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Abstract: Chironomid-temperature inference models based on an expanded data set of surface-sediment and
limnological data from 53 Subarctic lakes in northern Fennoscandia have been developed using eight different
numerical techniques, each based on slightly different underlying statistical models or ecological assumptions.
The study sites are mostly small, shallow, bathymetrically simple, oligotrophic lakes, with a pH range from
5.0 to 7.8, a total organic carbon range from 2.5 to 12.6 ™hgal mean July lakewater temperature ranging

from 6.1 to 15.4C, and a mean July air temperature ranging from 8.5 t0°C}. A series of redundancy
analyses (RDA) identified sediment organic content, maximum lake depth, and lakewater temperature as being
the most important explanatory variables. Variance partitioning by partial RDAs further suggested that each
of these variables accounted for a significant fraction of variance independent from each other. Different cali-
bration models were assessed on the basis of their statistical performance, with particular reference to prediction
errors and the amount of bias along the temperature gradient. Of the eight calibration models, modern analogue
techniques, weighted averaging partial least squares, simple weighted averaging with an ‘inverse’ deshrinking

A regression, and linear partial least squares consistently performed best. These methods can all be used to
HOLOCENE develop transfer functions for surface-water and air July temperatures with a root mean squared error of predic-
REgi'gEgH tion (RMSEP) of about 1.5-1°€ (water temperature) and 0.8-1Cl(air temperature), as assessed by leave-

one-out cross-validation. The resulting models do, however, have relatively high maximum biases (6@ )o 3.9
in the lowest segments of the air and water temperature gradients, highlighting the need for enlarging and
expanding the calibration data set to include lower temperatures.

Key words: Chironomidae, Subarctic, ordination techniques, calibration models, transfer function, summer
temperature, palaeoclimate, Holocene, northern Fennoscandia.

Introduction Meteorological measurements, or direct long-term monitoring of
environmental data, do not offer time-series that are long enough
Global warming is among the most serious environmental prob- for model validation. Palaeoclimates can be used as means of
lems in the future, as has recently been reported by the IPCC extending our knowledge on long-term natural climate variability
(Houghtonet al., 1996; Watsoret al., 1996; Bruceet al,, 1996). that is required for model validation.
Climate change will have effects on terrestrial as well as aquatic  Most long-term quantitative information about past climates has
ecosystems and may cause severe problems for the humarbeen obtained so far from deep-sea cores and from Greenland
environment. Reliable long-term information on natural climate and Antarctic ice cores, but quantitative information derived from
variability is needed in order to test and validate results from Gen- continental environments is also needed. The lake-sediment record
eral Circulation Models (GCMs), which are used to predict future is potentially one of the most useful sources of quantitative
climatic change as a result of human influences on global climate. palaeoclimatic proxy data (Battarbee, 1991; Srablal, 1991).
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Changes in both terrestrial and aquatic ecosystems are continu- T ]
ously recorded in lake sediments in the form of, for example, ! *
pollen, diatoms, cladoceran, or chironomid remains. Inferences of
past temperatures may be made when the present-day thermal
optima and tolerances of the taxa concerned are estimated (Birks,
1995). Such quantification involves modelling the values of a cli-
matic variable (e.g., mean summer epilimnetic water temperature)
as a numerical function of biological data using large modern-day
calibration data sets (Charles and Smol, 1994; ter Braak, 1995).
The use of aquatic midge larvae in palaeolimnological research
has increased recently. Improved knowledge on chironomid tax-
onomy and the development of appropriate statistical methods
have made it possible to reconstruct quantitatively temperature
changes, particularly from Lateglacial times (Walkéal., 1991a,
1997; Levesqueet al., 1994; 1997). According to Walkest al.
(1997), summer surface-water differences of up t8Cl6ccurred
between the Younger Dryas and the Allergd periods in eastern
Canada. Although temperature changes during the Holocene may | | ¢ (=) o
have been much smaller, the reconstruction of Holocene climatic 2
variations using midge larvae is, in theory, possible (e.g., Velle,
1998).
In a previous paper it was demonstrated that surface-water tem-Figure 1 Distribution of the 53 lakes studied across the tree-line region
perature is an important determinant of chironomid distributions in northernmost Fennoscandia.
and relative abundances in lakes within northwestern Finnish Lap-
land, an area of a high-latitude ecotone that is potentially sensitive
to climatic change (Olandeat al, 1997). In this study the chiron-
omid-based surface-water temperature model is developed further
by means of an expanded calibration data set collected from the
same area. The ultimate aim is to develop a reliable calibration
model for the quantitative reconstruction of Holocene lakewater

summer temperatures from fOISS'I c?lron_omld assemblages. 1o decreasing trend in temperatures from south to north. Most (79%)
As many quantitative palaeoclimatic reconstructions, for ¢ yhe stydy sites were found to be thermally unstratified during
example based on fossil pollen assemblages,_beetles or plant Maci, e sampling period. The surface-water temperatures are, how-
rofossils, are for mean July or mean sumnadr temperatures, ever, slightly skewed (Figure 2A). There are few lakes with sur-

Wr? have %Iso qseted our rr:odern Ic.:tr)nr(:.nomld :a|taf Sltlat t9 delj/etltop ace-water temperatures belok®and there is a dip between the
chironomid = air-temperature calioration model, 1olowing LOUET = 4415 jnierval, whereas the 12-43 interval is overrepres-

et al. (1997; 1999) and Brooks and Birks (1999). When applied ented. The uneven distribution of sites along this surface-water

to fossil chironomid assemblages, the resulting reconstructions S . . . .
; temperature gradient is associated with a relatively low density of
can thus be for both summer lakewater and summer air tempera- . : e ! ;
lakes in the area, which makes it difficult to find lakes suitable

tures. This permits direct comparison with independent palaeocli- .

; . : for our purposes (i.e., lakes that are small and not too deep, and
matic reconstructions of summer air temperatures based on other, o ) - .

. . have minimal throughflow and undisturbed sedimentation

proxy sources (e.g., tree-ring records) or different groups of . .
organisms (e.g., pollen). Furthermore, in remote areas, such ascondltlons_). Ngverthele_ss, the steep water-temperatu_re gradient
northern Fennoscandia, basic data on variations in water tempera-ObS'_sr.\t/e.d ISI ne:thzr tacctldslntz_al r:or detzpenden: Orl a partlctular sum-
ture are sparse compared to air-temperature data that can usuall)mﬁr' 'f IS cleal;lry oe ehc able in :Ing- e;mF_wla e(rj— elrggga ure rclac-
be obtained at much higher temporal resolution. Accordingly, a or Skro__m a els in the area ( t?s ho inland, : ' sele also
marked improvement in the calibrations might be achieved by Weckstion etal, 1997). In general, there exists a close relation-
using air temperatures for calibration purposes rather than SNiPbetween long-term air temperatures and long-term water tem-
occasional water-temperature measurements only (LivingstonePeratures in the area (Kuusisto, 1981).
and Lotter, 1998). Ottosson and Abrahamsson (1998) discuss the Mean July air temperatures range from 8.5 to 1@.8long the
problems in modelling epilimnetic and hypolimnetic temperatures trans_ect. The air temperatures are not significantly skewed_ (Flgu_re
in lakes and present a model driven by latitude, continentality and 2B), in contrast to the surface-water temperatures. There is a sig-
altitude to predict epilimnetic water temperatures in Swedish nificant relationship between the July air temperatures and the
lakes. measured surface-water temperatures 65, p< 0.01) in our

data set (Figure 3).
Vegetation, climate and bedrock characteristics of the study

Study area area are described in detail by Olanagral. (1997). The study

lakes are generally small (0.9-115.2 ha), headwater, clear, and
In Olanderet al. (1997), 30 lakes were selected from both sides oligotrophic. Their alkalinity ranges from 1.0 to 17.0 m kotal
of the northern tree-line in northwestern Finnish Lapland in order organic carbon (TOC) ranges from 2.5 to 12.6 mgand the pH
to examine the relationships between modern chironomid assem-gradient varies between 5.0 and 7.8. The deepest lake is 25 m,
blages and selected physical and chemical variables. Particularwhereas the shallowest lake is only 0.85 m deep. The catchment
attention was placed on surface-water temperature. For this study,areas (excluding the lake area) vary from 5.45 to 2524 ha and the
23 additional lakes were sampled to expand the data set and thuslake/catchment ratio is generally low (mea26.05). All the
it is hoped, to improve the reliability of the quantitative inference study sites are natural and there are no known direct impacts from
models (Figure 1). Most of the new sites are from the northern- human activity within their catchment areas. Further character-
most (Arctic) part of our initial transect. The inclusion of the 23 istics of the 53 lakes are given in Table 1.

Barren above the free line

Mountain birch woodiand

] Birch forest mixed with pine
Pine forest mixed with bich

| Pine, spruce and birch forest

Water

100 km

new lakes does not, however, extend the initial temperature gradi-
ent to any significant amount. In the current 53-lake data set, July
surface-water temperature ranges from 6.1 to A5.4with a
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Figure 2 Frequency distributions of surface lakewater (A) and mean July

air temperatures (B) for the 53 sampled lakes.
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Figure 3 Scatter plot of measured July 1995 water temperati@sgnd
calculated mean July air temperatur&S)(based on the 1961-1990 period

(r=0.65, p< 0.01) for the 53 sampled lakes.
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Methods

Sampling and laboratory methods

Sampling and laboratory procedures are described by Olatder
al. (1997). Three new variables, distance beyond tree-line (DBT),
sediment organic content measured by loss-on-ignition (LOI) and
mean July air temperature, are included here. DBT acts as a surro-
gate for location factors in the data set. It was obtained by map-
ping the vegetation zones derived from 1:20 000 topographic
maps of the study region. LOI was determined from three surface-
sediment samples (combined to make one homogenized sample)
taken from the deepest part of a lake according to the methods
described in Bengtsson and Enell (1986) but with corrections to
some of their formulae. For LOI analyses, quartz crucibles were
used instead of porcelain crucibles in order to improve accuracy.
Surface-water temperatures were measured twice in July 1994 and
once in July 1995. Water-temperature measurements used in this
study were all from July 1995. Mean July air temperatures were
estimated for each lake using 1961-1990 Climate Normals data
from 11 nearby climate stations (two in Norway, five in Finland,
four in Sweden) and applying consistent regional lapse rates and
a linear interpolation procedure to allow for the small but statisti-
cally significant trend in mean July air temperatures (reduced to
sea level) within the study area. If a reference line is drawn from
Skibotn in Troms, north Norway, southeastwards to Rovaniemi in
northern Finland, and the positions of all 11 climate stations are
drawn orthogonal to this line, there is a highly significant statisti-
cal relationship between mean July air temperature (reduced to
sea-level values) at these climate stations and distance along this
line (reduced mean July air temperaturel3.5+ 0.0544 * dis-
tance, r= 0.97, p< 0.001). The mean July air temperatures for
each of the 53 lakes were estimated from the position of each lake
along the line using this equation and allowing for the elevation of
each lake by applying the regional lapse rate of @5@er 100 m
(Laaksonen, 1976).

Chironomid analysis

Subsamples of 0.5-28.5 g wet weight were deflocculated in warm
10% KOH for 30 minutes. Samples were then passed through a
105 um sieve and transferred to a Bogorov counting tray. All head
capsules were picked with fine forceps under a binocular micro-
scope and mounted ventral side upwards on slides in Euparal. To
obtain a minimum of 100 chironomid head capsules per sample,
additional slides from the existing 30 lakes were also prepared.
Chironomids were usually identified to generic level. However,
the generaPsectrocladiusand Heterotrissocladiusand the tribe
Tanytarsini were divided into smaller taxonomic units than in
Olanderet al. (1997) to improve taxonomic resolution. Their sep-
aration was mainly based on Hofmann (1971), Saether (1975) and
Wiederholm (1983). Agreements in taxonomic harmonization
emerged from workshops within the international MOLAR and
NORD-CHILL projects and these were followed in this study.
The genusPsectrocladiusvas divided into three separate groups
(Monopsectrocladiugr., P. sordidellusgr. andAllopsectrocladius

gr.) on the basis of the number and shape of median teeth in
the mentum. The genuseterotrissocladiusvas divided into four
groups on the basis of the number and shape of middle median
teeth in the mentum and the colour of the postmentum. In the
cases when the head capsule was split into two halves, the distinc-
tion betweerH. marcidusandH. maeariwas difficult or imposs-
ible. The tribe Tanytarsini was divided into separate taxonomic
groups on the basis of the number of mandibular teeth and the
presence/absence and shape of the projection on the antennal ped-
estal.Micropsectraspecies have a bifid premandible wher&as-
ytarsusspecies have a trifid premandible. The premandible thus
makes a good discriminator betweldicropsectraand Tanytarsus
species, but unfortunately the premandibles were only very rarely
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preserved. Characters of the different Tanytarsini taxa used in this1980), with detrending by segments, non-linear rescaling of axes,

study are described by Broolet al. (1997a). and downweighting of rare taxa, was undertaken on the chirono-
mid data in order to explore the principal patterns of compo-
Data analysis sitional variation, and to determine the gradient lengths of chiron-

Only chironomid taxa occurring in at least two lakes with a rela- omid compositional turnover along the first few DCA axes. A
tive abundance of more than 2% in at least one lake were includedseries of exploratory DCAs were also run using the complete
in the numerical analyses (Table 2). Of the initial 63 taxa, 38 environmental data as predictor variables in an attempt to detect
fulfilled these criteria. In all ordination, regression and calibration potential multicollinearity between environmental variables, and
analyses, the chironomid percentage data were transformed tohence to identify variables that do not make a unique contribution
square-roots in an attempt to optimize the ‘signal’ to ‘noise’ ratio to the overall regression model (ter Braak, 1988). When running
in the data (Prentice, 1980) and to stabilize the variances. All these DCAs, all predictor variables were initially regressed onto
environmental variables, except pH and water and air tempera-the DCA axes (ter Braak, 1988). Variables with high 20) Vari-
tures, were log-transformed [In (x 1)] prior to numerical analy- ance Inflation Factors (VIFs) were eliminated one at a time begin-
ses to normalize their skewed distributions. The ordination analy- ning with the variable having the highest VIF, and the DCA was
ses only used the measured chemical, limnological and catchmentrepeated until all VIFs were below 20 (ter Braak, 1988).
variables. The calculated mean July air temperature values were Redundancy analysis (RDA), a constrained gradient analysis
not used in the ordination analyses because they are estimatedechnique (ter Braak, 1994), was used to explore the relationships
values and because of their high collinearity with some of the between the chironomid assemblages and the measured environ-
measured variables. The mean July air temperature values weranental variables. The significance of the RDA axes was assessed
solely used to derive chironomid-air-temperature calibration using unrestricted Monte Carlo permutation tests (500 permu-
models that can be compared with the chironomid—surface-water-tations; ter Braak, 1988; 1990; Birks, 1995). RDA was also used
temperature inference model. to identify a subset of environmental variables that explained stat-
Detrended correspondence analysis (DCA) (Hill and Gauch, istically the greatest proportion of variance in the chironomid data.

Table 2 Basic information about the relative abundance (minimum, mean, maximum) number of occurrences, and Hill's N2 for each of the 38 taxa
included in the 53-lake data set

Taxa No. occurrences N2 All values Without zeroes
Minimum Maximum Mean Minimum Mean
Unidentified Orthocladiinae 48 29.5 0.0 18.4 3.6 0.6 3.6
Heterotrissocladiusp. 15 8.9 0.0 15.4 15 0.7 5.4
Heterotrissocladius maeari 13 8.4 0.0 9.7 0.7 0.5 3.0
Heterotrissocladius grimshawi 15 12.3 0.0 2.6 0.4 0.6 14
Heterotrissocladius subpilosus 12 3.1 0.0 375 1.3 0.6 5.8
Psectrocladiussp. 50 35.4 0.0 11.3 4.1 0.4 4.4
Psectrocladius sordidellugroup 53 295 0.9 36.8 6.4 0.9 6.4
Monopsectrocladiugjroup 42 215 0.0 30.5 7.0 0.5 8.9
Allopsectrocladiuggroup 27 13.6 0.0 9.1 1.0 0.4 1.9
Heterotanytarsusp. 12 9.4 0.0 9.8 1.1 0.8 4.9
Orthocladiussp.Cricotopussp. 47 26.7 0.0 20.7 4.3 0.5 4.8
Zalutschia zalutschicola 17 6.9 0.0 234 1.9 04 5.8
Zalutschiasp. 27 2.9 0.0 55.0 1.8 0.4 3.5
Corynoneurasp. 21 10.2 0.0 7.0 0.6 0.5 14
Abiskomyiasp. 3 3.0 0.0 4.5 0.2 35 4.2
Mesocricotopussp. 5 3.6 0.0 2.8 0.1 0.8 1.6
Hydrobaenussp. 4 1.6 0.0 18.7 0.5 0.4 6.1
Protanypussp. 10 8.3 0.0 2.4 0.2 0.5 1.3
Unidentified Chironominae 29 21.8 0.0 3.3 0.7 0.4 1.2
Microtendipessp. 42 24.3 0.0 22,5 5.3 0.7 6.8
Dicrotendipessp. 41 27.7 0.0 8.7 2.2 0.7 2.8
Sergentia coracina 44 14.9 0.0 37.0 35 0.6 4.2
Unidentified Tanytarsini 53 40.0 25 49.6 154 25 154
Micropsectragr. B/Tanytarsinagr. B 51 29.2 0.0 27.0 5.8 0.4 6.0
Tanytarsus lugens 36 12.9 0.0 18.1 1.9 0.4 2.7
Tanytarsus chinyensis 4 29 0.0 2.8 0.1 0.5 1.6
Paratanytarsussp. 35 20.2 0.0 9.5 1.8 0.4 2.7
Cladotanytarsus mancugoup 25 17.9 0.0 3.6 0.6 0.4 1.3
Corynocera ambigua 34 11.2 0.0 55.0 4.6 0.6 7.2
Corynocera oliveri 9 5.7 0.0 8.5 0.7 0.9 4.1
Micropsectrasp. 24 12.8 0.0 20.8 3.2 0.9 7.1
Pagastiellasp. 23 15.3 0.0 5.3 0.8 0.5 1.8
Polypedilumsp. 22 11.6 0.0 6.4 0.5 0.5 1.2
Stempellinellasp. 19 11.8 0.0 4.4 0.5 0.4 14
Chironomussp. 25 12.3 0.0 125 1.6 0.5 3.3
Cladopelmasp. 20 16.3 0.0 2.8 0.6 0.6 1.6
Stictochironomusp. 4 3.5 0.0 3.2 0.2 11 2.0
Tanypodinae spp. 53 42.2 1.2 18.5 7.7 1.2 7.7
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To do this, a series of constrained RDAs, in which the chironomid symmetric (Gaussian) unimodal response model, a monotonically
data were constrained to only one explanatory variable at a time, increasing or decreasing sigmoidal response model, and a null

were run to assess the relative strength of each environmentalmodel of no relationship to temperature. The simplest statistically
variable. The statistical significance of each variable was assessedignificant response model for each taxon was found by fitting the
by means of a Monte Carlo permutation test (500 unrestricted most complex model first and progressively removing parameters
permutations). The results of the permutation tests, canonical from the response model until the model could not be simplified
coefficients, approximate tests, and the ratios of the first con-  further without a significant change 0.05) in the deviance
strained eigenvalueA() to the second unconstrained eigenvalue of the model. Deviance is a goodness-of-fit measure based on a
(A,) were then used as criteria to identify the most appropriate likelihood ratio test that is analogous to the variance-ratio test (F-
environmental variables for quantitative reconstruction purposes test) in normal least-squares regression (Crawley, 1993). Taxon
(ter Braak, 1988; Birket al,, 1990). Particular attention was paid response models were fitted by maximum likelihood estimation
to the latter criterion, as it serves as a good indicator of how with a Poisson error structure and a logarithmic link function and
effectively the variable is represented by axis 1 in the constrained were restricted to all taxa with occurrences in 10 or more (20%
analysis. As a general rule, quantitative inference models can beor more) of the samples in the data set. F-ratio tests were used to
successfully developed for environmental variables that have high assess the significance of the response-model parameters rather

A, ratios (ter Braak, 1988).

than the simple chi-square test because the data are, as usual in

Because many of the environmental variables in our data setbiological data sets, over-dispersed as the deviance exceeds the
are highly correlated with each other, we tested the strength anddegrees of freedom (Oksanenal.,, 1990; 1991; Crawley, 1993).
independence of various ecological gradients potentially suitable Further details of maximum likelihood estimation, deviance, over-
for the development of transfer functions by means of variance dispersion, etc., are given in Crawley (1993). The numbers of
partitioning (Borcardet al, 1992). By using a series of partial taxa with statistically significant fits to the four types of response

RDAs, the total variance in the chironomid data was partitioned models are given in Table 3.

into components representing different groups of explanatory vari-
ables (Borcardet al, 1992). Particular attention was paid to

assessing the power of lakewater temperature in explaining the Table 3 Summary statistics for the modern chironomid-surface-water
variance in the chironomid data, as the primary aim is to develop temperature calibration set. SBstandard deviation units of compositional
a chironomid-based calibration function for palaeotemperature turnover (Hill and Gauch, 1980; ter Braak and Juggins, 1993}

reconstructions. First, the variance in the chironomid data was eigenvalue

partitioned among the chemical and physical components. In the

second step, a subset of environmental variables was selectediumber of samples 53
which explained best the variation in the chironomid data, as Number of taxa 38
determined from a series of constrained RDAs and associated
. . . N2 for samples
Monte Carlo permutation tests, and partitioned the variance minimum 8.16
between them. The overall results of variance partitioning helped \,ogian 14.81
to assess the proportion of independent variation in the chirono- maximum 19.83
mid data that can be explained by the various sets of environmen-
tal variables (Borcaret al, 1992; Pienitzt al., 1995; Jones and N2 for taxa:
Juggins, 1995). minimum 2.63
To determine whether to use linear- or unimodal-based numeri- median 19.63
cal regression and calibration techniques (ter Braak and Prentice,maximum 49.23
1988; Birks, 1995), the chironomid-water- and air-temperature
data sets were initially analysed by detrended canonical corre- PCCA axis L Surface-water Air
spondence analysis (DCCA) (ter Braak, 1986) to estimate the
length of the chironomid compositional turnover (in standard *1 0.122 0.110
deviation units; Hill and Gauch, 1980) along the water- or air- OGrad"?m length (SD) 1.627 1.748
temperature gradients (ter Braak and Juggins, 1993). In these/0 vanance 120 109
DCCAs, water or air temperature was the only explanatory vari- H-a yis o
able and the DCCA options used were detrending-by-segments, 0.123 0.133
non-linear rescaling, and downweighting of rare taxa. Gradient length (SD) 1.773 1.858
The initial results of the DCA and DCCA were also used to % variance 12.1 13.1
identify potential outlying samples prior to regression and cali-
bration. The following criteria were applied to identify unusual AiA; 0.992 0.827
samples (e.g., Birkst al., 1990; Korsman and Birks, 1996; Weck-
strom et al, 1997): (i) the sample score fell outside the 95% con- Temperature°C) Surface-water Air
fidence limits of the sample score means on any of the first four
DCA axes; and (ii) the lake had a large 6%) residual distance ~ minimum 6.1 8.5
to the constrained environmental axis in the DCCA using the mean 12.09 11.69
environmental variable of interest as the sole explanatory variable, median 12.50 11.40
respectively. Additional checking of outliers in terms of an Maximum 15.40 14.90
standard deviation 1.902 1.21

unusual combination of environmental variables was carried out

using leverage diagnostics (ter Braak, 1990; 1994) in redundancy .., response models (maximum likelihood) for all taxa in

analysis (RDA), as well as principal components analysis (PCA) ~ 29y, of the samples

of the environmental data. Skewed unimodal model 2 1
The statistical relationship of each individual taxon to water or Symmetric unimodal model 3 11

air temperature was assessed using a hierarchical set of taxorSigmoidal model 12 8

response models (Huismahal., 1993; Oksanen 1997). This hier-  Null model 17 14

archical set consists of a skewed unimodal response model, &
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There are no strong theoretical reasons (Birks, 1995) for favour- one-out cross-validation (ter Braak and Juggins, 1993; Birks,
ing the use of linear- or unimodal-based regression methods to1995). All model assessments in terms of RMSEP, bias statistics,
develop chironomid temperature inference models. The chirono- and the number of ‘useful’ components are based on leave-one-
mid data have a DCA gradient of 2.01 standard deviations (SD), out cross-validation. For the modern analogue technique, predic-
the chironomid—water-temperature data have a DCCA gradient tion errors only are available as the algorithm specifically treats
length of 1.63 SD (Table 3), the chironomid—air-temperature data each sample as an independent sample and does not compare a
have a DCCA gradient length of 1.75 SD (Table 3), 12 taxa show sample with itself in finding close analogues within the calibration
a statistically significant sigmoidal response and only five taxa set. In MAT the RMSEP and maximum bias were estimated for
show a statistically significant unimodal response to surface-water 1,2, . . ., 10 closest matches and the number of matches that gave
temperature (Table 3), whereas 11 taxa show a statistically sig- the lowest RMSEP and, if possible, the lowest maximum bias was
nificant unimodal response and eight taxa show a significant sig- selected as the final inference model.
moidal response to air temperature. These features of the data All DCA, DCCA, RDA, PCA, and partial RDA were
suggest that both linear- and unimodal-based techniques may beémplemented by the program CANOCO 3.12 (ter Braak, 1988;
appropriate for these data (ter Braak and Prentice, 1988). Eight1990) and checked with version 3.12a using strict convergence
different calibration methods have thus been used, each based orriteria (Oksanen and Minchin, 1997). The WA, PLS and WA-
slightly different underlying statistical models or ecological PLS analyses were done by means of the program CALIBRATE
assumptions and we have selected the method(s) that performssersion 0.81 (S. Juggins and C.J.F. ter Braak, unpublished
best in a statistical sense by giving a low prediction error and a program). GLM was implemented by the program GLR version
low maximum bias along the temperature gradients, as assessed.1 (S. Juggins, unpublished program) and WACALIB version 3.3
in leave-one-out cross-validations (Birks, 1995), and represents(Line et al,, 1994). MAT was implemented by the program MAT
a simple ‘minimal adequate modekdnsuCrawley, 1993). The version 1.1 (S. Juggins, unpublished program). Taxon response
methods used are: modelling was done using the program HOF (Oksanen, 1997, and
J. Oksanen, unpublished program). The program RMSEP (Birks,

(1) simple weighted averaging (WA) with an ‘inverse’ deshrink- 1995) was used to calculate various of the inference-model stat-

ing regression (Birket al., 1990; Birks, 1995);

(2) weighted averaging with taxon tolerance weighting (MJA Istics.
and an ‘inverse’ deshrinking regression (Bir&s al., 1990;
Birks, 1995); Results

(3) simple weighted averaging (WA) with a ‘classical’ deshrink-
ing regression (Birket al., 1990; Birks, 1995);

(4) weighted averaging with taxon-tolerance weighting (MJA
and a ‘classical’ deshrinking regression (Birés al., 1990;
Birks, 1995);

(5) partial least squares (PLS) (Martens and Naes, 1989; ter Braak
and Juggins, 1993; Birks, 1995; ter Braak, 1995);

(6) weighted-averaging partial least squares (WA-PLS) (ter Braak
and Juggins, 1993; ter Braak, 1995; Birks, 1995);

(7) Gaussian logit model (GLM)Xmaximum likelihood method)
(ter Braak and van Dam, 1989; Birket al, 1990; Birks,
1995);

(8) modern analogue technique (MAT) (Bartlein and Whitlock,
1993; ter Braak, 1995; Birks, 1995) using Euclidean distance

The chironomid-water temperature data set is summarized in
Table 3 in terms of the ranges and medians of the effective num-
ber of taxa per sample, and the effective number of occurrences
per taxon, as estimated by Hill's (1973) N2 diversity measure (ter
Braak, 1990; ter Braak and Verdonschot, 1995). The gradient
length of DCCA axis 1 (constrained to water or air temperature)
and the gradient length of the second unconstrained DCA axes
are also presented, along with the eigenvalues and percentage
variance of the chironomid data explained by each axis, as a guide
to the presence of any large primary gradient and any large sec-
ondary gradients in the data. Water and air temperatures are sum-
marized in terms of their range, median, mean and standard devi-

ST . . ation. The thermal range of individual chironomid taxa is
as a measure of dissimilarity between pairs of samples (with . e .
. illustrated by their distribution and relative abundance along the
square-root transformed percentage values) and a weighted . .
L . . “water-temperature gradient (Figure 4).
mean of the most similar modern samples, the weights being

. o Eigenvalues X; = 0.26, A, = 0.08) of the first two DCA axes
the inverse of the dissimilarity values so that samples that are : . T . .
- . explain 33.1% of the cumulative variation in the chironomid data.
most similar have the greatest weight.

This relatively low percentage of explained variance is not sur-
The performance of each method was assessed on the basis ofprising, because the N2 values suggest a high degree of noise in
(1) the root mean square error (RMSE) of the difference between the data, even after square-root transformation (Tables 2 and 3).
the observed and the estimated temperature values; (2) theDCA axis 1 is most influenced by sediment organic content, lake-
maximum bias along the temperature gradient (ter Braak and Jug-water temperature, and maximum lake depth, the measured values
gins, 1993); and (3) the smallest number of ‘useful’ components of which showed statistically significant correlations with lake
in PLS and WA-PLS. To be considered ‘useful’, a component scores on the first DCA axis (Figure 5). Because DCA reveals
should give a reduction in prediction error of 5% or more of the environmental gradients of intermediate length, the choice
RMSEP for the simplest one-component PLS or WA-PLS model between the ordination techniques based either on a unimodal
(Birks, 1998). For calculating the bias statistics, the gradient is response canonical correspondence analysis (CCA) or a linear
subdivided into 10 equal intervals, the mean bias (mean of the response model (RDA) is somewhat subjective (ter Braak and
differences between (observed and inferred)) per interval is calcu- Prentice, 1988). Therefore both sets of analyses were performed.
lated, and the largest absolute value of mean bias for an interval The two methods produced results that are more or less similar.
is used as a measure of maximum bias. Estimating these statisticiowever, because the first two RDA axes explain a slightly larger
for the calibration set alone gives so-called ‘apparent’ statistics proportion of the variance in the chironomid data, and because
only (ter Braak and Juggins, 1993; Birks, 1995). As the same the ratio of the first eigenvalue\{) to the second eigenvalua,
data are used to generate and to evaluate the inference model, this slightly higher in RDA than in CCA (data not shown), only the
evaluation statistics will always be over-optimistic (Birks, 1995). results of the RDA are presented here.
A more realistic estimation of ‘prediction error’ or the likely error After deleting collinear environmental variables (latitude, lake
when the inference model is applied to additional independent area and conductivity) on the basis of their high VIFs, RDA yields
data (e.g., fossil assemblages) is obtained by jack-knifing or leave- eigenvalues of 0.17 and 0.07 for the first two axes, respectively.
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Figure 5 Results from detrended correspondence analysis (DCA) of surface-sediment chironomid assemblages in the 53 lakes as scatter plots of the first
DCA axis samples scores against observed surface-water temperature (left), maximum lake depth (centre) and LOI (right).

Together these two axes capture 23.7% of the variance in theon the right side of the RDA plot (e.gHeterotrissocladiussp.,
chironomid data. The species-environment correlations for RDA H. maearigr., H. subpilosusH. grimshawj Heterotanytarsusp.,
axes 1 (0.89) and 2 (0.88) are high, and together these first two Protanypussp., Mesocricotopussp., Abiskomyiasp., Stempelli-
axes account for 46.6% of the variation in the chironomid- nellasp.,Micropsectrasp., andCorynocera oliver), whereas taxa
environment relationship. Monte Carlo permutation tests indicate characteristic of warmer and more humic waters are displayed on
that both axes are statistically significant<j9.002). RDA axis 1 the left (e.g.,Dicrotendipessp., Chironomussp., Microtendipes

is strongly related to organic content (LOI), lakewater temperature sp.,Cladotanytarsusp., Tanytarsussp. B, Psectrocladius sordid-
(Temp), and maximum lake depth (Maxdepth), with interset corre- ellus gr., Monopsectrocladiugr., andAllopsectrocladiugr.).

lations of —0.82, —0.68 and 0.65, respectively, whereas variables The RDA in which the chironomid data were constrained to
such as distance beyond treeline (DBT), sodium (Na), and longi- only one environmental variable at a time, show that LOI (a meas-
tude (Longitude) (interset correlations of —0.61, —0.59 and 0.55, ure of sediment organic content), water temperature, and
respectively) contribute markedly to RDA axis 2 (Table 3). These maximum water depth have the largest, statistically significant
interpretations are further confirmed by the canonical coefficients explanatory powers in explaining the variance in the chironomid
of the environmental variables and approximatests (Table 4). data, as assessed by the amount of explained variance (15.0, 10.8

In the RDA (Figure 6), axis 1 effectively separates ‘an Arctic- and 10.2%, respectively), as well as the highgsk, ratios (1.23,
Alpine lake type’ (deep, cold, and oligohumic; e.g., lakes 24, 27, 0.73 and 0.68, respectively) (Table 5). In this calibration data set,
38, 45, 49, 52), on the right-hand side of the biplot, from ‘a Boreal these three variables can therefore be considered to be potential
lake type’ (small, warm, meso/polyhumic; e.g., 2, 5, 6, 9, 12), candidates for quantitative environmental reconstruction. We now
positioned on the left-hand side of the biplot. Chironomid taxa focus on testing the unique predictive power of water temperature
that are most abundant in cold-water lakes are similarly positioned in relation to other variables.

The results of the partial RDAs are summarized in Tables 6
and 7. The total explained variance in the (screened) data set is
50.8%. Physical variables (altitude, longitude, perimeter, catch-
ment area, mire %, DBT, LOI, maximum depth and temperature)
independent of lake chemistry account for the largest, statistically
significant proportion (26.3%) of the variance, whereas lake
chemistry independent of physical variables captures a non-sig-
nificant proportion of 13.8% of the variation. There is also a large
covariance or conditional effect (see Jones and Juggins, 1995)

Table 4 Canonical coefficients, approximaté values and intra-set
correlations of the environmental variables for RDA axes 1 and 2.
Abbreviations are explained in Table 1

Intra-set
correlations

Canonical t values

Variable Axis 1 Axis 2 Axis1l Axis2 Axis1l Axis 2 : . "
Lopgitude 0381 0131 0140 0045 —0439 0553 Egt\g/;)e?r:lb?etvg;) sets of variables which represents an additional
Altitude -0.143 0.611 -0.039 0.156 0.509 -0.451 ' i : .

Lake perimeter —0.084 0.109 -0.048 0.058 0.465 -0.025 In a partial RDA where the effects of all other variables are
Catchment area  0.127 0436 0.069 0.219 0.487 -0.208 partialled out, the three most significant environmental variables
Mire — % 0.046 -0.062 0.030 -0.038 -0.315 0.129 (LOI, temperature and maximum depth), as determined on the
DBT -0.127 -0.849 -0.073 -0.453 0.123 -0.605 basis of the constrained RDAs (see above), independently account
LOI -0.646 0.620 -0.302 0.271 -0.821 0.169 for 8.7% of the total variance in the data set (Table 6). When the
Maximum depth  0.220 0.480 0.149 0.302 0.648 0.192  effects of all other physical variables are partialled out, these three
Water —0.227 -0.041 -0.126 -0.021 -0.682 0.087  ygariahles make an unique contribution of 10.7%. In such a test,
temperature the remaining physical variables make an unique contribution of
,r;jl—l'(alinity _8_ 3)93: _09'103661 696%113 _0(_)6(21%2 0(_)'223%9 __()(_);12'3885 15.8%, while the covariance between these two sets of variables
K ~0.236 -0277 -0.147 -0.161 -0.115 0459 IS 9-5% (Table 6). _ _ _ =

Ca 0.030 -0.196 0.014 -0087 0.182 —0.550 Table 7 shows how the explained variance is partitioned
Na _0.185 -0.448 -0108 -0244 0054 -0589 between the three most significant components. The results indi-
Mg —0.050 0.004 -0.029 0.002 -0.027 -0.298 cate that lakewater temperature, maximum lake depth, and LOI
TOC 0.243 0.296 0.121 0.137 -0.568 0.006 can be considered to be statistically independent of each other, as
Fe -0.190 0189 -0.139 0.130 -0.420 0.075 each of these variables captures a significant amount of variation,

regardless of the covariables used in each analysis. These tests
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oy Table 5 The ratio of the first constrained eigenvalue to the second
A —»g unconstrained eigenvalue, percentage variance explained by each
1= environmental variable, and results of Monte Carlo permutation tests (500
1 unrestricted permutations) in a constrained RDA of the surface-sediment
Longitude 1 chironomid data (= 53) where each variable is used as the sole
constraining variable at a time
Variable Ad/A; Variance P
explained (%)
0 T N o Longitude 0.39 7.6 0.002
L Lt Altitude 0.44 8.4 0.002
52 o Perimeter 0.38 6.9 0.002
* Catchment area 0.39 7.0 0.002
168 Catcharea Mire — % 0.26 55 0.002
DBT 0.20 4.4 0.024
Altitude LOI 1.23 15.0 0.002
pH Maximum lake depth 0.68 10.2 0.002
Water temperature 0.73 10.8 0.002
pH 0.23 4.9 0.006
T Alkalinity 0.23 49 0.010
T K 0.15 3.3 0.036
SR Ca 0.21 45 0.010
o - Na 0.18 4.1 0.018
:% Mg 0.12 2.6 0.148
B T TOC 0.51 9.2 0.002
T Fe 0.31 6.3 0.002
T Air temperature 0.50 9.2 0.002
TANYLU
n __- SERG
POLY
DIC.RO oL T TA:W
o MGROT T Table 6 Results of partitioning the total variance in the surface-sediment
0 o oM —»Zi:rzwcu st PROTT?HTRSMAHTRS +10 chironomid data (53 lakes). Psignificance level of Monte Carlo
IHDAL“* i t %C/.Ti HT'RSSU. e permutation test (99 unrestricted permutations); E@ss-on-ignition;
PSECTSee & P MD = maximum lake depth; TEMR water temperature
MONOP g @PARA © HYDRO MICROP
¢ :pTSAEchTP CORYO ¢ P
T oRmHsP . Source of variation Percentage of P
. L
& T - covariation
1 a) Lake chemistry versusphysical variables
1 Explained by lake chemistry independent of 13.8 0.08
1 physical variables
Explained by physical variables independent 26.3 0.01
T of lake chemistry

Explained by lake chemistry covarying with  10.7

. ) . ) . the physical variables
Figure 6 Redundancy analysis (RDA) correlation biplots showing the Explained variance 50.8 0.01

relationship between the 53 sites (A) and 38 chironomid taxa (B) and
the measured environmental variables (screened data). Abbreviations for
chironomid taxa: ABISK —Abiskomyia ALLO — Allopsectrocladius b) LOI, MD and TEMP versusother variables

CHIR - Chironominae; CHIRSP - Chironomus C/O - Explained by LOI, MD and TEMP 87 0.01
CricotopugOrthocladius C/T — Corynoneurdrhiemanniella CORYA — independent of other variables

Corynocera ambiguaCORYO —Corynocera oliveri;CLADO — Cladop- Explained by other variables independent of ~ 30.1 0.01
elmg CTAN - CladotanytarsusDICRO —DicrotendipesHTAN — Heter- LOI, MD, and TEMP

otanytarsusHTRS -HeterotrissocladiusHTRSGR —Heterotrissocladius Explained by LOI, MD and TEMP covarying 10.4

grimshawj HTRSMA — Heterotrissocladius maearHTRSSU —Hetero-
trissocladius subpilosysd1YDRO — HydrobaenusMESOC —Mesocrico-
topus MICROP —Micropsectra MICROT — Microtendipes MONOP —
MonopsectrocladiusORTHSP — unidentified Orthocladiinae; PAGA —
Pagastiella PARA — ParacladopelmaPOLY — Polypedilum PROTA — ¢) LOI, MD and TEMP versusother physical variables

Protanypus PSECT —PsectrocladiusPSECTS —Psectrocladius sordid- Explained by LOI, MD and TEMP 10.7 001
ellus SERG —SergentiaSTEMP —StempellinellaSTICT — Stictochiron-
omus TANYP — Tanypodinae; TANY — Tanytarsini; TANYB — Tanytar-

Unexplained variance 49.2 0.01

with other variables
Explained variance 50.8 0.01
Unexplained variance 49.2 0.01

independent of other physical variables

. Explained by other physical variables 15.8 0.03
sina group B; TANYLU —Tanytarsus lugensTANYCH — Tanytarsus independent of LOI, MD and TEMP
chinyensis ZAL — Zalutschia ZALZ — Zalutschia zalutschicola Explained by LOI, MD and TEMP covarying 9.5
with the other physical variables
Explained variance 36.0 0.01
Unexplained variance 64.0 0.01
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Table 7 Summary of partial RDA of modern chironomid assemblages in ~ In summary, these analyses indicate that the largest amount
53 northern Fennoscandian lakes=Rignificance level of Monte Carlo (26.3%) of the variation in the chironomid data is captured by

permutation test (300 unrestricted permutations); TEMP water physical environmental factors independent of lake chemistry, and
temperature; MD= maximum lake depth; LO¥ loss-on-ignition that a large proportion of this variance (10.7%) is accounted for
by only three physical variables, namely LOI, lakewater tempera-
Variable Covariables Variance explained P ture, and maximum lake depth. The analyses further suggest that
there is a large covariance between these three variables, yet the
TEMP none 108 0.003 residual structure of each makes unique contributions to the vari-
TEMP MD, LOI 2.7 0.04 . L
TEMP LOI 28 0.03 ance. On the ba5|§ of all the ordination .analyges, LOI, water tem-
TEMP MD 56 0.01 perature and maximum lake depth are identified as strong predic-
LOI none 15.0 0.003 tor variables in explaining the chironomid composition in our 53-
LOI TEMP, MD 4.6 0.01 lake calibration data set. Although reliable inference models can,
LOI TEMP 6.7 0.01 at least in theory, be developed for each of these three variables,
LOI MD 7.5 0.01 we present in this connection only the calibration function for
MD none 10.2 0.003 reconstructing trends in lakewater temperature. The inference
mg IEM$ LOI i'g 3'8‘11 model for reconstructing lake depth using the same data set is
MD Lol 2_'9 0.62 presented elsewhere (Korhada al., 1999). We also present, for

comparative purposes, the calibration function for mean July air
temperature.

The results for the eight lakewater and air temperature inference
methods are summarized in Tables 8 and 9. The full results in
also reveal that LOI is the strongest variable of these three vari- terms of taxon WA optima and tolerances, WA deshrinking equa-
ables, whereas much of the explanatory power of water tempera-tions, PLS and WA-PLS taxon beta-coefficients, GLM coef-
ture and maximum lake depth covaries with the remaining two ficients (b, by, b,) and optima and tolerances, and MAT dissimi-
variables. In a test where the effects of LOI and maximum depth larity coefficients for the 16 analyses summarized in Tables 8 and
are partialled out as covariables, water temperature makes a smalP are available on request from H.O. or H.J.B.B. Comparison of
(2.7%), but statistically significant independent contribution to the the ‘apparent’ and ‘jack-knifed’ statistics for the eight inference
total variance. methods for water temperature (Table 8) shows that the RMSEP

Table 8 Performance statistics for eight different inference models for summer surface-water temperature in terms of root mean square error (RMSE),
coefficient of determination fy, mean and maximum bias, and root mean square error of prediction (RMSEP). For abbreviations and details of the inference
models, see the text

Inference model Apparent Cross-validation jack-knifing

RMSE P Mean bias  Maximum RMSEP 2y Mean bias  Maximum

(°C) (°C) bias ¢C) (°C) (°C) bias ¢C)
WA (inverse) 1.335 0.517 0 3.564 1.560 0.342 -0.038 3.734
WAtol (inverse) 1.309 0.535 0 3.447 1.762 0.226 -0.033 3.732
WA (classical) 1.856 0.517 0 4.085 2.058 0.405 -0.031 3.818
WAtol (classical) 1.790 0.535 0 3.127 2.494 0.270 -0.029 3.760
PLS (1 component) 1.332 0.519 0 3.084 1.568 0.347 -0.001 3.564
WA-PLS (1 component) 1.335 0.517 0.0006 3.578 1.527 0.371 0.0005 3.879
GLM 1.490 0.398 0 3.624 2.162 0.321 0.0013 3.942
MAT (6 matches) - - - - 1.484 0.430 0.003 1.902

Table 9 Performance statistics for eight different inference models for mean July air temperature in terms of root mean square error (RMSE), coefficient
of determination @, mean and maximum bias, and root mean square error of prediction (RMSEP). For abbreviations and details of the inference models,
see the text

Inference model Apparent Cross-validation jack-knifing

RMSE P Mean bias  Maximum RMSEP 2y Mean bias  Maximum

(°C) (°C) bias ¢C) (°C) (°C) bias ¢C)
WA (inverse) 0.846 0.512 0 2.701 0.951 0.388 -0.020 3.012
WALtol (inverse) 0.853 0.504 0 2.824 0.995 0.337 -0.019 3.099
WA (classical) 1.183 0.512 0 2.234 1.292 0.403 -0.042 2.787
WAtol (classical) 1.202 0.504 0 2.463 1.390 0.348 -0.053 2.943
PLS (3 components 0.420 0.880 0 0.682 0.749 0.626 -0.002 2.231
WA-PLS (2 components) 0.587 0.765 0 1.442 0.866 0.497 -0.004 2.925
GLM 0.959 0.360 0 1.879 1.383 0.342 -0.017 2.899
MAT (4 matches) - - - - 0.843 0.557 0.001 0.814
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Partial least squares

Partial least squares
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Figure 7 Relationship between observed and chironomid-inferred lakewater temperatures using a one-component partial least squares (PLS) model, with
(predicted) and without (estimated) leave-one-out cross-validation.

are consistently higher (10.8-45.1%) than the ‘apparent’ RMSE, (1.527-1.568C) only, there is little to choose between WA-PLS,
emphasizing the importance of using cross-validation as a meansWA (inverse deshrinking), and PLS. However, all these models
of deriving robust and realistic error estimates (Birks, 1995). With give a maximum bias between 3.5 and €9 To give a visual

the exception of WA and W4, with classical deshrinking, all the  impression of the performance of the models, the results of the
methods appear to perform moderately well as assessed by thevater temperature transfer function based on linear PLS are
‘apparent’ errors (RMSE 1.309-1.4906C, maximum shown in Figure 7.

bias=3.084-3.624C) but there are large differences between Similar results are obtained for the mean July air temperature
methods when the ‘jack-knifed’ errors are considered. Excluding inference methods (Table 9) with a low RMSEP and the lowest
WA and WA, with classical deshrinking, GLM gives the highest maximum bias in the MAT model. In terms of low RMSEP
RMSEP (2.162C) in contrast to its apparent RMSE of 1.4@0 (0.749-0.951C) only, there is little to choose between the WA
In terms of low RMSEP and low maximum bias, the MAT model (inverse deshrinking), PLS, and WA-PLS models. All these mod-
gives the best performance, whereas in terms of low RMSEP els have a maximum bias between 2.2 and@.0The perform-

Weighted-averaging partial least squares

150 15.0
=077 ?=0.50
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Figure 8 Relationship between calculated and chironomid-inferred mean July air temperatures using a two-component weighted-averaging partial least

Calculated mean July air temperature (°C)

No cross-validation

Weighted-averaging partial least squares

Calculated mean July air temperature (°C)

Cross-validation

squares (WA-PLS) model with (predicted) and without (estimated) leave-one-out cross-validation.
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ance of the two-component WA-PLS model for inferring mean
July air temperatures is illustrated in Figure 8.
These results (Table 8) indicate that MAT, WA-PLS, WA

(inverse deshrinking), and PLS can all be used to develop a trans-

fer function for surface-water July temperature with a prediction
error of about 1.5-1%. This error is strikingly lower than the
RMSEP (based on jack-knifing and a two-component WA-PLS
model) of 2.28C for a 39-sample calibration set from Canada
that covers a summer surface-water temperature range of6-27
(Walker et al., 1997). However, this Canadian calibration set has
a lower maximum bias of 2°€. A preliminary 44 sample chiron-
omid calibration set from western Norway has a RMSEP of
2.22C and a maximum bias of 5.28 for summer surface-water
temperature (range 9.1-21.8C) in a one-component WA-PLS
model (Brooks and Birks, 1999).

Our results (Table 9) also show that MAT, WA-PLS, WA
(inverse deshrinking), and PLS provide transfer functions for
mean July air temperature with a prediction error of about 0.75—
0.95°C and a maximum bias of 0.8TC (MAT) or 2.2-3.0C (PLS,
WA(inverse), WA-PLS). These results compare favourably with

All studies where both surface-water- and air-temperature infer-
ence models have been developed show that the statistical
relationship between the composition of modern chironomid
assemblages and mean July air temperature is as strong or stronger
than for surface-water temperatures; for exampi&,00 (based
on leave-one-out cross-validation models) for three chironomid—
temperature inference models based on WA-PLS shows that the
variance in surface-water temperature modelled by the chironomid
assemblages is 88% (N. America; Walkatr al., 1997), 30.2%
(Norway; Brooks and Birks, 1999), and 37.1% (northern Fennos-
candia; this paper), whereas the modelled variance in summer air
temperature is 85%, 69% and 49.7%, respectively. Ecological
reasons for the good performance of chironomid assemblage com-
position in predicting mean July air temperatures are presented by
Brooks and Birks (1999), whereas Birks (1998) discusses possible
statistical reasons for the generally poorer performance in model-
ling surface-water temperature as a function of chironomid assem-
blages (see below).

Brooks and Birks (1999) argue that midge larvae are benthic
organisms and therefore only those living in very shallow water

other chironomid—summer-air-temperature inference models. A will be exposed to surface-water temperatures. Most lakes in the

50-sample calibration set from the Swiss Alps has a RMSEP of
1.37C and a maximum bias of 1.8C for a two-component WA-
PLS model in relation to mean July air temperature (ran@e6—
17.3C) (Lotter et al, 1997). The 39-sample calibration set from
Canada (Walkeet al,, 1997), when calibrated for mean July air
temperature (range 5-19C) has a RMSEP of 1.8€ and a
maximum bias of 1.7C for a two-component WA-PLS model
(Lotter et al,, 1999). The 44-sample Norwegian data set covers a
range of 5.7-12C in mean July air temperature and has a RMSEP
of 1.1°C and a maximum bias of 2.26 in a one-component
WA-PLS model (Brooks and Birks, 1999).

Discussion

The original chironomid—water-temperature (rargé.1-15.0C)
calibration model based on 30 sites and WA with a classical
deshrinking yielded a RMSEP of 1.3 and maximum bias of
1.1°C (Olanderet al., 1997). Thus, increasing the size of the train-

ing data set has led to a deterioration in model performance.

current calibration set are shallow and clear and thus the tempera-
ture difference between the epilimnion and hypolimnion within
the lakes is generally small or non-existent. On the other hand,
air temperature is closely related to lakewater temperature,
especially in the summer (Livingstone and Lotter, 1998) which in
turn influences larval developmental rates. As the adult is the dis-
persal stage, the successful colonization of new localities is more
likely to be dependent on air temperature than on water tempera-
ture (Brooks and Birks, 1999).

In contrast to a comparable study in western Norway (Brooks
and Birks, 1999), there are relatively small differences in the per-
centage variance in mean July air temperature modelled by the
northern Fennoscandian chironomid assemblages (niefan all
eight inference models on Table=90.437 = 43.7%) compared
to surface-water temperature (meanan Table 8= 0.339 =
33.9%). In western Norway the comparable figures are 68.5% (air
temperature) and 30.2% (surface-water temperature). Nileson
al. (1996) and Birks (1998) discuss the possible sources of the
unexplained variance (13rin inference models and propose that
the unexplained variance can be partitioned into (1) variance in

Expansion of the data set has probably increased its biological andthe environmental variable consisting of repeatability and repro-
environmental heterogeneity, and consequently one would expectducibility errors (‘pure error’) and (2) variance in the model

prediction errors to rise. It appears that there may be a critical
size for a calibration data set after which the model improvement

(‘model error’ or ‘lack-of-fit’). The pure error sets the upper limit
of the variance that it is possible to model and it is usually domi-

due to better estimates of taxon optima outweighs the inaccuraciesnated by the repeatability error resulting from the natural varia-

introduced by heterogeneity in the data (Bennimal.,, 1996;
Walker et al, 1997). Obviously, this limit has not been reached

bility in the environmental variable (Nilssoet al., 1996).
The unexplained variances in our northern Fennoscandian chi-

in this study. However, as the data set increases in size, there mayronomid—temperature data are 56.3% (mean July air) and 66.1%

be a significant improvement in model performance, particularly

(surface water), in contrast to 31% (mean July air) and 68.2%

when assessed by cross-validation techniques and by bias statisticésurface water) in western Norway (Brooks and Birks, 1999).

(Birks, 1995; 1998).

There are at least three possible explanations for these differences,

The relationships between chironomids and temperature areparticularly in the air-temperature models, between the two areas.

generally well established (e.g., Walker and Mathewes, 1989; (1) There may be difficulties in estimating reliable mean July air
Walker et al.,, 1991b; Olandeet al., 1997; Brookset al., 19973a; temperatures in a remote area such as northern Fennoscandia
1997b; Lotteret al, 1997; Brooks and Birks, 1999), although where there are few climatic stations compared to western Nor-
opposing opinions have also been presented (Warwick, 1989;way where there is a relatively dense network of climate stations.
Warner and Hann, 1987; Harat al, 1992). In general, chirono- (2) In an extremely oceanic climate such as in western Norway,
mid taxa are known to differ in their temperature tolerances. Tem- there may be large and unpredictable fluctuations in surface-water
perature may affect chironomid assemblages both directly (e.g.temperatures during the day and from day to day compared to
pupation, emergence, growth, flight, feeding and hatching) and areas with a less oceanic and more stable continental climate such
indirectly (e.g., oxygen conditions, length of the ice-cover period, as northwestern Finland. As a result the western Norwegian sur-
stratification, inflow rates, etc) (Smet al, 1991). Many broad- face-water-temperatures may be inherently more variable than
scale biogeographical investigations have also documented a closether surface-water-temperature data. (3) There is a significant
connection between the present-day distribution patterns of Chi- correlation between the measured water temperature and the alti-
ronomidae and climate (Brundin, 1949; 1956; Walker and tude-corrected air temperature in the northern Fennoscandian data
Mathewes, 1989; Rossaro, 1991). set. This suggests that the entire water mass in these clear-water
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lakes may be in close contact with the atmosphere (Bédral, restricted biogeographical area with a similar geological setting;
1998). As a result, there are no strong differences between the(iii) the climate gradient in our study area has been shown to be
calibration models that use either air or water temperatures in our stable; (iv) most of the study lakes are transparent and their water
northern Fennoscandian data set. is thus in close contact with the atmosphere; and (v) the sediment
In evaluating the performance of our chironomid-temperature organic content and thus the ‘substrate’ are more adequately mea-
calibration set, it is important to consider not only the random sured in our study compared to previous investigations. All these
differences or error in its predictive abilities, as estimated by features together with the addition of air-temperature data in our
RMSEP, but also the systematic differences in the predictions (ter models are positive responses to the original criticisms raised by
Braak and Juggins, 1995; Birks, 1995; ter Braak, 1995; Later Hann et al. (1992) about the first chironomid—temperature-
al., 1997). The systematic differences are estimated by the meancalibration study of Walkeet al. (1991b).
bias and by the maximum bias in the predicted values. In all the In conclusion, we have developed transfer functions for infer-
models summarized in Tables 8 and 9, the highest maximum biasring past lakewater and mean July air temperatures by means of
is always associated with the lowest temperature segments of thechironomid assemblages preserved in lake sediments. However,
surface-water- or air-temperature gradients. The maximum bias the predictive abilities of our transfer functions are at present still
for all the inference models (except for MAT) is about 3.5°8.8 relatively weak, particularly for an analysis of fine-scale Holocene
for surface-water temperature and 2.253for air temperature. climatic fluctuations. The current data set has large secondary
These maximum bias values are high compared to the RMSEPgradients, with the second, unconstrained axes slightly larger than
and indicate that the predictive abilities of our chironomid data the first temperature-constrained axes, presumably reflecting vari-
set are clearly worst at low temperatures. This is presumably dueation in the chironomid assemblages that is unrelated to the meas-
to the small number of lakes with low water or air temperatures ured water or air temperatures. Despite the expansion of the data
(Figure 2) in the data set and hence to unreliable estimation of set, many problems typical of small regional training sets, such
taxon parameters (WA optima, (WA)-PLS coefficients, etc) for as truncated species distributions, uneven distribution of sites
taxa associated with the low end of the temperature gradient. Asalong the environmental variable of interest (Jones and Juggins,
a result there is a strong tendency for predicted values to be seri-1995), and high maximum bias at the ends of the sampled gradient
ously over-estimated for lakes with low water or air temperatures. are still present. It is therefore necessary to expand further the
In contrast to Walkeet al. (1991b), we found sediment organic  geographical and temperature ranges of our data set, particularly
content (as represented by LOI) to be a significant explanatory at the low temperature end of the gradient, in an attempt to over-
variable for chironomid distributions and relative abundances in come these problems.
our study lakes. This may, in part, be due to the multiple sampling
approach applied here that may give a more reliable picture of the
availaple substrates within a lake than the single surface-sedimentAcknowledgements
sampling method used by Walket al. (1991b). It may also be
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