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Abstract: Chironomid-temperature inference models based on an expanded data set of surface-sediment and
limnological data from 53 Subarctic lakes in northern Fennoscandia have been developed using eight different
numerical techniques, each based on slightly different underlying statistical models or ecological assumptions.
The study sites are mostly small, shallow, bathymetrically simple, oligotrophic lakes, with a pH range from
5.0 to 7.8, a total organic carbon range from 2.5 to 12.6 mg l−1, a mean July lakewater temperature ranging
from 6.1 to 15.4°C, and a mean July air temperature ranging from 8.5 to 14.9°C. A series of redundancy
analyses (RDA) identified sediment organic content, maximum lake depth, and lakewater temperature as being
the most important explanatory variables. Variance partitioning by partial RDAs further suggested that each
of these variables accounted for a significant fraction of variance independent from each other. Different cali-
bration models were assessed on the basis of their statistical performance, with particular reference to prediction
errors and the amount of bias along the temperature gradient. Of the eight calibration models, modern analogue
techniques, weighted averaging partial least squares, simple weighted averaging with an ‘inverse’ deshrinking
regression, and linear partial least squares consistently performed best. These methods can all be used to
develop transfer functions for surface-water and air July temperatures with a root mean squared error of predic-
tion (RMSEP) of about 1.5–1.6°C (water temperature) and 0.8–1.1°C (air temperature), as assessed by leave-
one-out cross-validation. The resulting models do, however, have relatively high maximum biases (up to 3.9°C)
in the lowest segments of the air and water temperature gradients, highlighting the need for enlarging and
expanding the calibration data set to include lower temperatures.

Key words: Chironomidae, Subarctic, ordination techniques, calibration models, transfer function, summer
temperature, palaeoclimate, Holocene, northern Fennoscandia.

Introduction

Global warming is among the most serious environmental prob-
lems in the future, as has recently been reported by the IPCC
(Houghtonet al., 1996; Watsonet al., 1996; Bruceet al., 1996).
Climate change will have effects on terrestrial as well as aquatic
ecosystems and may cause severe problems for the human
environment. Reliable long-term information on natural climate
variability is needed in order to test and validate results from Gen-
eral Circulation Models (GCMs), which are used to predict future
climatic change as a result of human influences on global climate.

 Arnold 1999 0959-6836(99)HL310RP

Meteorological measurements, or direct long-term monitoring of
environmental data, do not offer time-series that are long enough
for model validation. Palaeoclimates can be used as means of
extending our knowledge on long-term natural climate variability
that is required for model validation.

Most long-term quantitative information about past climates has
been obtained so far from deep-sea cores and from Greenland
and Antarctic ice cores, but quantitative information derived from
continental environments is also needed. The lake-sediment record
is potentially one of the most useful sources of quantitative
palaeoclimatic proxy data (Battarbee, 1991; Smolet al., 1991).
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Changes in both terrestrial and aquatic ecosystems are continu-
ously recorded in lake sediments in the form of, for example,
pollen, diatoms, cladoceran, or chironomid remains. Inferences of
past temperatures may be made when the present-day thermal
optima and tolerances of the taxa concerned are estimated (Birks,
1995). Such quantification involves modelling the values of a cli-
matic variable (e.g., mean summer epilimnetic water temperature)
as a numerical function of biological data using large modern-day
calibration data sets (Charles and Smol, 1994; ter Braak, 1995).

The use of aquatic midge larvae in palaeolimnological research
has increased recently. Improved knowledge on chironomid tax-
onomy and the development of appropriate statistical methods
have made it possible to reconstruct quantitatively temperature
changes, particularly from Lateglacial times (Walkeret al., 1991a,
1997; Levesqueet al., 1994; 1997). According to Walkeret al.
(1997), summer surface-water differences of up to 10°C occurred
between the Younger Dryas and the Allerød periods in eastern
Canada. Although temperature changes during the Holocene may
have been much smaller, the reconstruction of Holocene climatic
variations using midge larvae is, in theory, possible (e.g., Velle,
1998).

In a previous paper it was demonstrated that surface-water tem-
perature is an important determinant of chironomid distributions
and relative abundances in lakes within northwestern Finnish Lap-
land, an area of a high-latitude ecotone that is potentially sensitive
to climatic change (Olanderet al., 1997). In this study the chiron-
omid-based surface-water temperature model is developed further
by means of an expanded calibration data set collected from the
same area. The ultimate aim is to develop a reliable calibration
model for the quantitative reconstruction of Holocene lakewater
summer temperatures from fossil chironomid assemblages.

As many quantitative palaeoclimatic reconstructions, for
example based on fossil pollen assemblages, beetles or plant mac-
rofossils, are for mean July or mean summerair temperatures,
we have also used our modern chironomid data set to develop a
chironomid – air-temperature calibration model, following Lotter
et al. (1997; 1999) and Brooks and Birks (1999). When applied
to fossil chironomid assemblages, the resulting reconstructions
can thus be for both summer lakewater and summer air tempera-
tures. This permits direct comparison with independent palaeocli-
matic reconstructions of summer air temperatures based on other
proxy sources (e.g., tree-ring records) or different groups of
organisms (e.g., pollen). Furthermore, in remote areas, such as
northern Fennoscandia, basic data on variations in water tempera-
ture are sparse compared to air-temperature data that can usually
be obtained at much higher temporal resolution. Accordingly, a
marked improvement in the calibrations might be achieved by
using air temperatures for calibration purposes rather than
occasional water-temperature measurements only (Livingstone
and Lotter, 1998). Ottosson and Abrahamsson (1998) discuss the
problems in modelling epilimnetic and hypolimnetic temperatures
in lakes and present a model driven by latitude, continentality and
altitude to predict epilimnetic water temperatures in Swedish
lakes.

Study area

In Olanderet al. (1997), 30 lakes were selected from both sides
of the northern tree-line in northwestern Finnish Lapland in order
to examine the relationships between modern chironomid assem-
blages and selected physical and chemical variables. Particular
attention was placed on surface-water temperature. For this study,
23 additional lakes were sampled to expand the data set and thus,
it is hoped, to improve the reliability of the quantitative inference
models (Figure 1). Most of the new sites are from the northern-
most (Arctic) part of our initial transect. The inclusion of the 23

Figure 1 Distribution of the 53 lakes studied across the tree-line region
in northernmost Fennoscandia.

new lakes does not, however, extend the initial temperature gradi-
ent to any significant amount. In the current 53-lake data set, July
surface-water temperature ranges from 6.1 to 15.4°C, with a
decreasing trend in temperatures from south to north. Most (79%)
of the study sites were found to be thermally unstratified during
the sampling period. The surface-water temperatures are, how-
ever, slightly skewed (Figure 2A). There are few lakes with sur-
face-water temperatures below 9°C and there is a dip between the
11–12°C interval, whereas the 12–13°C interval is overrepres-
ented. The uneven distribution of sites along this surface-water
temperature gradient is associated with a relatively low density of
lakes in the area, which makes it difficult to find lakes suitable
for our purposes (i.e., lakes that are small and not too deep, and
have minimal throughflow and undisturbed sedimentation
conditions). Nevertheless, the steep water-temperature gradient
observed is neither accidental nor dependent on a particular sum-
mer; it is clearly detectable in long-term water-temperature rec-
ords from lakes in the area (Atlas of Finland, 1986; see also
Weckström et al., 1997). In general, there exists a close relation-
ship between long-term air temperatures and long-term water tem-
peratures in the area (Kuusisto, 1981).

Mean July air temperatures range from 8.5 to 14.9°C along the
transect. The air temperatures are not significantly skewed (Figure
2B), in contrast to the surface-water temperatures. There is a sig-
nificant relationship between the July air temperatures and the
measured surface-water temperatures (r= 0.65, p, 0.01) in our
data set (Figure 3).

Vegetation, climate and bedrock characteristics of the study
area are described in detail by Olanderet al. (1997). The study
lakes are generally small (0.9–115.2 ha), headwater, clear, and
oligotrophic. Their alkalinity ranges from 1.0 to 17.0 mg l−1, total
organic carbon (TOC) ranges from 2.5 to 12.6 mg l−1, and the pH
gradient varies between 5.0 and 7.8. The deepest lake is 25 m,
whereas the shallowest lake is only 0.85 m deep. The catchment
areas (excluding the lake area) vary from 5.45 to 2524 ha and the
lake/catchment ratio is generally low (mean= 26.05). All the
study sites are natural and there are no known direct impacts from
human activity within their catchment areas. Further character-
istics of the 53 lakes are given in Table 1.
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Figure 2 Frequency distributions of surface lakewater (A) and mean July
air temperatures (B) for the 53 sampled lakes.

Figure 3 Scatter plot of measured July 1995 water temperatures (°C) and
calculated mean July air temperatures (°C) based on the 1961–1990 period
(r = 0.65, p, 0.01) for the 53 sampled lakes.

Methods

Sampling and laboratory methods
Sampling and laboratory procedures are described by Olanderet
al. (1997). Three new variables, distance beyond tree-line (DBT),
sediment organic content measured by loss-on-ignition (LOI) and
mean July air temperature, are included here. DBT acts as a surro-
gate for location factors in the data set. It was obtained by map-
ping the vegetation zones derived from 1:20 000 topographic
maps of the study region. LOI was determined from three surface-
sediment samples (combined to make one homogenized sample)
taken from the deepest part of a lake according to the methods
described in Bengtsson and Enell (1986) but with corrections to
some of their formulae. For LOI analyses, quartz crucibles were
used instead of porcelain crucibles in order to improve accuracy.
Surface-water temperatures were measured twice in July 1994 and
once in July 1995. Water-temperature measurements used in this
study were all from July 1995. Mean July air temperatures were
estimated for each lake using 1961–1990 Climate Normals data
from 11 nearby climate stations (two in Norway, five in Finland,
four in Sweden) and applying consistent regional lapse rates and
a linear interpolation procedure to allow for the small but statisti-
cally significant trend in mean July air temperatures (reduced to
sea level) within the study area. If a reference line is drawn from
Skibotn in Troms, north Norway, southeastwards to Rovaniemi in
northern Finland, and the positions of all 11 climate stations are
drawn orthogonal to this line, there is a highly significant statisti-
cal relationship between mean July air temperature (reduced to
sea-level values) at these climate stations and distance along this
line (reduced mean July air temperature= 13.5+ 0.0544 * dis-
tance, r= 0.97, p, 0.001). The mean July air temperatures for
each of the 53 lakes were estimated from the position of each lake
along the line using this equation and allowing for the elevation of
each lake by applying the regional lapse rate of 0.57°C per 100 m
(Laaksonen, 1976).

Chironomid analysis
Subsamples of 0.5–28.5 g wet weight were deflocculated in warm
10% KOH for 30 minutes. Samples were then passed through a
105mm sieve and transferred to a Bogorov counting tray. All head
capsules were picked with fine forceps under a binocular micro-
scope and mounted ventral side upwards on slides in Euparal. To
obtain a minimum of 100 chironomid head capsules per sample,
additional slides from the existing 30 lakes were also prepared.
Chironomids were usually identified to generic level. However,
the generaPsectrocladiusand Heterotrissocladiusand the tribe
Tanytarsini were divided into smaller taxonomic units than in
Olanderet al. (1997) to improve taxonomic resolution. Their sep-
aration was mainly based on Hofmann (1971), Saether (1975) and
Wiederholm (1983). Agreements in taxonomic harmonization
emerged from workshops within the international MOLAR and
NORD-CHILL projects and these were followed in this study.
The genusPsectrocladiuswas divided into three separate groups
(Monopsectrocladiusgr.,P. sordidellusgr. andAllopsectrocladius
gr.) on the basis of the number and shape of median teeth in
the mentum. The genusHeterotrissocladiuswas divided into four
groups on the basis of the number and shape of middle median
teeth in the mentum and the colour of the postmentum. In the
cases when the head capsule was split into two halves, the distinc-
tion betweenH. marcidusandH. maeariwas difficult or imposs-
ible. The tribe Tanytarsini was divided into separate taxonomic
groups on the basis of the number of mandibular teeth and the
presence/absence and shape of the projection on the antennal ped-
estal.Micropsectraspecies have a bifid premandible whereasTan-
ytarsusspecies have a trifid premandible. The premandible thus
makes a good discriminator betweenMicropsectraandTanytarsus
species, but unfortunately the premandibles were only very rarely
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preserved. Characters of the different Tanytarsini taxa used in this
study are described by Brookset al. (1997a).

Data analysis
Only chironomid taxa occurring in at least two lakes with a rela-
tive abundance of more than 2% in at least one lake were included
in the numerical analyses (Table 2). Of the initial 63 taxa, 38
fulfilled these criteria. In all ordination, regression and calibration
analyses, the chironomid percentage data were transformed to
square-roots in an attempt to optimize the ‘signal’ to ‘noise’ ratio
in the data (Prentice, 1980) and to stabilize the variances. All
environmental variables, except pH and water and air tempera-
tures, were log-transformed [ln (x+ 1)] prior to numerical analy-
ses to normalize their skewed distributions. The ordination analy-
ses only used the measured chemical, limnological and catchment
variables. The calculated mean July air temperature values were
not used in the ordination analyses because they are estimated
values and because of their high collinearity with some of the
measured variables. The mean July air temperature values were
solely used to derive chironomid–air-temperature calibration
models that can be compared with the chironomid–surface-water-
temperature inference model.

Detrended correspondence analysis (DCA) (Hill and Gauch,

Table 2 Basic information about the relative abundance (minimum, mean, maximum) number of occurrences, and Hill’s N2 for each of the 38 taxa
included in the 53-lake data set

Taxa No. occurrences N2 All values Without zeroes

Minimum Maximum Mean Minimum Mean

Unidentified Orthocladiinae 48 29.5 0.0 18.4 3.6 0.6 3.6
Heterotrissocladiussp. 15 8.9 0.0 15.4 1.5 0.7 5.4
Heterotrissocladius maeari 13 8.4 0.0 9.7 0.7 0.5 3.0
Heterotrissocladius grimshawi 15 12.3 0.0 2.6 0.4 0.6 1.4
Heterotrissocladius subpilosus 12 3.1 0.0 37.5 1.3 0.6 5.8
Psectrocladiussp. 50 35.4 0.0 11.3 4.1 0.4 4.4
Psectrocladius sordidellus-group 53 29.5 0.9 36.8 6.4 0.9 6.4
Monopsectrocladius-group 42 21.5 0.0 30.5 7.0 0.5 8.9
Allopsectrocladius-group 27 13.6 0.0 9.1 1.0 0.4 1.9
Heterotanytarsussp. 12 9.4 0.0 9.8 1.1 0.8 4.9
Orthocladiussp./Cricotopussp. 47 26.7 0.0 20.7 4.3 0.5 4.8
Zalutschia zalutschicola 17 6.9 0.0 23.4 1.9 0.4 5.8
Zalutschiasp. 27 2.9 0.0 55.0 1.8 0.4 3.5
Corynoneurasp. 21 10.2 0.0 7.0 0.6 0.5 1.4
Abiskomyiasp. 3 3.0 0.0 4.5 0.2 3.5 4.2
Mesocricotopussp. 5 3.6 0.0 2.8 0.1 0.8 1.6
Hydrobaenussp. 4 1.6 0.0 18.7 0.5 0.4 6.1
Protanypussp. 10 8.3 0.0 2.4 0.2 0.5 1.3
Unidentified Chironominae 29 21.8 0.0 3.3 0.7 0.4 1.2
Microtendipessp. 42 24.3 0.0 22.5 5.3 0.7 6.8
Dicrotendipessp. 41 27.7 0.0 8.7 2.2 0.7 2.8
Sergentia coracina 44 14.9 0.0 37.0 3.5 0.6 4.2
Unidentified Tanytarsini 53 40.0 2.5 49.6 15.4 2.5 15.4
Micropsectragr. B/Tanytarsinagr. B 51 29.2 0.0 27.0 5.8 0.4 6.0
Tanytarsus lugens 36 12.9 0.0 18.1 1.9 0.4 2.7
Tanytarsus chinyensis 4 2.9 0.0 2.8 0.1 0.5 1.6
Paratanytarsussp. 35 20.2 0.0 9.5 1.8 0.4 2.7
Cladotanytarsus mancus-group 25 17.9 0.0 3.6 0.6 0.4 1.3
Corynocera ambigua 34 11.2 0.0 55.0 4.6 0.6 7.2
Corynocera oliveri 9 5.7 0.0 8.5 0.7 0.9 4.1
Micropsectrasp. 24 12.8 0.0 20.8 3.2 0.9 7.1
Pagastiellasp. 23 15.3 0.0 5.3 0.8 0.5 1.8
Polypedilumsp. 22 11.6 0.0 6.4 0.5 0.5 1.2
Stempellinellasp. 19 11.8 0.0 4.4 0.5 0.4 1.4
Chironomussp. 25 12.3 0.0 12.5 1.6 0.5 3.3
Cladopelmasp. 20 16.3 0.0 2.8 0.6 0.6 1.6
Stictochironomussp. 4 3.5 0.0 3.2 0.2 1.1 2.0
Tanypodinae spp. 53 42.2 1.2 18.5 7.7 1.2 7.7

1980), with detrending by segments, non-linear rescaling of axes,
and downweighting of rare taxa, was undertaken on the chirono-
mid data in order to explore the principal patterns of compo-
sitional variation, and to determine the gradient lengths of chiron-
omid compositional turnover along the first few DCA axes. A
series of exploratory DCAs were also run using the complete
environmental data as predictor variables in an attempt to detect
potential multicollinearity between environmental variables, and
hence to identify variables that do not make a unique contribution
to the overall regression model (ter Braak, 1988). When running
these DCAs, all predictor variables were initially regressed onto
the DCA axes (ter Braak, 1988). Variables with high (. 20) Vari-
ance Inflation Factors (VIFs) were eliminated one at a time begin-
ning with the variable having the highest VIF, and the DCA was
repeated until all VIFs were below 20 (ter Braak, 1988).

Redundancy analysis (RDA), a constrained gradient analysis
technique (ter Braak, 1994), was used to explore the relationships
between the chironomid assemblages and the measured environ-
mental variables. The significance of the RDA axes was assessed
using unrestricted Monte Carlo permutation tests (500 permu-
tations; ter Braak, 1988; 1990; Birks, 1995). RDA was also used
to identify a subset of environmental variables that explained stat-
istically the greatest proportion of variance in the chironomid data.
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To do this, a series of constrained RDAs, in which the chironomid
data were constrained to only one explanatory variable at a time,
were run to assess the relative strength of each environmental
variable. The statistical significance of each variable was assessed
by means of a Monte Carlo permutation test (500 unrestricted
permutations). The results of the permutation tests, canonical
coefficients, approximatet tests, and the ratios of the first con-
strained eigenvalue (l1) to the second unconstrained eigenvalue
(l2) were then used as criteria to identify the most appropriate
environmental variables for quantitative reconstruction purposes
(ter Braak, 1988; Birkset al., 1990). Particular attention was paid
to the latter criterion, as it serves as a good indicator of how
effectively the variable is represented by axis 1 in the constrained
analysis. As a general rule, quantitative inference models can be
successfully developed for environmental variables that have high
l1/l2 ratios (ter Braak, 1988).

Because many of the environmental variables in our data set
are highly correlated with each other, we tested the strength and
independence of various ecological gradients potentially suitable
for the development of transfer functions by means of variance
partitioning (Borcardet al., 1992). By using a series of partial
RDAs, the total variance in the chironomid data was partitioned
into components representing different groups of explanatory vari-
ables (Borcardet al., 1992). Particular attention was paid to
assessing the power of lakewater temperature in explaining the
variance in the chironomid data, as the primary aim is to develop
a chironomid-based calibration function for palaeotemperature
reconstructions. First, the variance in the chironomid data was
partitioned among the chemical and physical components. In the
second step, a subset of environmental variables was selected
which explained best the variation in the chironomid data, as
determined from a series of constrained RDAs and associated
Monte Carlo permutation tests, and partitioned the variance
between them. The overall results of variance partitioning helped
to assess the proportion of independent variation in the chirono-
mid data that can be explained by the various sets of environmen-
tal variables (Borcardet al., 1992; Pienitzet al., 1995; Jones and
Juggins, 1995).

To determine whether to use linear- or unimodal-based numeri-
cal regression and calibration techniques (ter Braak and Prentice,
1988; Birks, 1995), the chironomid-water- and air-temperature
data sets were initially analysed by detrended canonical corre-
spondence analysis (DCCA) (ter Braak, 1986) to estimate the
length of the chironomid compositional turnover (in standard
deviation units; Hill and Gauch, 1980) along the water- or air-
temperature gradients (ter Braak and Juggins, 1993). In these
DCCAs, water or air temperature was the only explanatory vari-
able and the DCCA options used were detrending-by-segments,
non-linear rescaling, and downweighting of rare taxa.

The initial results of the DCA and DCCA were also used to
identify potential outlying samples prior to regression and cali-
bration. The following criteria were applied to identify unusual
samples (e.g., Birkset al., 1990; Korsman and Birks, 1996; Weck-
ström et al., 1997): (i) the sample score fell outside the 95% con-
fidence limits of the sample score means on any of the first four
DCA axes; and (ii) the lake had a large (. 5%) residual distance
to the constrained environmental axis in the DCCA using the
environmental variable of interest as the sole explanatory variable,
respectively. Additional checking of outliers in terms of an
unusual combination of environmental variables was carried out
using leverage diagnostics (ter Braak, 1990; 1994) in redundancy
analysis (RDA), as well as principal components analysis (PCA)
of the environmental data.

The statistical relationship of each individual taxon to water or
air temperature was assessed using a hierarchical set of taxon
response models (Huismanet al., 1993; Oksanen 1997). This hier-
archical set consists of a skewed unimodal response model, a

symmetric (Gaussian) unimodal response model, a monotonically
increasing or decreasing sigmoidal response model, and a null
model of no relationship to temperature. The simplest statistically
significant response model for each taxon was found by fitting the
most complex model first and progressively removing parameters
from the response model until the model could not be simplified
further without a significant change (p, 0.05) in the deviance
of the model. Deviance is a goodness-of-fit measure based on a
likelihood ratio test that is analogous to the variance-ratio test (F-
test) in normal least-squares regression (Crawley, 1993). Taxon
response models were fitted by maximum likelihood estimation
with a Poisson error structure and a logarithmic link function and
were restricted to all taxa with occurrences in 10 or more (20%
or more) of the samples in the data set. F-ratio tests were used to
assess the significance of the response-model parameters rather
than the simple chi-square test because the data are, as usual in
biological data sets, over-dispersed as the deviance exceeds the
degrees of freedom (Oksanenet al., 1990; 1991; Crawley, 1993).
Further details of maximum likelihood estimation, deviance, over-
dispersion, etc. , are given in Crawley (1993). The numbers of
taxa with statistically significant fits to the four types of response
models are given in Table 3.

Table 3 Summary statistics for the modern chironomid-surface-water
temperature calibration set. SD= standard deviation units of compositional
turnover (Hill and Gauch, 1980; ter Braak and Juggins, 1993),l =
eigenvalue

Number of samples 53
Number of taxa 38

N2 for samples:
minimum 8.16
median 14.81
maximum 19.83

N2 for taxa:
minimum 2.63
median 19.63
maximum 49.23

DCCA axis 1: Surface-water Air

l1 0.122 0.110
Gradient length (SD) 1.627 1.748
% variance 12.0 10.9

DCA axis 2:
l2 0.123 0.133
Gradient length (SD) 1.773 1.858
% variance 12.1 13.1

l1l2 0.992 0.827

Temperature (°C) Surface-water Air

minimum 6.1 8.5
mean 12.09 11.69
median 12.50 11.40
maximum 15.40 14.90
standard deviation 1.902 1.21

Taxon response models (maximum likelihood) for all taxa in
. 20% of the samples:
Skewed unimodal model 2 1
Symmetric unimodal model 3 11
Sigmoidal model 12 8
Null model 17 14
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There are no strong theoretical reasons (Birks, 1995) for favour-
ing the use of linear- or unimodal-based regression methods to
develop chironomid temperature inference models. The chirono-
mid data have a DCA gradient of 2.01 standard deviations (SD),
the chironomid–water-temperature data have a DCCA gradient
length of 1.63 SD (Table 3), the chironomid–air-temperature data
have a DCCA gradient length of 1.75 SD (Table 3), 12 taxa show
a statistically significant sigmoidal response and only five taxa
show a statistically significant unimodal response to surface-water
temperature (Table 3), whereas 11 taxa show a statistically sig-
nificant unimodal response and eight taxa show a significant sig-
moidal response to air temperature. These features of the data
suggest that both linear- and unimodal-based techniques may be
appropriate for these data (ter Braak and Prentice, 1988). Eight
different calibration methods have thus been used, each based on
slightly different underlying statistical models or ecological
assumptions and we have selected the method(s) that performs
best in a statistical sense by giving a low prediction error and a
low maximum bias along the temperature gradients, as assessed
in leave-one-out cross-validations (Birks, 1995), and represents
a simple ‘minimal adequate model’ (sensuCrawley, 1993). The
methods used are:

(1) simple weighted averaging (WA) with an ‘inverse’ deshrink-
ing regression (Birkset al., 1990; Birks, 1995);

(2) weighted averaging with taxon tolerance weighting (WAtol)
and an ‘inverse’ deshrinking regression (Birkset al., 1990;
Birks, 1995);

(3) simple weighted averaging (WA) with a ‘classical’ deshrink-
ing regression (Birkset al., 1990; Birks, 1995);

(4) weighted averaging with taxon-tolerance weighting (WAtol)
and a ‘classical’ deshrinking regression (Birkset al., 1990;
Birks, 1995);

(5) partial least squares (PLS) (Martens and Naes, 1989; ter Braak
and Juggins, 1993; Birks, 1995; ter Braak, 1995);

(6) weighted-averaging partial least squares (WA-PLS) (ter Braak
and Juggins, 1993; ter Braak, 1995; Birks, 1995);

(7) Gaussian logit model (GLM) (= maximum likelihood method)
(ter Braak and van Dam, 1989; Birkset al., 1990; Birks,
1995);

(8) modern analogue technique (MAT) (Bartlein and Whitlock,
1993; ter Braak, 1995; Birks, 1995) using Euclidean distance
as a measure of dissimilarity between pairs of samples (with
square-root transformed percentage values) and a weighted
mean of the most similar modern samples, the weights being
the inverse of the dissimilarity values so that samples that are
most similar have the greatest weight.

The performance of each method was assessed on the basis of:
(1) the root mean square error (RMSE) of the difference between
the observed and the estimated temperature values; (2) the
maximum bias along the temperature gradient (ter Braak and Jug-
gins, 1993); and (3) the smallest number of ‘useful’ components
in PLS and WA-PLS. To be considered ‘useful’, a component
should give a reduction in prediction error of 5% or more of the
RMSEP for the simplest one-component PLS or WA-PLS model
(Birks, 1998). For calculating the bias statistics, the gradient is
subdivided into 10 equal intervals, the mean bias (mean of the
differences between (observed and inferred)) per interval is calcu-
lated, and the largest absolute value of mean bias for an interval
is used as a measure of maximum bias. Estimating these statistics
for the calibration set alone gives so-called ‘apparent’ statistics
only (ter Braak and Juggins, 1993; Birks, 1995). As the same
data are used to generate and to evaluate the inference model, the
evaluation statistics will always be over-optimistic (Birks, 1995).
A more realistic estimation of ‘prediction error’ or the likely error
when the inference model is applied to additional independent
data (e.g., fossil assemblages) is obtained by jack-knifing or leave-

one-out cross-validation (ter Braak and Juggins, 1993; Birks,
1995). All model assessments in terms of RMSEP, bias statistics,
and the number of ‘useful’ components are based on leave-one-
out cross-validation. For the modern analogue technique, predic-
tion errors only are available as the algorithm specifically treats
each sample as an independent sample and does not compare a
sample with itself in finding close analogues within the calibration
set. In MAT the RMSEP and maximum bias were estimated for
1,2, . . ., 10 closest matches and the number of matches that gave
the lowest RMSEP and, if possible, the lowest maximum bias was
selected as the final inference model.

All DCA, DCCA, RDA, PCA, and partial RDA were
implemented by the program CANOCO 3.12 (ter Braak, 1988;
1990) and checked with version 3.12a using strict convergence
criteria (Oksanen and Minchin, 1997). The WA, PLS and WA-
PLS analyses were done by means of the program CALIBRATE
version 0.81 (S. Juggins and C.J.F. ter Braak, unpublished
program). GLM was implemented by the program GLR version
1.1 (S. Juggins, unpublished program) and WACALIB version 3.3
(Line et al., 1994). MAT was implemented by the program MAT
version 1.1 (S. Juggins, unpublished program). Taxon response
modelling was done using the program HOF (Oksanen, 1997, and
J. Oksanen, unpublished program). The program RMSEP (Birks,
1995) was used to calculate various of the inference-model stat-
istics.

Results

The chironomid-water temperature data set is summarized in
Table 3 in terms of the ranges and medians of the effective num-
ber of taxa per sample, and the effective number of occurrences
per taxon, as estimated by Hill’s (1973) N2 diversity measure (ter
Braak, 1990; ter Braak and Verdonschot, 1995). The gradient
length of DCCA axis 1 (constrained to water or air temperature)
and the gradient length of the second unconstrained DCA axes
are also presented, along with the eigenvalues and percentage
variance of the chironomid data explained by each axis, as a guide
to the presence of any large primary gradient and any large sec-
ondary gradients in the data. Water and air temperatures are sum-
marized in terms of their range, median, mean and standard devi-
ation. The thermal range of individual chironomid taxa is
illustrated by their distribution and relative abundance along the
water-temperature gradient (Figure 4).

Eigenvalues (l1 = 0.26, l2 = 0.08) of the first two DCA axes
explain 33.1% of the cumulative variation in the chironomid data.
This relatively low percentage of explained variance is not sur-
prising, because the N2 values suggest a high degree of noise in
the data, even after square-root transformation (Tables 2 and 3).
DCA axis 1 is most influenced by sediment organic content, lake-
water temperature, and maximum lake depth, the measured values
of which showed statistically significant correlations with lake
scores on the first DCA axis (Figure 5). Because DCA reveals
environmental gradients of intermediate length, the choice
between the ordination techniques based either on a unimodal
response canonical correspondence analysis (CCA) or a linear
response model (RDA) is somewhat subjective (ter Braak and
Prentice, 1988). Therefore both sets of analyses were performed.
The two methods produced results that are more or less similar.
However, because the first two RDA axes explain a slightly larger
proportion of the variance in the chironomid data, and because
the ratio of the first eigenvalue (l1) to the second eigenvalue (l2)
is slightly higher in RDA than in CCA (data not shown), only the
results of the RDA are presented here.

After deleting collinear environmental variables (latitude, lake
area and conductivity) on the basis of their high VIFs, RDA yields
eigenvalues of 0.17 and 0.07 for the first two axes, respectively.
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Figure 5 Results from detrended correspondence analysis (DCA) of surface-sediment chironomid assemblages in the 53 lakes as scatter plots of the first
DCA axis samples scores against observed surface-water temperature (left), maximum lake depth (centre) and LOI (right).

Together these two axes capture 23.7% of the variance in the
chironomid data. The species-environment correlations for RDA
axes 1 (0.89) and 2 (0.88) are high, and together these first two
axes account for 46.6% of the variation in the chironomid-
environment relationship. Monte Carlo permutation tests indicate
that both axes are statistically significant (p= 0.002). RDA axis 1
is strongly related to organic content (LOI), lakewater temperature
(Temp), and maximum lake depth (Maxdepth), with interset corre-
lations of –0.82, –0.68 and 0.65, respectively, whereas variables
such as distance beyond treeline (DBT), sodium (Na), and longi-
tude (Longitude) (interset correlations of –0.61, –0.59 and 0.55,
respectively) contribute markedly to RDA axis 2 (Table 3). These
interpretations are further confirmed by the canonical coefficients
of the environmental variables and approximatet tests (Table 4).

In the RDA (Figure 6), axis 1 effectively separates ‘an Arctic-
Alpine lake type’ (deep, cold, and oligohumic; e.g., lakes 24, 27,
38, 45, 49, 52), on the right-hand side of the biplot, from ‘a Boreal
lake type’ (small, warm, meso/polyhumic; e.g., 2, 5, 6, 9, 12),
positioned on the left-hand side of the biplot. Chironomid taxa
that are most abundant in cold-water lakes are similarly positioned

Table 4 Canonical coefficients, approximatet values and intra-set
correlations of the environmental variables for RDA axes 1 and 2.
Abbreviations are explained in Table 1

Canonical t values Intra-set
correlations

Variable Axis 1 Axis 2 Axis 1 Axis 2 Axis 1 Axis 2
Longitude –0.381 0.131 –0.140 0.045 –0.439 0.553
Altitude –0.143 0.611 –0.039 0.156 0.509 –0.451
Lake perimeter –0.084 0.109 –0.048 0.058 0.465 –0.025
Catchment area 0.127 0.436 0.069 0.219 0.487 –0.208
Mire – % 0.046 –0.062 0.030 –0.038 –0.315 0.129
DBT –0.127 –0.849 –0.073 –0.453 0.123 –0.605
LOI –0.646 0.620 –0.302 0.271 –0.821 0.169
Maximum depth 0.220 0.480 0.149 0.302 0.648 0.192
Water –0.227 –0.041 –0.126 –0.021 –0.682 0.087
temperature
pH –0.034 –0.061 –0.013 –0.022 0.299 –0.485
Alkalinity 0.094 0.136 0.031 0.043 0.238 –0.488
K –0.236 –0.277 –0.147 –0.161 –0.115 –0.459
Ca 0.030 –0.196 0.014 –0.087 0.182 –0.550
Na –0.185 –0.448 –0.108 –0.244 0.054 –0.589
Mg –0.050 0.004 –0.029 0.002 –0.027 –0.298
TOC 0.243 0.296 0.121 0.137 –0.568 0.006
Fe –0.190 0.189 –0.139 0.130 –0.420 0.075

on the right side of the RDA plot (e.g.,Heterotrissocladiussp.,
H. maearigr., H. subpilosus, H. grimshawi, Heterotanytarsussp.,
Protanypussp., Mesocricotopussp., Abiskomyiasp., Stempelli-
nella sp.,Micropsectrasp., andCorynocera oliveri), whereas taxa
characteristic of warmer and more humic waters are displayed on
the left (e.g.,Dicrotendipessp., Chironomussp., Microtendipes
sp.,Cladotanytarsussp.,Tanytarsussp.B, Psectrocladius sordid-
ellus gr., Monopsectrocladiusgr., andAllopsectrocladiusgr.).

The RDA in which the chironomid data were constrained to
only one environmental variable at a time, show that LOI (a meas-
ure of sediment organic content), water temperature, and
maximum water depth have the largest, statistically significant
explanatory powers in explaining the variance in the chironomid
data, as assessed by the amount of explained variance (15.0, 10.8
and 10.2%, respectively), as well as the highestl1/l2 ratios (1.23,
0.73 and 0.68, respectively) (Table 5). In this calibration data set,
these three variables can therefore be considered to be potential
candidates for quantitative environmental reconstruction. We now
focus on testing the unique predictive power of water temperature
in relation to other variables.

The results of the partial RDAs are summarized in Tables 6
and 7. The total explained variance in the (screened) data set is
50.8%. Physical variables (altitude, longitude, perimeter, catch-
ment area, mire %, DBT, LOI, maximum depth and temperature)
independent of lake chemistry account for the largest, statistically
significant proportion (26.3%) of the variance, whereas lake
chemistry independent of physical variables captures a non-sig-
nificant proportion of 13.8% of the variation. There is also a large
covariance or conditional effect (see Jones and Juggins, 1995)
between the two sets of variables which represents an additional
10.7% (Table 6).

In a partial RDA where the effects of all other variables are
partialled out, the three most significant environmental variables
(LOI, temperature and maximum depth), as determined on the
basis of the constrained RDAs (see above), independently account
for 8.7% of the total variance in the data set (Table 6). When the
effects of all other physical variables are partialled out, these three
variables make an unique contribution of 10.7%. In such a test,
the remaining physical variables make an unique contribution of
15.8%, while the covariance between these two sets of variables
is 9.5% (Table 6).

Table 7 shows how the explained variance is partitioned
between the three most significant components. The results indi-
cate that lakewater temperature, maximum lake depth, and LOI
can be considered to be statistically independent of each other, as
each of these variables captures a significant amount of variation,
regardless of the covariables used in each analysis. These tests
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Figure 6 Redundancy analysis (RDA) correlation biplots showing the
relationship between the 53 sites (A) and 38 chironomid taxa (B) and
the measured environmental variables (screened data). Abbreviations for
chironomid taxa: ABISK –Abiskomyia; ALLO – Allopsectrocladius;
CHIR – Chironominae; CHIRSP – Chironomus; C/O –
Cricotopus/Orthocladius; C/T – Corynoneura/Thiemanniella, CORYA –
Corynocera ambigua; CORYO –Corynocera oliveri;CLADO – Cladop-
elma; CTAN – Cladotanytarsus; DICRO –Dicrotendipes; HTAN – Heter-
otanytarsus; HTRS -Heterotrissocladius; HTRSGR –Heterotrissocladius
grimshawi; HTRSMA – Heterotrissocladius maeari; HTRSSU –Hetero-
trissocladius subpilosus; HYDRO – Hydrobaenus; MESOC –Mesocrico-
topus; MICROP – Micropsectra; MICROT – Microtendipes; MONOP –
Monopsectrocladius; ORTHSP – unidentified Orthocladiinae; PAGA –
Pagastiella; PARA – Paracladopelma; POLY – Polypedilum; PROTA –
Protanypus; PSECT –Psectrocladius; PSECTS –Psectrocladius sordid-
ellus; SERG –Sergentia; STEMP –Stempellinella; STICT –Stictochiron-
omus; TANYP – Tanypodinae; TANY – Tanytarsini; TANYB – Tanytar-
sina group B; TANYLU –Tanytarsus lugens; TANYCH – Tanytarsus
chinyensis; ZAL – Zalutschia; ZALZ – Zalutschia zalutschicola.

Table 5 The ratio of the first constrained eigenvalue to the second
unconstrained eigenvalue, percentage variance explained by each
environmental variable, and results of Monte Carlo permutation tests (500
unrestricted permutations) in a constrained RDA of the surface-sediment
chironomid data (n= 53) where each variable is used as the sole
constraining variable at a time

Variable l1/l2 Variance P
explained (%)

Longitude 0.39 7.6 0.002
Altitude 0.44 8.4 0.002
Perimeter 0.38 6.9 0.002
Catchment area 0.39 7.0 0.002
Mire – % 0.26 5.5 0.002
DBT 0.20 4.4 0.024
LOI 1.23 15.0 0.002
Maximum lake depth 0.68 10.2 0.002
Water temperature 0.73 10.8 0.002
pH 0.23 4.9 0.006
Alkalinity 0.23 4.9 0.010
K 0.15 3.3 0.036
Ca 0.21 4.5 0.010
Na 0.18 4.1 0.018
Mg 0.12 2.6 0.148
TOC 0.51 9.2 0.002
Fe 0.31 6.3 0.002
Air temperature 0.50 9.2 0.002

Table 6 Results of partitioning the total variance in the surface-sediment
chironomid data (53 lakes). P= significance level of Monte Carlo
permutation test (99 unrestricted permutations); LOI= loss-on-ignition;
MD = maximum lake depth; TEMP= water temperature

Source of variation Percentage of P
covariation

a) Lake chemistry versusphysical variables
Explained by lake chemistry independent of 13.8 0.08
physical variables
Explained by physical variables independent 26.3 0.01
of lake chemistry
Explained by lake chemistry covarying with 10.7
the physical variables
Explained variance 50.8 0.01
Unexplained variance 49.2 0.01

b) LOI, MD and TEMP versusother variables
Explained by LOI, MD and TEMP 8.7 0.01
independent of other variables
Explained by other variables independent of 30.1 0.01
LOI, MD, and TEMP
Explained by LOI, MD and TEMP covarying 10.4
with other variables
Explained variance 50.8 0.01
Unexplained variance 49.2 0.01

c) LOI, MD and TEMP versusother physical variables
Explained by LOI, MD and TEMP 10.7 0.01
independent of other physical variables
Explained by other physical variables 15.8 0.03
independent of LOI, MD and TEMP
Explained by LOI, MD and TEMP covarying 9.5
with the other physical variables
Explained variance 36.0 0.01
Unexplained variance 64.0 0.01
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Table 7 Summary of partial RDA of modern chironomid assemblages in
53 northern Fennoscandian lakes. P= significance level of Monte Carlo
permutation test (300 unrestricted permutations); TEMP= water
temperature; MD= maximum lake depth; LOI= loss-on-ignition

Variable Covariables Variance explained P

TEMP none 10.8 0.003
TEMP MD, LOI 2.7 0.04
TEMP LOI 2.8 0.03
TEMP MD 5.6 0.01
LOI none 15.0 0.003
LOI TEMP, MD 4.6 0.01
LOI TEMP 6.7 0.01
LOI MD 7.5 0.01
MD none 10.2 0.003
MD TEMP, LOI 2.8 0.04
MD TEMP 4.9 0.01
MD LOI 2.9 0.02

also reveal that LOI is the strongest variable of these three vari-
ables, whereas much of the explanatory power of water tempera-
ture and maximum lake depth covaries with the remaining two
variables. In a test where the effects of LOI and maximum depth
are partialled out as covariables, water temperature makes a small
(2.7%), but statistically significant independent contribution to the
total variance.

Table 8 Performance statistics for eight different inference models for summer surface-water temperature in terms of root mean square error (RMSE),
coefficient of determination (r2), mean and maximum bias, and root mean square error of prediction (RMSEP). For abbreviations and details of the inference
models, see the text

Inference model Apparent Cross-validation jack-knifing

RMSE r2 Mean bias Maximum RMSEP r2 Mean bias Maximum
(°C) (°C) bias (°C) (°C) (°C) bias (°C)

WA (inverse) 1.335 0.517 0 3.564 1.560 0.342 –0.038 3.734
WAtol (inverse) 1.309 0.535 0 3.447 1.762 0.226 –0.033 3.732
WA (classical) 1.856 0.517 0 4.085 2.058 0.405 –0.031 3.818
WAtol (classical) 1.790 0.535 0 3.127 2.494 0.270 –0.029 3.760
PLS (1 component) 1.332 0.519 0 3.084 1.568 0.347 –0.001 3.564
WA-PLS (1 component) 1.335 0.517 0.0006 3.578 1.527 0.371 0.0005 3.879
GLM 1.490 0.398 0 3.624 2.162 0.321 0.0013 3.942
MAT (6 matches) – – – – 1.484 0.430 0.003 1.902

Table 9 Performance statistics for eight different inference models for mean July air temperature in terms of root mean square error (RMSE), coefficient
of determination (r2), mean and maximum bias, and root mean square error of prediction (RMSEP). For abbreviations and details of the inference models,
see the text

Inference model Apparent Cross-validation jack-knifing

RMSE r2 Mean bias Maximum RMSEP r2 Mean bias Maximum
(°C) (°C) bias (°C) (°C) (°C) bias (°C)

WA (inverse) 0.846 0.512 0 2.701 0.951 0.388 –0.020 3.012
WAtol (inverse) 0.853 0.504 0 2.824 0.995 0.337 –0.019 3.099
WA (classical) 1.183 0.512 0 2.234 1.292 0.403 –0.042 2.787
WAtol (classical) 1.202 0.504 0 2.463 1.390 0.348 –0.053 2.943
PLS (3 components 0.420 0.880 0 0.682 0.749 0.626 –0.002 2.231
WA-PLS (2 components) 0.587 0.765 0 1.442 0.866 0.497 –0.004 2.925
GLM 0.959 0.360 0 1.879 1.383 0.342 –0.017 2.899
MAT (4 matches) – – – – 0.843 0.557 0.001 0.814

In summary, these analyses indicate that the largest amount
(26.3%) of the variation in the chironomid data is captured by
physical environmental factors independent of lake chemistry, and
that a large proportion of this variance (10.7%) is accounted for
by only three physical variables, namely LOI, lakewater tempera-
ture, and maximum lake depth. The analyses further suggest that
there is a large covariance between these three variables, yet the
residual structure of each makes unique contributions to the vari-
ance. On the basis of all the ordination analyses, LOI, water tem-
perature and maximum lake depth are identified as strong predic-
tor variables in explaining the chironomid composition in our 53-
lake calibration data set. Although reliable inference models can,
at least in theory, be developed for each of these three variables,
we present in this connection only the calibration function for
reconstructing trends in lakewater temperature. The inference
model for reconstructing lake depth using the same data set is
presented elsewhere (Korholaet al., 1999). We also present, for
comparative purposes, the calibration function for mean July air
temperature.

The results for the eight lakewater and air temperature inference
methods are summarized in Tables 8 and 9. The full results in
terms of taxon WA optima and tolerances, WA deshrinking equa-
tions, PLS and WA-PLS taxon beta-coefficients, GLM coef-
ficients (b0, b1, b2) and optima and tolerances, and MAT dissimi-
larity coefficients for the 16 analyses summarized in Tables 8 and
9 are available on request from H.O. or H.J.B.B. Comparison of
the ‘apparent’ and ‘jack-knifed’ statistics for the eight inference
methods for water temperature (Table 8) shows that the RMSEP
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Figure 7 Relationship between observed and chironomid-inferred lakewater temperatures using a one-component partial least squares (PLS) model, with
(predicted) and without (estimated) leave-one-out cross-validation.

are consistently higher (10.8–45.1%) than the ‘apparent’ RMSE,
emphasizing the importance of using cross-validation as a means
of deriving robust and realistic error estimates (Birks, 1995). With
the exception of WA and WAtol with classical deshrinking, all the
methods appear to perform moderately well as assessed by the
‘apparent’ errors (RMSE= 1.309–1.490°C, maximum
bias= 3.084–3.624°C) but there are large differences between
methods when the ‘jack-knifed’ errors are considered. Excluding
WA and WAtol with classical deshrinking, GLM gives the highest
RMSEP (2.162°C) in contrast to its apparent RMSE of 1.490°C.
In terms of low RMSEP and low maximum bias, the MAT model
gives the best performance, whereas in terms of low RMSEP

Figure 8 Relationship between calculated and chironomid-inferred mean July air temperatures using a two-component weighted-averaging partial least
squares (WA-PLS) model with (predicted) and without (estimated) leave-one-out cross-validation.

(1.527–1.568°C) only, there is little to choose between WA-PLS,
WA (inverse deshrinking), and PLS. However, all these models
give a maximum bias between 3.5 and 3.9°C. To give a visual
impression of the performance of the models, the results of the
water temperature transfer function based on linear PLS are
shown in Figure 7.

Similar results are obtained for the mean July air temperature
inference methods (Table 9) with a low RMSEP and the lowest
maximum bias in the MAT model. In terms of low RMSEP
(0.749–0.951°C) only, there is little to choose between the WA
(inverse deshrinking), PLS, and WA-PLS models. All these mod-
els have a maximum bias between 2.2 and 3.0°C. The perform-
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ance of the two-component WA-PLS model for inferring mean
July air temperatures is illustrated in Figure 8.

These results (Table 8) indicate that MAT, WA-PLS, WA
(inverse deshrinking), and PLS can all be used to develop a trans-
fer function for surface-water July temperature with a prediction
error of about 1.5–1.6°C. This error is strikingly lower than the
RMSEP (based on jack-knifing and a two-component WA-PLS
model) of 2.26°C for a 39-sample calibration set from Canada
that covers a summer surface-water temperature range of 6–27°C
(Walker et al., 1997). However, this Canadian calibration set has
a lower maximum bias of 2.4°C. A preliminary 44 sample chiron-
omid calibration set from western Norway has a RMSEP of
2.22°C and a maximum bias of 5.29°C for summer surface-water
temperature (range= 9.1–21.5°C) in a one-component WA-PLS
model (Brooks and Birks, 1999).

Our results (Table 9) also show that MAT, WA-PLS, WA
(inverse deshrinking), and PLS provide transfer functions for
mean July air temperature with a prediction error of about 0.75–
0.95°C and a maximum bias of 0.81°C (MAT) or 2.2–3.0°C (PLS,
WA(inverse), WA-PLS). These results compare favourably with
other chironomid–summer-air-temperature inference models. A
50-sample calibration set from the Swiss Alps has a RMSEP of
1.37°C and a maximum bias of 1.67°C for a two-component WA-
PLS model in relation to mean July air temperature (range= 6.6–
17.3°C) (Lotter et al., 1997). The 39-sample calibration set from
Canada (Walkeret al., 1997), when calibrated for mean July air
temperature (range= 5–19°C) has a RMSEP of 1.54°C and a
maximum bias of 1.71°C for a two-component WA-PLS model
(Lotter et al., 1999). The 44-sample Norwegian data set covers a
range of 5.7–14°C in mean July air temperature and has a RMSEP
of 1.11°C and a maximum bias of 2.46°C in a one-component
WA-PLS model (Brooks and Birks, 1999).

Discussion

The original chironomid–water-temperature (range= 6.1–15.0°C)
calibration model based on 30 sites and WA with a classical
deshrinking yielded a RMSEP of 1.13°C and maximum bias of
1.1°C (Olanderet al., 1997). Thus, increasing the size of the train-
ing data set has led to a deterioration in model performance.
Expansion of the data set has probably increased its biological and
environmental heterogeneity, and consequently one would expect
prediction errors to rise. It appears that there may be a critical
size for a calibration data set after which the model improvement
due to better estimates of taxon optima outweighs the inaccuracies
introduced by heterogeneity in the data (Bennionet al., 1996;
Walker et al., 1997). Obviously, this limit has not been reached
in this study. However, as the data set increases in size, there may
be a significant improvement in model performance, particularly
when assessed by cross-validation techniques and by bias statistics
(Birks, 1995; 1998).

The relationships between chironomids and temperature are
generally well established (e.g., Walker and Mathewes, 1989;
Walker et al., 1991b; Olanderet al., 1997; Brookset al., 1997a;
1997b; Lotteret al., 1997; Brooks and Birks, 1999), although
opposing opinions have also been presented (Warwick, 1989;
Warner and Hann, 1987; Hannet al., 1992). In general, chirono-
mid taxa are known to differ in their temperature tolerances. Tem-
perature may affect chironomid assemblages both directly (e.g.
pupation, emergence, growth, flight, feeding and hatching) and
indirectly (e.g., oxygen conditions, length of the ice-cover period,
stratification, inflow rates, etc) (Smolet al., 1991). Many broad-
scale biogeographical investigations have also documented a close
connection between the present-day distribution patterns of Chi-
ronomidae and climate (Brundin, 1949; 1956; Walker and
Mathewes, 1989; Rossaro, 1991).

All studies where both surface-water- and air-temperature infer-
ence models have been developed show that the statistical
relationship between the composition of modern chironomid
assemblages and mean July air temperature is as strong or stronger
than for surface-water temperatures; for example, r2*100 (based
on leave-one-out cross-validation models) for three chironomid–
temperature inference models based on WA-PLS shows that the
variance in surface-water temperature modelled by the chironomid
assemblages is 88% (N. America; Walkeret al., 1997), 30.2%
(Norway; Brooks and Birks, 1999), and 37.1% (northern Fennos-
candia; this paper), whereas the modelled variance in summer air
temperature is 85%, 69% and 49.7%, respectively. Ecological
reasons for the good performance of chironomid assemblage com-
position in predicting mean July air temperatures are presented by
Brooks and Birks (1999), whereas Birks (1998) discusses possible
statistical reasons for the generally poorer performance in model-
ling surface-water temperature as a function of chironomid assem-
blages (see below).

Brooks and Birks (1999) argue that midge larvae are benthic
organisms and therefore only those living in very shallow water
will be exposed to surface-water temperatures. Most lakes in the
current calibration set are shallow and clear and thus the tempera-
ture difference between the epilimnion and hypolimnion within
the lakes is generally small or non-existent. On the other hand,
air temperature is closely related to lakewater temperature,
especially in the summer (Livingstone and Lotter, 1998) which in
turn influences larval developmental rates. As the adult is the dis-
persal stage, the successful colonization of new localities is more
likely to be dependent on air temperature than on water tempera-
ture (Brooks and Birks, 1999).

In contrast to a comparable study in western Norway (Brooks
and Birks, 1999), there are relatively small differences in the per-
centage variance in mean July air temperature modelled by the
northern Fennoscandian chironomid assemblages (mean r2 for all
eight inference models on Table 9= 0.437 = 43.7%) compared
to surface-water temperature (mean r2 on Table 8 = 0.339 =
33.9%). In western Norway the comparable figures are 68.5% (air
temperature) and 30.2% (surface-water temperature). Nilssonet
al. (1996) and Birks (1998) discuss the possible sources of the
unexplained variance (1–r2) in inference models and propose that
the unexplained variance can be partitioned into (1) variance in
the environmental variable consisting of repeatability and repro-
ducibility errors (‘pure error’) and (2) variance in the model
(‘model error’ or ‘lack-of-fit’). The pure error sets the upper limit
of the variance that it is possible to model and it is usually domi-
nated by the repeatability error resulting from the natural varia-
bility in the environmental variable (Nilssonet al., 1996).

The unexplained variances in our northern Fennoscandian chi-
ronomid–temperature data are 56.3% (mean July air) and 66.1%
(surface water), in contrast to 31% (mean July air) and 68.2%
(surface water) in western Norway (Brooks and Birks, 1999).
There are at least three possible explanations for these differences,
particularly in the air-temperature models, between the two areas.
(1) There may be difficulties in estimating reliable mean July air
temperatures in a remote area such as northern Fennoscandia
where there are few climatic stations compared to western Nor-
way where there is a relatively dense network of climate stations.
(2) In an extremely oceanic climate such as in western Norway,
there may be large and unpredictable fluctuations in surface-water
temperatures during the day and from day to day compared to
areas with a less oceanic and more stable continental climate such
as northwestern Finland. As a result the western Norwegian sur-
face-water-temperatures may be inherently more variable than
other surface-water-temperature data. (3) There is a significant
correlation between the measured water temperature and the alti-
tude-corrected air temperature in the northern Fennoscandian data
set. This suggests that the entire water mass in these clear-water

 © 1999 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at Universitetsbiblioteket i on December 14, 2007 http://hol.sagepub.comDownloaded from 

http://hol.sagepub.com


292 The Holocene 9 (1999)

lakes may be in close contact with the atmosphere (Blomet al.,
1998). As a result, there are no strong differences between the
calibration models that use either air or water temperatures in our
northern Fennoscandian data set.

In evaluating the performance of our chironomid-temperature
calibration set, it is important to consider not only the random
differences or error in its predictive abilities, as estimated by
RMSEP, but also the systematic differences in the predictions (ter
Braak and Juggins, 1995; Birks, 1995; ter Braak, 1995; Lotteret
al., 1997). The systematic differences are estimated by the mean
bias and by the maximum bias in the predicted values. In all the
models summarized in Tables 8 and 9, the highest maximum bias
is always associated with the lowest temperature segments of the
surface-water- or air-temperature gradients. The maximum bias
for all the inference models (except for MAT) is about 3.5–3.8°C
for surface-water temperature and 2.2–3°C for air temperature.
These maximum bias values are high compared to the RMSEP
and indicate that the predictive abilities of our chironomid data
set are clearly worst at low temperatures. This is presumably due
to the small number of lakes with low water or air temperatures
(Figure 2) in the data set and hence to unreliable estimation of
taxon parameters (WA optima, (WA)-PLS coefficients, etc) for
taxa associated with the low end of the temperature gradient. As
a result there is a strong tendency for predicted values to be seri-
ously over-estimated for lakes with low water or air temperatures.

In contrast to Walkeret al. (1991b), we found sediment organic
content (as represented by LOI) to be a significant explanatory
variable for chironomid distributions and relative abundances in
our study lakes. This may, in part, be due to the multiple sampling
approach applied here that may give a more reliable picture of the
available substrates within a lake than the single surface-sediment
sampling method used by Walkeret al. (1991b). It may also be
significant that the LOI gradient in this study is longer than the
one in Walkeret al. (1991b). Several studies on chironomid ecol-
ogy have suggested correlations between chironomid taxa and
substrate (e.g., McGarrigle, 1980; Pinder, 1986; Winnell and
White, 1985). In the current data set, LOI and lakewater tempera-
ture are positively correlated in a way that the lakes with the most
minerogenic sediments are usually also the coldest. Close coup-
ling of these variables is obviously related to the decreased pro-
ductivity of colder lakes and the low input of organic matter from
their catchments. However, the results of the variance partitioning
indicate that temperature and LOI both explain a statistically sig-
nificant component of variation in the chironomid data that is stat-
istically independent of each other. By examining sediments from
lakes that commonly exhibit only minor fluctuations in LOI (e.g.,
relatively deep sites in the tundra) the risk of confusing sedi-
mentological variations with temperature changes can thus be
reduced. Fluctuations in LOI should therefore be viewed as a
complementary source to the temperature inferences in palaeolim-
nological research of lakes in the study area. In lake Tsˇuolbma-
javri (lake number 35 in the calibration set) sediment core the
measured LOI values vary little (14–19%) during most parts of
the Holocene (unpublished data). There are, however, distinct
changes in the composition of the chironomid fauna; for example,
in the proportions ofHeterotrissocladius maeari(0–30%) and
Corynocera oliveri (0–30%). Both are considered as northern
cold-stenothermic taxa (Brundin, 1949; 1956; Pinder and Reiss,
1983). Warwick (1989) suggestsHeterotrissocladiusto be a sedi-
philic taxon. In lake TsˇuolbmajavriH. maeariandC. oliveri, how-
ever, have responded to changes in some factor other than sedi-
ment organic content, quite possibly to changes in temperature.

In comparison to other existing regional chironomid–climate-
calibration data sets (e.g., Walkeret al., 1997; Lotteret al., 1997)
we propose that our calibration set has certain important features.
These are: (i) our lakes all are undisturbed and are in a natural
condition; (ii) the calibration set has been sampled from a very

restricted biogeographical area with a similar geological setting;
(iii) the climate gradient in our study area has been shown to be
stable; (iv) most of the study lakes are transparent and their water
is thus in close contact with the atmosphere; and (v) the sediment
organic content and thus the ‘substrate’ are more adequately mea-
sured in our study compared to previous investigations. All these
features together with the addition of air-temperature data in our
models are positive responses to the original criticisms raised by
Hann et al. (1992) about the first chironomid–temperature-
calibration study of Walkeret al. (1991b).

In conclusion, we have developed transfer functions for infer-
ring past lakewater and mean July air temperatures by means of
chironomid assemblages preserved in lake sediments. However,
the predictive abilities of our transfer functions are at present still
relatively weak, particularly for an analysis of fine-scale Holocene
climatic fluctuations. The current data set has large secondary
gradients, with the second, unconstrained axes slightly larger than
the first temperature-constrained axes, presumably reflecting vari-
ation in the chironomid assemblages that is unrelated to the meas-
ured water or air temperatures. Despite the expansion of the data
set, many problems typical of small regional training sets, such
as truncated species distributions, uneven distribution of sites
along the environmental variable of interest (Jones and Juggins,
1995), and high maximum bias at the ends of the sampled gradient
are still present. It is therefore necessary to expand further the
geographical and temperature ranges of our data set, particularly
at the low temperature end of the gradient, in an attempt to over-
come these problems.
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