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ABSTRACT

Identifying patterns of recurrent events is central to human perception, cognition
and behavior. By extracting patterns from the environment, individuals can make
efficient predictions about future events. By and large, the detection of these
contingencies is the core faculty to respond to, interact with, and ultimately make
sense of the world. The aim of this thesis was to investigate how the brain treats
temporal patterns and generates expectancies from regular event sequences.

A variant of an auditory oddball paradigm was developed in which predictability
was modulated with sequences of random and regular targets. In order to assess
both the temporal and spatial implementation of these effects, single trial event
related potentials and functional magnetic resonance imaging were employed.

In the first paper, the effect of predictability on brain activity was studied with
single trial ERPs, yielding sigmoid-shaped learning curves on CNV, N2 and P3.
The second paper described a method for integration of single-trial ERP with
fMRI data, and reported three spatiotemporal activation patterns during the P2,
N2, and P3 in addition to the generic activation elicited by target stimuli. An
additional modulation beginning during the N1 was extracted in the third paper
that employed a method for parallel unmixing of concurrent EEG-fMRI data.

The results of the thesis have implications for the understanding of ERP
components, the concepts of how a standard representation is formed and how
context is updated need to take into account the effects of predictability observed
here. Furthermore, the thesis presents straightforward methods for single-trial
ERP, and concurrent EEG-fMRI analysis that afford comprehensive spatio-

temporal mapping of event-related processes in the brain.
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GENERAL INTRODUCTION

‘It is hardly surprising to find that the organism's response to "identical” stimuli is
in flux. The nervous system is not a passive recipient of inputs that are obediently
switched to outputs; rather it is a dynamic system that continuously generates

hypotheses about the environment.’ (Squires et al 1976)

The brain is set to ‘mining its sensory inputs’ (Friston 2003), and is continuously
attempting to identify patterns in the environment in order to generate accurate
predictions about future events. In general, predictions are coded across all levels
of processing, from the primary sensory, to high-level executive functions and
may represent a major source of energy consumption in the brain (Fox et al 2005;

Friston 2005a; Halgren & Marinkovic 1995; Llinas 2001; Raichle 2006).

When sequences of behaviourally relevant events contain non-random patterns,
behavioural performance typically becomes more efficient with repetition. This
happens regardless of whether participants are instructed to detect these patterns
or not, and also independent of whether declarative (explicit) knowledge about
patterns is made available a-priori, acquired by the participant during the
experiment or not (Forkstam & Petersson 2005; Huettel et al 2002; Reber 1967;
Seger 1994). People invariantly and implicitly adapt to patterns in their
environment and this illustrates strong salience of patterns. However, research
into pattern learning (see e.g. Janata & Grafton 2003) so far most directly probed
the motor system, by studying adaptation to sequences with tasks requiring overt
responses, such as the serial response time task (Reber 1967; Seger 1994). Motor

sequence learning is, however, only one expression of pattern learning and



outcome prediction, there is a large variety of covert psychophysiological
phenomena that are thought to rest upon generation and violation of expectancies.
For these phenomena it is prudent to assume that detection and memory
mechanisms that afford representations of stimuli and subsequent learning of
complex relationships between events are implemented in a widespread fashion
across the brain, both in sensory regions (Ulanovsky et al 2004; Ulanovsky et al
2003), as well as in heteromodal, higher-order brain areas (Friston 2005a; Huettel

et al 2002).

The Orienting Response

The ‘prototype’ psychophysiological exemplar for prediction making in the brain
is the change in the peripheral orienting response (OR) indexed by skin
conductance and heart rate to stimulus repetition. The OR displays repetition
suppression, habituation to regularly presented stimuli, dishabituation to
deviations from patterns of preceding stimuli, and is elicited by omitted stimuli
(Barry 1990; Loveless 1983; Rescorla & Wagner 1972; Sokolov 1963; Sokolov
& Vinogradova 1976). It was already incorporated in Sokolov’s original
conception (Sokolov 1963) that the OR represents a change of prediction error in
a learning system that adapts to regularly presented stimuli when the state of
prediction is not changing and it dishabituates to deviations from a pattern of
preceding stimuli when a prediction is not met: ‘The “neuronal model of the
stimulus” registers not only the elementary, but also the complex properties of
the signal, such as coincidence or succession of several stimuli in time.” (Sokolov
& Vinogradova 1976, p. 218). However, similar to sequence learning effects in

the motor system, OR effects lie ‘downstream’, i.e. on the output side in distal
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effectors, such that these measures do not afford specific inferences about the

earlier, perceptual and cognitive levels of processing in the brain.

The Oddball Paradigm

The perceptual and cognitive levels of information processing, i.e. the input side
can be studied with the classic and widely applied ‘oddball’ paradigm. In the
simplest version of this paradigm a repeated frequent ‘standard’ stimulus (Fig.1,
dotted) is occasionally replaced at random intervals by an infrequently occurring
deviant stimulus — the oddball or ‘target’ (Fig. 1, solid), which is different from

the standard in some feature, such as pitch or duration.

Figure 1
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The mechanisms probed by this experiment are not confined to any particular
sensory modality, such that they can be studied with auditory, visual,
somatosensory, cross-modal stimulation, and stimulus omission alike, while ERP
(fig.1) or fMRI (fig. 2) data are collected. When the stimulus material is to be
attended, participants are typically instructed to respond to the deviants (button

press, counting), while when the material is to be ignored in order to selectively
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study the automatic, bottom-up effects, participants can be instructed to read a
book, watch a video, or solve an unrelated task.

In broad terms, the stimulus-locked event-related potential (ERP) to oddball
stimuli in the auditory modality represents the chronometry of processes leading
to discrimination of the target stimuli and encompasses effects in a number of
components: N1, P2, mismatch negativity (MMN), N2b, P3a, P3b, and slow
waves (for overviews, see Coles & Rugg 1995; Fabiani et al 2000; Handy 2005;
Luck 2005; Néitinen 1992; Polich 2003). In figure 1, the major difference
between the standard and target ERPs is during the N2 and P3 latencies.

A variety of these deflections have been interpreted as cortical concomitants of
the orienting response (Loveless 1983; Nadtdnen & Gaillard 1983; Roth 1983).
The N1 and P2 typically are enhanced under ‘attend’ compared to ‘ignore’
conditions (Hillyard et al 1973; Néitinen & Picton 1987; Woods 1995). N1
subcomponents display adaptive effects to repetition and change, ‘NI1-
enhancement’ and particularly effects dependent on stimulus sequence such as
(dis-/re-) habituation represent this type of function (Budd et al 1998; Haenschel
et al 2005; Jaaskelainen et al 2004; Naidtinen 1992; Niaidtdnen et al 2005;
Néidtidnen & Picton 1987; Sambeth et al 2004; Woods 1995). MMN represents an
early, automatic response to violation of an auditory rule and reflects the
comparison between the deviant input and a sensory memory trace (Niitdnen
1992; Naitinen et al 1978; Nadtdnen et al 2001; Néidtdnen & Winkler 1999;
Picton et al 2000a). The formation of the memory representation is likely
instantiated via adaptation to the frequent, high-probability standard element(s),
which corresponds to changes in the prediction of repetitive stimulus features

(Baldeweg 2006; Haenschel et al 2005; Naitinen & Rinne 2002; Nordby et al
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1988a; 1988b; Paavilainen et al 2001; Ritter et al 1992; Sussman et al 1998;
Sussman et al 2003; Ulanovsky et al 2004; Ulanovsky et al 2003). When a task is
associated with the deviant stimulus, MMN typically overlaps temporally,
spatially, and functionally with the N2b. N2b is related to matching the incoming
stimulus to an internally generated contextual template (Gehring et al 1992;
Nadtdanen 1992; Néitédnen et al 1982), that is usually followed by P3a, indicating
a bottom-up shift of attention (Courchesne et al 1975; Friedman et al 2001; Polich
2003; Schroger 1997; Squires et al 1975).

The most prominent feature of the ERP waveform to auditory targets is a broad,
parietal positivity from about 300 ms, the P3 (or P300, P3b), thought to reflect
goal directed, effortful processing and working memory processes (Donchin
1981; Donchin & Coles 1988; Picton 1992; Polich 2003; Verleger 1988). This
component and one of its major functions was first described in the seminal work
of Samuel Sutton and colleagues (Sutton et al 1965; Sutton et al 1967). The
experimental design and conception of the findings already then provided a
perspective that was emphasizing expectancy vs. uncertainty as the critical
determinant for the elicitation of the P3. The basic idea was that P3 corresponds
to prediction error, meaning the difference between the stored representation of
the environment and the current input. P3 thus reflects to the degree to which a
‘surprise’-response to the sensory input was suppressed. This idea prevails in later
theories about P3 (Donchin 1981; Donchin & Coles 1988; Verleger 1988), as
well as in a generalized framework that assumes that the fundamental function of
cortical responses is to generate predictions (Friston 2003; 2005a; Friston 2005b;
see also, Llinas 2001). However, the P3 amplitude is sensitive to a wide array of

experimental manipulations that interact with expectancy/surprise, such as target
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probability (Duncan-Johnson & Donchin 1977; Tueting et al 1970), stimulus
sequence (Jentzsch & Sommer 2001; Squires et al 1976), and inter-target interval
(Croft et al 2003; Gonsalvez & Polich 2002).

A P3 compoenent is also elicited if a stimulus is omitted from a regular sequence
(Hughes et al 2001; Jongsma et al 2005; Mustovic et al 2003; Ruchkin & Sutton
1978; Ruchkin et al 1975). These omission evoked potentials (OEPs) are elicited
by the absence of an expected stimulus such that they are entirely endogenous by
definition, which renders them a valuable tool for studying the cognitive, top-
down dimension of ERP components. The existence of OEPs itself, and their
parametric modulation by variables such as probability and predictability can be

conceived as critical evidence for predictive coding.

Additionally, if a stimulus is expected, a negative shift in the ERP waveform may
appear before the stimulus presentation, the ‘Contingent Negative Variation’
(CNV), which indicates response preparation for the target (Brunia 1999; Walter

et al 1964).

The assembly of functions associated with information processing during the
oddball task produces widespread brain activity, both temporally, as seen in the
sequence of sensitive ERP components, as well as spatially: A number of
functional magnetic resonance imaging (fMRI) studies have explored the oddball
paradigm to examine the hemodynamic correlates of detecting changes and
processing targets (Bledowski et al 2004; Clark et al 2000; Downar et al 2000;
Horovitz et al 2002; Kiehl et al 2001; Kiehl et al 2005; Kirino et al 2000; Linden
et al 1999). The most recent large sample study with 100 healthy participants
showed that auditory target detection induces hemodynamic activation in about

forty regional maxima including cortical, subcortical and cerebellar areas (Kiehl

14



et al 2005). Figure 2 shows three axial slices with typical fMRI results to oddball
stimuli with extensive activation in the insula, basal ganglia, temporal lobes,

lateral frontal, anterior cingulate, and sensorimotor regions.

Figure 2

Such results support a view of widespread neuronal recruitment during simple
target detection, which fits well with data from intracranial recordings (Baudena
et al 1995; Halgren et al 1995a; Halgren et al 1995b; Halgren et al 1998). One
interpretation is that in order to maximize the odds of learning potentially relevant
information brain activation is global and principally unspecific, i.e. areas that are
not necessarily relevant for the task at hand are nonetheless activated in a
dynamic, adaptive fashion (Halgren & Marinkovic 1995; Kiehl et al 2005).

Research focusing on the hemodynamic correlates of the earlier evoked
components N1, MMN, and P3a typically describes a more focused pattern
localized mainly in the superior temporal gyri, lateral and medial frontal areas
(Liebenthal et al 2003; Muller et al 2002; Opitz et al 1999; Rinne et al 2005;
Sabri et al 2006). This pre-attentive deviance detection system signals to, and
may in turn be top-down modulated by the later ‘endogenous’ components in the
event related response that derive from higher levels of processing (Friston

2005a; Schroger 1997).
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OBJECTIVES OF THE THESIS

The Learning Oddball

In this thesis, a variant of an oddball paradigm is used which allows tracking
auditory temporal pattern learning (Jongsma et al 2004). The ‘learning-oddball’
paradigm is a simple two-stimulus paradigm with two alternating conditions: 1.
The ‘Random’ condition in which a series of targets are presented with non-
repetitive pseudo-random target-to-target intervals, and 2. The ‘Regular’
condition, in which targets appear repeatedly at the same target-to-target interval
with the same number of standard sounds in between. In this paradigm,
participants are not informed beforehand about the different patterns in the
stimulus sequence and they are instructed to respond to the target stimuli with a
synchronous delayed response in order to minimize confounding effects from
speeding of response times on the stimulus-locked ERP. This paradigm affords to
study selectively how brain activity changes with varying levels of predictability,
while controlling for the confounding effects of target probability (Duncan-
Johnson & Donchin 1977; Tueting et al 1970), sequence (Jentzsch & Sommer
2001; Squires et al 1976) and target-to-target interval (TTI, Croft et al 2003;
Gonsalvez & Polich 2002). Probability, sequence, and interval are not changing
during the regular periods of the experiment where predictability is increasing due
to repetition of stimulus patterns. At the same time, expectancy-related effects in
this paradigm are building up from the temporal and sequential relationships
between target stimuli, and go beyond repetition effects related to the
representation of the standard (cf. Baldeweg 2006; Ndiitinen et al 2001) or

context (Donchin 1981; Donchin & Coles 1988).
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Learning Model

A hypothesis about the shape of the effects can be deducted from the Rescorla-
Wagner model (RW, Rescorla & Wagner 1972) assuming that targets are
surprising and patterns are salient contingencies. The RW is a model for the
explanation of learning through reinforcement, and changes in reinforcement
expectancy with increasing experience. In this sense, the RW is based on surprise,
i.e. prediction error (PE) as the reinforcement signal. PE refers to the difference
between the actual (R;) and the predicted outcome (Vi) at trial t. Updates of
predicted outcomes (V) are the sum of the learning history and the current PE,
and the learning rate (¢) determines the influence of the current trial on the future
prediction

Vi=Vu+ e (Re-Viy)

It follows from the equation above that repetition of targets at regular intervals
should yield a learning curve (Fig. 3, blue) that modulates activity according to an
approximate exponential or sigmoid function whose shape is determined by the
learning rate, and where prediction error would elicit transient responses between

random and regular sequences (Fig. 3, orange).

Figure 3
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Adapting this relatively simple version of a predictive coding framework
(Baldeweg 2006; Friston 2005a) to the auditory oddball is an attempt to address
the similarities in the theories of Sokolov (Sokolov 1963), Sutton (Sutton et al
1965), Donchin (Donchin 1981; Donchin & Coles 1988) and Nataanen (N&itdnen
1992). It also tries to add to Halgrens appealing proposal that ‘the brain uses a
full employment strategy’ and ‘that activation is parallel and interdependent’
(Halgren & Marinkovic 1995; Halgren et al 1998) which was recently picked up
by Kiehl (Kiehl et al 2005). The utility of such an integrative approach is
obvious: in order to come to a conclusive interpretation of spatiotemporal
information processing, it is necessary to acknowledge the tight coupling and
common functions of temporally or spatially separable neuronal modules, such as

in the sequence of responses elicited by the auditory oddball.

Single Trial Analysis

In order to study the dynamics of pattern learning, it is necessary to track
responses on a single-trial basis and estimate individual event-related responses.
The use of single trial evoked responses as markers of learning opens a range of
novel applications and this type of information may prove invaluable in the
understanding of cognitive processes (Debener et al 2006; Makeig et al 2004a;
Spencer 2005). Moreover, such markers may yield more specific information
about neuropsychiatric pathologies (Ford et al 1994).

A number of techniques for extraction of single-trial event-related activity with
promising results are available to overcome the challenges of single-trial analysis
due to the low signal-to-noise ratio of the responses. The analysis of the

‘learning-oddball’ experiments draws on these techniques using a combination of
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independent component analysis (ICA) and wavelet denoising (Delorme &

Makeig 2004; Quian Quiroga & Garcia 2003).

Localizing Generators

Apart from describing pattern learning effects at different latencies of the
stimulus-locked scalp ERP, another objective of the study is to identify the
locations of the underlying generators of these effects. To this end, concurrent
EEG-fMRI is used, and the single-trial EEG data recorded inside the MR scanner
serves as a predictor of hemodynamic activity over time. As outlined in the
introduction, it can be assumed that pattern learning is such an elementary and
pervasive effect that it is implemented in temporally and spatially distributed
networks (Baudena et al 1995; Friston 2005a; Halgren et al 1995a; Halgren et al
1995b; Halgren & Marinkovic 1995; Halgren et al 1998; Kiehl et al 2005; Llinas

2001).

In summary, the aim of the thesis was to track dynamic markers of auditory
pattern learning in trial-to-trial changes of ERP component amplitudes and fMRI

regional activation:

Paper I (Jongsma et al 2006) presents the paradigm and a single trial EEG
analysis with ICA and wavelet denoising. It describes pattern-learning effects in
event-related potentials from the scalp with both pitch targets and stimulus

omissions.
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Paper II (Eichele et al 2005) develops a new method to predict regional activation
in functional MRI data with single trial EEG to provide a spatiotemporal
characterization of evoked responses associated with pattern learning. The idea is
to find correspondences between EEG and fMRI by time-variant information in
single trials, which permits inferences about fMRI responses with the temporal

resolution provided by EEG/ERP.

Paper III (Eichele et al 2007) addresses the mixing problem of signals from latent
neuronal sources that are spatially and temporally distributed across the brain. A
parallel independent component analysis framework was developed to
disentangle sources from the fMRI and EEG, in order to facilitate the
identification of an additional pattern-learning effect in early, automatic auditory

processing.
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METHODS

‘In all likelihood these fields of potential are epiphenomenal, probably equivalent to
the sounds of internal combustion engines at work, or to antique computers in
science fiction movies, or to the roars of crowds at football games.

In fact, most neuroscientists reject EEG and MEG evidence, in the beliefs that the
real work of brains is done by action potentials in neural networks, and that
recording wave activity is equivalent to observing an engine with a stethoscope or a
computer with a D'Arsonval galvanometer.

However, one can learn a lot about a system by listening and watching, if one knows

what to seek and find.’ (Freeman 2000)

The methods employed in this work were chosen to provide a comprehensive
answer to the question when and where the brain adapts to predictability. While
the implementation of single trial analysis for EEG and concurrent EEG-fMRI
data add a momentum of technical complexity to an otherwise simple experiment,
these methods in combination alleviate critical restrictions on the spatial and
temporal inferences that can be drawn from the data (Debener et al 2006; Gratton

2000; Jennings & Stine 2000).

Electroencephalography

Electroencephalography (EEG) is one of the oldest and most widespread methods
to study brain activity non-invasively. The presence of fluctuating electric fields
in the brain was first described by Richard Caton in the late 19" century (Caton
1875). Caton’s work was not widely recognized, and it was not until 1929 that
Hans Berger demonstrated scalp recordings of electrical activity in humans

(Berger 1929). In his initial experiments, Berger placed electrodes over the front
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and the back of the head and observed rhythmic waves at a frequency of around
10 Hz. Since its discovery, EEG has become a routine tool to study neuronal
activity non-invasively, and it is a valuable method for both clinicians and
researchers. EEG has many advantages based on the fact that it is an
instantaneous measure of brain function that can be used in several applications.
The limitations of EEG are a limited spatial resolution as well as its inability to
localize the source of activity with certainty.

As demonstrated in animal studies, scalp recorded EEG originates primarily from
synchronized activity in pyramidal cells in the gray matter of the cerebral cortex.
Pyramidal cells are oriented perpendicular to the cortical surface, and they
generate post-synaptic potentials (PSPs). Ongoing EEG activity originates from
summated PSPs in the dendrites of cortical neurons, and becomes measurable on
the scalp only when larger patches (on the order of centimeters) of cortical tissue
are synchronously active (see e.g. Tao et al 2007). It should be noted that EEG is
thus not a direct product of action potentials (APs), PSPs are slower, graded
potentials which are characterized by either a hyperpolarization or a
depolarization of the cell membrane that eventually elicits an AP in receiving
cells. A PSP is generated when an afferent excitatory signal at the synapse
changes the resting membrane potential, with influx of positively charged ions
into the cell and a negative charge in the extracellular space in the vicinity of the
synapse. Although current circuits are induced by PSPs, only the extracellular
currents flowing from the source to the sink can be detected in EEG recordings.
The electrodes measure nearby field potentials of the tissue relative to a reference
electrode as a positive deflection, because the potential at the site of the active

electrode is decreased relative to the reference electrode. The situation is reversed
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when a current flows toward the surface electrode, which results in the
registration of a negative deflection. The EEG reflects the activity of many
cortical neurons, the maximal dipole moment of single neurons is too weak to
produce a measurable signal on the scalp. The spatial distribution of EEG signals
is distorted, because the conducting layers of tissue and bone act like resistors and
capacitors in an electric circuit. As a consequence, larger patches of cortical tissue
with simultaneous activity are required to generate a detectable EEG signal
(Davidson et al 2000; Hugdahl 1995; Kandel et al 2000; Nunez & Srinivasan

2006; Purves et al 2001).

Event Related Potentials

One commonly used tool in neuro- and psychophysiology are the evoked, or
event related potentials (ERPs), that have characteristic waveform shapes that are
reproducible under similar experimental conditions (Coles & Rugg 1995; Fabiani
et al 2000; Gaillard 1988; Handy 2005; Hugdahl 1995; Luck 2005; Picton et al
2000b). By arranging stimuli in paradigms, it is possible to analyze the responses
of the brain to different tasks, thus allowing the study of several sensitive
cognitive functions and states. ERPs are defined as changes in the ongoing EEG
due to stimulation (e.g. tones, light flashes), and are typically referred to as
averaged time and phase-locked voltage fluctuations in the EEG, resulting from
volume conducted neuronal responses to sensory, motor or cognitive events. One
of the major advantages of the ERP technique is that aspects of information
processing can be instantaneously measured, with excellent temporal resolution.
ERP components are classically divided into two types of components based on

their latency: Components with latencies of up to 100ms after stimulus onset are
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assumed to be primarily determined by the physical characteristics of the
stimulus, and are therefore labeled ‘exogenous’ components. The components
later than about 100 ms after a stimulus onset are determined by cognitive aspects

of information processing and are hence dubbed ‘endogenous’.
Wavelet Denoising

Due to the low amplitude of event related changes in the EEG in the presence of
unrelated background activity, responses to several stimuli are usually averaged
together. Averaging yields data reduction and increases in the signal-to-noise
ratio, however, it leads to a loss of the information about systematic variability
between single trials. Preservation of single trial data affords a view into the
spontaneous, adaptive dynamics of event related responses in the brain, and
provides a rich source of information (Debener et al 2006; Quian Quiroga &
Garcia 2003; Spencer 2005). We used a recenctly developed ‘denoising’ scheme
for the estimation of single-trial ERPs in the ongoing EEG based on wavelet
decomposition (Quian Quiroga & Garcia 2003). The method relies on the time-
locking and morphological characteristics of the ERP and affords the recovery
and visualization of event-related responses on single-trial level. The Wavelet
Transform (WT) of a signal x(¢) is defined as the inner product between the signal

and the wavelet functions ¥, (1)

W, x(a.b) = (x(t), v, (1))

where ¥, (t) are dilated (contracted) and shifted versions of a unique wavelet

-1/2 -b
V0=l o0

function ¥(t)
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The WT gives a time-frequency representation of a signal that has two main
advantages: firstly, an optimal resolution both in the time and in the frequency
domain; secondly, signals do not need to be stationary. In order to avoid
redundancy and to increase the computational efficiency, it is usually defined at

discrete scales a and discrete times b by choosing the dyadic set of parameters

a’=27,b,, =27k, for integers j and k. The discrete WT gives a

decomposition of x(#) in different scales, tending to be maximum in those scales
and times where the wavelet best resembles x(7). Contracted versions of ¥ (1)
will match high frequency components of x(z) and on the other hand, dilated
versions will match the low frequency ones.

The information given by the WT can be organized according to a hierarchical
scheme called multiresolution analysis (Mallat 1989), which gives a
decomposition of the signal in different levels of ‘details’, i.e. components in
consecutive frequency bands, and a final approximation or ‘residual’ that is the
difference between the original signal and the sum of all the details. Components
corresponding to the different frequency bands can be reconstructed by applying
an inverse transform. Quadratic bi-orthogonal B-Splines (Cohen et al 1992) are
chosen as the basic wavelet functions due to their similarity with the ERP, thus
providing a good localization of the ERP in the wavelet domain, and due to their
optimal time-frequency resolution.

Briefly, the method consists of the following steps: firstly, the average ERP is
decomposed in different scales and times by using the wavelet multiresolution
decomposition. Then, the wavelet coefficients that constitute to the ERP are
identified and the remaining ones are zeroed, such that the chosen coefficients

cover a time range in which the single-trial ERPs are expected to occur. At this
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step, one heuristically adjusts the selected coefficients by comparing the
outcomes of the denoised single-trial ERP with the raw data. The criticial point is
to ensure that the denoising implementation does not alter components with
systematic latency variability, and that the method does not introduce spurious
changes in the peaks of interest e.g. when the set of coefficients is too narrow and
not sufficient for a proper reconstruction of the ERP. Once the coefficients are
chosen, the method is parameter free and does not need to be adjusted further.
Lastly, the inverse transform defined by the previous steps is applied to the single

trials, thus recovering the single-trial variability.

Functional Magnetic Resonance Imaging

BOLD-fMRI

The most frequently used functional magnetic resonance imaging technique is
based on changes in magnetic susceptibility of the blood during brain activation
(Bandettini et al 2000; Frahm et al 1992; Huettel et al 2004; Kwong et al 1992;
Ogawa et al 1992). Haemoglobin carries the oxygen necessary for aerobic
metabolism in the brain. The blood-oxygenation-level-dependent (BOLD)
contrast picks up the different magnetic properties of oxygenated and
deoxygenated blood. Deoxygenated haemoglobin (deoxy-Hb) is a paramagnetic
molecule, oxygenated haemoglobin (oxy-Hb) is diamagnetic. The presence of
deoxy-Hb in a blood vessel causes dephasing of the local magnetization vectors,
leading to a reduction in the transverse relaxation time T2*. T2* is a net property
of the material being scanned, and specifies the signal decay which produces the
contrast in a MRI scan that is set up to be sensitive to T2*. When neurons are

activated, there is a localized change in blood flow and oxygenation that causes a
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change in the magnetic resonance (MR) decay parameter T2*, thus, changes in
oxygenation of the blood can be observed as signal changes in T2*-weighted
images.

Neurovascular coupling

Electrical activity in neurons cannot be directly observed by any variant of the
MRI procedure, BOLD-fMRI provides an indirect measure of brain activity based
on the temporal and spatial coupling of neuronal activity, metabolic activity and
blood flow parameters in the brain (Villringer & Dirnagl 1995). The mechanism
that defines the relationship of deoxy-Hb and oxy-Hb among populations of
neurons in a certain area of the brain during their activation is called
neurovascular coupling. The ratio between deoxy-Hb and oxy-Hb depends on
cerebral oxygen extraction rate, blood flow and blood volume. Neurovascular
coupling can coarsely be characterized by two observations (Heeger & Ress
2002): firstly, the regional blood flow is coupled to the metabolic demand;
secondly, the metabolic demand results mainly from synaptic activity, and
therefore blood flow and synaptic activity are coupled. The transfer from
neuronal to haemodynamic signals is complex and not yet fully understood
(Buxton et al 2004; Lauritzen & Gold 2003; Logothetis 2003; Logothetis &
Pfeuffer 2004). However, one robust effect of neuronal activation is
haemodynamic overcompensation, i.e. a local increase of the co