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Abstract 
 

Numerical models have increasingly become important tools to complement planning, testing, and 

implementation of technologies and strategies for geothermal reservoir projects in basement and 

crystalline igneous rock. Access to cost-effective and high-capacity computational resources can give 

valuable insight into governing mechanisms of stimulation experiments in fractured porous rock, which 

are often prohibitively expensive or otherwise infeasible to perform repeatedly in-situ in sufficiently 

comparable initial conditions. These experiments aim to reactivate existing faults or fractures by shear 

dilation, increasing the fluid circulation. Shear dilation refers to the process of volumetric expansion of a 

fracture as its rough surfaces try to dislocate relative to each other as shear stresses act on the fracture. 

The reactivation process is characterized by coupled interactions between high-pressure injection and 

flow through the fracture network, and rock deformation due to hydromechanical stress transfer. 

Uncovering these connections can be challenging, even for mesoscale subsurface experiments with 

access to the rock volume through tunnels and boreholes. Physics-based modeling constrained by in-situ 

data has the potential to complement the analysis of experimental results. 

This thesis investigates modeling of a mesoscale hydraulic shearing experiment at the Grimsel Test Site, 

Switzerland. The stimulation experiment targets one of five intersecting ductile or brittle-ductile shear 

zones in a low-permeable crystalline rock with a high-pressure injection scheme. We present the first 

simulations, constrained by in-situ data, that fully couple isothermal fluid flow and poroelastic rock 

deformation in the crystalline rock, with flow, deformation, and slip-induced dilation in the shear zones. 

A mixed-dimensional discrete fracture matrix model explicitly represents shear zones and shear zone 

intersections as lower-dimensional subdomains in the intact rock. Frictional contact mechanics is a non-

linear process that governs slip on the shear zone surfaces. This results in a non-linear system of 

equations that cannot be solved with traditional Newton methods. Instead, a semi-smooth Newton 

method is applied to iteratively converge towards a solution.  

The simulations captured transmissivity enhancement within one order of magnitude of observations. 

Additionally, slip-induced poroelastic effects were revealed. We also investigated the effects of intact 

rock permeability and shear zone size. A higher intact rock permeability led to greater leakage from the 

target shear zone into the intact rock compared to the case with a lower intact rock permeability, 

reducing the extent of the pressure front within the shear zone. In simulations with larger shear zones, 

there was a faster pressure decline in the target shear zone after shut-in due to more volume for fluid 

storage and a larger area for leakage into the intact rock, while smaller shear zones preserved a higher 

pressure for considerably longer time. The results show the applicability of numerical models to 

complement in-situ stimulation experiments. Finally, we comment on extensions related to two-phase 

flow, gravitational effects, and anisotropic elastic parameters. 
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1 Background 
 

The need for 24-hour energy generation is ever more pronounced as much of the world’s societies 

evolve to enjoy the needs associated with heating, transport, communication, and lighting. This demand 

for energy has historically been met with extensive use of fossil fuels (Ritchie, 2014). The energy supply 

sector is comprised of extraction, conversion, storage, transmission, and distribution of energy, and was 

responsible for approximately 35% of total anthropogenic greenhouse gas (GHG) emissions in 2010. The 

sector’s share of annual GHG emissions has accelerated since the 1990’s due to the energy demand 

associated with rapid economic growth, with coal being a prominent source of energy (Bruckner et al., 

2015).  

The emissions of GHG have wide-ranging implications for earth, society, and the economy. Some of 

these adverse effects include sea-level rise, ocean acidification, more intense weather extremes such as 

droughts, worse air quality, and increased frequency and severity of allergic illness (Lall et al., 2018; 

Nolte et al., 2018). The severity of these events depends on the atmospheric response to heating effects 

associated with the GHG emissions. Commonly, the surface air global-mean temperature is used as a 

single-parameter indicator to the response of the cumulative GHG emissions. To limit the global mean 

warming relative to pre-industrial levels to less than 2 °C  by the year 2100 with a probability of more 

than 70%, yearly CO2 emissions must be halved relative to 1990 emissions by 2050 (Meinshausen et al., 

2009).  

Geothermal energy has emerged as a potential pathway for a reliable baseload supply of electricity 

throughout the world and would substantially reduce the GHG emissions from the energy supply sector 

(Goldstein et al., 2011). However, much of the world’s potential resources within 10 km of the Earth’s 

surface is situated in hard, compact rock. Little, if any fluid can flow or filtrate through the rock. Instead, 

the fluid flows in fractures and faults that are formed over long timescales due to tectonic movement of 

the crust. Faults are fractures or zones of fractures that separate adjacent blocks of rock and allow fluid 

transmission due to irregularities and roughness in the void space between the blocks. Shearing along 

the fracture surfaces can increase the volume between the surfaces through the shear dilation 

mechanism. Shear dilation occurs as the adjacent fracture surfaces attempt to dislocate relative to each 

other under the action of shear stresses within the formation (Gao et al., 2019). If the rock is tough 

enough to withstand crushing and granulation of the asperities, the surface separation increases to 

relieve the applied shear stresses during dislocation of the surfaces. High pressure fluid injection into 

faults relieves the effective confining stresses and can result in shearing if the in-situ stress regime is 

sufficiently anisotropic.  

Enhanced geothermal systems (EGS) exploit these processes to stimulate rock masses that have 

sufficient temperature gradients to extract geothermal energy, but insufficient initial flow conditions to 

allow for fluid circulation between injection and production boreholes. We typically quantify the 

transmission properties with the transmissivity, which is a measure of the rate at which a fluid can flow 
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through a fault of a given thickness. Enhanced fluid transmission allows for sustained production of 

geothermal energy as the fluid circulates through larger regions of the hot rock mass. Numerous 

demonstrations of hydraulic shearing and EGS exist around the world (e.g. Ayling and Moore (2013); 

Cladouhos et al. (2016); Garcia et al. (2016); Gérard et al. (2006); Lu (2018); Teza et al. (2011)). 

Hydraulic shearing is coupled with other physical processes including thermal (T), hydraulic (H), 

mechanical (M), seismic (S), and chemical (C) processes which together with the fractured structure of 

the rock mass, influence the stimulation process (Amann et al., 2018; Wang et al., 2018). A thorough 

understanding of the interplay between the processes is necessary to develop safe and efficient 

enhanced geothermal systems. Studies of subsets of these processes are useful to develop models for 

leading order coupled behavior. Thermo-hydro-mechanical (THM) models have been widely used to 

analyze and understand observed reservoir behavior (e.g. Blanco et al. (2014); Rutqvist and Oldenburg 

(2008); Urpi et al. (2017); Vallier et al. (2020)). However, the models are reliant on detailed field data to 

support their conclusions. Since this is often lacking, especially in reservoir-scale stimulation 

experiments where the rock mass is accessed through boreholes from the surface, interpretation may 

be limited. In contrast, laboratory-scale experiments have made important contributions to 

parameterizing numerical models (e.g. Bandis et al. (1983)), but by virtue of their scale, lack important 

information of, for example, fault-related dynamics. Underground research laboratories on the 

decameter scale has the potential to bridge this gap. Here, tunnels are excavated into unaltered fault 

zones, which allows for experiments to be conducted under relatively well-constrained conditions (Y. G. 

Guglielmi et al., 2015; Pfister & Nold, 1984).  

The Grimsel Test Site (GTS) is an underground research laboratory supporting a wide range of research 

projects, including those related to geothermal research (Figure 1.1). The site is located in the Aar Massif 

in Switzerland and has multiple tunnels that were excavated in 1983. The tunnel system is situated 450 

meters below the surface, hosted in relatively homogenous crystalline rock.  

 

 

Figure 1.1 (a) GTS is located in the Aar Massif in Switzerland. (b) The ISC experiment was conducted in crystalline rock, enclosed 
by AU and VE tunnels, in the southern part of the underground laboratory. Figure from Amann et al. (2018). 
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The in-situ stimulation and circulation (ISC) experiment is a decameter scale experiment conducted in 

southern end of the Grimsel Test Site. The experiment is aimed at improving our understanding of both 

transmissivity enhancement due to hydraulic stimulation and the induced seismicity, as well as 

determining whether the stimulated region is a suitable analog to a heat exchanger. Two tunnels with 

diameters of 3.5 meters provide access to the volume, into which 15 boreholes have been drilled with 

instruments that allow characterization and monitoring of the rock volume before, during, and after the 

fluid injection experiments. The monitoring equipment enables detailed measurements of strain, 

temperature, seismicity, and fluid pressure (Amann et al., 2018; Krietsch et al., 2018a).  

The rock volume contains localized regions of intense strain, denoted shear zones. The shear zones are 

grouped into two sets based on age and rock properties. Numerous brittle or gouge-filled fractures are 

present within the shear zones. As part of the ISC experiment, six hydraulic shearing experiments 

targeting the shear zones were conducted. One of these experiments targeted a ductile shear zone in 

the northern part of the domain. As a result of the stimulation of this shear zone, transmissivity near the 

injection interval increased by more than three orders of magnitude, hypothesized to be a result of 

0.7 − 0.81 mm irreversible slip dislocation in the shear zone. Elevated pressure was observed mostly 

within the shear zone. The deformation response was characterized by a combination of fracture 

opening and slip within 15 − 20 meters of the injection point and poroelastic effects due to the injected 

fluid further out from the injection point (Krietsch et al., 2020). 

The characteristic poromechanical response of the rock mass following fluid injection makes it suitable 

for numerical modeling. We simulated the main stimulation cycle of a hydraulic shearing experiment 

and evaluated our model by comparing the simulated rock mass response to the observed response. To 

this end, we developed a geometric model of the shear zones and the surrounding rock mass. We 

modeled the intact rock as a poroelastic medium where fluid diffusion is fully coupled to mechanical 

deformation according to the Biot equations (Biot, 1941). The shear zones were modeled as planar 

fractures that can open, close, and slide as a result of the relative sizes of the hydromechanical stress in 

the intact rock and the fluid pressure in the fractures. A Coulomb type friction law was employed to 

model shear dislocation. Changes in fracture transmissivity were modeled with the cubic law, where slip 

is assumed to cause dilation, which increases transmissivity. The model is implemented in the PorePy 

framework using finite volume methods on two-dimensional and three-dimensional unstructured grids, 

where fractures are modeled as 2D planes in the 3D volume, and fracture intersections are represented 

by 1D lines (Keilegavlen et al., 2020). 

The main contributions of this thesis are the numerical modeling of a hydraulic stimulation experiment 

at the Grimsel Test Site, including identification and setup of parameters, development and adjustments 

of the geometric model, integration to the PorePy framework, and evaluation and interpretation of the 

simulation results compared to the observations from the stimulation experiment. We studied the 

effects of perturbing model parameters that were expected to have a significant impact on the pressure 

distribution of the solution. The simulation code and run scripts for this thesis is available on 

https://github.com/haakon-e/mastersproject. Contributions to PorePy are outlined in Appendix 8.3.  

The thesis is structured as follows: 

We begin by describing the subsurface and some of its characteristic features in Chapter 2. Faults, shear 

zones, and fractures are fundamental structures for fluid conduction and slip in compact rock. We 

survey models that characterize their hydraulic structure. Then, we describe the hydraulic shear 

https://github.com/haakon-e/mastersproject
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mechanism, which is critical in controlling transient changes of hydraulic properties in shear zones, 

faults, and fractures. 

In Chapter 3, we survey conceptual models for fractured porous media. We focus on the mixed-

dimensional discrete fracture matrix model, in which fractures are modeled as two-dimensional surfaces 

in the three-dimensional rock. Details on notation and projection operators for mixed-dimensional 

domains are summarized toward the end of the chapter. 

Then, in Chapter 4, we present the set of partial differential equations that describe fluid flow, rock 

deformation, and fracture slip. These equations are coupled and non-linear. 

In Chapter 5, we present the details on the discretization of the system of equations, including the 

structure of the global linear system, which is solved with a Newton-type method. 

Chapter 6 is devoted to the stimulation experiment at the Grimsel Test Site. We provide details on the 

geological context and characterization studies of the rock mass. Then, we present the set of parameters 

and initial conditions used in the numerical simulation. We conclude the chapter by presenting and 

discussing the main findings. 

Finally, in Chapter 7, we reflect on the findings in light of our model choices, and discuss limitations and 

extensions to the model. 
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2 Characteristics of fractured porous media 
 

Subsurface rock is heterogeneous and deformable and can be studied across many scales. At the 

microscale, rock can be described as a solid material superimposed by a possibly saturated void space. 

The geometry and structural properties of the rock at this scale are important for understanding 

mesoscale processes. However, these details are too complex to be explicitly represented if the scale at 

which processes of interest occur is tens of meters or more. Fortunately, averaged descriptions of the 

rock mass can be introduced in which microscale properties and processes can be ignored in favor of 

macroscale properties and tendencies.  

In this chapter, we describe the subsurface and its characteristic features that are of importance to 

experimentation and modeling of hydromechanically coupled processes. We seek idealized descriptions 

of the rock mass that are easy to understand conceptually and where relatively simple models for the 

rock mass response can be constructed. This is a useful exercise even as we know that the rock mass is a 

dynamically evolving structure that does not conform to any particular idealized model. Often, the 

lessons learnt in idealized settings can be helpful to understand the range of behavior we can expect to 

find in the heterogeneous rock within Earth’s crust. 

The compact, crystalline, and granitic rock mass at the Grimsel Test Site (GTS) can, like other rock 

masses, be divided into distinct structures. Most fundamentally is the intact rock which supports the 

overburden rock mass, is subject to elastic and plastic deformation, and is saturated by one or more 

fluid phases. In subsurface rock with sufficient anisotropy, stresses can concentrate in planar or 

curviplanar regions. The applied stresses deform the rock mass, and depending on the rock properties, 

the deformation can be characterized as either brittle or ductile (Figure 2.1). With sufficient differences 

between the maximum and minimum compressive stresses, the brittle rock breaks, forming fractures or 

faults (i.e. brittle shear zones) (Pine & Batchelor, 1984). Fractures and faults are discontinuous features 

of the rock mass that divides the rock into blocks of rock that supports relative displacement. Typically, 

these structures has significantly contrasting mechanical and hydraulic properties compared to the 

surrounding, intact rock.  

Extended shear deformation of ductile rock masses in anisotropic stress regimes lead to zones of intense 

strain. These zones are denoted (ductile) shear zones. As with faults and fractures, the hydrogeological 

properties of shear zones can be remarkably dissimilar compared to the surrounding rock. In-between 

the end-member types, there are brittle-ductile shear zones that combine features of faulting in brittle 

rock and shearing in ductile rock. Figure 2.1 illustrates ductile, brittle, and brittle-ductile rock 

deformation. 
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Figure 2.1 Schematic view of types of deformation response in rock. 

The hydraulic shearing experiment that we simulated in this thesis, targeted a ductile shear zone. This 

chapter will survey the typical structure of fault zones, which turns out to be a suitable description of 

the ductile shear zones at GTS. We devote particular attention to the hydraulic structure of fault zones, 

and aspects of how shearing along fault zone surfaces affects properties and processes in the structures. 

Two effects that we will not describe in detail, are the geochemical and thermal couplings to the rock-

fluid system. While the hydraulic stimulation response can be impacted by these effects (see e.g. Finnie 

et al. (1979); Ghassemi (2012); Hou et al. (2017); Wintsch et al. (1995)), the GTS experiment lasts for a 

relatively short time and uses normal water at constant in-situ temperature of 11 °C. As such, we 

assume these processes have a negligible impact on the state and transient evolution of the rock-fluid 

system.  

This chapter is structured as follows. In Section 2.1, basic properties of rocks are described, including the 

transition from microscale to macroscale properties. The composition and hydraulic structure of fault 

zones are described in Section 2.2. Finally, the hydromechanical mechanisms and response to shearing 

are discussed in Section 2.3. 

 

2.1 Pores and cracks in subsurface rock 
Rock is a natural porous material consisting of the rock fabric and void space along grain boundaries of 

the rock or through the rock grains, see Figure 2.2. The structure of the void space, or pores, influences 

properties like permeability and rock strength, while the meso-scale structure and defects are important 

to understand deformation and failure of the rock. The pores are connected by pore throats, which is 

the narrowest point of passage between two pores. Depending on rock type, the diameter of the pore 

throats span 3 nm to ~500 μm (Zhang et al., 2016) and may significantly influence rock properties 

despite accounting for only ~0.1 % of the porosity of some rock types (Shapiro et al., 2017). 

The porosity refers to the ratio of the available connected (i.e. accessible) void to total volume within a 

rock and varies for different rock types. The porosity can be as large as 20 % for certain types of 

sandstone, or about 1 % for granitic rock. The heterogenous nature of naturally occurring rock and its 

deformation history can lead to a porous space of markedly non-elongated shape. On the microscopic 

scale, a porous space of non-elongated shape can occur overlappingly with porous space of elongated 

shape. These classes can be separated as (micro)cracks and pores, respectively (Paterson & Wong, 

2005). 
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Figure 2.2 Illustration of the pore space. Rock porosity typically come from intergranular pores (left), or microcracks (right). 

 

On the microscale, microcracks are rock discontinuities with length typically on the order of 100 μm and 

a crack aspect (width to length) ratio on the order of 10−3 to 10−5 (Kranz, 1983). It is understood that 

microcracks form from mechanical, thermodynamic, chemical, or pressure induced processes. 

Microcracks found in crystalline rock form predominately as the local stress exceeds the local rock 

strength, for example due to an applied deviatoric stress or stress concentrations around cavities or at 

grain boundaries (Kranz, 1983). The stress conditions to initiate microcracking may also be influenced by 

the pressure distribution of saturating fluid or due to deformation or failure of the intact rock. 

Low-porosity rock such as granite is denoted compact rock. The porosity and permeability of compact 

rock are often controlled by microcracks (Paterson & Wong, 2005). The presence of microcracks may 

vary depending on the local stress conditions. With increasing normal stress, such as the hydrostatic 

stress at depth, it has been shown that crystalline rock has very few, if any, cracks in-situ. With applied 

deviatoric stresses on the rock mass however, the resulting state of the microcracks is extraordinarily 

complex. Each microcrack can open, close, propagate, or stop propagating (Kranz, 1983). 

Core samples collected from the crystalline host rock at the GTS before the injection experiment are free 

of open microcracks (Wenning et al., 2018). The porosity is therefore expected to occur mainly due to 

intergranular pores, which are spherically shaped pores located predominately around the mineral grain 

boundaries (Wang et al., 2016). However, microcracks can still form from deformation of the shear 

zones and can therefore have an impact on the near-zone properties. 

To enable macroscopic analysis of a rock volume, the heterogenous medium consisting of pores on the 

microscale are averaged over a scale where the microscopic phenomena can be ignored in favor of 

macroscopic physical phenomena of interest. To achieve this, we associate to the microscale properties, 

such as porosity, an elementary representative volume (REV) relevant to the macroscale over which the 

volumetrically averaged properties vary continuously. The assumption that this procedure is possible is 

referred to as the continuity hypothesis. The coalescence of cracks, forming fractures, joints, faults, and 

other macroscale structures may in regions of high heterogeneity inhibit the separation of length scales. 
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That is, the REV scale that is appropriate to homogenize the porous medium, may not be an appropriate 

REV scale for the cracks (Berryman & Wang, 1995; Boutin & Royer, 2015).  

Furthermore, the hydrogeologic properties of pores and cracks occurring overlappingly in natural 

subsurface rock are often highly heterogenous. This motivates the treatment of cracks and pores as 

separate superimposed porous systems. Many approaches exist to achieve this, depending on which 

research questions are being posed and the capabilities of the physical laws and conceptual models used 

to describe the dynamics in these systems (e.g. Berre et al. (2019) and references therein). 

 

2.2 Fault zone structure 
The macroscopic formation of fractures under compressive load is a result of the coalescence of 

microcracks, as opposed to the continual propagation of a single microcrack. Fractures can be 

categorized as joints or faults. Faults are fracture surfaces where relative displacement has occurred 

along the nominal plane of the fracture (Jaeger, 2007). Joints are fracture surfaces where little such 

transverse displacement has occurred. Fractures are often approximately planar, and therefore provide 

planes along which sliding can occur.  

Shear zones are zones that have experienced significant deformation surrounded by regions with less 

deformation. Shear zones can be categorized on a continuous scale between brittle and ductile 

depending on the deformation history. Brittle shear zones, or faults, are characterized by stress 

concentrations along very thin, discontinuous surfaces with physical properties often orders of 

magnitude dissimilar compared to the host rock. Ductile shear zones on the other hand tend to deform 

over larger regions, with stresses distributed throughout the zone. Ductile shear zones are typically also 

associated with the development of anisotropic structural properties along the elongated directions due 

to alignment of minerals (Mainprice, 2007; Wenning et al., 2018). Structures that share properties of 

both end-member types are often termed brittle-ductile shear zones.  

The shear zones at GTS can be categorized as ductile and brittle-ductile (Krietsch et al., 2018a). 

However, brittle faulting has also occurred forming cohesive granular fault rock, incohesive fragmented 

rock and incohesive small-grained rock, denoted cataclasite, breccia, and fault gouge, respectively 

(Ziegler et al., 2013). The target shear zone of the hydraulic shearing experiment that was simulated in 

this thesis is ductile with a localized high strain zone that is hydraulically connected to nearby ductile 

shear zones through sub-parallel brittle fractures (Wehrens et al., 2017). The classical description of 

fault zones (see below) are for these reasons also useful to describe the shear zones at GTS (Brixel et al., 

2020). 

A typical fault is usually composed of multiple parts, each with a different hydrogeological structure 

(Faulkner et al., 2010). We call these the fault core, damage zone, and protolith. The fault core is the 

region where most displacement takes place during deformation or slip. The surrounding damage zone 

consists of smaller faults and fractures of varying lengths, orientations, and properties. The protolith is 

another term for the host rock that is not greatly influenced by the fault-related permeability structures 

(Caine et al., 1996). 

Direct and dense measurements of a fault zone’s structure may be prohibitively difficult at depth; 

however, it is possible to infer its structure based on known controlling factors. These factors include 
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depth, protolith lithology, tectonic movement, displacement history, frictional properties and fluid flow 

(Sibson, 1977). 

The fault zone depth is a useful indicator for the damage zone structure. This is because many 

subsurface processes depend on the effective stress normal to the fault, and the in-situ temperature, 

both of which approximately have a linear relationship with depth in many geological conditions (Gupta 

& Roy, 2007; Tiab & Donaldson, 2012).  

Depending on the deformation history, a fault zone may consist of only a single fault core. In this case, 

subsidiary faults or fractures may branch off from the core. On the other hand, the core itself may 

consist of multiple anastomosing (i.e. branching and reconnecting) cores, where the damage zone spans 

the entire core structure with variable degree of fracturing (Faulkner et al., 2010). These cores can be 

found on multiple scales. For example, the Carboneras fault in southeastern Spain consists of multiple 

cores (< 5 m thick) and extensively damaged host rock, with a total damage zone width of more than 

1 km (Faulkner et al., 2003). This case contrasts the instances where the bulk of the dynamics occur 

along discrete surfaces. As such, fault zones should in many cases instead be qualitatively understood as 

finite-width zones of fault rock, often with strikingly disparate properties compared to the protolith 

(Wibberley et al., 2008).  

For compact rocks the fault core is generally fine-grained, as is observed at the GTS (Wenning et al., 

2018). The surrounding damage zone is often dominated by fractures and other macro- and micro-

structures that are often found to exponentially decrease in frequency as distance to the fault core 

increases (Faulkner et al., 2010). Additionally, the curvature of faults may affect the tendency for 

fractures in the damage zone to open or remain closed. For example, fracture opening could be favored 

on the top of anticlinal structures (Houwers et al., 2015). 

 

2.2.1 Hydraulic structure of fault zones 
Caine et al. (1996) presented a model that relates the fault zone structure to typical permeability 

architectures, as shown in Figure 2.3. The division is useful to understand how different combinations of 

fault core and damage zone size impact the permeability structure of the fault zone. Four end-member 

states can be described with this scheme, as summarized in the following. A localized conduit is 

characterized by one or more non-anastomosing, localized slip surfaces. The fault core and damage zone 

are hardly, if at all, developed. Fluid flow in this end-member category can best be modeled by 

conceptualizing the slip surfaces as discrete curviplanar surfaces. The distributed conduit is like the 

localized conduit in that the fault core is poorly developed. However, fluid may flow along numerous 

fractures, slip surfaces or deformation bands. A localized barrier is characterized by a larger fault core, 

but undeveloped damage zone. The fault core inhibits crossflow like an aquitard, which contrasts the 

more permeable nearby protolith. Examples of this include structures with cataclastic deformation 

bands (Ballas et al., 2015). Finally, the combined conduit-barrier is characterized by a cataclastic fault 

core that inhibits cross flow surrounded by a highly permeable damage zone composed of slip surfaces 

and fracture networks. 



 Characteristics of fractured porous media  

20 
 

  

Figure 2.3 Conceptual models for fault zone permeability structure. Redrawn from Caine et al. (1996). 

 

2.3 Hydraulic stimulation of fractured rock 
A distinction can be made between hydraulic stimulation caused by hydraulic fracturing of faults or 

intact rock, and hydraulic shearing of existing faults. In hydraulic fracturing, the fluid pressure exceeds 

the minimum principal compressive stress (𝜎3). If the process occurs in intact rock, then a tensile 

fracture forms which is oriented normal to 𝜎3 (Zoback et al., 1977). However, if the process occurs in a 

network of fractures, then the propagation mechanism also depends on factors such as the orientation 

of incident fractures (Blanton, 1982; Lamont & Jessen, 1963; Zhou & Xue, 2011).  

In contrast, hydraulic shearing of pre-existing faults typically occurs at lower pore pressures (de Pater & 

Beugelsdijk, 2005). Consequently, the flow pathways should be sufficiently connected in order to avoid 

excessive build-up of fluid pressure (Berkowitz, 1995; Lutz et al., 2010). Additionally, the stress regime 

needs to be sufficiently anisotropic (Pine & Batchelor, 1984), and the faults need to be favorably 

oriented with respect to the local stress state (Lutz et al., 2010; Murphy & Fehler, 1986). 

Hydraulic shearing can be induced both in the so-called primary effected zone and the secondary 

effected zone (Krietsch et al., 2020). In the primary effected zone, hydraulic shearing is a result of an 

increase of pore pressure which reduces the effective stress normal to the fault. If the shear stress 

overcomes the frictional resistance to sliding, the fracture slips. In the secondary effected zone, 

poroelastic effects can induce slip on faults that are outside the region with elevated pore pressure, for 

example due to stress redistribution caused by slip on faults within the primary effected zone. 

There are several conditions that influence the concomitant transmissivity increase, such as slip-induced 

dilatancy, normal load, and production and compaction of fault gouge. 
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Slip-induced dilatancy refers to the process where shear displacement of a fracture causes separation of 

the fracture surfaces due the roughness and rigidity of the rock (Zhou et al., 2018). The surface 

separation, or aperture, provides additional volume for fluid flow, effectively increasing the fracture 

transmissivity. For hard rocks, the transmissivity can be enhanced by several orders of magnitude (Y. 

Guglielmi et al., 2015; Krietsch et al., 2020), and is considered irreversible in subsurface conditions (Lee 

& Cho, 2002). However, there is an upper limit to dilation due to shearing which is related to the height 

of the asperities in the fracture (Esaki et al., 1998). This limits the transmissivity enhancement due to 

hydraulic shearing. 

The shearing process can produce fault gouge from crushing of the rough fracture surfaces. The 

presence of gouge generally inhibits flow and may be further amplified by compaction due to the 

normal stress acting to compress the gouge. Lee and Cho (2002) found that gouge production 

counteracted dilatancy beyond 7-8 mm. This should be understood in the sense that, while the 

maximum void aperture increases due to shear, the mean aperture remains constant, and therefore the 

transmissivity remains at most constant for extended shear (Zhou et al., 2018). 

The non-linear relationship between the separation of fracture surfaces and transmissivity has 

prompted the introduction of the mechanical and hydraulic aperture. The mechanical aperture usually 

refers to the mean distance between the fracture walls. In the idealized case of a fracture that is planar 

and smooth (i.e. no roughness) and with a constant separation between the fracture surfaces, the fluid 

flow within the fracture can be solved analytically which leads to a result known as the cubic law 

(Witherspoon et al., 1980), 

𝑇 =
𝜌𝑓𝑔𝑏

3

12𝜇
 

where 𝜌𝑓 (kg m
-3) and 𝜇 (Pa s) are the fluid density and viscosity, respectively, 𝑔 (m2s-1) is the 

gravitational acceleration, 𝑇 (m2s-1) is the transmissivity, and 𝑏 (m) denotes the hydraulic aperture. 

Transmissivity is the flow rate through a unit width of rock under a unit hydraulic gradient (see Appendix 

8.1 for details). For a rough-walled fracture, the hydraulic aperture is the aperture of a smooth and 

planar fracture with parallel walls that would produce the same flow rate for a given pressure gradient 

as the rough-walled fracture (Lavrov, 2017). 

The fracture roughness causes the flow to become more tortuous and non-laminar, reducing the 

effective flow rate. This implies that the hydraulic aperture is smaller than the mechanical aperture 

(Barton et al., 1985). Lavrov (2017) suggested the hydraulic aperture could be as much as 5 − 10 times 

smaller than the mechanical aperture. In laboratory experiments, relationships between the mechanical 

and hydraulic aperture have been proposed. Barton et al. (1985) used concepts related to surface 

roughness to devise a model to relate the mechanical and hydraulic aperture. For small apertures, a 

highly non-linear relationship is expected. For large apertures on the other hand, the hydraulic and 

mechanical apertures tend to be similar.  

A distinction should be made between fractures in contact, and not in contact. While Witherspoon et al. 

(1980) suggested that the cubic law is valid in either case with little to no modifications, later studies by 

Bandis et al. (1983); Barton et al. (1985) and others found that normal loading may have significant 

impact on fracture closure up to a state of maximum closure. Moreover, mismatches between fracture 

surfaces subject to normal loading induce other non-linear behavior. A more recent study by Oron and 

Berkowitz (1998) suggested that both the geometry and area fraction of contact regions may cause 
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faster-than-cubic decrease in transmissivity as the contact area non-linearly increases. Lee and Cho 

(2002) saw similar results in granite for small mechanical apertures and stresses above 3 MPa. Although 

several studies have explored relations that account for fracture asperities and surface roughness (e.g. 

Kamali and Pournik (2015); Zimmerman et al. (1992); Zimmerman et al. (1991)), the unmodified cubic 

law, as a lowest-order approximation, is expected to be sufficiently accurate for fracture surfaces of 

considerable separation (Brown, 1987). 
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3 Conceptual model for flow and mechanics in fractured porous media 
 

The hydromechanical dynamics in natural subsurface rock are extraordinarily complex due to the 

interaction between the porous rock and discontinuous fractures in addition to the coupling between 

the hydraulic and mechanical processes. The proper equations to model hydromechanical interactions in 

a rock volume depends on the assumptions of the conceptual representation of the rock volume itself. 

Different conceptual models for flow and mechanics in fractured porous media are well-suited to 

accurately model different aspects of interest to the modeler. Additionally, the model choices require 

different kinds of solution strategies that demand different amounts of computing resources. Generally, 

we would like to minimize the computer resources needed to find a satisfactory solution to the problem 

at hand.  

This chapter presents three common conceptual frameworks used to model hydro-mechanical 

processes in fractured porous media, as illustrated in Figure 3.1. The end-member cases of (multi-

)continuum models and discrete fracture network (DFN) models are characterized by only modeling the 

continuous medium or the discontinuous fractures, respectively. However, there are ways for multi-

continuum models to incorporate ideas from discrete fracture models, and vice versa DFN models to use 

ideas from continuum modeling. DFN models have proven useful to simulate dynamics in large numbers 

of fractures across multiple scales. However, the lack of a representation of the continuum means that a 

well-connected network is needed for the approach to be useful. On the other hand, continuum models 

assume that parameters and variables are continuous, an assumption that may be too strong given the 

discontinuous nature of subsurface structures such as localized barriers or combined conduit-barriers. 
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Figure 3.1 Illustration of conceptual models for fractured porous media. The figure is adapted from Sandve (2013). 

A compromise between the two approaches are the discrete fracture matrix (DFM) models, 

characterized by explicitly representing both the fracture network and the continuum. These models are 

well-suited to apply different physical laws to the continuum and to the fractures which are tailored to 

the nature of the physical processes being studied. Owing to the high length-to-thickness aspect ratio of 

fractures, a reduction of dimensionality procedure allows fractures to be modeled as two-dimensional 

inclusions in the three-dimensional volume, which results in a mixed-dimensional model. We introduce 

the fracture aperture, which recognizes that the fractures has a volume and therefore allows for 

coupled equations to be posed in the continuum and the fractures in a dimensionally consistent way. 

The mixed-dimensional DFM model used in this thesis is implemented in PorePy1, a flexible, object-

oriented modeling software implemented in Python (Keilegavlen et al., 2020). The framework allows the 

prescription of equations in each domain, and a physically meaningful description of the exchange of 

e.g. energy and mass between each domain (Reichenberger et al., 2006). The mixed-dimensional DFM 

meshes are generated using gmsh (Geuzaine & Remacle, 2009).  

This chapter is structured as follows. Section 3.1 reviews single- and multi-continuum models including 

strategies to include fracture physics. In Section 3.2, DFN models are briefly described. Section 3.3 

provides an overview of of DFM models. A description of mixed-dimensional DFM models is provided in 

Section 3.4, including explicit modeling of interfaces, fracture intersections, and operators to project 

variables between adjacent domains. 

 
1 https://github.com/pmgbergen/porepy  

Fractured porous medium 

Single-continuum  Multi-continuum           DFN model             DFM model                

model   model 

https://github.com/pmgbergen/porepy
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3.1 Continuum models 
Continuum models are a broad class of models that implicitly represent fracture dynamics by altering 

the parameters of the continuum However, the fracture geometry is not explicitly modeled. Two 

common approaches are the single-continuum and the multi-continuum family of models. For the flow 

problem, both approaches attempt to identify an effective permeability 𝓀𝑒 that incorporates the effects 

of the heterogenous porous medium containing a network of fractures of varying size, roughness, 

orientation, aperture, frequency, and gouge content. Using the standard Darcy relation for the specific 

flux and gradient of the pressure, we have 

⟨𝑞⟩ = − ⟨
𝓀

𝜇
∇(𝑝 + ℊ)⟩ = −

𝓀𝑒
𝜇
⟨∇(𝑝 + ℊ)⟩ (3. 1) 

where 𝑞 is the flux, 𝓀 is the permeability, 𝜇 is the viscosity, and ℊ is an external potential field. The 

upscaling or averaging operator 〈⋅〉 is the method that relates the average flux to the gradient of the 

pressure. Ideally, the volume over which the upscaling procedure is performed should correspond to a 

representative elementary volume (REV) containing the heterogeneous porous medium and the 

fractures. If we can find such an REV, then the single-continuum model is an upscaling procedure from 

microscale pores and cracks to a macroscale model where the permeability and porosity vary 

continuously in space. 

Natural subsurface media are often found to have complex fracture networks, which can make it 

impossible to find an REV due to lack of scale separation. For example, a fracture with substantially 

different properties than the surrounding porous medium may span the domain of interest. Then an 

REV enclosing the fracture may be too large compared to the scale of the problem we are interested to 

solve. 

The multi-continuum models try to alleviate this by introducing multiple continua, each with their own 

set of equations, and with transfer terms between the continua. However, for complex fractured porous 

media, challenges remain. First, the multi-continuum models, like the single-continuum models, assume 

that the upscaled parameters and variables within each continuum vary continuously in space. 

Furthermore, no general approach to formulate the transfer terms are known, although multiple are 

proposed (Berre et al., 2019).  

Despite this, multi-continuum models are useful for their computational efficiency and ability to model 

certain aspects of porous media accurately. One such aspect is the modeling of pores and cracks. Pores 

may provide significant storage, while the cracks control permeability variations. In this case, a multi-

continuum model may propose different constitutive relations for each continuum that accurately 

describe their influence on the dynamics. Note that blocking fractures do not contribute to flow, and 

therefore other models are usually preferred in those cases (Berre et al., 2019). 

Some research has been invested in the extension to coupled stress and fluid flow models. Oda (1986) 

developed a model where cracks are replaced by parallel planar plates connected by springs and the 

elastic stiffness tensor and permeability tensor are replaced by equivalent quantities. The fracture 

network is therefore replaced by a model for an anisotropic, elastic porous medium accounting for 

fracture orientation, size, and aperture. A drawback of this approach is the assumption that the cracks 

are sufficiently small compared to the intact rock so that they can be replaced continuous equivalents. 
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Furthermore, certain assumptions are made on the origin of conductivity and the decomposition of the 

elastic strain, which may hold only in certain field cases. These assumptions are not based on a 

theoretical foundation in the sense of continuum mechanics. 

Gan and Elsworth (2016) extended the crack model of Oda (1986) to include effects such as friction and 

aperture which depend on normal closure, shear dilation, and fracture opening. A dual continuum 

model is employed to model rock and fracture porosity. The framework can be interpreted as a discrete 

fracture model with explicit geometric consideration of fractures. However, the upscaled nature of 

continuum models implies that properties like the permeability are “smeared” in space. As such, the 

framework may be more suitable for simulation of long-term reservoir behavior, rather than detailed 

short-term simulations.  

 

3.2 Discrete fracture network models 
Discrete fracture network (DFN) models explicitly represents the geometric features of fractures such as 

extent, orientation, shape, and aperture in a computational framework while disregarding the explicit 

representation of the surrounding rock volume (Lei et al., 2017). Equations are only posed in the 

fractures, ignoring processes that occur in the intact rock. This approach may be favorable for compact 

rock, where the porosity of the host rock is incredibly low, and storage and conduction of fluid 

predominately takes place in fractures and faults. 

For practical use in subsurface simulations, the initial location of the fractures must usually be known. 

This is often not the case due to sparse observations in the subsurface but is critical, for example, for a 

flow model since conduction through the domain occurs exclusively within the fracture network. Various 

statistics based on the field data can be used to stochastically generate realizations of well-connected 

fracture networks, for example by using methods of fractal geometry and power law models (Bonnet et 

al., 2001). The system of equations can then be solved for each realization. Since realizations are 

random, multiple realizations are often needed to constrain the uncertainty of the computed solution 

with respect to the location, geometry, and properties of the fractures (Ren et al., 2017). 

For coupled processes such as hydraulic, mechanical, thermal, or chemical processes, additional 

methodology may be needed since these processes may also be sensitive to the unfractured part of the 

domain. For example, Koh et al. (2011) applied an iterative technique where the stress state at the 

previous time step is used to estimate the aperture distribution of the fracture network at the current 

time step. The aperture is then used to calculate an equivalent permeability for an upscaled continuum 

model, which then enables the estimation of the mechanical stress, displacement, fluid pressure, and 

temperature distribution in the reservoir. 

 

3.3 Discrete fracture matrix model 
Discrete fracture matrix (DFM) models are characterized by explicitly representing both fractures and 

the continuum (or matrix) and can therefore be viewed as a combination of continuum models and DFN 

models. For DFM models, small-scale fractures and cracks are typically upscaled to the matrix so that 

the parameter fields in the matrix considers the hydraulic and mechanical effects of the small-scale 

features. Many of the upscaling methods typically used for continuum modeling can be applied to DFM 
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models. As opposed to continuum models however, macroscale fractures and faults are kept in the 

model, which means that the impact of the fracture geometry on the coupled dynamics can be directly 

modeled. For example, blocking fractures, such as localized barriers, can be modeled with DFM models, 

but not with continuum models. 

Several classes of DFM models exist depending on the approach used to model the interaction between 

fractures and the matrix. Some models do not explicitly represent the fracture surfaces in the 

computational grid. Instead, fracture-matrix interaction is incorporated by modifying the numerical 

methods (see Keilegavlen et al. (2020) and references therein). These approaches result in so-called 

non-conforming meshes, where the grid cells in the matrix are not constrained by the geometric 

location or orientation of the fractures, see Figure 3.2. This can be an advantage in certain conditions, 

since the accuracy of the solution for a discretization scheme can depend on the quality of the mesh. 

Regular meshes for instance, can greatly improve the convergence properties of some discretization 

schemes. 

 

Figure 3.2 Illustration of discretization approaches for discrete fracture matrix models. The grey lines are the matrix mesh. The 
figure is adapted from Berre et al. (2019) 

Other approaches introduce interfaces on the boundary between the matrix and the fractures. The 

meshes for these approaches are conforming. This means that the fracture surfaces are geometric 

boundaries for internal boundaries in the matrix, which generally needs unstructured meshes. Gebauer 

et al. (2002) presented an equidimensional approach where the fracture and matrix are modeled in the 

same dimension. Then, the governing equations are solved using a multigrid method based on a 

hierarchical decomposition of the fracture and intact rock. However, these methods can be 

computationally intensive for problems that has fractures with high aspect ratios. Instead, fractures can 

be modeled as lower-dimensional domains in the matrix. 

 

3.4 Mixed-dimensional DFM model 
The high-aspect ratio of fractures seen in subsurface media motivates a reduction of dimensionality 

procedure (Berre et al., 2018b). In a three-dimensional reservoir, fractures are modeled as two-

dimensional inclusions and fracture intersections are modeled as one-dimensional inclusions. This 

approach is referred to as a mixed-dimensional DFM model, and is often computationally much more 

efficient (see e.g. Angot et al. (2009); Keilegavlen et al. (2020)) than equidimensional models with 

discrete fractures (Gebauer et al., 2002; Neunhäuserer et al., 2002). With this approach, each lower-

DFM models 

Non-conforming mesh Conforming mesh 
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dimensional inclusion of dimension 𝑑 is the result of a reduction of (3 − 𝑑) dimensions compared to the 

3d-matrix. At each point in the inclusion, we let 𝑎𝑑
𝑉  [m3-d] denote the magnitude of this reduction (Berre 

et al., 2018b). In practice, 𝑎𝑑
𝑉  is the length or cross-sectional area that is collapsed to produce a 2d-

fracture or 1d-intersection, respectively. We refer to this variable as the specific volume. With proper 

formulation of the primary variables and equations on each domain, this results in a physically 

consistent modeling approach.  

While natural fractures generally can be curviplanar, fractures in this thesis will represented fractures as 

discrete, planar, lower-dimensional structures of arbitrary orientation, and embedded in the 3D volume 

so that the fractures represent internal boundaries in the medium. We illustrate the mixed-dimensional 

geometry, including the hierarchical decomposition of geometric objects in Figure 3.3 (Keilegavlen et al., 

2020). 

 

 

 

        

 
Figure 3.3 Illustration of a mixed-dimensional geometry, including mesh in 3D, 2D and 1D. a) The 3D mesh is sliced to expose one 
of the fractures. b) The 2D fractures intersect, forming a one-dimensional domain along the intersection segment. c) The mesh 
for the 1D fracture intersection. 

 

3.4.1 Explicit representation of fracture intersections 
The structure and physical processes occurring in one-dimensional fracture intersections can be complex 

(Abell et al., 2012). From a geological perspective, such intersections may be the result of a younger 

fault propagating through an older fault zone. It may not be entirely clear if the structure of these 

intersections should be thought of as a “direct” combination of the two fractures, or if one of the faults’ 

properties is more significant to the structure of the intersection compared to the other. If one of the 

fractures undergoes shear deformation, the deformation may elongate the intersection or even 

a) b) 

c) 
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“disconnect” the crossing fracture from the original location of the intersection line (c.f. Figure 2.1). 
Similarly, a propagating tensile fracture may create a new intersection by propagating through a pre-

existing fracture. These observations obfuscate a clear path to modeling of intersections for most 

conceptual models. Therefore, some models have excluded explicit consideration of the one-

dimensional fracture intersections arguing that the small volumes of the intersections lead to numerical 

instabilities. Instead, the intersections are viewed as a transition zone between the adjacent fractures 

and by modifying the discretizations, the physical properties and processes in the intersections can be 

accounted for (Karimi-Fard et al., 2004; Stefansson, 2016). The approach favored by the PorePy 

simulator allows for representation of all types of lower-dimensional domains (Keilegavlen et al., 2020). 

This is a major advantage over models that exclude explicit representation of intersections. By modeling 

intersections as separate subdomains, specialized equations and parameters can be selected to most 

accurately model the dynamics that occur in these structures. 

 

3.4.2 Subdomain notation and interface projection operators 
The DFM model in PorePy enables communication between variables in subdomains of different 

dimensions (Keilegavlen et al., 2020). The simulator limits direct communication to subdomains of co-

dimension 1. This means that a 3D matrix can interact with 2D fractures, but not directly with 1D 

intersections. These interactions are accommodated by including interfaces that encapsulate the lower-

dimensional objects. A 2D fracture, for example, has one interface on either side to facilitate interaction 

with the 3D matrix.  

The interfaces are constructed to facilitate coupling between subdomains in the mixed-dimensional 

model. The interfaces have interface variables for physical quantities such as the fluid flux or contact 

traction. Through the use of various projection operators, variables in the lower-dimensional subdomain 

and variables adjacent to the internal boundary of the higher-dimensional subdomain can be mapped to 

the interface (or mortar) domain, and coupled to the interface variable. This coupling typically 

represents some constitutive relation between the dynamics in the subdomains.  

Specifically, denote Ω𝑑,𝑖 the subdomain of dimension 𝑑 = {1,2,3}, indexed by 𝑖. We omit the subscript 𝑖 

for any object if no ambiguity arises. We may have an arbitrary number of subdomains of dimension 1 or 

2, but only one of dimension 3. The external boundary for each domain is denoted 𝜕Ω𝑑, and is defined 

as the part of the boundary that is not adjacent to another domain of co-dimension 1. Internal 

boundaries are denoted 𝜕Ω𝑑
𝐼 , and are geometrically superimposed on the adjacent lower-dimensional 

domains (of co-dimension 1) and the interfaces separating these domains. We denote the interface 

between a higher-dimensional subdomain Ωℎ and a lower-dimensional subdomain Ω𝑙  as Γ𝑗 ≡ 𝜕Ωℎ
𝐼 ∩ Ω𝑙  

(the index 𝑗 depends on the indexes of the two subdomains, which is suppressed here). The two 

interfaces on either side of a lower-dimensional subdomain are identified by a superscript + or −, which 

is arbitrary up to implementation in numerical software. This allows us to identify 𝜕Ωℎ
+, 𝜕Ωℎ

−, the sides 

of the higher-dimensional internal boundary adjacent to Γ+ and Γ−, respectively. Finally, we denote 𝑛ℎ 

the unit normal vector from 𝜕Ωℎ
𝐼  to Ω𝑙, and 𝑛𝑙 the unit normal vector from Ω𝑙  to Γ−. See Figure 3.4 for 

an illustration of the domains and interfaces (Stefansson et al., 2020b). 
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Figure 3.4 Schematic illustration of coupling operators between generic subdomains. The interfaces 𝛤+ and 𝛤− correspond to 
𝜕𝛺ℎ

+ and 𝜕𝛺ℎ
−, respectively. The operators 𝛯 project from the interfaces to a subdomain, and the operators 𝛱 project from the 

subdomains to the interfaces. The trace operator tr projects to the internal boundary of 𝛺ℎ. Geometrically, all surfaces between 
𝜕𝛺ℎ

+ and 𝜕𝛺ℎ
− coincide. The figure is adapted from Stefansson et al. (2020b). 

 

We define the projection operators as follows (Keilegavlen et al., 2020). The mapping of a variable from 

an interface to a subdomain is indicated by Ξ, while the mapping from a subdomain to an interface is 

denoted Π. The operators are subscripted by ℎ and 𝑙, corresponding to Ωℎ and Ω𝑙, respectively, and 

superscripted by 𝑗, corresponding to Γ𝑗. For example, Ξℎ
𝑗
𝑣𝑗 denotes the mapping of the interface 

variable 𝑣𝑗 from the interface Γ𝑗 to the boundary of higher-dimensional domain, 𝜕Ωℎ
𝐼 . The mapping Πℎ

𝑗
 

for a variable 𝜉 ∈ Ωℎ is achieved by introducing a suitable trace operator that projects the variable to 

the internal boundary 𝜕Ωℎ
𝐼 , tr ∶  Ωℎ → 𝜕Ωℎ

𝐼 . Then, the projection of 𝜉 to Γ𝑗 is Πℎ
𝑗
tr(𝜉). 
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4 Governing equations 
 

This chapter describes a model that couples fluid flow and deformation in a three-dimensional domain 

to an arbitrary number of two-dimensional fractures in which fluid flow, traction balance, non-

penetration, and a friction law are modeled. Fractures are also coupled to fracture intersections, in 

which fluid flow is modeled. The model is used to explore the hydraulic and mechanical response to fluid 

injection in isothermal conditions. The model reflects geological conditions typical to Enhanced 

Geothermal Systems (EGS), where multiple shear zones, fractures and faults of variable thickness, 

conductivity, and orientation interact with the host rock. The model assumes isothermal, single-phase 

flow, and small deformations in a linearly elastic medium. Matrix hydraulic and mechanical properties 

are temporally invariant, while fractures deform according to a Coulomb type friction law and contact 

model. Formation and propagation of fractures is not modeled. 

 

4.1 The Biot model for poroelasticity 
The poroelastic model describes the dynamics of a system consisting of a skeletal framework of bulk 

porous material that is saturated by a fluid. Changes to the stress in the porous material affects fluid 

pressure, and changes in the fluid pressure or fluid mass induces volumetric changes in the porous 

material.  

Biot’s linear poroelastic model is expressed in terms of two independent variables and their coefficients. 

The basic variables to describe the effects on the solid are stress or strain. Likewise, the effects on the 

fluid are expressed in terms of pore pressure or increment of fluid content. Strain is a second-rank 

tensor, which for small deformations is linearized as the symmetric part of the displacement gradient, 

𝜺 = sym(∇𝑢) =
1

2
(∇𝑢 + ∇𝑇𝑢). (4. 1) 

The volumetric (or bulk) strain 휀𝑉 measures the deformation of the REV with volume 𝑉, and is defined as 

the sum of the normal strains which also equals the divergence of the displacement. With the 

convention that extensional strains are positive, 

휀𝑉 =
𝛿𝑉

𝑉
= tr(𝜺) = ∇ ⋅ 𝑢. (4. 2) 

The increment of fluid content 휁 is the fractional volume of fluid added to a control volume, and can be 

defined as the change in fluid mass content (fluid mass per unit reference volume) 𝑚𝑓 relative to an 

initial state 𝑚𝑓0, normalized by the initial density 𝜌𝑓0  (Wang, 2000), 

휁 ≡
𝑚𝑓 −𝑚𝑓0
𝜌𝑓0

≡
𝛿𝑚𝑓

𝜌𝑓0
. (4. 3) 
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The fluid content was used as a basic variable by Biot (1941), and is convenient because it is 

dimensionless, as opposed to the related state variable density, which is used in e.g. Botti et al. (2020); 

Garipov et al. (2016); Salimzadeh et al. (2018). 

The linear constitutive equations can be described in terms of (a) stress or strain, and (b) pore pressure 

or increment of fluid content. This leads to four complementary formulations for the relations between 

these variables. For the finite volume discretization methods used in this thesis, strain and pore pressure 

are most convenient to work with as independent variables. A formulation of this type is termed a 

mixed stiffness formulation in the literature (Wang, 2000). To illustrate the structure of the relations, 

consider an isotropic medium with an isotropically applied stress 𝜎 that is positive for tensile stresses. 

Two linear constitutive equations are sufficient to describe the dependent variables in terms of the 

primary variables, 

𝜎 = 𝑎11휀 + 𝑎12𝑝 (4. 4) 

휁 = 𝑎21휀 + 𝑎22𝑝 (4. 5) 

where each of the coefficients 𝑎𝑖𝑗  are determined by considering the incremental change in the 

dependent variable to its corresponding independent variable, where the other independent variable is 

held constant. For example, 𝑎11 is obtained by measuring the stress response due to changes in the 

applied strain, subject to constant pore pressure, 

𝑎11 =
𝜕𝜎

𝜕휀
|
𝑝=0

. (4. 6) 

These coefficients are termed drained, undrained, constrained or unconstrained for constant pressure, 

constant fluid content, constant strain, or constant stress, respectively (Wang, 2000). Biot (1941) 

showed that the coefficients are symmetric, i.e. 𝑎12 = 𝑎21. This means that the coupling coefficient for 

the pore pressure in the stress – strain relation is identical to the strain in the fluid content – pressure 

relation. 

In the most general linear case, for anisotropic stress and strain in non-principal coordinates, the mixed 

stiffness formulation reads  

𝝈 = 2𝐺𝜺 + 𝜆tr(𝜺)𝑰 − 𝛼𝑝𝑰 (4. 7) 

휁 = 𝛼tr(𝜺) + 𝑆𝜀𝑝               (4. 8) 

where 𝝈 [Pa] is the total stress, 𝐺 [Pa] is the shear modulus, 𝜆 [Pa] is Lamé’s first coefficient, 𝛼 [−] is 

the Biot coefficient, and 𝑆𝜀  [Pa] is the constrained specific storage coefficient. The shear modulus and 

Lamé’s first coefficient, collectively, constitute the Lamé parameters, which can be computed from 

Young’s modulus and Poisson’s ratio, two moduli commonly reported in the literature.  

The constrained specific storage coefficient is an important coefficient for describing the physical 

system. Depending on various assumptions on the fluid – rock interactions, the coefficient can be 

parameterized with different moduli or compressibilities. If we assume that the porosity is constant for 

constant differential pressure (i.e. equal changes in confining pressure and pore pressure), then the 

constrained specific storage coefficient 𝑆𝜀 can be expressed as, 
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𝑆𝜀 = 𝑐𝑓𝜙 +
𝛼 − 𝜙

𝐾𝑆
(4. 9) 

where 𝑐𝑓 [Pa
-1] is the fluid compressibility, 𝐾𝑆 [Pa] is the bulk modulus of the solid matrix composing of 

the porous skeleton, and 𝜙 [−] is the porosity. 

 

4.2 Poroelastic mechanical model 
The poroelastic mechanical model is based on the quasi-static momentum balance equation for an 

elastic porous medium, which reads 

∇ ⋅ 𝝈 + 𝑓 = 0 (4. 10) 

where 𝝈 [Pa] is the total stress and 𝑓 [Pa m-1] is the body force per unit volume (Coussy, 2003). The 

stress represents the combination of the stresses of both the fluid and solid skeleton. Under the 

assumptions of small deformations in a linearly elastic medium, we can express the constitutive relation 

for the stress as 

𝝈 = 𝝈′ − 𝜶𝑝 = 𝒞 ∶ 𝜺 − 𝜶𝑝 (4. 11) 

where 𝝈′ [Pa] is the effective mechanical stress tensor, 𝜶 [−] is the Biot coupling tensor, 𝒞 [Pa] is the 

fourth-order stiffness tensor, 𝜺 [– ] is the strain tensor, and 𝑝 [Pa] is the fluid pressure. The Biot coupling 

tensor is usually approximated as isotropic, such that 

𝜶 = 𝛼𝑰 (4. 12) 

where 𝑰 is an identity tensor, and 𝛼 [−] is the Biot coefficient.  

For isotropic media, the stiffness tensor can be expressed as a linear combination of any two moduli 

among the elastic moduli for isotropic materials. For instance, with the Lamé parameters, 

𝒞 ∶ 𝜺 = 2𝐺𝜺 + 𝜆 tr(𝜺) 𝑰 = 𝐺(∇𝑢 + ∇𝑇𝑢) + 𝜆 tr(∇𝑢)𝑰. (4. 13) 

However, any two of the other moduli, bulk modulus 𝐾 [Pa], Young’s modulus 𝐸 [Pa], Poisson’s ratio 

𝜈 [−], or P-wave modulus 𝑀 [Pa] may also be used. Commonly measured moduli in geological 

characterization studies are Young’s modulus and Poisson’s ratio, which are related to the Lamé 

parameters by 

𝐸 =
𝐺(3𝜆 + 2𝐺)

𝜆 + 𝐺
, 𝜈 =

𝜆

2(𝜆 + 𝐺)
. (4. 14) 

Integrating Eqn. 4.10 over the domain Ω, applying Eqn. 4.11 and using the divergence theorem, the 

equation describing the mechanical state in the intact rock is given by 

∫ (𝒞 ∶ 𝜺 − 𝛼𝑝𝑰) ⋅ 𝑛 𝑑𝐴
∂Ω

+∫𝑓 𝑑𝑉
Ω

= 0. (4. 15) 
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4.3 Poroelastic flow model 

4.3.1 Mass balance 
Biot and Willis (1957) expressed continuity of the fluid as a balance of the increment of fluid content 

with the bulk relative displacement of the fluid and solid scaled by the porosity, 

휁 = −∇ ⋅ [𝜙(𝑈𝑓 − 𝑈𝑠)] (4. 16) 

where the subscripts {𝑓, 𝑠} refer to the displacement of the fluid and solid, respectively. The porosity 

appears because it corresponds to the fraction of the overall volume occupied by the fluid and may be 

taken outside the divergence operator for spatially invariant porosity. Since the increment of fluid 

content is taken positive for fluid added to the REV, a negative sign appears in Eqn. 4.16. By taking the 

time-derivative of Eqn. 4.16 for constant porosity, we get 

𝜕휁

𝜕𝑡
= −∇ ⋅ [𝜙 (

𝜕𝑈𝑓

𝜕𝑡
−
𝜕𝑈𝑠
𝜕𝑡
)] ≡ −∇ ⋅ 𝑞 (4. 17) 

where 𝑞 ≡ 𝜙(�̇�𝑓 − �̇�𝑠) is the relative velocity through the pores, between the fluid and the solid, 

usually referred to as the specific discharge. The dot is shorthand for time derivative, �̇� ≡ 𝜕𝑥/𝜕𝑡. 

An additional term 𝑄 can be added to the right-hand side of Eqn. 4.17 to account for the rate of fluid 

per unit time added to the REV, 

𝜕휁

𝜕𝑡
+ ∇ ⋅ 𝑞 = 𝑄 (4. 18) 

which is an expression for mass balance for the fluid. For an incompressible fluid, the fluid density stays 

constant. Then, the increment of fluid content would only depend on the changes in the pore volume. 

Complementary, for an incompressible rock, the fluid content would only change due to the fluid 

compressibility (𝑐𝑓), i.e. 휁 = 𝜙𝑐𝑓𝑝 (Wang, 2000). 

 

4.3.2 Darcy’s law 
Darcy’s law is a linear constitutive relation that relates the specific discharge and the fluid pressure. It 

was originally conceived for the one-dimensional case in 1856 by Darcy through numerous experiments 

in a vertical sand column (Wang, 2000). The three-dimensional form of Darcy’s law, which holds under 

the assumption of laminar flow, can be stated for an arbitrary fluid as follows, 

𝑞 = −
𝓀

𝜇
∇(𝑝 + ℊ) (4. 19) 

where ℊ is an external potential field, in most cases the gravitational potential, ℊ = 𝜌𝑓𝑔𝑧, 𝓀 [m2] is a 

second-rank symmetric tensor termed the intrinsic permeability, and is understood to be a function of 

the pore geometry. The term 𝜇 [Pa s] is the fluid viscosity. 
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4.3.3 Transient fluid flow 
The partial differential equation governing fluid flow is derived by combining Darcy’s law (Eqn. 4.19) 

with the fluid continuity equation (Eqn. 4.18), 

𝜕휁

𝜕𝑡
− ∇ ⋅

𝓀

𝜇
∇(𝑝 + ℊ) = 𝑄. (4. 20) 

We seek a mixed stiffness formulation where the fluid pressure and strain (or equivalently 

displacement) are primary variables, and stress and fluid content are functions of the primary variables. 

By substituting Eqn. 4.8 into Eqn. 4.20, we get 

𝜕

𝜕𝑡
(𝛼∇ ⋅ 𝑢 + 𝑆𝜀𝑝) − ∇ ⋅

𝓀

𝜇
∇(𝑝 + ℊ) = 𝑄 (4. 21) 

where 𝑆𝜀 is the constrained specific storage coefficient (ref. Eqn. 4.9). This equation is reminiscent to 

the hydrogeologic transient flow equation in a horizontal aquifer, with two exceptions (Wang, 2000). 

The specific storage is uniaxial in the groundwater case, and the coupling term 𝛼∇ ⋅ 𝑢 is absent. With 

volumetric expansion, the REV can hold more fluid, causing effective influx of fluid and potentially 

reducing the pore pressure. Note that since ∇ ⋅ 𝑢 ≡ 𝑡𝑟(𝜺), strain and displacement are mathematically 

equivalent choices for the kinematic primary variable in the case of small deformations. 

Integrating Eqn. 4.21 over the domain Ω and using the divergence theorem, the equation describing the 

fluid flow in the intact rock is given by 

∫
𝜕

𝜕𝑡
(𝛼∇ ⋅ 𝑢 + 𝑆𝜀𝑝) 𝑑𝑉

Ω

−∫
𝓀

𝜇
∇(𝑝 + ℊ) ⋅ 𝑛 𝑑𝐴

𝜕Ω

= ∫𝑄 𝑑𝑉
Ω

. (4. 22) 

 

4.4 Flow in fractures 
Fractures are complex structures with significant impact on fluid flow. Fractures are assumed to always 

allow fluid flow due to fracture surface roughness which provides void space for the fluid. This allows us 

to relate the hydraulic aperture to the fracture transmissivity through the cubic law (see Section 2.3). 

The hydraulic aperture can vary in space and time, which technically violates the “parallel plate” 

assumption of fractures. We assume these errors are small. 

Shear zones will be modeled like fractures. The heterogenous properties of the core and damage zone 

with respect to the host rock result in complex flow patterns. We will assume that the damage zone 

does not have noteworthy influence on the hydraulic and mechanical dynamics. A single localized 

conduit (or barrier) is assumed to dominate the flow and deformation patterns. If multiple conduits are 

present, a single localized conduit is assumed to hydraulically close the other conduits. These simplifying 

assumptions allow us model shear zones (or faults) as discrete fractures. 

With the mixed-dimensional model, we introduce two primary variables on the interfaces to couple the 

equations in the matrix and the fractures. Consider an interface Γ𝑗 between the 3D matrix Ωℎ and a 2D 

fracture Ω𝑙. The interface displacement is denoted 𝑢𝑗 ∈ ℝ
3, and is restricted by the projection of the 

trace of 𝑢ℎ in Ωℎ such that  

𝑢𝑗 = Πℎ
𝑗
tr(𝑢ℎ),  on Γ𝑗. (4. 23) 
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This naturally suggests that the internal boundary 𝜕Ωℎ
𝐼  of Ωℎ is governed by a Dirichlet condition for the 

momentum balance. We differentiate between the displacement 𝑢𝑗
+ on the positive interface Γ𝑗

+, and 

the displacement 𝑢𝑗
− on the opposing interface Γ𝑗

−. Then, the displacement jump is defined as [𝑢𝑗] ≡

Ξ𝑙
𝑗
(𝑢𝑗
+ − 𝑢𝑗

−), from which we define the normal (scalar) and tangential (vector) components [𝑢𝑗]𝑛
≡

[𝑢𝑗] ⋅ Ξ𝑙
𝑗
𝑛𝑙 and [𝑢𝑗]𝜏

≡ [𝑢𝑗] − [𝑢𝑗]𝑛
Ξ𝑙
𝑗
𝑛𝑙, respectively. The positive and negative interfaces are defined 

so that the normal displacement jump is non-negative, [𝑢𝑗]𝑛
≥ 0. 

The interface flux is denoted by 𝑣𝑗 and is required to satisfy  

𝑣𝑗 = Πℎ
𝑗 (𝑞ℎ ⋅ 𝑛ℎ),  on Γ𝑗 (4. 24) 

where 𝑞ℎ is the flux on 𝜕Ωℎ
𝐼  (c.f. Eqn. 4.19). 

In the 2D fractures, the primary variables are the fluid pressure 𝑝 and the effective (tensile) contact 

pressure 𝜎′ ∈ ℝ3. Due to Newton’s third law, continuity of forces is needed on both sides of the 

fracture, 

Π𝑙
𝑗(𝜎′ − 𝑝𝑛𝑙) = Πℎ

𝑗
(𝝈 ⋅ 𝑛ℎ|𝜕Ωℎ

+) = −Πℎ
𝑗
(𝝈 ⋅ 𝑛ℎ|𝜕Ωℎ

−),  on Γ𝑗 (4. 25) 

Note that the total fracture stress does not depend on the Biot coefficient since the fracture is modeled 

as an open space, not a porous medium. 

 

4.4.1 Flow in and across fractures 
The flow in a fracture Ω𝑙  is given by (Keilegavlen et al., 2020; Stefansson et al., 2020a)  

𝜕𝑎𝑙
𝑉

𝜕𝑡
+ 𝑎𝑙

𝑉𝑐𝑓
𝜕𝑝

𝜕𝑡
− ∇ ⋅ (𝑎𝑙

𝑉
𝓀

𝜇
∇(𝑝 + ℊ)) = 𝑄 + Ξ𝑙

𝑗
𝑣𝑗. (4. 26) 

For 2D fractures the specific volume equals the hydraulic aperture, 𝑎𝑙
𝑉 = 𝑏. The term 𝜕𝑎𝑙

𝑉/𝜕𝑡 is the 

temporal volumetric increment due to changes in the displacement jump; for 2D fractures it is 

equivalent to 𝜕𝑏/𝜕𝑡. The fracture permeability in the directions tangential and normal to the fractures 

can be imposed independently of each other. The permeability 𝓀 in Eqn. 4.26 is the effective tangential 

permeability (Berre et al., 2018b), and is computed from the cubic law, 

𝓀 = 𝑘𝑰 =
𝑏2

12
𝑰 (4. 27) 

where 𝑘 [𝑚2] is the isotropic tangential permeability. Therefore the full expression for the fracture 

conductivity is 𝑎𝑙
𝑉𝓀/𝜇 = 𝑏3/(12𝜇)𝑰, which has an equivalent structure as the cubic law for the 

transmissivity (see Section 2.3). The flux 𝑣𝑗 across the fracture – matrix interfaces is governed by a 

Robin-type interface condition. This term enters Eqn. 4.26 next to the source term. We compute a finite 

difference over half the fracture aperture, so that for each fracture interface, 𝑣𝑗 satisfies  (Berre et al., 

2019; Martin et al., 2005) 
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𝑣𝑗 = −
𝑘⊥

Π𝑗
𝑙𝜇
(
2

Π𝑗
𝑙𝑏
(Π𝑙

𝑗
𝑝𝑙 − Πℎ

𝑗
tr(𝑝ℎ)) + Π𝑙

𝑗
∇ℊ𝑙 ⋅ Πℎ

𝑗
𝑛ℎ) ,  on Γ𝑗 (4. 28) 

where 𝑘⊥ [𝑚2] is the effective normal permeability, which is the same as the isotropic tangential 

permeability (𝑘) projected to the interface,  𝑘⊥ = Π𝑙
𝑗
𝑘. Eqn. 4.28 represents the resistance to flow 

across the fracture, and may cause a jump in the pressure across the fracture. This allows us to model 

fractures as barriers to flow (for example localized barriers, Section 2.2.1). In that case, the permeability 

in the fracture is very low, and we will get a discontinuity in the pressure across the fracture (Berre et 

al., 2019). Since we think of the flux to occur normal to, yet within the fracture, we consider only the 

external force ∇ℊ in Ω𝑙  as opposed to approximating a difference from higher- and lower-dimensional 

terms. The force is projected to the interface and dotted with the normal vector 𝑛ℎ so that only the part 

of the force normal to the fracture interface is taken into account.  

Integrating Eqn. 4.26 over the domain Ω𝑙  and using the divergence theorem, the equation describing 

the fluid flow in the fractures is given by 

∫ (
𝜕𝑎𝑙

𝑉

𝜕𝑡
+ 𝑎𝑙

𝑉𝑐𝑓
𝜕𝑝

𝜕𝑡
)  𝑑𝑉

Ω𝑙

−∫ 𝑎𝑙
𝑉
𝓀

𝜇
∇(𝑝 + ℊ) ⋅ 𝑛 𝑑𝐴

∂Ωl

= ∫ 𝑄 𝑑𝑉
Ω𝑙

+∫ Ξ𝑙
𝑗
𝑣𝑗 𝑑𝑉

Ω𝑙

. (4. 29) 

 

4.4.2 Flow in fracture intersections 
Flow in fracture intersections is adapted from Eqn. 4.26, noting that since 3D-1D couplings are not 

considered, the volumetric increment due to expansion of the 3D matrix is not included, 

𝑎𝑙
𝑉𝑐𝑓

𝜕𝑝

𝜕𝑡
− ∇ ⋅ (𝑎𝑙

𝑉
𝓀

𝜇
∇(𝑝 + ℊ)) = 𝑄 + Ξ𝑙

𝑗
𝑣𝑗 (4. 30) 

where 𝑎𝑙
𝑉 = 𝑏𝑙

2 accounts for the volume of the collapsed dimensions. In the same way as for flow in 

fractures, it is the integrated formulation of the equation that is used in discretization. The aperture 𝑏𝑙 is 

computed by projecting and averaging the aperture from the higher-dimensional neighboring domains. 

The flux the 1D-2D interface is adjusted to account for area of the fracture boundary through which the 

higher-dimensional flux flows, 

𝑣𝑗 = −(Πℎ
𝑗
𝑎ℎ
𝑉)
𝑘⊥

Π𝑗
𝑙𝜇
(
2

Π𝑗
𝑙𝑏𝑙
(Π𝑙

𝑗
𝑝𝑙 −Πℎ

𝑗
tr(𝑝ℎ)) + Π𝑗

𝑙∇ℊ𝑙 ⋅ Π𝑗
ℎ𝑛ℎ) ,  on Γ𝑗 (4. 31) 

 

4.5 Contact model 
Fracture deformation is governed by two constitutive laws, a non-penetration law in the direction 

normal to the fracture, and a Coulomb friction law in the direction tangential to the fracture. The 

formulation of these laws are adapted from Berge et al. (2019). Let 𝜎𝑛
′  and 𝜎𝜏

′ denote the normal and 

tangential components of 𝜎′, respectively (c.f. Eqn. 4.25). Also, recall that the displacement on the 

interfaces is computed from Eqn. 4.23.  

The non-penetration law ensures that the fracture sides cannot penetrate each other, and thus governs 

the relation between the effective contact pressure and displacement in the normal direction: 
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          [𝑢𝑗]𝑛
−𝔊 ≥ 0

𝜎𝑛
′ ([𝑢𝑗]𝑛 −𝔊) = 0

                        𝜎𝑛
′ ≤ 0.

(4. 32) 

The non-penetration law says that the normal component of the displacement jump is always non-

negative. If the fracture faces are out of contact ([𝑢𝑗]𝑛 −𝔊 > 0), then the total normal pressure in the 

fracture is governed by the fluid pressure (c.f. Eqn. 4.25). On the other hand, if the fracture surfaces are 

subject to an effective normal compressive pressure (𝜎𝑛
′ < 0), then the fracture faces must be in 

contact (i.e. [𝑢𝑗]𝑛
−𝔊 = 0). The parameter 𝔊 ≥ 0 is the gap between the fracture surfaces and 

depends on the displacement jump. In this thesis, we use 

𝔊([𝑢𝑗]𝜏
) = 𝔊0 + tan(𝜃)‖[𝑢𝑗]𝜏‖

(4. 33) 

where 𝔊0 ≥ 0 is the residual gap when no deformation has occurred and is typically set to zero. The 

second term is an empirical shear dilation relation, as described in Stefansson et al. (2020b) and 

illustrated in Figure 4.1. As we discussed in Section 2.3, shearing may induce dilation due to surface 

roughness. Herein, we assume the relationship is linear, and that the dilation angle 𝜃 is constant. 

Therefore, no upper limit on the dilation due to extended shearing is considered. Dilation is coupled 

directly to the contact conditions. This means that not only are the hydraulic parameters impacted by 

dilation through the cubic law (Eqn. 4.27), but also the deformation of the intact rock. This is in the 

sense of the balance between interface displacement and the displacement in the matrix adjacent to the 

fractures (see Eqn. 4.23). A positive fracture gap displaces the intact rock adjacent to the fracture. 
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Figure 4.1 Shear dilation due to slip. The fracture aperture for a closed fracture is determined by the initial aperture 𝑏0 and the 

aperture due to shear dilation, which is the product of the shear and the tangent of the dilation angle, ‖[𝑢𝑗]𝜏
‖ 𝑡𝑎𝑛 𝜃. The figure 

is adapted from Koh et al. (2011). 

 

The equation for the fracture gap is linear. Therefore, the dilation is reversible if the displacement is 

reversed. In subsurface conditions however, slip is in practice irreversible since stress is relieved upon 

slip. Before any shearing has occurred, the fractures are typically somewhat conductive due to surface 

roughness. We take this into account by introducing an initial hydraulic aperture 𝑏0, which can be 

computed from the initial transmissivity using the cubic law, 

𝑏 = 𝑏0 + [𝑢𝑗]𝑛.
(4. 34) 

The Coulomb friction law provides conditions for slip to occur. Slip cannot occur unless the effective 

tangential stress exceed the effective normal stress multiplied with the friction coefficient 𝔉, 

{

‖𝜎𝜏
′‖ ≤ 𝔉|𝜎𝑛

′ |                                                     

‖𝜎𝜏
′‖ < 𝔉|𝜎𝑛

′ | → [𝛿𝑢𝑗]𝜏 = 0                           

‖𝜎𝜏
′‖ = 𝔉|𝜎𝑛

′ | → ∃ℭ ≥ 0 ∶  𝜎𝜏
′ = −ℭ[𝛿𝑢𝑗]𝜏

(4. 35) 

where [𝛿𝑢𝑗]𝜏 denotes the temporal increment of [𝑢𝑗]𝜏. The friction law states that if the friction bound 

(𝔉|𝜎𝑛
′ |) is not reached then the fracture faces are sticking, i.e. no change in the tangential displacement. 

On the other hand, if the bound is reached, then the slip direction is parallel to the tangential pressure.  

Closed fracture 

Shear dilation 

‖[𝑢𝑗]𝜏‖ tan𝜃 
𝜃 

‖[𝑢𝑗]𝜏‖ 𝑏0 
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Other than fixing the friction coefficient to a constant value as we do, two models are commonly used. 

The rate-and-state friction model models the friction coefficient in terms of the sliding velocity and a 

time-dependent state variable that is modeled by an ordinary differential equation (van den Ende et al., 

2018). The static/dynamic friction model differentiates between a static friction coefficient that is active 

during sticking, and a dynamic friction coefficient that is active during sliding. The dynamic coefficient is 

lower than the static coefficient, which results in cascading sliding as parts of the fracture starts sliding. 

The friction immediately re-strengthens to the static value when sliding ceases (McClure, 2012). 

 

4.6 Boundary conditions 
The governing equations presented in Sect. 4.2 – 4.5 are complemented by a set of boundary conditions. 

Two types of boundary conditions are specified: boundary conditions on the external boundaries, and 

boundary conditions on the internal boundaries. On the external boundary, which typically is the 

external boundary for the 3D-matrix, we can assign a combination of Dirichlet and Neumann conditions. 

For the mechanical model and flow model, we consider two independent partitions of the external 

boundary 𝜕Ω. For the mechanical model, consider 𝜕Ω𝑢,𝐷 and 𝜕Ω𝑢,𝑁, satisfying 𝜕Ω𝑢,𝐷 ∪ 𝜕Ω𝑢,𝑁 = 𝜕Ω and 

𝜕Ω𝑢,𝐷 ∩ 𝜕Ω𝑢,𝑁 = ∅, that represents the parts of the boundary for Dirichlet and Neumann conditions, 

respectively. Similarly, but independently, consider partitions of the external boundary for the flow 

model where Dirichlet and Neumann conditions are enforced. We denote these as 𝜕Ω𝑝,𝐷 and 𝜕Ω𝑝,𝑁, 

respectively. The boundary conditions can be summarized mathematically as: 

       𝑢 = 𝔤𝑢,𝐷,  on 𝜕Ω𝑢,𝐷 (4. 36) 

𝝈′ ⋅ 𝑛 = 𝔤𝑢,𝑁,  on 𝜕Ω𝑢,𝑁 (4. 37) 

       𝑝 = 𝔤𝑝,𝐷 ,  on 𝜕Ω𝑝,𝐷 (4. 38) 

         𝑞 = 𝔤𝑝,𝑁,  on 𝜕Ω𝑝,𝑁. (4. 39) 

The internal boundaries 𝜕Ω𝐼  are boundaries that separate domains of co-dimension 1. Consider an 

interface Γ𝑗 that separates a higher-dimensional subdomain Ωℎ and a lower-dimensional subdomain Ω𝑙.  

On the internal boundary 𝜕Ωℎ
𝐼  of Ωℎ, we enforce a Neumann condition (c.f. Eqn. 4.24) (Martin et al., 

2005), 

𝑞ℎ ⋅ 𝑛ℎ = Ξℎ
𝑗
𝑣𝑗,  on 𝜕Ωℎ

𝐼 . (4. 40) 

In contrast, the interface flux is manifested as a source term on Ω𝑙, see Eqns. 4.26 and 4.30. On 

boundaries of the fractures or fracture intersections that are not adjacent to any interface, no-flow 

Neumann conditions are enforced. 

For the contact problem, Dirichlet conditions are enforced on the internal boundaries 𝜕Ωℎ
𝐼  of the intact 

rock (c.f. Eqn. 4.23), so that  

Ξℎ
𝑗
𝑢𝑗 = tr(𝑢ℎ),  on 𝜕Ωℎ

𝐼 . (4. 41) 
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4.7 Gravitational effects 
The necessary adjustments to include the effects of gravity in the equations are summarized in the 

following. Let the external potential field be ℊ = 𝜌𝑓𝑔𝑧. Thus, ∇ℊ = [0, 0, 𝜌𝑓𝑔]
𝑇

. The fluid density can be 

modeled by using an exponential function of the pressure (Berre et al., 2018a), 

𝜌𝑓 = 𝜌𝑓,0𝑒
𝑐𝑓(𝑝−𝑝0) (4. 42) 

for a given reference pressure and fluid density, 𝑝0 and 𝜌𝑓,0 respectively. To be concrete, we could 

consider the reference pressure 𝑝0 = 1 atm = 0.1 MPa and reference density 𝜌𝑓,0 = 1000 kg/m
3 at 

11 °C.  

The poroelastic mechanical model, Eqn. 4.10, subject to a gravity force 𝑓 = −∇ℊ, can be expressed as 

∇ ⋅ 𝝈 − [
0
0
𝜌𝑚𝑔

] = 0 (4. 43) 

where 𝜌𝑚 is the rock density. The transient fluid flow equation, Eqn. 4.21, can be expressed as 

𝜕

𝜕𝑡
(𝛼tr(𝜺) + 𝑆𝜀𝑝) − ∇ ⋅

𝓀

𝜇
(∇𝑝 + [

0
0
𝜌𝑓𝑔

]) = 𝑄. (4. 44) 

Comparable results apply for fracture flow, Eqn. 4.26. For the fracture – matrix interface, Eqn. 4.28, we 

get 

𝑣𝑗 = −
𝑘⊥

Π𝑗
𝑙𝜇
(
2

Π𝑗
𝑙𝑏
(Π𝑙

𝑗
𝑝𝑙 − Πℎ

𝑗
tr(𝑝ℎ)) + Π𝑙

𝑗
[0,0, (𝜌𝑓)𝑙𝑔]

𝑇
⋅ Πℎ

𝑗
𝑛ℎ) (4. 45) 

 

Due to the non-linearity of Eqn. 4.42, it can be challenging to directly include the expression for 𝜌𝑓 in 

numerical simulations. Instead, one could argue that the density variations with respect to the expected 

pressure variations are exceedingly small for slightly compressible fluids such as water. Therefore, the 

pressure from the previous time step could be used to parameterize the density. Alternatively, one 

could include updates to density in the Newton iterations that are needed due to the contact conditions. 

 

4.8 Dimensional analysis 
The governing equations encompass dynamics on multiple scales. Scale disparities are manifested in the 

parameters of the governing equations and the scale of the solutions. When inverting the matrix 

representing the linear system of equations to find the solution, generally the solution will be less 

accurate if the entries in the matrix are far from unity. Preconditioners are one way to improve the 

solution accuracy (see e.g. Castelletto et al. (2018) and references therein). Another, conceptually much 

simpler approach is to scale the parameters and domain of the problem. To achieve this, we introduce 

dimensional scales and present the procedure to represent the system in non-dimensional form. 

 



 Governing equations  

42 
 

4.8.1 Matrix flow and deformation 
The following dimensional scales, 

𝐿 [m] characteristic length of the domain                          

𝑃 [Pa] characteristic magnitude of 𝑝 and 𝜎                         

𝑇 [s] characteristic time scale of observable dynamics

 

are used to transform the system to non-dimensional form. The coordinate transform 

𝑥 = 𝐿𝑥 𝑦 = 𝐿�̂� 𝑧 = 𝐿�̂� (4. 46) 

and substitutions 

𝓀 = 𝐿2�̂� 𝜇 = 𝑃𝑇�̂� 𝑄 =
1

𝑇
�̂� 𝑝 = 𝑃�̂� ℊ = 𝑃ℊ̂

𝑆𝜀 =
1

𝑃
�̂�𝜀 𝒞 = 𝑃�̂� 𝑓 =

𝑃

𝐿
𝑓 𝑢 = 𝐿�̂�  

(4. 47) 

define the non-dimensional variables and parameters. We consider the governing equations 4.15 and 

4.22, both in integrated form, 

∫ (𝒞 ∶ 𝜺 − 𝛼𝑝𝑰) ⋅ 𝑛 𝑑𝐴
𝜕Ω

+∫𝑓 𝑑𝑉
Ω

= 0 (4. 48) 

∫ 𝑆𝜀
𝜕𝑝

𝜕𝑡
+ 𝛼

∂(∇ ⋅ 𝑢)

𝜕𝑡
 𝑑𝑉

Ω

−∫
𝓀

𝜇
∇(𝑝 + ℊ) ⋅ 𝑛 𝑑𝐴

𝜕Ω

= ∫𝑄 𝑑𝑉
Ω

. (4. 49) 

Since the spatial coordinates are scaled, scaled variants of the linear operators must also be formulated. 

With a slight abuse of notation, we apply the substitutions 

𝑑𝐴 = 𝐿2𝑑�̂� 𝑑𝑉 = 𝐿3𝑑�̂�  

∇=
1

𝐿
∇̂ ∇ ⋅=

1

𝐿
∇̂ ⋅

𝜕

𝜕𝑡
=
1

𝑇

𝜕

𝜕𝑡

̂ (4. 50) 

noting that the gradient/divergence of the displacement is dimensionless. We find 

𝑃𝐿2 (∫ �̂� ∶ 𝜺 − 𝛼�̂�𝑰 𝑑�̂�
𝜕Ω

+∫𝑓 𝑑�̂�
Ω

) = 0 (4. 51) 

𝐿3

𝑇
(∫ �̂�𝜀

𝜕

𝜕𝑡

̂
(�̂�) + 𝛼

𝜕

𝜕𝑡

̂
(∇̂ ⋅ �̂�)𝑑�̂�

Ω

−∫
�̂�

�̂�
∇̂(�̂� + ℊ̂) 𝑑�̂�

𝜕Ω

−∫ �̂� 𝑑�̂�
Ω

) = 0. (4. 52) 

The scaling of boundary conditions is reported for completeness. To conform with the numerical 

implementation, we consider Dirichlet conditions directly, but Neumann conditions integrated, so that 

𝑢 = 𝔤𝑢,𝐷 ,  on 𝜕Ω𝑢,𝐷 ∫ 𝝈′ ⋅ 𝑛 𝑑𝐴
𝜕Ω

= ∫ 𝔤𝑢,𝑁 𝑑𝐴
𝜕Ω

,  on 𝜕Ω𝑢,𝑁

𝑝 = 𝔤𝑝,𝐷,  on 𝜕Ω𝑝,𝐷 ∫ 𝑞 ⋅ 𝑛 𝑑𝐴
𝜕Ω

= ∫ 𝔤𝑝,𝑁 𝑑𝐴
𝜕Ω

,  on 𝜕Ω𝑝,𝑁.  

(4. 53) 

Then, by applying the additional substitutions 
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𝔤𝑢,𝐷 = 𝐿�̂�𝑢,𝐷 𝔤𝑢,𝑁 = 𝑃�̂�𝑢,𝑁

𝔤𝑝,𝐷 = 𝑃�̂�𝑝,𝐷 𝔤𝑝,𝑁 =
𝐿

𝑇
�̂�𝑝,𝑁

(4. 54) 

and by substituting relevant parts of Eqn. 4.47, 4.50 and 4.54 into Eqn. 4.53, we find consistent scaled 

boundary conditions. 

 

4.8.2 Fracture flow 
For the non-dimensional form of the equations in the fracture and fracture intersections, we note that 

for the flow model (Eqns. 4.26 and 4.30), the specific volume terms are defined to exactly account for 

the collapsed dimension that is not integrated over explicitly. For the fluid injection term, we have 

suppressed that it is integrated over the specific volume. This is because it is provided in integrated 

form, ∫ 𝑄 𝑑𝑉Ω
 [𝐿3𝑇−1], for all dimensions. Finally, the flux terms are on the form [𝑎ℎ

𝑉 ⋅ 𝑞𝑙] =

[𝐿3−(𝑑+1) ⋅ 𝐿𝑇−1], so that integrated over the domain Ω𝑑 yield terms with units [𝐿3𝑇−1]. With these 

remarks, the same procedure as in the previous section will yield a consistent non-dimensional form. 

The contact laws should be straightforward. 
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5 Discretization 
 

Discretization of differential equations is the process of approximating the operators in an equation in 

terms of a finite number of degrees of freedom in the domain. Most basic, and indeed most common, 

are the equations where the operators are linear in terms of the primary variables. The primary 

variables are arranged in a system and solved with the methods of linear algebra. In other cases, the 

physics cannot reasonably be described linearly. These problems are significantly more challenging 

because in general we have no guarantee to find a (unique) solution to the problem. One common 

approach consists of guessing a solution, then computing the direction in the 𝑛-dimensional solution 

space where the next solution would give a smaller error compared to the existing guess. The 

computation of this direction can be challenging due to unresolved non-linearities. Some methods apply 

a linearization scheme at this point to solve the global system in terms of increments of solutions in the 

estimated direction for the true solution. 

In this chapter, we describe the core discretization methods for the poroelastic equations with contact 

mechanics that were introduced in Chapter 4. The full discrete system is cast in mixed-dimensional form, 

as presented in Chapter 3, which gives the global linear system a block type structure. For the system of 

governing equations, three classes of operators can be identified. There are terms that control the 

evolution of the primary variables through time (Eqns. 4.21, 4.26, 4.30), terms that combine a 

conserved flux with a first-order diffusion relation (Eqns. 4.10, 4.11, 4.19), and non-linear terms arising 

from the contact problem (Eqn. 4.35). 

The chapter is structured as follows. In Section 5.1, the structure of the mixed-dimensional linear system 

is presented. In Section 5.2, we present details of the temporal discretization. Section 5.3 introduces 

finite volume methods for conservation laws, while Section 5.4 provides details on the multi-point finite 

volume schemes that are used to discretize Darcy’s law for the fluid flux, and Hooke’s law for linear 

elasticity. In Section 5.5, we present the discretization approach for the contact problem using a semi-

smooth Newton method.  

 

5.1 Structure of the mixed-dimensional system 
We use a mixed-dimensional discrete fracture matrix (DFM) model with conforming meshes (see Section 

3.4). Conforming meshes are attractive because there is a one-to-one correspondence between the cells 

in the lower-dimensional subdomain and the internal boundary of the higher-dimensional subdomain.  

To understand the fundamental principles of the mixed-dimensional system, we consider a 3D domain 

(Ωℎ) with one embedded 2D fracture (Ω𝑙). The poroelastic Biot equations in the higher-dimensional 

subdomain (Ωℎ) are coupled to a frictional contact law and flow in the fracture. The primary variables 

are therefore displacement 𝑢 and pressure 𝑝. These allow computation of stress/contact pressure 𝜎. 
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The interface variables are interface displacement 𝑢 and interface fluid flux 𝑣. Consider vectors of these 

variables for all degrees of freedom in each domain. We can visualize the mixed-dimensional system as a 

two-level block system of linear equations over the subdomains (Ωℎ , Ω𝑙) and interface (Γ), 

4.22
Eqn. ref

4.15
4.29

4.32, 4.35
4.28
4.25

(

 
 
 
 
 [

𝑃 𝑃𝑢
𝑈𝑝 𝑈]
⏞      

Ωℎ

[ ]
⏞    

Ω𝑙

[
𝑃𝑣 𝑃𝑢

𝑈𝑢
]

⏞      
Γ

[ ] [
𝑃

Σ
] [

𝑃𝑣 𝑃𝑢
Σ𝑢
]

[
𝑉𝑝
𝑈𝑝 𝑈𝑢

] [
𝑉𝑝
𝑈𝑝 𝑈𝜎

] [
𝑉

𝑈
]
)

 
 
 
 
 

(

 
 
[
𝑝
𝑢
]

[
𝑝
𝜎
]

[
𝑣
𝑢
]
)

 
 
. (5. 1) 

Here, each capitalized letter in the block matrix is the discretization matrix for a variable in an equation. 

The capital letters are the same along a given row since they identify the equation corresponding to the 

variable given by the lower-case variant of the diagonal entry. The subscripts identify coupling terms; 

notice that for each column, the subscripts are the same since they refer to the same variable. For 

instance, the first row is 

(𝑃𝑝 + 𝑃𝑢𝑢)|Ωℎ + (𝑃𝑣𝑣 + 𝑃𝑢𝑢)|Γ. 

Symbols are interpreted according to the domain and equation they occur in. Therefore, no equivalence 

between the second and fourth term is implied. The empty blocks in Eqn. 5.1 indicate that the 

corresponding variable has no influence on the particular equation. For domains with additional 

fractures or fracture intersections, the block matrix structure is simply extended, but the main idea 

remains the same. For an appropriate right-hand side that contains the source terms, boundary 

conditions, and information from previous time steps or Newton iterations, we have a complete linear 

system for the coupled problem. 

 

5.2 Temporal discretization 
We consider a general time-dependent problem of the form 

𝑑𝜉

𝑑𝑡
= 𝐹(𝜉) (5. 2) 

where 𝜉 is the unknown quantity to be determined in terms of the operator 𝐹. The standard way to 

approximate the time derivative is with a finite-difference scheme, 

𝑑𝜉

𝑑𝑡
≈
𝜉𝑘+1 − 𝜉𝑘

Δ𝑡
+ 𝒪(Δ𝑡2). (5. 3) 

The significant question is how to evaluate the right-hand side of Eqn. 5.2. A computationally efficient 

option is the explicit time-stepping approaches, where we evaluate the new value 𝜉𝑘+1 using the 

previous value 𝜉𝑘, that is, 

𝜉𝑘+1 = 𝜉𝑘 + Δ𝑡𝐹(𝜉𝑘). (5. 4) 

The attractiveness of this approach lies in its simplicity, but it is limited by a constraint put on the time 

step Δ𝑡, which generally depends on the length scale of the spatial resolution of the domain. For 
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parabolic equations there is generally a quadratic relationship between the timestep and length scale of 

the spatial resolution, Δ𝑡 ≤ 𝐶Δ𝑥2, which becomes prohibitively restrictive for the problems and 

timescales we are interested in (Nordbotten, 2015). Therefore, a fully implicit time discretization that 

evaluates the operator 𝐹 at the new time step is preferred, 

𝜉𝑘+1 = 𝜉𝑘 + Δ𝑡𝐹(𝜉𝑘+1). (5. 5) 

The time step Δ𝑡 is usually taken as a constant throughout simulations. For some problems it may be 

useful to consider robust methods to adapt the time step to capture large variations in the solution (see 

e.g. Grabowski et al. (1979)). 

We also note that since we discretize the operator 𝐹 using finite-volume methods, we will in practice 

solve the integrated equation 

∫ 𝜉𝑘+1 𝑑𝑉
𝜔

= ∫ 𝜉𝑘  𝑑𝑉
𝜔

+ Δ𝑡∫ 𝐹(𝜉𝑘+1) 𝑑𝑉
𝜔

, (5. 6) 

over subdomains 𝜔 ⊂ Ω. 

 

5.3 Finite volume methods 

5.3.1 Basic continuous structure 
This section introduces the basic concepts and features of finite volume (FV) methods, which are the 

class of methods we use to discretize the Biot equations. The Biot equations are a system of 

conservation laws, each of which can be formulated on the form 

𝜕𝜉

𝜕𝑡
+ ∇ ⋅ 𝑞 = 𝑓 (5. 7) 

where 𝜉 is the quantity to be conserved, 𝑞 is a flux function, and 𝑓 is a source term. We emphasize that 

this equation is a statement of the local conservation of the continuous quantity 𝜉. This implies that the 

divergence of the flux should exist pointwise. Alongside the conservation laws, the Biot equations also 

need so-called constitutive relations 𝑞 = 𝑓(𝜉, ∇𝜉, ∇2𝜉, … ), which express some prior, empirical 

knowledge of the system. In this thesis, we are interested in first-order diffusive relations 

𝑞 = 𝒞∇𝜉 + ℊ (5. 8) 

where 𝒞 is a symmetric, positive definite tensor, and ℊ is an external force (i.e. a coupling term, in the 

context of the Biot equations). This equation is simply a notational short-hand for the flux term of 

Darcy’s law and Hooke’s law for linear elasticity. For example, Darcy’s law can be recovered by 

identifying 𝒞 as the permeability divided by viscosity and 𝜉 as the pressure.  

The equations 5.7 – 5.8 admit solutions given sufficient regularity of the variables (Nordbotten, 2015). 

When this is not the case, we seek solutions in the weak sense, where discontinuous solutions are 

permitted (Toro, 1999). Consider a domain Ω ⊂ ℝ𝑛. Then, within any measurable subdomain 𝜔 ⊂ Ω, 

the accumulation of 𝜉 is conserved (Nordbotten & Keilegavlen, 2020). Mathematically, 

𝑑

𝑑𝑡
∫ 𝜉 𝑑𝑉
𝜔

+∫ 𝑞 ⋅ 𝑛 𝑑𝑆
𝜕𝜔

= ∫ 𝑓 𝑑𝑉
𝜔

, (5. 9) 
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where Stokes theorem was applied to get the second term, and 𝑛 is an outward unit normal vector to 𝜔. 

The subdomains 𝜔 are also referred to as control volumes or cells. 

 

5.3.2 Basic discrete structure 
To solve Eqn. 5.9 numerically, we subdivide Ω into a finite number of non-overlapping subdomains, 

enforce Eqn. 5.9 for each subdomain, and devise an appropriate method to discretize the flux term. We 

refer to Nordbotten and Keilegavlen (2020) in the following. 

We discretize the domain Ω by identifying the pair (𝒯, ℱ). We define 𝒯 to be the finite set of non-

overlapping subdomains 𝜔𝑘 ⊂ Ω. We identify the set of faces of 𝜔𝑘 as the intersections 𝜕𝜔𝑘 ∩ 𝜕𝒷𝑖,

𝒷𝑖 ∈ (𝒯 ∪ {Ω}) having positive measure, and denote it ℱ𝑘. The set of all faces is then ℱ = ⋃ ℱ𝑖𝑖 . We 

denote an arbitrary face by 𝜎 and note that i.e. 𝑛𝜎,𝑘 refers to the outward unit normal of 𝜔𝑘 restricted 

to the face 𝜎 ∈ ℱ𝑘. With these definitions, we reformulate Eqn. 5.9 for a subdomain 𝜔𝑘, 

𝑑

𝑑𝑡
∫ 𝜉 𝑑𝑉
𝜔𝑘

+ ∑ ∫𝑞 ⋅ 𝑛𝜎,𝑘  𝑑𝑆
𝜎𝜎∈ℱ𝑘

= ∫ 𝑓 𝑑𝑉
𝜔𝑘

. (5. 10) 

For a suitable temporal method for the first term, we define the numerical scheme by the method that 

approximates  

𝑇𝜎,𝑘 = ∫𝑞 ⋅ 𝑛𝜎,𝑘 𝑑𝑆
𝜎

. (5. 11) 

 We note that the integrated terms in Eqn. 5.10 are either assumed to be known, like the integrated 

source on the right-hand side, or have a simple form such that quadrature rules can be applied to 

compute the integrals. For example, the flux terms, 𝑞, will be assumed piecewise constant in each cell so 

that the integrated fluxes, 𝑇𝜎,𝑘 are easy to compute. 

 

5.4 Multi-point finite volume methods 
The multi-point finite volume (MPFV) methods is a family of cell-centered finite volume schemes which 

improves the well-known two-point flux approximation (TPFA) commonly used to solve first-order 

diffusive scalar problems. Two improvements of the classical method can be summarized as follows: 1) 

The multi-point flux approximation (MPFA) converges on non-K-orthogonal grids as the grid is refined, as 

opposed to TPFA. This means that the MPFA is suitable for unstructured grids. 2) MPFA can be extended 

to solve vector variable problems, for instance Hooke’s law for linearly elastic materials, a method that 

is referred to as the multi-point stress approximation (MPSA) (Nordbotten & Keilegavlen, 2020). 

The scheme is based on the construction of a refined grid in which local gradient unknowns are defined. 

The refined grid is constructed from the intersection of the primal grid with a dual grid. The cells in the 

dual grid are centered around the vertices (𝑠𝑘) of the cells in the primal grid. For each pair of adjacent 

cells that are also adjacent to 𝑠𝑘, we split the face that is separating these cells along some central point 

𝑥𝜎, resulting in two subfaces. We denote the subfaces as �̃�. The cells in the dual grid are then formed 

around 𝑠𝑘 by connecting the points 𝑥𝜎 and the cell centers 𝑥𝑘 associated with each face and cell 
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adjacent to 𝑠𝑘. Finally, we identify the refined grid as the intersection of the primal and the dual grid, as 

illustrated in Figure 5.1.  

 

 

Figure 5.1 Visualization of primal grid with black grid lines, and the dual grid with red gridlines. The refined grid is the 
intersection of the primal and dual grid. The shaded region indicates a sub-cell in the refined grid. The local systems for MPFA 
and MPSA are constructed around the vertices 𝑠𝑘. Continuity of primary variables is enforced at 𝑥�̃�. Flux balance is enforced 
across subfaces �̃�. 

We refer to cells in the refined grid as sub-cells, denoted as �̃�. In the sub-cells, the variables for pressure 

and displacement are assumed to be linear. Consequently, the gradients of these variables, denoted ∇̃𝜉, 

are constant. We enforce continuity of the local flux balance across the subfaces �̃�, 

∫𝑞�̃�,𝐾 ⋅ 𝑛�̃�,𝐾 𝑑𝑆
�̃�

= −∫𝑞�̃�,𝐿 ⋅ 𝑛�̃�,𝐿 𝑑𝑆
�̃�

. (5. 12) 

The subscripts 𝐿 and 𝐾 specify quantities in the sub-cells 𝜔𝐿 and 𝜔𝐾, respectively. The fluxes are defined 

according to the Darcy’s law and Hooke’s law, which, in each sub-cell depend on the local gradients for 

pressure and displacement, respectively. Additionally, for each subface �̃�, we enforce continuity in 

pressure and displacement on a point 𝑥�̃�, which we refer to as a continuity point, 

𝜉𝐾 + ∇̃𝜉𝐾 ⋅ (𝑥�̃� − 𝑥𝐾) = 𝜉𝐿 + ∇̃𝜉𝐿 ⋅ (𝑥�̃� − 𝑥𝐿). (5. 13) 

Boundary conditions are applied by directly enforcing the discrete equivalents of the equations from 

Section 4.6. For Neumann conditions, the right-hand side of Eqn. 5.12 is modified, and for Dirichlet 

conditions, the right-hand side of Eqn. 5.13 is modified. 

𝑠𝑘  

𝑥𝜎  

�̃� 

𝑥𝑘 

�̃� 

𝜔 

𝑥�̃�  
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Around each vertex 𝑠𝑘 and using Eqns. 5.12 and 5.13, we can form a local linear system of equations to 

express the local gradients ∇̃𝜉 in terms of the cell-center primary variables. This allows us to formulate 

and solve the global linear system only with respect to the cell-center primary variables. 

Discretization of the coupled HM-equations are achieved by using the total stress (cf. Eqn. 4.11) when 

enforcing the local flux balance (Eqn. 5.12). This is the term 𝑃𝑢 in block (1,1) in Eqn. 5.1, which is the 

impact of pressure on the momentum balance. The coupling of mechanical effects in the mass balance, 

𝑈𝑝 in block (1,1), is achieved by constructing discrete vector divergence terms from the local gradients 

for displacement. For additional details, we refer to Berge et al. (2019); Keilegavlen and Nordbotten 

(2017); Nordbotten (2015); Nordbotten and Keilegavlen (2020). 

We note that in the mixed-dimensional setting, the discretization approach is adjusted according to the 

dimension of the subdomain. This means that Darcy fluxes in all dimensions are discretized using the 

MPFA scheme, adjusted for the local dimension of the subdomain. Adjacent higher- and lower-

dimensional grids are coupled with discrete equivalents of the interface fluxes, Eqns. 4.28, 4.31. We use 

matching grids in our model, which means that the various projection operators Πℎ
𝑗
, Ξℎ
𝑗
 between faces of 

Ωℎ and cells of Γ, and Π𝑙
𝑗
, Ξ𝑙
𝑗
 between cells of Ω𝑙  and Γ𝑗 are bijective mappings, so that projection of 

variables are straightforward (Stefansson et al., 2020b).  

Non-linear terms from the contact mechanics are discretized in each fracture cell, assembled in the 

global system, then solved iteratively in a Newton scheme as described below. Shear-induced dilation is 

directly coupled to the contact problem, which means that other discretizations that depend on the 

aperture, such as MPFA in fractures, need to be updated before every Newton iteration. For certain 

parameter combinations, such as those used for the GTS simulation, the ratio between the largest and 

smallest terms in the linear system that is solved in every Newton step was very large (> 1015). We 

mitigated this issue by scaling all equations (see Section 4.8), which resulted in ratios ~106. In certain 

situations, the solution could spontaneously diverge for unknown reasons. In these cases, we restarted 

the time step to achieve convergence. 

 

5.5 Contact problem discretization 
The contact problem (see Eqns. 4.32, 4.35) is solved using a semi-smooth Newton method. We use the 

method described by Berge et al. (2019) and references therein. The discretization is posed in each cell 

𝜔𝑘 ∈ 𝒯 of the 2D fracture Ω𝑙. We seek admissible solutions ([𝑢𝑗], 𝜎
′) in each 𝜔𝑘. Recall [𝑢𝑗] is the 

displacement jump, computed as [𝑢𝑗] = Ξ𝑙
𝑗
(𝑢𝑗
+ − 𝑢𝑗

−), and 𝜎′ is the effective contact pressure in the 

fracture. Throughout this section, these variables, and other parameters, refer to the discrete quantity 

within each cell 𝜔𝑘 ∈ 𝒯. In this context, we also disregard the subscript 𝑗 for the displacement in order 

to minimize notation. 

The idea is to reformulate the inequality constraints of the contact conditions and the friction law in 

terms of a non-linear complementary vector-valued function, which we decompose to a tangential and 

normal part. The tangential complementary function, denoted 𝐶𝜏([𝛿𝑢]𝜏, 𝜎𝜏
′) contains the information 

from the friction law, while the normal complementary function, denoted 𝐶𝑛([𝑢]𝑛, 𝜎𝑛
′ ) contains the 

information from the non-penetration condition. These functions are posed so that, for a cell 𝜔𝑘, the 

pair ([𝑢], 𝜎′) is admissible provided that 𝐶𝜏([𝑢]𝜏, 𝜎𝜏
′) = 0 and 𝐶𝑛([𝑢]𝑛, 𝜎𝑛

′ ) = 0. A semi-smooth Newton 
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method is applied to this problem, which leads to an active set method. The cells are classified as sliding, 

sticking or not in contact. This classification imposes certain constraints on [𝑢] and 𝜎′ in 𝜔𝑘 for the next 

Newton step.  

 

5.5.1 Discrete formulation 
The discrete formulation of the non-penetration condition (see Eqn. 4.32) reads 

{

        [𝑢]𝑛 −𝔊 ≥ 0

𝜎𝑛
′ ([𝑢]𝑛 −𝔊) = 0

                     𝜎𝑛
′ ≤ 0

, 𝜔𝑘 ∈ 𝒯 (5. 14) 

and the Coulomb friction law (see Eqn. 4.35) 

{

‖𝜎𝜏
′‖ ≤ 𝔉|𝜎𝑛

′ |                                                     
‖𝜎𝜏

′‖ < 𝔉|𝜎𝑛
′ | → [𝛿𝑢]𝜏 = 0                            

‖𝜎𝜏
′‖ = 𝔉|𝜎𝑛

′ | → ∃ℭ ≥ 0 ∶  𝜎𝜏
′ = −ℭ[𝛿𝑢]𝜏

, 𝜔𝑘 ∈ 𝒯. (5. 15) 

Recall that 𝔉 is the coefficient of friction, which is understood to be cell-wise (i.e. 𝔉𝑘), and [𝛿𝑢] is the 

temporal increment of [𝑢]. For time-dependent problems, this increment is the difference between the 

current Newton step and the displacement jump from the previous time step. In the static case, the 

displacement [𝑢]𝜏 replaces the sliding velocity [𝛿𝑢]𝜏. 

 

5.5.2 Semi-smooth Newton method 
We define  

𝑏𝑘 = 𝔉(−𝜎𝑛
′𝑘 − 𝑐𝑛([𝑢]𝑛

𝑘 −𝔊))

𝑏≥0
𝑘 = max{0, 𝑏𝑘}.                           

(5. 16) 

The friction bound for the current iteration is 𝑏≥0
𝑘 . The friction bound is set to zero if negative values of 

𝑏𝑘 are encountered during iterations. Due to the non-penetration condition, only one of 𝜎𝑛
′𝑘 and [𝑢]𝑛

𝑘 −

𝔊 will be nonzero. In Eqn. 5.16, 𝑐𝑛 > 0 (Pa m
-1) is a numerical parameter, and max{⋅,⋅} returns the 

maximum of its two arguments.  

The complementary function for the non-penetration condition (Eqn. 5.14) is written as 

𝐶𝑛([𝑢]𝑛, 𝜎𝑛
′ ) = −𝜎𝑛

′ −
𝑏≥0
𝑘

𝔉
. (5. 17) 

The Coulomb contact conditions (Eqn. 5.15) are written in terms of the complementary vector-valued 

function 

𝐶𝜏([𝛿𝑢]𝜏, 𝜎𝜏
′) = −𝜎𝜏

′max{𝑏𝑘, ‖−𝜎𝜏
′ + 𝑐𝜏[𝛿𝑢]𝜏‖} − 𝑏≥0

𝑘 (−𝜎𝜏 + 𝑐[𝛿𝑢]𝜏) (5. 18) 

where 𝑐𝜏 > 0 is a numerical parameter usually taken to be identical to 𝑐𝑛. Admissible solutions for 

([𝑢], 𝜎′) satisfy (Hüeber, 2008; Hüeber et al., 2008) 

𝐶𝑛([𝑢]𝑛, 𝜎𝑛
′ ) = 0 (5. 19) 



 Discretization  

51 
 

𝐶𝜏([𝑢]𝜏, 𝜎𝜏
′) = 0. (5. 20) 

 

5.5.3 Active set formulation 
The complementary functions are semi-smooth and hence slantly differentiable functions, which allow 

for the computation of the so-called generalized Jacobian (see Hüeber (2008); Hüeber et al. (2008) and 

references therein). The next semi-smooth step is computed as the solution of a linear system 

constructed using the generalized Jacobian and complementary functions. This system separates the 

cells 𝜔𝑘 ∈ 𝒯 into the inactive sets ℐ𝜏
𝑘+1, ℐ𝑛

𝑘+1 and the active set 𝒜𝜏
𝑘+1, which are computed with respect 

to the current solution ([𝑢]𝑘 , 𝜎′𝑘). 

In the following, we will denote regular inner products with 〈⋅,⋅〉 ∶  ℝ𝑛 × ℝ𝑛 → ℝ, i.e. 〈𝑎, 𝑏〉 = ∑ 𝑎𝑖𝑏𝑖𝑖 . 

 

Not in contact 

The set of cells that are not in contact for the next iteration satisfy 

ℐ𝑛
𝑘+1 = {𝜔𝑘 ∈ 𝒯 ∶ 𝑏

𝑘 ≤ 0}. (5. 21) 

For these cells, we enforce zero contact pressure homogenous Neumann condition 

𝜎′𝑘+1 = 0, 𝜔𝑘 ∈ ℐ𝑛
𝑘+1. (5. 22) 

 

In contact and sticking 

The set of cells in contact and sticking satisfy 

ℐ𝜏
𝑘+1 ≔ {𝜔𝑘 ∈ 𝒯 ∶ ‖−𝜎𝜏

𝑘 + 𝑐[𝛿𝑢]𝜏
𝑘‖ − 𝑏𝑘 < 0}. (5. 23) 

In the normal direction, we account for the dilation of the cell (Stefansson et al., 2020b). Recall Eqn. 

4.33 for the normal gap 𝔊 ∶  ℝ𝑛 → ℝ. In the discrete setting, we have 

𝔊𝑘([𝑢]𝜏) = 𝔊0 + tan(𝜃) ‖[𝑢]𝜏
𝑘‖, 𝜔𝑘 ∈ 𝒯 (5. 24) 

To satisfy the formulation of the semi-smooth method, Eqn. 5.20, we compute the derivative 𝐷𝔊
𝑘 of 𝔊𝑘 

with respect to the tangential displacement jump [𝑢]𝜏
𝑘, 

𝐷𝔊
𝑘 = {

tan(𝜃)
[𝑢]𝜏

𝑘

‖[𝑢]𝜏
𝑘‖

if ‖[𝑢]𝜏
𝑘‖ > 0

0⃗               if ‖[𝑢]𝜏
𝑘‖ = 0

(5. 25) 

where 0⃗ ∈ ℝ2 is a vector of zeros. The derivative at ‖[𝑢]𝜏
𝑘‖ = 0 is the continuation of the Jacobian, 

which we set to zero. We will only use overhead arrows to signify vectors if they unambiguously refer to 

a vector containing the given symbol in all rows. 

The normal displacement jump in the next iteration accounts for the expansion of the normal gap due to 

dilation from the previous to the current iteration, 
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[𝑢]𝑛
𝑘+1 = 𝔊𝑘 + ⟨𝐷𝔊

𝑘, [𝑢]𝜏
𝑘+1 − [𝑢]𝜏

𝑘⟩. 

In terms of the new iteration, we have 

[𝑢]𝑛
𝑘+1 − ⟨𝐷𝔊

𝑘 , [𝑢]𝜏
𝑘+1⟩ = 𝔊𝑘 − ⟨(𝐷𝔊

𝑘), [𝑢]𝜏
𝑘⟩, 𝜔𝑘 ∈ ℐ𝜏

𝑘+1. (5. 26) 

In the tangential direction we set a Robin condition 

[𝛿𝑢]𝜏
𝑘+1 −

𝔉[𝛿𝑢]𝜏
𝑘

𝑏≥0
𝑘 𝜎𝑛

′𝑘+1 = [𝛿𝑢]𝜏
𝑘 , 𝜔𝑘 ∈ ℐ𝜏

𝑘+1. (5. 27) 

If the previous state had zero tangential velocity, the tangential direction reduces to a homogenous 

Dirichlet condition. In contrast, if the previous state was sliding, we enforce the full Robin condition.  

Note that Eqn. 5.26 contains a term for the tangential displacement in the next iteration, whereas Eqn. 

5.27 is posed in terms of the sliding velocity. Upon constructing the full boundary condition, we note 

that for the new iteration (𝑘 + 1), which in the transient case estimates the new time step (𝑚 + 1), the 

sliding velocity is defined as 

[𝛿𝑢]𝜏
𝑚+1,𝑘+1 = [𝑢]𝜏

𝑚+1,𝑘+1 − [𝑢]𝜏
𝑚, (5. 28) 

where [𝑢]𝜏
𝑚, simply refers to the converged solution from the previous time step. Then, 

(
𝐼𝑙 0⃗ 

(−𝐷𝔊
𝑘)
𝑇

1
)(
[𝑢]𝜏

𝑘+1

[𝑢]𝑛
𝑘+1) + (

0⃡𝑙
𝔉[𝛿𝑢]𝜏

𝑘

𝑏≥0
𝑘

0⃗ 𝑇 0

)(
𝜎𝜏
′𝑘+1

𝜎𝑛
′𝑘+1) = (

[𝛿𝑢]𝜏
𝑘 + [𝑢]𝜏

𝑚,

𝔊𝑘 − 𝐷𝔊
𝑘[𝑢]𝜏

𝑘 ) , 𝜔𝑘 ∈ ℐ𝜏
𝑘+1 (5. 29) 

where 𝐼𝑙 and 0⃡𝑙 are an identity matrix and a matrix of zeros, respectively, with size equal to the 

dimension of Ω𝑙.  

 

In contact and sliding 

The set of cells in contact and sliding satisfy  

𝒜𝑘+1 ≔ {𝜔𝑘 ∈ 𝒯 ∶ ‖−𝜎𝜏
𝑘 + 𝑐𝜏[𝛿𝑢]𝜏

𝑘‖ ≥ 𝑏𝑘 > 0}. (5. 30) 

In the normal direction, we account for the expansion of the cell, as outlined in Eqn. 5.24 – 5.26. That is, 

[𝑢]𝑛
𝑘+1 − ⟨𝐷𝔊

𝑘, [𝑢]𝜏
𝑘+1⟩ = 𝔊𝑘 − ⟨𝐷𝔊

𝑘, [𝑢]𝜏
𝑘⟩, 𝜔𝑘 ∈ 𝒜

𝑘+1. (5. 31) 

In the tangential direction we estimate the sliding direction and distance, 

𝜎𝜏
′𝑘+1 + �̃�𝑘[𝛿𝑢]𝜏

𝑘+1 + 𝔉𝑣𝑘𝜎𝑛
𝑘+1 = 𝑟𝑘 + 𝑏𝑘𝑣𝑘, 𝜔𝑘 ∈ 𝒜

𝑘+1 (5. 32) 

where �̃�𝑘 ∈ ℝ𝑛 × ℝ𝑛, 𝑣𝑘 ∈ ℝ𝑛, and 𝑟𝑘 ∈ ℝ𝑛, which can be computed from the previous iterate. These 

functions are regularized in order to mitigate an issue where the exact form of �̃�𝑘 is not guaranteed to 

be positive-definite during iterations despite being so in the converged limit. Details of the functions and 

regularization approach can be found in Berge et al. (2019); Wohlmuth (2011). 
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Like the case for contact and sticking, the next iteration for the normal and tangential conditions both 

depend on the tangential displacement [𝑢]𝜏
𝑘+1 due to the dilation term. The formulations can be 

combined in a similar way as with the full sticking conditions, Eqn. 5.29. 
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6 Numerical simulation of an in-situ stimulation experiment at the 

Grimsel Test Site, Switzerland 
 

This chapter concerns the numerical simulation of a hydraulic shearing experiment conducted as part of 

the In-situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site (GTS) in the Central 

Swiss Alps. The tunnel system is located approximately 450 meters below the surface and encapsulates 

the decameter size rock volume in which five major shear zones have been identified. A series of 

hydraulic shearing (HS) and hydraulic fracturing (HF) experiments were conducted in the intact rock 

mass and shear zones in 2017. The HS experiments aimed to enhance the transmissivity of the shear 

zones. The HS1 experiment was conducted on February 15, 2017, in one of the ductile shear zones. 

Transmissivity enhancement and slip dislocation were observed near the injection point, and pressure 

perturbations were measured in nearby boreholes. We have used data from geological, hydraulic, and 

mechanical characterization campaigns of the rock mass to construct a model for numerical simulation. 

To avoid over-parameterizing the system state, we simplified the shear zone geometry, hydraulic, and 

mechanical parameters. Perturbations to the shear zone geometry and background permeability were 

investigated and compared to the observed pressure profile, transmissivity enhancement, and 

cumulative slip. 

The subsequent sections are structured as follows. Section 6.1 describes the geological and hydro-

mechanical characterization studies conducted in the rock mass. Section 6.2 provides an overview of the 

setup and observations from the HS1 experiment. In Section 6.3 and Section 6.4 we describe the model 

geometry and model parameters, respectively. Simulation results are presented and discussed in Section 

6.5. 

 

6.1 Geological context and hydro-mechanical rock mass characterization 
To model the coupled hydromechanical dynamics of a geothermal reservoir, detailed knowledge of the 

geological context of the target volume is important. In this section, we aim to give an overview of the 

rock mass characterization that is relevant to the numerical model. First, we provide a description of the 

mapped shear zones, and a conceptual model of shear zone geometry and extent from geological 

mapping of the volume. Then, we bring this model into context with the hydraulic and mechanical 

characterization of the shear zones and overall rock mass. 

 

6.1.1 Shear zone characterization 
Characterization of the rock mass uncovered many types of structures including persistent foliations, 

brittle fractures, and ductile and brittle-ductile shear zones. The shear zones have significant hydraulic 

and mechanical impact on the rock mass (see Chapter 2). Krietsch et al. (2018a) presented a 
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comprehensive dataset used to provide a complete understanding of the shear zones located in the 

decameter scale test volume. Two tunnels, termed AU and VE, bound the volume in the east-west 

direction, in which five major shear zones were identified. A total of 15 boreholes were used to map out 

shear zone locations and orientations throughout the ISC test volume. An overview of the boreholes in 

the ISC test volume is provided in Table 6.1. In Figure 6.1 we provide an overview of the GTS laboratory, 

including the ISC experimental volume with boreholes. 

 

Table 6.1 Overview of boreholes in the test volume. Adapted from Table 2 of Krietsch et al. (2018a). 

Borehole Type Count Borehole Lengths [m] Main Purpose 

INJ 2 44.66 − 44.80 injection rate and pressure monitoring 

FBS 3 44.00 − 47.58 Strain monitoring 

GEO 4 30.10 − 40.09 Seismic monitoring 

PRP 3 32.33 − 47.91 Pressure and strain monitoring 

SBH 3 18.20 − 23.90 Stress measurement 

 

 

Figure 6.1 Overview of the GTS underground laboratory (a). The ISC experimental volume is located in the southern end of GTS, 
with boreholes included in (b) and (c). Figure from Krietsch et al. (2018a). 

 

The shear zones are divided into two sets (S1 and S3) with respect to age and orientation. Three ductile 

shear zones (S1) (strike N52°E, dip 77°SE) are sub-parallel to a persistent foliation and branching off 

from the set are partly filled brittle fractures. Two parallel brittle-ductile shear zones (S3) (strike N93°E, 
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dip 65°S) bound a highly fractured zone (>20 fractures / meter). The S3 shear zones are 2-3 meters apart 

and approximately ~100 ml/min discharge is measured between the two shear zones. The shear zones 

vary greatly in damage zone thickness, ranging 173 mm to 1670 mm for the S1 set, and 38 mm to 

312 mm for the S2 set (Krietsch et al., 2018a).  

Based on observations of the location and orientation of shear zones in the boreholes and tunnels, 

Krietsch et al. (2018a) proposed two conceptual models for the shear zone geometry. The simplified 

model (Figure 6.2, left) consists of planar patches interpolated from observations. The final model 

(Figure 6.2, right) fitted the observations using a third-order polynomial, and constrained the 

orientations of the resulting shear zones near borehole and tunnel observations. Both models disregard 

data on shear zone thickness. 

 

  
Figure 6.2 Visualization of the geological model based on (left) a simplified model where the shearzone is modeled using 
piecewise planar patches from shear zone intersections with boreholes and tunnels, and (right) a best-fit third-order polynomial 
using shear zone intersections and orientations with tunnels and boreholes. The figure is constructed using the Matlab 
visualization tool from Krietsch et al. (2018a). 

As can be seen in Figure 6.2, the shear zones intersect both tunnels. The tunnels, which are at 

atmospheric pressure, act to relieve pressure from the shear zones. The unperturbed pressure in the 

shear zones are less than 0.5 MPa (Jalali et al., 2018), significantly lower than the hydrostatic pressure at 

480 m, which is ~4.8 MPa. 

 

6.1.2 Hydraulic characterization 
The hydraulic conditions at the Grimsel site are highly heterogenous and anisotropic along the directions 

normal and parallel to the foliations. The initial hydraulic characterization of the background rock and 

target shear zones must be assumed to be scale dependent, and likely only accurate in a region near the 

measurement points. Furthermore, the hydraulic structure of the shear zones evolve due to slip 

dislocation following the injection experiments. For these reasons, the true hydraulic conditions before 

the HS1 experiment are uncertain. 

Jalali et al. (2018) applied a multi-scale approach to estimate the connectivity and conductivity of the 

major and persistent structures throughout the volume prior to the hydraulic stimulation experiments. 

S3.1 

S1.2 

S3.2 
S1.1 

S1.3 
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A double-packer system was installed at varying depths and intervals in the 45 m deep INJ boreholes to 

measure interval transmissivity. The results from these measurements are dependent on the interval 

length but may nonetheless give a reasonable estimate for the hydraulic parameters near the test 

intervals. Both pulse injection (PI) and constant head injection (CHI) tests were conducted. The PI tests 

are single-hole, with an interval length of 2 − 4 m, and give an indication of the depth and location of 

conductive fractures in the volume, but are restricted in that the data only represents the conditions 

near the borehole. The CHI tests are cross-hole with an interval length of 0.52 m, and typically targeted 

individual fractures and shear zones. These tests expanded the measurement scale to ~10 m. Table 6.2 

lists the recorded transmissivity for various intervals, depths and boreholes in the test volume, compiled 

from (Jalali et al., 2018). 

 

Table 6.2 Summary of Hydraulic Measurements in the INJ and SBH boreholes. The Constant Head Injection (CHI) experiments has 
an interval length of 0.52 m. The Pulse Injection (PI) tests has an interval length of 2 m. The starting point of each interval is 
reported as depth. Data from Jalali et al. (2018). 

B
o

re
h

o
le

 

Label Depth [m] Transmissivity [m𝟐/s] Location / Shear zone 

IN
J2

 

PI.1 39 1E-10 S1.3 

PI.8 32 1E-09 S1.2 

PI.9 29 5E-08 S1.1 

CHI#1 28.53 6.1E-10 Near S1.1 

CHI#2 27.11 3.7E-08 Near S3.2 

CHI#3 26.25 3.7E-09 S3.2 

CHI#4 24.83 1.8E-08 S3.2 

CHI#5 24.31 1.8E-08 Near S3.2 

CHI#6 23.38 3.9E-07 Between S3.1 and S3.2 

CHI#7 22.89 4.0E-06 Between S3.1 and S3.2 

CHI#8 21.96 6.1E-07 Between S3.1 and S3.2 

IN
J1

 

CHI#9 21.96 6.1E-07 S3.2 

CHI#10 31.64 2.6E-10 S3.2 

CHI#11 28.58 1.8E-09 Near S3.1 

CHI#12 27.67 3.7E-07 S3.1 

CHI#13 27.16 2.3E-08 Near S3.1 

HF5 11.5 5.9E-13 --  

HF6 15.9 5.1E-12 --  

HF7 17.8 3.1E-12 --  

HTPF 19.8 3.8E-12 S3.1 

 

The transmissivity data shows that the fractured zone between the two S3 shear zones is highly 

conductive compared to the overall granitic rock. The highest recorded transmissivity values correspond 

to CHI#7 and CHI#12 tests. However, these results are also influenced by the presence of the excavated 
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tunnels as significant flow rates were observed in the tunnels during these tests. Wenning et al. (2018) 

measured the permeability in core samples throughout the SBH4 borehole, a 23.90 m long borehole 

drilled sub-horizontally from the AU tunnel towards ~320°, intersecting the mylonitic cores of the S3 

structure (i.e. S3.1 and S3.2). The mylonitic cores are regions of reduced permeability and increased 

anisotropy. Permeability in the direction normal to the mylonitic cores is an order of magnitude smaller 

than the foliation-parallel permeability, measured at 0.03 × 10−19 m2 and 0.57 × 10−19 m2, 

respectively. The anisotropy can be explained by changes in mineralogy as the cores are approached.  

Additional constant rate cross-hole pressure tests between the two S3 shear zones indicate 

heterogeneity in the fractures since pressure responses from fluid injected in one borehole is different 

from the case where fluid is injected in the other borehole (Jalali et al., 2018). This may also indicate that 

fluid flows naturally in one direction rather than the other. Overall, the highly fractured zone between 

the S3.1 and S3.2 shear zones plays a key role in the fluid flow and mechanical deformation. Fluid 

injected near the fractured zone is expected to trace few conductive fractures, as opposed to fluid 

injection away from the two S3 shear zones, which may be characterized by more intricate flow through 

a fracture network (Jalali et al., 2018). 

For comparison, the permeability measured in the intact rock was found to be ranging 

0.99 to 8.38 × 10−19 m2 (Wenning et al., 2018). For in-situ water at 11 °𝐶, this roughly equates to a 

hydraulic conductivity (i.e. the transmissivity through a unit width of rock) of 0.77 to 6.50 × 10−12 m/s. 

Brixel et al. (2020) found similar results using single-hole measurements in situ, with values ranging 

10−21 to 10−18 m2 (i.e. 10−14 to 10−11 m/s). 

 

6.1.3 Mechanical characterization 
Numerous characterization campaigns have been conducted at the Grimsel Test Site to determine the 

rock mechanical properties of the Grimsel granite (e.g. Krietsch et al. (2018b); Nejati (2018); Pahl et al. 

(1989)). In some cases, the measurements from different studies can vary appreciably. This can be due 

to different measurement techniques, equipment sensitivity, data interpretation, test location, or local 

host rock properties. For these reasons, it can be challenging to assess which parameters to use in 

simulations. Furthermore, Nejati (2018) argued the Grimsel granite exhibits substantial anisotropic 

properties due to the presence of foliations. 

Krietsch et al. (2018b) conducted an extensive stress characterization survey on the ISC rock mass to 

characterize the in-situ stress field and elastic parameters (see also Gischig et al. (2018)). Two main 

methods were used, stress relief and hydraulic methods, that each highlight important and useful 

information for modeling and interpreting deformation response due to fluid injection in fractured 

subsurface reservoirs. The hydraulic methods are suitable to estimate the least principal stress direction 

and magnitude by inducing hydraulic fractures (HF). Additionally, hydraulic testing on pre-existing 

fractures (HTPF) can provide an estimate for the normal stress acting on the fractures. Stress relief 

methods provide estimates for the linear elastic parameters such as Young’s modulus, shear modulus 

and Poisson’s ratio, and the full stress tensor by inverting for the strain using the estimated parameters. 

Stress relief methods measures the elastic response of the rock assuming the rock is linearly elastic 

throughout the test. Testing was conducted both near the shear zones and away from them, enabling 

estimation of the far-field stress in addition to the stress perturbation near the shear zones. The idea of 
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estimating both the unperturbed (far-field) and perturbed (near shear zones) stress is motivated in part 

by the observation of significant rotation of the stress near the shear zones. At the Soultz-sous-Forêts 

site in France for example, the maximum horizontal stress was found to rotate up to 90° near major 

shear zones. This effect can significantly alter the elastic response of the rock mass due to fluid injection 

(Valley & Evans, 2010). 

Additionally, two separate hypotheses for the rock mass were investigated: (1) assuming an isotropic 

elastic rock model, and (2) assuming a transversely isotropic rock model. The latter model predicts 

elastic parameters that are different in the vertical direction compared to the horizontal directions, and 

therefore lead to two Young moduli and Poisson’s ratios, and an independent cross-shear modulus. 

With certain assumptions on the degree of anisotropy within the rock mass, the model can be 

constrained. Additional accuracy was obtained by integrating the HF test results, described below. The 

principal stress obtained from inverting for strains assuming a transversely isotropic model, with 

additional constraints informed by HF tests, are on average 13.1 MPa for 𝜎1 (104.48/39.21, i.e. dip 

direction/dip), 9.2 MPa for 𝜎2 (259.05/47.90), and 8.7 MPa for 𝜎3 (003.72/12.89). Additional 

information on representation of the stress in a Euclidean coordinate system can be found in Appendix 

8.2. 

Hydraulic fracture (HF) tests were conducted in locations away from natural fractures. These tests 

estimate the least principal stress direction and magnitude by initiating and propagating hydraulic 

fractures through multiple injection cycles. The instantaneous shut-in pressure (ISIP) is the pressure that 

is measured as the final injection cycle is completed, and is used as an estimate of the minimum 

principal stress (𝜎3) (McLennan & Roegiers, 1982). The direction of the stress component is inferred 

from the plane along which the hydraulic fracture propagates (i.e. normal to 𝜎3). Two boreholes, SBH1 

and SBH3, were used to estimate 𝜎3 in unperturbed rock (see Figure 6.3). SBH1 is steeply plunging (75°) 

and SBH3 is sub-horizontal (−5°). The results from the HF tests are considered ground truth, and since 

the magnitude of the measured stress never exceeded 9.7 MPa, the full stress tensor could be further 

constrained. 

 

 

Figure 6.3: Instantaneous shut-in pressure results from two HF tests (SBH1, SBH3) and one HTPF test (SBH4). There is a decrease 
in ISIP as the S3 shear zone is approached in SBH4 at 19.7 m depth. The unperturbed rock has small variations in ISIP throughout 
SBH1 and SBH3. Data from (Krietsch et al., 2018b). 
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Hydraulic testing of pre-existing fractures (HTPF) was conducted in the SBH4, a sub-horizontal (−5°) 

borehole that intersects the S3 shear zone at 20 m. The lowest stress value of 2.8 MPa was recorded at 

19.8 m depth in SBH4, which is likely to have been affected by the nearby fractured zone. Since the 

stimulated fracture is not necessarily oriented normal to the minimum principal stress, 𝜎3 = 2.8 MPa 

should be considered an upper bound for the true value of 𝜎3 in this region. The perturbed stress tensor 

was estimated from the stress measurements conducted near the shear zones. 

Coupled hydromechanical processes in porous media are sensitive to the Biot coefficient (Berre et al., 

2020). The Biot coefficient emerges from the constitutive relation in poroelasticity where the total stress 

tensor is assumed to consist of the stresses of the porous skeleton, and the stresses of the pore fluid. By 

considering the skeletal bulk modulus (𝐾𝐷) and the bulk modulus of the solid material composing the 

rock fabric (𝐾𝑆), the isotropic Biot coefficient for an elastic medium is computed as 𝛼 = 1 − (𝐾𝐷/𝐾𝑆). 

Selvadurai et al. (2019) analyzed estimates of the elastic constants from previous studies at the Grimsel 

Test Site. The skeletal bulk modulus can be computed from Young’s modulus and Poisson ratio in 

isotropic or transversely isotropic conditions. The effective bulk modulus for the Grimsel granite was 

estimated by considering the mineralogical fractions of the Grimsel granite. The highly heterogenous 

rock mass at the Grimsel Test Site means that some measurements of elastic constants may result in 

unrealistic estimates for the bulk moduli. By excluding these results, a set of realistic estimates for the 

Biot coefficient were determined. Assuming an isotropic elastic medium, the Biot coefficient ranges 

from 0.48 to 0.64 depending on which measurements are considered. The skeletal bulk modulus ranged 

from 24 GPa to 27 GPa. In the transversely isotropic case, the lower and upper estimates for the Biot 

coefficient were 0.64 to 0.71, and skeletal bulk modulus approximately 19 GPa. A summary of these 

parameters is listed in Table 6.3. 

 

Table 6.3 Elastic properties of the Grimsel granite, including Young's modulus (𝐸), Poisson's ratio (𝜈), skeletal bulk modulus 
(𝐾𝐷), and the Biot coefficient (𝛼) for a transverse isotropic elastic rock model, and an isotropic elastic rock model. For the 
transversely isotropic model, the subscript 𝑇 refers to directions along foliations, while the subscript 𝑁 refers to directions 
normal to the foliations. The data for the Biot coefficient is from Selvadurai et al. (2019). The other data is from the respective 
references as listed in the first row. 

Reference Pahl et al. (1989)  Bouffier (2015)  Dambly et al. (2019)  Nejati (2018); Nejati 
et al. (2019)  

Elasticity type 
 

Isotropic Isotropic Isotropic Transversely isotropic 

Young modulus, 
𝐸 [𝐺𝑃𝑎] 

 

40 26 44 𝐸𝑁 ≈ 13 
𝐸𝑇 ≈ 25 

Poisson’s ratio, 𝜈 [– ] 
 

0.25 0.33 0.2 𝜈𝑇𝑇 ≈ 0.15 
𝜈𝑁𝑇 ≈ 0.15 

Skeletal bulk modulus 
𝐾𝐷  [𝐺𝑃𝑎] 

 

~27 ~25 ~24 ~19 

Biot coefficient, 𝛼 [−] 0.48 − 0.59 0.52 − 0.62 0.54 − 0.64 0.64 − 0.71 
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6.2 Description of HS1 stimulation at 39.75-40.75 m in INJ2 into S1.3 
The HS1 stimulation experiment is part of a larger study of six stimulation experiments targeting S1 and 

S3 shear zones (Krietsch et al., 2020). All six stimulation experiments were conducted using a 

standardized injection protocol, which allows for comparison of results targeting different shear zones, 

as results do not depend on the injection methodology. The injection protocol consists of four cycles, C1 

to C4, as illustrated for HS1 in Figure 6.4. C1 and C2 are pre-stimulation phases where water is injected 

in pressure increments to estimate jacking pressure and injectivity of the target shear zone. C3 is the 

main stimulation phase, which, as initially planned, consisted of stepwise rate increments over the 

duration of 40 minutes, followed by shut-in for 40 minutes and venting for 20 minutes. The rate 

increments were planned to be 10, 15, 20 and 25 l/min. Permanent changes to the target shear zone, 

such as slip and transmissivity enhancement, were estimated at the injection interval during the post-

stimulation cycle C3 for each experiment. For all stimulation experiments, a higher-rate injection regime 

for C3 was considered provided the cumulative volume did not exceed the target maximum of 1000 

liters, determined by the seismicity risk (Doetsch et al., 2018; Gischig et al., 2016). For HS1, which 

targeted the S1.3 shear zone, a high-rate regime was used. The C3 main stimulation cycle for HS1 

consisted of five steps, as listed in Table 6.4. The first four steps lasted for approximately five minutes 

each, starting at 15 l/min, with 5 l/min increments for subsequent steps. The fifth step, at 35 l/min, 

lasted for approximately 15 minutes. The injection steps for HS1 were followed by shut-in for 

approximately 46 minutes and venting for 20 minutes.  

 

 

Figure 6.4 Injection protocol for experiment HS1, which targets S1 structure S1.3, with each cycle indicated. Shut-in and venting 
for cycle 3 are marked by vertical lines. The target shear zone is vented before and after every cycle. Data from Krietsch et al. 
(2019). 
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Table 6.4 Injection rate and step duration during C3 main-stimulation phase of HS1. The duration of the five injection steps 
combined is 36 minutes, 20 seconds. Note that venting is pressure-controlled (the well is to the tunnel, at atmospheric pressure), 
so no injection rate is not applicable. Data compiled from Krietsch et al. (2019). 

Step Step 1 Step 2 Step 3 Step 4 Step 5 Shut-in Venting 

Injection 
rate 
(l/min) 

 
15 

 
20 

 
25 

 
30 

 
35 

 
0 

 
− 

Duration 
(mm: ss) 

 
04: 51 

 
05: 30 

 
05: 30 

 
05: 09 

 
15: 06 

 
46: 25 

 
20: 20 

 

The six stimulation experiments were conducted sequentially, with at least twelve hours between the 

end of one experiment until the start of the next. The time between each stimulation experiment allows 

for most of the induced fluid pressure disturbances to drain out from the system. However, the shear 

zones may remain stimulated after each experiment, which means that some deviation from the 

hydromechanical parameters compared to the pre-characterization tests should be expected.  

The pre- and post-stimulation phases were intended to characterize the hydraulic changes (jacking 

pressure and transmissivity) and mechanical changes (cumulative slip). For HS1, fluid was injected to the 

rock-mass using a double-packer system where fluid injection is restricted to a specific interval in the 

borehole. An overview of the hydro shearing (HS) experiment HS1 is provided in Table 6.5, including 

target shear zone, interval depth, estimated pre- and post-transmissivity values (estimated from 

injectivities), and cumulative slip dislocation. Due to rock heterogeneity, the pre- and post-stimulation 

characterization can conservatively be assumed to only be valid locally near the borehole. The 

cumulative slip dislocation at the injection interval was estimated to be 0.7 − 0.81 mm for HS1. The 

interval transmissivity increased by more than three orders of magnitude, from 8.3 × 10−11 m2/s to 

1.5 × 10−7 m2/s (Krietsch et al., 2020). The resulting interval transmissivity for HS1 is comparable to the 

results from the other HS experiments, despite the pre-stimulation transmissivity for these experiments 

ranging 10−10 m2/s to 10−7 m2/s.  

 

Table 6.5 Summary of the HS1 stimulation experiment with estimates of pre- and post-stimulation transmissivities. The data is 
from Table 1 in Krietsch et al. (2020). 

 Date Injection 
borehole 

Interval depth 
(m) 

Structure Pre-
stimulation 
transmissivity 

(m2/s) 

Post-
stimulation 
transmissivity 

(m2/s) 

Cumulative 
slip 
dislocation 
(mm) 

 
HS1 
 

 
15.02.2017 

 
INJ2 

 
39.75 - 40.75 

 
S1.3 

 
8.3 × 10−11 

 
1.5 × 10−7 

 
0.7 – 0.81 

 

In addition to transmissivity changes and slip dislocation, the surrounding boreholes were also used to 

monitor interval pressure, seismic events, backflow from boreholes, tilt, and strain. These 
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measurements were used to estimate the extent of propagation of the pressure front, extent of the 

deformation field (Krietsch et al., 2020), and the seismically activated area (Villiger et al., 2020a). 

 

6.3 Shear zone model geometry from geological context and borehole observations 
Mixed-dimensional DFM models are attractive since fractures can be explicitly modeled. However, the 

computational expense can quickly grow for complex fracture networks. Therefore, a compromise 

between an accurate representation of the geometry and computational feasibility is sought. For our 

model of the ISC volume, data on individual fractures were disregarded. Hydraulic parameters are not 

well constrained in these structures which could lead to over-parameterization of the system, but more 

importantly, the inclusion of fractures would be a significant challenge to the simulator. 

Instead, we only modeled the shear zones. The shear zones are idealized as planar, open fractures. To 

model the shear zones, we first estimated their orientation, then we constrained their size. 

We created a tool in Python that extracts and structures the geospatial data on boreholes, shear zones, 

and tunnels which is provided by Krietsch et al. (2018a). Then, we computed best-fit planes using the 

data on shear zone intersections with boreholes. We evaluated both ordinary least squares (OLS) 

regression and total least squares (TLS) to compute best-fit planes. TLS is a generalization of OLS in that 

the error is minimized in the direction orthogonal to the regression plane, and has been evaluated on 

outcrop data of fractures (Jones et al., 2016). OLS on the other hand assumes that some of the 

geospatial directions are error-free. Testing of both methods on the five shear zones under 

consideration yielded comparable results. The centroid and orientation of all interpolated shear zones 

are listed in Table 6.6. 

Table 6.6 Coordinates and orientation of the shear zones S1 and S3. The underlying data is from Krietsch et al. (2018a). 

 Centroid coordinate Normal vector coordinate 

Shear zone x y z x y z 

S1.1 51.456704 109.806622 20.010900 -0.485314 0.861540 -0.149059 
S1.2 47.969502 113.118832 16.959744 -0.496146   0.841186 -0.215046 
S1.3 44.821713 117.088891 14.749656 -0.502727   0.813966 -0.291076 
S3.1 53.395810 105.063501 22.949580 0.121912 0.940431 -0.317375 
S3.2 52.491075 108.564742 21.878384 0.146613 0.942768 -0.299489 

 

Next, we constrained the size of the shear zones. A lower bound on the size of the shear zones are the 

observations of shear zone intersections in boreholes, which results in a geometry similar the piecewise 

planar model presented in Krietsch et al. (2018a)  (see Figure 6.2, left). However, this model results in 

low total fluid storage in the shear zones, and since the permeability in the intact rock is low, high 

pressures within the shear zones would be expected. Larger shear zones provide more storage, and their 

high transmissivity allow fluid to be quickly diffused far away from the injection point. However, the 

transmissivity is not well constrained away from the observations, which, depending on the chosen 

transmissivity values, could lead to unrealistically quick diffusion of the pressure, say, after shut-in. 

These considerations motivated testing on shear zones of different sizes, as will be explained in Section 

6.4.3. The smallest shear zones that were simulated extended at least 10 m beyond the tunnels in the 
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horizontal and spanned the height of the boreholes in the vertical. This was set as the minimum size so 

that the tunnels could be accounted for, as will be described in Section 6.4.2. 

We used gmsh to generate unstructured meshes (Geuzaine & Remacle, 2009). In previous work (e.g. 

Keilegavlen et al. (2020)), fractures are meshed by explicitly embedding 2D surfaces into the interior of 

the 3D volume. This approach restricts which algorithms can be used for meshing and mesh 

optimization. In particular, the Netgen mesh optimizer only supports optimization of 3D volumes, and 

can therefore not be used for domains with explicitly embedded fractures (Schöberl, 1997). Testing on 

the ISC shear zones revealed that robust meshing algorithms are needed to achieve convergence. 

The shear zones were constructed by inserting a cube into the interior of the domain which was 

subsequently sliced at locations corresponding to the surfaces of the shear zones. This results in a 

partition of the domain into 3D volumes, which can be optimized with Netgen. The resulting simulation 

grid is shown in Figure 6.5. Note that the tunnels are included for visualization purposes and are not 

explicitly present in the simulation.  

We did not include S3.2 in the final model for computational reasons. There were difficulties related to 

producing high-quality meshes with sufficiently few numbers of cells so that simulations could be run in 

reasonable time. The issues stem from the short distance (2 − 3 m) between S3.1 and S3.2. Mechanical 

and hydraulic parameters are highly heterogeneous and anisotropic in the S3 shear zone, which we are 

not able to capture irrespective of explicitly modeling one or two mylonitic cores. As such, we collapsed 

the S3 zone onto the location of the S3.1 mylonitic core. 

As can be seen from Figure 6.8 (left), the cells near the shear zones are much smaller than those near 

the global boundary. We were able to construct the grid with precise control of the characteristic mesh 

size in the far-field, near the shear zones, near the shear zone intersections, and near the outer edges of 

the shear zones. The resulting simulation grid consisted of approximately 24 000 cells. Beyond the shear 

zones, the 3D domain extended at least 100 m in every direction, with total dimensions of 

300 × 300 × 300 meters. 
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Figure 6.5 Left: The 3D simulation grid, exposing the fractures situated in the 3D volume. Right: The geometric representation of 
the shear zones in the model, viewed from the top. Tunnels are illustrated, but not explicitly included in the model. ParaView is 
used for visualization of the simulation grid (Ahrens et al., 2005). 

 

6.4 Model parameters and initial and boundary conditions 
This section describes the model parameters, initial conditions, and boundary conditions that are 

needed to simulate the hydraulic shearing experiment. Then, a description of perturbations to the shear 

zone geometry and the permeability of the intact rock is provided. These perturbations result in four 

simulation cases. A succinct summary of the parameters is provided at the end of the section, in Table 

6.8, for reference. 

 

6.4.1 Model parameters 
An isotropic elastic rock model was used. The elastic coefficients estimated by Pahl et al. (1989) along 

with the relevant estimate for the Biot coefficient due to Selvadurai et al. (2019) were imposed as 

constant values throughout the intact rock. The values are provided in the first column of Table 6.3. 

A homogenous and isotropic permeability coefficient on the order of 10−20 m2 was used throughout 

the intact rock. The value was based on the single-hole measurements by Brixel et al. (2020). The 

simulation cases, described in Section 6.4.3, supply the exact values for each case.  

As noted, homogeneous and isotropic values for permeability and elastic coefficients were chosen 

despite the presence of foliations that induce transversely isotropic elastic and hydraulic parameters. 

We opted to ignore this aspect of the parameters. This is motivated by our primary interest in the 

dynamics occurring within the shear zones. Additionally, since the heterogeneity of the parameters are 

not well constrained in the hydraulic characterization, we determined that homogeneous transverse 

isotropic parameters would not improve the interpretability of the results. 

Determining representative shear zone transmissivity values are much more challenging for numerous 

reasons. As indicated by the general description in Section 6.1.1 and the hydraulic characterization in 

N 

N 
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Section 6.1.2, the shear zones are complex zones, both structurally and hydraulically. The S1 shear zone 

is characterized as a localized high strain zone with sub-parallel brittle fractures (Wehrens et al., 2017). 

This indicates that it can be interpreted as a distributed conduit (see Section 2.2.1). In contrast the S3 

shear zone can be characterized as a highly fractured conductive zone enclosed by two mylonitic cores. 

As Table 6.2 shows, the zone between the cores is highly permeable, on the order of 10−7 −

10−6 m2/s. In contrast, the mylonitic cores are barriers to flow. The S3 zone can therefore be 

interpreted as a combined conduit-barrier.  

Since we modeled the shear zones as planar, open fractures, the conductive fractures surrounding of 

the S1 shear zone had to be implicitly included in the transmissivities that were enforced. To this end, 

we used the pulse injection tests listed in Table 6.2, which covered an interval of 2 m, i.e. beyond the S1 

shear zone cores. However, for S1.3 specifically, we opted for the transmissivity listed in Table 6.5, 

which was measured immediately before the main stimulation phase started (Krietsch et al., 2020). 

As discussed in the previous section, we opted to collapse the S3 shear zone consisting of the S3.1 and 

S3.2 mylonitic cores to the location of the S3.1 mylonitic core. As a representative value, the CHI#12 

measurement was used (see Table 6.2), which is on the order of the measurements within the highly 

fractured zone. 

For all shear zones, the initial transmissivity was converted to initial aperture using the cubic law, which 

was subsequently used to calculate specific volumes that would initialize the model parameters. The 

resulting shear zone aperture after a stimulation experiment 

𝑎 = 𝑎init + 𝑎dil + 𝑎sep (6. 1) 

is controlled by the initial aperture, 𝑎init, calculated from the pre-stimulation transmissivity, the 

aperture due to shear-induced dilatancy, 𝑎dil, and the aperture due to the separation of the fracture 

faces, 𝑎sep. Assuming that reactivated fractures close post-stimulation (𝑎sep = 0), and that the dilation 

is calculated from shear slip using the dilation angle, 𝑎dil = ‖[𝑢]𝜏‖ tan𝜃, then we can invert for the 

dilation angle by rearranging Eqn. 6.1, 

𝑎 = 𝑎init + 𝑎dil = √
12𝜇𝑇

𝜌𝑔

3

+ [𝑢]𝜏 tan 𝜃

⟹ 𝜃 = arctan [√
12𝜇

𝜌𝑔

3

⋅
√𝑇
3

− √𝑇init
3

[𝑢]𝜏
] = arctan [1.16 × 10−2 ⋅

√𝑇
3

− √𝑇init
3

[𝑢]𝜏
] (6. 2)

 

where 𝑇init is the initial transmissivity and 𝑇 is the final transmissivity. Consider for instance HS1, where  

𝑇init = 8.3 × 10
−11 m2/s, 𝑇 = 1.5 × 10−7 m2/s, [𝑢]𝜏 = 0.7 to 0.81 × 10

−3 m (see Table 6.5). Using 

Eqn. 6.2, the dilation angle was estimated to be in the range 4.0° to 4.6°. Since we kept the dilation 

angle constant irrespective of the amount of total slip, we set the angle slightly lower than the 

estimated values, to 3°. 

6.4.2 Boundary conditions and tunnels 
Including gravitational effects in the model led to issues with convergence of the Newton iterations. We 

have kept Section 4.7 in the thesis for reference, but opted for constant-depth hydrostatic and 

lithostatic boundary conditions in for the simulation of HS1. 
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For the stress tensor, we used the measurements from Krietsch et al. (2018b) (see Section 8.2). Setting 

the stress as a Neumann condition on all external faces does not lead to a consistent system. Therefore, 

we kept three cells on the bottom center of the domain fixed (𝑢 = 0). For hydraulic boundary 

conditions, we imposed constant pressure equivalent to the hydrostatic pressure at 480 m depth on the 

external boundary. We equilibrated the system with these conditions for 30 000 years. 

The hydraulic effect of the tunnels in the test volume was accounted for by imposing atmospheric 

pressure in eight shear zone cells, one cell per intersection of the tunnels with the four modeled shear 

zones. The tunnels were constructed approximately 30 years before the stimulation took place, and as 

such, we enforced these pressure conditions for 30 years before starting the main stimulation phase. 

Note that with this approach, the mechanical impact of the tunnels, which are expected to be minor, 

could be completely ignored.  

 

6.4.3 Construction of the simulation cases 
This section describes the setup of four simulation cases for the hydraulic shearing experiment. We 

considered two different shear zone sizes, and two different values for the intact rock permeability. We 

chose to vary these parameters since they are not well-constrained in the geological characterization. 

Therefore, we define option A as the cases where the shear zones are “small”, and option B as the cases 

where the shear zones are “large” (as detailed below). Likewise, option 1 is defined as the case where a 

low background permeability is employed, and in option 2 the background permeability is high relative 

to option 1. Similarly, the case with large shear zones and high background permeability is denoted B2. 

An overview of the case nomenclature is provided in Table 6.7. 

 

Table 6.7 Overview of naming convention for four numerical simulations of the HS1 experiment. 

 Low matrix permeability, 1 High matrix permeability, 2 

Small shear zones, A Case A1 Case A2 

Large shear zones, B Case B1 Case B2 

 

We will now briefly summarize the specific parameter changes. The dimensions of the shear zone 

bounding box in option A are [−1,86] × [80,151] × [−5,41]. For option B, the shear zone bounding box 

are extended by 10 meters towards east (+𝑥), 5 meters towards north (+𝑦), and 5 meters in each 

direction in the vertical (±𝑧), resulting in the dimensions [−1,96] × [80,156] × [−10,46]. The 

background permeability for option 1 is 5 × 10−21 𝑚2, and doubled to 10−20 𝑚2 for option 2. 
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Table 6.8 Model parameters for the HS1 simulation. 

𝐸 Young’s modulus 40 GPa  
𝜈 Poisson’s ratio 0.25  
𝐾𝐷 Skeletal bulk modulus 27 GPa  
𝛼 Biot coefficient 0.54  
𝓀 Permeability for the intact rock 10−21 m2   or    5 × 10−21 m2  
𝜎1 Maximum principal stress  13.1 MPa  (104.48 / 39.21)  
𝜎2 Intermediate principal stress  9.2 MPa     (259.95 / 47.90)  
𝜎3 Minimum principal stress  8.7 MPa     (003.72 / 12.89)  
𝜙 Porosity 0.7%  
𝜌𝑓 Fluid density 1000 kg/m3  
𝜌𝑚 Rock density 2700 kg/m3  
𝔉 Friction coefficient 0.8  
𝑐𝑓 Fluid compressibility 4 × 10−10 Pa  

𝜇 Dynamic viscosity 1.26 × 10−3 Pa⋅s  
𝜃 Dilation angle 3°  
𝑇 Initial shear zone transmissivity: 

- S1.1 
- S1.2 
- S1.3 
- S3.1 

 

5.0 × 10−8   m2/s  
1.0 × 10−9   m2/s  
8.3 × 10−11 m2/s  
3.7 × 10−7   m2/s  

 Characteristic length scale 1 m  
 Characteristic pressure scale 1011 Pa  
 Characteristic time scale 1 s  
 Time step per phase (# of steps): 

- Initialization of pressure 
- Initialization of tunnels 
- Stimulation phase 
- Shut-in phase 

 
15 000 years (2)  
15 years (2)  
1 to 2.5 min (19 to 22)  
15 min (5)  

 

6.5 Simulation results: HS1 stimulation into S1.3 
We aim to present simulations of the HS1 stimulation experiment on February 15th 2017 and compare 

the results with the estimated transmissivity enhancement, induced slip, and pressure curves as 

described in Section 6.2. The simulation results are presented by comparing four model simulations 

corresponding to specific parameter perturbations, as described in the previous section. 

 

6.5.1 Pre-stimulation state 
First, we consider the initial pressure profile from the initialization steps. Recall that the system is first 

equilibrated with respect to the boundary conditions, then, we include the hydraulic effect of the AU 

and VE tunnels by fixing the pressure in the part of the shear zones that intersect the tunnels to 

atmospheric pressure (0.1 MPa). As can be seen in Figure 6.6, the atmospheric pressure profile due to 

the AU tunnel is clearly discernible. After 30 years of tunnel equilibration, the mean-pressure in S1.3 is 

0.2 − 0.3 MPa for all simulation cases. The peak pressure in S1.3 for the end-member case B2 is 

0.1 MPa higher than the peak pressure for case A1. This variation is explained by faster diffusion rates in 
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the intact rock for cases with higher background permeability (A2, B2). For comparison, the in-situ 

pressure in the shear zones pre-stimulation was found to be less than 0.5 MPa (Jalali et al., 2018). 

Next, we consider the initial tendency for slip, which is calculated as the ratio of tangential to normal 

forces on the shear zones. Critically stressed shear zones tend to have values near the coefficient of 

friction, which is set to 0.8. By virtue of the friction model, the friction bound is the upper bound for the 

slip tendency. As can be seen in Figure 6.7, none of the shear zones appear to be critically stressed, with 

values ranging 0.15-0.19. This is reasonably consistent with the estimates from Fig. 15 of Krietsch et al. 

(2018b). Assuming an unperturbed stress tensor, they found a slip tendency up to 0.25 in some fractures 

and parts of the S1 shear zone. For other parts of S1, the slip tendency was estimated at ~0.2. Note that 

if the perturbed stress state is assumed (see Section 6.1.3 and Krietsch et al. (2018b)), the slip tendency 

was found experimentally to be as high as 0.5 for some orientations. 
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Figure 6.6 Pressure profile on the shear zones after 30 000 years initialization of the mechanical state with z-independent 
hydrostatic pressure at 480 m depth, followed by 30 years equilibration of fluid pressure due to excavation of the AU and VE 
tunnels at the ISC-site. Outline of S1.3 for the cases with small shear zones (option A) is displayed to visualize the relative 
differences in size between the cases. 
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Figure 6.7 Slip tendency for the shear zones just before stimulation begins. For S1.3, the slip tendency is 0.15-0.19. Results from 
case A1. 

 

6.5.2 Early pressure front propagation 
The pressure distribution in S1.3 after 5 minutes of injection is shown in Figure 6.8. For the cases with 

low background permeability (option 1), the pressure profile extended further across the fracture 

compared to the cases with high background permeability (option 2). A higher background permeability 

results in greater pressure leakage into the intact rock, thereby reducing the extent of the pressure front 

within the shear zone.  
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Figure 6.8 Pressure in S1.3 at T=5min after injection start for each simulation case.  

 

To investigate the effect of the shear zone size on the pressure front, consider the state at 𝑇 = 7.5 min. 

This corresponds to 5 minutes with an injection rate 15 l/min, then 2.5 minutes with 20 l/min. 

Consider the cases with high rock permeability, i.e. case A2 and B2. Figure 6.9 shows the isobars for each 

case, with a line extending radially from the injection point (of A2) to the 5 MPa isobar. For case B2, the 

5 MPa isobar is ~5 m closer to the injection point. This is expected since the extension of the domain 

downwards (−𝑧 direction) should allow a greater proportion of the fluid to propagate downwards, as 

opposed to being forced to propagate upwards. 
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Figure 6.9 Pressure profile in S1.3 at T=7.5min. Top: Case A2, bottom: Case B2. Isobars, ranging from 1 to 8 MPa, are shown in 
intervals of 1 MPa. The pink cells denote the injection cell for each case. A green ruler with 5 m increments from the A2 injection 
cell to the 5 MPa isoline, with a total length of 31.3 m, is displayed. At 31.3 m from the injection point, case A2 has a higher 
pressure (5 MPa) than case B2 (4 MPa). 
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6.5.3 Slip-induced Biot effects 
Slip along the S1.3 shear zone is accompanied by a characteristic change in pressure in the intact rock, as 

seen in Figure 6.10. In the figure, the reference side is on the left corresponding to the positive interface 

Γ+, relative to which the displacement jump is computed. As the left side of the shear zone dislocates 

upwards, the intact rock adjacent to the top left part undergoes compression, while the intact rock 

adjacent to the bottom left part expands. The opposite effect is seen on the right side, where the top 

region expands, while the bottom side compresses.  

The pressure values in the regions with expansion, termed extensional lobes (Krietsch et al., 2020), are 

mostly negative. In Figure 6.10b and c, the low-opacity volume cells are regions where the pressure is 

less than atmospheric (0.1 MPa), also termed “negative” pressure. These regions correspond to the 

transition from open or sliding to sticking. The minimum negative pressure is at least −2 MPa for 𝑇 =

7.5 min and −3.2 MPa throughout the simulation period.  

Basic analysis of magnitude and total volume of the negative pressure regions was conducted for all four 

cases. In all cases, the effect of extensional and compressional lobes due to slip was seen. The negative 

pressure was also correlated with the transition between sticking and sliding/open in all cases. However, 

we were unable to quantify any systematic differences between the cases. 
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Figure 6.10: Extensional and compressional lobes due to slip on the shear zone surface for case A1 at T=7.5 min. a): side view of 
S1.3 with the slip vector (mm) on the shear zone. Slip is expressed in relative terms, with respect to the two sides of the shear 
zone. The slip is directed upward on the left side of S1.3 (reference side), relative to the right side of S1.3. The pressure contours 
represent a slice of the intact rock on both sides of S1.3. As the left side slips upwards, the cells in the intact rock are compressed 

a) 

b) 
c) 
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in the direction of the slip (top left) and expanded on the bottom left. The opposite occurs on the right side of the shear zone. b): 
view of the left side of S1.3. The blue, red, and neutral (off-white) colors represent parts of the shear zone that are open, gliding, 
and sticking, respectively. c): right view of S1.3. The pressure profile on S1.3 is shown. Note that the pressure scale of c) and a) 
are different. For b) and c), the low-opacity 3d-cells visualize regions of the intact rock with pressures lower than atmospheric 
pressure (0.1 MPa). Cells that appear in a dark blue color on the shear zones signify that the intact rock on the opposing side of 
the shear zone has negative (i.e. less than atmospheric) pressure values. The pressure within the shear zone is always positive. 

 

6.5.4 Transient pressure profile at the injection interval 
The average pressure near the INJ2 injection borehole in S1.3 is shown in Figure 6.11 for each simulation 

case, including the observed pressure profile and injection rate protocol. By near, we mean within a 

radius of 9 m of INJ2 in S1.3. It is evident that all of the simulated cases overestimated the near-

borehole pore pressure by a significant amount. As the stimulation begins, the pressure for every 

simulation case immediately reaches ~9 MPa, and the pressure remain at this magnitude beyond shut-

in at 14:10.  

The apparent discreprancy in the temporal occurrence of the initial peak pressure between the cases is 

due to coarse time steps for cases A1 and B1, relative to cases A2 and B2, for the first time step with 

fluid injection. A1 and B1 required a longer time step of 𝑑𝑡 = 5 min to converge, while A2 and B2 

converged with 𝑑𝑡 = 1 min for the first five minutes. All subsequent time steps during injection were 

𝑑𝑡 = 2.5 min for all cases. 

The pressure values reported in Figure 6.11 are near-well averages. This procedure smooths out the 

maximum pressure value that is observed in the injection cell. The maximum peak pressure for any 

simulation case was 9.38 MPa at 𝑇 = 1 min for case B2. The corresponding near-well pressure for case 

B2 at this time was 7.10 MPa. For comparison, the unperturbed stress tensor suggests that the stress 

normal to the fracture plane pre-stimulation is 9.34 MPa, which is less than the maximum peak pressure 

for case B2. The peak pressure in the injection cell rapidly declined to values within 0.2 MPa of the mean 

near-well pressure a few minutes later for all simulation cases. The large pressure perturbation for the 

simulations may reflect insufficient fluid storage properties for the shear zone or limitations related to 

the singularity-like behavior that occurs at the injection point due to the lack of a well model.  

A well model may be necessary to accurately reflect the near-well behavior. We model fluid injection by 

setting a positive value for the source term in the injection cell. This choice can result in an exceptionally 

large pressure gradient as the injection begins. The near-well behavior is non-linear, and we are unable 

to capture these effects with the current approach. A dimensionally reduced well model may be justified 

since the core diameter of the INJ2 injection well is 12 cm. In contrast, the characteristic mesh size of 

the S1.3 shear zone is about 3 − 4 m. With a well model, the injection interval is treated as a 

dimensionally reduced 1D segment in the 3D domain (Fabrie & Gallouët, 2000).  

The insufficient fluid storage properties may be a result of the choice to model the shear zones as 

dimensionally reduced fracture surfaces where the fracture thickness equals the hydraulic aperture. 

Therefore, our model is suited to model the conductivity of the fractures. However, it is less clear 

whether storage properties are properly modeled with this approach since the shear zones are certainly 

thicker than what the hydraulic aperture suggests. 

As can be seen from Figure 6.11, cases with large shear zones (option B) have a pressure drop markedly 

earlier than cases with small shear zones (option A). Although the precise pressure perturbations are not 
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entirely resolved due to coarse time steps, we see that approximately 15 minutes after shut-in, the 

pressure starts to decrease for B-cases. Correspondingly, a similar decrease in pressure occurs 

approximately 40 minutes after shut-in for A-cases. The discrepancy between small (A) and large (B) 

shear zones is likely caused by more efficient diffusion of fluid pressure throughout the larger shear 

zones. For small shear zones, the pressure throughout the S1.3 shear zone is almost completely 

equilibrated with respect to the pressure at the injection point. In contrast, a pressure gradient away 

from the injection point is observed within S1.3 for cases with large shear zones. At shut-in, the pressure 

in B-cases decreases by a combination of diffusion to the intact rock and diffusion within the shear zone 

itself, while the pressure in A-cases predominately decreases by virtue of diffusion into the intact rock. 

Notice that the permeability of the intact rock does have an impact, as can be seen from the curves in 

Figure 6.11. The pressure for A2 and B2 decreases slightly faster than that for A1 and B1, respectively. 

However, the shear zone permeability is about four orders of magnitude greater than that of the intact 

rock, which helps explain the importance of shear zone diffusion over diffusion to the intact rock. 

 

 

Figure 6.11 Transient pressure profile for the simulation cases. The orange, purple, grey, and brown lines are the average 
pressure in a radius of 9 meters near the injection point for cases A1, A2, B1, and B2, respectively. The red line is the observed 
pressure profile, and the blue line is the injection rate during the test. Note that the venting that occurs just before 15:00 is not 
included in the numerical simulation. The observational data is from Krietsch et al. (2019). 

 

Cross-plots of the pressure and flow rates (Q-P) measured at the end of each constant-rate step during 

the main stimulation cycle (C3) are for each simulation case compared to the observed values from HS1 

in Figure 6.12. The four simulation cases have virtually identical Q-P curves and are systematically higher 

than the observed pressure. The observed Q-P curve shows classic pressure-limiting behavior, with 

pressure declining before recovering towards the end of the stimulation experiment (Krietsch et al., 

2020). The simulation cases also show pressure-limiting behavior, except that there are virtually no 

transient variations in pressure as the injection rate increases. The discrepancy in the initial pre-
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stimulation pressure between the simulations and observations can likely be explained by the two pre-

stimulation phases (C1 and C2). These pressure-controlled phases added fluid to the system that was 

not completely removed during venting after C2 and may also have stimulated the system slightly. 

Certainly, Krietsch et al. (2020) suggested that breakage of cohesive bonds and shearing may have 

occurred during these phases. 

In Table 6.9, we compare the pressures at the end of the first and fifth injection steps during the 

stimulation cycle. The similarities suggest that the numerical model can capture some of the same 

dynamics as the observations, whereby the pressure reaches a maximum limit. However, near-well 

pressure magnitudes do not match, which may reflect near-well model deficiencies. The injection 

pressure limit suggests that lift-off, i.e. separation of fracture walls, of the S1.3 shear zone has occurred. 

Lift-off can be associated with formation of new fractures, which is not accounted for in the present 

model, or shearing on pre-existing fractures (McClure & Horne, 2014). 

 

 

Figure 6.12 Cross plot of flow versus pressure data for the four simulation cases and the observed results from HS1, near the 
INJ2 injection borehole (radius < 9 m). The curves are constructed by connecting the flow/pressure data at the end of each 
step during C3. The four simulation cases are virtually identical, and systematically higher than the observed flow/pressure data 
(blue). The initial pressure for the simulation cases are also significantly lower than the observed pressure. The observational 
data is from Krietsch et al. (2019). 
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Table 6.9 Injection pressure measured at the end of the first and last step of the main stimulation cycle (C3). The pressure from 
the simulated cases (A1, A2, B1, B2) are computed as the average pressure within a radius of 9 m in S1.3. The difference 
between the pressure values is shown on the bottom row. The observational data is from Krietsch et al. (2019). 

 HS1 (Obs.) A1 A2 B1 B2 

PStep1-C3 (MPa) 5.91 8.83 8.93 8.80 8.92 

PStep5-C3 (MPa) 5.97 8.91 8.89 8.89 8.87 

Difference (MPa) +0.06 +0.08 −0.03 +0.09 −0.05 
 

6.5.5 Hydraulic response in S1 
Transient fluid pressure perturbations were recorded for the HS1 experiment in intervals along the PRP 

boreholes (Krietsch et al., 2020). We investigated three borehole – shear zone intersections at locations 

corresponding to two pressure monitoring intervals from the Grimsel experiment, see Table 6.10. To 

simplify computation of pressures in the intervals, we considered the average pressure in a small region 

surrounding the intersection between a monitoring interval and a shear zone. Also, we are primarily 

interested in shear zones away from S1.3, meaning that we disregarded the PRP1-1 intersection with 

S1.3 in the following. An overview of the monitoring intervals for the simulations is provided in Table 

6.11, including direct distance from the INJ2 injection borehole in S1.3 to the intervals. 

 

Table 6.10 Overview of a subset of pressure monitoring intervals used during HS1. Data retrieved from Table 2 of Krietsch et al. 
(2020). 

Interval name Interval width (m) Number of 
fractures 

Shear zones 

PRP1-1 6.1 14 S1.2 & S1.3 

PRP3-1 7.5 4 S1.1 & S1.2 

 

Table 6.11 Overview of pressure monitoring intervals for simulations of the HS1 experiment. The data is from Krietsch et al. 
(2020). 

Interval name  
(borehole – shear zone) 

Depth in borehole (m) Coordinates (x, y, z)  
(local Grimsel 
coordinates) 

Distance to INJ2 
injection borehole in 
S1.3 (m) 

PRP1 – S1.2 38.7 (48.6, 111, 5.8) 8.0 

PRP3 – S1.2  31.7 (56.3, 118.7, 19.7) 17.5 

PRP3 – S1.1 26.1 (58.4, 114, 22.0) 20.9 

 

In each simulation case, the pressure perturbations in the monitoring intervals never exceeded 2 MPa 

even though peak injection pressures were nearly 9 MPa (Figure 6.13). The peak pressure observed in 

PRP1-1 was less than 0.25 MPa throughout the C3 cycle, and in PRP3-1, less than 0.5 MPa (Figure A4f 

from Krietsch et al. (2020)). However, these intervals covered multiple shear zones and stretches of 

intact rock, so the pressure is not expected to match exactly. The perturbations for the simulations were 

significantly higher than observations for all four cases. However, there are discernible differences 
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between the four cases. Pressure build-up between 𝑇 = 10 min and 𝑇 = 35 min is similar in all cases, 

with some notable variations.  

For case B1, with large shear zones and low rock permeability, a large pressure perturbation occurred 

between 𝑇 = 30 min and 𝑇 = 35 min. This perturbation was caused by an instantaneous increase in 

pressure in the corner of the S1.2 shear zone. In fact, the perturbation was large enough locally to cause 

a small amount of slip in the region. While the reasons for this behavior are not fully understood, we 

hypothesize that effects due to the coupled nature of the dynamics are at play. We observed opening of 

parts of S1.3 adjacent to this region immediately before the pressure spike, which may have caused local 

stress transfer between the shear zones. Another plausible explanation is that the model is unable to 

represent the physics accurately near the shear zone edge if the edge is open or gliding, in which case 

fracture propagation would normally be expected. 

Besides this anomaly, the cases with large shear zones have qualitatively similar pressure profiles, with a 

rapid decline following shut-in. This is correlated with the decline occurring at the injection point 15 

minutes after shut-in (see Figure 6.11). For the cases with small shear zones, there is a slower pressure 

decline until a rapid drop occurs at 𝑇 = 75 min, i.e. 40 minutes after shut-in, which is the same time at 

which a rapid decline occurs at the injection point. We remark that long time steps were used after shut-

in, which means that delayed responses in the monitoring boreholes may not have been resolved in the 

solution. This also implies that we are not able to properly categorize responses as immediate or 

delayed, which was suggested by Krietsch et al. (2020) as a way to understand whether pressure signals 

are diffusive (delayed), or poroelastic (immediate) in nature. The latter type represents the fluid 

pressure changes due to stress changes and concomitant volumetric deformation. 

The pressure in several monitoring intervals remained perturbed at a level slightly lower than 

atmospheric pressure by the end of the simulations. The largest measured difference was a decline of 

0.05 MPa for case B2 at the PRP1 – S1.2 interval. The intervals further away from the injection point 

were closer to (or exactly) atmospheric pressure at 𝑇 = 110 min. The negative perturbations may be 

caused by poroelastic effects from the stimulated shear zone, which resulted in negative pressure values 

in the intact rock due to slip in the S1.3 shear zone. 
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Figure 6.13 Pressure perturbation time series for PRP monitoring intervals. Rate-change steps were at 0, 5, 10, 15, 20 minutes. 
Shut-in occurred at 35 minutes. 

 

The pressure at shut-in at the monitoring intervals is displayed in Figure 6.14. Cases with small shear 

zones (A1, A2) tend to have a slightly higher shut-in pressure in the monitoring intervals than the cases 

with large shear zones (B1, B2). Additionally, there is virtually no spread in pressure for A-cases, while B1 

and B2 have noticeable pressure differences at the same monitoring intervals. The lower overall 

pressures in B1 are likely explained by the larger shear zones more effectively distributing pressure 

within the target shear zone (S1.3), and the lower rock permeability less efficiently diffusing pressure 

between the shear zones. However, given the pressure spike observed in Figure 6.13 which occurs at 

𝑇 = 32.5 min, the overall trend of the pressure profile may be harder to interpret. Either way, the 

simulated pressure distribution at shut-in is 5 to 10 times higher than the observed pressure distribution 

at similar distances (ref figure A5 e. of Krietsch et al. (2020)). 
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Figure 6.14 Shut-in pressure (𝑇 = 35 min) in monitoring intervals with respect to radial distance to the INJ2 injection point. The 
measurement points correspond to the intervals listed in Table 6.11. 

 

6.5.6 Cumulative slip and transmissivity enhancement 
The transient near-well slip evolution for all simulation cases are characterized by approximately 

~1.2 mm slip during the first five minutes of injection, then ~0.5 mm additional slip during the next five 

minutes. The slip dislocation stabilized after approximately 20 minutes for all simulation cases. The 

estimates for cumulative injection-induced slip and transmissivity enhancement for each simulation case 

are shown in Table 6.12. For direct comparison with results, we computed slip and induced 

transmissivity near the injection well. In addition, we also computed the average transmissivity 

throughout the interior of the S1.3 shear zone. We see that the interval transmissivity is lower than the 

average transmissivity throughout S1.3. The largest slip values were observed toward the center of S1.3, 

which cause a higher transmissivity enhancement. The injection point on the other hand, is located 

towards the bottom of the shear zone.  

The direction of the slip vector is visualized in Figure 6.10, which is towards 250/43 (dip direction/dip). 

The simulated slip was remarkably similar across variations of the background permeability. Compared 

to the observed slip dislocation, the simulations overestimate slip by a factor of three. The difference in 

transmissivity enhancement between simulations and observations is at most one order of magnitude. 
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Table 6.12 Cumulative slip dislocation and transmissivity enhancement for each simulation case, and HS1 observations. Results 
are provided near the injection borehole, and across the S1.3 shear zone. The observed values were reported by Krietsch et al. 
(2020). 

 A1 A2 B1 B2 Observed 

Average 
Interval 
transmissivity 
(m2/s) 

8.5e-7 8.5e-7 1.3e-6 1.3e-6 1.5e-7 

S1.3 average 
transmissivity 
(m2/s)  

1.2e-6 1.2e-6 1.9e-6 2.0e-6 -- 

Average 
interval 
cumulative slip 
dislocation 
(mm) 

1.95 1.94 2.29 2.28 0.7 – 0.81 
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7 Discussion and conclusion 
 

In this thesis, we modeled a hydraulic shearing experiment conducted as part of the In-Situ Stimulation 

and Circulation experiment at the Grimsel Test Site. We applied a fully coupled hydro-mechanical model 

for deformable fractured porous media. A discrete fracture matrix model was employed that explicitly 

represents shear zones as two-dimensional planar fractures embedded in the intact rock. The 

poroelastic equations in the intact rock is a coupled system of consisting mass and momentum balance, 

and constitutive relations for the fluid flux and total stress. Mass balance in the intact rock is coupled to 

mass balance in the shear zones and shear zone intersections by interface fluxes and source terms. 

Similarly, momentum balance in the intact rock is coupled to a Coulomb friction law and non-

penetration condition in the planar two-dimensional shear zones. The shear zone aperture is modeled 

with an empirical shear dilation relationship, and shear zone transmissivity is modeled using the cubic 

law. The equations are discretized using multi-point finite volume methods, implicit time stepping, and a 

semi-smooth Newton method for fracture contact mechanics and fracture deformation. 

Using the model described above, we have performed the first simulation of one of the hydroshearing 

experiments at the Grimsel Test Site where poroelasticity in the intact rock is coupled to flow and 

deformation of the shear zones. To a substantial extent, we were able to capture key features of the 

stimulation test. Simulated transmissivity enhancement at the borehole was within one order of 

magnitude of the observations. We found pressure-limiting behavior consistent with observations. Our 

model captured slip-induced poroelastic effects that produced extensional and compressional regions in 

the intact rock, on both sides of the target shear zone. These slip-induced effects were also described by 

Krietsch et al. (2020) as a fundamental deformation mechanism. 

A result of the slip-induced poroelastic effects were negative pressure values in the extensional regions. 

We interpret these values to be a result of the assumption that the pores are saturated by a single-

phase fluid that is only slightly compressible. Therefore, as the cells next to the target shear zone 

expand, the pressure drops since the fluid cannot sufficiently expand. In reality, the system is partially 

drained, which means that the pores are saturated by a two-phase fluid consisting of air and water. Air 

can easily expand and fill the additional volume due to the rock expansion. This illustrates an inherent 

limitation of our modeling approach. 

Another aspect that may influence the deformation of the intact rock near the shear zones is the 

assumption that the crystalline rock is linearly elastic near the shear zones, with homogeneous and 

isotropic elastic parameters. The S1 and S3 shear zones are ductile and brittle-ductile structures, 

respectively. The S3 shear zone particularly, has an extraordinarily complex mechanical structure. The 

mylonitic cores bound a highly fractured zone, and are each bounded by a transition zone, so that the 

full damage zone width is ~5 m (Wenning et al., 2018). The host rock adjacent to the shear zone is 

characterized by decreased mechanical strength due to microfracturing and anisotropic elastic 

properties due to the foliations. In contrast, we modeled all shear zones as two-dimensional planar, 
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open fractures, therefore disregarding structural thickness. Additionally, we only included S3.1 in the 

simulation due to issues with convergence for closely spaced fractures relative to the characteristic 

mesh size. With these aspects in mind, it is unlikely that a linearly elastic model accurately captures the 

interactions between rock and fault deformation. The additional complications arising from the 

presence of the foliations, inducing anisotropic elastic properties, make the accurate mechanical 

modeling of the shear zones a delicate issue. 

The HS1 experiment targeted the S1 shear zone which is farthest away from the S3 shear zone, 

therefore limiting the direct hydraulic interaction between the target shear zone and the S3 shear zone. 

To assess the impact of our assumptions on the shear zones and parameter values, we evaluated 

different scenarios by varying the permeability of the intact rock and the size of the shear zones. In all 

cases, the simulated near-well pressure perturbations significantly exceeded the observed pressure. We 

hypothesize that this discrepancy is due to the lack of a well model to account for the singularity 

introduced by our approach to borehole injection, and the lack of sufficient storage in the shear zones. 

The study is nonetheless showing the significant impact of shear zone extent on the transient pressure 

profile, especially following shut-in. We also observed clear differences in the transient propagation of 

the pressure front with variations of the permeability of the intact rock. These observations emphasize 

the critical importance of knowledge of the spatial distribution of hydraulic properties, and of the 

geological characteristics of the rock mass. 

Another limitation is related to the lack of gravitational effects, see Section 4.7. Gravity acts as an 

external force on the momentum and mass balance equations. Since the vertical height of the shear 

zones is roughly 50 m in the model, we would expect a noticeable impact on the solution. In particular, 

we anticipate that the direction of fluid flow and slip be modified, which would impact the 

interpretation of the results. 

There is also uncertainty related to the sparsity of in-situ data. Although many parameter-related 

deficiencies can be mitigated by heterogeneously or anisotropically modifying the parameter field, care 

must be taken in order to avoid over-parameterization of the model in cases where the data is 

insufficient to identify additional parameters. For example, there is great uncertainty with respect to 

initialization of the model with respect to stress conditions, effect of tunnels, and permeability 

distribution. 

Despite model limitations, this study has demonstrated the promise of using fully coupled discrete 

fracture matrix models to enhance our understanding of coupled hydro-mechanical processes for 

hydraulic stimulation of fractures. The modular design principles underlying the DFM approach and our 

implementation specifically, means that extensions that more accurately depict specific aspects the 

dynamics are within reach.  
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7.1 Outlook 
Numerous extensions of the model would improve our confidence in the results presented in this thesis. 

In the following, we will briefly discuss some potential extensions to the current model that relate to 

elastic properties, dilation, permeability distribution, two-phase flow, and gravitational effects. 

Elastic properties of the rock are commonly assumed homogeneous and isotropic in hydromechanical 

simulations of subsurface rock. Krietsch et al. (2018b) estimated the elastic anisotropy of the rock mass 

due to the presence of foliations. By extending the model to allow for transversely isotropic elastic 

parameters combined with a heterogeneous parameter distribution near the shear zones, we could 

potentially gain a better understanding of the stress and deformation effects near the shear zones. 

Importantly, these stresses influence the tendency for slip, which is critical in terms of modeling slip-

induced dilation and transmissivity enhancement in the target shear zone.  

The pressure propagation in the target shear zone is influenced by the permeability distribution and 

gravitational effects. Introducing gravitational effects induces a natural pressure gradient to the system. 

Additionally, Following Villiger et al. (2020b) a heterogeneous permeability distribution could be applied 

in the target shear zone, then compute the average tendency of pressure propagation and cumulative 

slip dislocation following multiple simulations with varying initial conditions.  

To better understand the slip-induced effects which results in abnormally low pressure near the shear 

zones, and in acknowledgement that the system is partially drained, we could model the fluid as two-

phase. This would better reflect the in-situ conditions and hopefully improve our understanding of the 

pressure distribution due to expansion of the rock. 
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8 Appendix 
 

8.1 Hydraulic parameter relations 
Permeability (𝓀) is an intrinsic property of a porous medium and appears as a second-order tensor in 

Darcy's law. The quantity has dimensions [L2]. In literature, two other relatable quantities are often 

reported, namely hydraulic conductivity and transmissivity. 

Hydraulic conductivity (𝐾) is defined as the specific discharge per unit hydraulic gradient (Bear, 1988), 

with dimensions [LT-1]. It is a quantity dependent on both fluid and matrix properties and may 

intuitively be understood as the ease of which a fluid flows through a porous medium. Specifically, it 

combines the intrinsic permeability (𝓀) with fluid density (𝜌𝑓) and dynamic viscosity (𝜇), 

𝐾 =
𝓀𝜌𝑓𝑔

𝜇
.  

Note that the product of density and gravity (𝜌𝑓𝑔) is referred to as the specific weight of a fluid, i.e. the 

weight of fluid per unit volume (dimensions [ML-2T-2]). The transmissivity takes into account the 

interval thickness, 𝑏 [L], so that 

𝑇 = 𝐾 ⋅ 𝑏. 

At the Grimsel Test Site, the in-situ water during characterization and stimulation experiments is kept at 

11 °C (Keusen et al., 1989). At this temperature, the dynamic viscosity 𝜇 = 1.26 × 10−3 Pa⋅s, and 

specific weight 𝜌𝑔 = 9.80 × 103 𝑘𝑔/(𝑚2𝑠2). Conversion between hydraulic conductivity and 

permeability can therefore be achieved by  

𝐾 = 7.75 × 106 ⋅ 𝑘. 

 

8.2 Stress tensor rotations 
In practical applications, the stress tensor is often reported in the principal coordinate system; the 

system where all shear stresses vanish. On the other hand, the geometry of a physical rock volume is 

often reported in terms of easting, northing and elevation. For the purposes of solving practical 

applications, it is therefore necessary to transform the reported stress tensor to the coordinate system 

used by the physical domain. To illustrate this process, we consider the reported unperturbed stresses 

from the ISC project (Krietsch et al., 2018a), reproduced in Table 8.1. 
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Table 8.1 Principal stress components of the domain in terms of dip direction (𝛾) and dip (𝜃). Data from (Krietsch et al., 2018a). 

Stress component 𝜎1 𝜎2 𝜎3 

Value [MPa] 13.1 9.2 8.7 

Dip direction, 𝛾 [∘] 104.48 259.05 003.72 

Dip, 𝜃 [∘] 39.21 47.90 12.89 

 

The dip direction (𝛾) is the angle from northing in clockwise direction, and the dip (𝜃) is the angle below 

the horizontal. We may write the direction of each stress components in Euclidean coordinates using the 

following transformation, 

𝑟𝑖 = [
cos 𝜃 sin 𝛾
cos𝜃 cos 𝛾
− sin 𝜃

] . (8. 1) 

Combining the three principal directions to a matrix, we get the rotation operator 

𝑅 = [
0.750 −0.658 0.063
−0.193 −0.127 0.973
−0.632 −0.742 −0.223

] . (8. 2) 

In the principal coordinate system, the stress tensor reads, 

𝜎 = [
13.1 0 0
0 9.2 0
0 0 8.7

]  MPa. (8. 3) 

Thus, the stress tensor in Euclidean coordinates is computed as 

𝜎′ = 𝑅𝜎𝑅𝑇 = [
11.39 −0.60 −1.84
−0.60 8.87 0.59
−1.84 0.59 10.73

]  MPa. (8. 4) 

 

8.3 Code contributions 
The computer code that facilitates the numerical simulation is implemented in the open-source 

software PorePy2. A thorough introduction to the conceptual models and implemented discretizations 

can be found in Keilegavlen et al. (2020). Implementations done in PorePy related to this thesis are: 

• Development of code to implement generic filters for the mixed-dimensional assembler. The 

assembler a class that discovers and discretizes all terms in a model. This contribution improves 

modeling of non-linear problems, where re-discretization of individual terms is needed before 

every Newton iteration. The code has subsequently been expanded by other authors. 

• Development of code to facilitate nested grid convergence for three-dimensional unstructured 

grids. Grid convergence studies improve our confidence in the model where analytical reference 

solutions does not exist. This contribution implements an algorithm to track the overlap 

 
2 https://github.com/pmgbergen/porepy  

https://github.com/pmgbergen/porepy
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between cells in nested refinements of a domain, so that grid convergence studies can be 

performed. The code has subsequently been expanded by other authors. 

• Support for PorePy on Windows operating systems. PorePy is mainly developed on Linux, which 

can be a barrier for students and researchers who have Windows computers. This contribution 

examined and restructured dependencies for PorePy to add unofficial support for Windows OS. 

• General code maintenance, including bug fixes to discretization methods, improvements to 

documentation, and efficient re-implementation of algorithms. 

 

Separately, the code that connects all the features of PorePy to model the hydroshearing experiment 

the Grimsel Test Site is found at https://github.com/haakon-e/mastersproject. There, run scripts for the 

simulation cases in this thesis are available. The code is implemented with modular design principles, 

and can be categorized as follows (see also Figure 8.1): 

• Code to extract and manipulate geometric data of boreholes, shear zones, and tunnels for the 

ISC experiment at the Grimsel Test Site. The code is a Python re-implementation of the Matlab 

code that is associated with Krietsch et al. (2018a). 

• Models that implement flow, mechanics, and Biot model for poroelasticity 

• Abstract and flexible protocols for time stepping and injection phases 

• TimeMachine: A framework that manages execution of time-dependent models. The code 

includes useful procedures related to non-linear models, including retrying time steps on failure 

of the Newton method. 

In total, the implementation exceeds 7000 lines of code. 

https://github.com/haakon-e/mastersproject


 Appendix  

90 
 

 

Figure 8.1 Overview of the code structure for the implementation of the GTS hydraulic shearing experiment in the PorePy 
framework. The rectangles signify components of the code and arrows indicate dependencies between components. The main 
external packages, PorePy and gmsh, are displayed as cylinders. The figure illustrates the modular approach to implementation, 
which means that extensions can more easily be implemented. 
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