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Preface

I entered the field of evolutionary bioinformatics with the naive belief that biological
knowledge was fairly advanced. In particular, that higher level phenotypes (anatomy
and physiology) could be traced back to lower level phenotypes and ultimately to the
genome. I have come to realise that this is not at all the case. However, we are fortunate
to live in an era where vast amounts of genomic and proteomic data are becoming
available and, thus, the aquisition of such knowledge lies ahead of us, but with any
luck, not in the distant future.

I sit at my desk on the fifth floor of the Høyteknologisenter in Bergen. Directly
outside my window, a gang of seagulls is out surfing on the strong winds of a North
Sea gale. These beautiful birds glide for hours, controlling altitude and position with
minute adjustments of their wings. They are also truely amphibious and can swim, dive
and run. One is really tempted to evoke design, but design would never have produced
such an adapted animal. In fact, it is designers that plunder the organic world for good
ideas and I have yet to see evidence of information flow in the opposite direction. I type
away at my computer analysing the evolution of genomic sequences in silico, and I say
to myself that hopefully I am contributing to understanding both how such a creature
can evolve and how it functions.

The Norwegian people, via the Norwegian Reseach Council, has invested consider-
able financial resources by paying for my PhD studies. The direct output of this in-
vestment, apart from musings on “seagull surfing”, is a thesis consisting of four papers.
If we only consider my salary, then each paper cost approximately 300,000 kroner to
produce. I often wonder whether these papers return to society something approaching
what they cost, but an answer is, and will probably remain, elusive. However, biology
as a field promises to make great advances in knowledge which, if used wisely, will be
of immense practical benefit to mankind. My hope is that breakthroughs occur thick
and fast, and that my work may have contributed in some infinitesimally small way.
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1. Summary

Biology is primarily concerned with the study of all phenotypic aspects of living or-
ganisms and evolutionary biology is more specifically interested in elucidating how
different phenotypes evolved. Proteins (and RNA molecules) are the most fundamental
level of phenotype and are encoded by the genes in the organism’s genome. Thus, at
the most basic level, evolutionary biology seeks to understand how changes in the DNA
sequence of genes affect protein functionality and how this modified functionality feeds
back to shape the genome (and thus phenotype) of future generations.

Every nucleotide of the genome is constantly at risk of mutation and, if a mutation
occurs in a gamete, it has a non-null probability of being passed on to the next gener-
ation. If the mutation has a negligeable effect on phenotype (neutral mutation) it may
rise to fixation through genetic drift. If, however, the effect is non-negligeable and im-
pacts on the oganism’s fitness, it may either stand a higher chance of reaching fixation
than a neutral mutation (positive selection) or it may stand a lower chance (negative
or purifying selection). It is positive selection that drives the modified or new function
which results in adaptation of the organism to its environment.

Because life has existed on earth for at least 3.5 billion years and because the state
of the physical environment is relatively stable across time, the products of genes are
usually well-adapted to a particular function. Most protein coding sequence is either
evolving neutrally if the nucleotides encode amino acids that are functionally unimpor-
tant, or is under negative selective pressure if a change in the encoded amino acid would
affect fitness. However, observation of the organic world both at the macro level (e.g.
anatomy and physiology of organisms) and at the micro level (e.g. proteins) reveals
what appear to be many cases of recent adaptation involving novel function. Of course,
changes in an organism’s physical and biotic environment may occur and would have
the potential to drive adaptive changes in a gene’s function. However, most genes, be-
cause they encode functions that are essential regardless of the organism’s environment,
are not free to evolve in this way.

The key process enabling a gene to escape the eye of selection is gene duplication.
Through duplication of a gene, redundancy is introduced to the genome as it then con-
tains two copies of the same gene, both of which encode the same functionality. Such
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1. Summary

a duplication will generally be neutral and can reach fixation by drift. There are many
fates for the gene duplicate pair, the most common of which is pseudogenisation (or
gene death/loss) which involves one of the genes in the pair losing its protein encoding
properties (fixation of a null mutation). The reason for this is that, in most cases, a null
mutation to one of the genes in the pair does not have any fitness effect on the mutant
individual as the other gene in the pair continues to fulfill the required function. How-
ever, some gene duplicates are retained. The process through which retention occurs is
an intensively studied subject as differences in the gene content of genomes is one of
the main drivers of phenotypic diversity among species. Several models of gene dupli-
cate evolution have been formulated, the first and probably most intuitive model being
the “neofunctionalisation” model [Ohno 1970]. The key idea of “neofunctionalisation”
is that there is a small chance that one of the genes in the duplicate pair is subject to a
mutation confering a new fitness enhancing function on the protein, thus ensuring the
retention of both genes in the genome: one gene having the ancestral function and the
other the new function (neofunctionalisation). This is one of the most obvious ways in
which adaptive evolution can occur at the protein coding level.

Thus, gene duplication and the subsequent retention or loss are key processes shaping
the evolution of genomes. They drive the actual number of genes in the genome and
these genes functions. Moreover, they potentially produce neofunctionalisation.

In this thesis, using genomic data from mammalian species, I begin by estimating
the rate at which genes duplicate, and the rate at which the sequence of the duplicates
diverges and potentially pseudogenises (Paper I). These estimates are of interest in their
own right as they represent a quantitative characterisation of an important evolutionary
process, but they can also be used to investigate the predominant mode of gene duplicate
evolution (Paper I). Further, these estimates can be used to investigate the evolution of
the gene content of a genome and, more specifically, the distribution of gene family size
(Paper II). Finally, although these estimates are for gene duplicates that are the result of
small-scale duplication events (tandem and segmental duplication), the estimates can be
applied to investigating some of the particularities of whole genome duplication (Paper
III and IV).

The background knowledge required to understand the papers is presented in chapter
2. Hopefully, this background knowledge is sufficiently complete for the uninitiated
reader to understand the essence of the findings of the papers. Readers familiar with the
subject will probably find that they can skip large sections of this chapter. Each of the
four papers is then introduced in chapter 3. Each introduction consists of more detailed
background information that is relevant for the specific paper, a motivation of the work,
a short summary of the results and some ideas for further work. Finally, the core of this
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thesis, the actual papers together with their bibliographies and supplementary materials,
are located in the appendix. This layout may seem somewhat unconventional, but it
is made necessary by the guidelines for doctoral degrees at the University of Bergen
which require the PhD candidate to produce papers which are later incorporated into
the thesis.
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2. Background

2.1. From genotype to phenotype

2.1.1. Life

Biology is the study of life. Life is the condition that distinguishes organic from inor-
ganic objects. Although "life" has no formal definition, three of the most fundamental
features of an organism are: first, a very high degree of chemical complexity compared
to inorganic objects; second, the ability to extract, transform, store and use energy from
their environment which enables the organism to generate and maintain its chemical
complexity; and, third and foremost, the capacity for self-replication and self-assembly,
what Schrödinger calls "architect’s plan and builder’s craft in one" [Schrödinger 1944].
This plan, the genetic information, is stored in the form of deoxyribonucleic acid
(DNA) in the organism’s cell(s) and, more specifically, in the cell’s nucleus in the case
of eukaryotic species.

2.1.2. DNA - the genotype

DNA is a long polymer of simple units called nucleotides, with a backbone made of
sugars and phosphate moeities which are covalently linked by asymmetrical 5’-3’ phos-
phodiester bonds. Attached to each sugar is one of four types of molecules called bases:
adenine (A), guanine (G), cytosine (C) and thymine (T). It is the sequence of these four
bases along the backbone (conventionally represented in the 5’-3’ direction) that en-
codes the genetic information. Two of these polymeric strands are twisted about each
other to form the DNA double helix in which each monomeric subunit in one strand
forms hydrogen bonds specifically with a complementary subunit in the other strand
(A with T, and G with C). The capacity of living cells to preserve their genetic material
and to replicate it with high fidelity for the next generation derives directly from the
structural complementarity between the two halves of the DNA molecule [Watson and
Crick 1953].

5



2. Background

The DNA double helix has several higher levels of organisation which fundamentally
consist of further levels of coiling and super-coiling [Nelson and Cox 2000]. The high-
est level of organisation, which is visible in the light microscope during cell division, is
the chromosome. The number of chromosomes in the organism’s cell(s) depends on the
species and on whether the cells are somatic or gametic. Homo sapiens, for example,
which is a sexually reproducing diploid eukaryotic species, has two homologous sets
of 23 chromosomes (diploid) in the nucleus of somatic cells and one set of 23 chromo-
somes (haploid) in gametes (spermatozoan and ovum). All descriptions of biological
processes in this chapter will be for sexually reproducing diploid eukaryotic species
(unless noted otherwise).

2.1.3. RNA and protein - the basic level of the phenotype

Through the process of transcription, information is transcribed from sections of one
of the DNA strands known as genes (see Figure 2.1) to RNA (ribonucleic acid). The
primary differences between DNA and RNA are that RNA contains the sugar ribose
(rather than deoxyribose) and that the base thymine is replaced by uracil (U). In the
case of eukaryotes, most protein-coding genes are encoded in sections (exons) which
are interrupted by non-coding elements (introns). The introns are spliced out of the
preliminary transcript and a mature messenger RNA is produced (mRNA). RNA has
many roles: it has important functional properties e.g. enzymatic activity, but its main
role is still considered to be as a transmitter (messenger) of genetic information. DNA is
much more stable than RNA because of structural aspects of the deoxyribose versus the
ribose sugar. This property of DNA makes it a more robust storage device for genetic
information than RNA, and may be the cause of their divergent functions.

Figure 2.1.: Schematic representation of gene structure and transcription

Messenger RNA is converted to a chain of amino acids (or polypeptide) through the
process of translation which converts consecutive triplets of nucleotides (codons) in the
mRNA into a chain of amino acids according to the rules of the genetic code. Most
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2.1. From genotype to phenotype

organisms use the so-called universal genetic code (see Figure 2.2) which is in fact not
universal as it is not used by all species and the mitochondrial genome uses a slightly
different code (mitochondria are small cellular organelles that contain DNA). Note that
there are 43 possible codons, but only 20 different amino acids, thus there is redundancy
in the genetic code with some amino acids encoded by multiple codons. For example,
arginine (Arg) is encoded by six different codons. Thus, a change of base in the DNA
(a mutation), if it occurs in protein-coding sequence, can be classified according to
whether it changes the encoded amino acid: silent (or synonymous) mutations do not
change the encoded amino acid, while replacement (or non-synonymous) mutations
do. A section of protein-coding DNA (open reading frame) will always start with a
methionine codon and end with one of the three stop codons.

Figure 2.2.: The universal genetic code

Following translation, the polypeptide chain folds, first into secondary structures (al-
pha helices and beta sheets) and then into a three dimensional structure consisting of
one or several domains (tertiary structure). Further, some proteins consist of multiple
polypeptide chains (quaternary structure). It is the amino acid composition of the chain
and the resulting structure that confer on proteins the functionality to extract, trans-
form and use the energy from the organism’s environment to generate and maintain the
organism’s chemical complexity, and ultimately enable the genetic information to be
passed on to the next generation. The entire flow of genetic information from DNA,
through RNA, to protein is known as the central dogma (see Figure 2.3).

Examples of the functionality of proteins are: enzymatic (catalysis of covalent bond
breakage or formation), structural (mechanical support to cells and tissues), transport
(spatial movement of small molecules and ions), motor (movement in cells and tissues),
storage (of small molecules or ions), signalling (information transmission either within
or between cells), receptor (detecting signals that are either internal or external to the
organism), and regulation of gene expression. Proteins are thus the most fundamental
level of phenotype, i.e. observable characteristics of an individual, as opposed to the
underlying genetic features. Through their function, proteins are the primary determi-
nants of higher levels of anatomy and physiology e.g. cells, organs, and organ systems.

7



2. Background

Figure 2.3.: The central dogma (adapted from [Alberts et al. 1997])

2.2. Evolution

2.2.1. Genetic variation

In summary, the DNA molecule has properties that make it a good storage and trans-
mission device for genetic information, and the information it encodes are the blue
prints for functionality that primarily aids in the preservation and faithful transmission
of this information to the next generation. Nevertheless, the fidelity of DNA’s infor-
mation storage and transmission capacity is not perfect. Changes in the sequence may
occur (mutations). At the level of a single nucleotide, there are three types of mutation:
change in a base, deletion of a base, insertion of an additional base. Changes involving
whole segments of a chromosome are also possible, including inversion, translocation,
transposition and duplication of whole segments of DNA.

If such changes occur in the germ line, i.e. in cells that have the potential to go on to
form a new organism (gametes), then all cells in a new organism generated from a mu-
tated germ cell will carry the mutation. Thus, within a population of individuals there
will always be a degree of genetic variation due to past mutations in the germ line that
filtered down to the present population, plus new mutations that arose in the present
population. An allele is a viable DNA coding at a given position (locus) on a chro-
mosome, but the term may also refer to two allelic genes at a given locus. It is allelic
variation initially caused by mutation that provides the raw material for evolution.

Many consider genetic variation caused by mutation as a defining characteristic of
life to be added to the three presented in sub-section 2.1.1.

2.2.2. Fitness

A key property of a mutation is whether or not it affects the fitness of its bearer. Fit-
ness is defined as an individual’s propensity to contribute offspring to the next gener-
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2.2. Evolution

ation [Sober 1993]. If all individuals were phenotypically identical, then the expected
number of offspring would be the same for all individuals. But, there is genetic vari-
ation and different genotypes in interaction with the environment produce different
phenotypes, and these different phenotypes have different fitnesses. Thus, genetic mu-
tations can be classified according to whether they have an advantageous, detrimental
or neutral effect on fitness.

2.2.3. Genetic drift

When a mutation produces a new allele, there is initially only one occurence of the
allele in the population. Subsequently, the allele may either increase in frequency or
disappear (see Figure 2.4). These dynamics are affected by whether the allele in ques-
tion has a fitness effect. This section summarises the results for a neutral allele (pure
genetic drift) and, in the next section, the results for an advantageous allele are pre-
sented (selection).

Figure 2.4.: Genetic drift (adapted from [Page and Holmes 1996])

Due to the stochastic nature of reproduction, an individual organism will not con-
tribute all its DNA to the next generation. First, for all organisms there is the pos-
sibility that the individual does not reproduce in which case no DNA is contributed
to the next generation. Second, for sexual reproducing species, the parent contributes
only half of its DNA to any given descendent. And, third, recombination (exchange of
sections of DNA between homologous chromosomes) occurs during the production of
gametes through meiosis (see Figure 2.5). Thus, chance is a fundamental force driving
the frequency of the four different nucleotides at a specific position of the genome of a
population of individuals (allele frequencies).

If we consider a population of N diploid individuals, there will be 2N allelic copies
of each gene. But, due to the random sampling of gametes that contribute to the next
generation, some alleles will contribute no copies of themselves to the next generation

9



2. Background

Figure 2.5.: Meiosis (adapted from [Alberts et al. 1997])

while others will contribute several. This causes the frequencies of the different alleles
to change from generation to generation and given enough time all 2N alleles in the
population will be descendent from one allele as all others will at some point fail to
contribute copies to the next generation (see Figure 2.4). When an allele reaches a
frequency greater than 99% in the population, it is said to be a fixed. A fixed mutation
is referred to as a substitution.

The pure genetic drift model describes the dynamics of neutral alleles. In this model,
one assumes an idealised population with constant population size, random mating, an
equal number of each sex contributing to the gene pool, and non-overlapping genera-
tions. In real populations, one or more of the conditions is likely to be violated and the
concept of effective population size (Ne) is used as a way of correcting for such viola-
tions. For a given real population, Ne is defined as the size of an idealised population
having the same characteristics (with regard to genetic drift) as the real population (N )
and it is usually the case that N > Ne.

The formulation of the model and its solution are mathematically advanced [Kimura
1983], but the results are simple and intuitive. First, the probability of fixation of an
allele by random genetic drift is 1/2N which is its frequency in the population after
it has arisen by mutation. Second, the expected time to fixation is 4Ne generations.
Third, if we define K0 to be the rate of substitution of neutral alleles (per generation),
u to be the total mutation rate per generation, and f0 to be the fraction of all mutations
that are neutral, then K0 = uf0 [Hughes 1996].

Such a model is applicable to large sections of the genome. First, because the DNA
molecule does not consist of a continuous string of genes, instead genes are separated
by intergenic regions some parts of which may be functional, but current knowledge
suggests that most of these regions are what is called "junk DNA" i.e. without pheno-
type. Second, because, even within a gene, not all nucleotides affect the 3D structure of
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2.2. Evolution

the polypeptide chain. Mutations within introns will not affect phenotype as these are
excised from the mRNA before translation. Even if the mutation occurs within an exon,
it may not affect phenotype: either because the mutation is synonymous, or, in the case
of a non-synonymous mutation, because the affected amino acid plays an insignicant
role in the 3D structure or the structure’s function. However, it is important to note that
the neutral model applies only as a first approximation as even synonymous mutations
have been shown to have potential fitness effects [Chamary et al. 2006].

2.2.4. Selection

However, many mutations do have a fitness effect. The nature and magnitude of this
effect is determined by the interaction of the resulting phenotype with the environment
and feeds back to the genotype indirectly by affecting whether or not the genotype of
the individual is represented in the next generation (see Figure 2.6), this is referred to as
natural selection to distinguish it from the artificial selection applied by a breeder [Dar-
win 1859]. In this case, the evolution of allele frequencies is not influenced purely by
chance and the genetic drift model needs to be enhanced to include selection. Broadly
speaking, a selectively advantageous mutation has a higher probability of reaching fix-
ation than a neutral mutation and, given that it does, it will do so more rapidly than a
neutral mutation.

Figure 2.6.: Fitness as the driver of selection

If we define the selective advantage of a heterozygote for the mutant to be s and
assume additivity, so that the selective advantage of a homozygote for the mutant is 2s,
then, although the mathematical formulation of the model is advanced, it is tractable
and the results are intuitive [Hughes 1996]. A mutant with selective advantage s and
initial frequency q will have the following probability of fixation (Pf ):

Pf =
1− exp(−4Nesq)

1− exp(−4Nes)
(2.1)

The result for a neutral mutation is obtained by evaluating the limit as s → 0:

11



2. Background

lim
s→0

Pf(s) = q

In the case of a new mutation occurring on one chromosome in a diploid population
q = 1/2N . Thus, for a neutral mutation in such a population Pf = 1/2N , as already
mentioned.

Assuming the effective size of the population is equal to the actual size, N may
be substituted for Ne and the probability of fixation of an individual mutant gene is
obtained from equation 2.1 by setting q = 1/2N . If s is small:

Pf ' 2s

1− exp(−4Ns)

For a positive s and a very large N , Pf ' 2s. If N 6= Ne, this value should be
modified by a factor of Ne/N [Kimura 1964]. So that

Pf = 2s(Ne/N)

This probability will be quite low if s is low. In fact, an advantageous mutant will
behave essentially like a neutral mutant if s < 1/2Ne [Kimura 1983].

The rate of substitution of selectively advantageous mutants Ka is given by Ka =

4Nesfau where s is the average selective advantage of these mutants and fa is the
frequency of mutants that are advantageous. The main difference with the neutral case
is that both effective population and average selective advantage play a role.

It is important to note that we have only described one form of selection here. The
kind of selection that the Kimura model describes is additive advantage which means
that fitness of the heterozygote has intermediary fitness between the two homozygotes,
this results in directional selection whereby the selectively advantageous allele rises to
fixation. However, it is, for example, possible that the heterozygote has superior fit-
ness to the homozygotes (heterozygote advantage), in this case, allelic diversity will
be maintained. A classic example of this is a locus in the human genome coding for a
protein which affects the shape of red blood cells [Page and Holmes 1996]. Individuals
that are homozygous for the wild type have normal red blood cells and are susceptible
to malaria; those that are homozygous for the mutant allele have grossly mishaped red
blood cells which detrimentally affects their oxygen carrying capacity; heterozygotes,
however, have only slightly irregular blood cells which does not significantly affect
oxygen carrying capacity at the same time as it confers resistence to malaria. In this
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2.2. Evolution

way, natural selection preserves both alleles in the population. Another way in which
allelic diversity can be maintained is frequency-dependent selection in which the fre-
quency of an allele is inversely correlated with the selective advantage is confers. In
such a case, an allele will fail to reach fixation because as the frequency rises the selec-
tive advantage disappears.

2.2.5. Adaptation

Selection produces a pressure on the genome which ensures that detrimental mutations
have a low probability of rising to high frequency while beneficial mutations are re-
tained and fixed in the population. This results in a genotype that encodes a phenotype
which is adapted to its environment. However, detecting and locating adaptive features
in molecular data is not trivial.

The first challenge in the study of adaptation is to find features that share a common
ancestry (homologous features). In the case of sequence data, this involves first finding
sequences that are homologous and then locating within the sequences the residues that
are homologous. When sequences are separated by a short divergence time, there are
few mutations between the sequences and both tasks can be relatively simple. However,
when the divergence time is greater, insertions, deletions and substitutions accumulate,
resulting in sequences of different length and composition, and these tasks become
more complicated. Orthologous genes, which are genes that occur in two different
species and have diverged from the sequence in the common ancestor due to the spe-
ciation event that separates them, are an example of the kind of sequence for which
the assignment of homology might be more problematic, in particular if divergence
times are great. In this case, given a query sequence, homologous sequences are usu-
ally identified by searching for similar sequences using tools such as BLAST [Altschul
et al. 1997] and by then assuming that statistically significant similarity implies ho-
mology. Following identification of homologous sequences, one typically employs a
multiple sequence alignment algorithm to locate homologous residues [Thompson et al.
1994, Notredame et al. 2000, Edgar 2004]. The inputs to such an algorithm are a set
of homologous sequences and the output is a matrix in which each row corresponds to
a sequence and homologous residues in the sequences are placed in the same column
(see Figure 2.7).

Once the homologous sequences have been aligned, the task of determining whether
some of the features are adaptive can begin. In the multiple sequence alignment, a
large proportion of sites are either identical or occupied by amino-acids with similar
physio-chemical properties indicating that the site is under negative selective pressure.
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Figure 2.7.: Section of a multiple sequence alignment

However, there are also large numbers of sites that are occupied by physio-chemically
different amino-acids, and one cannot immediately tell whether these differences are
due to the fact that the changes have a neutral effect on fitness and have been fixed
by drift, or whether natural selection may have played a role in their fixation. During
the first half of the 20th century, sequence data was scarce and differences between
sequences were thought to be rare. It was widely believed that the differences that did
exist were the result of adaptation. However, in 1966, two studies, one on Homo sapi-

ens [Harris 1966] and one on Drosophila pseudoobscura [Lewontin and Hubby 1966],
revealed high levels of genetic variation. Kimura showed that such levels of genetic
diversity are only consistent with a significant fraction of mutations being neutral and
genetic drift playing a major role in their fixation [Kimura 1968]. The large amounts
of genomic data, which have become available since, have further confirmed that many
substitutions are neutral or nearly-neutral [Ohta 2002]. It is only recently that positive
selection in sequence evolution has been detected on a significant scale.

This raises the question of why, at least until very recently, so little positive selection
had been detected. There are several possible reasons. First, it could be that what is
considered to be clear and plentiful examples of adaptation at the morphological and
physiological level is only the result of a small amount of adaptation at the molecular
level. Second, we could be looking in the wrong sections of DNA sequences: adapta-
tion might be occurring mostly in gene regulation or alternative splicing rather than in
protein coding regions. Third, it could be that the methods used for testing for posi-
tive selection were simply not powerful enough to reject the null hypothesis of neutral
evolution. We review some of these tests and the results of their application in the next
section.

The dichotomy between the amount of adaptation observed at the macro level and
at the molecular level make the “hunt” for adaptive evolution an exciting pursuit. Are
the adaptive physiology and morphology only driven by a small number of molecular
changes? If a large number of substitutions are adaptive, in what sections of the DNA
are they located? Detecting adaptation is also extremely important from a practical

14



2.3. Detecting deviations from neutrality

point of view, as identification of adaptive sequence can provide important information
on sequence function and change in function.

2.3. Detecting deviations from neutrality

There are two main sources of genetic variation: within populations (of a given species)
and between species. Both of these types of variation can be used to detect deviations
from neutrality. This section presents a short overview of some of the most widely used
methods at the DNA level.

2.3.1. Principle of the dn/ds measure

A very intuitive measure requiring only two sequences from different species is the
dn/ds ratio. The measure builds on the assumption that synonymous mutations are neu-
tral as they do not lead to a change in the encoded amino acid, while non-synonymous
mutations change the encoded amino acid and may or may not affect fitness depending
on the nature of the replacement and the role of the affected amino acid in the folded
protein. We have previously seen that beneficial mutations stand a higher chance of
rising to fixation and will do so more rapidly than neutral mutations, whereas the op-
posite is true for deleterious mutations. Thus, if we observe an equal number of non-
synonymous substitutions per non-synonymous site (dn) and synonymous substitutions
per synonymous site (ds) when comparing two aligned protein-coding sections of DNA,
then non-synonymous substitutions are accumulating at the same rate as synonymous
substitutions and the sequence is likely to be evolving neutrally (as long as it is rea-
sonable to assume that the underlying mutation rate is the same for synonymous and
non-synonymous mutations). On the other hand, excess of non-synonymous substitu-
tions per non-synonymous site indicates positive selection and deficit indicates negative
selection. The ratio dn/ds is also referred to as Ka/Ks (where the “a” stands for asyn-
onymous):

dn/ds > 1 positive selection
dn/ds ' 1 neutral evolution
dn/ds < 1 negative selection

It has been shown that there is codon bias in protein-coding genes and that this bias
may be due to selection for translational efficiency [Eyre-Walker 1996], however, this is
not thought to be strong enough to invalidate the use of tests that rely on the assumption
that synonymous mutations are neutral. Further, codon bias and other processes that
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render synonymous mutations non-neutral can be incorporated into the model for dn/ds

estimation [Anisimova and Liberles 2007].

2.3.2. Nei-Gojobori

There are a number of methods for computing the dn/ds ratio. They can be divided into
counting methods and maximum likelihood methods. Here, the Nei-Gojobori method
is explained [Nei and Gojobori 1986] as it is a very intuitive method (the next section
is devoted to the more advanced maximum likelihood method). The key assumption of
the Nei-Gojobori method is that all nucleotide substitutions are equally likely. In order
to compute the dn/ds ratio, we need to estimate the number of synonymous and non-
synonymous sites and the number of synonymous and non-synonymous substitutions
between two aligned protein coding sequences.

The amino acid alignment is first reverse-translated to the encoding nucleotide se-
quence. We denote fi, the proportion of potential synonymous mutations at the ith

nucleotide position of a codon, and we define this as the ratio of the number of synony-
mous changes to the sum of synonymous and non-synonymous mutations excluding
stop mutations. Then, the number of potential synonymous sites for a codon is given
by f1 +f2 +f3 and the number of potential non-synonymous sites is 3− (f1 +f2 +f3).
For example, UUU has only one synonymous substitution (to UUC), thus the number
of synonymous sites for the codon is 1/3 and the number of non-synonymous sites is
3− 1/3. To obtain the total number of synonymous and non-synonymous sites for the
whole sequence, we sum over the codons. Note that we are comparing two sequences,
so we compute the total number of sites of each type separately for both sequences and
then take the average.

In order to compute the number of substitutions, we compare the two sequences
codon by codon and count the number of nucleotide differences for each pair of codons.
If there is one nucleotide difference, then we know whether it is synonymous or not. If
there are two differences, there are two possible pathways that explain the differences.
For example, between UUU and GUA:

UUU (Phe) → GUU (Val) → GUA (Val) i.e. 1 syn. and 1 non-syn. substitution
UUU (Phe) → UUA (Leu) → GUA (Val) i.e. 2 non-syn. substitutions

Assuming both pathways occur with equal probability, the number of synonymous
differences is 0.5 and the number of replacement differences is 1.5. In some com-
parisons of codons, there are pathways with termination codons, these pathways are
eliminated from the computation. This calculation is performed for all codons and we
sum over the codons.
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We then compute the number of synonymous substitutions per synonymous site (ds)
and similarly for non-synonymous substitutions (dn). In some cases, there may be
more substitutions between the sequences than observed when comparing them because
the same site may have undergone multiple substitutions. These ratios are therefore
corrected for these multiple hits. This method for computing the ratio is intuitive and
useful for explaining the concept, but it builds on the assumption that all nucleotide
substitutions are equally likely and this is rarely the case.

For example, it is usually the case that the transition rate is much higher than the
transversion rate. In this case, the number of potential sites that can produce synony-
mous substitutions is expected to be higher than the number estimated by the Nei-
Gojobori method, because transitional changes at third codon positions are mainly syn-
onymous. Thus, the Nei-Gojobori method will overestimate ds and underestimate dn,
leading to a downward biased ratio.

A number of improvements to this basic counting method have been implemented [Li
1993, Pamilo and Bianchi 1993, Ina 1995], but the most conceptually simple way of
incorporating more realistic models of evolution is by using a maximum likelihood
estimation of a Markov chain model of codon substitution.

2.3.3. Likelihood-based method

Markov chain models of codon substitution were proposed by Goldman and Yang
[Goldman and Yang 1994]. In these models, the codon triplet is considered the unit
of evolution and a Markov chain is used to describe substitutions from one codon to
another. The state space of the chain are the sense codons in the genetic code. Stop
codons are not allowed inside a functional protein and are not considered in the chain.
The Markov model is constructed by specifying the substitution rate matrix, Q = {qij}
where qij is the instantaneous rate from codons i to j (i 6= j). The model in common
use is a simplified version of the model of Goldman and Yang [Yang 2006]:

qij =



0, if and j differ at two or three codon positions
πj, if i and j differ by a synonymous transversion
κπj, if i and j differ by a synonymous transition
ωπj, if i and j differ by a nonsynonymous transversion
ωκπj, if i and j differ by a nonsynonymous transition

where κ is the transition/transversion rate ratio, ω is the non-synonymous/synonymous
rate ratio, and πj is the equilibrium frequency of the codon j. Mutations are assumed to
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occur independently at the three codon positions so that simultaneous changes at two
or three positions are considered negligeable and are given a rate of zero.

From this model, it is possible to calculate a transition probability matrix P (t) =

{pij(t)} where pij(t) is the probability that a given codon i will become j time t later.
One can then use a maximum likelihood method to fit the Markov model to data of two
sequences to estimate parameters in the model. The log likelihood function is:

l(t) =
∑

i

∑
j

nij ln{πipij(t)}

where nij is the number of sites occupied by codons i and j in the two sequences.
The codon frequencies are usually estimated by using the observed frequencies in the
data, while parameters t, κ and ω are estimated by numerical maximization of the log
likelihood. Then ds and dn are calculated from the estimates of t, κ, ω, and πj according
to their definition (see [Yang 2006] for full details). By estimating two models, one
where ω is free to vary and one were ω is fixed to 1, one can perform a likelihood ratio
test to determine whether the null hypothesis of neutral evolution can be rejected in
favour of positive or negative selection.

The main advantages of the likelihood method are its conceptual simplicity and the
ease with which more realistic models of codon substitution can be accomodated.

2.3.4. The McDonald-Kreitman test

Several tests have been developed to test for deviation from neutrality in population ge-
netic data [Tajima 1989,Fay and Wu 2000], the most commonly used is the McDonald-
Kreitman test [McDonald and Kreitman 1991]. In the MK test, variable sites in protein
coding genes from closely related species are classified into a 2x2 contingency table,
whether a site has a polymorphism or a fixed difference, and whether the difference
is synonymous or non-synonymous. For example, suppose we sample five sequences
from species 1 and four from species 2. A site with data AAAAA in species 1 and
GGGG in species 2 is called a fixed difference. A site with AGAGA in species 1 and
AAAA in species 2 is polymorphic. The neutral null hypothesis is equivalent to inde-
pendence between the row and column in the contingency table.

To see why this is a valid test of neutrality, begin by assuming that all synonymous
mutations are neutral, that all non-synonymous mutations are either strongly deleteri-
ous, neutral or strongly advantageous, and that advantageous mutations contribute little
to polymorphism (but may contribute to substitutions). Under this model, the number
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of synonymous (Ps) and non-synonymous (Pn) polymorphisms segregating in a sample
of sequences from a population are (for an autosomal locus):

Ps = 4NeuLsk and Pn = 4NeufLnk

where Ne: the effective population size, u: the nucleotide mutation rate, f : the pro-
portion of amino-acid mutations which are neutral, Ls and Ln: the numbers of synony-
mous and non-synonymous sites, respectively, k: a constant reflecting the probability
of observing a neutral variant [Eyre-Walker 2006].

The numbers of synonymous (Ds) and non-synonymous (Dn) substitutions are:

Ds = 2utLs and Dn = 2utfLn + a (2.2)

where t: the time of divergence between the two species being considered, a: the
number of adaptive substitutions.

It is evident that, if a = 0, then Dn/Ds is expected to equal Pn/Ps and this forms
the basis of the MK test. It is also not difficult to show from these equations that the
number of adaptive substitutions in a gene can be estimated by:

a = Dn −Ds.
Pn

Ps

So, dividing this expression by Dn gives an estimate of the proportion of amino-acid
substitutions driven by positive selection (α = a/Dn) [Smith and Eyre-Walker 2002]:

α = 1− DsPn

DnPs

The above describes how to perform the MK test and estimate α for one gene. There
are several methods for estimating the average value of α for data from multiple genes.
The most basic method involves simply summing Ds, Dn, Ps, and Pn across genes
and, despite its simplicity, this method usually agrees with more advanced approaches
[Welch 2006].

There are several assumptions behind the MK method of estimating the proportion of
amino-acid substitutions driven by positive selection, but the test is generally robust to
violations of most assumptions. The exception is if fitness reducing mutations are only
slightly deleterious. In this case, if population size has been stable, the estimate of α is
an underestimate, because slightly deleterious mutations contribute relatively more to
polymorphism than they do to divergence when compared with neutral mutations. On
the other hand, if the population sizes have expanded, slightly deleterious mutations can

19



2. Background

lead to an overestimate of α, because mutations that might have been fixed in the past,
when the population was small, no longer segregate as polymorphisms [Eyre-Walker
2006].

2.3.5. Extensions of basic methods

Early studies using the dn/ds criterion took the approach of pairwise sequence com-
parison, averaging the gene sequence and over the whole time period separating the
sequences. However, positive selection, if it occurs, may affect only a few sites which
are not necessarily adjacent in the primary sequence (e.g. an active site) and probably
take place over only a limited period of time [Golding and Dean 1998], while most sites
are expected to be under negative selection [Siltberg and Liberles 2002]. Thus, pairwise
comparisons, which average over time and sequence, rarely detect positive selection.

More formally, if we assume that synonymous mutations are neutral and non-synonymous
mutations are either deleterious, neutral or advantageous then ds = 2ut and dn =

2utf/(1− α) (derivable from equation 2.2 and the definition of α). Thus, dn can only
exceed ds if (1 − α) < f . Values of f are typically less than 0.3, as judged by aver-
age dn/ds values [Roth and Liberles 2006], so the proportion of substitutions that are
adaptive needs to be greater than 0.7 for adaptive evolution to be detectable if averag-
ing across sites [Eyre-Walker 2006]. Such a proportion of adaptive substitution in the
protein coding sequence of a gene is highly unlikely.

Fortunately, both counting and maximum likelihood methods can be extended to
increase their power. The most obvious and commonly used method for improving the
power of the counting methods is to use a sliding window approach which, instead of
calculating the dn/ds of the full length of a protein-coding gene, computes the ratio
on a window which slides along the primary sequence of the gene and is designed
to detect a selective sweep [Endo et al. 1996, Fares et al. 2002]. A more advanced
“windowing” approach is a 3D windowning method based on the tertiary structure of
the protein [Berglund et al. 2005]. The rationale behind this method is that selection
often affects specific binding pockets or interacting residues which may be distantly
located in primary sequence, but are close in the tertiary structure. By applying these
approaches the signal of positive selection is enhanced, resulting in the enhancement of
the evidence for positive selection for certain sites and the discovery of new sites.

The likelihood approach under models of codon substitution can be extended to anal-
yse multiple sequences on a phylogenetic tree and by allowing the ω parameter to vary
across branches (branch models), it is possible to test for positive selection along partic-
ular branches of the tree. Yang has implemented several models that allow for different
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levels of heterogeneity in the ω ratio among lineages [Yang 1998]. Moreover, it is
possible to let the ω ratio vary among sites (sites models). Positive selection is then
indicated by presence of sites with ω > 1 rather than the ω ratio averaged over all
sites being > 1. Finally, branch-site models have been developed [Yang and Nielsen
2002, Zhang et al. 2005] to enable the detection of local episodic natural selection.

2.3.6. Adaptive evolution

Population genetic data from Drosophila suggests that a very high proportion of amino
acid substitutions, averaging approximately 40 percent across several studies, are driven
by positively selected nucleotide substitutions [Eyre-Walker 2006]. A high percentage
of nucleotide mutations in non-coding DNA have also been shown to have been fixed by
selection. An extreme case is the untranslated region of mature mRNAs (UTRs) where
60% of fixed mutations are estimated to be adaptive [Andolfatto 2005]. Estimates in mi-
croorganisms such as Escherichia coli and some viruses are even higher [Eyre-Walker
2006]. However, within chordates, and more specifically Homo sapiens which is the
main chordate species in which this kind of study has been carried out, this proportion
has been estimated to be a lot lower [Bustamante et al. 2005].

Although not directly comparable to the population genetic data, the comparative
genomic data also fails to detect high percentages of adaptive substitutions. For ex-
ample, a systematic scan for adaptive evolution in chordates and embryophytes (higher
plants), in which 15,462 chordate gene trees were generated (based on 348,142 genes),
only returned 505 chordate branches with dn/ds � 1 using the full length of coding
sequences [Roth et al. 2005]. This number would undoubtedly have been higher if
a maximum likelihood branch (or branch-site) model or a 3D windowing method had
been used, as this was shown to make a significant difference in the number of branches
identified as being under positive selection in the case of plant sequences [Roth and
Liberles 2006]. However, it is difficult to use such an approach on a large scale due
to the limited amount of structural data available or due to the high computational re-
quirements of maximum likelihood methods.

Despite the fact that adaptive evolution appears to have occurred on much more lim-
ited scale in chordate genomes than in for example Drosophila, there are many exam-
ples of adaptive evolution (see, [Yang 2006] on pages 287-289 for an extensive but
not exhaustive list covering multiple species, or [Vallender and Lahn 2004] for a com-
prehensive review of genes affected by positive selection in humans). Independently
of lineage, the genes that have been detected as affected by positive selection tend to
fall into one of three broad categories: proteins involved in defence systems or immu-
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nity (or avoiding defence systems), proteins involved in reproduction, and gene dupli-
cates [Yang 2006]. The prominence of the first two categories is often explained by the
Red Queen Principle which gets its name from the race in Lewis Carroll’s “Through
the looking glass” where the Red Queen says: “It takes all the running you can do, to
keep in the same place”. This is a metaphor for a species which continuously adapts
in order to maintain its fitness relative to the species it is co-evolving with. It is rel-
atively easy to see how this “arms race” evolution is applicable to proteins involved
in defence and immunity systems and proteins involved in evading/penetrating these
systems (host-pathogen interactions). It also applies to proteins involved in reproduc-
tion, in particular fertilization-related proteins, because sperm and ovum have similarly
opposite functions: the spermatozon’s functions are geared towards rapidly identifying
and fertilising the ovum, while one of the functions that is key to the ovum is the ability
to avoid polyspermic fertilisation. The presence of the third category “gene duplicates”
is explained by the classical theory of gene duplicate retention [Ohno 1970] in which
the duplication releases one of the duplicates from negative selection and opens the
possibility for this gene to evolve a new function - neofunctionalisation (this topic will
be more thoroughly explored in section 2.5).

The hunt for adaptive evolution has been very active in our own species and has
returned a number of interesting examples in the functional categories in which one
might expect them, perhaps because it was there that the search efforts were concen-
trated. Genes involved in dietary adaptation, sensory systems (trichormatic vision and
taste) have all been shown to have undergone positive selection. Positive selection has
also been detected in two genes associated with brain size (ASPM and Microcephalin)
and, both genes, when mutated, are known to cause primary microcephaly (a disease
characterised by a severe reduction in brain size) [Vallender and Lahn 2004].

2.4. Gene duplication

So far, we have mainly considered genetic variation caused by nucleotide mutations
between orthologs (sequences separated by a speciation event). Following a specia-
tion event a gene in the genome of the common ancestor will become two separately
evolving genes in the descendent species (orthologs). For the absolute vast majority of
genes, these orthologs will be under negative selective pressure to retain the function
present in the common ancestor. It is this general principle that is being applied when
researchers, interested in a particular human protein, identify the ortholog in a model
organism and perform experiments in the model system with the aim of extrapolating
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the results back to humans. Positive selection does occur between orthologs, partic-
ularly in proteins involved in arms races such as immune system proteins or proteins
expressed in gametes, however, such positive selection is thought to only rarely involve
functional changes.

Large scale mutations may occur involving whole sections of DNA. Of particular
interest are events that result in the duplication of a section of DNA as such events
result in additional genetic material potentially containing a gene. Duplication events
are key drivers of evolution as they create redundancy and, thus, the opportunity for
one of the duplicates to escape the eye of negative selection and to functionally diverge.
Such functional divergence may take several forms, one of which involves the evolution
of new function through the rise to fixation of beneficial mutations that are positively
selected for [Ohno 1970].

There are two basic types of duplication of genetic material that can occur in DNA,
these are small-scale duplication (SSD) and whole genome duplication (WGD). Small-
scale duplication involves the duplication of a section of a chromosome and may result
in the duplication of one or more open reading frames. The duplication may also en-
compass the associated transcription-regulating sequences (transcription start site, tran-
scription factor binding sites and other gene regulatory sequences, see Figure 2.1) and,
thus, results in a functional duplicate. Whole genome duplication, on the other hand,
is the result of the duplication of all chromosomes, resulting in the duplication of all
genes in the genome and all regulatory regions.

2.4.1. Smaller-scale duplication (SSD)

There are several mechanisms that may cause small scale duplication. The three most
relevant with respect to gene duplication are described here, in decreasing order of their
likelihood of producing a functional duplicate.

The first and most likely mechanism to produce a functional small-scale duplicate
is unequal crossing-over which may occur during meiosis. During meiosis, prior to
the first meiotic division, the diploid germ cell precursor undergoes DNA replication
and the homologous duplicated chromosomes pair up and undergo recombination (ex-
change of homologous sections of homologous chromosomes), also called crossing-
over (see Figure 2.5). If the homologous chromosomes pair up correctly, homologous
sections of DNA are exchanged but, if they pair up incorrectly (for example, due to
some other homologous genomic feature), what is known as an unequal crossing-over
event can occur. This may result in the duplication of a gene as described in Figure 2.8.
Such a duplication has a relatively high likelihood of also duplicating the transcrip-
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tional start site and transcription factor binding sites (TFBS) of the affected gene, thus
resulting in a functional duplicate copy. An unequal crossing-over event may cause the
duplication of one (tandem duplication) or several genes (segmental duplication).

Figure 2.8.: Gene duplication by unequal crossing-over (adapted from [Page and
Holmes 1996])

Another biological process that may result in gene duplication is retro-transposition
[Walker et al. 1995]. Retrotransposons are sections of DNA that are able to make
copies of themselves, usually via an RNA intermediary. DNA sequence transposes
by first being transcribed into RNA by cellular RNA polymerases. A DNA copy of
this RNA is then made using the reverse transcriptase enzyme. The DNA copy can
then reintegrate into another site in the genome i.e. not necessarily in proximity to the
source sequence. It is possible that a retrotransposon not only makes a copy of itself,
but also copies adjacent sections of DNA which may contain genes. This is particularly
likely if two transposons are located close to each other in the DNA sequence and a
gene is located between them as the transposition mechanism may occasionally use
the ends of two different elements (instead of the two ends of the same element) and
thereby replicate the DNA between them [Alberts et al. 1997]. If a gene is affected in
such a way by a retrotransposon, the protein coding section of the gene (possibly also
accompanied by transcription factor binding sites) may get duplicated. There is then a
remote possibility that the duplicate copy is expressed either because it was copied with
its regulatory elements or because it was inserted next to functional TFBSs of another
gene.

Finally, it is possible that mature mRNA transcripts from an expressed gene get
reintegrated into the genome at another locus via the action of reverse transcriptase
[Schacherer et al. 2004]. This results in a novel protein coding sequence without in-
trons. Such a sequence is very unlikely to be transcribed as the original gene regulatory
elements will not be present, but there is the remote possibility that a retro-transcribed
mRNA comes under the control of the regulatory sequences of another gene or inde-

24



2.4. Gene duplication

pendently evolves transcriptional capability and thus is expressed, see for example [Mc-
Carrey 1990].

Other mechanisms that may result in the duplication of sections of DNA containing
genes, but which we have not described here, include DNA polymerase slippage and
DNA-level transposition.

2.4.2. Whole genome duplication (WGD)

WGD is thought to occur through polyploidy (more than two sets of chromosomes).
There are two types of polyploidy: allopolyploidy in which the polyploid originates by
the fusion of the genomes of two different, but closely related, species; and autopoly-
ploidy in which all the chromosomes are from the same species. The number of sets of
chromosomes may be any number, but tetraploidy (four sets of chromosomes) is com-
mon as meiosis is not perturbed by this doubling in the number of chromosomes (this
is therefore the situation we describe in the following section).

In a diploid organism, if two daughter cells which were produced at the end of mitotic
telophase fuse into one, a tetraploid cell is produced. A tetraploid cell may also be
produced by two DNA replications not intervened by mitosis. If a germ cell precursor is
tetraploid, meiosis will produce diploid gametes and the union of two diploid gametes
will produce a tetraploid zygote. Tetraploid zygotes in mammals occur with a non-
negligeable frequency, but the condition is lethal [Carr 1967]. Even if the condition is
not lethal, polyploids tend to be scarce in animal species due to the sex determining
mechanism. When diploid organisms with the XY/XX sex determining mechanism
become tetraploid, the male has to maintain the XXYY state and the female the XXXX
state. During meiosis of the XXYY male, the four sex elements may pair off as the
XX-bivalent and the YY bivalent, resulting in every gamete being XY. Thus, all zygotes
produced by the mating of a tetraploid male and female will be of the XXXY type. If the
XXXY type gives the male phenotype, then there will be no females. Alternatively, the
XXXY may be sterile. Even if two XY bivalents are formed in male meiosis, in 50% of
the cases X and Y will move to the same division pole at the first meiotic division, thus
producing the XXXY type. Thus, polyploidy disturbs chromosomal sex determination
[Ohno 1970]. The above explains why polyploidy evolution is rare in mammals, birds
and reptiles. However, in amphibians and fish, the chromosomal determiners of the
opposite sexes, the X and Y (for male heterogamety) and the Z and W (for female
heterogamety) are still in an initial state of differentiation and may substitute for each
other. This explains why polyploidy is observed in fish [Leggatt and Iwama 2003]
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and amphibians [Ptacek et al. 1994]. Polyploidy is also common in plants for similar
reasons [Bodt et al. 2005].

Most diploids that undergo a WGD and become tetraploids eventually revert to the
diploid state (diploidization) as exemplified by Arabidopsis thaliana which, although
no longer polyploid, is known to have undergone several relatively recent WGDs [Bow-
ers et al. 2003]. A newly arisen autotetraploid has four homologous chromosomes. As
long as four homologs get together to form a quadrivalent during meiosis, the four chro-
mosomes would be randomly sorted into two sets of two at the end of the first meiosis.
There is thus no possibility of functional diversification. The preferential formation
of two separate bivalents is the prerequisite for diploidisation and this is thought to
occur by the evolution of structural heterozygosity among the four homologous chro-
mosomes [Ohno 1970]. Fish belonging to the suborder Salmonoidea (trout, salmon
whitefish and graylings) appear to be autotetraploid species which have progressed to-
wards the diploid state in various degrees via this mechanism [Ohno et al. 1968].

It has long been suggested that WGD events may be associated with important transi-
tions, major leaps in evolution and adaptive radiations of species. In particular, Ohno’s
neofunctionalisation theory of gene duplicate retention was initially proposed to ex-
plain the adaptive radiation of vertebrates through two rounds of WGD in the ancestral
chordate (referred to as 2R). Evidence for 2R is now strong [Dehal and Boore 2005]
and as we shall see there is now mounting evidence that these events had an important
influence on the gene content of vertebrate genomes (although the cause of retention is
not limited to neofunctionalisation as originally thought).

2.4.3. Fixation of the duplication event

The duplication event occurs in an individual organism, but the duplication only be-
comes part of the species genome if it rises to fixation. If the initial duplication event
is selectively neutral then it may rise to fixation by genetic drift which it will do with
a probability that is proportional to the inverse of the effective population size. As
we shall see, under many models of gene duplicate evolution, this is indeed the case,
but under other models (e.g. dosage sensitivity or increased dosage) the duplication
event might produce a fitness effect even immediately following duplication when the
duplicate sequences have not diverged. Moreover, it has been suggested that if a gene
is duplicated together with regulatory elements it might generally (regardless of any
particular properties of the gene) have a negative fitness effect due to the metabolic
cost of producing extra protein [Wagner 2005]. These fitness effects would affect the
probability of fixation.
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Irrespective of whether the initial duplication event has a fitness effect or not, it is
generally assumed that if fixation occurs, it does so much faster than the resolution
of the fates of the duplicate copies. Thus, most studies of the fates of gene duplicates
consider fate determination as a separate step that occurs following the fixation process.

2.5. Gene duplicate retention

2.5.1. Pseudogenisation

Following fixation of a gene duplicate the genome will contain two copies of the du-
plicated gene with none, or very little, divergence between the two copies. Assum-
ing that both copies are fully functional, then one of the two is redundant (although
there is the possibility that only part of the gene was duplicated, e.g. the open reading
frame without the TFBSs, in which case one copy is a pseudogene). This functional
redundancy results in a reduction in the level of negative selective pressure that applied
pre-duplication [Lynch and Conery 2000, Lynch and Conery 2003]. In most cases, this
release from negative selective pressure will eventually lead to the fixation of a null
mutation (mutation affecting either a coding or regulatory region that results in loss of
function) by drift, as there is no loss of fitness if one of the copies pseudogenises.

Mutations that destroy (or simply debilitate) function occur by various mechanisms,
examples include nucleotide substitutions, deletions, insertions, insertions of transpos-
able elements, and unequal crossing-over between repeated transcription factor binding
sites.

Pseudogenisation is clearly the fate of the majority of gene duplicates irrespective of
whether they are the result of SSD [Lynch and Conery 2000, Lynch and Conery 2003]
or WGD [Woods et al. 2005, Brunet et al. 2006, Kellis et al. 2004].

2.5.2. Neofunctionalisation

However, it is clearly the case that gene duplicates are retained since gene content varies
across genomes and has clearly increased within specific lineages, see for example
the Ensembl database of annotated vertebrate genomes [Birney et al. 2006]. Such
discrepancies in gene number have long been suspected and it is this which lead Ohno
to formulate his neofunctionalisation model [Ohno 1970]. The fundamental idea is
that, although the majority of duplicates will pseudogenise due to the neutral fixation
of a null mutation, some duplicates will be subject to beneficial mutations that confer a
new function to the duplicate. These beneficial mutations might occur in coding DNA,
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in regulatory sequence or in sequence controlling alternative splicing. Once one of
the genes in the duplicate pair has neofunctionalised, there will be negative selective
pressure to retain both copies. Because of the lack of genomic data at the time of its
formulation, the theory that neofunctionalisation was driving gene retention remained
for a long time untested against empirical data.

As we saw in sub-section 2.3.6, the large amounts of genomic data which have re-
cently become available have revealed that adaptive substitutions occur on a large scale
in Drosopholia between orthologous sequences, but are currently thought to occur on
a more limited scale in chordate species. Key to the issue of whether or not this model
may explain the retention of duplicates is the extent to which beneficial mutations occur
at a sufficiently high rate in the period following duplication that the fixation of such
a mutation outpaces that of a null mutation in a non-negligeable fraction of duplicate
pairs. It is quite possible that this is the case, despite the low level of adaptive evolution
observed in chordate orthologs, as the duplication event creates a release from negative
selective pressure which does not happen for orthologous genes. Thus, the duplication
creates a context in which a larger fraction of the total nucleotide mutation rate may be
fitness enhancing.

Individual cases of neofunctionalisation following gene duplication have been identi-
fied [Bielawski and Yang 2001,Johnson et al. 2001,Maston and Ruvolo 2002,Rodríguez-
Trelles et al. 2003,Wu 2005]. There is also more general evidence that gene duplicates
are under positive selection [Moore and Purugganan 2003,Shiu et al. 2006], however it
is unclear from these studies whether the positive selection is a result of the duplication
itself (as in the increased dosage model, see section 2.5.6) or whether fitness enhancing
functional changes may be involved.

Moreover, because of the uncertainty surrounding the rate of fitness enhancing mu-
tations in gene duplicates, it has been suggested that neofunctionalisation may not be
the mechanism driving the retention of duplicates, but that neofunctionalisation occurs
later once the duplicate has been stabilised in the population through some other mech-
anism [Force et al. 1999]. In this case, neofunctionalisation may still be a prominent
fate even though the adaptive nucleotide mutation rate may be very low, as retention
is ensured by another process and the adaptive mutations have a long time period in
which to accumulate free from competition from null mutations.

2.5.3. Subfunctionalisation

Once genomic data became available it became clear that the levels of retention of gene
duplicates could be very high, in particular following WGD where retention rates can
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easily reach 20% or more (e.g. X. laevis [Hughes and Hughes 1993], teleosts [van de
Peer et al. 2003], maize [Ahn and Tanksley 1993]). The classical neofunctionalisa-
tion model was considered unable to explain these high levels of retention, due to the
view that beneficial mutations are very rare, and the subfunctionalisation model was
proposed as an alternative. This model, also refered to as the duplication-degeneration-
complementation (DDC) model [Force et al. 1999], derives from the fact that many
genes, particularly those involved in development and gene regulation, have multiple
and independently mutable regulatory subfunctions which control timing and tissue
specificity of gene expression. Taking into account this modularity of the regulatory
regions of genes, the model demonstrates how degenerative mutations in complemen-
tary regions can lead to retention of both duplicate copies through the evolutionary
requirement to retain all the regulatory regions of the original gene (see Figure 2.9).
The fundamental observation is that if a gene has several independent regulatory mod-
ules controlling expression, for example in different tissues, then a null mutation to one
regulatory region in one copy and a null mutation to another regulatory region in the
other copy, will result in negative selection to retain both copies. As this model does
not require beneficial mutations to explain the retention of both duplicates in a pair, it
has been characterised as “near-neutral”.

Figure 2.9.: Potential fates of a duplicate pair, adapted from [Force et al. 1999]
Small boxes: regulatory regions, big boxes: coding regions, black box: functional, white box: fixed null mutation

Arrows represent potential null mutations to regulatory or coding regions. The base of the arrow identifies the mutated region

(if the base encompasses multiple regions, then this symbolizes a mutation to one of these regions) and the tips of the arrows

point to a representation of the outcome if such a mutation is fixed in the population: pseudo.: pseudogenisation, subfunc.:

subfunctionalisation, neg. select.: negatively selected against i.e. unlikely to reach fixation in the population.

The dotted arrow represents several intermediary states between the second and last state which are not drawn as the potential

mutations from these states are identical to those in the second state. The model focuses on mutations fixed in the population, so

the diagram shows the state of a single gamete.

Hughes [Hughes 1994] had previously proposed a similar model, sometimes referred
to as “adaptive conflict”. This model assumes an ancestral gene encoding two or more
distinct, but pleiotropically constrained functions, in its protein coding sequence. Fol-
lowing duplication, the pleiotropic constraints are reduced and the duplicates specialise
in distinct subsets of the functions of the ancestral gene, this division ensures retention
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of both copies. This model is similar to the subfunctionalisation model in that there
is a partitioning of functions between duplicates, but is also fundamentally different,
in that the initial force driving retention of both copies is the accumulation of bene-
ficial mutations which refine the subset of functions of each paralog. However, one
can also envisage retention being driven by partitioning of function through deleterious
mutations. Thus, although the subfunctionalisation model originally emphasised par-
titioning of expression patterns, it is also possible to think of the subfunctionalisation
applying, for example, to active sites in the protein coding sequence. In this case, the
probability of subfunctionalisation is an increasing function of the number of interac-
tions or active sites (as opposed to the number of regulatory modules in the classical
subfunctionalisation model).

Another variant of the subfunctionalisation model is quantitative subfunctionalisa-
tion. The idea is that mutations, instead of completely destroying function or expres-
sion, may merely have a debilitating effect. In this case, once the joint efficiency of
a subfunction in both copies has been reduced to a level at which fitness begins to be
reduced, any further degradation of the subfunction from either copy will be opposed
by purifying selection [Force et al. 1999, Stoltzfus 1999].

The probability of subfunctionalisation is an increasing function of the number of
regulatory modules, thus, there is reason to believe that the subfunctionalisation model
might be at its most relevant as a mechanism of retention following WGD as all regu-
latory regions will be duplicated. This is to be contrasted with the situation following
SSD where the extent to which regulatory regions are duplicated may be limited, par-
ticularly if such regions are widely dispersed in the genomic sequence [Kikuta et al.
2007].

2.5.4. Subfunctionalisation followed by neofunctionalisation

It was already noted in the original article [Force et al. 1999], as well as in subsequent
publications [Lynch and Force 2000], that, subfunctionalisation may often occur in con-
cert with neofunctionalisation: subfunctionalisation being the mechanism that ensures
the initial retention, but the evolution of novel function being the ultimate fate of the
retained duplicate. Since subfunctionalisation is driven by deleterious mutations which
are known to be abundant, a model in which these two mechanisms are combined is
not susceptible to the debate on the rate of beneficial mutations. The reasons one might
expect a coupling of these two mechanismss are two-fold. First, subfunctionalisation
stabilises the duplicate pair in the genome, thus increasing the probability that one of
the genes is subject to rare beneficial mutations to a novel function. Second, the parti-
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tioning of gene expression patterns may reduce the level of pleiotropic constraints that
apply on single gene and, thus, allow a fine tuning of each member of the pair to its
specific subfunction.

Using genome-wide protein-protein interaction data from yeast and gene (spatial)
expression data from human, it has been possible to show that neither neofunction-
alisation nor subfunctionalisation alone can adequately explain functional divergence
of duplicate genes [He and Zhang 2005]. Instead, the analysis of this data reveals that
rapid subfunctionalisation is accompanied by neofunctionalisation in a large proportion
of duplicate genes. A simulation of duplicate protein evolution using lattice models has
drawn similar conclusions [Rastogi and Liberles 2005].

2.5.5. Dosage balance

An alternative explanation for the high levels of retention following WGD is that dosage
balance (stoichiometry) constraints apply to large numbers of genes.

The dosage balance model builds on the observation that the relative dosage of cer-
tain gene products in the cell have a critical effect on function, in particular for gene
products forming complexes. For a complex formed by the binding of proteins A and
B, there are numerous reasons why an excess of A might be deleterious: A could from
homodimers with a different function from that of the AB heterodimer, it might be
a regulatory subunit that competes with other regulatory subunits to bind the catalytic
subunit B, it might be toxic by binding irreversibly to targets where AB should bind nor-
mally, or it could form toxic precipitates [Papp et al. 2003]. Recent evidence suggests
that a major contributor to this balance effect are molecular complexes that function in
various regulatory processes affecting gene expression [Birchler et al. 2005].

Thus, according to this model, a WGD should be followed by selective pressure to
retain all genes encoding proteins that are dosage sensitive, as loss of one of the genes
would create a dosage imbalance and is negatively selected against. Evidence that this
might indeed be the case can be found for example in the Arabidopsis thaliana genome
for which there is good evidence of several rounds of WGD [Bowers et al. 2003].
Genes retained in duplicate following WGD in this plant are not distributed evenly
among Gene Ontology functional categories, instead there is an over-representation of
genes involved in signal transduction and the regulation of transcription [Blanc and
Wolfe 2004]. Genes with these functions are likely to be dosage sensitive and thus
their overrepresentation among duplicates retained following WGD is supportive of the
dosage balance model. Moreover, Arabidopsis genes retained in duplicate following
one round of genome duplication are significantly more likely to be retained in dupli-
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cate after a subsequent genome duplication [Seoighe and Gehring 2004], which is also
consistent with this model.

It is important to note that, unlike the two first models of retention, dosage balance
implies strong negative selection on both the coding and regulatory regions of the gene’s
DNA. Moreover, this model has the particularity that in the case of SSD of dosage
sensitive genes, the duplication event is negatively selected against as the duplication
of one gene of a set of mutually dosage sensitive genes has a negative fitness effect.
Thus, although dosage balance may be an important cause of duplicate preservation
following WGD, it is not a relevant model for the retention of duplicates following
SSD.

As in the case of subfunctionalisation, it has been suggested that retention for stoi-
chiometric reasons may be the initial cause of retention, but that the ultimate fate of the
retained genes may be neofuntionalisation [Aury et al. 2006].

2.5.6. Robustness and increased dosage

The above models (neofunctionalisation, subfunctionalisation and dosage compensa-
tion) are widely considered to be the main models of gene duplicate retention as they
are thought to have the potential to explain the retention levels observed either following
SSD (neofunctionalisation), or WGD (dosage balance) or both (subfunctionalisation).
But, there are also several other models of duplicate retention.

A very simple model is the “increased dosage” model. In this model, the ancestral
gene is considered to have exhausted its mutational capacity to evolve higher levels of
expression, thus a duplication of the ancestral gene is fitness enhancing as it doubles
the maximum expression capacity. Because of this fitness effect, one would expect
such a duplication event to rapidly rise to fixation through positive selection. However,
given that retention levels are not insignificant following SSD and can be considerable
following WGD, a large fraction of genes would need to be expressionally constrained
in this way for this model to be an important explanation of gene duplicate retention.
Although some genes may be retained through this mechanism, it seems unlikely that
many genes suffer from “limited expressional capacity”. Moreover, this model also
implies that sequence divergence between duplicates would be limited or, at the very
least, progress in a linear fashion. The fact that this is not the case [Lynch and Conery
2000, Lynch and Conery 2003], further weakens increased dosage as a major explana-
tion of duplicate retention.

The observation that the deletion of a gene from a genome often has little phenotypic
effect has lead to the suggestion that retained gene duplicates may be the source of this
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robustness: the existence of gene duplicates may enable the deletion of one gene to be
compensated for by a duplicate (the other prominent explanation for this compensation
is that there exists alternative metabolic pathways and regulatory networks). Thus, it
has been hypothesised that gene duplicates may be retained in genomes through nega-
tive selection for the buffering they provide against deleterious mutations.

The finding that, in Sacchromyces cerevisiae, at least a quarter of the gene deletions,
that have no phenotype, are buffered by duplicate genes [Gu et al. 2003], was seen
as supportive evidence. However, a later study in the multicellular Caenorhabditis

elegans estimated a much lower contribution of gene duplicates to robustness [Conant
and Wagner 2004], a result that has been confirmed by further work in Sacchromyces

cerevisiae [He and Zhang 2006].

Moreover, even if gene duplicates were to explain a large fraction of the observed
robustness to gene deletion, it does not necessarily follow that it is selection for robust-
ness that drives duplicate copy retention. Indeed, gene redundancy may simply be an
accidental by-product of gene duplication. Population genetic modeling showing that
the selection pressure associated with robustness driven retention is very weak [Conant
and Wagner 2004] would seem to confirm this view. And several empirical studies
have concluded that negative selection for robustness is not an important driver of gene
duplicate retention [Kuepfer et al. 2005, Ihmels et al. 2007].

2.5.7. Summary

There are two main mechanisms through which gene duplication can occur (small-scale
and whole-genome duplication) and several models of gene duplicate retention, the
most prominent of which are neofunctionalisation (either alone or in combination with
subfunctionalisation), “pure” subfunctionalisation, and dosage balance. Other models
of retention such as robustness and dosage balance may apply to individual cases, but
are unlikely to be an important cause of retention. See Figure 2.10 for a graphical
illustration of these models and Figure 2.11 for a summary of some of the details.

The mode of duplication determines a context for the duplicated gene and some
models of gene duplication are not just dependent on features of the duplicated gene
itself, but also on its context. Thus, some models of retention are associated with only
one mode of duplication. For example, dosage balance is effectively only a candidate
mechanism of retention following WGD.

The modes of duplication also vary in the levels of retention that they produce, with
the retention rate following SSD being of the order of five percent in Homo sapiens

[Hughes and Liberles 2007], whereas it can be several times higher following WGD.
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The only models that are considered to be able to produce such high levels of retention
are subfunctionalisation and dosage balance.

Because of its neutrality, the “pure” subfunctionalisation model should be considered
to be the null hypothesis when testing models of retention. Data on gene duplicates
must first be shown to be inconsistent with this model, before the data is shown to be
consistent with a selective model such as neofunctionalisation (positive selection) or
dosage balance (negative selection).

It is important to recall that several of the models may apply to different types of
genomic features e.g. both neo and sub-functionalisation may apply to regulatory re-
gions, sequence controlling splice variants and to active sites. Given this, many types
of data on gene duplicates have been examined to test the different models of retention,
these include micro-array expression data, protein-protein interaction data, functional
classes, and patterns of sequence divergence.

There appears to be a bias in the studies towards the study of retention following
WGD. This bias is most probably driven by the fact that WGDs have the desirable
characteristic of having duplicated all genes in the genome at a specific point in time,
thus making for example the study of the retention of specific functional classes sim-
ple as all genes are known to have duplicated. There are currently no clear-cut results
regarding the primary cause of retention following WGD, as some studies conclude in
favour of subfunctionalisation while others favour dosage balance. The cause of this
ambiguity is perhaps to be found in the fact that genes involved in regulation are the
functional class which is most clearly over-retained following WGD (as compared to
SSD). Genes involved in regulation have both complex regulation making them suscep-
tible to subfunctionalisation and a tendency to be dosage sensitive, thus disentangling
subfunctionalisation from dosage balance can be difficult.

The evidence that exists on the fate of duplicates following SSD suggests that they
undergo some form of neofunctionalisation, with subfunctionalisation probably playing
a part in the initial retention in a non-negligeable fraction of cases.

2.6. Gene families

2.6.1. Concept

As we have already seen, a gene may duplicate, resulting in a duplicate pair where both
genes are initially identical. The most likely outcome of the subsequent evolution is
that one of the genes looses its functionality and pseudogenises, but there is a small
chance of retention. If both genes are retained, they will not remain identical for long
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as selectively neutral non-synonymous mutations are bound to accumulate between the
two copies whatever the mechanism of retention and, if retention is driven by neofunc-
tionalisation, there is also the possibility of more radical non-synonymous mutations
(see Figure 2.12 for a tree representation of gene family evolution).

Figure 2.12.: Evolution of gene families (circles) within a genome

In most cases, even given neofunctionalisation and hundreds of millions of years
of evolution, it will still be possible to detect similarity between the two sequences
and from this to infer the common ancestry (homology). The reason this is possible
is that, even in the case where a neofunctionalisation event separates two duplicates,
the tertiary structure of the encoded proteins is usually maintained. This constraint on
structure translates into constraints on the amino acids that are key to determining that
structure. Thus, even in the absence of a structure for each of the duplicates, homology
can be detected through sequence. There is debate about the extent to which neofunc-
tionalisation drives duplicate retention but, when it does occur, it is usually considered
to not involve fundamental changes in function, but rather fine tuning, e.g. the evolution
of a slightly different affinity or specifity of the binding site of the duplicated protein.
Thus, detectable similarity (and therefore homology) between two genes in a genome
usually corresponds to shared function, and the definition of gene families based on
detectable similarity satisfies both phylogenetic and functional considerations.

However, it can also be the case that a sequence diverges to such an extent that
homology is no longer detected, for example if a gene undergoes a radical neofunc-
tionalisation. In this case, although there is common ancestry, our limited insight into
the true evolutionary process will lead to the genes being assigned to different families.
From a phylogenetic perspective this is incorrect but, from a functional perspective,
this is a desirable outcome as radical change in sequence is very likely to be driven
by fundamental change in function. Thus, the equation of detectable homology with
shared function may be a good rule of thumb for building gene families, as the result-
ing families will usually constitute a good evolutionary and functional classification of
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the protein content of a genome. It is nevertheless important to remember that this is
only an approximation: there are many examples of sequences without any detectable
homology that have the same function, and of sequences with almost no sequence di-
vergence that have different functions, see for example [Gaucher et al. 2003].

2.6.2. Similarity-based methods for building families

The sequence similarity approach to building gene families requires a measure of the
similarity between all pairs of sequences, a similarity cutoff and a clustering algorithm
to resolve the boundaries between gene families. Similarity measures are usually e-
values from BLAST searches [Altschul et al. 1997] or PAM (point accepted mutation)
distances [Dayhoff et al. 1978]. Clustering algorithms such as single or complete
linkage are often applied. The advantage of complete linkage is that it ensures that
there is a maximum distance between any two sequences in a cluster, whereas single
linkage does not offer such a guarantee and thus produces a clustering in which the
relatedness of members is less well defined. For both methods, the issue of where to
set the similarity cut-off remains.

An alternative method that does not require a similarity cut-off is the Markov cluster
algorithm [Enright et al. 2002]. This method does require parameters that affect the
granularity of the clustering, but they are not directly related to the similarity of se-
quences within a cluster. This method also has the advantage of taking a more holistic
consideration of all similarity measures simultaneously, rather than the sequential ap-
proach used when performing hierarchical clustering. Ensembl [Birney et al. 2006],
a major repository for the annotation of vertebrate genomes, uses this method to build
gene families.

2.6.3. Structure-based methods for building families

Another approach, which is more firmly anchored in biological reality, is to use struc-
tural information to hierarchically classify proteins, or more specifically, protein do-
mains as this is the fundamental unit of structure. There are two main efforts to classify
protein structures, SCOP - Structural Classification of Proteins [Andreeva et al. 2004]
takes a more manual approach, while CATH [Greene et al. 2007] seeks to automate the
classification process. Both databases have four main levels of classification which, al-
though not identical, correspond roughly to each other. The higher levels are connected
with similarity at the structural level as it is this type of similarity which remains de-
tectable when sequence similarity no longer is, while the lower levels are connected
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to homology that is detectable through sequence similarity. In the case of SCOP, the
levels are, from top to bottom: class (all alpha helices, all beta sheets, α and β mixed, α
and β segregated); folds (the same major secondary structures in the same arrangement
and with the same topological connections); superamilies (low sequence similarity but
very similar structure); families (high sequence similarity). Given a sequence it is pos-
sible to search these databases and determine which family the sequence is likely to
belong to. This effectively also makes a prediction of the sequence’s structure, even if
the structure of the query sequence is not known.

2.6.4. Phylogenetic methods for building families

In the case where the sequences to be clustered come from a specific set of species
it is possible to take a phylogenetic approach to clustering. For each gene in the out-
group species, one searches for the most similar sequence in all other species (best hit
sequence). Once this sequence is identified, all sequences from other species, that are
more similar to the best hit than to the outgroup sequence, are included in the family
defined by the outgroup and best hit sequence [Dehal and Boore 2005, Blomme et al.
2006]. This method has the advantage of having a very clear phylogenetic definition.
Its disadvantage is that the outgroup may have undergone some gene loss and, thus, for
the orthologs of this sequence a gene family will not be defined. Moreover, this method
like all others is not immune from the problems caused by highly divergent sequences.

2.6.5. Power-law distribution of gene family size

Despite the fact that there are different methods for building clusters of homologous
genes and that the granularity of the clustering will always contain a level of arbitrari-
ness, a clustering of all protein coding genes in a genome, irrespective of the method
used, produces many small clusters and few large clusters [Yanai et al. 2000, Harrison
and Gerstein 2002]. The functional form that best fits the data is the power-law [Huy-
nen and van Nimwegen 1998, Luscombe et al. 2002]: N = aF b where F is the fam-
ily size and N is the number of families of this size or, taking the natural logarithm,
ln(N) = ln(a) + b. ln(F ) i.e. a linear relationship on a log-log plot. The exponent b is
usually in the range -4.0 to -2.75 and there is a weak positive correlation between the
exponent and the logarithm of the number of genes in the genome [Huynen and van
Nimwegen 1998].

A power-law distribution of gene family size is one of the most universal features of
the gene content of genomes. An interesting topic of investigation, which we pursue in
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one of the papers of this thesis, is determining the evolutionary mechanisms that drive
this ubiquituous observation.

2.6.6. Phylogenetic trees

Once gene families have been defined, it is possible to compute a phylogenetic tree for
the family. A phylogenetic tree is an attempt to infer the evolutionary history of the
gene family (see Figure 2.12). There are many methods for carrying out such an infer-
ence from very simple methods based on hierarchical clustering of distances between
sequences to computationally-demanding probabilistic methods such as maximum like-
lihood [Yang 1997] and bayesian inference [Ronquist and Huelsenbeck 2003]. Gener-
ally speaking, the more advanced methods produce a better inference [Yang 2006], but
the improvement is often marginal. Once a gene tree has been computed from ex-
tant sequences, it is possible to infer speciations, duplications and losses on the tree
through what is referred to as a gene tree / species tree reconciliation [Zmasek and
Eddy 2001, Arvestad et al. 2003, Berglund et al. 2005].
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The core of this thesis consists of four papers that are all connected to the study of how
the gene content of genomes is shaped by the processes of gene duplication, sequence
divergence and gene loss. The purpose of this chapter is to position these papers in
the context of the current knowledge as summarised by chapter 2. More specifically,
additional background information is presented and the contribution of the paper to
existing knowledge is explained. A summary of key results and ideas for further work
are also presented. However, it may not be straightforward to understand the details of
the discussion on further work before reading the papers (see appendix). It is therefore
recommended that the reader return to this section once the papers have been read.

The papers included in this thesis are:

• Paper I: Timothy Hughes and David A. Liberles (2007). The pattern of evolution
of smaller-scale gene duplicates in mammalian genomes is more consistent with
neo- than sub-functionalisation. Journal of Molecular Evolution 65:574-588.

• Paper II: Timothy Hughes and David A. Liberles (2007). The power-law distri-
bution of gene family size is driven by the pseudogenisation rate’s heterogeneity
between gene families. Submitted to Gene.

• Paper III: Timothy Hughes and David A. Liberles (2007). The whole genome
duplications in the ancestral vertebrate are detectable in the distribution of gene
family sizes of tetrapod species. Submitted to Journal of Molecular Evolution.

• Paper IV: Timothy Hughes, Diana Ekman, Himanshu Ardawatia, Arne Elofsson
and David A Liberles (2007). Evaluating dosage compensation as a cause of
duplicate gene retention in Paramecium tetraurelia. Genome Biology 8(5):213.

Two additional papers were produced and published in the course of the doctoral studies
that lead to this thesis. Both papers fall within the field of evolutionary biology, but they
were not included in the thesis as they have only a tangential relationship to the four
other papers:
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• Timothy Hughes, Young Hyun and David A. Liberles (2004). Visualising very
large phylogenetic trees in three dimensional hyperbolic space. BMC Bioinfor-
matics 29(5):48.

• Timothy Hughes and Tor Erik Rusten (2006). Origin and evolution of self-
consumption: Autophagy. In, Origins and evolution of eukaryotic endomem-
branes and cytoskeletons, edited by Gaspar Jekely. Landes Bioscience.

3.1. Gene duplication and loss (paper I)

3.1.1. Context

Biology is primarily concerned with the study of all phenotypic aspects of living or-
ganisms and evolutionary biology is more specifically interested in elucidating how
different phenotypes evolved. The introduction chapter has hopefully made clear that
an important source of phenotypic change/novelty are retained gene duplicates. Three
of the key processes in the retention of gene duplicates are gene duplication, gene loss,
and gene sequence divergence between the genes in the pair. With the advent of whole
genome sequencing, quantitative characterisations of these processes have been made
possible [Lynch and Conery 2000, Lynch and Conery 2003]. Lynch and Conery’s first
paper is a seminal paper, in which all three processes are modeled. Essentially, the
rates of gene duplication, gene loss and sequence divergence (as measured by the num-
ber of accumulated non-synonymous substitutions per non-synonymous site, dn) are
estimated by using the accumulation of synonymous substitutions per synonymous site
between the genes in a pair (ds) as a proxy for time since duplication. The idea of
using ds as a proxy for time is what enables the estimation of the rates for processes
that we are not able to monitor through time by direct observation. However, follow-
ing close inspection, it became clear that the models of sequence divergence and, more
importantly, gene loss could be significantly improved.

3.1.2. Results

We therefore proceeded to build a dataset of recent gene duplicates for several fully-
sequenced mammalian genomes (Homo sapiens, Canis familiaris, Mus musculus, Rat-

tus norvegicus) to which we fitted what we consider to be improved models.
The results of the improved modeling broadly confirm the results of Lynch and Con-

ery. We find that the duplication rate is of the same order of magnitude as the rate of
mutation per nucleotide site. We also find that half lives of gene duplicates are very
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short, of the order of 0.03 ds and the rates of accumulation of non-synonymous substi-
tutions between duplicated genes are similar to the earlier results [Lynch and Conery
2000, Lynch and Conery 2003]. The two significant differences are the model for the
variance of the accumulation of non-synonymous substitutions and the Weibull func-
tion modeling of the loss rate.

The model of the variance is important for several reasons. First, because it enables
an improved modeling of the duplicate gene data that can correct for the heteroscedas-
ticity of dn: the variance of dn is not constant, but increases with ds (the proxy for
time since duplication). Second, because this characterisation of the variance can be
used to differentiate between the modes of retention of gene duplicates (see section
3.2). Third, because it can be employed to differentiate functional gene duplicates from
pseudogenes (see ideas for further work in sub-section 3.1.3).

The modeling of gene loss using a Weibull function shows that the rate of gene
duplicate loss as a function of time since duplication is not a constant, but rather a
decreasing function. This has implications for the likely mode of retention of gene
duplicates but, it is also important in its own right as the correct functional form is
needed both for modeling studies, which usually assume that the death rate is a constant,
[Arvestad et al. 2003,Demuth et al. 2006] and also for an accurate estimate of the half-
life of a gene duplicate.

3.1.3. Ideas for further work

The characterisation of the variance of the accumulation of non-synonymous substitu-
tions can potentially be used to refine the way in which the dn/ds method is used for
detecting pseudogenes in genome annotations.

Pseudogenes are complete or partial copies of genes that do not code for functional
polypeptides. This lack of function is either a result of failure of transcription or trans-
lation, or a result of the production of a protein that does not have the same func-
tional repertoire as the protein encoded by the normal paralog gene [Mighell et al.
2000]. Pseudogenes are generally divided into two main categories (processed and
non-processed) which correspond to the mechanism through which they were gener-
ated.

Non-processed pseudogenes are generated through partial or complete segmental du-
plication of genomic DNA by unequal crossing-over. If the duplication is only partial,
e.g. only part of the coding sequence is duplicated or gene regulatory regions were not
duplicated, then the duplicate is likely to be a pseudogene “from birth”. On the other
hand, if the duplication is complete, the duplicate will initially be functional. There is
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a small probability that the duplicate remains functional, but the most likely outcome
is that the duplicate pseudogenises [Lynch and Conery 2000], a result which has been
confirmed in paper I.

Processed pseudogenes are retrotransposed mature mRNAs (also referred to as retro-
pseudogenes) and far outnumber non-processed pseudogenes [Torrents et al. 2003].
They are typically characterised by an absence of 5’-promoter sequence and introns,
and the presence of a 3’-polyadenylation tract. Due to these features, in the vast major-
ity of cases, these retro-transposed sequences are pseudogenes from inception but, in
a few instances, the retro-transposed sequence is maintained as a functional intronless
gene [McCarrey 1990].

A common strategy for annotating genomes is to search the genome sequence for
sections of DNA with protein-coding features. Such a search inevitably returns many
pseudogenes as well as the functional genes which are of primary interest: for example,
there is evidence that about one fifth of all annotated genes in C. elegans were in fact
pseudogenes [Mounsey et al. 2002]. Processed pseudogenes have features, such as ab-
sence of introns and presence of 3’-polyadenylation tract, that enables them to be fairly
accurately identified as non-functional. Non-processed pseudogenes lack these fea-
tures and approaches usually evolve around searching for stop codons or frameshifts
that disrupt the original reading frame, predicted by homology to known protein se-
quences. However, a sequence might be a pseudogene even if it lacks these features,
for example, the lack of function may be due to the substitution of a functionally critical
amino acid or due to the lack or disruption of promoters.

A feature that is shared by all pseudogenes is their lack of function and thus their
freedom from the constraints of selection, thus over time they accumulate substitutions
in a neutral fashion dn/ds ' 1 whereas functional genes, even if they are recent du-
plicates, tend to have dn/ds < 1 when this is calculated over the full length of the
sequence, as shown in paper I. This feature of pseudogenes has been exploited to im-
prove their detection [Torrents et al. 2003] but, in that study, the ratio was treated as
a constant that does not change with time since duplication. Our characterisation of
the accumulation of dn as a function ds shows that functional gene duplicates accumu-
late non-synonymous substitutions at a rate that decreases with time since duplication.
Moreover, we have produced a quantitative model of the variance of dn. It should thus
be possible to exploit this additional information to refine the use of dn/ds as a criterion
for identifying pseudogenes.

A method that is superior to the existing dn/ds ratio method [Torrents et al. 2003]
has been developed [Coin and Durbin 2004], however this method requires detectable
homology to a Pfam domain, a condition that is only satisfied for approximately 60

44



3.2. Models of duplicate retention (paper I)

percent of sequences. Thus, a refinement of the dn/ds method would have the definite
advantage of being more widely applicable and might even compete with the Receiver
Operating Curve (ROC) of the Pfam based method.

3.2. Models of duplicate retention (paper I)

3.2.1. Context

From the background discussion in chapter 2, it should be clear that the most promi-
nent models of duplicate gene retention are fundamentally different between SSD and
WGD. Following SSD, the main models for gene duplicate retention are subfunctionali-
sation which may be considered as the neutral null hypothesis and neofunctionalisation.
Dosage balance is not applicable as a model of retention following SSD as dosage sen-
sitive duplicates are negatively selected against. Following WGD, subfunctionalisation
can again be considered as the null hypothesis, but neofunctionalisation alone would be
very unlikely to produce the high levels of retention observed following WGD. Dosage
compensation, however, is consistent with high retention levels and is the most relevant
alternative to subfunctionalisation in the WGD context. It is nevertheless important to
recall that a gene may be stabilised in the genome by subfunctionalisation or dosage
compensation, but subsequently undergo neofunctionalisation [Force et al. 1999, He
and Zhang 2005, Rastogi and Liberles 2005].

In the literature, there is a strong focus on the study of retention following WGD and
far fewer studies addressing SSD retention. This may be due to the fact that SSD has the
disadvantage relative to WGD that not all genes are duplicated at one point in time, so
it is difficult to study whether particular functional categories are preferentially retained
or not. On the other hand, because SSD is an ongoing process and not a one-off event,
there are techniques for producing a picture of how SSD duplicates evolve, something
which is difficult to achieve with WGD duplicates. It is this feature of SSD that we
have exploited in paper I to quantify two key characteristics of the duplicates: the rate
of accumulation of non-synonymous substitutions per non-synonymous site and the
rate of pseudogenisation. By deriving the predictions of the SSD retention models for
these characteristics, we are able to test which model is the most consistent with the
data.

Both neofunctionalisation and subfunctionalisation undoubtedly account for large
numbers of the gene duplicate retentions, however, which is the dominant mode re-
mains unclear. This is primarily due to the difficulty in directly identifying the changes
in the sequence features that cause retention. In the case of the classical subfunctional-
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isation model [Force et al. 1999], it is the complementary loss of regulatory modules
that drives retention, but such sequences are difficult to identify computationally due
to their short and degenerate nature. In the case of neofunctionalisation, it is the accu-
mulation of beneficial mutations that change or add functionality that drive retention,
by for example changing the specificity of an active site, but such mutations are notori-
ously difficult to identify due to their episodic and localised nature [Golding and Dean
1998].

Studies of small-scale duplication and retention have therefore used “indirect” evi-
dence such as the species-wide levels of nucleotide polymorphisms in the progenitor
and/or duplicate gene copies [Moore and Purugganan 2003] or the levels of duplicate
gene retention in species with different population sizes [Shiu et al. 2006]. These
studies have concluded that duplicates are under positive selection to be retained, but
it remains unclear whether this is simply a result of duplication event itself (as in the
increased dosage or robustness models) or whether one of the duplicates may have
neofunctionalised. A study which is clearer on this point [He and Zhang 2005] uses
functional genomic data (genome-wide protein-protein interaction data from yeast and
gene spatial expression data from human) to clearly show that neofunctionalisation is
very common, but that it tends to be preceeded by subfunctionalisation. In other words,
neofunctionalisation is the ultimate fate (or mode of evolution), but subfunctionalisa-
tion is the mode of retention.

3.2.2. Results

Our derivation of the predictions of the different models of SSD retention show that the
neofunctionalisation model is most consistent with the data on the pseudogenisation
rate and the rate of sequence divergence of duplicate pairs. However, we are not able
to clearly distinguish between neofunctionalisation from subfunctionalisation followed
by neofunctionalisaton. These results are thus in agreement with existing results on
small-scale duplicate retention [Moore and Purugganan 2003,He and Zhang 2005,Shiu
et al. 2006].

That “pure” subfunctionalisation (subfunctionalisation without neofunctionalisation)
does not play an important role, is perhaps not that suprising. Subfunctionalisation
involves partitioning of function and a gene only has a limited number of functions, thus
there is a limit to how many times these can be partitioned. At some point new functions
must evolve for partitioning of function to be able to continue to play a role as a cause
of retention. As there is currently little concrete evidence that retained whole genome
duplicates are the source of novel function, this leaves only orthologs and small-scale
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duplicates as potential sources. Our results indicate that retained small-scale duplicates
do indeed probably play this role.

3.2.3. Ideas for further work

A general characteristic of studies of gene duplicate retention (both SSD and WGD) is
that researchers choose a set of features of gene duplicates (e.g. sequence divergence
rates, or expression patterns, or protein-protein interactions) and determine which model
of retention is most consistent with the data. However, only a subset of all relevant fea-
tures are analysed in any one study. An alternative approach would be to include all
relevant features in one study. The downside of this approach is that it may be difficult
to conclude in favour of a particular model of gene duplicate retention but, the upside
of this more holistic approach would be that one may obtain a better quantification of
how different features of genes contribute to the probability of retention.

A natural framework for such a study is survival analysis, which we use when mod-
eling the pseudogenisation rate in paper I. Survival analysis is a commonly used tech-
nique in medical statistics to study the effect of a treatment. One of the key differ-
ences between medical survival analysis and the analysis that we performed in paper
I is that additional covariates to time are included in the model, usually characteris-
tics of the patient such as lifestyle, health and genetics. This makes it possible to test
which covariates significantly contribute to the survival outcome. An existing theo-
retical framework therefore exists for extending the modeling of pseudogenisation to
include characteristics of the gene duplicates.

However, in the case of gene duplicates, we do not directly observe duplicates through
time in the same way as patients can be monitored for a medical survival analysis [Col-
lett 2003]. However, we are able to determine whether a gene is a pseudogene or not
(survival outcome), and it is possible to determine many of the features of genes and of
pseudogenes. Assuming that it is possible to extract from the set of pseudogenes those
that were functional on duplication (and exclude those that were not e.g. processed
pseudogenes) then it should be possible to perform a logistic regression in which the
dependent variable is the gene’s state (functional or not, i.e. pseudogene) and the in-
dependent variables are features of the gene e.g. length, fold, sequence divergence,
functional class, number of expression domains, number of interaction partners. The
independent features would of course have to also include time since duplication, as
this is the primary determinant of a duplicate’s functional state. The details of how
such a study may be carried out have not been fully explored, but a study embracing
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this more holistic approach has the potential to make a contribution to the study of gene
duplicate retention.

3.3. The distribution of gene family size (paper II)

3.3.1. Context

The power-law distribution of gene family size is one of the most (if not the most) ubiq-
uituous feature of the gene content of genomes as it has been observed in species from
all three domains of life (see subsection 2.6.5). It is observed for all fully-sequenced
genomes and is also observed across multiple genomes if the species are evolutionar-
ily distant [Enright et al. 2003]. The evolutionary mechanisms that are candidates as
drivers of this characteristic of genomes are gene duplication, gene loss and sequence
divergence (in bacteria, lateral gene transfer may be added to the list). Several pa-
pers have shown that it is possible to define theoretical evolutionary models that repli-
cate the power-law distributions of genes or protein folds [Huynen and van Nimwegen
1998, Yanai et al. 2000, Qian et al. 2001, Karev et al. 2002, Kamal et al. 2005], how-
ever, none of these models have been validated using genomic data. In paper I, we have
formulated models for all three key processes and fitted and tested the models using
genomic data. In paper II, we use these models to explore through simulation their
relationship with the power-law.

3.3.2. Results

Using a model of homologous gene evolution, we show that the power-law distribution
of gene family size is driven by the pseudogenisation rate’s heterogeneity across gene
families and its correlation within families. Moreover, we show that gene duplication
and pseudogenisation are necessary and sufficient for the emergence of the power-law,
and are thus the key forces shaping the size of gene families. Our results are in agree-
ment with one of the theoretical models [Huynen and van Nimwegen 1998] and, thus,
complement those results by showing that the theoretical results are anchored in bio-
logical reality.

3.3.3. Ideas for further work

An interesting prediction of the model is that larger families should consist of genes
with high duplicate retention rates. The models of gene duplicate retention make dif-
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ferent predictions as to what duplicate features cause a high retention rate. The ne-
ofunctionalisation model predicts that proteins with plastic folds, which are able to
accomodate many functions, have a higher probability of retention, while the subfunc-
tionalisation model suggests that the number of regulatory regions or the number of
interaction partners should be highly correlated with retention. It should be possible to
investigate whether this prediction is satisfied by testing whether there is any significant
correlation between gene family size and some of these features of their members.

One shortfall of our modeling is that we do not have an empirical estimate of the
variance of the hazard function across gene families, instead we arbitrarily set this
value and show how varying levels of this parameter affect the emergence of the power-
law. Thus, this aspect of the model is not validated against genomic data. This does
not detract from the fact that the biological anchoring of our model is greater than in
previous studies of the power-law but, nevertheless, it would be interesting to quantify
the level of pseudogenisation heterogeneity across gene families.

3.4. Hazard shift and WGD (paper III and IV)

3.4.1. Context

Whole genome duplication is a major genomic event which, at least initially, doubles
the size of all gene families. If retention rates were as low as they are following SSD,
i.e. of the order of a few percent [Lynch and Conery 2000, Lynch and Conery 2003],
then the effect of WGD on the overall organisation of the genome would be minor.
However, retention rates following WGD are much higher than following SSD, often
of the order of 20 percent as in the fish specific WGD [Jaillon et al. 2004, Woods
et al. 2005, Brunet et al. 2006] and even higher in other species [Hughes and Hughes
1993, Ahn and Tanksley 1993].

When clustering the protein coding sequences of five tetrapod species, we were in-
trigued to observe a strong deviation from the power-law distribution of gene family
size. It was Ohno [Ohno 1970] that originally hypothesised (on rather weak evidence)
that the ancestral vertebrate was subject to two rounds of WGD and a convincing case
has now been built in favour of this claim [Dehal and Boore 2005]. Given the high re-
tention levels following WGD, we hypothesised that the deviation from the power-law
that we observed may have been the result of two whole genome duplications. In paper
III, we extend the model of homologous gene family evolution developed in paper II to
investigate whether our hypothesis is correct.
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3.4.2. Results

We find that, in order to replicate the features of the empirical distribution, the sim-
ulation model must incorporate two WGD events. In addition, these WGDs must be
such that a significant proportion of the gene duplicates generated in the WGDs have
a higher retention rate than they do following small-scale duplication (SSD) and this
shift affects primarily genes that have a very low probability of retention following
SSD. Such a shift in retention is most likely to be driven by a shift in the pseudo-
genisation rate (or hazard shift). This requirement is consistent with what is known
about duplicate retention following a WGD, namely that genes belonging to specific
functional classes, such as genes regulating transcription, are much more likely to be
retained following WGD than SSD [Blanc and Wolfe 2004,Maere et al. 2005,Blomme
et al. 2006]. We conclude that the deviation from the power law, that we observe in the
empirical data, is the result of the two WGDs that occurred in the ancestral vertebrate.
This implies that the two ancient WGDs continue to have a structural effect on gene
families approximately 500 million years after the initial events. The capacity of whole
genome duplications to fundamentally change the architecture of gene families in a
profound and lasting way is consistent with the observed correlation between WGDs
and important evolutionary transitions.

The shift in the probability of retention, that we find is required, is consistent with
both the subfunctionalisation model and the dosage balance model. It is, in fact, very
difficult to distinguish between these two models as a source of duplicate retention
following WGD. This issue is discussed at length in paper IV which reviews the hy-
pothesis that dosage balance plays a major role in gene duplicate retention following
WGD in Paramecium tetraurelia.

3.4.3. Ideas for further work

In our modeling of the evolution of gene families that span multiple species in paper
III, we lack an empirical estimate of the rate at which orthologs are lost. It is generally
assumed that the loss of orthologs is much less probable than the loss of paralogs. In
paper I, we produced a quantification of the rate at which duplicates pseudogenise,
but an equivalent estimate for orthologs is to our knowledge not available. A possible
approach to this problem is to define gene families from the fully sequenced genomes
of several species, build phylogenetic trees for these families and then infer orthology,
paralogy and loss, through the reconciliation of the gene trees with the species tree
[Zmasek and Eddy 2001, Arvestad et al. 2003, Berglund-Sonnhammer et al. 2006].
From such trees it should be possible to produce a quantification of ortholog loss.
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Another obvious area for further research is to better characterise the evolutionary
forces driving duplicate retention following WGD. As we discuss in paper III and IV,
both subfunctionalisation and dosage balance are relevant models, but disentangling
the two is difficult due to the overlaping predictions of the models.
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Abstract  
 
Gene duplication and the accompanying release of negative selective pressure on the 
duplicate pair is thought to be the key process that makes functional change in the coding and 
regulatory regions of genomes possible. However, the nature of these changes remains 
unresolved. There are a number of models for the fate of gene duplicates, the two most 
prominent of which are neofunctionalisation and subfunctionalisation, but it is still unclear 
which is the dominant fate. Using a dataset consisting of smaller-scale (tandem and 
segmental) duplications identified from the genomes of four fully sequenced mammalian 
genomes, we characterise two key features of smaller-scale duplicate evolution: the rate of 
pseudogenisation and the rate of accumulation of replacement substitutions in the coding 
sequence. We show that the best fitting model for gene duplicate survival is a Weibull 
function with a downward sloping convex hazard function which implies that the rate 
of pseudogenisation of a gene declines rapidly with time since duplication. Our analysis of the 
accumulation of replacement substitutions per replacement site shows that they accumulate on 
average at 64% of the neutral expectation immediately following duplication and as high as 
73% in the human lineage. Although this rate declines with time since duplication, it takes 
several tens of millions of years before it has declined to half its initial value. We show that 
the properties of the gene death rate and of the accumulation of replacement substitutions are 
more consistent with neofunctionalisation (or subfunctionalisation followed by 
neofunctionalisation) than they are with subfunctionalisation alone or any of the other 
alternative modes of evolution of smaller-scale duplicates. 
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Figure 1: Alignment quality control (fraction of gap-free alignment columns)

Duplicate pairs are placed in groups of size 0.1 S.Crosses: group median.Points: group mean.
Dotted line: linear equation fitted to median data.Full line: linear equation fitted to mean data.



Table 1: Gene duplication rate estimates

Table 2: Silent substitution rate estimates

No estimate was available forC. familiaris, so the artiodactyl rate was used as this is the nearest
lineage for which an estimate was available (Yang and Nielsen 1998; Dimcheff et al. 2002; Springer
et al. 2003; Axelsson et al. 2005).



The R code used for fitting the two models to the data and datasets for C. familiaris are available

online at http://digitised.info. File paths (to model and dataset files) set in the main R script files will

need to be adjusted to the correct values. Plots of the residuals are also available for the survival

modeling. The file names and a description of their contents are as follows:

supMat/replacementSubstModeling:

bestAltSplices.tab (dataset)

model.repl.low.hughes (model)

outputFunctions.r (functions called from the main R script)

replSubsFitting.r (main R script)

supMat/survivalModeling:

model.survival (model)

outputFunctions.r (functions called from the main R script)

silentSubstCounts_bucketSize_0.01_median.tab (dataset)

survivalFitting.r (main R script)

plot_residuals_unrestricted_genusSpecies.pdf (plot ofstandardised residuals against fitted values

of unrestricted model for model specification verification)



A description of the columns of the bestAltSplices.tab file (each row contains the data for one

duplicate pair):

1 pair ID

2 number of codons in the alignment

3 number of gap free columns in the alignment

4 maximum likelihood withω estimated

5 maximum likelihood withω = 1

6 replacement substitutions per replacement site (R) under model whereω estimated

7 silent substitutions per silent site (S) under model whereω estimated

8 replacement sites under model whereω estimated

9 silent sites under model whereω estimated

10 replacement substitutions per replacement site (R) under model whereω = 1

11 silent substitutions per silent site (S) under model whereω = 1

12 replacement sites under model whereω = 1

13 silent sites under model whereω = 1

14 Ensembl ID of first protein in pair

15 Ensembl ID of second protein in pair

A description of the columns of the silentSubstCounts_bucketSize_0.01_median.tab file (each row

contains the summary data for one group of duplicate pairs where a group consists of all duplicate

pairs withS within the interval of size 0.01):

1 medianS value for the group

2 number of duplicate pairs in the group
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heterogeneity between gene families
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Abstract

Genome sequencing has shown that the number of homologous gene families of a
given size declines rapidly with family size. A power-law has been shown to pro-
vide the best mathematical description of this relationship. However, it remains
unclear what evolutionary forces drive this observation. We use models of gene du-
plication, pseudogenisation and accumulation of replacement substitutions, which
have been validated and parameterised using genomic data, to build a model of
homologous gene evolution. We use this model to simulate the evolution of the dis-
tribution of gene family size and show that the power-law distribution is driven by
the pseudogenisation rate’s heterogeneity across gene families and its correlation
within families. Moreover, we show that gene duplication and pseudogenisation are
necessary and sufficient for the emergence of the power-law.

Key words:
duplication, loss, homology, family, power-law

1 Introduction

Surveys show that, in the genome of every organism sequenced so far, the

number of homologous gene families of a given size declines rapidly as family

size increases, i.e. there are always many small homologous gene families and

a few very large families. Different functions could potentially describe this

∗ Corresponding author.
Email address: liberles@uwyo.edu (David A. Liberles).

Preprint submitted to Gene 20 November 2007



relationship between family size and number of families (exponential, yule,

log-normal), but the power-law with a negative exponent has been found to

provide the best fit to empirical data (Huynen and van Nimwegen, 1998; Lus-

combe et al., 2002). The power-law distribution of homologous gene family

size has been reported for single genomes from archea, bacteria and eukaryota

(Huynen and van Nimwegen, 1998; Yanai et al., 2000; Harrison and Gerstein,

2002) and across multiple genomes (Enright et al., 2003). In mathematical

terms: N = aF b
where F is the family size and N is the number of families of

this size or, taking the natural logarithm, ln(N) = ln(a)+ b. ln(F ) i.e. a linear

relationship on a log-log plot. The exponent b of the distribution is usually in

the range -4.0 to -2.75 with a weak positive correlation (correlation coefficient

of 0.63) between the exponent and the logarithm of number of genes in the

genome (Huynen and van Nimwegen, 1998). This positive correlation implies

a relative increase of the number of large clusters over the number of small

clusters as the number of genes in the genome increases.

The power-law distribution is also observed for biological ”parts” at differ-

ent levels of organisation (Interpro families, protein superfamilies and folds,

pseudogene families and pseudomotifs) and for many different attributes as-

sociated with these parts (their functions, interactions and expression levels)

(Luscombe et al., 2002). Moreover, such distributions are not limited to bi-

ology and are often observed for the numbers of parts (or properties of the

parts) of man-made systems that are not the product of design, for example,

the relative sizes of cities (Zipf, 1949) and the connectivity of computers in

the world wide web (Barabasi and Albert, 1999; Albert et al., 2000).

Several papers have shown that it is possible to define theoretical evolution-

ary models that replicate the power-law distributions of genes or protein folds

(Huynen and van Nimwegen, 1998; Yanai et al., 2000; Qian et al., 2001; Karev

et al., 2002; Kamal et al., 2005). These models are based on the process of

gene duplication and add additional evolutionary processes such as gene death,

point mutations or lateral gene transfer to achieve a power-law distribution.

The shortcoming of these models is their theoretical nature i.e. none of the

models build on empirically verified characterisations of the underlying pro-

cesses. This results in the formulation of very different models (some of which

are even biologically unrealistic), but all are found to be consistent with the

power-law. There is thus no consensus on which forces drive the power-law

distribution. Moreover, these models also frequently only include a subset of

the relevant processes e.g. ignoring gene death or sequence divergence, but

aim nevertheless to show what is minimally necessary for the power-law to

emerge.

In this paper, we use models of gene duplication, pseudogenisation and accu-

mulation of replacement substitutions, which have been validated and param-

eterised using genomic data, to build a model of homologous gene evolution.
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These models were developed in previous work (Hughes and Liberles, 2007)

which itself builds on the seminal work of Lynch and Conery (Lynch and Con-

ery, 2000). We then use this model to simulate the evolution of the distribution

of gene family size. We use the data output by the simulations to test whether

our model of homologous gene evolution can qualitatively replicate a power-

law distribution of gene family size. We find that, for our model to produce

a power-law distribution, it must incorporate heterogeneity of pseudogenisa-

tion rates across families and correlation within families. Further, using the

version of our model that can replicate the power-law distribution, we test

whether all three of these forces (gene duplication, accumulation of replace-

ment substitutions, and pseudogenisation) are essential to the emergence of

the power-law. We find that the quantitative accumulation of replacement

substitutions which drives sequence divergence can be considered superfluous,

although qualitatively it is essential as substitutions causing loss of function

or stop codons are major drivers of pseudogenisation which is necessary for

the emergence of a power-law distribution.

2 Methods

2.1 Model overview

The power-law distribution is observed at many levels of biological organi-

sation. We study its emergence at the gene family level because this is the

lowest level of functional genomic organisation at which the power-law has

been observed. Power-laws at higher levels such as superfamily or fold, are

most probably the result of the power-law at this lower level as super-families

and folds represent clusters of homologous genes (descended from a common

ancestor gene), in the same way as gene families do, only more distant. The

same processes (gene duplication and divergence), that more recently have

generated gene families, generated clusters of homologous superfamilies and

folds.

The most fundamental evolutionary forces driving the evolution of coding

sequences in eukaryotes are: gene duplication, substitutions (silent and re-

placement), and indel events. Substitutions and indel events then drive both

sequence divergence and pseudogenisation: stop codon substitutions, replace-

ment substitutions, indel events, and substitutions in regulatory regions can

all potentially produce a non-functional gene, which unless under selective

pressure to be retained, will eventually pseudogenise. We could model how

substitutions and indels drive qualitative sequence divergence and pseudo-

genisation, but this is difficult and would result in a very complex model.

Instead, we model the duplication rate, the rate of accumulation of replace-
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ment substitutions (quantitative sequence divergence) and the duplicate gene

death rate. The gene death rate effectively incorporates the effect on pseu-

dogenisation of replacement substitutions in coding regions (including stop

codons), substitutions in regulatory regions and indels, but without explicitly

modeling the process by which pseudogenisation occurs. This is a combina-

tion of the probability of such mutations as well as the probability of fixation

mediated by population genetic forces plus selection.

These processes lead to the dynamics of gene family size. Duplication increases

the number of genes in a family by one; replacement substitutions, if they

accumulate in sufficient numbers, lead to a sequence breaking away from its

family, thus reducing the number of genes in the family by one and creating

a new family of size one; pseudogenisation reduces family size by one without

creating a new family. Lateral gene transfer (which is an important process in

bacteria) or ab-initio gene creation have the potential to play a similar role

to duplication by producing new genes, but they are widely recognised to be

extremely rare or non-existent in eukaryotes (Salzberg et al., 2001). Since the

power-law has been observed for all sequenced higher eukaryotes, lateral gene

transfer and ab-initio gene creation cannot be key to the existence of a power-

law distribution and, therefore, we do not incorporate these processes in our

model.

2.2 Key processes

The models of duplication, accumulation of replacement substitutions and

pseudogenisation are taken directly from a previous study (Hughes and Liber-

les, 2007). The reader is referred to that article for the full details of the

models, including the justification of the functional form of the equations as

well as the parameter estimates presented in this section. These models de-

scribe the rate of gene duplication, the rate at which replacement substitutions

accumulate between genes in a duplicate pair and the rate at which one of the

genes in the pair pseudogenises. Time is measured through the accumulation

of silent substitutions per silent site (S) between duplicate genes. S can be

converted to real time by dividing by 2 and by the number of silent substitu-

tions per billion years. Thus, given a rate of 2.20 silent substitutions per silent

site per billion years for H. sapiens (Yang and Nielsen, 1998), 1S corresponds

to 0.2 billion years - all parametrisations are from the H. sapiens estimates.

In H. sapiens, we estimated that genes duplicate at a rate of 2.07 per gene per

S (Hughes and Liberles, 2007). A duplicate pair i accumulates replacement

substitutions per replacement site, R, according to the equation:

Ri = θ1Si + (θ2/θ3)(1 − exp(−θ3Si)) (1)
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We use the following values of the parameters (Hughes and Liberles, 2007):

θ1 = 0.13; θ2 = 0.70; θ3 = 2.4. Note that: dR/dS = θ1 + θ2 at S = 0

(which corresponds to the rate of accumulation of R immediately following

duplication) and dR/dS → θ1 as S → ∞ for θ3 > 0 (which is the asymptotic

rate of accumulation of R for a duplicate pair which gives an estimate of the

rate of replacement substitution accumulation for sequences under negative

selection).

The probability of pseudogenisation of one of the genes in a pair within ∆t
given that both genes are still functional at t is:

Pr(t < T < t + ∆t/T > t) = −Q(t + ∆t) − Q(t)

Q(t)
(2)

where Q(t) = Pr(T > t) is the survival function: the probability that the

time of death, T , is greater than t, i.e. the probality that both genes are

still functional at time t. The hazard function λ(t) is defined as the event

(death/pseudogenisation) rate at time t conditional on survival to time t or

later:

λ(t) = lim
∆t→0

Pr(t < T < t + ∆t/T > t)

∆t
= −Q′

(t)/Q(t) (3)

We have shown that the Weibull survival function Q(t) = eρ1tρ2
provides an

excellent fit to the data (Hughes and Liberles, 2007). Thus, we use this model

of the survival function and S as a proxy for time:

λ(S) = −ρ1ρ2S
ρ2−1

(4)

In H. sapiens, the fitted parameters are ρ1 = −4.1 and ρ2 = 0.33 which implies

that the rate of pseudogenisation of a duplicate is a decreasing function of

S (proxy for time since duplication) and not a time-independent constant

(Hughes and Liberles, 2007).

2.3 Genes and gene duplicate pairs

A gene in our model has two key characteristics: it is either functional or

pseudogenised, and it has a measure of the number of silent and replacement

substitutions per site between itself and all homologous genes i.e. all genes that

can be traced to a common ancestor through a series of duplication events.

The model is initialised with a set of singleton genes i.e. genes that have

no duplicates, and therefore each forms a family of size one. These are the

”founding” genes of the homologous gene families. Because all key processes
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are defined in terms of S, we define a ”clock” which ”ticks” in increments

of 0.005 units of S. At each tick of the clock each gene’s number of silent

substitutions is incremented by half a tick, so that the distance between all

genes increases by one tick. For each gene, we then detect the closest non-

pseudogenised homolog which we define as the homologous gene with lowest

R distance to the gene of interest. The S distance between the two genes

is a measure of the time since the original duplication event and is used to

compute the number of replacement substitutions per site the duplicate pair

should be subject to in the timeframe of the current tick (equation 1) and the

probability that one of the duplicates pseudogenises during the current tick

(equation 2 with S as a proxy for time and the Weibull survival function). A

gene that has no homologs (such as a founding singleton before it is duplicated)

is assigned an S value of 1,000 which ensures that it accumulates R at a very

low rate and is subject to a very low probability of pseudogenisation. This is

a reasonable way to model singletons as singletons can be expected to have

evolved some kind of specialised function that is under selective pressure to be

retained in the genome. Finally, each gene is subject to a constant probability

of duplication during each tick. The gene that results from a duplication is

added to the set of homologous genes. It inherits the R and S distances to

other genes from its parent and has a distance of 0 R and 0 S to its parent. A

new gene is also assigned a replacement substitution error term (εi) which is

added to equation 1, so as to incorporate into the model differences between

genes in the rate of accumulation of replacement substitutions. Because the

functional form of the distribution of this error term is not known, we draw

an error term randomly from all residuals from the fitting of equation 1 to the

H. sapiens gene duplicate data (Hughes and Liberles, 2007). This error term

can be standardised through the fitted model of the variance as a function of

S (Hughes and Liberles, 2007):

V ar(εi) = σ2
(τ1Si + exp(τ2(1 − exp(−τ3Si)))) (5)

with the following parameter estimates (Hughes and Liberles, 2007): σ2
=

3.55e − 5; τ1 = 229.4; τ2 = 6.32; τ3 = 4.14. Figure 1 illustrates graphically

a hypothetical simulation scenario and the simulation code is available in the

supplementary materials.

2.4 Clustering genes into gene families

At regular intervals during the simulation (every 0.02 S for 0 < S < 0.3, every

0.2 for 0.3 < S < 3.0, and every 1.0 for S > 3.0), we extract S and R for all

duplicate pairs and use this data to calculate an age distribution of duplicate

pairs and a plot of the accumulation of replacement substitution with time.

This enables us to verify that our simulated genes are evolving in the same
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way as the real H. sapiens duplicate gene data. We also compute a complete

linkage clustering of all non-pseudogenised genes, which ensures a maximum R
distance between genes in a group (Gan et al., 2007). We use complete linkage

clustering (where all members in a family meet a distance threshold to all other

members) and not single linkage clustering (where linkage of a gene to a single

member of the cluster is sufficient to include the gene as part of the family)

because it is intrinsic to single linkage clustering that the probability that a

sequence is added to a cluster grows with the size of the cluster, thus causing

this method to contain a bias towards larger clusters. Since we aim to test what

processes are essential to the emergence of the power-law, i.e. a distribution

that contains more large families than the alternative exponential function,

we cannot use a method that contains a bias towards larger families. For each

family size distribution, we fit the power-law and exponential functions to the

data by ordinary least squares using the equations: ln(N) = ln(a) + b. ln(F )

and ln(N) = ln(a) + b.F .

Computation time for the simulation increases rapidly with the number of

initial singletons, therefore we start the simulations with 2,000 singletons.

There is no reason to believe that the number of initialising singletons has

any bearing on our results. The settings of each simulation and its output are

described in table 1.

2.5 Empirical data

In order to determine a realistic maximum R distance between genes in the

same family that can be used as the cutoff in the complete linkage clustering

and also to provide an empirical distribution of gene family size for H. sapiens
to which our simulated data can be compared, we build a clustering of protein

coding genes.

Our basic dataset consists of all protein coding transcript sequences from the

annotated genome sequence of H. sapiens from release 31 of Ensembl (Birney

et al., 2006). First, we carry out low complexity masking of the sequences

using CAST (Promponas et al., 2000) and then perform an all-against-all

BLAST (Altschul et al., 1997) of the translated sequences (substitution ma-

trix=BLOSUM62, gap opening cost=11, gap extension cost=1). In order to

make the output of the all-against-all Blast manageable, the BLAST sequence

pairs (query and target sequences) are filtered to remove any targets that do

not satisfy all of the following criteria that should be satisfied by even very

distant homologs: 20% similarity to the query, 60% coverage of the query, e-

value < 10
−5

. The e-values of the retained sequences are then used as input

to the MCL clustering algorithm with the inflation parameter set to 4.0 (En-

right et al., 2002). In order to ensure that the clusters do not contain very
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distant homologs which are difficult to align, we further split each of these

clusters using a complete linkage algorithm with a maximum length ratio cri-

teria (longest/shortest < 2.5). We then align the sequences using MUSCLE

with the default settings (Edgar, 2004) and perform complete linkage using

a percentage gap difference criteria (percentage gap difference excluding the

ends < 40%). Each of the resulting families potentially contains alternative

splices of the same gene, so we retain only the alternative splice form that has

the best alignment to the other genes in the cluster. This method of homol-

ogous gene family construction was designed to maximise the probability of

computing high quality alignments which can then be used to produce reliable

measures of S and R.

From this gene family dataset, we compute the family size distribution. The

power-law function fitted to this data has a slope of -2.53 (see figure 3 for a

plot of this data). We also draw a random sample of 1,000 families from the

dataset and use a modified Nei-Gojobori method (defined on pages 57 to 59

of (Nei and Kumar, 2000)) on the untranslated sequences to compute the R
distance between all pairs of sequences in the family. For each family, we record

the maximum R distance and then we compute the median of these maxima

which produces a value of 0.56 R which we use as our clustering cutoff.

3 Results

3.1 Testing for the emergence of the power-law with the basic model

We first run the model exactly as described in the material and methods

(model 1) until S = 10.0, which corresponds to approximately 2 billion years.

Interestingly, the genome size increases during this long time frame, but only

moderately. If we had an incorrect characterisation of the duplication rate or

the pseudogenisation rate, the simulation may have generated no expansion

at all or massive expansion. The fact that this did not occur is corrobora-

tive evidence that we are using reasonable characterisations of the duplication

and pseudogenisation processes. The exponential function clearly provides the

best fit to the size distribution of gene family size, although there are two

points where there is a dramatic drop in the quality of the fit of the expo-

nential function as measured by R2
(an R2

value of 1 indicates perfect fit of

the equation to the data). These drops are due to the ephemeral emergence of

larger gene families. The transitory existence of these larger families is clear

from the plot of R2
in the first row of figure 3 and from the simulation ani-

mations (see supplementary materials). The animation also contains figures of

the age distribution of duplicate pairs and of the accumulation of replacement

substitution between the genes in a pair. These provide a verification that the
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simulation is evolving the genes in a way that replicates the real gene duplicate

data (Hughes and Liberles, 2007).

It is quite possible that either the length of time the simulation is run for or

the initial number of singletons are the reason a power-law distribution fails

to emerge, so we ran two additional simulations: one where we extend the run

time to S = 30.0 (model 2) and one where the initial number of singletons is

10, 000 (model 3). For models with a large number of genes such as model 3,

complete linkage clustering is replaced with a faster approximate clustering: a

gene belongs to a family of size l, if it has l−1 genes from which it is separated

by 0.56 R, and the number of families of size l is the number of genes belonging

to a family of size l divided by l. Both model 2 and 3 result in a failure of the

power-law to emerge (see figure 1 in the supplementary materials).

3.2 Introducing variation in the rate of pseudogenisation across families

One assumption of our model is that all genes have the same hazard function.

This is obviously an oversimplification, as different genes have different prob-

abilities of retention under most prominent models of duplicate retention, e.g.

the near-neutral subfunctionalisation model (Force et al., 1999) and the se-

lective neofunctionalisation model (Ohno, 1970). We remove this assumption

from the model by defining the probability of pseudogenisation of a duplicate

pair i within a time interval ∆t given survival until t as:

Pr′(t < T < t + ∆t/T > t) = (1 + υi)Pr(t < T < t + ∆t/T > t) (6)

where υi is drawn from a normal distribution with mean and standard devi-

ation as specified in table 1. This specification of the probability of pseudo-

genisation within ∆t ensures that the expected hazard function for all genes

is the same as that used in first run of the simulation and that the probability

in equation 6 is proportional to the probability in equation 2. When a new

gene is created by duplication, the error term υi can either be inherited from

the gene that duplicated, in which case all genes descendent from a founding

singleton will have the same hazard function; or a new error can be drawn

from the distribution in which case there will be no correlation between the

hazard functions of genes descendent from the same singleton. In the first

simulation model within this group (model 4), we set the mean of the error

distribution to 0 and the standard deviation to 0.2 and allow the error to be

inherited by duplicates (table 1). The results of this simulation show that the

fit of the exponential function to the distribution of gene family size begins

to fall below the fit of the power-law function for values of S > 2.0 while the

power-law function retains a good fit (see figure 3). The number of genes at

S = 2.0 is 2,759 and by S = 5.0 this number has reached 3,853 which is at
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the limit of where we are able to compute a complete linkage clustering of

gene families, thus explaining why we only plot on the interval 0 < S < 5.0.

Interestingly, at S = 2.0, when the power-law has clearly emerged, the expo-

nent of the power-law function is -3.3. This cannot be said to be close to the

value of -2.53 estimated from the empirical H. sapiens data, but both values

do fall within the upper part of the range for exponents of power-law distri-

butions of gene family size, as expected for a genome of H. sapiens ’s large

size (Huynen and van Nimwegen, 1998). That they do not match more closely

does not represent a failure of our model as it is not our aim to reproduce

the H. sapiens distribution, we simply aim to test what features of an empir-

ically validated model of homologous gene evolution are necessary to produce

a power-law. The difference between the exponents can be explained by the

fact that the empirical H. sapiens distribution has been generated over several

hundreds of millions of years, during which time the rates of duplication, loss

and divergence were not the same as the rates that prevail in the present.

This result suggests that heterogeneity of the hazard rate across families and

correlation within families are important for the power-law distribution to

emerge. To test whether this is the case, we run simulations with three variants

of this basic model.

First, we remove inheritance of the error between duplicates to test whether

correlation of the error within homologous genes is essential (model 5). Second,

we modify the basic model by setting a positive mean for the error distribution,

but we retain error inheritance and the same level of hazard heterogeneity

(model 6). This raises the average hazard level applied in previous simulations

and enables a test of the extent to which the power-law is dependent on the

magnitude of the probability of pseudogenisation (we are careful to ensure

that level of the hazard is not set so high that the genome does not expand).

Third, we retain correlation within families (inheritance of the error) and

heterogeneity between families, but we reduce the level of heterogeneity by

reducing the standard deviation of the error distribution (model 7). In none

of these models do we observe a clear emergence of the power-law as we did in

model 4 (see rows 2, 3 & 4 of figure 2 in the supplementary materials). The fit

of the exponential function is sometimes weaker than the fit of the power-law

function particularly at higher values of S, but we do not observe a clear fall in

the fit of the exponential function as we do in model 4. Model 7 is perhaps the

model that gets closest to producing a power-law distribution: from S = 2.0
onwards, the exponential function provides a worse fit than the power-law and

at specific points the difference in fit is substantial. Additional runs with a

standard deviation set to a lower value than 0.1 resulted in a clearer failure of

the power law to emerge.

In summary, the failure of these three simulations to produce a clear power-

law distribution of gene family size demonstrates that heterogeneity of hazard
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functions between gene families, correlation within families and a sufficiently

low average absolute level of the hazard function are all essential to the emer-

gence of the power-law.

3.3 Testing whether all three processes are essential

In all simulations up to this point, all three evolutionary process are modelled

(duplication, sequence divergence, and pseudogenisation), however, it is not

clear that all three are necessary for the power-law.

It is quite obvious that just one of these forces alone is not enough to gener-

ate the power-law distribution. Duplication alone would result in continuous

expansion of gene family size resulting in no small families. Gene death alone

would eventually result in no genes and therefore no families. Divergence alone

would eventually result in only families of small sizes and in the extreme only

families of size one.

However, it is less clear whether leaving one of the forces out would prevent

a power-law. Removing duplication would obviously prevent a power-law as

gene family size would not grow. Including only duplication and divergence

(and removing pseudogenisation) could potentially produce a power-law, if di-

vergence is sufficiently rapid to ensure that smaller family sizes do not become

underrepresented. Duplication and death (and no sequence divergence) could

potentially also generate a power-law, if sequence divergence is not playing an

important part in generating new families.

We ran two simulations based on model 4, one where sequence divergence is

removed (model 9) and one where pseudogenisation is removed (model 10).

The removal of sequence divergence results in a family size distribution which

is almost identical to the model including divergence (compare rows 2 and 3 of

figure 3), indicating that pseudogenisation and duplication alone are sufficient

to produce a power-law. Note, however, how the fit of the power-law function

also begins to decline for S > 2.5. This decline is primarily due to the emer-

gence of a few large gene families which may have been lessened had sequence

divergence been present and split these families. The removal of pseudogeni-

sation has a dramatic effect on the family size distribution, creating a large

under-representation of small families (see row 4 of figure 3). This is evident

already at S = 1.0, beyond this point we are not able to compute a gene family

clustering due to the large number of genes in the simulated genome. Clearly,

sequence divergence causing sequences to break away from their original fam-

ily is not sufficient to prevent small families from becoming under-represented.

In summary, we find that duplication and pseudogenisation are necessary and

sufficient to produce the power-law, but that sequence divergence may play
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a role in the maintenance of the power-law distribution by splitting families

and thereby preventing perpetual growth of gene families with low hazard.

4 Discussion

The simulations show that the processes that are essential are gene duplication

and pseudogenisation, and that the pseudogenisation rate must have a suffi-

cient level of heterogeneity between families, a sufficient level of homogeneity

with families, and a level that is sufficiently low in relation to the duplication

rate to allow larger gene families to emerge and stabilise in the genome.

This result is in fact very close to that obtained with a theoretical model of

evolution (Huynen and van Nimwegen, 1998), where it was suggested that,

in order to explain the power-law distribution, the probabilities of duplica-

tions of genes within a gene family must not be independent of each other

and the probabilities of deletions of genes within a gene family must not be

independent of each other. This effectively means that the retention rate of

gene duplicates must be correlated within a family which corresponds with our

findings. The novelty of our results are three-fold. First, we model all three

key processes and test whether sequence divergence is required for the emer-

gence of the power-law, rather than assuming that it is not relevant. Second,

we model pseudogenisation as a time-dependent process as we have shown

this to be the case in genomic data (Hughes and Liberles, 2007). Third, and

most importantly, we use empirically verified models of gene duplication, loss

and sequence divergence. Thus, our results are an essential complement to the

results of Huynen and van Nimwegen. They showed that it was possible to

generate a power-law distribution of gene family size with a very simplified

theoretical model of gene family evolution that ignored sequence divergence.

We have shown that an empirically verified model that includes only dupli-

cation and pseudogenisation, but with heterogeneity of the pseudogenisation

rate across families, actually does produce a power-law distribution.

4.1 Modeling of the duplication, pseudogenisation and divergence rates

We have assumed in our model that the duplication rate is time-invariant and

equal for all genes. This is a simplification forced on us by the lack of detailed

data on the duplication rate of individual genes. In this view, the duplication

rate is viewed as the normalized per-gene rate of duplication in a single indi-

vidual. The population genetic process of fixation and its interplay with other

aspects of retention during and after fixation are not explicitly modeled. With

this view of the duplication rate, the lack of per-gene variance is somewhat
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justified. There is genomic heterogeneity in recombination rates and the exis-

tence of tandem duplicates will (through recombination and replication-based

mechanisms) increase the per-gene rate of initial duplication. However, given

the high rate of pseudogenization, other factors at the post-duplication reten-

tion level are expected to play a more major role in gene-specific variation in

fate (and also to show greater evolutionary stability).

As previously mentioned, the direct causes of pseudogenisation at the sequence

level are stop codon substitutions and frame shift insertions or deletions in cod-

ing sequence and deleterious substitutions in regulatory sequence, i.e. pseu-

dogenisation is driven by sequence divergence. This process is complex and

difficult to model, and, therefore, we use a pseudogenisation model with S as

the independent variable. As a result, the complexity of how sequence substitu-

tion and/or indel events (or combinations of events) lead to pseudogenisation

becomes incorporated into the hazard function. Further, the complex inter-

play between pseudogenisation and neofunctionalization (governed by func-

tional sequence mutations, population dynamics and the process of fixation)

is also incorporated into the hazard function and assumed to be a function

of time (proxied by S) rather than modeled directly (see figure 2). However,

these simplifications do not affect the validity of our conclusion that sequence

divergence is not necessary for a power-law distribution to emerge.

The requirement that there be heterogeneity of pseudogenisation rates across

gene families is consistent with the most prominent models of gene duplicate

retention: the subfunctionalisation and neofunctionalisation models. In the

subfunctionalisation model (Force et al., 1999), the probability of retention is

an increasing function of the number of regulatory modules. Thus, genes with

large numbers of regulatory modules have a lower pseudogenisation rate than

genes with fewer regulatory modules (all other things being equal) and fami-

lies consisting of such genes are likely to be larger. In the neofunctionalisation

model (Ohno, 1970), the probability of retention is a function of the gene’s

propensity to accomodate beneficial mutations that fine tune or create new

function. It has been established that gene function can affect the substitution

rate and that this effect can be different for different functions after speciation

events versus gene duplication events (Seoighe et al., 2003). This implies that

the retention rate, as it is driven by the divergence rate is also different for

different functional categories. Gene function is not the only important deter-

minant of evolutionary rates, as simulations have shown different evolutionary

dynamics and retention profiles based upon neo- and sub- functionalization for

different protein folds (Rastogi et al., 2006). These function- and fold- specific

variations in gene family evolutionary dynamics justify the use of different

hazard functions for different gene families. Unfortunately, there are, to our

knowledge, no empirical estimates of the variance of hazard functions across

gene families, thus this aspect of the model is theoretical. However, this does

not detract from the fact that the model employed here is solidly anchored in
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biological reality as the key processes have been empirically validated and the

existence of a variance in hazard is consistent with the prominent models of

gene duplicate retention.

4.2 Use of H. sapiens estimates

The distribution of gene family size has been found to follow a power-law in a

wide variety of evolutionarily-distant fully-sequenced genomes, thus, the most

parsimonious inference is that this distribution first emerged at the very least

many hundreds of millions of years ago, and has been maintained since. Ideally,

in a study of the processes that contribute to the emergence of the power-

law, we would have reliable estimates of them at the root of the eukaryotic

tree. However, producing estimates of these processes in the distant past is

effectively impossible due to the directly counteracting nature of duplication

and loss, and the saturation of silent sites with time. The best we can do is

to quantify the relevant rates in extant species (Hughes and Liberles, 2007).

The rates of duplication, loss and divergence that prevailed in the distant

past were obviously not the same as those estimated in H. sapiens. However,

we believe that applying the H. sapiens rates in our simulations, as we have

done, is a defensible approach: first, because the functional forms are unlikely

to be different in an ancestral eukaryote even if it is very likely that the

specific values of the parameters were different and, second, because we are

then applying a set of rates that are known to be a good approximation to

reality and consistent with each other rather than a set of potentially low

quality and inconsistent estimates.

4.3 Preferential attachment and power laws

The power-law distribution has been observed for the connectivity of many

different types of networks, e.g. web pages (Albert et al., 1999) and enzymes

(Jeong et al., 2000; Wagner and Fell, 2001). It has been shown that two

“generic” mechanisms of network evolution are sufficient for vertex connec-

tivity to follow the power-law (Barabasi and Albert, 1999): i) the network

expands continuously by the addition of new vertices, and ii) new vertices

attach preferentially to sites that are already well connected. In our model

the connections between the genes (vertices of the network) are not physical

connections as in the connections between web pages by html links or the

connections between metabolites by enzyme catalysed reactions, instead they

are measures of sequence similarity which biologists use as a proxy measure

for common origin (homology) and function. The expansion of the “network

of homology” by the addition of new vertices is ensured by the duplication of
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genes and an average pseudogenisation rate that is sufficiently low (as shown

by model 6). But, these duplicated genes cannot preferentially attach and must

attach to the gene from which it duplicated (and to that gene’s homologs).

However, if homologous families have homogeneity of hazard functions within

the family and heterogeneity between families, then families with low hazard

will grow while families with high hazard will not. Thus, although the way

in which the connectivity of the “network of similarity” expands is driven by

whether or not a new vertex (duplicate gene) is retained, homogeneity within

families and heterogeneity between families ensures that it expands in a fashion

that mimics preferential attachment. This observation of how the semblance

of “preferential attachment” occurs in the case of gene families may be ap-

plicable to other domains as there are many types of network in which new

vertices do not emerge ab-initio and then preferentially attach, but instead

follow a model of evolution similar to homologous gene families, i.e. new ver-

tices are already linked to existing vertices upon creation. Our finding shows

how, in a network where the connectivity of a new vertex is predetermined, if

there is heterogeneity of vertex death probability, “preferential attachment”

is mimicked and a power-law emerges.

4.4 Speed of emergence and slope of power laws

In the simulation that actually produces a power-law distribution (model 4),

the power-law had clearly emerged by S = 2.0. The emergence of the power-

law is inevitably connected with genome growth (Barabasi and Albert, 1999)

and by S = 5.0 the number of genes is 3,853. None of the other models

(excluding the models where a process was removed) produced such growth in

the number of genes. This growth is due to the fact that, in model 4, family

founding genes with sufficiently low hazard functions are produced and used

to initialise the simulation. These low hazard functions are the result of a high

enough standard deviation of the error term and the fact that, when these

genes duplicate, the duplicates inherit the same low hazard function through

the inherited error term. Because these genes have a lower hazard function,

they are more likely to be retained in the genome and, thus, grow in number

and lower the average hazard function. Such a lowering of the average hazard

function does not occur to the same extent in the other models; either because

all genes have the same hazard function (models 1, 2, and 3); or because

the error is not inherited, thus ensuring that a new duplicate has a hazard

function drawn from a fixed distribution (model 5); or because the average

hazard function is higher (model 6); or, finally, because the standard deviation

of the error is too low, so that not enough families are founded by genes

with a low enough hazard. By varying the value of the mean or the standard

deviation of the error term distribution in model 4, we affect the emergence

of the power-law: increasing the mean (model 6) or decreasing the standard
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deviation (model 7) slow down or prevent the emergence of the power-law,

whereas decreasing the mean or increasing the standard deviation result in a

more rapid emergence of the power-law (unreported data). If the error mean

and standard deviation are set to values that ensure a rapid emergence of

the power-law, the simulation produces a power-law distribution with a slope

that gradually becomes less and less negative. At the same time, the number

of genes grows more rapidly due to families founded by genes with low hazard

becoming larger and more numerous. This is consistent with the empirical

observation that there is a weak positive correlation between the exponent

of the power-law and the logarithm of the number of genes in the genome

(Huynen and van Nimwegen, 1998). This positive correlation implies a relative

increase of the number of large clusters over the number of small clusters as

the number of genes in the genome increases. These large clusters are most

likely those containing genes with two key properties: a relatively low hazard

function and a tendency for this to be inherited by duplicates.

4.5 Conclusion

We have shown that duplication and pseudogenisation are necessary and suf-

ficient for the emergence of a power-law distribution of gene family size. The

duplication rate needn’t be different for different families, but the death rate

must have a certain degree of heterogeneity between families and homogeneity

within families. This requirement is consistent with both the neofunctionalisa-

tion and subfunctionalisation models of gene duplicate retention. In addition,

the average death rate must be low enough that the number of genes expands.

We find that the role of accumulation of replacement substitutions leading

to sequences forming new families after passing a divergence threshold is not

essential for the emergence of a power-law. However, that is not to say that

replacement substitutions are not important, as they are indeed important to

the retention/pseudogenization process where their role is simplified into the

hazard function which is critical to the emergence of the power-law. More-

over, sequence divergence might play a role in a “quantitative” sense in the

maintenance of the power-law by “splitting” families and, thus, preventing the

emergence of very large families which do not fit the power-law.

5 Acknowledgements

The work has been funded by FUGE, the functional genomics platform of the

Norwegian research council.

16



References

Albert, R., Jeong, H., Barabasi, A. L., 1999. Internet: diameter of the world-

wide web. Nature 401, 130–131.

Albert, R., Jeong, H., Barabasi, A. L., Jul 2000. Error and attack tolerance

of complex networks. Nature 406 (6794), 378–382.

Altschul, S. F., Madden, T. L., Schffer, A. A., Zhang, J., Zhang, Z., Miller,

W., Lipman, D. J., Sep 1997. Gapped blast and psi-blast: a new generation

of protein database search programs. Nucleic Acids Res. 25 (17), 3389–3402.

Barabasi, A. L., Albert, R., Oct 1999. Emergence of scaling in random net-

works. Science 286 (5439), 509–512.

Birney, E., Andrews, D., Caccamo, M., et al. (51 co-authors)., Jan 2006. En-

sembl 2006. Nucleic Acids Res. 34 (Database issue), D556–D561.

Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res. 32 (5), 1792–1797.

Enright, A. J., Dongen, S. V., Ouzounis, C. A., Apr 2002. An efficient algo-

rithm for large-scale detection of protein families. Nucleic Acids Res. 30 (7),

1575–1584.

Enright, A. J., Kunin, V., Ouzounis, C. A., Aug 2003. Protein families and

TRIBES in genome sequence space. Nucleic Acids Res. 31 (15), 4632–4638.

Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., Postlethwait, J.,

Apr 1999. Preservation of duplicate genes by complementary, degenerative

mutations. Genetics 151 (4), 1531–1545.

Gan, G., Ma, C., Wu, J., 2007. Data Clustering: Theory, Algorithms, and

Applications. Society for Industrial and Applied Mathematics.

Harrison, P. M., Gerstein, M., May 2002. Studying genomes through the aeons:

protein families, pseudogenes and proteome evolution. J. Mol. Biol. 318 (5),

1155–1174.

Hughes, T., Liberles, D., Oct 2007. The Pattern of Evolution of Smaller-Scale

Gene Duplicates in Mammalian Genomes is More Consistent with Neo- than

Subfunctionalisation. J. Mol. Evol. published online.

Huynen, M. A., van Nimwegen, E., May 1998. The frequency distribution of

gene family sizes in complete genomes. Mol. Biol. Evol. 15 (5), 583–589.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., Barabsi, A. L., Oct 2000. The

large-scale organization of metabolic networks. Nature 407 (6804), 651–654.

Kamal, M., Luscombe, N. M., Qian, J., Gerstein, M., 2005. Analytical evo-

lutionary model for protein fold occurrence in genomes, accounting for

the effects of gene duplication, deletion, acquisition and selective pressure.

Springer Science and Business Media, Ch. 10.

Karev, G. P., Wolf, Y. I., Rzhetsky, A. Y., Berezovskaya, F. S., Koonin, E. V.,

2002. Birth and death of protein domains: a simple model of evolution ex-

plains power law behavior. BMC. Evol. Biol. 2 (1), 18.

Luscombe, N. M., Qian, J., Zhang, Z., Johnson, T., Gerstein, M., Jul 2002.

The dominance of the population by a selected few: power-law behaviour

applies to a wide variety of genomic properties. Genome Biol. 3 (8).

17



Lynch, M., Conery, J. S., Nov 2000. The evolutionary fate and consequences

of duplicate genes. Science 290 (5494), 1151–1155.

Nei, M., Kumar, S., 2000. Molecular evolution and phylogenetics. Oxford Uni-

versity Press.

Ohno, S., 1970. Evolution by gene duplication. New York: Springer-Verlag.

Promponas, V. J., Enright, A. J., Tsoka, S., Kreil, D. P., Leroy, C., Hamod-

rakas, S., Sander, C., Ouzounis, C. A., Oct 2000. CAST: an iterative algo-

rithm for the complexity analysis of sequence tracts. Bioinformatics 16 (10),

915–922.

Qian, J., Luscombe, N. M., Gerstein, M., Nov 2001. Protein family and fold

occurrence in genomes: power-law behaviour and evolutionary model. J.

Mol. Biol. 313 (4), 673–681.

Rastogi, S., Reuter, N., Liberles, D. A., Nov 2006. Evaluation of models for

the evolution of protein sequences and functions under structural constraint.

Biophys. Chem. 124 (2), 134–144.

Salzberg, S. L., White, O., Peterson, J., Eisen, J. A., Jun 2001. Microbial

genes in the human genome: lateral transfer or gene loss? Science 292 (5523),

1903–1906.

Seoighe, C., Johnston, C. R., Shields, D. C., Apr 2003. Significantly different

patterns of amino acid replacement after gene duplication as compared to

after speciation. Mol. Biol. Evol. 20 (4), 484–490.

Wagner, A., Fell, D. A., Sep 2001. The small world inside large metabolic

networks. Proc. Biol. Sci. 268 (1478), 1803–1810.

Yanai, I., Camacho, C. J., DeLisi, C., Sep 2000. Predictions of gene family

distributions in microbial genomes: evolution by gene duplication and mod-

ification. Phys. Rev. Lett. 85 (12), 2641–2644.

Yang, Z., Nielsen, R., Apr 1998. Synonymous and nonsynonymous rate varia-

tion in nuclear genes of mammals. J. Mol. Evol. 46 (4), 409–418.

Zipf, G., 1949. Human Behavior and the Principle of Least Effort: An Intro-

duction to Human Ecology. Addison-Wesley Press.

18



Fig. 1. Simulation of homologous gene family evolution (Example scenario)
Boxes contain distances to homologous genes (first column: distances in units

of silent substitutions per silent site, S; second column: distances in units

of replacement substitutions per replacement site, R). R accumulates more

slowly than S (see equation 1) and does so in a non-deterministic fashion.

This explains why the R distances A-B & A-C (in the third tree), and A-C

& A-D (in the fourth tree) are not equal. The non-pseudogenised gene with

the shortest R distance to a gene of interest is that gene’s closest homolog

(indicated in bold in the figure). We assume that silent substitutions per

silent site S accumulate at a constant rate between genes in a duplicate

pair. Thus, real time (represented by the axis) can be measured in units of S/2.

The figure depicts the following scenario:

1. A gene family is founded by a singleton gene A which initially is the only

member of the family.

2. At some point gene A is subject to a duplication and produces gene B. We

illustrate the situation where the duplication happened 0.1 clock ticks ago

i.e. the distance between the two genes is 0.2 S. At this point A and B are

each others closest non-pseudogenised homologs.

3. Then, at a later point gene B duplicates and produces gene C. We

again depict the situation shortly after this duplication and assume that B

has accumulated slightly fewer replacement substitutions than C since the

duplication. Thus, B is A’s closest homolog, and B and C are each others

closest homologs.

4. Finally, C duplicates and produces gene D and some time before this

duplication occurs gene B pseudogenises. Because C has accumulated slightly

less replacement substitutions since the duplication, C becomes A’s closest

homolog, and C and D are each others closest homologs.
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Fig. 2. Summary of simplifying aspects of the model
Thin arrows: actual processes.

Bold arrows: processes modeled and incorporated into the simulation.

The figure illustrates how our model simplifies reality by only modeling the

quantitative aspect of sequence divergence and by modeling retention fate

through the hazard function (with S as the independent variable). Thus, the

complex process, through which most duplicates pseudogenise while others

are retained due to specific functional mutations that reach fixation, is not

explicitly modeled.
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Fig. 3. Function fit and family size distribution plots (see table 1 for model details)
First column: R2

of fit of exponential and power-law function to fam. size

distrib. at successive S.

Second column: fam. size distrib. and best fitting function (exponential or

power-law) at specific S.
Solid line: power-law function. Dotted line: exponential function.

Black points: real gene family size data computed from the Ensembl annota-

tion of the H. sapiens genome.

White points: gene family size data computed from the simulation.
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Table 1
Details of simulation models
The models are divided into three groups. Within each group the first model

is the basic model for the group and subsequent models within the group

vary one of the features of the basic model (bold text) with all other features

remaining the same as the basic model for the group (dash).

Initialisation singletons: the number of genes used to initialise the simulation.

Max S: the time for which the model is run measured in silent substitutions

per silent site.

Mean and standard deviation: the mean and standard error of the normal

distribution from which the hazard error is drawn.

Inherited error: indicates whether the error is inherited by a duplicate or

whether a new error is sampled from the normal distribution for the new

gene.

Processes: duplication is always applied but gene death (pseudogenisation)

and replacement substitutions may be removed from the model.

Best fit at max S: whether the exponential or power-law function provides the

best fit at max S.

Genome size at max S: the number of non-pseudogenised genes at max S.
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Timothy Hughes a David A. Liberles b,∗

aComputational Biology Unit, BCCS, University of Bergen, 5020 Bergen, Norway

bDepartment of Molecular Biology, University of Wyoming, Laramie, WY 82071,

USA

Abstract

This file contains information on the supplementary materials for the article entitled
”The power-law distribution of gene family size is driven by the pseudogenisation
rate’s heterogeneity between gene families”. This includes: animation files, R code
and figures of gene family size distribution for all models.

1 Simulation animations

Unzip the file animations.zip. Open the animations.html file in a browser.
This file provides a summary of all available animations and from this file it
is possible to link the details of each animation.

2 Simulation code

The code is written in Java and is available in the simulationCode.zip file.
This file can be unzipped and its contents can be inspected to gain an under-
standing of the details of the simulations’ code. A good starting point for such
an inspection is the “simulations” directory which is structured in the same
way as table 1. The code is extensively commented.

To actually run one of the simulations, a user will need to:
1. modify the file paths in the relevant simulation .java file.
2. ensure that all classes of the .jar file are on the classpath.

∗ Corresponding author.
Email address: liberles@uwyo.edu (David A. Liberles).

Preprint submitted to Gene 14 November 2007



3. ensure the maths package colt.jar file is also on the classpath (available
from http://dsd.lbl.gov/˜hoschek/colt).
Note, however, that this code was not designed as a software application and,
therefore, running modified code might not be straight forward.

3 Figures for all models

Figures of the distribution of gene family size for all models (see table 1 in the
article for an overview over all models).
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Fig. 1. Group 1 models (same hazard function for all genes)

Model 1: basic; model 2: longer S; model 3: higher number of initial genes.
Solid line: power-law function. Dotted line: exponential function.
Black points: real gene family size data computed from the Ensembl annota-
tion of the H. sapiens genome.
White points: gene family size data computed from the simulation.
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Fig. 2. Group 2 models (different hazard functions for different genes)

Model 4: basic; model 5: error not inherited; model 6: error mean greater than
0; model 7: low error standard deviation.
Solid line: power-law function. Dotted line: exponential function.
Black points: real gene family size data computed from the Ensembl annota-
tion of the H. sapiens genome.
White points: gene family size data computed from the simulation.
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Fig. 3. Group 3 models (one process removed)

Model 9: no replacement substitution; model 10: no pseudogenisation
Solid line: power-law function. Dotted line: exponential function.
Black points: real gene family size data computed from the Ensembl annota-
tion of the H. sapiens genome.
White points: gene family size data computed from the simulation.
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Abstract

A clustering of all protein coding genes from the complete genomes of five tetrapod

species into gene families, shows a clear deviation from theexpected power-law distribu-

tion of gene family size. We hypothesise that at least part ofthe deviation is the result

of the two whole genome duplications (WGD) that are now known, with reasonable cer-

tainty, to have occurred prior to the fish-tetrapod split. Webuild a model of homologous

gene family evolution and perform simulations to show that speciations alone cannot pro-

duce a distribution that resembles the empirical data. In order to replicate the features of

the empirical distribution, the simulation must incorporate two WGD events. In addition,

these WGDs must be such that a significant proportion of the gene duplicates generated

in the WGDs have a higher retention rate than they do following small-scale duplication

(SSD). This requirement is consistent with what is known about duplicate retention fol-

lowing a WGD, namely that genes belonging to specific functional classes, such as genes

regulating transcription, are much more likely to be retained following WGD than SSD.

We conclude that the deviation from the power law that we observe in the empirical data

is the result of the two WGDs that occurred in the ancestral chordate. This implies that

the two ancient WGDs continue to have a structural effect on gene families approximately

500 million years after the initial events. On the one hand, this is a surprising result given

the limited retention of duplicates generated by a WGD and the continual small-scale

duplication which further weakens the signal created by thefraction of duplicate pairs

that are retained. On the other hand, WGD’s capacity to fundamentally change the ar-

chitecture of gene families in a profound and lasting way is consistent with the observed

correlation between WGDs and important evolutionary transitions.

Introduction

There are different methods for building clusters of homologous genes, but a clustering

of all protein coding genes in a genome, irrespective of the method used, produces many

small clusters and few large clusters (Huynen and van Nimwegen 1998; Yanai et al. 2000;

Harrison and Gerstein 2002). The functional form that best fits the data is the power-law

(Huynen and van Nimwegen 1998; Luscombe et al. 2002):N = aF b whereF is the

family size andN is the number of families of this size or, taking the natural logarithm,

ln(N) = ln(a) + b. ln(F ) i.e. a linear relationship on a log-log plot (see figure 1). The

exponentb is usually in the range -4.0 to -2.75 and there is a weak positive correlation

between the exponent and the logarithm of the number of genesin the genome (Huynen

and van Nimwegen 1998).
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We have previously shown through simulation what are likelyto be the key processes

causing the emergence of a power-law (Hughes and Liberles 2007b). If we assume a

constant small-scale gene duplication rate (tandem and segmental duplications), and we

use specifications of the pseudogenisation rate and sequence divergence rate that have

been validated using genomic data, the minimal requirements for such a distribution to

emerge from an initial set of singleton genes are that the genes are subject to duplication

and loss, and that there is heterogeneity of the rate of loss across gene families. Once

a power-law distribution emerges, and assuming that there are no large-scale duplication

events, the intuition as to why such a distribution is maintained is simple: genes in all

families duplicate, but the vast majority rapidly pseudogenise (Lynch and Conery 2000;

Lynch and Conery 2003; Hughes and Liberles 2007a). Some families may have a lower

pseudogenisation rate causing such families to increase insize relative to families with a

higher rate, but this is a slow process due to the strength of pseudogenisation. In addition,

sequence divergence will be a moderating factor allowing older duplicates to accumulate

sufficient replacement substitutions and split away from their original family, thus limiting

the size of large families (Hughes and Liberles 2007b).

Of course, lineage-specific expansions and contractions dooccur in certain gene fam-

ilies, for example, on the human lineage, the GAGE gene family seems to be expanding

while the olfactory receptor gene family seems to be contracting (Gilad et al. 2003). This

has been termed the revolving door mechanism (Demuth et al. 2006) and is expected to

be non-random and related to both gene function (Maere et al.2005) and protein fold

(Rastogi et al. 2006). However, this dynamic process does not appear to cause major

deviations from the power-law distribution of gene family sizes, probably because it only

affects a limited number of families in any one lineage.

It has also been shown that the power-law distribution applies to the clustering of

genes from multiple complete genomes, if the species concerned are evolutionary distant

(Enright et al. 2003). We were therefore initially intrigued by the observation of a strong

deviation from the power-law when clustering the genes fromthe complete genomes of

five tetrapod species, with clear “waves” with a period of size 5, visible for sizes 1 to

15 (see figure 2). These “waves” are very pronounced: not onlydo the frequencies not

follow a linear relationship in the log-log plot, but it is also the case for several sizes

that the frequency of sizex is less than the frequency of sizex + 1. However, in this

case, although the species’ divergence times spanned several hundred million years, they

were not as distantly related as in the Enright et al. study. Moreover, a convincing case,

based on gene family phylogenetic trees and genomic map position data, has been made

in favour of the hypothesis that the genome of the ancestral vertebrate was subject to two

whole genome duplications (Dehal and Boore 2005). We hypothesise that the deviation
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from the power-law observed in the empirical data is at leastpartly the result of these two

whole genome duplications.

It is obvious that if a whole genome duplication reaches fixation, it will initially dra-

matically alter the gene family size distribution: the frequency of families of sizex will

become the frequency of families of size2x and odd sized families will become effec-

tively non-existent. Speciation initially has a similar effect if we consider a clustering of

all genes from both descendent species. However, it is less straightforward to establish the

effect of small-scale duplication and loss following the initial event: whether a power-law

distribution returns (and if so on what time-scale) and whatthe effect of a combination of

WGD and multiple speciations has on the gene family size distribution.

There has been considerable debate surrounding the hypothesis of none, one or two

WGDs in the ancestral chordate (0R/1R/2R). Initial effortsto prove the WGD hypothesis

centered on the size of gene families. The opponents of WGD argued that there was

no signal of a WGD in this kind of data (Friedman and Hughes 2001). A recent study

has produced strong evidence of 2R through the genomic mapping of paralogous regions

known to have arisen before the fish-tetrapod split (Dehal and Boore 2005). However,

they too claim that there is no signal of WGD in gene family size data. These findings

directly contradict our hypothesis that the pattern we observe in the empirical data is

caused by the ancestral WGDs. The reason that these studies found no signal of the WGDs

in gene family size data, is that they did not compare the empirical distribution to the

distribution that would be expected in the absence of WGDs. In previous work (Hughes

and Liberles 2007b), we have shown that small-scale duplication and loss results in a

power-law distribution and, thus, is the expected distribution in the absence of a WGD.

In this paper, we extend our model of homologous gene family evolution to incorporate

WGD and speciation, and use it to simulate the evolution of the distribution of gene

family size under different scenarios (WGD, speciation, and WGD followed by multiple

speciations). The output of the simulations show that, in order to produce a deviation from

the power-law which is consistent with the empirical data, the simulation must incorporate

not only speciations but also two WGDs. We conclude that the deviation from the power

law that we observe in the empirical data is the result of the two WGDs that occurred in

the ancestral chordate.

Results

The simulations use a model of homologous gene evolution which incorporates gene du-

plication, sequence divergence and pseudogenisation. It is impossible to obtain accurate

estimates of these processes for the 500 million years that separate us from the two WGDs,
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as a second best the model is parameterised usingH. sapiens data (see the discussion for

the detailed reasons for this approach). Time is measured inunits of silent substitutions

per silent site between duplicate pairs (S) and, inH. sapiens, 1 S corresponds approx-

imately to 230 million years (Yang and Nielsen 1998). The model allows not only for

small-scale duplication (SSD) caused by tandem and segmental duplication, but also for

speciation and WGD events (see the “Materials and Methods” section for full details of

the model). WGD events are implemented in two different ways: the first implementation

assumes that a gene duplicate’s pseudogenisation rate (also referred to as “hazard rate”)

following a WGD is the same as following SSD (the “no hazard shift” model); in the

second implementation, gene duplicates that have a high hazard rate following SSD are

given a very low hazard rate following WGD, while gene duplicates with a low hazard

rate following SSD keep the same hazard rate following WGD (the “hazard shift” model).

This second implementation is consistent with models such as dosage balance (Aury et al.

2006) and subfunctionalisation (Force et al. 1999) which have been developed to explain

the higher retention following WGD as compared to SSD, and there is mounting evidence

that these models fit the data on the retention of duplicates generated through WGD (see

the discussion for the details of this point).

Whole genome duplication

Immediately following the fixation of a WGD event, the frequency of families of size

x will become the frequency of families of size2x and odd sized families will become

effectively non-existent. Assuming that the distributionof gene family sizes followed

a power-law prior to the WGD, then the post-WGD distributionof even sized families

should also follow a power-law with the same exponent but a higher intercept (see figure

3). As time passes since the WGD, if small-scale gene duplication returns, and gene loss

and sequence divergence happens in an SSD manner (for all genes irrespective of whether

they were generated by the WGD or not), then we would expect tosee the families of odd

sizes increase in number as even sized families increase in size by 1 through SSD and

decrease in size by 1 through loss (see figure 4). Loss should be rampant due to all genes

being recent duplicates which are subject to a high pseudogenisation rate (Hughes and

Liberles 2007a). This should result in the return of the power-law with a similar exponent

to the original power-law and an intercept below the intercept that prevailed immediately

following the WGD, but higher than the pre-WGD intercept dueto the retention of some

of the WGD duplicates. However, if we consider that a significant proportion of gene

families are subject to a downward shift in the hazard rate following WGD and that fami-

lies experiencing this shift are drawn from families that have a high hazard rate following

SSD, then the return to the power-law will be slower. The reasons for this are two-fold
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and are both connected to the tendency for the hazard shiftedfamilies to retain their post-

WGD size: they are less likely to diminish in size through loss because of the reduced

pseudogenisation rate that applies to the duplicates generated by WGD and less likely to

increase in size due to the high hazard rate that applies to duplicates that may be generated

by SSD after the WGD.

In order to verify these predictions, we carry out two simulations: one where WGD

duplicates behave in the same manner as small-scale duplicates (the “no hazard shift”

model) and one where a certain fraction of families are subject to a hazard shift following

WGD (the “hazard shift” model). The reader is referred to the“Speciation and whole

genome duplication extensions” sub-section in the “Materials and Methods” section for

the details of the “no hazard shift” and “hazard shift” implementations of the WGD event.

In both cases, the WGD is carried out atS = 2.0 as it takes approximately this time for

the power-law distribution to emerge from the initial stateof the model through small-

scale duplication and loss. We consider the power-law distribution to have returned for a

certain size range when the frequency of these sizes has an approximately linear down-

ward sloping relationship in a log-log plot and when, for allsizes within this range, the

frequency of sizex is stably greater than the frequency of sizex + 1.

As predicted, there is a relatively rapid return towards thepre-WGD distribution for

the “no hazard shift” model (see figure 5). Note that familiesof size one remain under-

represented 0.2S after the WGD due to the fact that increase in the number of families of

this size are driven by loss from families of size 2 as opposedto loss and duplication for

all other family sizes. Nevertheless, byS = 2.3 (i.e. 0.3S after the WGD), the power-

law has returned for all sizes for the “no hazard shift” model(see figure 6). In contrast, in

the “hazard shift” model, singletons are still under-represented due to the lower loss rates

“hazard shifted” families are subject to (see figure 6). The comparison in figure 6 also

shows how the “hazard shift” model results in a higher retention of WGD duplicates and,

thus, less of a shift back towards the origin than in the “no hazard shift” model.

Speciation

If we consider the clustering of the genes of two genomes thatrecently speciated, the

initial effect of the speciation is the same as that of a WGD. Subsequently, as after WGD,

duplication and loss should begin to smooth the distribution, but loss is more restricted

following speciation because it is not associated with a sudden increase in the number

of young duplicates which are subject to a higher pseudogenisation rate (Hughes and

Liberles 2007a) . This should slow the return to the power-law as compared toboth

WGD models. In addition, there is expected to be little loss of singletons in each species

which we model by ensuring that singleton families have a near-zero probability of losing
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their last member. These singletons form families of size two when clustering the genes

from both genomes, and the restricted loss of singletons from each species means that

the number of families of size one can effectively only increase through the divergence

of sequences from larger-sized families causing the sequence to “break-away” to form a

new singleton family. Thus, the increase in the number of families of size one is expected

to be particularly slow.

We run a simulation in which we perform two speciation events. The qualitative

predictions are fullfilled as expected. Note in particular the differences between the two

speciation events: after the first speciation, there is a bigdisruption to the distribution and

a slow return to the power-law; whereas after the second, thedisruption is less because

only one of the two species radiates and, thus, the distribution for sizes greater than two

recovers a power-law shape more rapidly (see supplementarymaterials, figure 1 for the

details of the first speciation event atS = 2.0 and figure 2 for the second atS = 2.5).

As explained earlier, the very high under-representation of families of size one after the

first speciation (and of families of size one and two after thesecond speciation) is to be

expected, but is perhaps exagerated in the simulation as ourmodel effectively does not

allow singletons to be lost from a genome (see figure 7).

The underrepresentation of smaller gene family sizes observed here has also been ob-

served in the distribution of gene family sizes in gene family databases like TAED (Roth

et al. 2005) that were built using entirely different methodology and as such is not an

artifact of the gene family construction process. This may in fact reflect a set of core func-

tions, where deletion from a genome is highly deleterious. While the core set of functions

necessary for parasitic prokaryotic life has been estimated to be 500-600 genes (Koonin

2003), that set for vertebrate life might be expected to be larger. It has been suggested

that informational genes (involved in the retention of biological information) represent a

phylogenetic core in bacterial species (Rivera et al. 1998)and a similar expanded core

might be expected in vertebrate species.

Whole genome duplication followed by speciation

Our first two sets of simulations have established that: 1) following a WGD without haz-

ard shift a power-law distribution returns within a relatively short period of time for all

sizes, 2) for a WGD with hazard shift, a power-law also returns, but families of size 1

are underrepresented and the intercept is higher than in the“no hazard shift” model, 3)

following multiple speciation events, a power-law returns, but it takes longer than follow-

ing WGD, the intercept is significantly higher than pre-speciation, and sizes less than the

number of species are under-represented relative to the power-law defined by larger sizes.

This strongly suggests that the under-representation of family sizes less than the number
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of species, which we observe in the empirical data, can be explained by the speciations,

but that speciation events alone or WGD events without hazard shift cannot explain the

“waves” observed in the empirical data for family sizes greater than the number of species

(see figure 2). In fact, given the output of the simulation of WGD with hazard shift, it is

also difficult to see how it can explain a deviation from the power-law for these larger

family sizes: we are able to detect a signal when comparing the output of simulations

with and without hazard shift (see figure 6) but, if we were to observe the output of the

“hazard shift” model alone, it would be difficult to argue that a signal was still observable.

We now run simulations that combine both WGD and speciation events to investi-

gate whether the signal that remains following a WGD with hazard shift continues to be

detectable when it is followed by multiple speciation events and whether the qualitative

features of the signal are consistent with our empirical observation of “waves” with a

period equal to the number of species.

We start by running the same two simulations as in the WGD section, i.e. with and

without hazard shift, but we let the WGD be followed by two speciations. The results

of the simulations confirm that the absence of a signal for theWGD without hazard shift

persists following two speciations as can be seen in figure 8 where the power-law returns

within 0.1S of the second speciation. On the other hand, the underrepresentation of sin-

gletons produced by the WGD with hazard shift (as observed infigure 6) is not removed,

but does shift to another size due to the speciation event: immediately prior to the second

speciation, i.e. 0.5S since the first speciation, the frequency of families of sizethree is

almost equal that of families of size four (see the white dot distribution in the first graph of

figure 9). This is the result of the reduced loss from “hazard shifted” families. Singletons

are under-represented before the first speciation due to thereduced loss, thus, following

the first speciation which results in two species, families of size two consisting mainly of

one gene from each species are underrepresented and size four which consists mainly of a

duplicate pair generated by the WGD for each species are overrepresented. Interestingly,

the second speciation event would appear to make the signal of the WGD event with haz-

ard shift stronger (see the clear and persistent underrepresentation of families of size five

relative to size six in graphs 2, 3 and 4 of figure 9).

To understand how the frequency of families of size five can beless than the frequency

of families of size six following the second speciation in the model with hazard shift, we

investigate the details of the gene family size distribution immediately prior to the sec-

ond speciation and compare it to the equivalent situation for the model without hazard

shift (see table 1). There are two clear differences betweenthe simulated data for the

two models prior to the second speciation. First, the frequency of size four in the model

with hazard shift is more than double that in the model without hazard shift. Second,
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the species composition of size 4 is radically different between the two models with a

clearly higher frequency of two sequences from each speciesin the model with hazard

shift. Since families of size 4 with two sequences from each species become families

of size 6 following the second speciation, this explains howfamilies of size six become

over-represented relative to families of size five. The speciation event is effectively com-

bining these two signals to produce a stronger unified signalwhich is detectable as a clear

deviation from the power-law distribution.

Finally, we run a simulation with two hazard shifted WGDs followed by two specia-

tions to test whether a simulation can produce a distribution that resembles the empirical

data, which we know with reasonable certainty was subject totwo WGDs prior to the fish-

tetrapod split dated to approximately 476 million years ago(Blair and Hedges 2005). We

separate the WGDs by 0.2S which might correspond approximately to the time between

2R, but estimates of the time separating the two events vary between 10 and 100 million

years (Lundin et al. 2003). The separation of the speciationevents is set arbitrarily to

0.5 S which corresponds to approximately 115 million years i.e. we do not ensure that

the speciation times correspond precisely to their estimates in the literature. However, the

goal of this work is not to develop a model that can reproduce the exact quantitative fea-

tures of the empirical distribution of gene family size, butrather to apply theH. sapiens

parameterisations to get an indication of whether the deviation from the power-law ob-

served in the empirical data is the result of the two rounds ofWGD. Given the above and

also the raging debate about the large errors in timing majordivergence times in the chor-

date species tree (Graur and Martin 2004; Hedges and Kumar 2004), we do not consider

this discrepancy to be of importance.

The simulation produces data with clear peaks at 3, 6, 9, and 12 (see figure 10). Two

rounds of WGD with hazard shift should result in an over-representation of families of

size 4 and the subsequent two speciations produce three species, thus explaining the peak

at 12. The peaks at 3, 6 and 9 are due to the fact that not all genes with a hazard shift will

retain all duplicate copies following the WGD: some will lose one duplicate (size 9), some

will lose two (size 6), and most will lose three (size 3). Thisis qualitatively very similar to

the empirical data of figure 2 with the only difference being that the data plotted in figure

2 is for five species instead of the three (generated by the twospeciations). The fact that

the waves are not detectable at larger family sizes in the empirical data is probably due to

the fact that larger families, due to their large number of genes have a higher probability

of containing a gene that duplicates. This results in a less stable size and thus a lack of

conservation of the signal of the WGD.
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Discussion

Small- and large-scale gene duplication

The redundancy generated by gene duplication has long been hypothesized to provide the

raw material from which new function can evolve (Ohno 1970) and, as such, is of great

interest. Small-scale gene duplication is known to occur inmany species at a high and

relatively constant level through tandem and segmental duplication (Lynch and Conery

2000; Lynch and Conery 2003). Whole genome duplication is also known to occur and

has the potential to rapidly and dramatically change the gene content of a genome, but can

be difficult to detect if it occurred in the distant past. Probably the two most studied WGDs

are those originally hypothesised by Ohno to have occured prior to the fish-tetrapod split

(Ohno 1970). There is now strong evidence for two rounds of WGD (2R), possibly in

quick succession, prior to the divergence of ray-finned and lobe-finned fish (Wang and

Gu 2000; Dehal and Boore 2005) and a ray-finned fish specific WGD(3R) prior to the

radiation of teleosts (Christoffels et al. 2004; Vandepoele et al. 2004). However, there

has been considerable debate about the number of WGDs in the ancestral chordate with

some arguing for none (Friedman and Hughes 2001; Friedman and Hughes 2003), others

one (McLysaght et al. 2002) or two (Abi-Rached et al. 2002).

There are two main reasons why ancient large-scale duplication events such as whole

genome duplications (WGD) can be difficult to detect. First,the retention rate of dupli-

cates generated through a WGD is often not very high, although it is generally thought to

be higher than the retention rate of SSD. This results in a weak signal in the genome, e.g.

it is estimated that only approximately 20 percent of duplicates were retained in pufferfish

and zebrafish following the fish-specific whole genome duplication (Jaillon et al. 2004;

Woods et al. 2005; Brunet et al. 2006). Second, there is a highlevel of small-scale

duplication and loss: genes are constantly subject to a highprobability of being dupli-

cated through a small-scale duplication event and the resulting duplicates are themselves

subject to a high probability of pseudogenisation (Lynch and Conery 2000; Lynch and

Conery 2003; Hughes and Liberles 2007a).

The 2R debate

To prove the occurrence of a WGD it is necessary to statistically test whether the null hy-

pothesis, that the data were produced by the background process of SSD, can be rejected

in favour of the hypothesis of a large scale duplication. To carry out such a test it is neces-

sary to obtain estimates of the background small-scale duplication and pseudogenisation

rates. If the event is hypothesised to have occurred in the relatively recent past, then it can
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be possible to tackle this problem as a significant percentage of the duplicates generated

by the whole genome duplication are still functional and it is possible to get a relatively

accurate estimate of the small-scale duplication and loss process since the hypothesised

event (Maere et al. 2005). If, however, the hypothesised event is more ancient, obtaining

an accurate estimation of the small-scale duplication and loss process that applied during

the period since the hypothesised WGD and formulating a statistical test is impossible.

In the absence of a formal test, advocates and opponents of 2Rhave studied many

features of homologous gene families in order to gather corroborative evidence for their

hypotheses, e.g. the number of genes in multigene families,timing of duplications, and

genomic location of paralogons. The most recent study, which uses the full genome

sequences ofCiona intestinalis, Homo sapiens, Mus musculus and Takifugu rubripes,

provides all these types of data (Dehal and Boore 2005). First, using the gene annotations,

they build gene families such that each family includes all (and only) the descendents of a

single gene in the ancestral chordate. They then build phylogenetic trees for these families

and infer which nodes in these trees are duplications. Finally, they plot the genomic map

positions of the genes that duplicated prior to the fish-tetrapod split. They find that only

the genomic location data provides clear evidence of 2R. Thedata on the number of genes

per family for a given species (as well as data on number and timing of duplications)

is dismissed as unsupportive, as opponents of the 2R hypothesis had previously done

(Hughes et al. 2001).

Although we agree with the conclusion that the ancestral vertebrate is very likely to

have undergone two WGDs, we do not agree that there is no sign of these events in gene

family size data.

Deviation from the power-law

The motivation for this study was the observation that a clustering of all genes from five

tetrapod species produced a distribution of gene family sizes with “waves” with a period

of five (see figure 2). This represents a clear deviation from the expected power-law

distribution. A study of gene family phylogenetic trees from fully-sequenced vertebrate

genomes (Blomme et al. 2006) has shown that a large proportion of duplicated genes

in extant vertebrate genomes are ancient and were created attimes that coincide with

the proposed whole genome duplication events. The same study also established that

regulatory genes have a higher probability of being duplicated and retained through WGD

than SSD, and it was noted that this is consisent with the dosage balance hypothesis.

These findings suggest that WGD has the potential to fundamentally and persistently

modify the distribution of gene family size, however, the study did not directly address

this issue.
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Through several sets of simulations, we have shown that the deviation from the power-

law that we observe in the empirical data for sizes less than five can be attributed to the

speciation events, but for larger sizes the “waves” are bestexplained by the two ancient

WGDs. Moreover, we have shown that the WGD event must have a specific character-

istic, namely that a significant fraction of genes must undergo a hazard shift in WGD

as compared to the hazard they are subject to following SSD. Critics might be tempted

to suggest that the deviations from the power law are an artifact of the clustering algo-

rithm. This, however, is very unlikely given that the empirical data was clustering using

the MCL algorithm (Enright et al. 2002) which is the algorithm used by Ensembl (Birney

et al. 2006) to produce gene families, whereas the simulateddata was clustered using

complete linkage (see “Materials and Methods” section).

These results are of interest for several reasons. First, because it shows that “sim-

ple” data on the size of gene families can provide an indication of ancient large scale

duplication (the data is simple in the sense that we do not need to build gene families

defined with an outgroup, build phylogenetic trees for thesefamilies, infer duplications

and locate the duplicated genes in the genome). Note, however, that we do not claim that

gene family size provides as strong evidence for WGD as the spatio-temporal data of the

Dehal and Boore study (Dehal and Boore 2005). Second, it is remarkable that the signal

is still detectable given that approximately 500 million years of small-scale duplication

and loss separate us from the WGD events. This suggests that there are gene families

with retention rates that differ radically between large-scale and small-scale duplication,

or more specifically, that there exists a significant fraction of genes with low retention

following SSD which are subject to high retention followingWGD. Third, it shows that

a WGD modifies the structure of the genome’s gene content in a profound and persistent

way, a finding which is consistent with the observed correlation between WGD and major

evolutionary transitions.

Molecular basis of the model of whole genome duplication and reten-

tion

A key component of the model needed to produce simulated datathat qualitatively matches

the empirical data is the WGD with hazard shift. This is consistent with both the dosage

balance (Aury et al. 2006) and subfunctionalisation model (Force et al. 1999).

The theory behind dosage balance is that certain categoriesof protein coding genes,

such as proteins forming complexes or enzymes in a metabolicpathway, are very sensi-

tive to the stoichiometry of their interaction partners. Ifsuch a gene duplicates through a

small-scale duplication, it will have a negative fitness effect by disturbing the stoichiom-
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etry and will be selected against. If, on the other hand, it isduplicated in a WGD, it is

duplicated with all its interaction partners and the stoichiometry of the interacting part-

ners is unchanged. Thus, the fitness effect of the duplicatesis neutral. However, the loss

of any of the duplicates will have a negative fitness effect byupsetting the stoichiometry.

Under such a model there are two broad types of genes, those that are dosage sensitive

and those that are not. For those that are dosage sensitive, the probability of retention

depends on whether the duplication occurred through small or large-scale duplication; for

those that are not dosage sensitive, the scale of the duplication is immaterial. Moreover,

the genes that are dosage sensitive will tend to be those witha low probability of retention

following small-scale duplication, but will have a high probability of retention following

WGD.

In the subfunctionalisation model, where retention is driven by temporal or spatial

partitioning of expression through complementary loss of regulatory regions between a

duplicate pair (Force et al. 1999), the probability of retention is an increasing function of

the number of regulatory modules. Thus, as long as all regulatory modules are duplicated,

the duplicates hazard rate should not depend on whether the duplication was small-scale

or whole-genome. It is, however, becoming increasingly evident that a gene’s regulatory

modules are not necessarily located in the immediate vicinity of the gene’s promoter and

may even extend into and beyond adjacent transcriptional units (Kikuta et al. 2007). If

many regulatory blocks are distant from the genes they regulate, then, under the subfunc-

tionalisation model, such genes would have a lower hazard rate if duplicated in a whole

genome duplication event than if duplicated in a small-scale event. In addition, if a gene

subfunctionalises following WGD, each duplicate is left with only a subset of the an-

cestral regulatory regions, thus the probability of retention following a future small-scale

duplication is reduced. Therefore, the implementation described above is also relevant

for the classical subfunctionalisation model. Another variant of the subfunctionalisation

model involves the partitioning of function in the coding sequence causing, for example,

the partitioning of interaction partners. Here, as a protein has many interacting partners,

this provides opportunities for both subfunctionalization of interactions (proportional to

the number of interactions) as well as neofunctionalization of each interacting partner

as an independent probability. Once a copy of a duplicated interacting partner neofunc-

tionalizes, the subfunctionalization of the interactionswith each partner can then lead to

fixation of the duplicates. Through this mechanism, a hazardshift is generated after WGD

that is different depending upon the number and nature of physical interactions with other

proteins.

From a theoretical point of view, it is difficult to determinewhether it is dosage

balance or subfunctionalisation that is most likely to cause a hazard shift. Because of
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the negative selection against SSD for dosage sensitive genes and the negative selection

against loss of duplicates following WGD, dosage balance appears to be a strong candi-

date. However, this shift may only be transient because, if the negative selection against

loss is stochastically overcome in small effective population size vertebrates, coopera-

tive positive selection for rapid gene loss will follow. Thehazard shift associated with

subfunctionalisation may be of a more permanent nature.

Empirical data also support the hazard shift model: genes involved in transcription

regulation are a large functional class which multiple studies have shown is preferentially

retained following WGD compared to SSD (Blanc and Wolfe 2004; Maere et al. 2005;

Blomme et al. 2006). But, again this can be interpreted either as caused by dosage bal-

ance, as regulatory genes are often functional in complexes, or as caused by subfunction-

alisation, as they are also often subject to complex regulation involving many enhancer

regions.

In our model, the SSD rate is assumed to be a constant and WGD isassumed to

duplicate all genes. In both cases, we assume that the duplications reach fixation. This

is clearly a simplification as all genes do not duplicate witha given frequency. However,

for models of duplication and retention where the initial duplication event is neutral such

as subfunctionalisation, this should be an acceptable simplification. In the case of dosage

balance, the initial duplication has a negative fitness effect if the duplication was small-

scale. This results in a reduced chance of fixation i.e. a lower probability of retention.

Our model does not capture this as we model differential retention rates across families

exclusively through different pseudogenisation rates. Thus, this feature of dosage balance

is modeled through a higher than average hazard rate following SSD for a fraction of

the gene families rather than a reduced duplication rate. This approach is justified by

the need to build a model that is consistent with multiple modes of gene duplication and

retention while restricting the modeling to the genomic level (rather than descending to

the population genetic level where we do not have estimates of the key processes).

It is important to emphasise that although the original retention of duplicates follow-

ing WGD is likely to be driven by subfunctionalisation or dosage balance, there is a strong

possibility that the ultimate fate of at least one of the duplicates is neofunctionalisation

(Ohno 1970). This is because the retention mechanism, particularly in the case of sub-

functionalisation, may reduce the level of pleiotropic constraint that was exerted on the

ancestral gene prior to duplication, thus allowing at the very least fine tuning of function

(Lynch and Force 2000; Rastogi and Liberles 2005).
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Use of Homo sapiens estimates

The key processes in our model are gene duplication, gene loss and sequence divergence.

These processes are obviously variable across lineages andtime. Ideally, we would have

reliable estimates of these processes for the past 500 million years. However, producing

estimates of these processes in the distant past is effectively impossible due to the directly

counteracting nature of the processes of duplication and loss, and the saturation of silent

sites with time. As a second best, we use the estimates for these processes obtained from

data on recent SSD duplicates inHomo sapiens (Hughes and Liberles 2007a). Estimates

for other species are available, but these are also for recent duplicates, so we decided to

use the high quality human data rather than create a consensus between multiple species.

Although, the numerical values of parameters of the equations are different across species

the functional forms are the same, thus there is no reason to believe that the functional

forms were any different in the past although the parameter values were undoubtedly

different.

Again, due to the distant nature of the WGD events, we built a model that only qual-

itatively matches existing theories for the retention of duplicate genes. We have no basis

for the numerical parametrisations of the “hazard shift” model (proportion affected by

hazard shift, magnitude of hazard shift, and functional form of the hazard rate following

WGD). As a result of this, we are only able to produce simulated data that qualitatively

matches the empirical data, as can be seen through the comparison of figures 2 and 10.

We could have fine tuned parameters in the model and, thus, obtained a better fit between

the simulated and empirical data. For example, by increasing the proportion of families

affected by the hazard shift or increasing the size of the hazard shift, the deviation from

the power law in the simulated data would have been stronger and quantitatively more

similar to the empirical data, but this would have been misleading. Moreover, it is unnec-

essary as we are not claiming to have produced a precise reconstruction of the evolution

of the distribution of gene family sizes in the tetrapod lineage. We aimed only to show

that the deviation from the power-law in the empirical data was the result of two rounds

of WGD and we consider that our qualitative results show thisto be highly probable.

Conclusion

In this study, we have used a model of gene family evolution toproduce an approximate

characterisation of the effects of whole genome duplication and speciation on the distribu-

tion of gene family size. We find that for our simulations to produce the kind of deviation

from the power law observed in the empirical distribution ofgene family size for several

tetrapod species, it is necessary that a significant proportion of genes are subject to a high
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probability of retention following WGD and that these genesalso have a low probability

of retention following small-scale duplication. Whether this difference in probability of

retention is the result of the fixation of duplication eventsbeing selected against follow-

ing SSD and loss selected against following WGD (as in the dosage balance model) or

whether it is due to a shift in the pseudogenisation rate between SSD and WGD (as in the

subfunctionalisation model) is not known. Given that it is difficult to imagine what other

type of genomic event would disrupt the distribution in thisway and that strong evidence

already exists for two WGDs in the ancestral vertebrate approximately 500 Mya, we find

it logical to conclude that the pattern, that we observe in the empirical distribution of gene

family size for tetrapods, is the result of the ancient WGDs.This implies that WGD may

profoundly and persistently modify the distribution of gene family size.

Materials and Methods

Empirical data

Our empirical data consists of the longest protein coding transcript sequence for every

gene of the annotated genome of the following species from release 31 of Ensembl (Birney

et al. 2006):Gallus gallus, Canis familiaris, Mus musculus, Rattus norvegicus andHomo

sapiens. First, we carry out low complexity masking of the translated sequences using

CAST (Promponas et al. 2000) and then perform an all-against-all BLAST (Altschul et al.

1997) (substitution matrix=BLOSUM62, gap opening cost=11, gap extension cost=1). In

order, to make the output of the all-against-all BLAST manageable, the BLAST sequence

pairs (query and target sequences) are filtered to remove anytargets that do not satisfy

all of the following criteria that should be satisfied by evenvery distant homologs: 20%

similarity to the query, 60% coverage of the query, e-value <10−5. The e-values of

the retained sequences are then used as input to the MCL clustering algorithm with the

inflation parameter set to 4.0 (Enright et al. 2002). This procedure produces a clustering

of all genes into gene families from which the distribution of gene family size can be

computed (see figure 2).

Simulated data

Overview

In order to theoretically investigate the effect of either aspeciation event or a whole-

genome duplication on the power-law distribution, we need amodel of homologous gene

family evolution. We use as our starting point the model developed in a previous paper
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(Hughes and Liberles 2007b). We repeat here a description of this original model and

we extend it to incorporate speciation and whole genome duplication events (the reader is

referred to the original paper for the rationale behind the model).

Basic model

We model the rate of gene duplication, the rate at which replacement substitutions per

replacement site accumulate between genes in a duplicate pair and the rate at which one

of the genes in a pair pseudogenises. These models are taken directly from our previous

study (Hughes and Liberles 2007a) which built on earlier work on the same topic (Lynch

and Conery 2000; Lynch and Conery 2003). Time is measured through the accumulation

of silent substitutions per silent site (S) between duplicate genes. InH. sapiens, under

the assumption of a constant rate of small-scale duplication, we have estimated that genes

duplicate at a rate of 2.07 per gene perS (all parametrisations used here are the result of

fitting the models to duplicate gene pair data from theH. sapiens full genome sequence

annotation). A duplicate pairi accumulates replacement substitutions per replacement

site (R), according to the equation:

Ri = θ1Si + (θ2/θ3)(1 − exp(−θ3Si)) + εi (1)

V ar(εi) = σ
2(τ1Si + exp(τ2(1 − exp(−τ3Si)))), E(εi) = 0 (2)

where theεi are assumed to be independent random variables fori varying from1

to n. We use the following fitted values of the parameters (Hughesand Liberles 2007a):

θ1 = 0.13; θ2 = 0.70; θ3 = 2.4; σ2 = 3.55e − 5; τ1 = 229.4; τ2 = 6.32; τ3 = 4.14.

The probability of pseudogenisation of one of the genes in a pair within ∆t given that

both genes are still functional att is:

Pr(t < T < t + ∆t/T > t) = −

Q(t + ∆t) − Q(t)

Q(t)
(3)

whereQ(t) = Pr(T > t) is the survival function: the probability that the time of

death,T , is greater thant, i.e. the probability that both genes are still functional at time

t. The hazard functionλ(t) is defined as the event (death/pseudogenisation) rate at time t

conditional on survival to timet or later:

λ(t) = lim
∆t→0

Pr(t < T < t + ∆t/T > t)

∆t
= −Q

′(t)/Q(t) (4)

We have shown that the Weibull survival functionQ(t) = eρ1tρ2 provides an excellent

fit to the data (Hughes and Liberles 2007a). Thus, we use this model of the survival

function andS as a proxy for time:
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λ(S) = −ρ1ρ2S
ρ2−1 (5)

In H. sapiens, the fitted parameters areρ1 = −4.1 andρ2 = 0.33 which implies that

the rate of pseudogenisation of a duplicate is a decreasing function ofS.

A gene in our model has two key characteristics: it is either functional or pseudo-

genised, and it has a measure of the number of silent and replacement substitutions per

site between itself and all homologous genes i.e. all genes that can be traced to a com-

mon ancestor through a series of duplication events. The model is initialised with a set of

singleton genes i.e. genes that have no duplicates, and therefore each forms a family of

size one. These are the "founding" genes of the homologous gene families. Because all

key processes are defined in terms ofS, we define a "clock" which "ticks" in increments

of 0.001 units ofS. At each tick of the clock each gene’s number of silent substitutions

is incremented by half a tick, so that the distance between all genes increases by one tick.

For each gene, we then detect the closest non-pseudogenisedhomolog which we define

as the homologous gene with lowestR distance to the gene of interest. TheS distance

between the two genes is a measure of the time since the original duplication event and

is used to compute the number of replacement substitutions per site the duplicate pair

should be subject to in the timeframe of the current tick (equation 1) and the probability

that one of the duplicates pseudogenises during the currenttick (equation 3) withS as a

proxy for time and the Weibull survival function). A gene that has no homologs (such

as a founding singleton before it is duplicated) is assignedan S value of 1,000 which

ensures that it accumulatesR at a very low rate and is subject to a very low probability

of pseudogenisation. This is a reasonable way to model singletons as singletons can be

expected to have evolved some kind of specialised function that is under selective pres-

sure to be retained in the genome. Finally, each gene is subject to a constant probability

of duplication during each tick. The gene that results from aduplication is added to the

set of homologous genes. It inherits theR andS distances to other genes from its parent

and has a distance of 0R and 0S to its parent.

As the model stands, all genes are subject to the same rates ofthe three main processes.

We introduce differences between genes by introducing error terms to the rate of sequence

divergence and the rate of pseudogenisation.

Errors for the rate of sequence divergence are available as the fitting of equation 1

produced residuals. Unfortunately, the functional form ofthe distribution of the error

term in equation 1 is not known so, instead, we draw an error term randomly from all

residuals from the fitting of equation 1 to theH. sapiens gene duplicate data (Hughes and

Liberles 2007a). This error term can be standardised through the model of the variance as

a function ofS (see equation 2). A new gene is assigned this error term and this is used in
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equation 1 to calculate the number of replacement substitutions per replacement site the

duplicate pair should be subject to in a tick (each gene in a pair is subject to half the value

predicted by equation 1 when using the gene’s specific error term).

In order to be able to accomodate different genes having different rates of pseudogeni-

sation, we modified the definition of the probability of pseudogenisation of a duplicate

pair i within a time interval∆t given survival untilt, by defining:

Pr
′(t < T < t + ∆t/T > t) = (1 + υi)Pr(t < T < t + ∆t/T > t) (6)

whereυi ∼ N(µ, σ2). We want to be able to control the extent to which hazard rates

are correlated within families. Thus, when a new gene is created by duplication, the error

termυi is either inherited from the gene that duplicated, in which case all genes descen-

dent from a founding singleton will have the same hazard function and the heterogeneity

between families is determined byσ2; or a new error can be drawn from the distribution in

which case there will be no correlation between the hazard functions of genes descendent

from the same singleton.

Model validation and results

In the original paper where we first presented this model, we successfully tested that

the simulated evolution of gene duplicates using this modelmatches the realH. sapiens

duplicate gene data i.e. that the rates of pseudogenisationand the rate of accumulation of

replacement substitutions are the same in the simulated andempirical data.

At regular intervals during the simulation, we extractR for all duplicate pairs and

use this data to compute a complete linkage clustering of allnon-pseudogenised genes.

We use an empirically derived maximum distance of 0.56R between genes in the same

family as the cutoff value in the clustering process (Hughesand Liberles 2007b). From

this clustering, we can compute the distribution of gene family size.

In our previous paper, we found that the power-law distribution of gene family size

failed to emerge if all genes in all families had the same hazard function or if all genes

had different hazard functions. The key conclusion was thatit is necessary forυi to be

correlated within a family (inheritance ofυi) and for there to be sufficient heterogeneity

between families (υi ∼ N(0, 0.04)). We found that, under such circumstances, a power-

law distribution of gene family size had clearly emerged byS > 2.0. This corresponds

to approximately 460 million years, given a rate of 2.20 silent substitutions per silent site

per billion years for H. sapiens (Yang and Nielsen 1998). Thus, in all our modeling in

this paper, we use this configuration of the model which meansthat, in the absence of

WGD, all genes in the same family have the same hazard rate. Werun the simulation
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until S = 2.0, so that a power-law emerges in the distribution of gene family size. We

initiate the model with 1,000 singleton families as the number of genes grows rapidly

when the genome is subject to WGD and speciation, and the complete linkage clustering

is compute-time intensive. Only once the power-law distribution has emerged, do we

disrupt it by subjecting the genome to a speciation or WGD event.

Speciation and whole genome duplication extensions

A speciation event is modeled by copying every non-pseudogenised gene (includingS

andR distances to all homologs) and labeling the genes with the species of the genome

in which they exist. This information is then used to limit the search for the closest non-

pseudogenised homolog to genes that belong to the same species. This ensures that both

genomes evolve independently after speciation as only genes from the same species (and

not orthologs) play a role when computing the rate of sequence divergence or the proba-

bility of pseudogenisation, but orthologs do get clusteredtogether when homologous gene

families are built.

A whole genome duplication is modeled by duplicating all genes of a specific species

giving them a distance of 0R and 0S to their parent as in small-scale duplication. Due

to the one-off nature of WGD, we do not have a quantitative characterisation of the rate

of sequence divergence and pseudogenisation as a function of time since WGD. We are

thus forced to define these rates as best we can. We leave the sequence divergence rate the

same as for small-scale duplicates as this process does not appear to play a crucial role in

dynamics of the power-law distribution. For the hazard rate, we implement two options.

The first option is to simply consider that the duplication event to which each gene is

subject in the WGD is the same as a SSD, i.e. that each gene inherits the pseudogenisation

error term from its parent. However, there is evidence that the retention rate is higher fol-

lowing many WGD, e.g. following the fish-specific WGD (Woods et al. 2005). The most

prominent models that have been put forward to explain this higher retention rate of gene

duplicates that arise through WGD are dosage balance (Aury et al. 2006) and subfunc-

tionalisation (Force et al. 1999). Although the models are fundamentally very different,

they both share that some genes are more highly retained following WGD and that these

genes maybe those that stand a below average chance of being retained following SSD.

To incorporate such features in our model, we divide the families into two categories;

those that have a high hazard rate error (defined asυi > 0.1) following small-scale dupli-

cation and those with a low hazard rate (defined asυi < 0.1). We choose this definition

as it makes approximately one third of the genes dosage sensitive and thus subject to a

hazard shift. We have no data on the proportion of genes that may be subject to such a

hazard shift but, given that, following the fish specific WGD,it has been estimated that 20
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percent of duplicates were retained (Jaillon et al. 2004; Woods et al. 2005; Brunet et al.

2006) whereas retention rates following SSD are only a few percent (Hughes and Liberles

2007a), one third is not an unreasonably large fraction. When a WGDoccurs, genes with

a high hazard rate error are duplicated and both the originalgene and the duplicate are

given a hazard rate error (υi) drawn fromN(−0.85, 0.0025) which ensures a very high

probability of retention. We refer to this as hazard shift. Genes with a low SSD hazard

rate are duplicated and inherit the error of the duplicated gene as in SSD. When a hazard

shifted gene is subsequently duplicated in a small-scale duplication event, the duplicate

does not inherit the hazard shift, instead theυi shared by all genes in the family prior to

the WGD is restored.
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Figure 1: Distribution of gene family size forH. sapiens (from a clustering of all putative
genes from the fully sequenced genome)
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Figure 2: Distribution of gene family size from five tetrapodspecies (from a clustering
of all putative genes from the fully sequenced genomes of G. gallus, C. familiaris, M.
musculus, R. norvegicus and H. sapiens)
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Figure 3: Qualitative description of the immediate effect of a WGD on a power-law dis-
tribution of gene family size
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Figure 4: Qualitative description of the gene family size distribution sometime after the
WGD
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Figure 5: WGDwithout hazard shift atS = 2.0 and subsequent change in the distribution
of gene family size

White dots and dotted line: data immediatelyprior to the WGD and fitted power-law
equation
Black dots and solid line: data immediatelyafter the WGD and fitted power-law equation
Crosses: data at later time points (higher S)
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Figure 6: Comparison of distributions following WGD atS = 2.0 with hazard shift (black
squares) andwithout hazard shift (white squares), represented atS = 2.3
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Figure 7: Distribution following a first speciation atS = 2.0 and a second speciation at
S = 2.5, represented atS = 2.7

Dotted line: equation fitted to the distribution data immediatelyprior to the second spe-
ciation
Solid line: equation fitted to the distribution data immediatelyafter the second speciation
Crosses: data atS = 2.7
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Figure 8: WGDwithout hazard shift followed by two speciations, represented atS = 3.2
(WGD atS = 2.0, first speciation atS = 2.5, and second speciation atS = 3.0)
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Figure 9: WGDwith hazard shift followed by two speciations, represented atS = 3.0
(WGD atS = 2.0, first speciation atS = 2.5, and second speciation atS = 3.0)

White dots: data immediatelyprior to the second speciation
Black dots: data immediatelyafter the second speciation
Crosses: data at later time points (higher S)
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Figure 10: Two WGDswith hazard shift followed by two speciations, represented at
S = 3.5
(WGDs atS = 2.0 and2.2, speciations atS = 2.7 and3.2)

Table 1: Gene family size distribution for the genes of species A and B which arose at
S = 2.5 immediately prior to a second speciation of B atS = 3.0. Prior to the first
speciation, the common ancestor of A and B was subjected to a WGD.
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Figure 1: First speciation atS = 2.0

White dots and dotted line: data immediatelyprior to the speciation and fitted power-law
equation
Black dots and solid line: data immediatelyafter the speciation and fitted power-law equation
Crosses: data at later time points (higher S)
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Figure 2: Second speciation event atS = 2.5

White dots and dotted line: data immediatelyprior to the speciation and fitted power-law
equation
Black dots and solid line: data immediatelyafter the speciation and fitted power-law equation
Crosses: data at later time points (higher S)
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Figure 3: WGDwithout hazard shift followed by two speciations
WGD atS = 2.0, first speciation atS = 2.5, and second speciation atS = 3.0

White dots: dataprior to the speciation
Black dots: data immediatelyafter the speciation
Crosses: data at later time points (higher S)
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Many genomes display extensive gene duplication, which

may result from either small-scale duplications or from

duplication of the whole genome. What determines whether

both copies of a duplicate gene are retained in the genome,

and their subsequent evolutionary fate, is still a matter of

debate. Aury et al. [1] have recently characterized gene

duplication in the ciliate Paramecium tetraurelia, a uni-

cellular eukaryote, which appears to have undergone multiple

rounds of whole-genome duplication with a high level of

retention of the duplicate copies. They suggest that this high

level of retention is due to constraints arising from gene

dosage, rather than other proposed mechanisms. Here we

discuss these results in relation to the various models

proposed for gene duplication and retention.

When duplication of a gene, or genome, occurs in an

individual organism, it will only become part of the species

genome if it becomes ‘fixed’ in the population (that is,

becomes part of the genome of all members of the popula-

tion). If the initial duplication event is evolutionarily neutral,

the duplicated genes will become fixed in the population

with a probability dependent on the inverse of the effective

population size. It has been suggested, however, that the

initial duplication event is likely to be deleterious for gene

duplicates with functional regulatory regions, because of the

metabolic cost of producing extra protein [2]. This would

reduce the probability of fixation.

Given that fixation probably occurs much more quickly than

the resolution of the fates of the duplicate copies, most work

has considered fate determination as an independent step

that occurs after the random process of fixation. Once

fixation occurs, if there is purely neutral evolution at the

protein level, one copy of a duplicated gene will quickly

become a pseudogene, leaving a single ancestral copy with

an ancestral function. While relaxation of selective con-

straint is generally thought to occur after gene duplication,

negative selection, which discards changes, apparently

returns quickly. Negative selection on parts of the gene may

also be coupled to positive selection for the evolution of new

functions or levels of expression. Relaxation of selective

constraint (or a combination of negative and positive

selection) that quickly gives way to stronger negative

selection has been observed both in Paramecium [1] and in

computer simulations of the evolution of gene duplicates [3].

Models that aim to explain the retention of duplicated genes

include the subdivision of expression profiles or functions of

the ancestral gene between the duplicates (subfunctionaliza-

tion) [4]; the acquisition of new functions by one or both



duplicated copies (neofunctionalization) [5]; selection to

increase robustness by maintaining a highly conserved back-

up copy [6]; and selection for increased gene dosage or for

dosage-compensation effects, as suggested for Paramecium

(see also [7]).

Selection that depends on gene dosage can involve two

different mechanisms. Selection for increased gene dosage

involves a positive selection pressure to increase expression

from a locus that is already highly expressed and has little

mutational capacity to increase its expression or concen-

tration-dependent activity. The dosage-compensation model,

on the other hand, invokes a negative selection pressure to

retain the function and expression levels of both copies in

order to preserve the correct stoichiometry - the appropriate

amounts or activity of the proteins in relation to each other

or other proteins. Subfunctionalization is a nearly neutral

model, with neither positive nor negative selection on gene

function during the initial period of preservation, whereas

neofunctionalization involves positive selection for the

generation of new functions in the retained genes. Selection

for redundancy, like that for dosage compensation, is

characterized by negative selection. Several of these

processes can act at different levels of biological regulation:

for example, neofunctionalization and subfunctionalization

can occur through changes in protein expression, changes in

protein function, or changes in alternative or constitutive

splicing. Dosage compensation, on the other hand, is a

model in which conservation acts simultaneously on all of

these processes.

Genome duplication favors the retention of
duplicate genes
From examination of a variety of genomes, tandem and

segmental gene duplications are known to occur at very high

rates (on average 0.01 per gene per million years), similar in

magnitude to the rate of mutation per nucleotide site [8,9].

Following such duplications, the average half-life of a gene

copy is of the order of a few million years, with only a small

fraction of duplicates surviving beyond a few tens of millions

of years (TH and DAL, unpublished observations). Following

whole-genome duplication, on the other hand, a large

proportion of duplicate genes is retained after tens of

millions of years (as in Xenopus laevis [10]) or even hundreds

of millions of years (in teleost fish [11]). For teleost fish, the

rate of retention has been reported to be much higher for the

products of whole-genome duplication than for those of

small-scale duplication [11].

One possible explanation for these differences is that gene

fate is shaped by different evolutionary forces, depending on

whether a gene is duplicated in a whole-genome event or

not. In a whole-genome duplication, unlike a smaller-scale

duplication, the entire network of interacting partners is

duplicated together (Figure 1). It is unclear to what degree

this build-up of pleiotropic constraints is a limitation as

duplicates diverge, and this question needs to be addressed,

potentially using protein structural models. The dosage-

compensation model would predict that the build-up of

pleiotropic constraint is difficult to resolve without deleterious

effects, thus introducing a strong negative selection initially

against the loss of genes or interactions. This would lead to

gene retention and initial conservation of sequence and

expression after whole-genome duplication.
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Figure 1
Possible outcomes for gene retention after whole-genome duplication. An
ancestral network of interacting proteins is shown. Following a whole-
genome duplication event, all of the proteins together with their
interactions are duplicated. Over time, depending upon the evolutionary
forces that are operating on the genome, different interactions are
retained, gained or lost. Under the dosage-compensation model (bottom
left), all interactions are retained. Under the subfunctionalization model
(bottom center), redundant interactions become nonredundant (blue).
When this is combined with the neofunctionalization model (bottom
right), new interactions are also gained (red). In this figure, all of the
duplicated copies have been retained as functional genes, but that is not
the most likely outcome with increasing evolutionary time.

Ancestral network

After WGD
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Gene duplication in the Paramecium genome
With the sequencing of the genome of P. tetraurelia by Aury et

al. [1], it was found to contain 39,642 genes, more genes than

many other completely sequenced genomes. Furthermore,

these genes can be grouped into families whose members are

very closely related in sequence. Phylogenetic analysis of these

gene families points to a recent whole-genome duplication in

P. tetraurelia, in addition to several older genome duplica-

tions. The most recent duplication occurred long enough ago

for negative selection to have set in, however.

Aury et al. [1] find that duplicate genes for signaling proteins

and transcription factors are preferentially retained in the

genome, as are duplicated genes for proteins known to form

multicomponent complexes, with a positive correlation

between retention and the number of components in the

complex. A similar correlation between retention and

complexity was observed for genes involved in metabolic

pathways. More highly expressed genes were also more

likely to have been retained.

Interestingly, the co-retained duplicates did not always

originate from the same whole-genome duplication. In

regard to complex-forming proteins, genes that were co-

retained after the most recent whole-genome duplication

were not found to be those preferentially retained in the

older duplications. In all, Aury et al. [1] found that patterns

of retention across whole-genome duplications were affected

by gene function, and showed a preference for retention of

duplicated genes that had not retained a duplicate in an

older whole-genome duplication.

The authors conclude that dosage compensation to maintain

the stoichiometry of protein complexes and metabolic

pathways and keep them functioning correctly plays an

important part in the retention of duplicate genes after a

whole-genome duplication. From consideration of the traces

of the preceding whole-genome duplications they also propose

that over time there is a slow progressive loss of duplicates, as

gene-expression levels become adapted for stoichiometric

reasons, for example.

The dosage-compensation model predicts that duplicates of

genes for proteins that do not form complexes or do not have

concentration-dependent roles in metabolism will be rapidly

lost. In the case of duplicated genes encoding interacting

proteins, it predicts strong selection for retention, but if one of

the interacting duplicates is lost from the genome, the model

predicts that the loss of the remaining duplicate will now be

positively selected for. The first part of this prediction is

qualitatively satisfied by the observations from the P.

tetraurelia genome of the retention of genes for complex-

forming proteins. On the other hand, the retention patterns

and differing profiles of nonsynonymous (Ka) and

synonymous (Ks) substitutions (Ka/Ks profiles) for duplicates

of different ages do not seem to support dosage compensation

as the driving force for keeping them in the genome.

Selection as a result of dosage compensation thus appears to

be complex and may have a role in modulating other evo-

lutionary mechanisms. The apparent burst of either positive

selection or relaxation of selective constraint in the period

shortly after genome duplication implies that selective

mechanisms other than dosage compensation are also acting.

Following the most recent whole-genome duplication in

P. tetraurelia, species radiation occurred, resulting in the

P. tetraurelia complex of 15 sibling species. Aury et al. [1]

propose that this burst of speciation is a side-effect of the

whole-genome duplication, occurring as a result of differen-

tial gene loss in different populations, leading to inviable

hybrids and reproductive isolation by Dobzhansky-Muller

incompatibility [12]. Such a proposition is consistent with

the loss of proteins not under dosage-balance constraint

under the dosage-compensation model and in our opinion is

most consistent with speciation accompanied by neo-

functionalization or subfunctionalization.

In evaluating alternative explanations of the retention

profiles for duplicates in the paramecium genome, effective

population size may be an important consideration. Effective

population size (together with mutation rate) as a modulator

of the strength of selection has been implicated as an

important switch between subfunctionalization as a purely

neutral process and neofunctionalization or, potentially,

dosage compensation as mechanisms involving selection

[4,8,9]. Paramecium has been shown to have a relatively

large effective population size, making mechanisms that

involve selection possible [13]. However, it has been shown

that binding interactions as well as regulatory modules can

subfunctionalize in the preservation of duplicate genes

[3,14], and so the subfunctionalization model for gene dupli-

cate retention may also be consistent with a dependence on

the number of interacting protein partners, where the

probability of subfunctionalization might be expected to be

proportional to the number of ways of subfunctionalizing the

interactions with partners. This is a different mechanism of

gene retention from dosage compensation, but this charac-

teristic of subfunctionalization has not been evaluated to

show that it has the same potential to retain duplicate genes

in such high numbers as dosage compensation appears to be

able to do. Eventually, quantitative models characterizing

these various processes can be tested against the data to

extend our understanding of the process of gene retention.

Where does dosage compensation fit in?
Dosage compensation may indeed affect the short-term

retention rate of duplicate genes after whole-genome

duplication. Over longer time frames, however, proteins

involved in complexes and pathways are not preferentially

retained in the duplicate pairs originating from whole-

genome duplications, neither in P. tetraurelia, as indicated
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by Aury et al. [1], nor in yeast [15] (except for ribosomal

proteins [16]). In fact, whereas 17% of highly connected

proteins (hubs) in the yeast protein-protein interaction

network belong to a pair originating from the relatively

ancient whole-genome duplication that has occurred in

Saccharomyces cerevisiae, only 5% of the party hubs, which

are coexpressed with their interaction partners, are part of

such a pair [15]. Homologous complexes in yeast appear to

have been created through stepwise partial duplications and

not through whole-genome duplication [17].

The results of Aury et al. [1] do suggest that after more

recent whole-genome duplication events, the duplicate

proteins belonging to complexes and pathways are initially

retained to a greater extent than other proteins. According to

this view, although dosage sensitivity is not sufficient for the

long-term fixation of duplicates in the genome, it may be

important in the first phase following the whole-genome

duplication. One might postulate dosage compensation as a

mechanism for holding duplicated genes in the genome for

some time, to give an opportunity for eventual neofunctiona-

lization (as has been suggested for subfunctionalization [3]).

However, even in the period immediately following duplica-

tion, stoichiometric issues will be dependent on the interplay

between expression and sequence as well as selective

pressures for concentration dictated by metabolism and

systems-level constraints. Further modeling work is needed

to understand the mechanism, as the suggestions by Aury et

al. [1] and alternative suggestions (such as subfunctiona-

lization of binding interactions) are part of an ongoing

synthesis to understand the process of gene duplication and

its relationship to the evolution of gene function.

Considering the case of metabolic networks, the patterns of

retention or modification have been observed to be

influenced by network structure, topology and function, and

the positioning of duplicate genes at key points in the

network. Genes coding for enzymes involved in directing

higher metabolic fluxes are subject to greater evolutionary

constraints as a gene duplication event would increase the

flux through an enzyme-catalyzed reaction. It has been

observed in S. cerevisiae that genes encoding highly

connected enzymes in metabolic pathways have a higher

likelihood of maintaining duplicates [18]. Thus, duplication

of genes encoding enzymes carrying high metabolic fluxes

are more likely to be retained compared to genes encoding

enzymes carrying lower metabolic fluxes.

Enzymes in a pathway can evolve with different functional

requirements, which can lead to mismatches in the enzyme

activities upon duplication [19]. This means that upregulation

of individual enzymes can increase or decrease the flux

capacity of the pathway and by different amounts. Hence, if

only certain proteins increase the performance of the pathway,

the duplicates of the other proteins in the pathway will not

provide extra fitness to the organism. This also has

implications for the retention of duplicate copies based upon

an entire pathway being duplicated, indicating that the

negative selective pressure for retention of each duplicate in a

pathway would not be equally strong. Interestingly, it has been

argued that the neutral expectation for biological networks

involves a more complex network than that minimally

required for function, without necessarily invoking robustness

as a driving force for this non-minimal network [20].

The findings by Aury et al. [1] lend further support to the idea

that dosage compensation can play a role in the retention of

duplicated genes in a genome. Whole-genome duplication

events in additional lineages representing different time

points will enable a fuller testing of this and other hypotheses,

as well as their functional implications for systems biology.
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