
bic conditions. Additionally, permafrost samples emitted similar
guantities of COy to active layer soils suggesting that Svalbard
permafrost microbiome can stimulate its serobic metabolism
upon thaw CHy is an important component of soil GHG fluxes in
the Arctic which is shown to be released upon permafrost thew
as & result of significant changes in microbial populations and
their interactions (Singleton et al. 2018; Woodcroft et al. 2018). In
this study; howewver, we did not find any methanogenic MAGS
or methane cxidation potential genes and anaerobic incubation
experiments yielded no CHy production (Miller et al. 201E).

Arctic soils and permafrost are nitrogen limited where
importance of nitrogen fixation for permafrost microbiome

was highlighted by earlier metagenomics efforts (Yergeau et al.
301; Mackelprang et al. 2011). It was hypothesized that the
frozen conditions in permafrost sequester biologically swail-
shle nitrogen, making nitrogen fixation necessary to contain
metabolic activity. Hultman et al. (Hultman et al. 2015) showed
that the permafrost microbiome was poised to assimilate nitno-
gen where genes encoding both glutamine- and glutamate syn-
thieses were transcribed and translated in permafrost. These
pan-arctic observations were also paralleled in Svalbard active
layer soils where Schostag et al (Schostag et al. 2015) detected
high sbundance of nitrogen-fixing bacteria via 165 rEMA gene
sequencing. Svalbard permafrost MAGs showed similar trends
to these previous findings where throughout the depth profile
most abundant MAGS had glutamine synthetase, glutamate syn-
thiese and ammonium Tensporters to assimilate nitrogen. Ear-
lier research showed that 450-550 gL ammonia could be found
in Svalbard permafrost layers (Miller et l. 201E). In contrast,
nitrogen fixation potential was limited, which collectively sug-
gest nitrogen limitation as &n important constraint to cellular
activity in intact and thewed permafrost.

Sulfur metabolism hawve been shown to be widely present in
permafrost microbes (Hansen et gl. 2007; Vatsuring et ol 2008;
Lipson et al. 2013 Chaohan et ol 2014). While sulfite reduc-
tion &nd sulfur oxidation were found in permafrost at different
depths (Jansson and Tag 2014; Hultman et al. 2015), sulfate reduc-
ton rates were only high in bog samples while almost negligible
in intact permafrost (Hultman et al. 2015). Current knowledge
from metagenome data suggest that redox conditions become
favorable for sulfate reduction after permafrost thaw. Svalbard
MAGE provide 8 new perspective to sulfur metabolism in per-
mafrost where sbundant MAGs to contained genes imvolved
both in assimilatory and dissimilatory sulfate reduction (Figs
57 and 58, Supporting Information). Genomic evidence suggests
that Gallionella (one of the main sulfur cycle MAGs: maxbin? 012)
are adapted to extremely low oxygen levels, it is possible that
they are capable of growth at dissolved O concentrations below
the oxygen detection limits to occupy a narmow niche between
0Oz and redox gradients (Emerson et al. 2013; Berg et al. 2019). We
hypothesize that Svalbard MAGs retain flexdbility in their sulfur
metabolism in order to fully utilize limited resources propagated
by ice and formation or microsites.

Genes involved in stress responses, resistance and resilience
are shown to be crucial part of not only permafrost microor-
ganisms but also psychrophiles in genersl (Ayals-Del-Ro et al.
2000; Mylkytezuk et al. 2013). Microbial survival in permafrost is
challenging: proteins are less flesdble and are prone to denatura-
ton (Mykytozuk et al. 2013), cell membranes often susceptible to
lose their fluidity (Ayala-Del-Rio et al. 2010), water retention can
be challenging and nutrient transport can be constrained. As &
result, efficient anion and cation trensporters is beneficial for
cell survival. We observed an enrichment of potassium trans-
port regulatory system in sbundant permafrost MAGS (Fig. 4).
The presence of potassium transporter protein in permafrost
was glso confirmed by & previous metaprotecmics study (Hult-
man et al. 2015). As these transporters serve an important role in
maintaining the intracellular pH, counteract osmotic stress and
also required as cofactors for many enzymes. Finally, potassium
is essential for the actvity of many enzymes and protein com-
plexes including the ribosome &5 well as for the regulation of
pene expression. Their enrichment in MAGE shows high capa-
bility in regulating cellular functions and potential activity in
frozen soils. Hultman et al. (Hultman et al. 2015) found high num-
bers of cold-shock proteins in permafrost. Though present in
Swalbard MAGs cold-shock proteins were not highly sbundant
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in MAGS; instead cell fate and cycde control, redox response and
chemotadds regulatory systems were of high sbundance. Trans-
membrane receptors are ubiguitously used by prokaryotes in
environmental sensing (Bi, Jin and Sourjik 201E). As a result, it
can be expected that cellular functions controlling these sys-
tems are retained and maybe enriched in permafrost. Surpris-
ingly we did not identify spore forming potentisl &s a key func-
tional potential of Svalbard MAGE. This in line with the previ-
ous assessment that spores are not the best survival strategy for
freezing conditions (Mondav et al. 2014). Besides environmen-
tal stressors, several antibiotic resistance genes acting ageinst
aminoglycosides and fluoroguinolones were among key func-
tions shared among Svalbard permafrost MAGS. Antibiotic resis-
tant bacteriz were found both among the Arctic and Antarc-
tic isolates (Mindlin and Petrova 2017) where sbout one third
of the isolated permafrost strains were resistant to more than
one antibiotic. Aminoghycosides were observed in ancient per-
mafrost samples &s well (Deosta et al. 2011; Kashuba et al. 2017).
Resistance against fluoroguinolones, which directly inhibit DMA
synthesis, is a widespread microbial survival strategy (Rutgers-
son et al. 3014). Antibiotic resistance is an inherent property of
permafost microbiome however we are yet to understand the
importance of these mechanisms on permafrost microbial diver-
sity and biochemical cydes beyond their apparent role in sur-
vival

Swalbard MAGs carmy signatures of metabolic pathways that
provide tight control of growth and resources. Almost all Liv-
ing cells sophisticatedly regulate their phosphate uptake that
enzbles survival under phosphate-limiting conditions (Marzen
and Shimizu 3011). In particular, regulation of phosphate may
play an important role when nitrogen is also limiting. We
found that metabolism involved in recycling and acquisition of
AMMOnium Was concomitant with strong representation phos-
phate regulation (ie starvation response and related trans-
porters). Especially in phosphate depleted soils effident phos-
phorus transporters are pivotal, as they allow microorganisms
to compete for bioavailable phosphorus. Here, we hypothesize
that microbial growth, survival and diverse metsbolism includ-
ing energy and central carbon cycling in Svalbard permafrost
is fadlitated by coupled regulation of ammonium, sulfur and
phosphate metabolism. Even though we are not shle to te this
hypothesis to availability of nutrients or gene expression that
regulates these metsbolisms, it is tempting to speculate that
under freezing conditions Svalbard microbial populations regu-
late extra- end intra-cellular nutrient stoichiometry and avail-
ability closely to survive and utilize a wide range of carbon
TESOUICES.

CONCLUSIONS

Predicting metsbolic functionality and responses to changing
environmental conditions from metagenomic data are among
the greatest challenges in microbial ecology today (Myrold,
Zeglin and Jansson 2014). 5tll metagenomics can be used to
generate novel hypotheses about microbial metsbolism and
lifestyle. Permafrost in Svalbard is predicted to be more sensi-
tive to increases in soil temperature and active layer thickness
than the permafrost of extensive lowlands in Siberia, north-
emn Canada and Alaska In addition, Svalbard is an archipelago
located near the northern most branches of the North Atlantic
Current &nd the southern limit of the polar icepack. Even small
varations in these important phenomena will induce rapid cli-
matic variations with potentisl effects on the local Svalbard
climate and permafrost. In this study, we provide an in-depth
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analysis of key permafrost microbial functions in Svalbard via a
MAG-centric analysis. Svalbard MAGs were mostly aerobic and
showed enrichment in functions regulating ammonium, salfur
and phosphate metabolism. Among different permafrost depths
we repeatedly observed these metabolic pathways. Their perse-
verance point to their potential importance to life in permafrost.
Our analysis also identified effective resource acguisition from
the environment in potentially competitive and limited resournce
conditions as a key permafrost microbiome property. Collec-
tively our results showed that Swvalbard MAGE contain previously
unreported metabolic functions in a permafrost environment.

DATA AND CODE AVAILABILITY

The shotgun sequence data and recovered MAGs were deposited
in the European Mucleotide Archive (EMA) datsbase under the
study number FRIEE30872.

An instruction of refining MAGs and source code is svailable
at httpsy//github. comyyxxue/Recovery-and- refinement- of - MAG
5-for- permafrost- metagenome.

A demonstration of comparative functional analysis by cov-
erage in Svalbard metagenome and related source code are avail-
able &t httpsy/github. comfypomefCoverage- based- functonal-a
nalyisis-in-a- MAG- centric- view.

SUPPLEMENTARY DATA
Supplementary data are available at FEMSEC online.
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Figure 51: The relative abundance of MAGs represented among main groups. Three dominant
sample groups are presented: AL, BO, and PL.
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Figure S2: Heatmap shows the abundance of selected KEGG MO between Kl (Increasing trend
in PL_ALL and PL_SUB) and KD {Decreasing frend in PL_ALL and PL_SUB). Kl and KD represent
contigs with strong correlations (Kl:>= 0.9, KD<= -0.9) between depth {cm: 110, 122, 135, 170) and
normalized coverage in PL samples.
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Figure S3: Alcohol Dehydrogenase at Svalbard MAGs among sample groups. The bar chart
shows abundance distribution of KEGG Orthology (KO) related with Alcohol Dehydrogenase
metabolism among groups in a MAG-centric view.
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Figure S4: Cellulotic Enzymes at Svalbard MAGs among sample groups. The bar chart shows
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Figure S5: CO Dehydrogenase at Svalbard MAGs among sample groups. The bar chart shows
abundance distribution of KEGG Orthology (KO) related with CO Dehydrogenase metabolism among
groups in a MAG-centric view.
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distribution of KEGG Orthology (KO) related with Mitrogen cycle metabolism among groups in a MAG-

centric view.

Figure S6: Nitrogen cycle at Svalbard MAGs among groups. The bar chart shows abundance
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Figure S7: Dissimilatory sulfate reduction at Svalbard MAGs among groups. The bar chart shows
Wasimiaiary sulfele reductian, suiale == H25

abundance distribution of KEGG Orthology (KO) related with Dissimilatory sulfate reduction

metabolism among groups in a MAG-centric view.

EEEifEitq
g AEEEE
. LA R
. LONE B e i
O L RO
- - GG TR M_ - =T L T
- £ | R
- LONE R0 ZunEEw
< LEL e
-
5 1 Ve e
- s L TRGRIAL
M_ SHEL ORI
- GE A0 U GxEw
.
. | Y e
LETRGERIL
oA § orTomRw
| £51 e BuL
| -9 eoLIRgERw
- JOET L | TR B s wae
PRy ]
ZETL I
- RN ] M_ pELPAEEw o L e e
¢ B - TERw
k ELLIEGEBL
S9E T E0L BUIGEEW J 05 GE0FuIERL
— SOrET SR UKW
B B R0 R
O A0 BRI prkiciey
L GO BUNGREW
] = -] -] ] 2 & p
Ll

Bin_Il



Figure S8: Assimilatory sulfate reduction at Svalbard MAGs among groups. The bar chart shows
abundance distribution of KEGG Orthology (KO) related with Assimilatory sulfate reduction
metabolism among groups in a MAG-centric view.
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Table S2: 185 rRNA comparative analysis of Svalbard MAGs with recent stable isotope

probing studies.
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Table S3: Selected KEGG Modules (MO) and their comesponding pathways.

[ O] Wiaduln_Arns Pathrway

PO Cirate ccie [TCA cpcle, Kreba cycle) Inengy Prod & Chidative phoaphonyd
s Cytnchrome hel compine Inengy & Chidative phosphond
MmIsE Cytnchrome bel comple ressirstony snit Inengy Production & Cuidative phoaphonyistins
rmIs Cytnchrome hd shiguinol caidee Tnergy Proartion & Cuidative phoaphongistins
P15 Tytnchrome ¢ cuikdase Energy Peodection & Cuidative phosphondatins
PelI 1 5 Tytnchrome ¢ cakiane, sohl-type Energy Peodection & Cuidative phosphondatins
P55 Tytnchrome ¢ cukisse, prokayoies Energy Peodection & Cuidative phosphondatins
FamIsT F-type #TPase, prokaryobes a=d chioropl sby Energy Peodection & Cuidative phosphondatins
L Incomplete reductive clirste cytle, scetp-Cod, = cecgluiarate Energy Prosdertion & Quidative phoaphondatios
P &4 HADHE qrinens audorefistass, prosrysing Energy Prostertion B Quidative phosphondations
FAOD3TY Raductie apetyl-Cof patraay |[Wood-l ungdahl peshassry] Enengy Prosdection & Quidative phosphondation
P17 Raducthe clirate oyt (&mos-Buchanan oy el Enengy Prosdection & Quidative phosphondation
PO 165 Raducthe pemiose phosphabe ople [Cakin cpce) Energy Prostection & Quidative phosphondation
FAMO552 D-paiacionate degradation, De Ley-Doudorol! pativway, D-galactoraie == ghaesabe- 39 Hytrakyis of Folymers and CATY

PAOOEAL [-Eabyrturcrarie degradation |bactersa| Hytrakyis of Folymers and CATY

PG L D-Glucponate degradation Hytrakyis of Folymers and CATY

FAODED ‘Balaciose degradation, Lekodr patheay, galactase o> dlpha-D-glicmae- 1P Hytrokysis of Folymers and CATY

P4 ‘Blwurorate pathway {urorane pathaay) Hytrokysis of Folymers and CATY

FDO0GS Lacisyiceramide bicwmitess Hyrakysis of Folymers and CATY

P54 Hud eotic: sugar biosymihesis, galaciose = UDP-gakiniose Hyrakysis of Folymers and CATY

P 523 Hud eotice sugar biosymihasis, goose == UDP-ghaose Hyrakysis of Folymers and CATY

PO 307 Fumuvate ooddathon, s = aoetd-Cod Hwrokysis of Folymers and CATY

FADOEZI Sl phos phondative: Entrer Dosdono?] gethesy, gluconat: =« glycerte3F Hyrakysis of Folyvvers and CATY

FADEES Trebaloe bosmthess, Dgloge LF = rehalese Hyrakysis of Folyvvers and CATY

MDS3E Etainvil Aty FITIE RedUTion, NFaGE = BT Hitrepen Cycle

PDSTS D rification, mMIrME = HEOgEn Hitregen Cycle

D53 [ ey marate rediction, nirale = ammonia Hitregen Cycle

FDOELS Hitrate adsimilaton Mateegen Cyohe

P75 Himoges Toatien, MITGges = smimnenis hirregen Oyche

el O30S Sedumiivni TSl ingtkie Dicsyiihesis, IMF == S0P ATP Pk Seid Maotabsbam

P TG D pulyrvvat vk ) Cowm s, Dectaiiia Pk Seid Maotabsbam

P DOES Auaning Filsovechotics Begysthish WP = GOPGTP Roschaie Acid Metabebam

el D0 ngsise monsphes phate basvwihess, PRPP + glulamise == FdP Roschaie Acid Metabebam

Pl DTS FRPP Bergthesh, fitoe SF =x PARF Roschaie Acid Metabebam

(M FLFin chi radati s, Mastiing = uia Pasthaic A Wtabelism

PSS Pyrimiding dig redabion, ureci| == Beta-alanine, thymise amirehobutaats Reschic Acid Matabolam

PADOES Pyrimiding ducrpik I da bi h COPSCTP i 000 T P, ST TR Reschic Acid Matabolam

PNROED Pyrimid b du bi h Lo =i LIDP TP CORCTR Reschic Acid Metabolam

FiNI 183 EMA polyrie i, bacteria Reschic Acid Metabolam
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Siress Rasporas & Resistance
Siress Resporse & Resisiance
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Siress Besporae & Resisiance
Siress Rasporas & Resistance
Stress Resparce & Resistance
Srrass Rusparse & Risiilanee
Stress Bespormn & Resistance
Siress Rasporme & Reyiviance
Siress Resporse & Resisiance
Stress Resparce & Resisiance
Strmas Bespomie & Resivtance
Stress Bespormn & Resistance
Siress Rasporas & Resistance
Siress Resporse & Resisiance
Srrass Rusparse & Risiilanee
Strmas Respomie & Resivtance
Siress Besporae & Resisiance
Siress Rasporas & Resistance
Stress Resparce & Resistance
Srrass Rusparse & Risiilanee
Stress Bespomn & Resiviance
Siress Rasporme & Reyiviance
Sugar Ut lization and Faaty Acd Cwidation
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Phesprobpid tramport system

Putathes ABC IFanspen Systam

Pirathe muitiple SSgar ransport system

Puiatier polar pming acid Eraraport system

Putathes simpla SUGa ITanspan St

Pusathes spermidine putrescine transmo seiem

Sugar Utiliation and Fatly Sod Oxidation
Sugar Utiltration and Fatty Aod Ouidation
Sugar Ut lration and Fatty Aod Owidation
Sugar Ut lization and Faaty Acd Cwidation
Sugad Ut lsaion and Fany Aod Ceidation
Sugar Utiliation and Fatly Sod Oxidation
Sulfur compoundy: metabolam
Sulfyr compounds metabolam
Sulfiur com pausds. metabalsm
Sulfier com peunk. mitabelism
Traraporters
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Trarsporers
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Traraporten
Traraporters
Trarsporhers
Trarsporers

Tramgorters

Trarsgorers

Traregorters

Tramgorters

Trarsgorers

Tramporters

Tramgan

Tramgoers

Tramporters

Tramgoan

Trargoters

Tramporters

TrarGgorers

Tramgoters

Tramgortarn

TrarGgorers

Traregorters



Table S4: Key SOM degradation genes in Chloroflexi MAG metabat. 179.

Faatura i

Type

Funstion

Lemjgth _ Cantig Mame

Chiaradliod PAEG metibat. 179 RAST.COS 700

Chiaradied PAAG metibat. 179 RAST.COS 19RD
Chieradliod PAG metabkan. 179, RAST,COS 1981
Chierodied PRS0 metabat. 170 RAST COS 196
Chiorofles PAAL metabat. 170 RAST, COL 1206
Chiorcflma PAAG metabat. 170, RAST. COL 1576
Chiorcdima PAAG metabad. 179, RAST. COL TR2

Chioroflma PAAG metabat. 179 RAST.COL 1253
Chioroflms_Pdds_metabat. 179, HAST COS 1255
Chigroflms P metabat. 179, RAST.COS 1861
Chigroflems_Pé_metabat. 179, RAST.COS 1862
Chigrofled_PéAG_metaban. 179, RAST.COS 1631
Chiaroflmd_PeAG_metaban. 179, AAST.COS 1245
Chigroflmd_PeAE_metaban. 179, RAST.COS 1191

pne
gEne
gEnE

Wyhilesa kinase [EC 1.7.1.17)

D-wylosetraragan ATP-hindicg protein DG

Ny ki ABC Lanspoted, Sanm e proteis Xy H

Kykssi ABE Lranspan =l yhane-tanchng geatian gylf
Beta-hesnsaminidase (EC 3,2,1 .52}
Beta-hesnsaminidase (€ 1,2,1.52)
Beta-hesnsaminidase (€ 1,2,1.52)

H-feetyl-Dogharnusmine AIE Sramapart sysbem, permeane profein 2
K-hcetyl-Drgharnsamine ABE Sramaport system, permasse protein 1
K-icetylC-ghrnsamine AL Sramaport sysbem, permesse protein 2
K-icetylC-ghansamine AL Sramaport sysbem, permesse protein 1

carbon monaxde defwydrogerase £ probein
I-baciate datydroperase (EC 1.1.2.30
Higmritate hydrotase [EC8.2.0.3)

1,449 k127_T13037
&16 k127_2E12503
1,320 k137 _2E12503
1,010 k137 _2E12503
1,242 k137_1303RES
1,590 k137 _1T61E4
1842 k137 _85an51
1087 k137 _10547T2
S0 E127_10547 T
539 k127_23702 8
F45 k127_23702
1401 K127 _2337R53
1098 K127_1054772
55 k127_1054772
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Abstract

Motivation: Technological advances in meta-transcriptomics have enabled a deeper understanding of the structure
and function of microbial communities. Total RMA' meta-transcriptomics, sequencing of total reverse transcribed
RMA, prowides 8 unique opportunity to investigate both the structure and function of active microbial communities
from all three domains of life simultanecusly. A major step of this approach is the reconstruction of full-length taxo-
nomic marker genes such as the small subunit ribosomal RMNA. Howewver, current tools for this purpose are mainky
targeted towards analysis of amplicon and metagenomic data and thus lack the ability to handle the massive and
complex datasets typically resulting from total RMNA experiments.

Results: In this work, we introduce MetaRib, 8 new tool for reconstructing ribosomal gene sequences from total
RMA meta-transcriptomic data. MetaRib is besed on the popular rRNA essembly program EMIRGE, together with
several improvements. We address the challenge posed by large complex datesets by integrating sub-assembly,
dereplication and mapping in an iterative approach, with additional post-processing steps. We applied the method
to both simulated and real-world detesets. Our results show that MetaRib can deal with larger datasets and recover
more rAMNA genes, which achieve armund 60 times speedup and higher F1 score compared to EMIRGE in simulated
datasets. |n the realword dateset, it shows similar trends but recovers more contigs compared with a previous ana-
lysis based on random sub-sampling, while enabling the comparson of individual contig abundances across sam-
ples for the first time.

Awailabifity and implementation: The source code of MetaRib is freely available st httpsy/github.comiyoousl
MetaRib.

Contact: yaxin.xue@uib.no or Inge..Jonassen@uib.no

Supplementary information: Supplementary data are available at Bioinformatice online.

1 Introduction

Advances in next-generation sequencing have boosted the study of
microbial communities in many ecosysterns. Meta -transcri ptomics,
the direct sequencing and analysis of all RNA in a microbial com-
mumnity, has been widely used in investing microbial universe from
various environments | Carvalhais ef al, 80123 Jorth eral, 2014 Shi
ef al, 200} It provides an informative perspective about the cur-
rent state of functional output, s it can ehcidate which members
and functions of @ community are active in certain ci

rather than only the genomic contents {Franmsa ef al, 2001 5. Meta-
transcriptamics i considered to be more efficient in observing mpid
regulatory mesponses than meta-proteomics (Carvalhais er al,
2012). Morenver, it could capure the information missing in
DM A-based metagenomics, such s RMNA vimuses [Culley, 2004

£ Thw Awtheoels | 20X Prblis bl by Doford Unisrsizy P osess .

Zhang et al, 2004). The whole microbial RMA pool i dominated
by fANA and tRMNA (95-59%), whil only small fractions are
miRMNA (1-5%) (Carvalhais ef al, 2012}, To date, most meta-
transcriptomic studies have focused on fmction (mRMNA) rather
than structure, depleting ri MA both experimentally and i sifico.
“Total RNA metatranscriptomics’ involves the isolation and
sequencing of mverse tanscribed total RMA poob—indluding
miMA (gene expression), rRMA abindance), RMA vimses, tRMA
and other non-coding RMNA—from samples without any PCR or
doning step. In mntrast to normal meta-transcriptomics, this ap-
proach enables us to obtain both structural and functional informa-
tion simultaneously in a microbial community (Uricher al, 2008) It
amzwers two fundamenta] questions in micohial research— whao is
there?” and *what are they doing *—with a few advanmges. In terms
of structural investigation, total RNA meta-transcr promics assemes

3365

This is an Dpen Aocess arkle dsvbetsd erder S s d S Credw Commans Amiteto License (o) oreadnecanmons omfic s esby 410, which pemnits enre
siricind mese, dssibeta, and regoduction i any madiem, provided e origina wark is propery cied.

SEE | LA D EASYE-SRIWE SO ELLUOPURDIGALID I N0 DI LUBDEDE | 'S0 WO PEPEDUWIG

5

L}

020z yenbing 0 wo wenb g Ze6R



Y Xue et al.

taxonomic diversity in all three domains of life, meanwhile avoiding
amplification  bizs, compared to PCR-hased amplicon surveys.
Ribosomal RMNA is abo essential for protein synthesis in all organ-
isms. Thus, its relative abundance acrom taxa genemally reflects the
wverall structural activity in @ community. For functional profiling,
it provides novel insights into current gene activity status with corre-
spnding structural profiling simubtaneously in one experiment.

Several took are available for meta-transcriptomics, eg. IMP
(Mamyanasamy er al, 2016), SAMSA (Westreich er al, 2016,
MetaTrans (Martinez ef al., 2016}, but they are geared mainly for
studying the functional profiling. Though typically disregarded n
meta-transcriptomics, tRNA and its ing gene is widely
used a5 @ genetic marker to study bacterial phylogeny and tax-
onomy, asit is present in all domains and has both highly conserved
regions and regions that vary between species. Cumrently, most
structural rRMA profiling rebies on amplicon sequencing {meta-bar-
codding ) ising “universal” primers to target and amplify hy pervariable
regions of riLMA or other taxonomic markers @ broady e possible
(Rumselli er al, 2006). Althmugh amplicon sequencng represents a
fundamentally imporant method for sudying microbial and other
bidogial communities, it is susceptible to bizes depending mn the
tioms. Thus, it may lead to an incomplete or biased profile of the
true hﬁmmmngmum}:lumdal 201y
Shakya o al, 2013). By using tot] RMA met-transcriptomics for
structural profiling, such biases can be awoided. Funthermore, it
allowrs for the reconstruction of full-length rRMA sequences, ena-
bling a higher resplution for taxonomy profiling. This is ypically
naoit feasible in mata-harcoding using short-read sequendng technol-
ogies results in amplicns with insufficient phylogenetic signal,
while long-read sequencing allow for longer amplicons but is cur-
rently restricted by higher ermr mtes. Existing de movo assembly
or metagenomic data and do not perform well on fRMA genes
(Yuan ef al_, 2001 5). Instead, there are several tools developed specif-
ically for rRNA mcovery and asembly, such as EMIRGE (Miller
et al, 2013}, REAGO [Yusn ef al, 2015}, RAMEL [Zeng o al,
2017} and MATAM (Periard e al., 2018). However, these maols
were designed for analysis of smaller datavets and cannot be used
directly to analyze total R NA meta-transcriptomics studies.

HﬁqﬂmMmEJhnmdtm]fwmmHP
length ribosomal gene sequences optimized for total RMA mets-
tamoiptamic da. Firstly, its dereplication p Hes us to
identify hoth existing species and novel species, while i miizing false
positives, Furthermone, it significandy reduces the ruming time and
memary wsage by an iterative sampling approach, making it posible
to amemble rRMNA sequences from very large datasets: mmbining sev-
emal samples also allows for recomstucting rRMA from les abundant
species. This, MetaRib allows us to study the distibutions of
amembled rMA sequences acroms multiple samples, independent of
taxonomical clesification. This is done by mapping reads to the
resulting smembled small subwunit rbosomal RMNA (85U rRMA)
seqquences, which we mnsider a5 operationa | taconomic units (0T Us).

Ourapproach exploits the uneven taxnn-abundance distribution
a long tail of mmer ones, often refered to @ the ‘rare biosphere’
[Sogn ef al, 20046},

In practice, this leads to high redundancy in total RMA meta-
transcriptomic data, with many sequences originating from the most
abandant species. Our asumption i that rRMA of highly abundant
spedes can be reconstruced from a relatively small subsample of the
sequences. Subsequently, all rfRNA sequences in the whole dataset
relaed with the same species could be removed from further ana-
lysix, enabling reconstruction of less abundant species ieratively.
Merging reads from several samples or datasets can also help to re-
construct rarer species, below the amembly threshold in smaller
datasets. We evaluated oar ol using three simulated tom] RMA
datasets (limited to prokanyotic rRMA with special design i access
different scenarios) and benchmarked its performance. Moreover, a
real-word datase from a lamge-scale soil tom] R MA experiment con-
sisting of three billion S50 rRMA reads was analyzed, showing that

MetaRib could recover more information than what was possible in
the previpus study of the same data,

2 Materials and methods

2.1 Metarb workflow

The MetwRib algorithm comists of three major modules: (i} initial-
imation, (ii} ferative reconstruction and i} POSt-procesing, swm-
marized in Figure 1.

2 1.1 Initiali zation

A configuration file is needed to initiate the workflow, which first
mntroks the availability of data and standalone software tools
idependencies). A case-specific workflow script s then generated
and executed A full description of the input mnfiguation file and
data strudture is found in the GitHub repository {httpsigithub, @m/
e MetaR ib).

21 1.2 terative reconstruct o

MetaRib uses an iterative process to reconstruct ri MA contigs. The
warkflow is initisted on a randomly picked subset of the total reads,
which are amembed, and used to filter remaining reads by removing
those thatcan be mapped perfedly to the resulting contigs. This pro-
=5 {random sdection, esembly and filkering) is then repeaed wntil
a pre-defined termination criterion i reached. This module is com-
posed of five steps:

Step 11 Subsampling reads

The first step is initial subsampling of sequencing data from the
remaining reds. In ech iteration, a sulwet of n reads
fprowided in the configuration file, by default m= 10 (80} is =n-
domly picked from the total unmapped reads U, of size N {initially
mntaining all reads). MetaRib will change the seal number auo-
matically at ech iteration to avoid repetitive sampling of reads.
Step 2 Assembly of scbset

The randomly picked subset of size m is used @ input to EMIRGE
Miller ef al, 2013 for reference-amisted smembly into fANA @mn-
tigs. The EMIRGE assembly parameters, induding the reference se-
quence database used, can be specified in the configuration file.
Comidering that the community structure & relative meven, for
most matural communities, contigs comesponding i highly alun-
dant species are more likely to be assembled in the first several iera-
tions even when m M.

Step 1 Dereplication of comtigs

When the amembly is completed, contigs resulting from Step 2 of
the cumrent iteration are compared with the existing amembled
rRMNA contig set C (initially empty). New contig sequences are first
concatenated to existing ones, then sorted by sequence length and

e ol
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remamed with unique [Ds. Overlap-based clustering is then per-
formed to eliminate duplicated and keep longest contig sequences
for emch cluster using a stringent threshold, @nsidering the high
similarity of RN A contigs.

Step 4 Maggring of remaiming swenaprpred reads

All inmapped reads, U fie. all reads in the first ieration) are aligned
against the dereplicted contig set C 1ming stringent paramsters, con-
sidering the presence of highly conserved regions in the fRMNA gene
Reads that align to the contigs are removed from U, leaving only un-
mapped reads for subsequent iterations. Since sequences from highly
abamdant taxa are more likdy i be amembled in the first ierations,
a large propontion of ew reads are likely to be removed, which
facilitates amembly of remaining reads. This is the key approach of
MetaRib to reduce the complexdty, memory and time requirement
when assembling large datasess from typical, uneven biological
CHNTITILTH e

Step © Tenminating critesia

The iterative proess will be terminated under three circumstances:
(i} it reaches a maximum of 11 itemtions; (i} the remaining un-
mapped reads is less than my or (i) the last iteration produced a suf-
ficiently small number of novel contigs (< 1% of the crrent contig
set) The last situation may indicte that assembly from a subsample
of size m & difficult due to poor coverage of all taxa present. To
counteract this, a final extra ieration & camried out using a sub-
sample of sime 2m,

2.1.3 Post-processing.

One any of the criteria for halting the iteration have been met, a
final nonrredundant mntig set is generated. MetaRib will then stant
post-procesing to filter out low-quality contigs and estimate their
relative abundance across individual samples.

Step It Calowlatimg mappring statisfics

Raw reads from each sample are aligned to the contig set C to gener-
ate severa| mapping s@tistics by EEMAP, including the mapping rate
%), coverage and covered percentage of each particular contig in C.
Step 2 Filtering comtigs

Low-quality contigs are filtered by parsing mapping statistics re-
port from Step 1. We consider a panticular contig in C i a fabe posi-
tive recond if either its average coverage or percent of bases coversd
are belvw a pre-defined threshold (by defauk 2 and B,
respectivel vl
Step 3 Estimating abuwndance

The mapping rate is wsed to represent relative abundane of contigs
in each sample As f NA genes contain both conserved and variable
regions, we choose to inchude both *unam biguous’ mapping (where
a memged read is aligned to only me contig) and *ambiguous’ map-
ping (where a read can be aligned to more than one antig).

Finally, MetaRib will generate two fils: one containing the
high-quality contig sequenees fin FASTA format) and one matrix
*OTLU table’) that summanzs the abundance mformation across
samples, which eachrow representing a contig and sach column rep-
resenting a sample. These mumbers are assumed to appmocimate the
abandances of taxa comresponding to the reconstructed contigs. An
exception is species with comsiderable intra-specific rRM A sequence
variation, for which tosl abundance instemd can be ohtained by
identifying amd adding the relative abindances for their contigs.

2.2 Implementation
MetaRib is developed with Python27 and is distributed under the
GHNU GPL v30 license. MetaRib i freely available on hipssf
github.comfyome/MetaR ib. Dependencies inchude the Python lbra-
ries Pandas (used for data analysis).

MetaRib also requires EMIRGE for fiMNA sssembly. EMIRGE
was chosen by default as it is one the most widely used for

The BBook suit {hitssfgidoe gowdata-and-todsibheooks/) is
akio required for MetaRib and utilimed for several tasks including
read mapping and dereplication. BBtools'reformat sh is used for for-
mat conversion and subsampling. EBtool'dedupe sh & an overap-
based dereplication tool allowing a spedfied number of substitu-
tioms or edit distance, applied in MetaRik's dereplication step.
Default dedupesh parameters are maximum five indels and min-
imum 9% smilarity (fo=f 0w =fc=1f mos=1 =5 mid="5%]
EBtookibbmapsh & used to map (align) reads to contigs. EEMap
has a few advantages for our implementation, inchiding owput of
unmapped reads immediately (bymming SAM/BAM format out-
put), which accelerates the iteration process. Furthermore, it per-
forms global rather than local alignment that can avoid excluding
excemive reads due to highly conserved regions of rRMNA genes. In
addition, it reurmns detsiled mapping statistics, wed in post-
processing. Default pammeters for BEMAP & wminid = 0096
mavirdel = 1 minkits =2 idfilter =095 and users can modify those
pammeiers in the configuration file.

The EBtools suits and EMIRGE need to be nsmlled befor
MetaRib, and their parameters defined in the configuation file.

2.3 Ewvaluation with simulated datasets

23,1 Generatimn of smmulated datasets

To simulate the compledty of real microbiome communities, thres
i gilico simulated datasets were built. As a full-length rRMA refer-
ence dataset, we used the SILVA 55U rRMA reference database
uast ef al, 2012 (release 123). To simulate sequence reads for
dataset a, one thousand full-length sequences were andomly pidced
from a version of the reference database cl | at $4% identity
wsing maximumn linkage. These reference sequences were used to
simulate 5 million Hlumina pair-end sequencing reads following a
bog-nomal abundance distribution, using ART (Huang er al,
212}, For Dataset b, we randomly seleced MMM} sequences from
the full non-redundant version of Silva v123 (ie. not clustered using
B39 ). Only fulldength sequences with a similarity between %5%
amd %% to the chistered reference database were retained and used
i generate 5§ million sequence read pairs with ART following the
same distribution. Finally, Dataset ¢ was similar with a, but all full-
length sequences used to generate them were removed from the ref-
erence database used by EMIRGE during assembly. An overview of
simulated datasets is shown in Figure 2. The intra-dataset sequence
similarity was evaluated by performing glohal all-against-all align-
ment for each dataset (exclude self-alignment) with minimum pair-
wise identity 9 (Supplemen@ry Fig. 51} All simulated datasets and
mrresponding EMIRGE references are deposited at NIRD research
data archive f(hitps:farchivesigmal nofpagespublicdatasetDetail
et Fid=100.11 SR N1 9 (W4,
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2.3.2 Evalating performance

Simulated datasets were used to compare the performane of
MetaRib with EMIRGE frun non-iteratively). All programs were
tesied on the same computer cluster using 40 cores (in-house com-
pute server, B cores, 1 TE RAM]. For the ruming time comparison
benchmark, we used the GMU *time” command to capture bath real
|elapsed), system and user time.

For the simulated datasets, we could amess the comrecmess of the
reconstructed contigs, ie. how similar each reconstruced contig
was to the sowrce contig’, recording for each recomstructed contig
the similarity of the closest source ssquence, and vice versa; 'Fm'nﬂrJ'l.
:mmqmﬂum:]ml}-uft}:dnmtm
Faor this analysis, we used Vsearch (Rognes ef al_, Zﬂl&bfmp’h’m—
ing pair-wise global alignment with ${¥% minimum identity.

For a mnge of similarity thresholds, we then counted statistical
measures of the perfformance of two methods. True postives (TF)
correspond o the number of ‘comreatly’ reconstruced contigs thav-
ing a reconstructed contig with similarity above the threshold) and
fale positares (FPj—the mmber of rconstructed incomect contigs
{below the similarity threshold). Fale megatives (FN) awrrespond to
the number of un-recomstructed sequences in the source contig.
Finally, we calculate Precision, Sensitirity and Fl-score based on the
number of TF, FF and FN.

Tao evaluate the accuracy of abundance estimation, we then per-
formed Peamson’s comelation st between the mal abindance of
source contigs with the abundance output of the closest recon-
structed mntigs.

2.4 Realworld dataset

In order to evaluate the performance of MetaRib on real-workd total
RMA sequence data, we utilimed the data 3 hillion sequence reads
generated s part of the AshBack project (Bang-Andreasen er al_,
2020). Bang-Andremsen ef al. (220} conduded a large-scale total
RMA meta-transcriptomic study to access the impaa of wood ash
on agricultural and forest soil microbial commumities and funotional
expression simultaneosly applying four doses of wond ash concen-
tration: 0, 3, 12 and %0t ha~" {Gonc: @, 3, 12, 90). Each dose was
applied to two soil types: agricultural and forest soil and total com-
munity RMNA edracted and sequenced afier @, 10, 30 and 100 days
of incubation (D4, D3, D34, D100, The lagescale and complexity
made it an ideal case i apply MetaRib.

A total of 325Gk rRMA sequences were collected from the
woed ash dataset (PR [MA S12608). Due to the lade of Bonformatic
tonk and computational mnstraints, previous rRMNA analysis was
performed on a small subset {15 million mndomly selected sequen-
ces ) of each sample, using EMIRGE |Bang-Andressen ef al_, 2020,
We reanalyzed the complete dataset using MetaRib with defauk
pammmeters, and, in a repsted analysis with m= 1 M0 000 mnsider-
ing the larger siz of the dataset. Dowmnstream analysis was per-
formed with Phylosen (McMurdie and Holmes, 2013 and DADAZ
(Callahan ef al, 2016), figures were generated wming geplotl
[Ginestet, 2001} and ComplexHstmap (Gu ef al_, 2006}, Since all
samples were analyzed mgether in MemRib, we could also detect
the presence [here defined = a relative abundance >1e— 5} of contigs
acms samples,

Table 1. Comparison of programs running time

Ulser {5) Elapeed {HH:MM:55) Treradons
EMIRGE  MetaRib EMIRGE MeaRib MetaRib
a  EMIZ0 19278 3722 E2R2T 5
b 391399 59468 57644 1:07:30 5
©  MP0sZ 45901 ITAS2T [k 47:58 7

Moge: User i she amonnt of CFL vime speny; elapsed & the dme from san
1o findsh the pog k & e iher im MaaRib for sach
damase.

3Results

3.1 Run time companson

Table 1 shows statistics of time usage when analyzing the three
smulated datwens using EMIRGE non-iteratively and with
MetaRib (otherwise using the same parameers). MeaRib could as-
semble simulated datasets (5 million sequences each) in a few
minutes while EMIR{E needs days to mun, representing amound &0
spesdup compared to using EMIRGE out of the boox with the same
PREm TS,

3.2 Correctness
The relative performance of two tods is shown in erms of
Precision, Sensitavity and Fl-score for all three simulated datesets
representing different scenaria. MetaRib shows the best overall per-
frmance in all datasets with Fl-score evaluation (Fig. 3 and
Supplementary Table 51). EMIRGE recovers almost all sournce
sequences if they are reg | in the reference [Dataset a). For b
and ¢, whene soarce sequences are les similar to the reference data-
hase, EMIRGE has a higher sensitivity mmpared to MetaRib.
However, as shown in Figure 3, EMIRGE i ako producing a large
mumber ‘falie’ mntigs, which leads to a quite low precision and F1-
score even in an ideal case [Dataset a). Conversely, MetaRib is pro-
ducing far fewer such *false” sequences. We alin test the performance
of the *contig filtering” step done 2 part of the post-processing.
Our results demanstrate that fikering low-quality contigs using
mapping statistics {MetaRib_F} improves the performance com-
pared with the unfiltered result {Meta Rib_R; see 2.1.3 step 3} More
detailed results—like statistic | metrics of contigs length in each iter-
ation (Supplementary Table 52} and comparison of mntigs length
distribution between tools (Supplementary Fig. 52}-can be found in
the Supplementary Data.

3.3 Abundance estimation

Figure 4 shows the satter plot of comparation of relative a bundance
between sounce contigs{src_ab) with the closest reconstruced n-
ﬁplﬂthLManjhmquimdzlh:rddiv:nhuu‘]mum
ately when the nearly ful-length contigs are reconstruced (sm >
7.5}, even for very low-abindant records Erc_ab < le—2). As we
expected, it has the best perfformance in an idel scenario (Damset
al; however, it comes up with over-estimation problem at low-
abundant records caused by *ambigumus’ mapping of mnserved re-
gion in rRMA sequences which are distinct from the reference
(Dataset b).

wﬁﬂ-ﬁﬁ##ﬂn‘-#ﬂ-#ﬁﬁﬁuﬁ#klhdﬁﬁblﬁkbﬁ

Fig- 3. Crversien bt { The X - reg Al byt sl
Srebeld med 1o & i ila d cemtiy i corrast. The Foaxi rope-
ents the wbae ol i aedl Fll-wzerc]. MetaRib F
wwﬁﬁﬂh—#;m-&hm:-kn‘-l
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Table 2. Comparison of MetaRib running time with different sam-
pling reads number

Sampling_num (s} Lhser {5) Elapsed [HF:MM 55)
100 000 (100 K) 7T 03 38400:48
1000 000{1 M) 12 330130 ax16:55

Moge: The program & performed with 80 cones.

o
E-
&

Ht. 5. M:hlipd’:—-: e ASHIBACK diatairt por iterasion with two dife e

i . 1111 F kool wertise. He uoertiow b
r:llh: :l-l—.-: o biger Sas comin thredkelds (0U001%- H_0D01, 0.01%:
H_0L0, 01 %: HLOLT) i g it o sl

3.4 Realword dataset

Metaflib could complete the analysis of 320 Gb (3 billion reads) in
approxmately 1-2days wing default paameters with B0 cores.
However, the CPL and run time & nearly doubled when using a
larger reads sampling numbser (m =1 (80 (6); Table 2.

The read subsampling number »m also effeas the performance of
MetaRib, both for the iteration proess and final result resulting in
11 iterations for the defaubt value (m= 100k} and ¥ #temtions for
m=1M (see Fg 5). As we expected, the size of U decreases signifi-
cantly in the first few iterations and this becomes stabilimed; while
smaller vahves of m need more iterations to converge and result in
mure remaining unmapped reads after the last iteration. However,

Fig- 6 Massbeer o comips s Sho e diveriity acros the fw ol o icrcuisg
woscell b el amd b e S (w— 100 KL The prcsce of contg i
dirminnd by fe awog abmdec witis o scaere s wal (Zle-5)
Shca e o sty e i el e o o it s s malbile

larger m values akio result in more potential fake positives. For ex-
ample, the size of U cesses to decrease after five iterations, whereas
the number of . maintains a continupus increase. Panticulady, near-
ly half of the C fail to pass the filker step (F) using m= I M. We fur-
ther check the mumber of contigs which relative abundance is higher
than certain thresholds (00001 %: H M0, U001 %: H_0u01, 0.1%:
H_0.1} in at lmst one sample acording to their sstimated abun-
dance. We find that the number of ‘dominant’ (high abundance)
contigs using the defauk value [w= 100k} gives closer resuls to
m = I M with a higher threshold, whichindicates that the smaller, de-
fauk vahee of m was sufficient to reconstruct the majority rRNA con-
tigs in @ complex community. Results obtained using m = IM were
thus excluded from further analysis.

We observe more fRMNA contigs in both sites and similar trends
of richness and Shannon diversity across treatments in forest soil as
those revealed by previous analysis (Bang-Andreasen er al, 2020},
except mnsiderably less fluctuation of divemsity acmas treatments
and time in agricultural soil {Fg. 6L

MetaRib & able to recover more fANA contigs across all
domains and captures maore taxa than before. For example, the fun-
gal division Mucoremycofa appears i be dominant in both with an
abandance of approcimately 3.5% in Forest at the highest ash con-
centra tion, while mising in the previous analysis {Bang-Andreasen
et al, 20204 (Fig. 7. MetaRib ako allowed us to camy out
taxonomy-independent statistics that wene not possible when ssem-
bling reads sample-by-sample. Thus, we observed several interesting
abandance patterns among the top 1080 dominant contigs, illustrated
as @ heatmap in Figure 7. For eample, while Profeobactenia were
vhiquimus in both soils, different contigs dominated and showed
maore fluctuations in the forest. Contigs affilisted to the
Acidobacteria were dominant in the forest soil and most of their
abamdances were positively correlated with conentration; however,
they dmpped significantly at the highest ash mncentration. Besides,
one finnicite affiliated contig was only presented in agriculural
soil, while other Firmicwfes contigs were only abundant in the high-
est dose in forest soil Vermecomicrolia esodated contigs showed

4 Discussion

Here, we present the mol MetaRib for reconstructing rRMA genes
from large scale total RNA meta-transcriptomic data. lts main ad-

vantage compared to existing methods is to quickly and reliably as-
mnhhrﬂmm acoas multiple samples, even in very large
datasets, with a low false positive mte and a taxonomy-independent
relative abamdance estimation.
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Fig- 7. Hegsp ol abesbisce disdbation for top 100 st dossisest comti
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il a i a sl

Using simulated datsets, we show that MetaRib performs simi-
larly to EMIRGE |representing the curment state-of-the-art} in tenms
of recovering the inderying ful-length true sequences, at the same
time avoiding generating & many unreliable sequences (false posi-
tives} with a significant speedup. Besides, it provides an opportmity
to have an overview of the abundance distrilution acmss multiple
samples, which could indicte important functions or patterns when
combined with biological information.

5till, some challenges remain. Both EMIRGE and MetaRib are
reference-based appmaches, which could have imues in recovering
novel and similar contigs when there & lacking information in the
referene dambase (Datasets b and cf: only partial sequences could
be reconstructed in such extreme senarnio. The mntrasting results of
simulated datasets indicate that MetaRib is able to capture most in-
formation in relatively well-characterized emvironments while it &
muore likely to generate fake positives and partial sequences for
ponrdy chamcterized environments. It also illstrates that the refer-
ence databame is crucial for performance. While the most recent re-
leasme of Silva includes over % million 85U sequences, our simulations
useda less inclusive, earier version, clustered at 94 % sequence iden-
tity. It is likely that a more recent vesion will result in higher simi-
larity for rfRMNA sequences, but it ako result in longer ececution
times. At any mate, a nonredundant reference database is recom-
mended, since EMIRGE is limited to reconstructing sequences with
maximumn ¥7% similarity i each other [Miller et al, 20013} Other
recent wmends for rRMNA asembly such a5 MATAM (Pericard ef al,
20018} have been shown to perform better than EMIRGE on small
datasets, and fuiwre work could include using MATAM within the
MetaRib toal.

An advan@ge of total RMNA meta-transcr promics is the ability to
estimate relative abundanes of rRMNA sequences as procies of mi-
crohial taxa, without PCR bias. Similarly, applications of thind-
generation sequencing like Oucford nanopore ako have this advan-
identification, which has shown great potential in microbial resench
{Jainer al, 2016; Shin et al_, 2116},

However, it is impor@nt to point out that the mumber of rfRNA
reads does not represent an unbiased estimate of neither the

metabolic activity nor the abundance (biomas or cell num bers) of
the taxa as such, since rfRMNA gene copy number and patterns of
ribosomal transcription and retention vary between organisms
(Blazewic ef al, 2013}, In addition, so far it seems to be no com-
mercial kit from Ohcford Nanopore for ssquencing of prolaryotic or
mtal RN A, only eukaryotic, poly A-tagged mRMN A sequencing.

Severa| parameter settings will also impact the performance of
MetaRib, especially for large scale datasets, asillustraed here using
a realbworld dataset. In panticular, the trade-off betwesn execution
time amd the quality of the final ressults neads to be comidered @re-
fully. For example, increasing the mad subsampling mumber will
lead & longer execution times, bt generate more bow abundance
mntigs from rare organisms, this ecovering mone of the diversity.
However, it abio lmds to more fale positives in terms of ncomectly
amembled contigs.

In the current implementation, MetaRib discards any remaining
mmapped reads after the iteration process is finished. However,
wxmomy-independent rR MA assembly tonlks like R EAGO could be
mnsidered as a further step i assemble discarded reads in onder to
maximize the information recoverad from total RMA datasets.

Our approach opens up several new perspectives for total RMA
meta-tamaiptomic. First of all, it simplifies the analysis of the
large and redundant datasets generated, via itemative recons truction.
In doing 5o, it ako reduces fake positives and allows for taxonomy-
i comparisons of contig abundanes across samples. In
spite of its advantages, total RNA has not bem widely used com-
mared to other envimnmental genomics techniques We hope that
MetaRib will enable researchers to make more use of this technique
and the valuable rRMA sequence data generated, with full-length
sequences free of primer bias. Ultimately, this enables a deeper
nderstanding of how natural microhial communities are structured,
s wel | their fimction.
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Supplementary information

Fig. S1. Histogram of global pair wise similarity distribution of each dataset.
a b
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Fig. 52. Histogram of contig length distribution between source (SRC), MetaRib and EMIRGE
using logl0 transformation for both axes.
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Table 51: The detailed performance of all tools in all simulated datasets.
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Table 52: statistical metrics of contigs length in each iteration and abundance estimation.
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