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ABSTRACT 

 

Identifying patterns of recurrent events is central to human perception, cognition 

and behavior. By extracting patterns from the environment, individuals can make 

efficient predictions about future events. By and large, the detection of these 

contingencies is the core faculty to respond to, interact with, and ultimately make 

sense of the world. The aim of this thesis was to investigate how the brain treats 

temporal patterns and generates expectancies from regular event sequences.  

A variant of an auditory oddball paradigm was developed in which predictability 

was modulated with sequences of random and regular targets. In order to assess 

both the temporal and spatial implementation of these effects, single trial event 

related potentials and functional magnetic resonance imaging were employed.  

In the first paper, the effect of predictability on brain activity was studied with 

single trial ERPs, yielding sigmoid-shaped learning curves on CNV, N2 and P3. 

The second paper described a method for integration of single-trial ERP with 

fMRI data, and reported three spatiotemporal activation patterns during the P2, 

N2, and P3 in addition to the generic activation elicited by target stimuli. An 

additional modulation beginning during the N1 was extracted in the third paper 

that employed a method for parallel unmixing of concurrent EEG-fMRI data.  

The results of the thesis have implications for the understanding of ERP 

components, the concepts of how a standard representation is formed and how 

context is updated need to take into account the effects of predictability observed 

here. Furthermore, the thesis presents straightforward methods for single-trial 

ERP, and concurrent EEG-fMRI analysis that afford comprehensive spatio-

temporal mapping of event-related processes in the brain. 
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GENERAL INTRODUCTION 

 

‘It is hardly surprising to find that the organism's response to "identical" stimuli is 

in flux. The nervous system is not a passive recipient of inputs that are obediently 

switched to outputs; rather it is a dynamic system that continuously generates 

hypotheses about the environment.’ (Squires et al 1976) 

 

The brain is set to ‘mining its sensory inputs’ (Friston 2003), and is continuously 

attempting to identify patterns in the environment in order to generate accurate 

predictions about future events. In general, predictions are coded across all levels 

of processing, from the primary sensory, to high-level executive functions and 

may represent a major source of energy consumption in the brain (Fox et al 2005; 

Friston 2005a; Halgren & Marinkovic 1995; Llinas 2001; Raichle 2006). 

When sequences of behaviourally relevant events contain non-random patterns, 

behavioural performance typically becomes more efficient with repetition. This 

happens regardless of whether participants are instructed to detect these patterns 

or not, and also independent of whether declarative (explicit) knowledge about 

patterns is made available a-priori, acquired by the participant during the 

experiment or not (Forkstam & Petersson 2005; Huettel et al 2002; Reber 1967; 

Seger 1994). People invariantly and implicitly adapt to patterns in their 

environment and this illustrates strong salience of patterns. However, research 

into pattern learning (see e.g. Janata & Grafton 2003) so far most directly probed 

the motor system, by studying adaptation to sequences with tasks requiring overt 

responses, such as the serial response time task (Reber 1967; Seger 1994). Motor 

sequence learning is, however, only one expression of pattern learning and 
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outcome prediction, there is a large variety of covert psychophysiological 

phenomena that are thought to rest upon generation and violation of expectancies. 

For these phenomena it is prudent to assume that detection and memory 

mechanisms that afford representations of stimuli and subsequent learning of 

complex relationships between events are implemented in a widespread fashion 

across the brain, both in sensory regions (Ulanovsky et al 2004; Ulanovsky et al 

2003), as well as in heteromodal, higher-order brain areas (Friston 2005a; Huettel 

et al 2002). 

 

The Orienting Response 

The ‘prototype’ psychophysiological exemplar for prediction making in the brain 

is the change in the peripheral orienting response (OR) indexed by skin 

conductance and heart rate to stimulus repetition. The OR displays repetition 

suppression, habituation to regularly presented stimuli, dishabituation to 

deviations from patterns of preceding stimuli, and is elicited by omitted stimuli 

(Barry 1990; Loveless 1983; Rescorla & Wagner 1972; Sokolov 1963; Sokolov 

& Vinogradova 1976). It was already incorporated in Sokolov’s original 

conception (Sokolov 1963) that the OR represents a change of prediction error in 

a learning system that adapts to regularly presented stimuli when the state of 

prediction is not changing and it dishabituates to deviations from a pattern of 

preceding stimuli when a prediction is not met: ‘The “neuronal model of the 

stimulus” registers not only the elementary, but also the complex properties of 

the signal, such as coincidence or succession of several stimuli in time.’ (Sokolov 

& Vinogradova 1976, p. 218). However, similar to sequence learning effects in 

the motor system, OR effects lie ‘downstream’, i.e. on the output side in distal 
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effectors, such that these measures do not afford specific inferences about the 

earlier, perceptual and cognitive levels of processing in the brain.  

 

The Oddball Paradigm 

The perceptual and cognitive levels of information processing, i.e. the input side 

can be studied with the classic and widely applied ‘oddball’ paradigm. In the 

simplest version of this paradigm a repeated frequent ‘standard’ stimulus (Fig.1, 

dotted) is occasionally replaced at random intervals by an infrequently occurring 

deviant stimulus − the oddball or ‘target’ (Fig. 1, solid), which is different from 

the standard in some feature, such as pitch or duration. 

Figure 1 

 

The mechanisms probed by this experiment are not confined to any particular 

sensory modality, such that they can be studied with auditory, visual, 

somatosensory, cross-modal stimulation, and stimulus omission alike, while ERP 

(fig.1) or fMRI (fig. 2) data are collected. When the stimulus material is to be 

attended, participants are typically instructed to respond to the deviants (button 

press, counting), while when the material is to be ignored in order to selectively 
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study the automatic, bottom-up effects, participants can be instructed to read a 

book, watch a video, or solve an unrelated task.  

In broad terms, the stimulus-locked event-related potential (ERP) to oddball 

stimuli in the auditory modality represents the chronometry of processes leading 

to discrimination of the target stimuli and encompasses effects in a number of 

components: N1, P2, mismatch negativity (MMN), N2b, P3a, P3b, and slow 

waves (for overviews, see Coles & Rugg 1995; Fabiani et al 2000; Handy 2005; 

Luck 2005; Näätänen 1992; Polich 2003). In figure 1, the major difference 

between the standard and target ERPs is during the N2 and P3 latencies. 

A variety of these deflections have been interpreted as cortical concomitants of 

the orienting response (Loveless 1983; Näätänen & Gaillard 1983; Roth 1983). 

The N1 and P2 typically are enhanced under ‘attend’ compared to ‘ignore’ 

conditions (Hillyard et al 1973; Näätänen & Picton 1987; Woods 1995). N1 

subcomponents display adaptive effects to repetition and change, ‘N1-

enhancement’ and particularly effects dependent on stimulus sequence such as 

(dis-/re-) habituation represent this type of function (Budd et al 1998; Haenschel 

et al 2005; Jaaskelainen et al 2004; Näätänen 1992; Näätänen et al 2005; 

Näätänen & Picton 1987; Sambeth et al 2004; Woods 1995). MMN represents an 

early, automatic response to violation of an auditory rule and reflects the 

comparison between the deviant input and a sensory memory trace (Näätänen 

1992; Näätänen et al 1978; Näätänen et al 2001; Näätänen & Winkler 1999; 

Picton et al 2000a). The formation of the memory representation is likely 

instantiated via adaptation to the frequent, high-probability standard element(s), 

which corresponds to changes in the prediction of repetitive stimulus features 

(Baldeweg 2006; Haenschel et al 2005; Näätänen & Rinne 2002; Nordby et al 
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1988a; 1988b; Paavilainen et al 2001; Ritter et al 1992; Sussman et al 1998; 

Sussman et al 2003; Ulanovsky et al 2004; Ulanovsky et al 2003). When a task is 

associated with the deviant stimulus, MMN typically overlaps temporally, 

spatially, and functionally with the N2b. N2b is related to matching the incoming 

stimulus to an internally generated contextual template (Gehring et al 1992; 

Näätänen 1992; Näätänen et al 1982), that is usually followed by P3a, indicating 

a bottom-up shift of attention (Courchesne et al 1975; Friedman et al 2001; Polich 

2003; Schroger 1997; Squires et al 1975).  

The most prominent feature of the ERP waveform to auditory targets is a broad, 

parietal positivity from about 300 ms, the P3 (or P300, P3b), thought to reflect 

goal directed, effortful processing and working memory processes (Donchin 

1981; Donchin & Coles 1988; Picton 1992; Polich 2003; Verleger 1988). This 

component and one of its major functions was first described in the seminal work 

of Samuel Sutton and colleagues (Sutton et al 1965; Sutton et al 1967). The 

experimental design and conception of the findings already then provided a 

perspective that was emphasizing expectancy vs. uncertainty as the critical 

determinant for the elicitation of the P3. The basic idea was that P3 corresponds 

to prediction error, meaning the difference between the stored representation of 

the environment and the current input. P3 thus reflects to the degree to which a 

‘surprise’-response to the sensory input was suppressed. This idea prevails in later 

theories about P3 (Donchin 1981; Donchin & Coles 1988; Verleger 1988), as 

well as in a generalized framework that assumes that the fundamental function of 

cortical responses is to generate predictions (Friston 2003; 2005a; Friston 2005b; 

see also, Llinas 2001). However, the P3 amplitude is sensitive to a wide array of 

experimental manipulations that interact with expectancy/surprise, such as target 
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probability (Duncan-Johnson & Donchin 1977; Tueting et al 1970), stimulus 

sequence (Jentzsch & Sommer 2001; Squires et al 1976), and inter-target interval 

(Croft et al 2003; Gonsalvez & Polich 2002). 

A P3 compoenent is also elicited if a stimulus is omitted from a regular sequence 

(Hughes et al 2001; Jongsma et al 2005; Mustovic et al 2003; Ruchkin & Sutton 

1978; Ruchkin et al 1975). These omission evoked potentials (OEPs) are elicited 

by the absence of an expected stimulus such that they are entirely endogenous by 

definition, which renders them a valuable tool for studying the cognitive, top-

down dimension of ERP components. The existence of OEPs itself, and their 

parametric modulation by variables such as probability and predictability can be 

conceived as critical evidence for predictive coding.  

Additionally, if a stimulus is expected, a negative shift in the ERP waveform may 

appear before the stimulus presentation, the ‘Contingent Negative Variation’ 

(CNV), which indicates response preparation for the target (Brunia 1999; Walter 

et al 1964). 

The assembly of functions associated with information processing during the 

oddball task produces widespread brain activity, both temporally, as seen in the 

sequence of sensitive ERP components, as well as spatially: A number of 

functional magnetic resonance imaging (fMRI) studies have explored the oddball 

paradigm to examine the hemodynamic correlates of detecting changes and 

processing targets (Bledowski et al 2004; Clark et al 2000; Downar et al 2000; 

Horovitz et al 2002; Kiehl et al 2001; Kiehl et al 2005; Kirino et al 2000; Linden 

et al 1999). The most recent large sample study with 100 healthy participants 

showed that auditory target detection induces hemodynamic activation in about 

forty regional maxima including cortical, subcortical and cerebellar areas (Kiehl 
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et al 2005). Figure 2 shows three axial slices with typical fMRI results to oddball 

stimuli with extensive activation in the insula, basal ganglia, temporal lobes, 

lateral frontal, anterior cingulate, and sensorimotor regions. 

Figure 2 

 

Such results support a view of widespread neuronal recruitment during simple 

target detection, which fits well with data from intracranial recordings (Baudena 

et al 1995; Halgren et al 1995a; Halgren et al 1995b; Halgren et al 1998). One 

interpretation is that in order to maximize the odds of learning potentially relevant 

information brain activation is global and principally unspecific, i.e. areas that are 

not necessarily relevant for the task at hand are nonetheless activated in a 

dynamic, adaptive fashion (Halgren & Marinkovic 1995; Kiehl et al 2005).  

Research focusing on the hemodynamic correlates of the earlier evoked 

components N1, MMN, and P3a typically describes a more focused pattern 

localized mainly in the superior temporal gyri, lateral and medial frontal areas 

(Liebenthal et al 2003; Muller et al 2002; Opitz et al 1999; Rinne et al 2005; 

Sabri et al 2006). This pre-attentive deviance detection system signals to, and 

may in turn be top-down modulated by the later ‘endogenous’ components in the 

event related response that derive from higher levels of processing (Friston 

2005a; Schroger 1997).  
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OBJECTIVES OF THE THESIS 

 

The Learning Oddball 

In this thesis, a variant of an oddball paradigm is used which allows tracking 

auditory temporal pattern learning (Jongsma et al 2004). The ‘learning-oddball’ 

paradigm is a simple two-stimulus paradigm with two alternating conditions: 1. 

The ‘Random’ condition in which a series of targets are presented with non-

repetitive pseudo-random target-to-target intervals, and 2. The ‘Regular’ 

condition, in which targets appear repeatedly at the same target-to-target interval 

with the same number of standard sounds in between. In this paradigm, 

participants are not informed beforehand about the different patterns in the 

stimulus sequence and they are instructed to respond to the target stimuli with a 

synchronous delayed response in order to minimize confounding effects from 

speeding of response times on the stimulus-locked ERP. This paradigm affords to 

study selectively how brain activity changes with varying levels of predictability, 

while controlling for the confounding effects of target probability (Duncan-

Johnson & Donchin 1977; Tueting et al 1970), sequence (Jentzsch & Sommer 

2001; Squires et al 1976) and target-to-target interval (TTI, Croft et al 2003; 

Gonsalvez & Polich 2002). Probability, sequence, and interval are not changing 

during the regular periods of the experiment where predictability is increasing due 

to repetition of stimulus patterns. At the same time, expectancy-related effects in 

this paradigm are building up from the temporal and sequential relationships 

between target stimuli, and go beyond repetition effects related to the 

representation of the standard (cf. Baldeweg 2006; Näätänen et al 2001) or 

context (Donchin 1981; Donchin & Coles 1988).  
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Learning Model 

A hypothesis about the shape of the effects can be deducted from the Rescorla-

Wagner model (RW, Rescorla & Wagner 1972) assuming that targets are 

surprising and patterns are salient contingencies. The RW is a model for the 

explanation of learning through reinforcement, and changes in reinforcement 

expectancy with increasing experience. In this sense, the RW is based on surprise, 

i.e. prediction error (PE) as the reinforcement signal. PE refers to the difference 

between the actual (Rt) and the predicted outcome (Vt-1) at trial t. Updates of 

predicted outcomes (Vt) are the sum of the learning history and the current PE, 

and the learning rate (�) determines the influence of the current trial on the future 

prediction  

Vt = Vt-1+ �·(Rt-Vt-1) 

It follows from the equation above that repetition of targets at regular intervals 

should yield a learning curve (Fig. 3, blue) that modulates activity according to an 

approximate exponential or sigmoid function whose shape is determined by the 

learning rate, and where prediction error would elicit transient responses between 

random and regular sequences (Fig. 3, orange).  

Figure 3 
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Adapting this relatively simple version of a predictive coding framework 

(Baldeweg 2006; Friston 2005a) to the auditory oddball is an attempt to address 

the similarities in the theories of Sokolov (Sokolov 1963), Sutton (Sutton et al 

1965), Donchin (Donchin 1981; Donchin & Coles 1988) and Nataanen (Näätänen 

1992). It also tries to add to Halgrens appealing proposal that ‘the brain uses a 

full employment strategy’ and ‘that activation is parallel and interdependent’ 

(Halgren & Marinkovic 1995; Halgren et al 1998) which was recently picked up 

by Kiehl (Kiehl et al 2005). The utility of such an integrative approach is 

obvious: in order to come to a conclusive interpretation of spatiotemporal 

information processing, it is necessary to acknowledge the tight coupling and 

common functions of temporally or spatially separable neuronal modules, such as 

in the sequence of responses elicited by the auditory oddball.  

 

Single Trial Analysis 

In order to study the dynamics of pattern learning, it is necessary to track 

responses on a single-trial basis and estimate individual event-related responses. 

The use of single trial evoked responses as markers of learning opens a range of 

novel applications and this type of information may prove invaluable in the 

understanding of cognitive processes (Debener et al 2006; Makeig et al 2004a; 

Spencer 2005). Moreover, such markers may yield more specific information 

about neuropsychiatric pathologies (Ford et al 1994).  

A number of techniques for extraction of single-trial event-related activity with 

promising results are available to overcome the challenges of single-trial analysis 

due to the low signal-to-noise ratio of the responses. The analysis of the 

‘learning-oddball’ experiments draws on these techniques using a combination of 
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independent component analysis (ICA) and wavelet denoising (Delorme & 

Makeig 2004; Quian Quiroga & Garcia 2003). 

 

Localizing Generators 

Apart from describing pattern learning effects at different latencies of the 

stimulus-locked scalp ERP, another objective of the study is to identify the 

locations of the underlying generators of these effects. To this end, concurrent 

EEG-fMRI is used, and the single-trial EEG data recorded inside the MR scanner 

serves as a predictor of hemodynamic activity over time. As outlined in the 

introduction, it can be assumed that pattern learning is such an elementary and 

pervasive effect that it is implemented in temporally and spatially distributed 

networks (Baudena et al 1995; Friston 2005a; Halgren et al 1995a; Halgren et al 

1995b; Halgren & Marinkovic 1995; Halgren et al 1998; Kiehl et al 2005; Llinas 

2001).  

 

In summary, the aim of the thesis was to track dynamic markers of auditory 

pattern learning in trial-to-trial changes of ERP component amplitudes and fMRI 

regional activation:  

 

Paper I (Jongsma et al 2006) presents the paradigm and a single trial EEG 

analysis with ICA and wavelet denoising. It describes pattern-learning effects in 

event-related potentials from the scalp with both pitch targets and stimulus 

omissions. 
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Paper II (Eichele et al 2005) develops a new method to predict regional activation 

in functional MRI data with single trial EEG to provide a spatiotemporal 

characterization of evoked responses associated with pattern learning. The idea is 

to find correspondences between EEG and fMRI by time-variant information in 

single trials, which permits inferences about fMRI responses with the temporal 

resolution provided by EEG/ERP. 

 

Paper III (Eichele et al 2007) addresses the mixing problem of signals from latent 

neuronal sources that are spatially and temporally distributed across the brain. A 

parallel independent component analysis framework was developed to 

disentangle sources from the fMRI and EEG, in order to facilitate the 

identification of an additional pattern-learning effect in early, automatic auditory 

processing.  
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METHODS 

 

‘In all likelihood these fields of potential are epiphenomenal, probably equivalent to 

the sounds of internal combustion engines at work, or to antique computers in 

science fiction movies, or to the roars of crowds at football games.  

In fact, most neuroscientists reject EEG and MEG evidence, in the beliefs that the 

real work of brains is done by action potentials in neural networks, and that 

recording wave activity is equivalent to observing an engine with a stethoscope or a 

computer with a D'Arsonval galvanometer.  

However, one can learn a lot about a system by listening and watching, if one knows 

what to seek and find.’ (Freeman 2000) 

 

The methods employed in this work were chosen to provide a comprehensive 

answer to the question when and where the brain adapts to predictability. While 

the implementation of single trial analysis for EEG and concurrent EEG-fMRI 

data add a momentum of technical complexity to an otherwise simple experiment, 

these methods in combination alleviate critical restrictions on the spatial and 

temporal inferences that can be drawn from the data (Debener et al 2006; Gratton 

2000; Jennings & Stine 2000). 

 

Electroencephalography 

Electroencephalography (EEG) is one of the oldest and most widespread methods 

to study brain activity non-invasively. The presence of fluctuating electric fields 

in the brain was first described by Richard Caton in the late 19th century (Caton 

1875). Caton’s work was not widely recognized, and it was not until 1929 that 

Hans Berger demonstrated scalp recordings of electrical activity in humans 

(Berger 1929). In his initial experiments, Berger placed electrodes over the front 
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and the back of the head and observed rhythmic waves at a frequency of around 

10 Hz. Since its discovery, EEG has become a routine tool to study neuronal 

activity non-invasively, and it is a valuable method for both clinicians and 

researchers. EEG has many advantages based on the fact that it is an 

instantaneous measure of brain function that can be used in several applications. 

The limitations of EEG are a limited spatial resolution as well as its inability to 

localize the source of activity with certainty.  

As demonstrated in animal studies, scalp recorded EEG originates primarily from 

synchronized activity in pyramidal cells in the gray matter of the cerebral cortex. 

Pyramidal cells are oriented perpendicular to the cortical surface, and they 

generate post-synaptic potentials (PSPs). Ongoing EEG activity originates from 

summated PSPs in the dendrites of cortical neurons, and becomes measurable on 

the scalp only when larger patches (on the order of centimeters) of cortical tissue 

are synchronously active (see e.g. Tao et al 2007). It should be noted that EEG is 

thus not a direct product of action potentials (APs), PSPs are slower, graded 

potentials which are characterized by either a hyperpolarization or a 

depolarization of the cell membrane that eventually elicits an AP in receiving 

cells. A PSP is generated when an afferent excitatory signal at the synapse 

changes the resting membrane potential, with influx of positively charged ions 

into the cell and a negative charge in the extracellular space in the vicinity of the 

synapse. Although current circuits are induced by PSPs, only the extracellular 

currents flowing from the source to the sink can be detected in EEG recordings. 

The electrodes measure nearby field potentials of the tissue relative to a reference 

electrode as a positive deflection, because the potential at the site of the active 

electrode is decreased relative to the reference electrode. The situation is reversed 
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when a current flows toward the surface electrode, which results in the 

registration of a negative deflection. The EEG reflects the activity of many 

cortical neurons, the maximal dipole moment of single neurons is too weak to 

produce a measurable signal on the scalp. The spatial distribution of EEG signals 

is distorted, because the conducting layers of tissue and bone act like resistors and 

capacitors in an electric circuit. As a consequence, larger patches of cortical tissue 

with simultaneous activity are required to generate a detectable EEG signal 

(Davidson et al 2000; Hugdahl 1995; Kandel et al 2000; Nunez & Srinivasan 

2006; Purves et al 2001).  

 

Event Related Potentials 

One commonly used tool in neuro- and psychophysiology are the evoked, or 

event related potentials (ERPs), that have characteristic waveform shapes that are 

reproducible under similar experimental conditions (Coles & Rugg 1995; Fabiani 

et al 2000; Gaillard 1988; Handy 2005; Hugdahl 1995; Luck 2005; Picton et al 

2000b). By arranging stimuli in paradigms, it is possible to analyze the responses 

of the brain to different tasks, thus allowing the study of several sensitive 

cognitive functions and states. ERPs are defined as changes in the ongoing EEG 

due to stimulation (e.g. tones, light flashes), and are typically referred to as 

averaged time and phase-locked voltage fluctuations in the EEG, resulting from 

volume conducted neuronal responses to sensory, motor or cognitive events. One 

of the major advantages of the ERP technique is that aspects of information 

processing can be instantaneously measured, with excellent temporal resolution. 

ERP components are classically divided into two types of components based on 

their latency: Components with latencies of up to 100ms after stimulus onset are 
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assumed to be primarily determined by the physical characteristics of the 

stimulus, and are therefore labeled ‘exogenous’ components. The components 

later than about 100 ms after a stimulus onset are determined by cognitive aspects 

of information processing and are hence dubbed ‘endogenous’.  

Wavelet Denoising 

Due to the low amplitude of event related changes in the EEG in the presence of 

unrelated background activity, responses to several stimuli are usually averaged 

together. Averaging yields data reduction and increases in the signal-to-noise 

ratio, however, it leads to a loss of the information about systematic variability 

between single trials. Preservation of single trial data affords a view into the 

spontaneous, adaptive dynamics of event related responses in the brain, and 

provides a rich source of information (Debener et al 2006; Quian Quiroga & 

Garcia 2003; Spencer 2005). We used a recenctly developed ‘denoising’ scheme 

for the estimation of single-trial ERPs in the ongoing EEG based on wavelet 

decomposition (Quian Quiroga & Garcia 2003). The method relies on the time-

locking and morphological characteristics of the ERP and affords the recovery 

and visualization of event-related responses on single-trial level. The Wavelet 

Transform (WT) of a signal x(t) is defined as the inner product between the signal 

and the wavelet functions Ψa,b (t) 

)(),(),( , ttxbaxW baψψ =  

where Ψa,b (t) are dilated (contracted) and shifted versions of a unique wavelet 

function Ψ (t) 

�
�

�
�
�

� −= −

a
bt

atba ψψ 2/1
, )(  
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The WT gives a time-frequency representation of a signal that has two main 

advantages: firstly, an optimal resolution both in the time and in the frequency 

domain; secondly, signals do not need to be stationary. In order to avoid 

redundancy and to increase the computational efficiency, it is usually defined at 

discrete scales a and discrete times b by choosing the dyadic set of parameters 

kba j
kj

jj −− == 2,2 , , for integers j and k. The discrete WT gives a 

decomposition of x(t) in different scales, tending to be maximum in those scales 

and times where the wavelet best resembles x(t). Contracted versions of Ψa,b(t) 

will match high frequency components of x(t) and on the other hand, dilated 

versions will match the low frequency ones. 

The information given by the WT can be organized according to a hierarchical 

scheme called multiresolution analysis (Mallat 1989), which gives a 

decomposition of the signal in different levels of ‘details’, i.e. components in 

consecutive frequency bands, and a final approximation or ‘residual’ that is the 

difference between the original signal and the sum of all the details. Components 

corresponding to the different frequency bands can be reconstructed by applying 

an inverse transform. Quadratic bi-orthogonal B-Splines (Cohen et al 1992) are 

chosen as the basic wavelet functions due to their similarity with the ERP, thus 

providing a good localization of the ERP in the wavelet domain, and due to their 

optimal time-frequency resolution. 

Briefly, the method consists of the following steps: firstly, the average ERP is 

decomposed in different scales and times by using the wavelet multiresolution 

decomposition. Then, the wavelet coefficients that constitute to the ERP are 

identified and the remaining ones are zeroed, such that the chosen coefficients 

cover a time range in which the single-trial ERPs are expected to occur. At this 
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step, one heuristically adjusts the selected coefficients by comparing the 

outcomes of the denoised single-trial ERP with the raw data. The criticial point is 

to ensure that the denoising implementation does not alter components with 

systematic latency variability, and that the method does not introduce spurious 

changes in the peaks of interest e.g. when the set of coefficients is too narrow and 

not sufficient for a proper reconstruction of the ERP. Once the coefficients are 

chosen, the method is parameter free and does not need to be adjusted further. 

Lastly, the inverse transform defined by the previous steps is applied to the single 

trials, thus recovering the single-trial variability. 

 

Functional Magnetic Resonance Imaging 

BOLD-fMRI 

The most frequently used functional magnetic resonance imaging technique is 

based on changes in magnetic susceptibility of the blood during brain activation 

(Bandettini et al 2000; Frahm et al 1992; Huettel et al 2004; Kwong et al 1992; 

Ogawa et al 1992). Haemoglobin carries the oxygen necessary for aerobic 

metabolism in the brain. The blood-oxygenation-level-dependent (BOLD) 

contrast picks up the different magnetic properties of oxygenated and 

deoxygenated blood. Deoxygenated haemoglobin (deoxy-Hb) is a paramagnetic 

molecule, oxygenated haemoglobin (oxy-Hb) is diamagnetic. The presence of 

deoxy-Hb in a blood vessel causes dephasing of the local magnetization vectors, 

leading to a reduction in the transverse relaxation time T2*. T2* is a net property 

of the material being scanned, and specifies the signal decay which produces the 

contrast in a MRI scan that is set up to be sensitive to T2*. When neurons are 

activated, there is a localized change in blood flow and oxygenation that causes a 
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change in the magnetic resonance (MR) decay parameter T2*, thus, changes in 

oxygenation of the blood can be observed as signal changes in T2*-weighted 

images.  

Neurovascular coupling 

Electrical activity in neurons cannot be directly observed by any variant of the 

MRI procedure, BOLD-fMRI provides an indirect measure of brain activity based 

on the temporal and spatial coupling of neuronal activity, metabolic activity and 

blood flow parameters in the brain (Villringer & Dirnagl 1995). The mechanism 

that defines the relationship of deoxy-Hb and oxy-Hb among populations of 

neurons in a certain area of the brain during their activation is called 

neurovascular coupling. The ratio between deoxy-Hb and oxy-Hb depends on 

cerebral oxygen extraction rate, blood flow and blood volume. Neurovascular 

coupling can coarsely be characterized by two observations (Heeger & Ress 

2002): firstly, the regional blood flow is coupled to the metabolic demand; 

secondly, the metabolic demand results mainly from synaptic activity, and 

therefore blood flow and synaptic activity are coupled. The transfer from 

neuronal to haemodynamic signals is complex and not yet fully understood 

(Buxton et al 2004; Lauritzen & Gold 2003; Logothetis 2003; Logothetis & 

Pfeuffer 2004). However, one robust effect of neuronal activation is 

haemodynamic overcompensation, i.e. a local increase of the concentration of 

oxygenated haemoglobine. The blood flow and oxygenation changes are 

temporally delayed relative to the neuronal activity, a factor known as 

hemodynamic lag. Since the amplitude and lag of the hemodynamic response are 

variable (Aguirre et al 1998; Fox et al 2006; McGonigle et al 2000), and because 

the exact transfer mechanism between the electrical and hemodynamic processes 
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is not known, it is usually not possible to recover the neurophysiological process 

from the hemodynamic process. Nevertheless, the hemodynamic signal remains 

an informative surrogate for neuronal activity.  

Signal and Noise 

Several types of signals are encoded within the hemodynamic signal measured by 

fMRI. Signals of interest include event/task-related, function-related, and 

transiently task-related signals. Some of these were identified by McKeown in the 

first application of independent component analysis to fMRI data (McKeown et al 

2003; McKeown & Sejnowski 1998). The task-related signal is the easiest to 

model: a reference waveform based on the stimulation paradigm is convolved 

with a hemodynamic response and is correlated with the data.  

However, the responses of the brain to a given task may not be translated in a 

fixed, linear fashion. For example, the signal may fade out before the stimulation 

is turned off or change over time as repeated stimuli are applied, leading to a 

transiently task-related signal. It is also conceivable that there are several 

different types of transiently task-related signals originate from different regions 

of the brain.  

Function-related signals reflect temporal coherence between voxels within a 

particular domain, for example, the motor cortex on one side of the brain will 

correlate highly with voxels in the motor cortex on the opposite side of the brain 

(Biswal et al 1995). 

Signals of no interest include physiological artefacts, motion-related, and 

scanner-related signals. Physiological signals such as breathing and heart rate 

tend to be strongest in the brain ventricles and large blood vessels and can 

produce artifactual activation in adjacent grey matter. Motion-related signals 
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produce offsets that tend to affect large regions of the volume, particularly at the 

cortical mantle and the base of the brain. Finally, there are scanner-related signals 

that can be varying in time such as scanner drift and system noise, or varying in 

space such as susceptibility and radio frequency artifacts. Other examples include 

slice dropout, and nyquist ghosting. Moreover, there are several types of (white) 

noise due to the magnetic resonance acquisition which can be conceived as object 

variability due to quantum thermodynamics and thermal noise. 

Motion Correction 

Head motion cannot be entirely avoided by immobilizing participants in the MR 

scanner, therefore realignment is performed as pre-processing step. The first 

image of the fMRI image series is used as a reference to which all subsequent 

scans are realigned using a least squares approach and a rigid body spatial 

transformation (Worsley & Friston 1995). The realignment parameters are 

subsequently used for reorienting and normalizing the image slices. 

Normalization 

Group studies require coregistration a number of individually shaped brains from 

several participants into a common space. Individual brains have the same gross 

anatomy, although differences remain due to shape, size and gyrification. A 

normalization procedure spatially transforms the MR images of different subjects 

into a reference space to allow for group comparisons of functional activations. 

SPM2 was used for the analysis of MR data in this study. The software employs a 

standard brain from the Montreal Neurological Institute (MNI) as template for 

normalization. The MNI defined a standard brain by using a large series of MRI 

scans on normal controls (Brett et al 2002; Collins 1994). The normalization 

procedure uses a two-step least squares approach to minimize variation from the 
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template to the actual subjects head. Firstly, affine transformations, and in a 

second step non-linear deformations are applied, whereby the non-linear 

deformations are defined by a linear combination of 3D discrete cosine basis 

functions (Ashburner & Friston 1999).  

Smoothing  

The rationale for spatial smoothing is to increase the signal-to-noise ratio of fMRI 

activations by the matched filter theorem (Tanaka & Iinuma 1975). Therefore, if 

an anticipated a signal has a Gaussian shape, and is of full width on half of the 

maximum (FWHM) of a certain size, then this signal will best be detected 

smoothing images with a Gaussian filter with that FWHM size. This is of 

particular relevance when comparing activations across subjects. The variability 

between subjects causes the signal to be rather widely distributed over the 

average cortical surface. Further, spatial smoothing is applied to ensure that the 

image data have the characteristics of a Random Gaussian Field, thereby 

safeguarding the validity of the assumptions underlying the statistical 

computations in SPM2. 

fMRI Time-Series Analysis 

Typically, fMRI studies rely on the detection of small intensity changes over time 

with relatively low image contrast-to-noise ratio (CNR) of the BOLD effect. A 

standard approach is to correlate the time-series data with a hypothetical reference 

signal (typically the stimulus sequence) that involves general linear modeling 

approaches and uses an estimate of the hemodynamic response (Bandettini et al 

1993; Friston et al 1995; Worsley & Friston 1995). In the framework of the 

General Linear Model (GLM) it is assumed that the neuronal events s
�

 are 
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transformed linearly to a hemodynamic response by convolution with a kernel 

known as the hemodynamic response function (hrf, Boynton et al 1996):  

shrfx
�� ⊗=  

The events in s
�

can be the timing of external stimulation, or, as in the context of 

this work, the modulation of an intrinsic brain signal such as the amplitude 

modulation of ERP components. The shape of the canonical transfer function is 

approximated by the summation of two gamma functions with a peak latency of 

about six seconds (Boynton et al 1996). 

It is further assumed that the fMRI data y
�

 in any voxel consists of the 

hemodynamic response x
�

 and a normally distributed residual noise process ε� : 

εβ ��� += xy  with  nxy R∈ε���
,,  

where n is the number of fMRI scans. Assuming that the noise process is 

white [ ]),0( 2σN , the contribution β  of a stimulus response to the fMRI BOLD 

signal y
�

 can be calculated via least squares estimates. If the errors are white, then 

the least squares estimates are also the maximum likelihood estimates, and are 

themselves normally distributed (Scheffe 1959).  

The resulting β -maps from each participant are entered into a second level t-test 

for population inferences. In order to decide whether the modeled event s
�

 leads 

to a significant activation somewhere in the brain, every volume element (voxel) 

is tested under the null hypothesis of zero magnitude: 

�
=

=
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This voxel-by-voxel test results in a spatial distribution of t-values. Since t-tests 

are performed for every voxel in the volume (typically about 3·104) one has to 
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deal with a severe multiple testing problem: The simplest, but overly conservative 

way to correct for multiple comparisons is to perform a Bonferroni correction, i.e. 

adjustment of the significance level by dividing it by the number of performed 

tests (Perneger 1998). Alternatively, spatial correlation between voxels can be 

used to estimate the number of independent voxel clusters, so-called resolution 

elements (resels). By calculating the Euler characteristics for a given resolution 

element in the framework of Gaussian random field theory, one can correct 

thresholds for significance tests in fMRI, referred to as family-wise-error 

correction (FWE) which is based on Gaussian random field theory, and does not 

require that all observations in a data set are independent of each other (Brett 

1999; Friston et al 1994; Worsley & Friston 1995; Worsley et al 1996). Another 

way of controlling false positive tests is based on the shape of the distribution of 

p-values of the tested volume (Benjamini & Hochberg 1995).  

 

Independent Component Analysis 

Independent component analysis (ICA) is a method for extracting hidden factors 

from observed data. Unlike principal component analysis (PCA), which 

decomposes the data into uncorrelated factors, ICA algorithms work iteratively in 

higher-order statistics to achieve statistical independence. A typical ICA 

generative model assumes that the source signals are not observable, statistically 

independent, and non-Gaussian, and mixed together by an unknown linear 

process. Consider an observed M-dimensional random data vector denoted by x = 

(x1, x2 . . . xM)T, which is generated by the ICA model:  

x = As 
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where s = (s1, s2, . . . sN)T is an N-dimensional vector whose elements are assumed 

independent sources and AM×N is an unknown mixing matrix. Typically M >= N, 

so A is usually of full rank. The goal of ICA is to estimate an unmixing matrix 

WN×M such that y is a good approximation to the true sources s.  

y = Wx 

ICA is hence an approach to solve blind source separation (BSS) problems. For 

example, BSS techniques find solutions to the cocktail party problem in which 

several people are speaking simultaneously in the same room. The task is to 

separate the voices of the different speakers by using recordings of several 

microphones in the room (Bell & Sejnowski 1995; Stone 2002). Popular 

approaches for performing ICA include maximization of information transfer 

(Infomax), which is equivalent to maximum likelihood estimation, maximization 

of non-Gaussianity, mutual information minimization, and tensorial methods. The 

most commonly used ICA algorithms are Infomax (Bell & Sejnowski 1995; Lee 

et al 1999), FastICA (Hyvarinen & Oja 1997; 2000), and joint approximate 

diagonalization of eigenmatrices  (JADE, Cardoso & Souloumiac 1993). The 

original Infomax algorithm is suited to estimation of supergaussian sources (Bell 

& Sejnowski 1995), and has been extended to simultaneously separate sub- and 

supergaussian sources (Lee et al 1999). Also, a flexible approach using a 

generalized gaussian density model method is available (Choi et al 2000). These 

algorithms typically work well for symmetric distributions but they are less 

accurate for skewed distributions. Recent extensions of ICA to overcome this 

limitation include kernel ICA (Bach & Jordan 2002) and adaptive nonlinear 

functions to better fit the underlying sources (Hong et al 2005; Vlassis & 

Motomura 2001).  
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ICA has general applicability to normally distributed two-dimensional data and is 

being applied to a variety of problems in e.g. biomedicine, communications, and 

astrophysics. Regarding psychophysiological and neuroimaging applications, ICA 

has been used for decomposition of averaged ERPs (Makeig et al 1997), single 

trial EEG (Jung et al 2001; Makeig et al 2004b; Onton et al 2006), structural MRI 

(Arfanakis et al 2002) and fMRI data (Biswal & Ulmer 1999; Calhoun & Adali 

2006; McKeown et al 1998; McKeown & Sejnowski 1998), and EEG-fMRI 

integration (Calhoun et al 2006b; Debener et al 2005b; Eichele et al 2007; Feige 

et al 2005; Moosmann et al 2007). 

 

EEG-fMRI 

Simultaneous EEG-fMRI recordings are technically challenging since the 

recording devices for both measures strongly interfere with each other (Ives et al 

1993). Several issues need attention when recording EEG in the MR-scanner: 

Safety, MR-related artifacts in the EEG, as well as signal distortions of the MR 

signal due to the EEG setup. 

Safety 

MR imaging may induce currents in EEG electrodes and wires by movement in 

the static magnetic field, rapid gradient-switching that is needed for spatial coding 

of the MR image, or radio frequency (RF) pulses emitted by the MR coils. These 

currents can heat up the EEG equipment and bear the potential of harming the 

participant. In order to minimize these hazards, conductive loops of electrode 

cables should minimized and current-limiting resistors should be introduced 

(Krakow et al 2000). RF-induced electromotive forces were identified as the most 
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important hazard (Lemieux et al 1997), but the recent development of MR-

compatible amplifier systems largely eliminate these hazards. 

Artifacts 

An EEG measured in the static magnetic field of a MR scanner shows large 

cardio-ballistic artefacts (Ives et al 1993). It is believed that the cardio-ballistic 

artefact arises mainly from pulsation induced movements of the electrodes in the 

B0-field (Anami et al 2003), and to a lesser degree from electromotive force of 

blood ions (Bonmassar et al 2002). The pulsatile movements of the subjects’ skin 

are picked up by the electrodes and wires and lead to an inductive voltage that is 

recorded by the EEG. The cardio-ballistic artefact can be minimized by 

immobilizing the patients head, the electrodes and the wiring between electrode 

cap and EEG amplifier (Anami et al 2002; Benar et al 2002). The residual cardio-

ballistic artefact can be corrected by adaptive artifact filtering methods based on 

template matching (Allen et al 1998; Bonmassar et al 2002) or multivariate 

decomposition (Debener et al 2007; Niazy et al 2005). 

The strongest influence of the MR-environment on the EEG system results from 

the switching MR gradients and high frequency (HF) pulses from echo-planar 

sequences (EPI) that are used to measure the BOLD contrast. Both HF pulses as 

well as the MR-gradients are registered in the EEG by inducing a voltage in the 

electrode cables. EEG amplifiers with a broad dynamic range can record both low 

voltage physiological EEG and high voltage MR gradients. Typical filter 

algorithms are based on estimating an artifact template in the frequency or time 

domain, which is subtracted from the contaminated EEG signal (Allen et al 

2000). Anami et al. (Anami et al 2003) modified the imaging sequence to reduce 
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MR-gradient specific artifacts in the EEG system by synchronizing EEG and 

fMRI systems on a sub-millisecond scale. 

The quality of the MR images can also be affected by the EEG system. Echo 

planar imaging (EPI) pulse sequences are highly sensitive to changes of 

susceptibility that can be induced by the EEG electrodes. However, at 1.5T, local 

signal dropouts with appropriate electrodes are reported to be minor and limited 

to subcutaneous fat (Krakow et al 2000; Lazeyras et al 2001). At 3T, the signal to 

noise ratio of MR images is significantly reduced with 128 electrodes, whereas 

the use of 64 electrodes provides a good ratio between spatial EEG resolution and 

MR signal drop-out (Scarff et al 2004). Further sources of imaging artifacts can 

be the electromagnetic noise due to the EEG digitizing circuit, which can be 

avoided with the appropriate shielding of the EEG amplifier (Krakow et al 2000).  

Integration 

The integration of multiple neuroimaging modalities aims at developing a better 

understanding of where and when cognitive processes take place in the brain. 

Both EEG and fMRI provide complementary advantages with regard to the 

temporal and spatial resolution for mapping of brain activity. Developing 

approaches for analysis which draw upon the strengths of each method can afford 

a spatiotemporally and functionally comprehensive characterization of regional 

brain responses (Debener et al 2006; Hopfinger et al 2005; Horwitz & Poeppel 

2002; Makeig 2002). The rationale to implement concurrent recordings instead of 

separate sessions or studies is simple: when used separately, the major 

neuroimaging methods EEG/ERP and fMRI are limited to spatially or temporally 

restricted inferences regarding brain activity. This means that the interpretation of 

data from either method alone will only yield partial and not necessarily 
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comprehensive conclusions about brain function. FMRI measures local changes 

in brain hemodynamics associated with cognitive processing with high spatial 

precision, however, the BOLD contrast is an indirect and delayed metabolic 

correlate of these processes after a complex set of reactions that constitute the 

neurovascular coupling (Lauritzen & Gold 2003; Logothetis 2003; Villringer & 

Dirnagl 1995). In contradistinction to BOLD-fMRI, EEG and ERP record the 

electrical potentials induced by synchronized synaptic activity directly, and 

typically allow an effective temporal resolution of cognitive processes on the 

order of tens of milliseconds. However, the scalp EEG picks up a volume 

conducted and blurred mixture of the underlying activity and spatial inferences 

are critically limited by the inverse problem. 

One approach to analyze concurrent EEG-fMRI is to predict the fMRI timecourse 

as a parametric modulation of a select EEG/ERP feature. This feature can be 

convolved with a hemodynamic response function under the assumption of 

approximate linear coupling relationships between local field potentials, the scalp 

EEG and the hemodynamic response (Arthurs & Boniface 2002; Heeger & Ress 

2002; Lauritzen & Gold 2003; Logothetis 2003; Logothetis et al 2001; Mukamel 

et al 2005). Integration by prediction was utilized to localize sources of epileptic 

activity based on the timing of EEG-recorded spikes (Benar et al 2002; Gotman et 

al 2004; Krakow et al 1999; Salek-Haddadi et al 2003; Warach et al 1996). 

Another application was the study of regional activations predicted by amplitude 

modulation in the power spectrum of EEG rhythms, so far with the largest interest 

in the 8-12Hz (alpha) band (Feige et al 2005; Goldman et al 2002; Goncalves et 

al 2006; Laufs et al 2003a; Laufs et al 2003b; Moosmann et al 2003). The general 

pattern of results in these studies agrees well with the brain structures that are 
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assumed to be directly or indirectly involved with the generation or modulation of 

EEG alpha activity on the scalp. The main finding in these studies is that BOLD 

activity in the occipital cortex is negatively correlated with EEG alpha power, 

consistent with the idea that synchronized activity in the alpha band represents an 

idling rhythm with relative cortical deactivation. 

The feasibility of EEG-fMRI integration through correlation between timecourses 

of both modalities in resting state data suggested that the trial-to-trial amplitude 

(and latency) variability of event related brain activity induced by external 

stimulation also could be utilized for integration. The extension of this method to 

single trial event-related time-domain data affords quantification of induced or 

spontaneous modulation of regional responses in the fMRI with the effective 

temporal resolution of the ERP (Debener et al 2006; Debener et al 2005b; Eichele 

et al 2005). Studies that implement single-trial EEG-fMRI methodology have so 

far described regional BOLD correlates for a number of ERP components: 

Contingent Negative Variation (CNV, Hinterberger et al 2005; Nagai et al 2004), 

P2 and N2 (Eichele et al 2005), P3 (Benar et al 2007; Eichele et al 2005) and 

Error Related Negativity (ERN, Debener et al 2005b).  
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SUMMARY OF PAPERS 

 

Paper I (Jongsma et al 2006) presents the paradigm and a single trial EEG 

analysis with ICA and wavelet denoising. The results describe pattern-learning 

effects in scalp event-related potentials with both infrequent pitch targets, as well 

as stimulus omissions. The main objective in this paper was to track the dynamics 

of pattern-learning using single-trial ERPs. A new variant of an oddball paradigm 

was tested in 24 participants: in this pattern-learning paradigm eight randomly 

occurring targets were followed by eight regularly appearing targets interspersed 

among standard tones and single-trial responses to all targets were extracted. 

Following random targets, ERPs showed a marked P3-N2 component that 

significantly decreased in amplitude to regular targets, where also a contingent 

negative variation (CNV) appeared. The ERP amplitude variability across 

random-regular sequences was best accounted for by sigmoid learning-curves. 

Single-trial analyses showed that learning occurred more rapidly with time-on-

trial and suggested that the CNV developed prior to the decay of the N2-P3 

component.  

 

Paper II (Eichele et al 2005) develops a novel method to predict functional MRI 

with single trial EEG to provide a spatiotemporal characterization of evoked 

responses. The idea was to find matches between EEG and fMRI by time-variant 

information in single trials, which permits inferences about regional responses 

with the temporal resolution provided by EEG/ERP. The method was used to 

study the spatial correlates of the predictability effects in the pattern learning 

oddball. In addition to electrophysiologic and hemodynamic evoked responses to 
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auditory targets per se, single-trial modulations were expressed during the 

latencies of the P2 (170 ms), N2 (200 ms), and P3 (320 ms) components and 

predicted spatially separate regional responses, involving areas in the precuneus, 

perihippocampal, medial and lateral frontal, temporal, and parietal regions.  

 

Paper III (Eichele et al 2007) addresses the mixing problem for signals from 

latent neural sources that are spatially and temporally distributed across the brain. 

Concurrent event-related EEG-fMRI recordings pick up volume-conducted and 

hemodynamically convoluted signals from latent neural sources that are spatially 

and temporally mixed across the brain, i.e. the observed data in both modalities 

represent multiple, simultaneously active, regionally overlapping neuronal mass 

responses. This mixing process decreases the sensitivity of voxel-by-voxel 

prediction of hemodynamic activation by the EEG when multiple sources 

contribute to the predictor and response variables. To this end, a novel parallel 

independent component analysis framework was developed to unmix sources 

from the fMRI and EEG, in order to facilitate the search for additional pattern-

learning effects in early, automatic auditory processing. We used parallel ICA to 

recover maps from the fMRI and timecourses from the EEG, and matched these 

components across the modalities by correlating their trial-to-trial modulation. 

The method extracted a previously undetected EEG-fMRI component from the 

concurrent pattern-learning data, colocalizing with the N1-ERP and fronto-

temporal fMRI activation. 
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DISCUSSION 

 

‘Although this experiment did not deal specifically with the related question of 

whether enhanced attentiveness increases the amplitude of the evoked potential, 

results obtained by Davis in an auditory discrimination situation indicate that this 

may be the case.’ (Haider et al 1964) 

 

‘We encounter many differences in the slow evoked responses, both across subjects 

and across trials. So far, the task described above has been our most consistent way 

of enhancing the response. We believe that this effect of making a rather difficult 

sensory discrimination is a counterpart of the relation of the amplitude of the evoked 

response to vigilance, recently demonstrated by Haider.’ (Davis 1964) 

 

The dynamic and spatiotemporally extensive activations observed in this thesis 

constitute essential loci of orienting, memory formation and allocation of 

cognitive resources (Donchin & Coles 1988; Halgren & Marinkovic 1995; 

Huettel et al 2002; Kiehl et al 2005; Loveless 1983). Being able to perceive 

regular patterns in the environment and maintaining a mental representation of 

these means to extract contingency rules with highly salient predictive value 

(Huettel et al 2002; Llinas 2001). The findings in this work provide a novel, but 

foreseeable perspective on event related responses and the basic notion about 

generation of predictions/expectancies permeates the models that account for 

aspects of event related processes in the brain (Donchin & Coles 1988; Friston 

2005a; Näätänen 1992; Sokolov 1963). The current results provide evidence that 

basic models are also operational for higher levels of complexity in the 

relationship between stimuli. The paradigm used in this work modulates the 

predictability of upcoming targets and induce systematic trial-to-trial variations in 
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ERP and fMRI responses. The signal processing and statistical methods that were 

employed for analysis of the data provide a clearer view onto the spatial and 

temporal dimensions of single trial modulations associated with pattern learning. 

The difference between previous studies and the design used here is that 

inferences are drawn from single trial modulations across successive targets 

rather than the averaged ERP waveforms or fMRI contrast images, which affords 

inferences about the ongoing dynamics of cognitive processing (Debener et al 

2006; Makeig et al 2004a; Onton et al 2006; Quian Quiroga & Garcia 2003; 

Spencer 2005). 

 

Expectancy Modulation 

The common observation in the results of papers I and II (Eichele et al 2005; 

Jongsma et al 2006) were sigmoid-shaped amplitude modulations with turning 

points between the 2nd-3rd repetition of the target-to-target interval. These 

learning curves in response to patterns in the sequence were spanning the random 

and regular targets and occurred in the latency-ranges for various components in 

the auditory ERP waveform, namely the N2, P3 and CNV to pitch targets and 

omissions in paper I (Jongsma et al 2006); P2, N2, and P3 to pitch targets in 

paper II (Eichele et al 2005). Learning curves remained at a stable upper plateau 

during random target presentations, before decreasing to a lower plateau after 

three to four regularly presented targets. Detecting patterns in discrete event 

sequences requires spanning of the temporal interval between the events. The 

neural systems involved must create a representation of the event that can be 

retained for a certain interval of time (Hughes et al 2001; Näätänen 1992; Winkler 

et al 2001). In this case, at least two consecutive targets with the same interval or 
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number of preceding background tones are necessary in order to perceive the 

pattern, which means that the window of temporal integration for detection of the 

regularity ranged between 12-16 seconds in the current experiments. 

A different modulation was seen in the spatiotemporal independent component 

reported in paper III (Eichele et al 2007) that did show a smooth gamma-shaped 

response with the peak at the 1st random target after a sequence of regular ones, 

suggesting a selective response to increases in prediction error (surprise). 

 

Long-Term Predictions 

In paper I (Jongsma et al 2006), an additional higher order dynamic of learning 

was observed, complementing the learning curves at the transition between 

random and regular targets. Within the first presentation cycle the N2-P3 complex 

decreased between the 5th and 6th regularly presented target, however, with each 

repetition of the presentation cycle the N2b-P3 effect occurred earlier. This meant 

that learning curves during later phases of the experiment had unexpectedly early 

turning points occurring before the target regularity could be perceived. This was 

not reported in detail in paper II (Eichele et al 2005) and paper III (Eichele et al 

2007), however, the group averaged amplitude modulations in both reports show 

that the effects start to develop one trial earlier than what one would expect from 

a ‘local’ response to changes in predictability. This means that there is an 

indication of an additional ‘global’ predictability effect occurring across 

repetitions of the target sequences, however, with considerable inter-subject 

variability, and thus not verifiable statistically. Nevertheless, this global 

predictability effect provides some support for the idea that transitions between 

random and regular contexts were predicted by the participants. Unfortunately, 
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formal learning models such as Rescorla-Wagner do not include these 

anticipatory effects, i.e. represent an anticipated change in prediction error. 

Usually, these models employ a single learning curve and would have to be 

extended, in our case to represent local (immediate) and emergent global (long-

term) learning curves and prediction error (cf. Gläscher & Büchel 2005) 

simultaneously. 

 

Regional Activation 

The observation that a simple cognitive task such as target detection in an 

auditory oddball experiment induces spatially and temporally widespread 

neuronal responses (Baudena et al 1995; Calhoun et al 2006b; Eichele et al 2005; 

Halgren et al 1995a; Halgren et al 1995b; Kiehl et al 2005) relates to distributed 

network responses more than to localized sources (Fox et al 2005; Halgren & 

Marinkovic 1995; Nunez 2000). Activation associated with target processing, but 

insensitive to pattern learning was seen in areas commonly associated with 

auditory or visual target detection (Bledowski et al 2004; Kiehl et al 2005; Linden 

et al 1999). In addition, a total of four temporally and spatially separated 

activation stages were identified in papers II and III, where amplitude 

modulations of single trial ERP sequences selectively predicted fMRI activation 

patterns. The correlation between the modalities was interpreted as a reflection of 

the common neuronal function probed by the stimulation paradigm. Note, 

however, that in addition to the induced modulation it is plausible that unspecific, 

task-unrelated physiological fluctuations are also captured, and may influence the 

covariation between EEG and fMRI components. Such spontaneous fluctuations, 

however, are specific with respect to their spatial origin and temporal occurrence. 
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Bypassing the Inverse Problem 

Another aspect of this work is that papers II and III provide methods that bypass 

the electromagnetic inverse problem, in that spatial inferences are made from the 

trial-to-trial modulations, and not by means of inverse modelling. In the methods 

presented here, brain sources are not necessarily conceived as regional maxima in 

fMRI activation (derived from standard GLM analysis), topographies or 

equivalent dipoles, but rather concurrent spatially fixed electromagnetic activity 

that is spatially and temporally independent of activity arising in other sources.  

Thus, a source is conceived more as the common electrophysiologic and 

hemodynamic correlate of the information processing expressed in the across-trial 

modulation than an actual location of the fMRI activation and the spatial 

projection and match with a dipolar/distributed model. This means that networks 

representing such concurrent activity are not per se defined as spatially or 

temporally fixed distributions in the brain. In addition, the analysis schemes make 

no assumptions about, or distinctions between open-field superficial electrical 

sources that would actually propagate to the scalp and other sources 

corresponding to deeper, closed-field sources that are coupled with the former, 

but which likely are not directly detected on the scalp. While there is an implicit 

assumption that some parts of an fMRI map would have a predisposition to host 

dipolar sources as soon as we find a correspondence in the scalp EEG/ERP, it 

remains unspecified where in the map they are located. 
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Component Effects 

CNV 

In paper I (Jongsma et al 2006), a frontally distributed contingent negative 

variation (CNV) was observed in the pre-stimulus period of regularly presented 

targets, but not in ERPs to random targets. This component was not reported in 

papers II and III (Eichele et al 2007; Eichele et al 2005), due to optimization of 

ICA and wavelet denoising preprocessing steps for the faster (higher frequency) 

post-stimulus components. CNV is commonly elicited in paradigms in which a 

‘warning’ stimulus precedes and predicts a subsequent ‘imperative’ target 

stimulus (Brunia 1999; Walter et al 1964). In this experiment, it is conceivable 

that regularly presented stimuli started to function as warning stimuli, although 

conventionally the CNV develops before the motor response, it also develops 

before an expected stimulus that does not require a motor response (Hohnsbein et 

al 1998). Here, CNV is assumed to reflect the preparation and facilitation of 

relevant brain areas for the upcoming trial. It is likely that a representation of the 

regular target-to-target interval affords a temporal anticipation (Nobre 2001; 

Nobre & O'Reilly 2004). With respect to higher order learning dynamics, we 

observed that CNV started to develop between the third to fourth regular target 

within the first cycle, which was prior to the decrease of N2b and P3 (from fifth 

to sixth regular target). With each repetition of the presentation cycle the effects 

occurred earlier. It is possible that the CNV early in the regular sequence follows 

from a prediction that some regularity is present. The continuing N2b and P3 

would reflect evaluation of the situation to confirm the hypothesis, while later, 

when the prediction has been confirmed, the stimulus evaluation decreases, which 
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would be in accordance with generic models of ERP generation (Friston 2003; 

2005a; Kotchoubey 2006).  

 

N1-P2 

In paper III (Eichele et al 2007) the development of a parallel independent 

component analysis scheme for the EEG and fMRI data afforded the extraction of 

a central N1 at 100ms which was followed by smaller P2, N2 and P3 (270ms) 

deflections. The difference between standard and target yielded a biphasic pattern 

with a sustained negativity from 100-200ms, followed by the P3, which 

altogether suggested that this component reflected N1-enhancement and a 

subsequent N2b-P3a (Näätänen 1992; Näätänen & Picton 1987) as one coherent 

process. Given the experimental parameters, the 'N1-enhancement' may have 

contained contributions from genuine sources of mismatch negativity (MMN), 

attentive processing negativity (PN/Nd) and so-called ‘fresh afferents’ of the N1 

alike (Näätänen 1992; Näätänen & Picton 1987). The N2b-P3a portion of the 

waveform following the N1/MMN is seen with attention-switching at large or 

task-relevant stimulus contrasts (Näätänen 1992; Schroger 1997). Single trial 

EEG amplitudes selectively covaried with an fMRI component with local maxima 

in the superior temporal gyri (R>L), the temporal poles, the anterior cingulate 

gyrus, and inverse correlations in the brainstem. This partition of the map 

encompasses the assumed sources of the scalp N1/MMN (Näätänen & Picton 

1987; Picton et al 2000a; Picton et al 1999; Woods 1995), and the brain areas that 

previous imaging experiments have described for automatic auditory deviance 

detection, stimulus discrimination, sensory memory, as well as novelty (surprise) 

related functions (Downar et al 2000; Liebenthal et al 2003; Molholm et al 2005; 
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Muller et al 2002; Opitz et al 1999; Rinne et al 2005; Sabri et al 2006). The slow 

linear decrement on the trial-to-trial amplitudes is in line with reports describing 

long term habituation for N1, MMN as well as P3a across the observation time 

(Debener et al 2005a; Friedman et al 2001; Loveless 1983; McGee et al 2001; 

Sambeth et al 2004; Woods & Elmasian 1986), and may reflect a slow adaptive 

process related to repetitions of stimulus sequences (Jongsma et al 2006; 

Ulanovsky et al 2004), or an unspecific correlate of a decline in arousal and 

vigilance. The local amplitude modulation saw an increment at the transition from 

regular to random intervals, the corresponding transition from random to regular 

did, however, not elicit an equal or inverse response. Hence, instead of cyclical or 

sigmoid learning curves that characterized the behaviour of the other components 

(Eichele et al 2005; Jongsma et al 2006), a gamma-shaped function provided the 

best fit. An explanation for this result can be deducted from a selective, valued 

learning model, i.e. the process responds only to positive-signed changes in 

prediction error, such that the weight change elicited by the comparison between 

actual input and the learning history would only reflect increments of surprise 

with the appearance of a target at an unpredicted interval, but not a constant error 

within one context or decrements at the onset of the regular pattern. Further, the 

time-span for which the process accumulates information into the learning history 

may be limited to 10 seconds or less (Winkler et al 2001), such that it would be 

plausible that the component does retain enough interval repetitions to recognize 

the emergence of a pattern. For both accounts it is plausible to assume that the 

modulation is not self-sustaining but that it receives backward input from higher 

levels of cortical processing represented in later components. These may exert an 

inhibitory influence when intervals are predictable, while the response to the 
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more surprising transition from predictable to unpredictable intervals represents a 

salient bottom-up signal (Friston 2005a; Schroger 1997).  

Sustained N1 subcomponents are also existing during the latency of the P2 

(Näätänen & Picton 1987), and the earliest spatiotemporal stage seen in paper II 

(Eichele et al 2005) reached maximum intensity during P2 at about 170 ms post-

stimulus. P2 is modulated by processing negativities that reflect matching 

processes between the sensory input and a neuronal representation of relevant 

stimuli for further processing, and are markers of selective attention (Näätänen 

1992; Näätänen & Picton 1987). The main sources of these subcomponents are 

found in the temporal and frontal lobes (Näätänen 1992) as seen in the N1-related 

independent component above. However, the predicted fMRI activation was 

located in the precuneus, supramarginal gyri, posterior cingulate gyri, superior 

and inferior parietal lobule. The areas that covaried with the P2 effect on the scalp 

include many of the regions commonly associated with the ‘default mode’ of 

brain activation (Greicius et al 2003; Raichle et al 2001). It is conceivable that 

these brain regions either represent a previously unrecognized, likely modality-

independent source of the N1/P2, or, alternatively have modulatory effects on the 

N1 subcomponents (or later components, respectively). The interpretation that 

this component mediates (in part) allocation of resources when target occurrence 

is predictable would also be consistent with the functional role of the ‘default 

mode’ (Greicius et al 2003; Laufs et al 2003b; Raichle 2006; Raichle et al 2001; 

Sonuga-Barke & Castellanos 2007). The locations also fit well with the onset 

latency of a widespread waveform that has been reported from intracranial 

recordings at about 170ms (Halgren et al 1995a). FMRI/PET studies of temporal 
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attention, and sequencing are also overlapping with these regions (Cabeza & 

Nyberg 2000; Janata & Grafton 2003). 

 

N2b-P3 

We observed that ERPs in response to randomly presented target stimuli 

contained marked N2b and P3 components. N2b is thought to reflect detection of 

a mismatch between stimulus features and an actively generated memory 

template (Gehring et al 1992; Näätänen 1992; Näätänen et al 1982), while P3 has 

been suggested to index a mechanism that is elicited when a memory 

representation of the recent stimulus context is updated upon detection of 

deviance from it (Donchin 1981; Donchin & Coles 1988). N2b and P3 were 

smaller in response to regularly presented targets as compared to randomly 

presented targets in both the pitch target and omission sessions. Compared to the 

current experiment, Eimer and colleagues (Eimer et al 1996) described similar N2 

effects due to implicit pattern learning, others have reported decreased P3 in 

associative learning (Rose et al 2001). Correspondingly, in a previous study we 

found that the N2 and P3 diminished when omitted target stimuli were expected 

(Jongsma et al 2005). FMRI correlates of the N2b were found in frontomedian 

and parahippocampal cortex, in line with other fMRI studies of this iconic 

memory process (Cabeza & Nyberg 2000) and the reduced N2b to auditory 

targets in patients with bilateral hippocampal damage (Kiehl et al 2005; Knight 

1996). The locations were also in accord with intracranial N2’s in the same 

latency range found in intra-operative recordings in the vicinity of these regions 

(Baudena et al 1995; Halgren et al 1995b). FMRI-correlates of the P3 were found 

in right hemisphere frontal, temporal and parietal regions. The activation in these 
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regions is consistent with a variety of related functions, including target detection 

(Bledowski et al 2004; Horovitz et al 2002; Linden et al 1999), attention and 

working memory (Cabeza & Nyberg 2000) as well as sequencing and pattern 

recognition (Huettel et al 2002; Janata & Grafton 2003). Also, intracranial 

recordings have reported depth-P3’s from the same sites (Baudena et al 1995; 

Halgren et al 1995a; Halgren et al 1995b).  
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SUGGESTIONS FOR FUTURE RESEARCH 

 

‘While the dictum that the brain is the organ of thought is little questioned in 

scientific circles, it is only in the last few years that specific information has been 

obtained on the relation between complex psychological variables and the activity of 

the brain.’ (Sutton et al 1965) 

 

There are many questions for future research that can be deducted from the 

paradigm, methods, and results presented in this work. 

 

Exploration of Adaptive Effects in Audition 

One application of the pattern-learning paradigm that we have developed is to 

study the effect of expectancy on single trial level when stimuli are not attended. 

The major phenomenon in both studies so far was the sigmoid-shaped amplitude 

modulation coherently expressed in the ERP and fMRI, as intervals became 

predictable. As noted in the introduction, models that can account for these 

effects go back to Sokolov’s original account of the orienting response (Huettel et 

al 2002; Loveless 1983; Sokolov 1963). This principal functionality is 

overlapping with that of the mismatch negativity (MMN) process, although the 

MMN has so far been understood as a more low-level automatic response 

(Näätänen 1992; Näätänen & Winkler 1999) that would typically not code some 

of the features that e.g. the P3 process is sensitive to, such as predictability of 

stimulus sequence (cf. Sussman et al 1998).  

However, Ulanovsky et al. (Ulanovsky et al 2004; Ulanovsky et al 2003) have 

recently shown that the firing patterns of neurons in primary auditory cortex 

adapt to repetition and sequence on multiple timescales, also exceeding 
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sensory/short-term memory (approx. 10-12s, from Winkler et al 2001). Haenschel 

et al. (Haenschel et al 2005) found that the MMN, the negativity in the difference 

wave between standard and deviant stimulus ERP received contribution from 

enhancement of a slow positive wave in the standard ERP with stimulus 

repetition. This positivity may represent a human correlate of stimulus-specific 

adaptation, a plausible neuronal mechanism underlying memory formation in the 

auditory cortex (Baldeweg 2006; Haenschel et al 2005; cf. Näätänen & Rinne 

2002; Ulanovsky et al 2004; Ulanovsky et al 2003). Since current views on MMN 

(and P3 alike) can not fully account for these findings is plausible to attempt a 

revision of these models within a predictive coding framework that defines 

reciprocally connected hierarchical models that construct context-dependent 

expectancies (Baldeweg 2006; Friston 2005a; Llinas 2001). We are currently 

exploring how temporal patterns are extracted from auditory event sequences 

when the stimuli are not attended, probing the proposed adaptation effects in the 

event-related response during automatic deviance detection, and the ERP to 

adjacent standard stimuli. So far, 32 participants were enrolled in this study and 

were reading a text while infrequent duration deviants interspersed with frequent 

standards were presented at an SOA of 350 ms. Twenty additional participants 

participated in a control experiment where stimulus omissions were used as 

deviants. Predictability was introduced by alternating stimulus sequences with 

randomly varying or regular inter-deviant intervals. EEGs were collected from 64 

channels and were treated with individual ICA (Delorme & Makeig 2004), 

wavelet-denoising (Quian Quiroga & Garcia 2003) and subsequent group 

temporal ICA. The results provide evidence for modulation of ERP components 

induced by trial-to-trial learning of interval associations with multiple 
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simultaneous learning rates. The temporal windows of integration of the learning 

rates span ~ 1/2 – 6 minutes thus covering a range where both local patterns and 

global rules of repetition can be encoded. The sensitivity of ERP components to 

stimulus sequence in the absence of a related task indicates that a principle 

function at early automatic stages of processing is to mine events for higher-order 

patterns/contexts (Friston 2005a; Ulanovsky et al 2004).  

The improvement of multimodal imaging technology in terms of recording and 

analysis are necessary first steps in order to study the adaptive dynamics of 

human cognitive processing. The current experiment is easily adapted for joint 

recordings and data fusion. We expect that bilateral middle temporal and middle 

frontal gyri would show interval adaptation effects, possibly supplemented by 

inversely related medial frontal and precuneus activity representing default mode. 

We will employ a MR sequence that collects data only with slices crossing 

through a restricted fronto-temporal region of interest. This allows for a much 

faster MR sampling rate, and together with joint EEG/ERP this sampling 

procedure will assess adaptive effects on the regional BOLD responses. 

 

EEG-fMRI Fusion 

The coherence between scalp electrophysiologic and hemodynamic correlates of 

neuronal activity should be detected by a symmetric common fusion model that 

simultaneously assesses all available data (Debener et al 2006; Hopfinger et al 

2005; Horwitz & Poeppel 2002; Makeig 2002). Currently, three different 

frameworks have been suggested for such multimodal fusion: Dynamic Causal 

Modelling (Friston 2005a; Kiebel & Friston 2004a; 2004b), an approach based on 

a hierarchical Bayesian framework (see also Daunizeau et al 2007), Partial Least 
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Squares (Martinez-Montes et al 2004), and Joint Independent Components 

Analysis (Calhoun et al 2006a; Calhoun et al 2006b), however, none of these have 

been implemented for single trial EEG-fMRI. The simpler solution that has been 

used so far is integration by prediction, where we assume a fixed hemodynamic 

response and a linear neurovascular coupling relationship between local field 

potentials and the hemodynamic response and test for a correlation between the 

modalities in order to draw spatio-temporal inferences. The validity of these 

inferences is, however, critically dependent upon the parameters of neurovascular 

coupling and hemodynamic response function that are used in the model. In paper 

II, we have predicted the fMRI signal as a function of the denoised single trial 

EEG, convolved with a canonical hemodynamic response, and thus proposed 

EEG-fMRI integration by means of induced amplitude modulations on single trial 

level, yielding a functionally specific temporal expansion of the fMRI activity 

(Eichele et al 2005). Independently, Debener et al. (Debener et al 2005b) 

developed a similar approach that is based on decomposition of the scalp EEG 

into independent components via ICA prior to integration. Paper III (Eichele et al 

2007) employed parallel spatial and temporal ICA of EEG-fMRI recordings in 

order to address the mixing problem in both modalities. All three solutions rest on 

prediction of data in one modality through data in the other modality meaning 

meaning that symmetrical fusion was not realized in either report.  

One natural extrapolation is to adapt joint ICA to concurrent EEG and fMRI 

single trial data to provide a novel, widely applicable data-driven analysis 

framework which combines and advances the methodology presented in recent 

reports (Calhoun et al 2006b; Debener et al 2005b; Eichele et al 2007; Eichele et 

al 2005). The idea is to pre-process the data separately with filtering, 
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normalization, and single subject ICA for artefact removal, using the appropriate 

tools in the academic freeware toolboxes SPM, EEGLAB, and GIFT. A joint data 

space is then created by adding for each trial hrf-convolved single-trial EEG into 

the MR image time-series as additional ‘slices’, that is submitted to a group ICA. 

We have begun evaluating the performance of joint ICA across a number of 

decomposition details with variable preprocessing and data reduction steps, 

number of sources and estimated ICs. Our preliminary results at this point 

(Eichele et al 2006; Moosmann et al 2007) suggest that joint ICA provides a 

promising framework for data-driven multimodal fusion that can more 

completely characterize evoked responses in the human brain.  

 

Ground Truth 

The single trial EEG-fMRI methods presented so far in papers II and III (Eichele 

et al 2007; Eichele et al 2005), as well as the complementary work of Debener 

(Debener et al 2006; Debener et al 2005b) make way for unprecedented precision 

in non-invasive spatiotemporal mapping of brain responses. However, one should 

be careful to keep in mind and acknowledge that it is to date not determined for 

any of the available analysis frameworks, such as integration by constraints, 

integration by prediction and common generative models, in which conditions 

they are fully appropriate and ultimately can reveal the ‘true’ spatiotemporal 

maps. This is because a study design for assessment of neurovascular coupling 

and spatiotemporal mixing with a conclusive chain of evidence requires 

concurrent direct measurements of intracranial EEG (or LFP/MUA, respectively) 

from the cortical surface during collection of scalp EEG and fMRI data. Data 

from such a design would be necessary to establish a ground truth about the 
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coupling between the modalities and would be adequate for validation of non-

invasive EEG-fMRI, but one should consider that this study would be extremely 

challenging to technically realize. So far, none of the studies we are aware of in 

humans (usually epileptic patients) or in subhuman species (monkeys, cats) has 

achieved this (for example, see Logothetis et al 2001; Mukamel et al 2005). The 

development of feasible study protocols should be a major effort for future work. 

 

Connectivity 

Large-sample studies, meta-analyses and databases demonstrate that 

hemodynamic brain activation can be dissociated into a limited number of large-

scale regional systems/networks. This view is complementary to the conception 

of electrophysiological phenomena during information processing such as the 

ERP, induced oscillations and phase resetting as being correlates of widespread 

network activity, rather than selective point sources (Makeig 2002; Makeig et al 

2004a). Apart from delineating the spatiotemporal structure of these evoked 

response systems, it is important to address the question in which fashion they 

relate to an external stimulation paradigm, and, crucially, how they relate to each 

other, i.e. coupling (Engel et al 2001; Friston 2005a; Friston 2005b; Varela et al 

2001). In our previous work, hierarchical relationships were inferred solely by 

means of the timing of peak activation in the ERP with respect to stimulus onset 

(Eichele et al 2007; Eichele et al 2005). In the jICA framework, we can assess the 

relationships between a selected set of independent sources with techniques such 

as tree clustering, structural equation models (SEM) and dynamic causal models 

(DCM, Friston 2005a), respectively, or with paradigm-specific generative models 

based on e.g. formal learning theory. These techniques derive the levels of 
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hierarchical organization from the data and the utility for multimodal data is that 

this allows for generation of more specific hypothesis regarding the functional 

coupling between components. 

 

Coherence 

The event related response reflects only a small portion of the EEG variability, 

and there are a variety of task related, functionally relevant effects such as 

spectral perturbations, phase resetting and coherency whose hemodynamic 

correlates deserve exploration in fused data (Makeig et al 2004a; Makeig et al 

2004b; Rodriguez et al 1999; Varela et al 2001). While ERP information most 

likely yields the most robust temporal processing information, the other sources 

of variance are likely to elucidate processes such as feature binding (Fries et al 

2001; Gray et al 1989), predictive coding (Engel et al 2001) and efferent/afferent 

functional coupling (Schoffelen et al 2005). These phenomena are expressed less 

in the transient response and more in amplitude/phase coherency between cortical 

sites, and also between the cortex and peripheral effectors.  

One application would be an investigation of the hemodynamic correlates of 

cortico-cortical, and cortico-muscular coherence in the EEG spectrum. For 

example, we can estimate event related coherence between central EEG sites and 

distal EMG to compare changes in efferent coupling between predictable and 

unpredictable conditions as follows: For n epochs, ),( tfF k
is the spectral estimate 

of epoch k at frequency f and time t.  For two channels a and b event related 

phase cross coherence (Delorme & Makeig 2004; Tallon-Baudry et al 1996) is 

then defined by 
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It is prudent to assume that cortico-muscular synchronization should display 

differences between expected and unexpected targets, and this study would be 

important for addressing questions about the interaction between perceptual and 

cognitive levels and the coding/efficacy in the motor system (Kilner et al 2003; 

Mima et al 2001; Schoffelen et al 2005). 

 

Replication 

Another important promise with concurrent single trial EEG -fMRI studies is that 

it allows to re-examine in detail the seminal psychophysiological experiments and 

concepts (for examples, Hillyard et al 1973; Näätänen et al 1978; Sutton et al 

1965). Such replication/reassessment studies would combine different methods 

and ideally also include peripheral psychophysiological measures such as 

electrodermal and cardio-respiratory activity. This allows to assess and to localize 

many of the basic model elements and theoretical foundations of modern 

cognitive neuroscience and neuroimaging. Multimodal imaging can update these 

models and thus improve our concepts and understanding of the brain-behavior 

relationship. 
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CONCLUSION 

 

This thesis makes two contributions to cognitive neuroscience and neuroimaging: 

Firstly, the salient pattern learning effects during the oddball paradigm extend the 

putative functions of a variety of ERP components from the basic standard vs. 

deviant contrast to more complex rules in the stimulus material.  

Secondly, the methods for single-trial analysis and EEG-fMRI integration that 

were developed for the purpose of extracting the pattern-learning effects have 

general applicability in multimodal imaging experiments in cognitive 

neuroscience. 

Future studies should investigate these predictability effects in detail across 

varying pattern complexity and sensory modalities, and attempt to develop a 

comprehensive learning model that integrates effects on multiple levels and 

timescales.  

Also, method development should spur further progress in multimodal 

integration, in particular single-trial data fusion with independent component 

analysis or other suitable data-driven algorithms promises to open new avenues 

for exploration of human brain function. 
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Abstract

Objective: The main aim was to track the dynamics of pattern-learning using single-trial event-related potentials (ERPs). A new ‘learn-
ing-oddball’ paradigm was employed presenting eight random targets (the ‘no-pattern’) followed by eight regular targets (the ‘pattern’).
In total, six repetitions of the ‘no-pattern’ followed by the ‘pattern’ were presented.
Methods: We traced the dynamics of learning by measuring responses to 16 (eight random–eight regular) targets. Since this alternation of
the ‘no-pattern’ followed by the ‘pattern’ was repeated six times, we extracted single-trial responses to all 96 targets to determine if learn-
ing occurred more rapidly with each repetition of the ‘pattern.’
Results: Following random targets, ERPs contained a marked P3–N2 component that decreased to regular targets, whereas a contingent
negative variation (CNV) appeared. ERP changes could be best described by sigmoid ‘learning’ curves. Single-trial analyses showed
that learning occurred more rapidly over repetitions and suggested that the CNV developed prior to the decay of the N2-P3
component.
Conclusions: We show a new paradigm-analysis methodology to track learning processes directly from brain signals.
Significance: Single-trial ERPs analyses open a wide range of applications. Tracking the dynamic structure of cognitive functions may
prove crucial in the understanding of learning and in the study of different pathologies.
� 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

1.1. Studies on pattern learning

Extracting patterns from the environment is central to
human cognition. By identifying patterns, individuals are
able to form predictions about upcoming events, helping
them to function more efficiently within their environment
(Friston, 2005; Huettel et al., 2002; Llinas, 2001). Behavior-
al research has revealed that recognition of patterns in
event sequences occurs for the most part automatically
1388-2457/$32.00 � 2006 International Federation of Clinical Neurophysiolo
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and seems to rely on memory formation (Reber, 1967,
1989; Seger, 1994). When a sequence follows a repeating
pattern, performance typically improves (i.e., becomes
more efficient) (Eimer et al., 1996; Honda et al., 1998; Jen-
tzsch and Sommer, 2001; Rüsseler et al., 2003; Salamon,
2002; Seger, 1994), often without conscious awareness
(Honda et al., 1998; Reber, 1967, 1989; Schendan et al.,
2003; Schlaghecken et al., 2000; Seger, 1994). This suggests
that people acquire knowledge about patterns incidentally.
Pattern learning is most often observed through changes in
reaction times of overt motor responses (Reber, 1967, 1989;
Seger, 1994). However, an important issue raised in inci-
dental learning literature is the separate roles played by
motor and perceptual processes (Eimer et al., 1996;
gy. Published by Elsevier Ireland Ltd. All rights reserved.
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Rüsseler et al., 2003). It is therefore preferable to employ a
measure that allows to study pattern learning directly from
neural responses, independent of motoric aspects that can
hamper the interpretation of observed changes.

1.2. ERPs and pattern learning

Event-related potentials (ERPs) are time-locked volt-
age fluctuations in the EEG, resulting from neuronal
responses to sensory, motor or cognitive events (Rugg
and Coles, 1995). One of the major advantages of
employing ERP measurements is that aspects of informa-
tion processing can be instantaneously measured, without
interference from e.g., motor skills, (Gaillard, 1988). Pre-
vious ERP (Baldwin and Kutas, 1997; Eimer et al., 1996;
Lang and Kotchoubey, 2000; Rose et al., 2001; Rüsseler
et al., 2003; Rüsseler and Rösler, 2000; Schlaghecken
et al., 2000), PET (Berns et al., 1997; Honda et al.,
1998) and fMRI (Aizenstein et al., 2004; Schendan
et al., 2003) studies have focused on the study of learn-
ing patterned sequences by comparing performance
before and after training (Schlaghecken et al., 2000).
However, a caveat with these studies has been that the
before and after comparison does not account for the
instantaneous dynamics of the learning process. Though
some of these studies have also attempted to track these
dynamic processes by constructing consecutive sub-aver-
ages during a learning session (Honda et al., 1998), to
our knowledge, this is the first study to track the dynam-
ics of learning processes on a continuous trial-to-trial
basis. The use of single trial evoked responses as markers
of learning opens a wide range of new applications of
ERPs. In particular, this information may prove crucial
in understanding cognitive processes, and even in the
study of different pathologies.

1.3. The ‘‘learning oddball’’ paradigm

In order to study the dynamics of pattern learning, it is
necessary to track neuronal responses (using ERPs, PET or
fMRI) on a single-trial basis throughout the experimental
session, whereby the evoked neuronal response to every
target tone is determined individually. This is a challenging
task, owing to the low signal-to-noise ratio of the single-tri-
al responses. A number of techniques for extraction of sin-
gle-trial ERPs with optimum results have recently been
proposed (Quian Quiroga and Garcia, 2003; Spencer,
2005). In particular, a de-noising procedure based on the
Wavelet Transform (wavelet de-noising) has led to new
insights concerning trial-to-trial changes in ERPs due to
factors such as habituation (Quian Quiroga and van Luij-
telaar, 2002; Sambeth et al., 2003), learning (Jongsma
et al., 2004) and skill training (Atienza et al., 2005; Talnov
et al., 2003).

In this study we present a new paradigm, the ‘learning-
oddball’ paradigm, which exploits the possibility of obtain-
ing single-trial responses using wavelet de-noising. Such
analysis allows us to track the dynamic process of auditory
pattern learning. The ‘learning-oddball’ paradigm has been
developed as a variant on an auditory oddball paradigm.
In a typical oddball experiment, frequent background stim-
uli are occasionally replaced (at random intervals) by infre-
quently occurring deviant stimuli – the ‘oddball’ or target
stimuli. The most striking feature of ERPs elicited by these
unexpected target stimuli is the appearance of a ‘P3’ com-
ponent (also referred to as the ‘P300’ or ‘P3b’ component),
a positive wave appearing between 300 and 600 ms after
target presentation, and with a maximum amplitude over
the central posterior region of the brain (Katayama and
Polich, 1999; Picton, 1992, 1996; Pritchard, 1981). The P3
appears to have multiple underlying generators with
involvement of the temporal and parietal lobes (Bledowski
et al., 2004; Kiss et al., 1989). In addition, the thalamus
(Horovitz et al., 2002) and hippocampus (Halgren et al.,
1998; McCarthy et al., 1989; Tarkka et al., 1995) have also
been found to contribute to P3 generation.

Though less studied, unexpected target stimuli give also
rise to a ‘N2’ component (also referred to as the ‘N2b’), a
centrally distributed negative wave appearing before the
P3 (ca. 200 ms after target presentation). The N2 is con-
sidered to be intimately linked to the P3 (Daffner et al.,
2000; Nuchpongsai et al., 1999; Naatanen et al., 1981).
Though it has been hypothesized that there also exist
non-identical generators for the N2 and P3, at least
activity in the supramarginal gyrus has been found to
contribute to both the N2 and P3 component (Smith
et al., 1990). In addition, (Karakas et al., 2000) found that
an interplay of theta- and delta oscillations produced
the morphology of both the P3 and N2(b) component
(Karakas et al., 2000).

With the ‘learning-oddball’ paradigm, we studied
responses to eight targets presented in a random oddball
sequence, followed by responses to eight targets presented
in a fixed oddball sequence (see also Fig. 1). This alterna-
tion of random targets and regular, or patterned, targets
was repeated several times (n = 6).

The P3 amplitude has long been known to be sensitive to
a wide array of manipulations, such as target probability,
the inter-stimulus intervals and inter-target intervals (Croft
et al., 2003; Fitzgerald and Picton, 1981; Gonsalvez et al.,
1995; Gonsalvez and Polich, 2002). In addition, the P3
amplitude is also sensitive to sequence effects, independent
of probability effects, which appears to be caused by confir-
mation or disconfirmation of expectancies (Jentzsch and
Sommer, 2001; Squires et al., 1976). Despite the theoretical
and empirical implications of these findings, systematic
assessment of increased predictability due to learning has
not been investigated. However, the P3 and N2 can be
expected to increase as the unexpectedness of a target
increases. Accordingly, when learning a regular sequence,
the expectation of regular targets increases, resulting in
the decreased P3 - and N2 - amplitude (Donchin, 1981;
Jentzsch and Sommer, 2001; Jongsma et al., 2005; Polich
and Kok, 1995).



  
 

 

   

Fig. 1. This figure shows a diagram of the ‘learning-oddball’ paradigm. In this study eight targets were randomly (i.e., with 2–6 and 8–12 background
tones in between to consecutive target tones) presented (depicted as black dots) within an ongoing steady sequence of auditory background tones
(proportion targets:backgrounds, 1:8). Next, eight targets were presented at a regular position within the train of background tones (depicted as white
dots). This alternation of random and regular target presentation was presented six times (cycles 1–6). Each cycle lasted 102.4 s, the total session lasted
about 10 min. Part of the sequence has been magnified at the bottom. Targets were interspersed in an ongoing regular train of auditory background stimuli
(small dots) with an 800 ms stimulus onset asynchrony (SOA). After eight targets, targets were presented regularly with seven background tones presented
in between making the inter-target interval (ITI) 6.4 s. Participants had to give a mouse click after the first background stimulus following a target stimulus
(depicted in pointing hands).
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1.4. Hypotheses

Thus, in the current experiment we hypothesize that N2
and P3 responses to all random targets should be equal in
case the target regularity is not perceived (i.e., the pattern is
not learned). However, if pattern learning occurs,
decreased single-trial N2 and P3 responses should be
observed.

Additionally, if a target is expected, a slow negative shift
in the ERP waveform should appear, starting about 300 ms
before target stimulus onset – the ‘Contingent Negative
Variation,’ or ‘CNV’ (Birbaumer et al., 1990; Walter
et al., 1964), that is proposed to be generated by a network
of cortical and subcortical structures (Bennett et al., 2004)
including the basal ganglia (Zappoli, 2003). Although the
CNV is ordinarily elicited in other paradigms than the odd-
ball paradigm, the CNV appears to be sensitive to the
expectancy of the target stimulus, and – like the P3 – has
also been found to be sensitive to probability effects (Bauer
et al., 1992; Korunka et al., 1993). We thus hypothesize
that no CNV should be elicited in case the pattern is not
learned. However, if pattern learning occurs, the elicitation
of a CNV should be observed when target presentation
becomes regularly spaced.

In this study, we first determined the conventional prod-
uct of pattern learning, measuring the difference between
the average performance to all random targets, compared
to the average performance to all regular targets (see
Fig. 2a). Second, we traced the dynamics of the learning
process by measuring responses to all 16 consecutive tar-
gets (i.e., eight random targets, followed by eight regular
targets; see Fig. 2b). Third, since the alternation of random
and regular target presentation was repeated six times, we
extracted single-trial responses to all 96 target stimuli indi-
vidually. This allowed us to study whether pattern learning
occurred more rapidly with consecutive repetitions (see
Fig. 2c).

1.5. Main aim

Summarizing, we aimed to track the single trial-to-trial
changes in the ERP CNV, N2, and P3 component



Fig. 2. This figure depicts the a priori defined hypotheses. The x-axes
depicts target position (1–8 for random targets, 9–16 for regular
targets) and the y-axes depicts the efficiency of performance (arbitrary
units – lower values means better performance). (a) Depicts the
alternative hypothesis regarding the average performance. (b) depicts
the alternative hypotheses regarding the dynamics of pattern learning.
(c) depicts the alternative hypotheses regarding higher-order dynamics
of pattern learning. The H0 hypotheses, namely, no difference between
performances on random targets compared to regular targets are not
depicted.
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amplitudes, and to use them as dynamic markers of
auditory pattern learning induced by switching from a
pseudo-random to a fixed sequence of target stimuli.
Though the N2, P3 and the CNV components have been
under investigation for over 40 years, this is the first
study – as far as we are aware – to investigate how the
ERP components change from trial-to-trial during pattern
learning.
2. Methods

2.1. Participants

Twenty-four participants (13 females, 11 males) took
part in the experiment. Only right-handed healthy adults,
not using medication and without a neurological or
psychiatric history, were accepted. All participants signed
a written statement of informed consent. They had a mean
age of 27.4 ± 4.9 (mean ± SD) years. The participants sat
comfortably in a recliner during the experiment and were
instructed to keep their eyes closed and to sit as still as
possible. This to avoid motor artifacts, in particular eye
blinks. Both eye movements and blinking produce electric
fields that overlap in time with the ERP of interest.
Commonly, trials containing eye blinks are excluded from
further analyses. However, since our aim was to track the
trial-to-trial changes of ERP components due to pattern
learning, no trials could be excluded. In addition, instruc-
tions to suppress eye blinking have also been found to
affect the P3 amplitude (Ochoa and Polich, 2000). Thus –
although this might have led to a general increase in ongo-
ing alpha activity in the EEG – we measured ERPs during
an eyes closed condition. Participants were tested in an
electrically shielded, sound-attenuated, dark cubicle (inside
dimensions: 2 · 2.2 · 2 m). A computer mouse was placed
under the participants’ dominant hand to collect responses.
The stimuli were presented through headphones. The
sound consisted of woodblock sounds (duration: 200 ms
with 5 ms rise/fall). All background stimuli had a center
frequency at 2.45 kHz. Within the AEP session, target
stimuli had a center frequency at 2.75 kHz. Within the
OEPs session, targets consisted of missing stimuli. All stim-
uli were presented at a sound pressure level of 65 dB.

2.2. Experimental design

A visual image of the ‘learning-oddball’ paradigm is pre-
sented in Fig. 1. Two sessions, each lasting for about
10 min, were recorded. One session employed deviant stim-
uli as targets and one session employed omitted stimuli as
targets. The presentation order of the sessions was counter-
balanced among the participants. In both sessions, targets
(n = 96) with a 12.5% probability, interspersed within a
train of backgrounds (SOA 800 ms), were presented in an
eyes closed situation. Within one session, six blocks of 16
consecutive targets were presented as one continuous,
ongoing train of stimuli (of 96 targets and 672 background
tones). The first eight targets were presented in a random
position (preceded by a semi-random (2–6 or 8–12) number
of background tones), the following eight targets presented
in a fixed position (all preceded by seven background
tones). Thus, targets presented in fixed positions became
predictable. The program E-Prime was used for presenting
the stimuli. The program was set up in such a way that it
generated eight strings containing a ‘random’ target. This
was done by presenting a semi-random number of
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background stimuli (2–6 or 8–12), followed by one target
stimulus. This way, a random target was never preceded
by seven background stimuli. However, occasionally two
random targets were preceded by the same number of
background tones. After generating eight random target
strings, eight fixed target strings were generated by present-
ing seven background stimuli followed by one target stim-
ulus. The program was started separately for each
individual participant resulting in different random
sequences. The task of the participants was to respond after
the first standard tone following a target stimulus. This
delayed response task was chosen in order to avoid motor
activity closely locked to targets.

EEG recordings. EEG (band-pass: DC – 100 Hz,
sampling rate 500 Hz) was recorded with a SYNAMPS
amplifier (Neuroscan, Herndon, VA) from 27 Ag/AgCl
electrodes (AF3, AF4, F7, F3, Fz, F4, F8, FC5, FC1,
FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7,
P3, Pz, P4, P8, PO3, PO4) mounted in an elastic cap
(EASICAP, FMS, Breitenbrunn, GER) at placements
based on the International 10–20 recording system
(American Encephalographic Society, 1994) and referenced
to linked mastoids and stored on disk for offline process-
ing. Vertical and horizontal eye movements were recorded
by two additional bipolar channels placed above and below
the right eye and on the outer canthi of each eye. Imped-
ances of all electrodes was kept below 10 kX.

2.3. Data processing

First, epochs from �2048 ms to 2048 ms around all pre-
sented auditory target stimuli (n = 96) and all presented
omitted target stimuli (n = 96) were off-line down-sampled
to 250 Hz, de-trended and baseline corrected over the full
4.096 s length of each epoch. Second, these epochs were
then collectively subjected to an independent component
analysis, as implemented in EEGLAB (Delorme and
Makeig, 2004), running in the MATLAB environment
(The Mathworks, Inc., Natick, MA). Variance-compo-
nents with activity attributable to artifacts, such as eye
movement, fronto-temporal muscle activity and mains
noise, were removed. We did not employ ICA components
beyond the level of artifact reduction for several reasons.
Within the current experiment the ICA output does not
necessarily add to the clarity of the results. Apart from this,
since we ran ICA separately for each individual, there
would be a matching problem of ICA’s across subjects.

Finally, all individual single-trial ERP responses were
de-noised by means of a recently proposed algorithm based
on the wavelet transform analysis method (Quian Quiroga
and Garcia, 2003). The accuracy of this method in smooth-
ing ERPs has been demonstrated with both simulated data
and visual and auditory ERP data (Atienza et al., 2005;
Jongsma et al., 2004; Quian Quiroga and Garcia, 2003;
Quian Quiroga and van Luijtelaar, 2002; Sambeth et al.,
2003; Spencer, 2005; Talnov et al., 2003). De-noising
parameters were the same for all participants. Whole wave-
forms were additionally smoothed using a 3-point moving
average across adjacent epochs. The above described data
processing was applied to each channel independently.
Under the assumption that scalp potentials are coupled
to hemodynamic activity, single-trial ERPs can also be
used for prediction of regional brain activation in function-
al magnetic resonance data (Eichele et al., 2005). Since
some peaks diminished or appeared rapidly over consecu-
tive targets, peak amplitudes were determined within a
fixed latency window based on the grand average responses
(of all subjects, for all targets, for AEPs and OEPs sepa-
rately) and subsequently kept constant (Jongsma et al.,
2005).

AEPs elicited by deviant target stimuli consisted, along-
side an N1 and P2, of a prominent N2 and P3 component.
In addition, a CNV-like component was observed. Mean
component amplitudes in fixed latency windows (N2,
180–220 ms; P3, 350–430 ms; CNV, �300 ms to 0 ms) were
further analyzed (Jongsma et al., 2005; Koelsch et al.,
2004). In line with this, grand average OEPs elicited by
omitted target stimuli also consisted of a N2, P3 and
CNV-like component. Mean component amplitudes in
the same fixed latency windows (N2, 180–220 ms; P3;
350–430 ms; CNV, �300 ms to 0 ms) were further included
in analyses (Lang and Kotchoubey, 2000). In addition,
since the N2 is considered to be intimately linked to the
P3 (Daffner et al., 2000; Nuchpongsai et al., 1999; Naata-
nen et al., 1981), a P3–N2 component was constructed by
subtracting the N2 amplitude from the P3 amplitude. This
resulted in a more stable component, especially with regard
to the single-trial ERP analyses.

2.4. Statistical analysis

Step 1. See also Fig. 2a. Component amplitudes of de-
noised ERPs were determined as the average value within
a fixed latency window (N2, 180–220 ms; P3, 350–430 ms;
CNV, �300 to 0 ms). For each component (the AEP
CNV, N2, P3 and P3–N2 component and the OEP CNV,
N2, P3 and P3–N2 component) a two-within ANOVA anal-
ysis was performed: condition · electrode site, (condition,
two levels: random targets vs fixed targets; electrode site,
27 levels). For EEG channels it is clear that nearby channels
are generally more correlated than distant channels, thus
leading to heterogeneous covariances. Therefore, the
Geisser and Greenhouse correction was applied to the
degrees of freedom. Post-hoc analyses applying Bonferroni
correction were performed to determine condition effects
per electrode site when appropriate. Reaction times of
correct responses were analyzed. Correct responses were
defined as responses within a time window of �400 ms to
+400 ms around the point of optimal response (i.e., the first
background stimulus after the target stimulus). Error rates
were calculated and the RTs of the correct responses were
analyzed with a t-test (random targets vs fixed targets).

Step 2. See also Fig. 2b. A priori defined hypotheses
were tested by nonlinear regression analysis of the AEP
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CNV, N2, P3 and P3–N2 and AEP RTs, as well of the OEP
CNV, N2, P3 and P3–N2 component and OEP RTs, using
the program GraphPad Prism 4. The over participants
averaged RTs were smoothed using a 3-point moving aver-
age. For AEP and OEP component amplitudes, F-tests for
best fit were obtained for all 27 electrode sites comparing:

H0: a straight line with slope = zero. There is no learn-
ing effect.

H1: a sigmoid-curve. With each cycle, ‘learning’ occurs
more rapidly.

Step 3. See also Fig. 2c. Single-trial component ampli-
tudes were determined at group level (n = 24). For the
CNV component at Fz (maximal effect) and for the
P3–N2 component at Pz (maximal effect). In addition, sin-
gle-trial RTs were determined at group level (n = 24). Thus,
each separate cycle (n = 6), containing 16 targets, was ana-
lyzed, resulting in six sigmoid-curves per session, per compo-
nent and per RT. In addition, a regression analysis was
performed with F-tests for best fit on found Tn50s – or the
point where 50% of the amplitude modulation was reached.

Thus, regression analysis was applied on the estimated
Tn50 values obtained in step 2 of the analysis, using the
program: GraphPad Prim 4.03. The linear equations of
the H0 (Y = Intercept, there are no over-cycle effects) and
the H1 hypothesis (Y = Intercept + Slope · X, with each
cycle, ‘learning’ occurs more rapidly) were fitted to the
data. An F-test determined whether the decrease of sum
of squares for the H1 was worth the loss of degrees of free-
dom. For the fitting and the F-tests three procedures were
applied on each ERP component: the first most conserva-
tive procedure took into account only the number of cycles
(i.e., 6) and consequently yielded five (H0) or four (H1)
degrees of freedom. In the second procedure the
significance was tested with 23 vs 22 degrees of freedom,
reflecting the number of participants. In the last procedure
the total number of measurement (i.e., 146, namely:
subjects · cycles) was taken into account, resulting in 143
vs 142 degrees of freedom. An overview of these results
together with the raw data in an Excel file are available
from the author upon request.

3. Results

3.1. The amount of pattern learning

Fig. 3a shows the grand average ERPs to higher pitch
targets, or auditory event-related potentials (AEPs) and
to stimulus omissions, or omission event-related potentials
(OEPs) at midlines electrode sites (Fz, Cz and Pz) for both
random (dotted lines) and regular (solid lines) targets.
Though all 27 electrode sites were included in the analyses,
only results from midline sites (Fz, Cz and Pz) are depicted
in the figures.

We observed a slow negative shift in ERPs elicited by
the regular targets – the contingent negative variation
(CNV) – starting about 500 ms before target onset. CNV
was at a maximum in the central frontal region and showed
larger negative amplitudes to regular targets than to
random targets.

Random target stimuli elicited an N2, appearing
between 180 and 220 ms after stimulus onset, with a max-
imum amplitude over the central region and a marked P3
component – a positive wave appearing between 350 and
430 ms after target presentation – with a maximum ampli-
tude over the central posterior region of the brain (Picton,
1992; Polich, 1996; Pritchard, 1981; Sutton et al., 1965). A
similar P3–N2 complex was also observed when the target
consisted of an unexpectedly omitted stimulus (Besson and
Faı̈ta, 1995; Jongsma et al., 2004, 2005; Walter et al., 1964).
Maximum P3–N2 was expressed at the central posterior
region and had lower amplitudes (i.e., closer to baseline)
with regular targets than with random targets.

Fig. 3b depicts the means and SEMs of concurrent ERP
component amplitudes for midline sites in the form of bar
graphs. Component amplitudes to regular targets are
depicted as solid bars, and component amplitudes to
random targets are depicted as dotted bars. Bar graphs
are shown for the AEP session (on the left) and the OEP
session (on the right). The y-axes show amplitudes (in
lV). Bar graphs of the concurrent reaction times (RTs)
are shown on the lower right-hand side, with y-axes
showing time (in ms).

Table 1 summarizes all significant F and p-values
from the ANOVA and t-test results for the AEP session
(Table 1a) and the OEP session (Table 1b).

With respect to the AEP session, the CNV showed a
significant effect of condition (p < .0001), electrode site
(p = .002), and a condition · electrode site interaction
effect (p < .0001). Post-hoc analyses revealed condition
effect at frontal-central sites (AF3, AF4, F2, F3, Fz, F4,
FC5, FC1, FC2, FC6, T7, Cz, C4, CP5 and CP1; with
Bonferroni correction, all p < .05). On the N2 we found
no main effects of condition or electrode site, but we did
find a condition · electrode site interaction effect
(p = .016). However, in the post-hoc analyses none of the
electrodes showed a condition effect after Bonferroni
correction. On the P3 a main condition (p < .0001) and
electrode site effect (p = .011) was observed. The condi-
tion · electrode site effect did not reach significance
(p = .34). The P3–N2 showed an effect of condition
(p < .0001), electrode site (p = .004), and a condi-
tion · electrode site interaction effect (p < .033). Post-hoc
analyses revealed condition effect at parietal sites (CP1,
P3, Pz and P4; with Bonferroni correction, all p < .05).

With respect to the OEP session, the CNV showed a sig-
nificant effect of condition (p < .0001), electrode site
(p < .001), and a condition · electrode site interaction effect
(p < .0001). Post-hoc analyses revealed condition effect at
frontal-central sites (AF3, AF4, F3, Fz, F4, FC5, FC1,
FC2, FC6, T7, Cz, C4, CP5, CP1, CP2 and CP6; with
Bonferroni correction, all p < .05). On the N2 we found a
main effect of electrode site (p = .021). No effect on



  

 

  
  

  

 

  
 

  

Fig. 3. (a) Shows grand average ERPs at midline sites. On the left side of each electrode panel, the tracings after the first wavelet-denoising solution,
extracting the CNVs, are depicted. On the right side, tracings after the second wavelet-denoising solution, extracting the ERP N2, P3 and P3–N2 complex,
are depicted. Grand averages of all 24 participants are given for all regular targets (solid lines) and all random targets (dotted lines). Tracings are given for
the AEP session (on the left) and the OEP session (on the right). The x-axes show time (in ms) and the y-axes show amplitudes (in lV). (b) Depicts bar
graphs (means and SEMs) of concurrent ERP component amplitudes at midline sites of ERP CNV, N2, P3 and P3–N2 complex. Group averages are given
for all regular targets (solid bars) and all random targets (dotted bars). Bar graphs are given for the AEP session (left panel) and the OEP session (right
panel). The y-axes show amplitudes (in lV). Bar graphs of the concurrent delayed response RTs are depicted at the lower right side with y-axes showing
time (in ms).
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condition, nor a condition · electrode site effect was
observed. The P3 showed a main condition (p < .0001)
and electrode site effects (p = .013). The condition · elec-
trode site effect did not reach significance (p = 0.10). On
the P3–N2 we found a significant effect of condition
(p < .006) and electrode site (p < .0001). As for the P3,
the condition · electrode site interaction effect did not
reach significance (p = 0.12). An explorative post-hoc anal-
ysis suggested only condition effect at centro-parietal sites
(Cz, CP1, CP2, CP6, P3 and Pz; with Bonferroni correc-
tion, all p < .05).

The error rates suggest that the task was more difficult
within the OEP session than the AEP session (13.05% vs
5.15%). Also, error rates of the responses seemed slightly
higher for random targets than regular targets (5.50% vs
4.80% within the AEP session; 13.30% vs 12.80% within
the OEPs session). T-tests regarding the reaction times
showed a significant effects in the AEP session (p = .021)
and the OEP session (p = .038), with faster RTs during
regular target sequences.

3.2. The dynamics of pattern learning

Fig. 4 shows component amplitudes and their best-fit
curves (either a straight line or a sigmoid-curve) for the
CNV, N2, P3 and P3–N2 component amplitudes at midline



Table 1
The amount of pattern learning

AEP ANOVA results F values p-values

(a) Summary ANOVA’s AEP component amplitudes

CNV Electrode site effect F (2.5,57.9) = 16.2 p = .002
Condition effect F (1,23) = 389.9 p < .0001
Interaction effect F (3.09,71.0) = 4.3 p < .0001

Post-hoc Bonferroni corrected
AF3 Condition effect p < .05
AF4
F2
F3
Fz
F4
FC5
FC1
FC2
FC6
T7
Cz
C4
CP5
CP1

N2 Electrode site effect F (2.1,48.9) = 26.6 p = .07
Condition effect F (1,23) = 32.4 p = .23
Interaction effect F (3.16,72.7) = 3.6 p = .016

Post-hoc Bonferroni corrected n.s.

P3 Electrode site effect F (2.8,64.7) = 12.4 p < .0001
Condition effect F (1,23) = 7.6 p = .011
Interaction effect F (3.0,68.7) = 11.6 p = .34

P3-N2 Electrode site effect F (2.3,53.8) = 9.8 p < .0001
Condition effect F (1,23) = 10.6 p = .004
Interaction effect F (2.8,64.6) = 3.2 p = .033

Post-hoc Bonferroni corrected
CP1 Condition effect p < .05
P3
Pz
P4

t-test p-value

RT Condition effect p = .021

OEP ANOVA results F values p-values

(b) Summary ANOVA’s OEP component amplitudes

CNV Electrode site effect F (3.2,74.4) = 6.32 p = .001
Condition effect F (1,23) = 20.9 p < .0001
Interaction effect F (3.4,79.1) = 7.4 p < .0001

Post-hoc Bonferroni corrected
AF3 Condition effect p < .05
AF4
F3
Fz
F4
FC5
FC1
FC2
FC6
T7
Cz
C4
CP5
CP1

Table 1 (continued)

OEP ANOVA results F values p-values

CP2
CP6

N2 Electrode site effect F (3.8,86.7) = 3.1 p = .021
Condition effect F (1,23) = 14.1 p = .27
Interaction effect F (2.9,66.5) = 4.8 p = .40

P3 Electrode site effect F (3.8,88.0) = 12.91 p < .0001
Condition effect F (1,23) = 7.2 p = .013
Interaction effect F (2.0,45.5) = 31.0 p = .10

P3-N2 Electrode site effect F (3.7,84.5) = 11.6 p < .0001
Condition effect F (1,23) = 9.1 p = .006
Interaction effect F (1.8,41.1) = 52.0 p = .115.

Post-hoc Bonferroni corrected
Cz Condition effect p < .05
CP1
CP2
CP6
P3
Pz

t-test p-value

RT Condition effect n.s.

Summarizes F and p values of 3-within ANOVA results for the AEPs
CNV, N2, P3 and P3–N2 amplitudes and the t-test result of the reaction
times (RTs).
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sites – as well as the RTs – for the AEP session (Fig. 4a)
and the OEP session (Fig. 4b). Table 2summarizes F and
p-values for the F-tests in terms of best fit for all learning
curves at all 27 electrode sites. With respect to the AEP
CNV, N2, P3, P3–N2 component all components showed
‘learning’ curves at most electrode sites that described the
data significantly better than straight horizontal lines
(levels of significance: ***p < .0001; **p < .01; *p < .05;
n.s. = not significant). Significances for the CNV appeared
to be more frontal-central orientated and for the N2, P3
and P3–N2 more central-parietal orientated. The RT data
could also be better described by a ‘learning’ curve than a
straight, horizontal line. Similar results were found with
respect to the OEPs though the N2 ‘learning’ curves only
appeared to reach significance at more laterally orientated
temporal-occipital sites.

For the AEP session, the CNV increased in the pre-stim-
ulus period at all frontal central EEG electrode sites (see
Table 2). In addition, the N2, P3 and P3–N2 amplitudes
rapidly decreased after target presentation became regular
(marked with a solid line), resulting in the hypothesized
sigmoid learning curve at all central posterior EEG elec-
trode sites (see Table 2). A corresponding effect was seen
in the RTs that also decreased after target presentation
became regular, though the effect was less clear, and
appeared later.

In line, for the OEP session, the CNV increased in the
pre-stimulus period at all frontal central EEG electrode
sites (see Table 2). In addition, the P3 amplitude rapidly
decreased after target presentation became regular (marked



Fig. 4. This figure shows ‘learning curves,’ or s-curves, at all midline sites for the AEP CNV, N2, P3 and P3–N2 amplitudes and the RTs from the AEP
session (a), and the OEP session (b). The x-axes show concurrent target position (1–16) with random targets falling on the left side (1–8) and regular
targets on the right side. The y-axes depict ERP component amplitudes (in lV) and time (in ms) for the RTs. Only when a sigmoid-curve described the data
significantly better then a straight line it was plotted with a black solid line. Non-significant sigmoid-curve solutions are depicted with a dotted thin line.
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with a solid line), resulting in the hypothesized sigmoid
learning curve at all central posterior EEG electrode sites
(see Table 2). Although the N2 did not decrease at midline
sites, the combined P3–N2 returned stronger and more sta-
ble decreases than P3 amplitudes alone. RTs failed to show
a significant decrease.

3.3. Higher-order dynamics of pattern learning

Fig. 5 shows the group-averaged single-trial data with
the best-fit curves per cycle presented (either a straight hor-
izontal line or a sigmoid-curve) for the CNV at the Fz elec-
trode site (Fig. 5a left panel for AEPs; Fig. 5b left panel for
OEPs), and P3–N2 at the Pz electrode site (Fig. 5a middle
panel for AEPs, Fig. 5b middle panel for OEPs), along with
the RTs (Fig. 5a right panel for AEPs session; Fig. 5b right
panel for OEPs session). Table 3 summarizes the signifi-
cance of F-tests for best fit of group-averaged AEPs and
OEPs component amplitudes and RTs per trial over six
consecutive cycles. With respect to both the AEP and
OEP components, the single-trial CNV amplitudes (at
Fz) and P3–N2 amplitudes (at Pz) resulted in significant
‘learning’ curves for all six cycles (all p < .05). Moreover,
turning point of these ‘learning’ curves (the Tn50s),



Table 2
The dynamics of pattern learning

Site CNV N2 P3 P3–N2 RT

AEP
(a) Summary of group statistics of fitting ‘learning’ curves on AEP component amplitudes

AF3 *** n.s. n.s. **
AF4 *** n.s. n.s. ***
F7 *** n.s. n.s. n.s.
F3 *** ** * ***
Fz * *** * ***
F4 *** *** * ***
F8 *** n.s. n.s. *
FC5 *** ** * ***
FC1 *** *** * ***
FC2 *** *** * ***
FC6 *** *** n.s. ***
T7 *** *** n.s. ***
C3 *** *** * ***
Cz *** *** * *** *
C4 *** *** * ***
T8 *** *** n.s. ***
CP5 *** *** ** ***
CP1 *** *** ** ***
CP2 *** *** ** ***
CP6 *** *** * ***
P7 n.s. *** *** ***
P3 ** *** *** ***
Pz n.s. *** *** ***
P4 * *** *** ***
P8 n.s. *** *** ***
PO3 n.s. *** *** ***
PO4 n.s. *** *** ***

OEP
(b) Summary of group statistics of fitting ‘learning’ curves on OEP component amplitudes

AF3 *** n.s. n.s. n.s.
AF4 *** n.s. n.s. n.s.
F7 *** n.s. n.s. n.s.
F3 *** n.s. n.s. n.s.
Fz * n.s. * **
F4 *** n.s. * **
F8 *** n.s. n.s. n.s.
FC5 *** n.s. n.s. *
FC1 *** n.s. ** ***
FC2 *** n.s. ** ***
FC6 *** n.s. **. ***
T7 *** **. n.s. **
C3 *** n.s. *** ***
Cz *** n.s. *** *** n.s.
C4 *** n.s. *** ***
T8 *** ***. n.s. ***
CP5 *** *** *** ***
CP1 *** n.s. *** ***
CP2 *** n.s. *** ***
CP6 *** *** *** ***
P7 n.s. *** *** ***
P3 *** *** *** ***
Pz n.s. n.s. *** ***
P4 *** * *** ***
P8 ** n.s. *** ***
PO3 n.s. * *** ***
PO4 n.s. ** *** ***

F and p-values of F-tests for best fit of AEPs and OEPs component amplitudes at all electrode sites and RTs from both AEP and OEP session (***p < .001;
**p < .01; *p < .05).
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appeared to occur earlier with each repetition Thus, addi-
tionally, a regression analysis was performed with F-tests
for best fit on the mean and 95% confidence intervals of
these Tn50s – or the point where 50% of the amplitude
modulation was reached – from each of these curves,
comparing:

H0: a straight line with slope is equal to zero. There are
Fig. 5.
sigmoid
Only sig
marked
81–96 fo
session
the AEP
target p
different
no over-cycle effects.

H1: a straight line with slope is not equal to zero. With
each cycle, ‘learning’ occurs more rapidly.
Table 3 (bottom) summarizes the significant results from
the F-tests for best fit of Tn50s from six consecutive
cycles. Tn50s of all ‘learning’ curves were taken separately
This figure shows the six sigmoid-curves for the six consecutive cycl
-curves for the ERP CNV are derived from the Fz electrode site and the
moid-curves that described the data significantly better then a straight
with a solid vertical line. The x-axes plot target position (1–16 for cycle
r cycle 6). The y-axes depict ERP component amplitudes (in lV) and ti

(a) and the OEP session (b). In addition, Tn50s (means and 95% confid
session (a, bottom) and the OEP session (b, bottom). The x-axes depic

osition, 1–16) per cycle. A regression analysis was performed comparin
from zero.
for AEP and OEP component amplitudes and RTs per
cycle.

Though all separate cycles showed significant learning
curves at the single-trial ERP CNV and P3–N2 component
amplitudes, some cycles showed decreases even before the
introduction of target regularity; possibly due to increased
variability of the single-trial data. However, in general,
these learning curves showed progressively earlier Tn50s
suggesting that the regularity of the pattern was detected
more rapidly with each consecutive cycle (see Fig. 5,
bottom panels). RTs did not show significant learning
curves for all cycles (only for cycles 3 and 4 for AEPs,
cycles 2, 3 and 4 for OEPs). Therefore, no F-test for
straight lines with either slope is equal to zero vs slope is
different from zero on the RTs’ Tn50s could be performed.
es, thus showing ERP component amplitudes of all 96 single-trials. The
sigmoid-curves for the ERP P3–N2 are derived from the Pz electrode site.

line are depicted in solid black lines. For each ‘learning’ curve, the Tn50 is
1; 17–32 for cycle 2; 33–48 for cycle 3; 49–64 for cycle 4; 65–80 for cycle 5;
me (in ms) for the RTs. Single-trial ‘learning’ curves are given for the AEP
ence intervals) are plotted for the ERP CNV, P3–N2 and the RTs for both
t cycle nos. (1–6) and the y-axes depict values of the Tn50 (as expressed in

g a straight line with slope is equal to zero with a straight line with slope is



Fig. 5 (continued)

1968 M.L.A. Jongsma et al. / Clinical Neurophysiology 117 (2006) 1957–1973
4. Discussion

4.1. The amount of pattern learning

We found slightly faster RTs (ca. 20 ms) following reg-
ularly presented targets, compared to RTs following ran-
domly presented targets. Other ERP studies found more
marked RT effects (ca. 60 ms difference) with pattern learn-
ing (Baldwin and Kutas, 1997; Eimer et al., 1996; Rüsseler
and Rösler, 2000; Schlaghecken et al., 2000). This is prob-
ably due to the fact that in these studies, responses were
given immediately following targets (Baldwin and Kutas,
1997; Eimer et al., 1996; Rüsseler and Rösler, 2000; Schlag-
hecken et al., 2000) whereas in our study participants
responded to the background stimulus following 800 ms
after target presentation.

In addition, a central anterior distributed CNV was
observed in ERPs elicited by the regularly presented
targets, but not in ERPs elicited by randomly presented
targets. Although such a CNV is commonly elicited in
paradigms in which a warning stimulus precedes a target
stimulus – thereby making the appearance of the target
stimulus expected (Bennett et al., 2004; Birbaumer et al.,
1990; Walter et al., 1964) – the P3 and CNV have been
strongly associated in the classical ERP literature due to
their common relationship to expectation and expecta-
tion-related constructs (Donchin, 1981; Korunka, 1993;
Sutton et al., 1965) and their common sensitivity to target
probability (Korunka, 1993).

In a similar experiment, Eimer and colleagues (1996)
observed a slow negative shift preceding targets – the ‘Lat-
eralized Readiness Potential’ (LRP) – which became more
pronounced with learning. They assumed that this compo-
nent reflected the acquired knowledge, and stated that
participants may have learned the stimulus sequence and
that expectations were communicated to the motor system
at a very early stage of processing, namely, prior to target
presentation. However, their participants had to respond
directly after a target stimulus was presented, whereas in
the current experiment a delayed response was required,
thus eliminating the motoric component of response
preparation. Because a delayed response task was



Table 3
Higher order dynamics of pattern learning

cycle CNV N2 P3 P3–N2 RT

(a) Summary of the Tn50s (turning point) of ‘learning’ curves per cycle for AEP component amplitudes (mean ± 95% confidence intervals)

1 11.6 (8.86–14.4) 13.3 (11.3–15.4) n.s. 13.3 (11.7–14.9) n.s.
2 10.8 (9.28–12.3) 11.8 (10.7–12.9) n.s. 11.9 (10.7–13.0) n.s.
3 10.2 (8.76–11.7) 9.68 (8.61–10.8) n.s. 11.9 (10.9–12.8) 10.5 (7.93–13.1)
4 8.92 (7.64–10.2) 6.05 (4.06–8.04) 10.1 (8.61–11.6) 8.84 (7.64–10.0) 12.7 (10.5–14.8)
5 6.71 (5.35–8.06) 9.36 (7.16–11.6) 12.2 (10.5–14.0) 11.6 (10.1–13.0) n.s.
6 8.05 (6.57–9.53) n.s. 7.96 (6.27–9.65) 10.5 (9.12–11.9) n.s.

Higher order

F (Dfn,Dfd) based on
no. of cycles

20.5 (1,4) p = 0.010 4.82 (1,3) p = 0.12 n.s. – 2.77 (1,4) p = 0.17 n.s. –

F (Dfn,Dfd) based on
no. of subjects

18.7;(1,22) p = 0.0003 14.3 (1,18) p = 0.0014 – 7.01 (1,22) p = 0.01 –

F (Dfn,Dfd) based on
no. of measurements

18.4 (1,142) p < 0.0001 21.4 (1,118) p < 0.0001 – 9.84 (1,142) p = 0.002 –

(b) Summary of the Tn50s (turning point) of ‘learning’ curves per cycle for OEP component amplitudes (mean ± 95% confidence intervals)

1 11.2 (9.22–13.2) n.s. n.s. 14.6 (12.6–16.6) n.s.
2 11.1 (10.0–12.2) n.s. 12.3 (11.3–13.3) 12.8 (11.3–14.3) n.s.
3 10.9 (9.56–12.2) n.s. 10.3 (7.91–12.6) 10.2 (8.18–12.2) 9.84 (8.54–11.2)
4 8.88 (7.77–10.0) n.s. 13.1 (12.3–13.9) 7.25 (5.59–8.91) 11.3 (9.03–13.5)
5 5.04 (3.74–6.34) n.s. 12.1 (10.6–13.6) 11.0 (9.42–12.6) n.s.
6 11.3 (10.2–12.3) n.s. 9.67 (7.21–12.1) 9.16 (6.40–11.9) n.s.

Higher order

F (Dfn,Dfd) based on
no. of cycles

0.913 (1,4) p = 0.39 n.s – 0.495 (1,3) p = 0.53 n.s. 4.48 (1,4) p = 0.1 –

F (Dfn,Dfd) based on
no. of subjects

3.74 (1,22) p = 0.07 – 1.11 (1,18) p = 0.30 n.s. 11.6 (1,22) p = 0.003 –

F (Dfn,Dfd) based on
no. of measurements

8.96 (1,142) p = 0.003 – 1.41 (1,118) p = 0.24 n.s. 16.6 (1,142) p < 0.0001 –

Summarizes the over participants averaged Tn50s (means and 95% confidence intervals) of learning curves. (Target 9 being the first regular target) for the
AEP session (a) and the OEP session (b).
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employed in the current experiment, no lateralized readi-
ness potential was elicited by the target stimulus. Instead,
regularly presented target stimuli started to function as a
kind of warning stimulus, after which a response was then
acquired. Interestingly, a CNV-like potential was observed
preceding these ‘warning’ targets. Although conventionally
the CNV develops before an expected motor response, it
also develops before an expected stimulus that does not
require a motor response (Hohnsbeim et al., 1998). Thus,
the CNV is assumed to reflect the cognitive preparation
of the next trial, or the facilitation of specific brain area,
which are relevant for the next trial (Hohnsbeim et al.,
1998). The CNV has also been shown to develop during
the temporal interval between two events. This wave would
reflect anticipatory processing of a temporally expected
stimulus. The CNV is thus the main ERP correlate of the
estimation or production of a time interval and has been
shown to increase during the learning of a temporal inter-
val (McAdam, 1966; Pfeuty et al., 2003). This is in line with
our observations, where the temporal interval between reg-
ular targets (6.4 s) was learned.

Finally, we found that the central posterior distributed
P3–N2 complex was smaller in response to regularly pre-
sented targets as compared to randomly presented targets
in both the oddball and omission sessions. The CNV was
maximal for the ‘regular’ condition over frontal sites. As
expected, we did observe a condition · electrode site inter-
action effect revealing a CNV condition effect over frontal
sites for both the AEP and OEP session. Since the P3–N2
was maximal for the ‘random’ condition over centro-pari-
etal sites, an interaction effect was also expected. We did
observe an interaction effect within the AEP session reveal-
ing a P3–N2 condition effect over parietal sites. For the
OEP session the interaction effect was not significant. This
might be due to the fact that the OEP P3–N2 is a very
broad and smeared component that is visible over most
electrode sites, with exception of some frontal sites.
Compared to the current experiment, Eimer and colleagues
(1996) described similar N2 effects due to implicit
pattern learning. In addition, others have reported
decreased P3 due to learning (Rose et al., 2001), high
expectancy (Sutton et al., 1965) and regularity (Lang and
Kotchoubey, 2000). Correspondingly, in a previous study
we found that the P3–N2 complex rapidly disappeared
when omitted target stimuli could be expected (Jongsma
et al., 2005).

Both the P3 and CNV appear to be sensitive to (local)
probability effects (Bauer et al., 1992; Croft et al., 2003;
Fitzgerald and Picton, 1981; Korunka et al., 1993). There-
fore, we wanted to explore whether our results could be



Fig. 6. (a) Shows a bar graph estimating the amplitudes of the ERP CNV (on the left) and the ERP P3–N2 (on the right) for both the AEP session (top)
and OEP session (bottom). Component amplitudes to random targets (preceded by 3, 5, 7*(taken as the first target from regular series), 9 or 11
background tones) are depicted in dotted bars, component amplitudes to regular targets (2nd–8th within each regular cycle preceded by seven background
tones) are depicted in black bars. (b) Shows the linear regression of the Tn50s for the ERP CNV and P3–N2 as combined from both the AEP and OEP
session. The x-axes depict cycle nos. (1–6) and the y-axes depict values of the Tn50 (as expressed in target position, 1–16) per cycle. As can be seen in the
graph, the appearance of the ERP CNV preceded the decay of the ERP P3–N2 for each cycle. An F-test comparing the linear regression of the ERP P3–N2
with the linear regression of the CNV gives a significant difference of intercept.
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(partly) ascribed to probability effects. Although during the
total experiment global probability was kept constant
(12.5% for both random and regular targets), local proba-
bility varied with respect to only the random targets which
could be interspersed with 2–12 background tones.
Although not statistically tested, and for explorative pur-
poses only, we estimated probability effects of the CNV
and P3–N2 component amplitudes by grouping targets pre-
ceded by 3, 5, 7 (though in random series), 9 or 11 back-
ground stimuli and compared them to targets preceded
by seven background stimuli (from regular series). Fig. 6a
depicts these results suggesting that the current findings
cannot be ascribed due to (local) probability effects as
described by others (Croft et al., 2003; Fitzgerald and Pic-
ton, 1981). Thus, when learning a regular sequence, the
expectation, or predictability, of regular targets alone
results in the increase of the CNV and the decreased of
the P3–N2 amplitude (Donchin, 1981; Jentzsch and Som-
mer, 2001; Jongsma et al., 2005; Polich and Kok, 1995).

Thus, different ERP components may serve as markers
for pattern learning. Moreover, these specific components
(CNV, P3–N2) mapping pattern learning seem to be
modality independent, since they appear in response to
both deviant and omitted targets.

4.2. The dynamics of pattern learning

We observed that ERPs in response to randomly pre-
sented target stimuli contained a marked P3–N2 complex,
possibly reflecting processes related to target evaluation.
However, when target presentation became regular, the
P3–N2 complex decreased and a marked CNV component
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appeared. It is likely, that regular target presentation gives
leads to a memory formation of the target-to-target inter-
val. Such a memory formation could give rise to the devel-
opment of the CNV component occurring ca. 300 ms
before target presentation, possibly reflecting processed
linked to target anticipation (Nobre, 2001).

Learning curves started at a plateau that remained sta-
ble during random target presentations, before falling rap-
idly following introduction of the regular targets and
bottoming out after approx. 4 regularly presented targets.
Detecting changes in discrete events requires spanning of
the temporal interval between the events. The neural sys-
tems involved must create a representation of the event that
can be retained for some interval of time (Hughes et al.,
2001). For the detection of regularity, at least two consec-
utive targets with the same number of preceding back-
ground tones (7) are needed in order to perceive the
regularity. In the current experiment, the time window
for temporal integration of the detection of the regularity
was thus ca. 13 s. These findings are in line with the
instance theory of Logan (2002) – a memory-based theory
of learning. Logan (2002) states that the formation of a
memory trace for a stimulus, that is predictive for a subse-
quent stimulus, spans over the whole period collapsing
between the stimuli at hand. The process of learning is then
accompanied by a shift of attention towards those stimulus
features that remain constant.

Interestingly, a previous study measuring ERPs in
response to regularly presented targets found that an early
(ca. 150 ms after target onset) central anterior distributed
component detecting automatic change, the ‘Mismatch
Negativity’ (MMN) disappeared when using short stimulus
onset asynchronies (100 ms), but remained intact when
targets were presented at regular positions when using
longer stimulus onset asynchronies (1300 ms) (Sussman
et al., 1998). The authors of this study argued that a slow
presentation rate – leading to similar inter-target intervals
as in our study (i.e. 6.5 s compared to 6.4 s) – exceeds the
limits of the acoustic memory trace underlying this auto-
mated MMN. The MMN depends on a short-lived sensory
memory, which appears to last about 6 s (Sussman et al.,
1998). Therefore, in the current experiment, a longer-last-
ing auditory memory template must have been formed,
spanning at least the full inter-target interval, which
probably does not rely on fully automated and involuntary
processes.

4.3. Higher-order dynamics of pattern learning

With respect to higher order dynamics of implicit
learning, we observed that – within the first presentation
cycle – the CNV starts to develop between the 3rd and
4th regularly presented target, and the P3–N2 complex
decreases between the 5th and 6th regularly presented
target; however, with each repetition of the presentation
cycle (cycle length 92 s), both the CNV and P3–N2 effect
seems to occur earlier (see also Fig. 6b and Table 3).
‘Learning’ curves still described the data better than
straight, horizontal, lines. Nevertheless, some of these
curves returned improbable Tn50s, namely, at points
before introduction of the target regularity (e.g., at cycles
4 and 5), probably due to an increase in variability in the
single-trial data. The following observations are therefore
somewhat speculative.

We observed that the CNV seems to develop prior to the
decay of the P3–N2 complex. Thus, after two or three reg-
ular targets, a marked CNV develops – apparently express-
ing target anticipation. Initially, the P3–N2 complex
remains intact at the 3rd and 4th regular target presenta-
tions. However, when the CNV is fully developed, the
P3–N2 complex starts to decrease. It is likely that the
CNV early in the regular sequence follows from a ‘guess’
that some regularity has installed and that it is worth pre-
paring to detect a target. The continuing P3–N2 would
reflect evaluation of the situation to confirm the specula-
tion, while later, when the anticipation has been confirmed,
the stimulus evaluation decreases. We suggest that the
brain seems to be set to finding information in the environ-
ment that might lead to target anticipation rather than tar-
get evaluation, even without awareness on the part of the
participant.

With respect to the delayed response RTs, only signifi-
cant ‘learning’ curves were observed for the cycles 3–4
within the auditory session and cycles 3–4 in the omission
session. Apparently, delayed response RTs provide a more
variable, less robust measure than the ERP components on
a single-trial level. Also, in the current experiment, a
delayed response task was employed. Participants did not
respond directly to the target stimulus, but to the back-
ground stimulus following the target. Therefore, effects of
target detection would have affected RTs less. This is in
Line with Jentzsch and Sommer (2001) who also reported
higher variability in RTs than P300 amplitudes. This higher
variability might be ascribed to the fact that delayed
response RTs are sensitive to more factors – besides the
expectancy of the target – for example response strategy
and motivational aspects of the participant.

4.4. Conclusions

Our findings imply that dynamic cognitive processes
like pattern learning can be studied with the aid of
methods such as single-trial ERP measurements.
Whereas ERPs have classically been measured within
paradigms that avoid systematic trial-to-trial variations
(thus allowing averaging procedures), the ‘learning-odd-
ball’ paradigm described in this study allows us to spe-
cifically study systematic trial-to-trial variations. Thus,
single-trial ERP research can add to one of the most
fascinating and basic subjects of cognitive research,
namely learning. Implementing similar single-trial ERP
paradigms could also lead to clinically useful tools
assessing the ability or speed of pattern learning in dif-
ferent patient groups.
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The brain acts as an integrated information processing system,
which methods in cognitive neuroscience have so far depicted in a
fragmented fashion. Here, we propose a simple and robust way to
integrate functional MRI (fMRI) with single trial event-related
potentials (ERP) to provide a more complete spatiotemporal char-
acterization of evoked responses in the human brain. The idea
behind the approach is to find brain regions whose fMRI responses
can be predicted by paradigm-induced amplitude modulations of
simultaneously acquired single trial ERPs. The method was used to
study a variant of a two-stimulus auditory target detection (odd-
ball) paradigm that manipulated predictability through alterna-
tions of stimulus sequences with random or regular target-to-target
intervals. In addition to electrophysiologic and hemodynamic evoked
responses to auditory targets per se, single-trial modulations were
expressed during the latencies of the P2 (170-ms), N2 (200-ms),
and P3 (320-ms) components and predicted spatially separated
fMRI activation patterns. These spatiotemporal matches, i.e., the
prediction of hemodynamic activation by time-variant informa-
tion from single trial ERPs, permit inferences about regional re-
sponses using fMRI with the temporal resolution provided by
electrophysiology.

multimodal imaging � P3 pattern learning � target detection

Functional MRI (fMRI) of the blood oxygenation level-
dependent (BOLD) response (BOLD-fMRI) measures local

changes in brain hemodynamics associated with a cognitive process
noninvasively with a high spatial resolution. However, an unsolved
issue in fMRI research is the insufficient temporal resolution of the
BOLD response. In contrast to the spatial resolution of BOLD-
fMRI, event-related potentials (ERP) access the current induced by
synaptic activity instantaneously, with an effective temporal reso-
lution on the order of tens to hundreds of milliseconds in case of
long-latency cortical responses. However, the location of underlying
generators cannot be inferred with certainty. In combination, these
two complementary noninvasive methods would allow for joint
high-resolution spatial and temporal mapping of the mental process
under investigation and add to a more complete understanding of
the neural correlates of perception and cognition (1–3). In humans,
this integrated spatial and temporal precision could so far be
obtained only in direct intracranial recordings, usually performed
in patients receiving brain surgery for treatment of epilepsy (4–7).

There are basically three approaches to multimodal integration:
(i) through fusion, usually referring to the use of a common forward
or generative model that can explain both the electroencephalo-
gram (EEG) and fMRI data (8, 9); (ii) through constraints, where
spatial information from the fMRI is used for a (spatiotemporal)
source reconstruction of the EEG (10–12); and (iii) through
prediction, where the fMRI signal is modeled as some measure of
the EEG convolved with a hemodynamic response function, a
principle used in our study.

Invasive recordings in animals have shown that the BOLD
response is approximately linearly related to local changes in the
underlying neuronal activity. The relationship appears to be stron-
ger for the afferent pre- and postsynaptic processing, which pro-
duces the local field potential (LFP), than it is for the output from
the neuron, i.e., spike rate or multiunit activity (13–16). The LFP
is the basis for the scalp EEG and ERP when coherent at a more
macroscopic scale (17), implying that spatiotemporal data integra-
tion can be achieved by investigating correlations between BOLD
and scalp EEG�ERP. This can be done either continuously over
time, as in the study of background rhythms (18–20) and epileptic
discharges (21, 22) in the EEG, or in the context of inducing
variation in a given cognitive operation (23–25). When a consistent
relationship is detected, one can infer that the corresponding fMRI
activation either directly represents the electric source or modulates
remote generators (18–25). However, the temporal evolution of
neuronal activation has not been addressed. To resolve this issue, we
used the trial-to-trial variability of single-trial ERPs (26, 27) re-
corded simultaneously with the fMRI as predictors for hemody-
namic responses to a variant of an auditory target detection
(oddball) paradigm. In this design, infrequent targets were inter-
spersed with frequent standard stimuli at random or regular
intervals in an alternating way (see also Fig. 5, which is published
as supporting information on the PNAS web site). Sequences of
regularly spaced targets, i.e., patterns embedded in this design,
affect the subjective predictability�expectancy (28, 29), and pilot
experiments indicated that several components, at different laten-
cies in the ERP, are modulated according to a sigmoid function of
the number of times an interval is repeated, and learned. These
amplitude modulations (AMs) develop across trials, on a timescale
slow enough to be sampled with fMRI, and should be consistently
correlated with the BOLD response in discrete brain regions across
the observation time, assuming temporally and spatially indepen-
dent neuronal generators (Fig. 1). fMRI responses that can be
predicted by AMs in the ERP can be tied to the processing engaged
at the time of the AMs. The approach thus allows inferences about
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regional responses using fMRI with the effective temporal resolu-
tion afforded by the ERP.

Methods
Subjects. Fifteen healthy right-handed participants (21–28 years,
seven female and eight male) took part in the experiment after
providing a written statement of informed consent.

Stimuli. The stimuli used in the pattern learning paradigm consisted
of 50-ms chords presented continuously during the sparse sampling
fMRI acquisition in an eyes-closed condition via headphones (�80
dB) with an onset asynchrony of 2 s. Infrequent ‘‘targets’’ (500 Hz,
25% probability) were interspersed with frequent ‘‘standards’’ (250
Hz, 75% probability). For a total of 216 targets, alternating
sequences of six consecutive targets were presented either with a
random target-to-target interval (TTI) ranging from 4 to 22 s or
with a regular 8-s TTI (Fig. 5). Each of these 12-target cycles lasted
on the average 96 s. When detecting a target, participants were
instructed to press a response button in the middle of the interval
between the target and the next standard stimulus. The delayed-
response mode was chosen to focus on stimulus-related perceptual
and cognitive effects associated with predictability. The instruction
hampers the expected behavioral effect, i.e., response-time speed-
ing, and thus minimizes the confounding effect of motor-related
potentials on the auditory evoked potential. Participants received a
training session with random targets and were not informed about
the presence of regularity beforehand.

fMRI Data Acquisition and Preprocessing. Imaging was performed on
a 1.5-T Siemens (Erlangen, Germany) scanner. Scanning of anat-
omy was done with a T1-weighted MPRAGE sequence. Thereaf-
ter, 300 BOLD-sensitive echo planar images (EPI) were collected
in two sessions, with a 10- to 15-min break in between. EPI volumes
were anterior–posterior comissure line aligned and consisted of 18
axial slices with 5.5-mm thickness including a 0.5-mm interslice gap
[flip angle 90°; echo time 60 ms; field of view 220 � 220 mm; matrix
64 � 64 voxel). We used a sparse-sampling acquisition design (30)
with 8 s repetition time (TR) and 2 s acquisition time, leaving a 6
s silent gap. This allowed EEG recording without scanner noise and
gradient artifacts. Baseline data were collected at the beginning and
end of each session, nullevents were defined as EPI volumes with
only standard stimuli during the TR. Preprocessing and statistical
analyses were carried out by using SPM2 (Wellcome Department of
Imaging Neuroscience, University College London, London) run-

ning in MATLAB (Mathworks, Natick, MA). All images were re-
aligned to the first image in the time series to correct for head
movement and normalized to the Montreal Neurological Institute
reference space. Normalized data were resliced to a voxel size of 3
mm3, smoothed with an 8-mm full-width half-maximum Gaussian
kernel, and high-pass-filtered (256 s).

EEG Data Acquisition and Preprocessing. EEGs were recorded at
5-kHz sampling frequency with a MR-compatible amplifier (Brain
Products, Munich) placed inside the MR scanner. Subjects were
fitted with an elastic cap (BraincapMR, FMS, Falk Minow Services,
Herrsching, Germany) containing 28 Ag�AgCl electrodes (FP1,
FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1,
OZ, O2, FC5, FC1, FC2, FC6, CP5, CP1, CP2, and CP6). Vertical
eye movement was acquired from below the right eye; the electro-
cardiogram was recorded from the subject’s back. Channels were
referenced to FCz, with a forehead ground and impedances kept
below 5 k�. EEGs were downsampled offline to 500 Hz and filtered
from 1 to 45 Hz. Target epochs from �312 to 712 ms around
stimulus onsets were subjected to independent components analysis
(ICA), implemented in EEGLAB (31) (Institute for Neural Compu-
tation, University of California, San Diego) running in MATLAB.
Components related to pulse and eye-movement artifacts were
removed from the data. After recalculation to average reference,
single trials were wavelet-denoised (26). Coefficients were selected
on the basis of ICA-corrected ERPs and were the same for all
participants and electrodes. For targets (9%) that were presented
within the echo planar image volume acquisition, the ERP was
estimated as the mean of two surrounding targets. The data were
then downsampled to 125 Hz, smoothed to account for intra- and
intersubject latency variability, and high-pass-filtered across trials
(216 s). For all these 8-ms frames from �100 to 600 ms (n � 88)
around stimulus onset, separate single-trial amplitude vectors were
extracted and entered into the joint ERP-fMRI analysis.

Joint ERP-fMRI Analysis. The fMRI time series were modeled with
a design that was deployed sequentially for all frames of the ERP
time series and replicated for four frontal-central electrodes (Fz,
FC1, FC2, and Cz), i.e., those electrode sites where paradigm-
induced amplitude modulations were maximally expressed. For
each of these designs, two regressors were formed by convolving
stimulus functions with a canonical hemodynamic response func-
tion. The first stimulus function encoded a generic obligatory
response to target stimuli of constant amplitude, applicable to

Fig. 1. Illustration of how ERP AM can achieve high temporal resolution in fMRI. A suitable paradigm in a simultaneous ERP-fMRI recording can be used to
induce slow and localized AM (a, b, and c) at or below the sampling frequency of the MR data acquisition. In this example, the model AM are generated in separate
areas sensitive to the manipulation and are detectable in both ERP and fMRI. Consecutive correlation analysis between the fMRI time series and the multiple
ERP time series yields complementary information regarding the spatial location and timing of these processes. Neuroelectric source acitivities need not
necessarily propagate to the scalp directly but can modulate or be modulated by remote sources (indicated by arrows).

Eichele et al. PNAS � December 6, 2005 � vol. 102 � no. 49 � 17799

N
EU

RO
SC

IE
N

CE



regional fMRI responses associated with ‘‘exogenous’’ features of
the auditory evoked response and the motor task. The second
stimulus function encoded the amplitude of the single-trial ERPs
measured at each frame to find brain regions whose responses could
be predicted by paradigm-induced amplitude modulations at that
time frame�electrode, thus sensitive to predictability�pattern learn-
ing. This function was decorrelated (Schmidt–Gram orthogonal-
ization) from the first, ensuring that activation related to the second
function was specific to the electrophysiological measure and not to
some general feature in the evoked response to targets. The
regressors were entered into single-subject fixed-effects regression
analyses; on the group level, random effects analyses were per-
formed by entering the contrast images of each subject into
one-sample t tests. fMRI activation to targets (first regressor) is
significant at P � 0.05, family-wise error corrected, extent 10 voxel.
AM-related activations (second regressor) are significant at P �
0.001 on the voxel level, cluster extent threshold P � 0.01, unless
otherwise stated uncorrected for multiple comparisons. This
threshold appears adequate in this experiment, because we were
interested in the profile of responses and their colocalization with
the auditory evoked responses per se, with maximal sensitivity. To
minimize the risk of reporting Type I false-positive activation, we
applied a descriptive criterion: results were considered reliable and
reported only when same�similar activation patterns are replicated
in adjacent time points and in two or more of the electrodes. A
schematic of the analysis procedure is given in Fig. 2.

Curve Fitting. To illustrate the principal ERP amplitude modula-
tions, hypotheses were tested by nonlinear regression analysis of N1,
P2, N2, and P3 amplitudes in the frontocentral region of interest
(i.e., the average of Fz, FC1, FC2, and Cz) and the response times.
H0 assumed that the measure is insensitive to patterning, repre-
sented by a straight horizontal line; H1 assumed that the measure
is sensitive to patterning and decreasing or increasing its amplitude,
best described as a sigmoid function.

Results
Upon debriefing, all participants noted that targets had occasionally
appeared rhythmically, indicating that they explicitly apprehended
regular target sequences in the experiment. However, none of them
was able to recollect whether these regular patterns were of
constant length, or whether regular patterns alternated with ran-
dom target sequences in succession, suggesting that the overall
order of the experiment remained either unrecognized or was
implicitly acquired.

Average ERPs. The sequence of cerebral processes leading to dis-
crimination of a target stimulus in an active oddball condition may
be indexed by a number of generic ERP components: N1, P2,
mismatch negativity (MMN), N2b, P3a, and P3b (32). The extent
to which components are detectable in the waveforms depends on
experimental parameters. N1 and P2 typically tend to be enhanced
under ‘‘attend’’ compared with ‘‘ignore’’ conditions (33). MMN,
being an automatic response to changes in auditory stimulation,
may be difficult to estimate because of overlapping components like
the N2b, which is elicited by infrequent events in attended input, or
when the difference between standard and deviant stimuli is
relatively large, as in a standard oddball paradigm (32). N2b is
usually followed by P3a, indicating a passive shift of attention, and
the P3b (also labeled P3 or P300), which is particularly sensitive to
task relevance, target probability, sequence, and TTI (23, 28, 29,
34–36). Fig. 3 displays the grand-average ERPs to standards,
regular and random TTI target categories, along with results from
a pointwise t statistic. After a sequence of midlatency responses and
P1 (70–80 ms), a broad centrally distributed N1 (100–120 ms)
emerges, followed by a more central-parietal P2 (160–180 ms). The
dominant feature in the ERPs to both target categories in com-
parison with the standard is a frontal-central N2 (200–220 ms),

followed by a double-peaked P3 (270–360 ms). The earlier peak at
270 ms is more prominent frontocentrally, the later peak is prom-
inent at parietal sites. TTI regularity in the averaged waveforms
most strongly affects N2 and P3 amplitudes but is also seen as a P2
decrement and reduced N1 enhancement.

Curve Fitting. Response times were on average 905 ms (SD 200)
and remained unaffected by the presence of patterns (F � 0.22,
not significant), indicating that participants followed the de-
layed-response instruction.

N1 amplitudes were also insensitive to regularity (F � 0.31, not
significant). All three subsequent components were found to be
sensitive to patterns, showing amplitude effects that were best fitted
with sigmoid curves: P2 (F � 5.60, P � 0.005), N2 (F � 15.64, P �
0.0001), and P3 (F � 29.89, P � 0.0001). The estimated turning
points of these functions were all between the second and third
target presentation in regular sequences. The effect strength grad-
ually increased across components, indicative of either higher intra-
and intersubject consistency at later timepoints or more stable
single-trial estimates. Although the global effect could be well
approximated with a sigmoid learning curve, the raw data expressed
unique shape variations (Fig. 4 Left).

fMRI–Target Processing. Areas constantly contributing to target
processing in a uniform fashion were found in the superior temporal
gyri of both hemispheres extending into the insula and hippocampal
formation, the inferior parietal lobe, anterior cingulate gyrus,
supplementary motor area, pre- and postcentral gyri (left�right),
cuneus, and the middle and superior frontal gyri (right�left), (Fig.
4 and Table 1, which is published as supporting information on the
PNAS web site).

AM-Correlated fMRI. The entire spatiotemporal activation results for
all four electrodes and timepoints, along with plots of the average
scalp topography, waveform, and AM, were compiled into Movies
1 and 2, which are published as supporting information on the
PNAS web site.

Here, we focus on the maxima of the three most consistent
AM-correlated fMRI activation patterns: P2 (�170 ms), N2 (�200
ms), and P3 (�320 ms).

Inverse relations between BOLD and AM on P2 were seen in
posterior cingulate, precuneus, supramarginal gyri, left parietal,
and frontal areas (Fig. 4; see also Table 2, which is published as
supporting information on the PNAS web site). Inverse relations
were also seen for N2, with the most consistent region across
electrodes being located in the right medial frontal gyrus. Addi-
tional clusters were in the right and left superior frontal gyri, left
subcallosal gyrus, left hippocampus, and right amygdala (Fig. 4; see
also Table 3, which is published as supporting information on the
PNAS web site). Note that these latter results stem from the Cz
electrode, where the clusters pass FDR correction, but are also seen
at FC1 and FC2 at a lower cluster extent threshold. We observed
positive linear relations between BOLD responses and the P3 AM
(�320 ms), mainly in the middle and inferior frontal gyri, inferior
parietal lobule, and middle temporal gyri in the right hemisphere.
Smaller additional activations were also observed in the right insula,
right postcentral gyrus, left supramarginal, and middle frontal gyri
(Fig. 4; see also Table 4, which is published as supporting infor-
mation on the PNAS web site). There was no consistent amplitude
modulation of N1 (100 ms), such that it did not differ from the
stimulus function and thus did not support a significant regression.

Except for a close spatial relationship between P2- and P3-
related regions in the left supramarginal gyrus (mm distance X 0–3,
y, 9; and z, 8), there was no considerable overlap among the AM
activations. There was also no direct match between any of the AM-
and target�response-related local maxima. Note that the delayed-
response instruction used in this experiment effectively pruned the
salient speeding of response times induced by target predictability.
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Consequently, we did not observe ERP-related fMRI activation in
areas in the motor system(s) that were found sensitive to sequence
learning elsewhere (37, 38).

Discussion
When studying the neuronal substrates of cognitive processes,
the researcher typically considers both their spatial and temporal
properties. There is, however, a disparity between the major
methods in human cognitive neuroimaging, focusing either on
the ‘‘where’’ (e.g., fMRI) or ‘‘when’’ (e.g., ERPs), thus providing
only a limited window into the neuronal correlates. We propose

here that a key to merging both methods is to exploit the
functional resolution, that is, how signatures of an experimental
manipulation are correlated. The crucial aspect of this approach
for spatiotemporal integration is to make effective use of single-
trial variability in the entire ERP time series to predict regional
fMRI activations, i.e., using time-variant effects induced by a
manipulation as a vehicle to achieve a temporal expansion of the
fMRI. The prospect of this conjunction is that it allows appli-
cation of an electrophysiologically derived temporal order to
fMRI activation that aids in determining the hierarchy and
‘‘serial’’ functional connectivity of brain regions associated with

Fig. 2. Flowchart of the single-trial ERP and fMRI analysis. Data are decomposed with independent components analysis (a), and artifact topographies
(cardioballistic, eye movement) are removed. Effects of component removal on the ERPs are shown in a representative subject (Upper Center). Subsequently,
wavelet denoising (b) is applied to the single trials. AM vectors are derived separately for each time point and electrode. To ensure specificity, shared variance
between target presentation and AM is removed by orthogonalization. The regressors are convolved with canonical hemodynamic response functions (HRF) to
account for the neurovascular coupling before voxelwise correlations with the fMRI signal (c).
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a process, in this case recognition of temporal patterns in the
auditory environment.

Later components in the ERPs are often attributed to ‘‘endog-
enous’’ or ‘‘top-down’’ processing (32). Recent models of brain
function in the context of perceptual inference and learning focus
on the hierarchical nature of cortical systems and suggest that these
components derive from high levels of processing (ref. 39; for an
overview, see ref. 40). We therefore expected that the regionally
specific correlates of target predictability would most likely be
located outside the sensory regions, in multimodal higher-order
cortical areas. Conversely, the fMRI correlates of earlier exogenous
components (32), insensitive to the manipulation, would be local-

ized in the vicinity of sensory regions. For this reason, we did not
constrain our search for AM-related effects to the main effects of
auditory stimulation but used a whole-brain search for the latency-
specific correlates. The regional deployment of our activations
conformed roughly to our general prediction that later components
were coherent with metabolic or synaptic activity in higher cortical
areas.

Activation associated with auditory target processing, insensitive
to predictability, was seen maximally expressed in the superior
temporal gyri and in further areas associated with auditory and
visual target detection (12, 41, 42).

Three independent stages separated from peak to peak by 30 ms
(P2-N2), 120 ms (N2-P3), and 150 ms (P2-P3) were additionally
identified, where the amplitude modulations of single-trial ERP
sequences selectively predicted fMRI activation.

The first stage reached maximum intensity during P2 (�170 ms)
after target onset. It is worth noting that the regions mediating the
P2 effect overlap with those being associated with ‘‘default mode’’
brain activation (18, 43). P2 hosts processing negativities that
indicate matching processes between the sensory input and a
neuronal representation of stimuli selected for further processing
and as such are markers of sensory memory and selective attention
(32). The main sources of these components reside bilaterally in the
temporal and frontal lobes (32). It is, however, conceivable that
activated brain regions have a modulating effect on these compo-
nents, allowing for optimization of resource allocation when target
occurrence is predictable. This interpretation would also be con-
sistent with the role appointed to the ‘‘default mode’’ (18, 43). In
addition, fMRI�positron-emission tomography results of spatial
and temporal attention, and sequencing are overlapping with the
sites seen here (37, 38). The fMRI activation in the supramarginal
and posterior cingulate gyri �170 ms matches with the onset latency
of a widespread waveform that has been reported from intracranial
recordings (5).

The second spatiotemporal stage during the N2 (�200 ms) was
located in the anterior frontomedian cortex and parahippocampal
regions. Portions of the N2 reflect the attentive detection of a
mismatch between stimulus features and an actively generated
memory template. fMRI correlates of this memory process are

Fig. 3. Grand-average ERP at frontocentral sites. Waveforms are shown from
�100 to 600 ms around stimulus onset for all targets at the third to sixth
position of all random TTI cycles (blue), all targets at the third to sixth position
of all regular TTI cycles (orange), and all standards not immediately before or
after a target (gray dotted). Effects of target predictability appear most
prominently as amplitude reductions of N2 and P3 and, to a lesser degree, P1,
N1, and P2 are also affected. Above the waveform, significant differences (P �
0.05) from a pointwise t statistic are plotted as blue rectangles for random
target vs. standard comparison and in orange for the regular target vs.
standard comparison. Black rectangles below the waveform indicate signifi-
cant differences between the random and regular target categories.

Fig. 4. AM-correlated fMRI results. Render views and maximum-intensity projections of the general target related activation and positive (red) and negative
(blue) correlations with the respective AM. Each correlation map shows for each voxel the maximum t value from the four electrodes (FZ, FC1, FC2, and Cz). To
the left of each rendering of the AM-correlated fMRI, the average AM (empty circles � SEM) and the fitted sigmoid curves are shown. Top row, target-related
activation, P � 0.05 (FWE), cluster size �10; second row, P2 (170 ms); third row, N2 (200 ms); and fourth row, P3 (320 ms). All AM-related activations were
thresholded at P � 0.001 (uncorrected), cluster extent threshold P � 0.01.
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observed in the same brain regions as activated in the present study
(38, 42). Moreover, intracranial recordings in the vicinity of these
regions have documented depth N2s in the same peak latency range
(6, 7). Further, the scalp N2 to auditory targets is strongly reduced
in patients with bilateral hippocampal damage (44), and the sigmoid
AM is consistent with recent fMRI findings showing rapid pre-
frontal and hippocampal habituation to novel events (45).

The overall strongest and most extensive spatiotemporal stage
was related to the P3 (�320 ms) and yielded activations in frontal,
temporal, and parietal regions most prominent in the right hemi-
sphere. For all these regions, intracranial recordings have evi-
denced depth P3s with about the same peak latency (5–7). P3 has
been suggested to index a mechanism that is elicited when a
memory representation of the recent stimulus context is updated
upon detection of deviance from it (36, 46, 47). The effects of a
variety of manipulations (e.g., task relevance, information content,
probability, and sequence) have been delineated in support of this
view (36, 46, 47). fMRI activation in the P3-related regions is seen
in a variety of related cognitive operations, including target pro-
cessing (12, 23, 41, 42, 48), attention, working memory (38, 49) and
sequencing (37). Although the rightward lateralization is not strictly
predicted from scalp (46, 47) and intracranial measurements (4–7),
hemodynamic activity to auditory target�novel stimuli has been
shown to be greater in frontal, temporal, and parietal regions of the
right hemisphere (42, 50). Also, our data co-localize with fMRI
studies reporting right-lateralized attentional mechanisms that
would host much of the functionality that is probed by target
detection in general (49, 51–53) and, specifically, by manipulating
target predictability (54, 55). One should note, however, that a
portion of the lateralization might also be attributable to the
left-lateralized activation around the central sulcus induced by the
motor task, which could have minimized the relative contribution
of the predictability effect in adjacent areas to the total variance of
the fMRI signal.

The common feature in all three sequential spatiotemporal
stages was the sigmoid-shaped response amplitude modulation
coherently expressed in the ERP and fMRI, because the target-
to-target interval was repeated and became predictable. One classic
psychophysiological example for such behavior is the orienting
response�reflex, which displays rapid habituation to regularly pre-
sented stimuli and dishabituation to deviants from a pattern of
preceding stimuli (56, 57). Similarly, this principal mode of respond-
ing is overlapping with that of the mismatch negativity (32) and P3
components (36, 42, 46, 58). At the core, all these neuronal
processes encompass detection of a salient change in the environ-
ment, comparison against a stored representation, and the elicita-
tion of an adequate response. Models accounting for these effects,
however, to an extent are conceptually incomplete in the sense that
they focus more on why and how the brain responds to unexpected
events than on how the representation, i.e., a prediction, is estab-
lished in the first place. This aspect, however, can be accounted for
by linking these orienting response�reflex-type responses with a
Bayesian scheme that defines neuronal systems as reciprocally
connected hierarchical generative models that construct context-
dependent expectancies (39). The amplitude behavior of ERP
components (and, correspondingly, the fMRI signal) would here
represent the state of prediction error in the model, indicating to
which degree ‘‘surprise’’ about the sensory input is suppressed (39):
to detect the presence (or absence) of patterns in the environment
means to extract contingency rules with highly salient predictive
value for the anticipation of future events (39, 55, 59). In this
context, our data capture the spatiotemporal dynamics associated
with such perceptual inference and learning.

We thank Roger Barndon for his invaluable help with MRI data
acquisition, Christine Holen for her help with subject preparation, and
Jody C. Culham and Anthony Singhal for helpful comments on an earlier
draft. M.M. was supported by the Berlin Neuroimaging Center, Berlin
(BMBF). The present study was financially supported by grants from the
Research Council of Norway (to K.H.).

1. Dale, A. M. & Halgren, E. (2001) Curr. Opin. Neurobiol. 11, 202–208.
2. Horwitz, B. & Poeppel, D. (2002) Hum. Brain Mapp. 17, 1–3.
3. Hopfinger, J. B., Khoe, W. & Song, A. W. (2005) in Event Related Potentials, A Methods

Handbook., ed. Handy, T. C. (MIT Press, Cambridge, MA), pp. 345–380.
4. Halgren, E., Marinkovic, K. & Chauvel, P. (1998) Electroencephalogr. Clin. Neurophysiol.

106, 156–164.
5. Halgren, E., Baudena, P., Clarke, J. M., Heit, G., Liegeois, C., Chauvel, P. & Musolino, A.

(1995) Electroencephalogr. Clin. Neurophysiol. 94, 191–220.
6. Halgren, E., Baudena, P., Clarke, J. M., Heit, G., Marinkovic, K., Devaux, B., Vignal, J. P.

& Biraben, A. (1995) Electroencephalogr. Clin. Neurophysiol. 94, 229–250.
7. Baudena, P., Halgren, E., Heit, G. & Clarke, J. M. (1995) Electroencephalogr. Clin.

Neurophysiol. 94, 251–264.
8. Martinez-Montes, E., Valdes-Sosa, P. A., Miwakeichi, F., Goldman, R. I. & Cohen, M. S.

(2004) NeuroImage 22, 1023–1034.
9. Valdes-Sosa, P. A. (2004) Neuroinformatics 2, 239–250.

10. Bonmassar, G., Schwartz, D. P., Liu, A. K., Kwong, K. K., Dale, A. M. & Belliveau, J. W.
(2001) NeuroImage 13, 1035–1043.

11. Liu, A. K., Belliveau, J. W. & Dale, A. M. (1998) Proc. Natl. Acad. Sci. USA 95, 8945–8950.
12. Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R. & Linden,

D. E. (2004) J. Neurosci. 24, 9353–9360.
13. Heeger, D. J. & Ress, D. (2002) Nat. Rev. Neurosci. 3, 142–151.
14. Lauritzen, M. & Gold, L. (2003) J. Neurosci. 23, 3972–3980.
15. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. (2001) Nature 412,

150–157.
16. Kim, D. S., Ronen, I., Olman, C., Kim, S. G., Ugurbil, K. & Toth, L. J. (2004) NeuroImage

21, 876–885.
17. Nunez, P. L. (1995) Neocortical Dynamics and Human EEG Rhythms (Oxford Univ. Press,

New York).
18. Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-Haddadi, A. & Kleinschmidt,

A. (2003) Proc. Natl. Acad. Sci. USA 100, 11053–11058.
19. Moosmann, M., Ritter, P., Krastel, I., Brink, A., Thees, S., Blankenburg, F., Taskin, B.,

Obrig, H. & Villringer, A. (2003) NeuroImage 20, 145–158.
20. Goldman, R. I., Stern, J. M., Engel, J., Jr., & Cohen, M. S. (2002) NeuroReport 13, 2487–2492.
21. Gotman, J., Benar, C. G. & Dubeau, F. (2004) J. Clin. Neurophysiol. 21, 229–240.
22. Salek-Haddadi, A., Friston, K. J., Lemieux, L. & Fish, D. R. (2003) Brain Res. Brain Res. Rev.

43, 110–133.
23. Horovitz, S. G., Skudlarski, P. & Gore, J. C. (2002) Magn. Reson. Imaging 20, 319–325.
24. Mangun, G. R., Hopfinger, J. B., Kussmaul, C. L., Fletcher, E. & Heinze, H. J. (1997) Hum.

Brain Mapp. 5, 273–279.
25. Horovitz, S. G., Rossion, B., Skudlarski, P. & Gore, J. C. (2004) NeuroImage 22, 1587–1595.
26. Quian Quiroga, R. & Garcia, H. (2003) Clin. Neurophysiol. 114, 376–390.
27. Spencer, K. M. (2005) in Event Related Potentials, A Methods Handbook, ed. Handy, T. C.

(MIT Press, Cambridge, MA), pp. 209–228.

28. Sutton, S., Braren, M., Zubin, J. & John, E. R. (1965) Science 150, 1187–1188.
29. Squires, K. C., Wickens, C., Squires, N. K. & Donchin, E. (1976) Science 193, 1142–1146.
30. Hall, D. A., Haggard, M. P., Akeroyd, M. A., Palmer, A. R., Summerfield, A. Q., Elliott,

M. R., Gurney, E. M. & Bowtell, R. W. (1999) Hum. Brain Mapp. 7, 213–223.
31. Delorme, A. & Makeig, S. (2004) J. Neurosci. Methods 134, 9–21.
32. Naatanen, R. (1992) Attention and Brain Function (Lawrence Erlbaum, Hillsdale, NJ).
33. Naatanen, R. & Picton, T. (1987) Psychophysiology 24, 375–425.
34. Croft, R. J., Gonsalvez, C. J., Gabriel, C. & Barry, R. J. (2003) Psychophysiology 40, 322–328.
35. Duncan-Johnson, C. C. & Donchin, E. (1977) Psychophysiology 14, 456–467.
36. Donchin, E. & Coles, M. G. H. (1988) Behav. Brain Sci. 11, 357–374.
37. Janata, P. & Grafton, S. T. (2003) Nat. Neurosci. 6, 682–687.
38. Cabeza, R. & Nyberg, L. (2000) J. Cognit. Neurosci. 12, 1–47.
39. Friston, K. (2005) Philos. Trans R. Soc. London B 360, 815–836.
40. Friston, K. J. (2005) Annu. Rev. Psychol. 56, 57–87.
41. Linden, D. E., Prvulovic, D., Formisano, E., Vollinger, M., Zanella, F. E., Goebel, R. &

Dierks, T. (1999) Cereb. Cortex 9, 815–823.
42. Kiehl, K. A., Stevens, M. C., Laurens, K. R., Pearlson, G., Calhoun, V. D. & Liddle, P. F.

(2005) NeuroImage 25, 899–915.
43. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A. & Shulman,

G. L. (2001) Proc. Natl. Acad. Sci. USA 98, 676–682.
44. Knight, R. (1996) Nature 383, 256–259.
45. Yamaguchi, S., Hale, L. A., D’Esposito, M. & Knight, R. T. (2004) J. Neurosci. 24,

5356–5363.
46. Polich, J. (2003) in Detection of Change: Event-Related Potential and fMRI Findings, ed.

Polich, J. (Kluwer, Norwell, MA), pp. 83–99.
47. Picton, T. W. (1992) J. Clin. Neurophysiol. 9, 456–479.
48. Kirino, E., Belger, A., Goldman-Rakic, P. & McCarthy, G. (2000) J. Neurosci. 20,

6612–6618.
49. Coull, J. T. (1998) Prog. Neurobiol. 55, 343–361.
50. Stevens, M. C., Calhoun, V. D. & Kiehl, K. A. (2005) NeuroImage 26, 782–792.
51. Downar, J., Crawley, A. P., Mikulis, D. J. & Davis, K. D. (2000) Nat. Neurosci. 3, 277–283.
52. Corbetta, M. & Shulman, G. L. (2002) Nat. Rev. Neurosci. 3, 201–215.
53. Foucher, J. R., Otzenberger, H. & Gounot, D. (2004) NeuroImage 22, 688–697.
54. Ivry, R. & Knight, R. T. (2002) Nat. Neurosci. 5, 394–396.
55. Huettel, S. A., Mack, P. B. & McCarthy, G. (2002) Nat. Neurosci. 5, 485–490.
56. Sokolov, E. N. (1963) Perception and the Conditioned Reflex (Pergamon, Oxford, U.K.).
57. Loveless, N. (1983) in Orienting and Habituation: Perspectives in Human Research, ed. Siddle,

D. (Wiley, Chichester, U.K.), pp. 71–108.
58. Halgren, E. & Marinkovic, K. (1995) in Recent Advances in Event-Related Brain Potential

Research, eds. Ogura, C., Koga, Y. & Shimokochi, M. (Elsevier, Amsterdam), pp. 1072–1084.
59. Llinas, R. R. (2001) I of the Vortex: from Neurons to Self (MIT Press, Cambridge, MA).

Eichele et al. PNAS � December 6, 2005 � vol. 102 � no. 49 � 17803

N
EU

RO
SC

IE
N

CE



Paper III 

 

Eichele T, Calhoun VD, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, 

Hugdahl K. (2007) Unmixing concurrent EEG-fMRI with parallel independent component 

analysis. International Journal of Psychophysiology, epub Aug 2 

 

 





siology xx (2007) xxx–xxx

+ MODEL

INTPSY-09785; No of Pages 13

www.elsevier.com/locate/ijpsycho

ARTICLE IN PRESS
International Journal of Psychophy
Unmixing concurrent EEG-fMRI with parallel
independent component analysis

Tom Eichele a,⁎,1, Vince D. Calhoun b,c,d,1, Matthias Moosmann a, Karsten Specht a,
Marijtje L.A. Jongsma e, Rodrigo Quian Quiroga f, Helge Nordby a, Kenneth Hugdahl a,g

a Department of Biological and Medical Psychology, University of Bergen, Jonas Lies Vei 91, 5011 Bergen, Norway
b The MIND Institute, 1101 Yale Boulevard, N.E, Albuquerque, NM 87131, USA

c Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
d Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States

e NICI, Department of Biological Psychology, University of Nijmegen, P.O.Box 9104, 6500 HE University of Nijmegen, The Netherlands
f Department of Engineering, University Road, Leicester LE1 7RH, United Kingdom

g Haukeland University Hospital, Bergen, Norway

Received 17 November 2006; accepted 27 April 2007
Abstract

Concurrent event-related EEG-fMRI recordings pick up volume-conducted and hemodynamically convoluted signals from latent neural
sources that are spatially and temporally mixed across the brain, i.e. the observed data in both modalities represent multiple, simultaneously active,
regionally overlapping neuronal mass responses. This mixing process decreases the sensitivity of voxel-by-voxel prediction of hemodynamic
activation by the EEG when multiple sources contribute to either the predictor and/or the response variables. In order to address this problem, we
used independent component analysis (ICA) to recover maps from the fMRI and timecourses from the EEG, and matched these components across
the modalities by correlating their trial-to-trial modulation. The analysis was implemented as a group-level ICA that extracts a single set of
components from the data and directly allows for population inferences about consistently expressed function-relevant spatiotemporal responses.
We illustrate the utility of this method by extracting a previously undetected but relevant EEG-fMRI component from a concurrent auditory target
detection experiment.
© 2007 Elsevier B.V. All rights reserved.
Keywords: EEG-fMRI; ICA; ERP; Auditory; Change detection
1. Introduction

Processing of simple stimuli and tasks produces spatially and
temporally extensive event-related neuronal responses in the
brain. For example, auditory target detection induces hemody-
namic activation in about fourty cortical, subcortical and
cerebellar regions (Kiehl et al., 2005), complementing the
results from intracranial recordings (Baudena et al., 1995;
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Halgren et al., 1995a,b). These neuronal mass responses can be
observed across scales and modalities from single unit
recordings, intracranial and scalp electrophysiology, as well as
metabolic and hemodynamic signals, but no single technique
provides a sufficient view of the full temporal, spatial and
functional extent of these responses. Visibility can be improved
with techniques that integrate data across different neuroima-
ging modalities (Debener et al., 2006; Hopfinger et al., 2005;
Horwitz and Poeppel, 2002; Makeig et al., 2002). In the case of
concurrent EEG-fMRI recordings, one can complement the
temporal resolution provided by scalp potentials with the spatial
precision of fMRI. This can be done for example by finding
correlations between single-trial modulation at a selected
latency in the event-related EEG and activation in the fMRI
volume employing mass univariate voxel-by-voxel analysis
ith parallel independent component analysis. Int. J. Psychophysiol. (2007),
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(Bénar et al., 2007; Debener et al., 2005b; Eichele et al., 2005).
Implicit in this approach is the critical assumption that the scalp
EEG data from a selected channel and latency can predict the
fMRI activation in single voxels (Friston et al., 1995; Friston,
2005b). This is imposed by the sampling properties of the
recordings, and the way fMRI time-series data are commonly
analyzed. While this assumption provides a workable solution
to ‘integration-by-prediction’, it is not necessarily physiologi-
cally plausible for many of the samples from both modalities.
The reason for this is that a salient event can induce multiple,
simultaneously active, regionally overlapping, and functionally
separable responses which add to existing neuronal background
activity, in other words, event-related processes are spatially and
temporally mixed across the brain. The scalp EEG samples a
volume-conducted, spatially degraded version of the responses,
where the potential at any location and latency can be con-
sidered a mixture of multiple independent timecourses that stem
from large-scale synchronous field potentials (Makeig et al.,
2004a; Onton et al., 2006). Similarly, the neurovascular
transformation of the distributed neuronal activity into hemo-
dynamic signals (Lauritzen and Gold, 2003; Logothetis, 2003)
affords detection of blood oxygenation level dependent
responses (BOLD, Ogawa et al., 1990) that are temporally
degraded and spatially mixed across the fMRI volume (Calhoun
and Adali, 2006; McKeown et al., 2003).

This physiological spatiotemporal mixing process creates
situations in which prediction of fMRI activity by EEG features
has to contend with the fact that neither the predictor, nor the
response variables are any likely to represent a single source of
variability. For example, the point-to-point correlation between
the two data mixtures fails when the trial-to-trial modulation in
the EEG receives different contributions from several function-
relevant spatially separate sources such that no single regional
fMRI response represents the predicted signal. Also, this applies
to the case where the EEG feature captures a single source, but
the fMRI activity at corresponding locations is buried in the
spread of other, unrelated sources, leading to underestimation of
the spatial extent of the response. Although denoising and
inclusion of parametric modulations into the stimulus paradigm
(Eichele et al., 2005), and temporal unmixing of the EEG
(Debener et al., 2005b) solve parts of the problem and make
way for refined spatiotemporal mapping, there is still need for
improvement of the analysis tools for integration of concurrent
recordings (cf. Debener et al., 2006). One such improvement is
to unmix both modalities in parallel at the single-trial level,
which follows naturally from the recent work (Calhoun et al.,
2006b; Debener et al., 2005b; Eichele et al., 2005) and the
reasoning laid out above.

Following the above arguments, we develop an analysis
framework for group data that employs Infomax independent
component analysis (ICA, Bell and Sejnowski, 1995; Lee et al.,
1999; for an overview see Stone, 2002) to recover a set of
statistically independent maps from the fMRI (sICA), and
independent time-courses from the EEG (tICA) separately, and
match these components across modalities by correlating their
trial-to-trial modulation. ICA was developed to address linear
mixing problems similar to the ‘cocktail party problem’ in
Please cite this article as: Eichele, T. et al. Unmixing concurrent EEG-f MRI w
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which many people are speaking at once and multiple
microphones pick up different mixtures of the speakers' voices
(Bell and Sejnowski, 1995). The algorithm used here attempts
to separate mixed signals into maximally independent sources
by maximization of information transfer between them. ICA has
general applicability to normally distributed two-dimensional
mixtures, and regarding psychophysiological data it has been
used for decomposition of averaged ERPs (Makeig et al., 1997),
single trial EEG (Makeig et al., 2004b; Onton et al., 2006),
fMRI (Calhoun and Adali, 2006) and EEG-fMRI (Calhoun
et al., 2006b; Debener et al., 2005b; Feige et al., 2005). ICA can
be used for EEG-fMRI integration assuming that the different
recording modalities faithfully sample features from the same
set of sources, expressed in the covariation between single trials
(Debener et al., 2005b) or subjects (Calhoun et al., 2006b).

Unlike univariate methods such as the general linear model,
ICA is not naturally suited to generalize results from a group
of subjects. There are two strategies to allow for matching of
independent components across individuals: one is to combine
individual ICs across subjects with clustering techniques
(Esposito et al., 2005; Onton et al., 2006). Another approach is
to create aggregate data containing observations from all
subjects, estimate a single set of ICs and then back-reconstruct
these in the individual data (Calhoun et al., 2001; Schmithorst
and Holland, 2004). We adopted the latter strategy for the group
EEG temporal ICA analysis, because it directly estimates
components that are consistently expressed in the population,
involves the least amount of user interaction and is straightfor-
ward to combine with the existing framework for group ICA of
fMRI data (Calhoun et al., 2001).

In summary, possible ways for EEG-fMRI integration
include predicting both modalities, a mass-univariate framework
testing all voxel timeseries in the fMRI, as well as channels and
timepoints in the EEG employing a pre-defined model function
as is commonly done in fMRI timeseries analysis (however, to
the best of our knowledge this has not yet been realized).
Another option is to predict the fMRI data with the measured
EEG single trial amplitudes, assuming that some EEG time-
points and channels represent functional processes in some
voxels without much overlap, representing a point-to-point
correlation between mixtures (Bénar et al., 2007; Eichele et al.,
2005). A third solution is to unmix the EEG and predict the fMRI
mixture with the modulation of a temporally independent
component (Debener et al., 2005b; Feige et al., 2005). The
method developed here un-mixes bothmodalities separately, and
matches temporal ICs in the EEG with spatial ICs in the fMRI.

The utility of this method is demonstrated in previously
published data that were collected in an auditory oddball with
varying degrees of target predictability. The parametric
modulation induced distinct EEG-correlated fMRI activation
patterns at the latencies of the P2, N2, and P3 (Eichele et al.,
2005; see also Jongsma et al., 2006). We have re-analyzed these
data with the open search question whether systematic EEG-
fMRI covariation was missed out in our previous analysis and if
it could be recovered by parallel ICA. A likely candidate for
such a miss is the auditory onset response and the subsequent
low-level orienting/change detection processes. Although being
ith parallel independent component analysis. Int. J. Psychophysiol. (2007),
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expressed in the N1-ERP (Naatanen and Picton, 1987; Woods,
1995) and in bilateral temporal fMRI activation (Kiehl et al.,
2005; Liebenthal et al., 2003; Linden et al., 1999) this process
did not support a significant correlation between the modalities
(cf. Eichele et al., 2005).

2. Methods

2.1. Subjects

Fifteen healthy, right-handed participants (21–28 years, 7f/
8 m) took part in the experiment after providing informed
consent.

2.2. Stimuli

Chords of 50 ms duration were presented in an eyes-closed
condition via headphones with an onset asynchrony of 2 s.
Infrequent targets (500 Hz) were presented at a probability of
0.25 among frequent standards (250 Hz, P 0.75). Alternating
sequences of six successive targets were presented either with
pseudorandom target-to-target interval (TTI) ranging from 4 to
22 s or with a regular 8 s TTI. Each of these 12-target sequences
lasted on the average 96 s, and were repeated 18 times (216
targets total). In order to avoid speeded response times to
predictable targets, participants were instructed to respond in
the middle of the interval between the target and the next
standard stimulus. Participants were not informed about the
presence of regular patterns beforehand.

2.3. fMRI data acquisition (Fig. 1, Bf)

Imaging was performed on a 1.5T scanner (Siemens,
Germany). After scanning of anatomy with a T1-weighted
MPRAGE sequence, 300 BOLD sensitive echo planar images
(EPI) were collected. EPI volumes were aligned to the anterior-
posterior comissura line and consisted of 18 axial slices with
5.5 mm thickness including 0.5 mm interslice gap, flip angle:
90°, excitation time: 60 ms, field of view: 220×220mm, matrix:
64×64 voxels. A sparse-sampling acquisition protocol (Hall
et al., 1999) with 8 s repetition time and 2 s acquisition time was
used. The protocol makes use of the hemodynamic lag between
stimulus onset and BOLD peak and allowed for EEG-recording
without interfering scanner noise and gradient artefacts during a
6 s silent gap between successive volume acquisitions.

2.4. EEG data acquisition (Fig. 1, Be)

EEGs were recorded continuously at 5 kHz with an amplifier
placed inside the MR-scanner (BrainProducts, Germany).
Subjects were fitted with an elastic cap containing 30 Ag/
AgCl electrodes (FP1, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4,
T8, P7, P3, Pz, P4, P8, O1,OZ, O2, FC5, FC1, FC2, FC6, CP5,
CP1, CP2, CP6, EOG, ECG) referenced to FCz, impedances
were kept below 5 kΩ.

The analyses reported below were done in Matlab (www.
mathworks.com) with the academic freeware toolboxes
Please cite this article as: Eichele, T. et al. Unmixing concurrent EEG-f MRI w
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EEGLAB (http://sccn.ucsd.edu/eeglab), GIFT (http://icatb.
sourceforge.org), SPM2 (http://www.fil.ion.ucl.ac.uk/spm),
and customized functions. A schematic overview of the
analyses is provided in Fig. 1.

2.5. EEG preprocessing (Fig. 1, Te)

Continuous EEGs were downsampled offline to 500 Hz and
filtered from 1–45 Hz (24 db/octave). EEG epochs from −312
to 712 ms (512 points) around standard and target sound onsets
were recalculated to average reference and subjected to an
individual tICA as implemented in EEGLAB (Delorme and
Makeig, 2004). This step was used to identify and remove pulse
and eye movement artefacts from the data (cf. Debener et al.,
2007; Jung et al., 2000), retaining minimally 20 out of 30
components. Single-trials were then wavelet-denoised (Quian
Quiroga and Garcia, 2003), constraining the single trial EEGs to
the time-frequency features relevant for the evoked activity.

2.6. fMRI preprocessing (Fig. 1, Tf)

All images were realigned to the first image in the time-series
to correct for head movement and then normalized to the
Montreal Neurological Institute (MNI) reference space, and
were resliced to a voxel size of 3 mm3 and smoothed with a
8 mm FWHM gaussian kernel. Voxel timecourses were high-
pass filtered at 128 s with a 5th order Butterworth digital filter to
remove slow drift, normalized to unit variance, and the image
volume for the analysis was constrained to voxels with N50%
probability of being grey matter. These pre-processing steps are
optional, and empirical choices for this particular data set, but
are not principally necessary for sICA of fMRI.

2.7. Group spatial ICA of fMRI data (sICA)

An exploratory single-subject spatial ICA was used for
inspection of individual components across subjects in our
sample, and in order to derive the appropriate number of
components to be estimated in the group ICA step using
minimum description length criteria (Li et al., in press). The
estimated dimensionality of the data across subjects averaged to
24, thus the data from each participant was pre-whitened and
reduced (in time) to 24 dimensions via principal component
analysis (PCA), retaining between 70–90% of the variance
(Fig. 1, Rf). Individual principal components were then con-
catenated together in a single set (Fig. 1, Gf) in which sICAwas
performed. In addition to the resulting independent spatial maps,
this analysis reconstructs component timecourses by multiply-
ing the dewhitening matrix from the first data reduction by the
corresponding partition of the unmixing matrix. These time-
courses reflect the trial-to-trial hemodynamic variability of the
fMRI experiment and were used for assessment of covariation
between components in the two modalities (see tIC-sIC
integration). For the fMRI sIC component maps, mean and
variance of the voxel weights were calculated, and the variance
across subjects was used as an estimate of the population
variance. The weights were treated as random variables and
ith parallel independent component analysis. Int. J. Psychophysiol. (2007),
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Fig. 2. tIC timecourses and topographies. Top: average ERP and corresponding timecourses of the five independent components or standard (left) and target (right)
epochs. Bottom: component topographies, as scalp potential (μV) and t-statistic (t).
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entered into voxel-wise one-sample t-tests against the null
hypothesis of zero magnitude. Results from these tests were
considered significant at 1% false positive discovery rate (FDR,
Benjamini and Hochberg, 1995) with a cluster extent threshold
of at least 5 voxels.
Fig. 1. Schematic of parallel group independent component analysis. We assume t
function-related neuronal sources (s) in a consistent manner across the sampled popul
mixed by the unknown mixing system A. Neurovascular coupling transforms the mi
entire cerebral volume by the MR scanner (Bf), while passive volume conduction ena
temporally (in Bf) or spatially (in Be) degraded, but they sufficiently retain their func
components. Modality-specific pre-processing steps (Tf, Te) are then implemented t
volumes), and to reduce noise (e.g. ICA-based artefact removal from the EEG). Herea
maps (Rf) or timecourses (Re). Individual PCs are then concatenated together in aggre
the aggregate fMRI data, the mixing matrix Âf and the source maps (s) are estimated u
aggregate EEG data, the mixing matrix Âe and the source timecourses (s) are estimat
For each modality, individual component maps and timecourses are back-reconstructe
Components are matched across modalities by correlating the trial-to-trial modulatio

Please cite this article as: Eichele, T. et al. Unmixing concurrent EEG-f MRI w
doi:10.1016/j.ijpsycho.2007.04.010
2.8. Group temporal ICA of EEG data (tICA)

For estimation of the group tICA we adopt the rationale
proposed by Calhoun (Calhoun et al., 2001). The analysis
framework is divided into the underlying data generation and
hat an experimental manipulation induces responses in a set of generic event/
ation (Subj. 1-M). The sources are expressed spatially (v) and temporally (t) and
xed signals (u) to hemodynamic (BOLD) responses which are sampled from the
bles recording of the signals as scalp EEG (Be). At this step the signals are either
tional signature, i.e. the trial-to-trial modulation, which affords later matching of
o allow for later group inferences (e.g. spatial normalisation of individual MR
fter, the individual data are pre-whitened and reduced to N principal component
gate data-sets (Gf, Ge), containing the N signal mixtures x from all subjects. From
sing spatial ICA, recovering N spatially independent components in Ĉf. From the
ed using temporal ICA, recovering N temporally independent components in Ĉe.

d by projecting the aggregate components into the individual, pre-processed data.
ns of the fMRI-sICs with those of the EEG tICs. ⁎⁎⁎: independent.

ith parallel independent component analysis. Int. J. Psychophysiol. (2007),
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mixing process, recording, pre-processing, reduction and
component estimation, and is illustrated for both modalities in
Fig. 1. We assume that the scalp EEG signal is a gaussian
mixture containing statistically independent non-gaussian
source timeseries s(t)= [s1(t), s2(t), …, si(t)]

T indicated by si(t)
at time t for the ith source. The sources have weights that
specify the contribution to each timepoint. The weights are
multiplied by each source's fixed topography. Secondly, it is
assumed that the N sources are linearly mixed so that a given
timepoint contains a weighted mixture of the sources. The linear
combination of sources is represented by the unknown mixing
system A, and yields u(t)= [u1(t), u2(t), …, uN(t)]

T, representing
N ideal samples of the signals un(t) at time t, for the ith source
Fig. 3. tIC 1 amplitude effects. Top: slow linear decrement of component activity with
line) the trial-to-trial dynamics yield a gamma-shaped modulation following the tran

Please cite this article as: Eichele, T. et al. Unmixing concurrent EEG-f MRI w
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in the brain. The sampling of the electric activity on the scalp
with the EEG amplifier results in y(i)= [y1(i), y2(i), …, yK(i)]

T

where the EEG is sampled at T timepoints indicated by i=1, 2,
…,T. A set of possible transformations during preprocessing,
such as downsampling and filtering determine the effective
sampling such that y( j)= [ y1( j), y2( j), …, yK( j)]

T.
For each individual separately, the preprocessed single trial

data y( j) are pre-whitened and reduced via principal component
analysis (Fig. 1, Re

1
−1… Re

M
−1) containing the major proportion

of variance in the N uncorrelated timecourses of x( j)= [x1( j), x2
( j), …, xN( j)]

T. Then, group data is generated by concatenating
individual principal components in the aggregate data set Ge

(Fig. 1).The choice of twenty PCs was determined by the
time on trial. Bottom: within a sequence indicated by the box-car function (black
sition between regular and random targets.

ith parallel independent component analysis. Int. J. Psychophysiol. (2007),
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Table 1
fMRI regional activation in the EEG-correlated spatial component

Region BA x y z peak voxel (t)

Subcallosal gyrus, R 25 2 18 −11 −7.33
Anterior cingulate gyrus, R 32 4 18 32 6.52
Transverse temporal gyrus, L 41 −56 −19 12 6.61
Superior temporal gyrus, R 41 57 −24 12 6.52
Superior temporal gyrus, R 22 60 −13 6 9.47
Superior temporal gyrus, L 22 −56 −13 1 7.33
STG/temporal pole, L 38 −58 14 −11 8.22
STG/temporal pole, R 38 62 11 −6 7.87
Brainstem, R – 3 −22 −9 −11.35
Brainstem, L – −3 −11 −10 −6.34

The table summarizes the Talairach coordinates (x, y, z in mm) and Brodmann
area labels for clusters of significant activity ( pb0.01, FDR corr.).
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dimensionality of the data after artefact removal (see above).
TICA was performed in this set, estimating the optimal inverse
of the mixing matrix (Fig. 1, Ae − 1) that led to the observed
scalp data and a single set of source timecourses (s). In order to
acquire robust task-related components in the data we ran 50
replications entering random subsamples of 100 standard and
100 target epochs from each subject into the group ICA,
estimating 20 components, as determined by the remaining
dimensionality of the data after individual ICA. Consistently
task-related components were identified by means of two
criteria: firstly, replicability of the average component time-
courses across analyses (rN0.90), and secondly, significant
differences between standard and target epochs in dependent
sample t-tests across timepoints and channels. For the five
components (Fig. 2) that met these criteria, the aggregate
timecourses from all replications were averaged together and
used for a two-step back-reconstruction using multiple
regression.

2.9. tIC-sIC integration

The computation of an EEG-tICA on the one end, and an
fMRI-sICA on the other end replaces prediction of multiple
voxel timeseries using multiple channel/timepoint measures by
the condensed result from the two separate decompositions: For
the timecourses of the 24 spatially independent components in
the fMRI separately, data were modelled with a design that was
formed by convolving stimulus functions with a canonical
hemodynamic response function. The first stimulus function
encoded an invariant evoked response to target stimuli. Five
additional functions encoded the detrended single trial weights
of the EEG tIC's to find fMRI sIC's with covarying timeseries.
The EEG-tIC weight functions were decorrelated (Schmidt-
Gram orthogonalization) from the unspecific hemodynamic
response to stimulus onsets per se, ensuring specificity of the
inferences from the electrophysiological predictors. The
predictors were entered into single-subject fixed-effects regres-
sion analyses; on group level, random effects analyses were
performed by entering the individual β-weights from the
regression between each EEG-tIC and fMRI-sIC into one-
sample t-tests. The covariation between the trial-to-trial time-
courses from the two modalities was considered significant at
pb0.05.

3. Results

For brevity we focus only on the amplitude effects and fMRI
correlates of the first extracted component, which was not
detected previously.

3.1. Component backprojection

The first step was to estimate the individual topographies for
the components by fitting the tIC timecourses to the individual
ERPs from all channels. The goodness-of-fit of this model to the
data is expressed in the F-statistic and the percentage-variance-
explained (r2) for each channel. Across subjects, β-weights
Please cite this article as: Eichele, T. et al. Unmixing concurrent EEG-f MRI w
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from each component and each channel were entered into zero-
mean t-tests, providing random-effects statistics of the topo-
graphies (Fig. 2). The backprojection for single subject averages
attained fit statistics with r2 ranging from 0.10 (F1,506=11.28)
to 0.99 (FN103), averaging to 0.75±0.15 (F1,506=541±623)
across subjects and channels, indicating an overall good
prediction of the model with five tICs, considering that low
r2-values were found mainly in channels with polarity reversal.
The t-tests of the component β-weights for each channel across
subjects ranged from tdf14=−7.55 to 7.04 for tIC1, IC2: tdf14
−4.22 to 5.41, tIC3: tdf14 −2.43 to 2.78, tIC4: tdf14 −5.70 to
6.25, tIC5: tdf14−4.26 to 5.97 (all pb0.05) replicating the
component amplitude topographies (Fig. 2).

In the second step, tIC amplitudes in all single trials were
estimated by forming a design matrix containing predictors
from all tIC timecourses concatenated across channels which
was fitted to the raw spatiotemporal data of each trial, thus
estimating five β-weights with the corresponding F-statistic
and r2. Separately for the tICs, one-sample t-tests were
conducted on the β-weights within-subject-across-trials and
between-subjects-within-trials. Both types of tests yield infor-
mation regarding the goodness of the aggregate components in
predicting individual trials as opposed to representing average
phenomena that are essentially not well represented in single
trials. Another purpose of this particular back-reconstruction
was to condense topography and timecourse of a component to
a single value for each trial, to be used later as a predictor for
fMRI activity. This is an appropriate data reduction since the
underlying sources are assumed to be spatially fixed, which
means that testing of electrodes separately can be omitted.
Additionally, we can constrain sources to be uniformly
amplitude modulated in each trial, thus omitting testing of
multiple latencies. The statistics for the available 3240 single
trials resulted in a range of r2 from 0.003 to 0.60, with a mean
of 0.15±0.10 (F=588±519). As a more informative test of
the components contributions to the single trials, the t-statistic
of the β-weights within-subjects (across trials) indicated
consistent scaling in the majority of components and subjects.
tIC1 was found significant in 15/15 participants (pp) at t(df215)N
2.35 ( pb0.01) with an average (tavg) at t(df215)=14.49±8.39
(±SD), minimum (min): 3.66, maximum (max): 38.55; tIC2:
14/15 pp, tavg 8.62±6.64, min −2.17 max 24.61; tIC3: 9/15 pp,
ith parallel independent component analysis. Int. J. Psychophysiol. (2007),
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tavg 6.72±7.42, min −2.16 max 20.90; tIC4: 14/15 pp, tavg
13.91±7.08, min −0.67 max 30.08, tIC5: 14/15 pp, tavg 11.10±
6.99, min 0.81 max 28.42. Similarly, at a threshold of
t(df14)≥2.63 ( pb0.01), the majority of the weight estimates
were robust across subjects for the target epochs across the
observation time. Here, tIC1 was present in 172 out of 216
epochs (79.6%) with an averaged t(df14) 3.63±1.29, tIC2
amplitudes were more variable with only 76 (35.2%) trials,
tavg 2.30±1.05; similarly tIC3 with 45 trials (20.8%) tavg 1.76±
1.01; tIC4: 165 trials (76.4%) tavg 3.48±1.44; tIC5: 123 trials
(57.0%) tavg 2.81±1.17.

3.2. tIC1 amplitude effects

In order to assess slow drifts evolving with the total time-on-
trial regardless of the local manipulation of predictability, the
twelve targets within one sequence were blocked and averaged
together, yielding one observation for each of the 18 sequence
repetitions in each participant, with the first point serving as
baseline. The group averaged measure was used to derive a
best-fit function (with as little parameters as possible). In this
case, a simple linear trend f (x)= s·x+c across repetitions, with a
slope (s) of −0.021 and offset c 0.045 provided a reasonable fit
(r2 =0.76). This function was then used as a predictor of the
single subject data, yielding sufficient individual statistics in 6/
15 participants (r2≥0.2, F1,16≥4, p≤0.06), and the β-weights
being significantly larger than zero (tdf14=4.10, pb0.001).
Amplitude modulation of tIC1 in response to switching between
random and regular TTI was assessed by averaging the 18
repetitions from each of the six random and six regular sequence
positions across the observation time together, after removing
the mean from each sequence repetition to account for the trend
(see above). Inspection of the group averaged response
suggested a transient amplitude increment induced by the
shift from predictable to unpredictable intervals with a
subsequent decline across the remainder of the sequence,
while there was no discernible response to the shift from
unpredictable to predictable context. This shape was best
modelled (r2 =0.91) with a gamma distribution function
y ¼ f xja; bð Þ ¼ 1

baC að Þ x
a�1e

x
b, with the parameters shape a=2.9

and scale b=1.7. This function was then used as a predictor of
the single subject data, yielding sufficient positive correlation
with the average-based model in 5/15 participants (r2≥0.27,
F1,10≥3.68, p≤0.08), however, a right-tailed t-test on the β-
weights failed the significance threshold by a small margin
(tdf14=1.60, p=0.07). Assuming that the degree of individual
variability regarding shape and scale of the gamma function
accounted for the failure of the test at small sample size, we
conducted a complementary analysis with individual best-fit
estimates (maximum positive correlation) from a range of ±0.5
around the group-estimates for a and b. With these parameters
Fig. 4. EEG-fMRI component. The figure shows the timecourse and topography for E
them. The difference wave was subjected to pointwise one-sample t-tests, black dots
corrected for 512 tests (tN6.93). The bilateral temporal activation in the correlated fM
lower half illustrate the overall spatial pattern (see also Table 1). The fMRI maps are th
is plotted in red, inverse correlation in blue.
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left to vary, statistics improved to 8/15 participants (r2≥0.31,
F1,10≥4.55, p≤0.06) reaching significance in the t-test
(tdf14=3.06, pb0.01) (see Fig. 3).

3.3. fMRI correlates

The trial-to-trial amplitude dynamic of tIC1 predicted
selectively the timecourse of one sIC fMRI map (tdf14=2.49,
p=0.02), that is, no other EEG tIC correlated significantly with
this sIC, neither did tIC1 covary with any other of the 24 fMRI
sICs. The respective maps' timecourse additionally displayed a
strong covariation with the generic evoked response predictor
(tdf14=11.15, pb0.001). Local maxima of the FDR corrected t-
statistic sIC map (Table 1) were located in the posterior superior
temporal gyri and temporal poles bilaterally, the anterior
cingulate gyrus, the subcallosal gyrus, the global maximum
was situated in an area in the right brainstem framed by the
landmarks central gray dorsally and red nucleus ventrally.
Additionally, a smaller set of voxels was found in the vicinity of
the left mamillary body (Fig. 4, Table 1).

4. Discussion

We have presented a method for parallel spatial and temporal
independent component analysis for concurrent multi-subject
single-trial EEG-fMRI recordings that addresses the mixing
problem in both modalities (Fig. 1). The data are integrated via
correlation of the trial-to-trial modulation of the recovered fMRI
maps with EEG time-courses. The method afforded identifica-
tion of an additional spatiotemporal process corresponding to
the auditory onset response and subsequent low-level orienting/
change detection (Fig. 4). The discussion details the area of
application for this method, and provides an account for the
potential functional role of the reported component.

4.1. Area of application

The observation that a simple cognitive task such as target
detection in an auditory oddball experiment induces spatially
and temporally widespread neuronal responses (Baudena et al.,
1995; Calhoun et al., 2006b; Eichele et al., 2005; Halgren et al.,
1995a,b; Kiehl et al., 2005) pertains to distributed network
responses more than to compartmentalized effects (Fox et al.,
2005; Halgren and Marinkovic, 1995; Nunez, 2000). We see a
major utility for parallel ICA in this context as it provides the
means to disentangle and visualize these networks both in their
spatial and temporal form (Calhoun and Adali, 2006; Debener
et al., 2006; Makeig et al., 2004a; McKeown et al., 2003; Onton
et al., 2006).

However, some limitations apply: Infomax assumes sources
to have non-normal, either super-or subgaussian distributions
EG-tIC1 for standard and target epochs as well as the difference wave between
indicate timeframes with significant difference from zero at pb .05, Bonferroni
RI component is shown as a surface rendering (top right). Additional slices in the
resholded at 1% false discovery rate, cluster extent 5 voxels. Positive correlation

ith parallel independent component analysis. Int. J. Psychophysiol. (2007),
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(Bell and Sejnowski, 1995; Lee et al., 1999), and this seems to
hold for a great variety of physiological signals as well as
technical artefacts. However, if sources (or noise) are gaussian,
ICAwill split these up into spurious non-gaussian components.
In practice this occurs mostly for heavily noisy data, and where
more sources than present in the data are extracted.

Generally, the utility of blind methods such as ICA lies in
data-driven assessment of data where specific hypotheses
regarding spatial and temporal relationships are lacking, or are
ill-specified. In other words, in situations in which a traditional
inference test, and its implementation in the statistical
parametric mapping framework (Friston, 2003; Friston et al.,
1995) is not justifiable, or is too insensitive due to ensuing
conservative significance thresholds. Concurrent EEG-fMRI
data adds another complexity in that one deals with two
multivariate spaces, and necessary specifications would not
only encompass the regions in which fMRI activation is
expected, but also the particular samples from which to derive
the predictor from the EEG. Reversely, and somewhat more
critically from our perspective, one should also be able to justify
which locations and latencies not to test. The two complemen-
tary blind decompositions avoid this issue since all available
EEG data is used in the estimation and the back-reconstruction
to produce maximally condensed predictors, i.e. the trial-to-trial
modulation applies uniformly to the entire timecourse and
topography of a component, reducing multiple comparisons
considerably. Similarly, the separate spatial ICA of the fMRI
data involves data reduction since the voxel-wise analysis is
replaced by testing of the fMRI component timecourses (here:
24), while the statistical significance of the maps is tested in a
separate random-effects analysis, applying appropriate correc-
tion using false discovery rate (FDR, Benjamini and Hochberg,
1995). Thus, finding IC-pairs across response modalities
identifies coherent neuronal sources that jointly express scalp
electrophysiologic and hemodynamic features. However, the
current statistic trades in the ‘localizing power’ afforded by the
mass-univariate testing (Friston, 2003; Kiebel and Friston,
2004), i.e. the possibility of drawing inferences on the effect
sizes in particular voxels in the fMRI and timepoints/channels in
the EEG. A hybrid approach might be plausible for applications
in which one would use parallel ICA for hypothesis generation
and employ the components as spatial and temporal filters for
region of interest definition prior to mass univariate testing.

Here, we opted for a group ICA implementation because it
provides a straight-forward and stringent solution for multi-
subject component estimation and directly affords population
inferences (Calhoun et al., 2001; Schmithorst and Holland,
2004). Group ICAworks well for sources that are spatially and
temporally coherent across subjects, and will readily detect such
sources when present in about 10% of the sampled population
(Schmithorst and Holland, 2004). For the sICA on preprocessed
fMRI data this means that regional BOLD responses that
overlap across subjects can yield group-relevant components,
which is the same criterion that applies to group (2nd-level)
statistics of fMRI contrast images or simple averaging.
Processes that occur in a spatially variable form over time in
the recording of a single subject, or that are principally spatially
Please cite this article as: Eichele, T. et al. Unmixing concurrent EEG-f MRI w
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heterogeneous across subjects can not be captured by this
implementation. Correspondingly, the group tICA on EEG
single trial time domain data is preferentially suited to detect of
components that represent or contribute to event-related
potentials visible in averaged data. Processes that are not
time/phase-locked within and across subjects, such as back-
ground rhythms and induced activity are not well visible.
However, the choice of input data to parallel ICA is arbitrary
such that time domain data can be replaced with e.g. power-
spectra or time-frequency data where the fMRI correlates of
EEG rhythms or event-related synchronization and desynchro-
nization are subject to study. In this respect, an useful extension
of the current framework would be incorporation of multiple
EEG and MRI features from single trial data (Calhoun et al.,
2006a).

The prerequisites outlined above do not apply to ICA on
individual data, which renders this approach principally a more
versatile tool to identify components. Individual ICA results can
be combined across subjects by means of subsequent
component clustering (Esposito et al., 2005; Onton et al.,
2006). This allows for group inferences and retains more
relevant information about inter-individual variability and its
impact on the EEG-fMRI relationship (cf. Goncalves et al.,
2006) than does our analysis, such that one should consider
either option in light of the purpose of the experiment at hand.
Currently, however, the available techniques are implemented
and tested mostly for clustering within a modality, how well
clusters can be matched across modalities by their trial-to-trial
modulation or other features should be further investigated.
Adequate algorithms that jointly cluster the maps and time-
courses from both EEG and fMRI will yet have to be evaluated.
Another consideration is that clustering techniques impose
additional assumptions about between-subject correspondence
and do not per se provide a turnkey solution, such that proper
handling of these techniques would usually require expert user
interaction.

4.2. tIC function

tIC1 had a central topography dominated by a large
negativity at 100 ms (N1), followed by smaller P2 and N2
deflections and a P3 at 270 ms. The difference wave between
standards and targets yields a biphasic pattern with a sustained
negativity from 100–200 ms, followed by a P3 (Figs. 2, 4).
Altogether, this suggests that tIC1 encompasses the N1 onset
response per se, N1-enhancement and a subsequent N2b-P3a
(Naatanen and Picton, 1987; Naatanen, 1992) as one coherent
process. Given the current experimental parameters, the ‘N1-
enhancement’ seen here may contain contributions from
genuine sources of mismatch negativity (MMN), attentive
processing negativity (PN/Nd) and ‘fresh afferents’ of the N1
alike (Naatanen and Picton, 1987; Naatanen, 1992). The N2b-
P3a portion of the waveform following the N1/MMN is seen
with attention-switching at large or task-relevant stimulus
contrasts (Naatanen, 1992; Schroger, 1997).

The single trial amplitude estimates of tIC1 selectively
covaried with an fMRI map that comprised a set of fronto-
ith parallel independent component analysis. Int. J. Psychophysiol. (2007),
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temporal and mesencephalic regional responses (Fig. 4).
Activations were present for local maxima in the superior
temporal gyri with a rightward dominance, the temporal poles
and the anterior cingulate gyrus. This partition of the map
encompasses the assumed sources of the scalp N1/MMN
(Naatanen and Picton, 1987; Picton et al., 1999; Picton et al.,
2000; Woods, 1995), and correspondingly the brain areas that
previous imaging experiments have implicated in automatic
auditory deviance detection, stimulus discrimination, sensory
memory as well as novelty (surprise) related functions
(Liebenthal et al., 2003; Molholm et al., 2005; Rinne et al.,
2005; Sabri et al., 2006). The occurrence of deactivations
observed in the subcallosal gyrus and the maps' global
maximum in the vicinity of the midbrain reticular formation
was surprising. However, seeing these areas apparently
interacting in anti-correlated fashion with auditory function is
plausible, since both have been found to be sensitive to novelty/
predictability contrasts with more salient stimuli and tasks
(Berns et al., 2001; Bunzeck and Duzel, 2006).

Two modulatory effects were present in tIC1: one effect was
a linear amplitude decrement evolving slowly with time on task,
and the other was a local within-sequence gamma-shaped
modulation (Fig. 3). The slow linear decrement is well in line
with reports describing long-term habituation for N1, MMN as
well as P3a across the observation time (Debener et al., 2005a;
Friedman et al., 2001; Loveless, 1983; McGee et al., 2001;
Sambeth et al., 2004; Woods and Elmasian, 1986). This might
correspond to a slow adaptive process related to repetitions of
stimulus sequences (Jongsma et al., 2006) or the overall decline
in arousal/vigilance across trials. Although tIC1 responded with
amplitude increment at the transition from regular to random
intervals, the corresponding transition from random to regular
(i.e. the beginning of a pattern) did not elicit a response. Hence,
instead of sigmoid learning curves that characterized the
behaviour of later components (Eichele et al., 2005; Jongsma
et al., 2006), a gamma-shaped function provided the best fit.
Two explanations for this phenomenon can be offered: firstly,
tIC1 may respond directly only to an increase in surprise. This
means that the weight change elicited by the comparison
between actual input and the learning history represented in the
amplitude of tIC1 would only reflect increments of ‘surprise’
with the appearance of a target at an unpredicted interval at the
regular-random transition, but not a constant error or the onset
of the regular pattern. The second explanation relates to the
time-span for which tIC1 can retain information and incorporate
it into the learning history. Assuming a memory trace length at
or below 10 s (Winkler et al., 2001), it would be plausible that
tIC1 cannot retain enough interval repetitions to recognize the
emergence of a pattern. For both accounts it is plausible to
assume that the modulation is not self-sustaining. It should
receive additional backward input from higher levels of
processing which would exert an inhibitory influence on tIC1
when intervals are predictable, while the response to the more
surprising transition from predictable to unpredictable intervals
represents a salient bottom-up signal (Friston, 2005a; Schroger,
1997). Altogether, this indicates that the component is to some
extent modulated by target predictability, specifically by
Please cite this article as: Eichele, T. et al. Unmixing concurrent EEG-f MRI w
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increments of surprise/prediction error. This effect needs further
examination in ‘attended’ as well as ‘unattended’ settings with
variations of stimulus onset asynchrony, rules, and the physical
deviant/target features (Baldeweg, 2006; Haenschel et al., 2005;
Sussman et al., 1998; Ulanovsky et al., 2004).

In conclusion, we believe that parallel ICA is a useful
addition to the selection of analysis methods for concurrent
EEG-fMRI, it can serve either as a primary tool for inferences
about the unmixed sources, or can be employed for data mining,
hypothesis generation and model specification/diagnostics.
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