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CHAPTER 1 

INTRODUCTION 

In ultrasonic transit time flow meters a sinusoidal tone burst is often used to measure the 
transit time and the transit time difference. A tone burst is sent into the medium and detected 
after travelled through it. The detected pulse which entirely different in shape from the input 
pulse, is used to make measurements. The correctness of the measurements, to the required 
accuracy, depend on the correct interpretation of the detected pulse. A good understanding of 
the pulse forming mechanism of the system help interpret the detected pulse correctly and 
make good measurements. This problem constitutes the theme of this thesis. There can be a 
number of factors involved in determining the form of the pulse. But, this thesis looks only 
into some of the acoustic aspects that contribute to the shape of the pulse. 

The matters under discussion in this thesis are motivated towards the ultrasonic transit-time 
flow meter. However, the discussed effects are of fundamental importance in a variety of 
applications in the field of ultrasound technology. 

This thesis consists of 8 chapters. In Chapter 2, the nature of the problem, studied in this 
work, is described. Zero crossing method, one of the flow measurement methods, is taken as 
an example to illustrate the problem and to indicate the importance of the knowledge of pulse 
forming in measurement systems. This knowledge can also be used in systems using other 
flow measurement principles. 

Chapter 3 describes the measurement system both in frequency and time domains. The major 
parts of the system are represented as blocks. How the adjacent blocks are interfaced is 
mainly described in this chapter. With a simple proof, the open circuit output impedance of 
the receiving transducer is shown to be equal to the electrical input impedance. The same 
result can be found in an article written by Beissner16, but the proof is omitted. 

Chapter 4 is devoted to discuss the effect of diffraction on pulse forming. A system where two 
transducers of equal dimensions placed on their common axis is mainly considered. The 
transducer faces and the medium in between the transducers are considered as a linear, time 
invariant filter. The filter is described by a frequency domain transfer function which connects 
the particle velocity on the transmitter to the average pressure on the receiver. The impulse 
response of the filter is found using the transfer function. The impulse response is shown to be 
the same found by Rhyne23, for a same type of configuration of the transducers, using pure 
time domain consideration. Using the impulse and frequency responses, the pressure pulses 
are calculated. The calculated pressure pulse forms are presented as a function of Seki 
parameters, S and ka values. The pressure pulses are compared with the well-known point 
receiver models; 1) Pressure due to a circular piston vibrator on the axis 2) Pressure due to a 
circular piston vibrator on its axis, with far-field approximation. 

Khimunin7 tabulated the diffraction correction for the transducer configuration described in 
the beginning of the above paragraph as a function of, S and ka values. Khimunin verified the 
diffraction correction for a few combinations of k and a values to show that the diffraction  
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correction is the same for any combination of k and a values. It is shown in this dissertation 
that this verification is not necessary (see Sec(4.4)). 

In Chapter 5, the effects of the transducers on the shape of the transmitted pulse is studied. 
Mason's model for thickness extentional mode vibrations of a piezo electric plate is used as 
models for the transmitter and receiver. The basic mechanism of pulse forming is studied 
using a few terms of the impulse response of the transducer element. The pulse forms, 
calculated by the time domain method, are compared with that of the frequency domain 
method. 

In Chapter 6, the total effect of the transmitter-medium-receiver system on the shape of the 
transmitted pulse is studied. A sinusoidal burst is used as the input voltage signal to the 
transmitting transducer. Using a frequency domain computer programme, the signals at every 
node is simulated and the pulse forms are discussed. That is, 1) Velocity signal at the face of 
the transmitter, 2) Free field pressure at the centre of the receiving transducer and 3) The open 
circuit voltage at the output terminal of the receiving transducer. The effects of matching layer 
is studied. 

In Chapter 7, the experiment, performed in connection with the research, is described and the 
results are presented. The experimental results were analysed as follows. Measurements for 
two different separations of the transducers are involved in the analysis. Using the measured 
voltage signal for the first separation, the output voltage signal for the other separation is 
predicted. The predicted result is compared with the actual measurement. The deviations are 
discussed. The theoretical simulation of the measurements, using the parameters used in the 
experiment, and comparison with the measurements was intended. But, because of shortage of 
time, this was not done. However, this comparison is done and an excellent agreement in 
shape of the voltage signal is found by Vervik15. 

Conclusions of this work are presented in Chapter 8. 

Mathematical derivations of some results are pretty long and involved. But they are an 
integral part of the thesis. The absence of the mathematical derivations, however, will not 
disturb the continuity of the thesis. Therefore they are placed in the appendices and classified 
as appendices(A-x). The computer programs used in calculations are listed out and placed in 
appendices(B-x) and constants and parameters used in the calculations are placed in 
appendices(C-x). 

The problem for my Cand. Scient. degree was created in co-operation between the Dept. of 
physics, and the Chr. Michelsen Research institute(CMR), in connection with the project for 
developing an ultrasonic high-precision flow meter for natural gas at CMR. But this research 
has been done independently, not as a part of the project. At the same period another research 
on the transit time determination of the same flow meter was done by Mr. Steinar Vervik. 
Although these two researches have been started separately, in the course of the work we 
found the two problems are closely related to each other. As a result, most of the experimental 
and programming works have been done in co-operation between me and Mr.Vervik. 
Information on the variation of the transit-time due to properties of the various parts of the 
system can be found in the Cand. Scient thesis15 of Mr. Vervik. 
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CHAPTER 2 

MOTIVATION 

2.1 INTRODUCTION 

Ultrasound techniques have several advantages over the conventional methods, such as orifice 
plate, venturi and turbine meters, for the measurement of fluid flow. Munk13 and Nolan and 
O'Hair39 discussed some of the advantages. There are two principles widely used in 
commercially produced ultrasound flow meters; contra propagating and Doppler method. Of 
these two methods, Doppler method is not applicable for flow measurement of natural gas as 
it contains no particles which are necessary to scatter the sound waves. Tests13 with 24-inch 
pipe lines show that the contra propagating ultrasound flow meter can be calibrated to 
accurately measure gas flow rates in large diameter pipe lines over a wide range of flow. 

2.2 ULTRASOUND TRANSIT-TIME  FLOW  METER 

 
Figure(2.1) Transit-time flow meter with single path. P is the distance between transducers. The angle between 

the acoustical axis of the transducers and the direction of flow is θ. The mean flow velocity of the 
medium along the axis of the pipe is v. 

The Fig.(2.1) illustrates a single beam transit-time flow meter. Transducers are oriented such 
that their common acoustical axis makes an angle θ with the direction of the flow. P is the 
distance between the transducers. t12 and t21 are the times taken for sound to travel(transit-
times) from transducer 1 to transducer 2 and from transducer 2 to transducer 1 respectively. 
The expression for the velocity of flow can be found13 as, 

v
T

t t

P= ∆
21 12 2 cosθ

 (2.1) 
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where 

∆T = t21 - t12 (2.2) 

In the Eq.(2.1), v is the average velocity along the sound path. But in a real situation the flow 
velocity is not uniform over the cross-section of the pipe. As a result the flow rate calculated 
using the measured velocity would be different from the true. Therefore it is important to 
determine the flow profile correctly to find the correct flow rate. In high precision transit-time 
flow meters, several pairs of transducers are deployed and the velocity is measured at many 
places over the cross-section of the pipe. 

Consider one sound transmission link in a multi-beam transit-time flow meter. The Fig.(2.2) 
illustrates such a single beam sound transmission. A voltage signal is applied to the 
transmitting transducer by the transmitting electronics. This signal, after travelled through the 
transmitting transducer, the medium and the receiving transducer, is received by the receiving 
electronics. The time interval between the transmitted and the received signals is registered. 
The registered times, obviously, contain the time delays in the non-liquid parts and has to be 
corrected for. 

 

Figure(2.2) Simplified block diagram of a single beam sound transmission link in a transit-time ultrasonic flow 
meter. 

2.3 NO-FLOW CONDITION 

Transit-times at no-flow condition are utilised20,43,44 to eliminate the time delays in the non-
liquid parts of the meter from the measured transit-times. The transit times and the transit time 
difference at no-flow conditions are measured, for the required environmental conditions, and 
stored in the flow computer. This is known as zero calibration. Using these data, during the 
flow measurement, the transit-time measurements are corrected and the flow velocity is 
calculated according to the corrected transit-times. 

The measurement errors occur in the measurement of the transit-time at no-flow conditions, 
thus, may reduce the accuracy of the meter. In this work an attempt has made to illustrate 
some possible source of errors due to the misinterpretation of the received signal. The signal 
transmission through transmitting and receiving electronics, shown in Fig.(2.2), can be 
modelled. Therefore the signal transmission between points A and B in the Fig.(2.2) is only 
investigated in this study. 
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In transit-time flow meters voltage signals of the form of sinusoidal bursts, chirps and 
spikes(an approximate delta function) are used to measure the transit-times. The choice of a 
particular form of the signal depends on the system. Sinusoidal tone bursts are usually used to 
measure low flow velocities(<30m/s)33, like in gas transfer pipe lines, in narrow band systems.  

A voltage signal of the form of a sinusoidal burst is applied to the electrical terminal of the 
transmitting transducer. This signal is detected by the receiving electronics after it has 
travelled through the transmitting transducer, the medium and the receiving transducer. Zero 
crossing method43 is addressed here for the measurement of the transit-time. The detection 
unit of the receiving electronics is programmed to detect the zero crossings that come after a 
pre defined signal level. And these zero crossings are compared with the corresponding zero 
crossings of the transmitted signal to measure the transit-time. That is, the 1st zero crossing of 
the transmitted signal is compared with that of the received, 2nd zero crossing of the 
transmitted signal is compared with that of the received and so on and the time difference is 
taken to be the transit-time. If the pre defined signal level is misinterpreted as if it belongs to a 
particular cycle of the signal, for example as the first while it is being the second, then the 
measured time using the detected zero crossing will contain en error of one period. 

Inter transducer distance divided by the propagation velocity of sound in the medium, 
ignoring the time delays in the transducer pockets, is taken to be the transit-time. This is the 
plane wave model for time calculations. Consider the time measured using the method 
described in the previous paragraph. To calculate the transit-time, the time delays in the non-
liquid parts are subtracted from the measured time. Assume there is no absorption in the 
medium. The calculated transit-time will obey the time relationship of the plane wave model 
if the measurement were made using the first arrival of the received signal. For zero crossings 
in the signal to obey the time relationship of the plane wave model, the signal had to travel 
through the medium as a plane wave. But, this is not the case at all because of the finite size 
of the transmitter. The deviation of the measured signal from the plane wave depends on the 
geometrical configuration and the dimensions of the transducer-medium-transducer system. 
This deviation from the plane wave is found to be caused by the phenomena known as 
diffraction. If the zero crossings of the received burst are to be used for the measurements, 
which is often the case because the first few periods of the signal usually buried in the noise, 
the measured times of the zero crossings must be compensated for the above mentioned 
deviation from the plane wave. Otherwise, in high precision measurements, the accuracy will 
be reduced. The deviation of the measured signal from the plane wave due to diffraction is 
demonstrated and discussed in detail in Chapter 4. 

With proper mathematical models for the transducers, diffraction and the electronics, the 
voltage level of each peak of the signal in the transient region and the entire form of the signal 
can be predicted. The predicted pulse may not match the real one. But, it will help the 
experimenter to interpret the measured signal correctly and to make the measurements more 
precisely. The knowledge of pulse forming effects will give a better understanding of the 
system which can be used to control and improve it. 

2.4 DISCUSSION 

The time of arrival of the received signal is strictly not equal to the time of arrival of the plane 
wave, d/c, if the medium is dispersive, where d is the distance between the transducers and c 
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is the phase velocity of the centre frequency of the signal. In a dispersive medium, high 
frequency components of the signal travel faster and arrive at the receiver earlier than the 
centre frequency. The zero crossings will also be altered by the absorption in a dispersive 
medium. If it can be assumed that variation of the velocity of sound is small for a large band 
width then this effect may be neglected. However, for the simulation of the received signal to 
be more close to the real one, absorption should be included in the model. 
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CHAPTER 3 

SYSTEM MODEL 

3.1 INTRODUCTION 

In this chapter a simulation model2,3,4 which is comparable to the experimental set-up that 
used to study the single beam ultrasound transmission through a medium is described. The 
model consists a number of blocks representing the major parts such as 
electronics(transmitting), transducer(transmitting), propagation medium, 
transducer(receiving), and electronics(receiving) of the experimental set-up. The input, output 
quantities involved in each block and how these quantities related to the adjacent blocks are 
discussed. 

In coming chapters the influence of blocks, representing the medium and the transmitting and 
the receiving transducers, on the shape of the signal being transmitted are discussed. The 
analysis is done for isolated and integrated blocks. The suffixes of the parameters in the block 
diagram do not follow the numbers of the nodes. 

 
Figure(3.1) The block diagram of the system model. 

v0(t)  Voltage signal from the generator in volts. 

v1(t)  Input signal(volts) to the transducer(transmitting). 

u2(t)  Particle velocity of the radiating surface of the transmitting transducer. 

p3(1m,t) Far-field pressure at a distance 1m on the axis of the transmitting transducer. 

p4(t)  Free field pressure at the centre of the receiving transducer. 

v5(t)  Output signal(volts) from the transducer(receiving). 

v6(t)  Output signal(volts) from the electrical matching network. 
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3.2 FREQUENCY DOMAIN  DESCRIPTION  OF THE  SYSTEM 
MODEL 

From basic signal analysis theory it is known that the output, y(t), of linear time invariant 
system for an input, x(t), is given by the inverse Fourier transform of the product of the 
spectrum of the input with the transfer function of the system, provided the Fourier transform 
of x(t) and y(t) are exist. 

Y(ω) = X(ω) H(ω) (3.1) 

where Y(ω), X(ω) are frequency spectrum of the output and the input signals respectively and 
H(ω) is the transfer function of the system. 

The Fourier pair of a time function f(t) is defined as, 

dte)t(f)(F tj∫
∝

∝−

ω−=ω   (3.2a) 

ωω
π

= ∫
∝

∝−

ω de)(F
2

1
)t(f tj   (3.2b) 

Assuming the blocks in Fig(3.1) as linear time invariant filters, the inputs and outputs can be 
related through their respective frequency domain transfer functions. When the blocks are 
connected as shown in the Fig(3.1), the relationship between the input voltage, V0, and output 
voltage, V6 can be written2 as follows. 
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=
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where, 

H01(ω) Transfer function relates the generator voltage to the transmitting transducer's input 
voltage. 

H12(ω) Transfer function relates the transmitting transducer's input voltage to the particle 
velocity of its radiating face. 

H24(ω) Transfer function relates the particle velocity of the surface of the transmitting 
transducer to the free field pressure at centre of the receiving transducer. 

H45(ω) Transfer function relates the free field pressure at the centre of the receiving 
transducer to the receiving transducer's output voltage. 

H56(ω) Transfer function relates the input voltage and output voltage of the electrical 
matching network. 
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The block representing the transmitting transducer is characterised by the voltage to velocity 
transfer function, H12(ω). This transfer function is described by the Mason type of model for a 
thickness extensional piezoelectric vibrator. The transfer function, H12(ω), using the above 
model, is found in Chapter 5. 

The block representing the medium is characterised by the transfer function, H24(ω). This 
transfer function is described by the following four different mathematical models. 

1. Plane wave model 

2. Near-field, point receiver model 

3. Far-field model 

4. Near-field, finite receiver model 

These models are discussed in detail and the transfer function, H24(ω), for each model are 
found in Chapter 4. 

The transfer function H45(ω) can be splited into two functions as, 

H
U

P

V

U45
4

5( )
( )

( )

( )

( )
ω ω

ω
ω
ω

=  (3.4) 

where U(ω) is the spectrum of the particle velocity, u(t), of the active face of the receiving 
transducer. 

The term, 
U(ω)
P4(ω)

, in Eq.(3.4) is the transfer function which relates the free-field pressure, P4, to 

the particle velocity, U, of the receiving transducer. To calculate this transfer function, 
consider plane waves impinging on the receiver. This situation can be represented16 by 
Thevenin equivalent circuit with the open circuit force, Fb, as the mechanical generator, the 
radiation impedance, Zr, as its internal impedance and the acoustic input impedance of the 
transducer with a finite electrical termination, Zin, as the load, as shown in Fig.(3.2). This 
representation is explained using the Thevenin theorem shortly. Fb, and P4 are the Fourier 
transforms of their respective time functions. 

  

 Figure(3.2) Thevenin equivalent circuit for plane waves incident on the transducer 

Thevenin theorem can be found in any network analysis text book. However, in order to make 
the discussion easier, the theorem is stated here briefly in its technical form. 
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Thevenin theorem: 

Suppose the current through an impedance in an electrical network is asked. 

Step 1 Put the circuit in a black box, pull out the branch of the circuit with the impedance 
through which the current is under question and disconnect the impedance from 
the rest of the circuit as shown in Fig.(3.3). 

  
Figure 3.3 An electric network is put in a black box and the impedance through which the current under 

question is pulled out from the box and disconnected. 

Step 2 Find the open circuit voltage between the terminals a and b. This is equivalent to 
find the voltage vAB while the terminals a and b are connected to an infinite 
impedance. This is known as Thevenin equivalent voltage and denoted as Eth. 

Step 3 Replace all the generators in the network with their internal impedance and find 
the impedance between the terminal a and b. This impedance can be found either 
by using simple resistor addition law or alternatively32 by finding the voltage to 
current ratio at the test voltage source connected between the terminals a and b. 

Thevenin equivalent circuit then would be, 

  
Figure 3.4 The Thevenin equivalent circuit for the electrical network considered in Fig.(3.3). 

and the current, i, under question is given by, 

i
E

Z Z
th

L th

=
+

.  

Now, consider the situation where a plane wave incident on the receiving transducer. Suppose 
the particle velocity of the transducer is to be found. The medium and the plane waves can be 
thought as an unknown electrical network of generators and resistance in the black box 
feeding a current(particle velocity U) in to a load(acoustic impedance of the transducer with 
the finite electrical termination, Zin). To find the equivalent circuit, consider the following 
steps and compare with the corresponding steps under the Thevenin theorem. 

Step 1 Disconnect the impedance, Zin, from the rest of the circuit. 
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Step 2 Find the open circuit voltage(force). This is equal to the force on a blocked 
transducer while plane waves incident on it. That is Eth ≡ Fb, the force on the 
blocked transducer which can also be called, logically, as the open circuit force*. 

The open circuit force, Fb = DAP4, where D is the diffraction factor which, in the present case, 
is 2. A detailed proof of this relationship is given in Appendix(A-3). 

Step 3 Remove all the generators. This means that there is no waves incident on the 
transducer now. There is only medium in the black box. Connect a test 
voltage(force) source to the terminal. This is equivalent to make any transducer to 
emit waves in to the same medium. Then the voltage to current ratio, 
voltage/current(force/velocity), at the test voltage(force) source gives the 
Thevenin equivalent impedance and which is, of course, the radiation impedance. 
That is Thevenin impedance Zth ≡ Zr. 

The Thevenin equivalent circuit, then, would be as shown in Fig.(3.2), and from this circuit, 

U

P

A

Z Zin r

( )

( )

ω
ω4

2=
+

. (3.5) 

The second term in Eq(3.4), 
V 

5

U , the velocity to voltage transfer function of the receiving 

transducer while it is terminated with a finite impedance. This transfer function is considered 
here to formulate a general description of the system. But, in Chapter 5 and 6 only the transfer 
function with open circuit condition is considered. 

3.3 SYSTEM TRANSFER FUNCTION  IN  TERMS OF 
SENSITIVITIES. 

The overall transfer function of the system can also be expressed in terms of the sensitivities 
of the transmitting and receiving transducers. Before showing this, it is important to define the 
sensitivities. 

Definition: 

Free-field pressure17 is the pressure due to a sound wave progressing 
freely. 

                                                 
*  Beissner16 uses a same kind of representation for the plane waves incident on a transducer functioning as a 
receiver. In his discussion pb is the open circuit pressure whereas in this thesis Fb is the open circuit force. Fb = A 
pb where A is the area of the transducer. He uses a two port Z parameter in his discussion, and Z22 is the open 
circuit acoustic impedance. In this thesis Zin is the acoustic impedance of the transducer with a finite electrical 
termination. 

Rhyne also uses a same kind of representation for this situation. The sentence "....This condition corresponds to 
an open-circuit loading of the wave and thus...." in page 319 of the article23 is in support for this conclusion. 
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Definition: 

Transmitting voltage sensitivity18, Sv, of a transducer, for a given 
frequency, is defined as the ratio of the free-field pressure generated at a 
reference point to the voltage across the electrical terminal. 

A point at 1m on the axis from the transducer is used as the reference and the pressure is 
calculated according to the far-field model1 in this discussion. 

The transfer function H24(ω) can be written as 

H24(ω) = H23(ω)H34(ω), (3.6) 

where 

 H23(ω) = 
P3(ω)

U2(ω)
 and H34(ω) = 

P4(ω)

P3(ω)
. 

The overall transfer function can then be written as, 

H H H H H H H06 01 12 23 34 45 56( ) ( ) ( ) ( ) ( ) ( ) ( )ω ω ω ω ω ω ω=   (3.7) 

The transfer function, H12(ω)H23(ω), transfers the input voltage, V1, to the far-field pressure at 
1m from the transducer. If v1(t) is chosen to be a sinusoidal voltage with frequency ω0, 
v1(t)=V0exp(jω0t), then the far-field pressure is given by, 

P3(ω) = H12(ω)H23(ω)V0δ(ω-ω0) (3.8) 

where 

V0δ(ω-ω0) is the frequency spectrum of v1(t). 

Taking inverse Fourier transform to Eq.(3.8) and using sifting property of Dirac delta function 
gives, 

p3(t) = H12(ω0)H23(ω0) V0 exp(jω0t) (3.9) 

The pressure at 1m, according to the above equation, is V0H12(ω0)H23(ω0). The source 
sensitivity is then found by dividing the pressure by voltage, V0 , across the electrical 
terminals. That is, 

Sv = H12(ω0)H23(ω0). (3.10) 

Since the choice of ω0 is arbitrary Eq(3.10) can be written as, 

Sv = H12(ω)H23(ω) (3.11) 
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Definition: 

Receiving sensitivity19, M, of a transducer is defined as the ratio of the 
output open circuit voltage to the free-field pressure due to plane 
progressing wave, with the incident angle with the principal axis of the 
transducer being zero, at the centre of the transducer. 

The receiving transducer's output voltage, V5. can be written using Thevenin theorem as, 

( )
outL

L
open ZZ

Z
VV

+
= 55  (3.12) 

where 

 Zout is the output impedance of the receiving transducer and 

 ZL is the impedance due to the rest of the circuit that seen by the receiving transducer. 

Zout is same as the Thevenin equivalent impedance. This can be found as follows. The 
situation where plane waves incident on the transducer can be represented, as shown earlier in 
this section, by a generator and the radiation impedance, Zr, as its internal impedance. The 
transducer can be represented as an electrical network of linear electric components. This 
representation is shown in Fig.(3.5). To find the Thevenin equivalent impedance, all the 
generators in the network, as described in step 3 of the Thevenin theorem stated earlier in this 
section, has to be removed and the impedance of circuit has to be found while the terminals 
are connected to a test voltage source. And this impedance is same as the electrical input 
impedance, Z

E
in, of the transducer while it is operating in the medium used in the application. 

That is,  

Zout ≡ Z
E
in. 

  

Figure 3.5 Representation of plane waves incident on a transducer as an electric circuit. 

Dividing both sides of the Eq.(3.12) by the free-field plane wave pressure, P4, gives, 

V

P

V

P

Z

Z Z
open L

L out

5

4

5

4

=
+

( )
 (3.13) 

H M
Z

Z Z
L

L out
45( )ω =

+
 (3.14) 

Now the Eq.(3.7) can be rewritten as 
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L out
06 1 2 01 34 56( ) ( ) ( ) ( )ω ω ω ω=

+
 (3.15) 

where, 

Sv1 transmitting sensitivity of the transmitting transducer and 

M2 receiving sensitivity of the receiving transducer. 

The relationship in Eq(3.3) is mainly used to calculate the response of the total system. 
However, the time domain calculations also used in the analysis. Therefore, it is necessary to 
describe the system in the time domain. Next section is devoted to describe the system in the 
time domain. 

3.4 TIME  DOMAIN  DESCRIPTION  OF THE  SYSTEM MODEL 

The input, x(t), and the output, y(t), of a linear time invariant system are related through the 
time convolution as follows9. 

y(t) = h(t) ⊗ x(t) (3.16) 

where 

h(t) is the impulse response of the system and ⊗ is the convolution 
operation. 

The time domain relationship in Eq(3.16) and the frequency domain relationship in Eq(3.1) 
are related through the Fourier transform as follows9, 

y(t) = h(t) ⊗ x(t) ⇔ Y(ω) = H(ω) X(ω). (3.17) 

The transfer function H01(ω) in Eq.(3.3) is given by 

V1(ω) = H01(ω)V0(ω).  

Taking the inverse Fourier transform of the above equation gives, 

v1(t) = h01(t) ⊗ v0(t) (3.18a) 

where, h01(t) is the impulse response between nodes 0 and 1 of the Fig.(3.1). Similarly, the 
time domain relationships of the input and output of each block in the Fig(3.1) can be written 
as follows. 

u2(t) = h12(t) ⊗ v1(t) (3.18b) 

p4(t) = h24(t) ⊗ u2(t) (3.18c) 

v5(t) = h45(t) ⊗ p4(t) (3.18d) 
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v6(t) = h56(t) ⊗ v5(t) (3.18e) 

where, hnm(t) are the impulse responses between the nodes n and m. 

The overall response of the system in the time domain can then be written as, 

v6(t) = h01(t) ⊗ h12(t) ⊗ h24(t) ⊗ h45(t) ⊗ h56(t) ⊗ v0(t) (3.19) 

As only the acoustic part of the system is studied in this work, only the impulse responses 
h12(t), h24(t) and h45(t) are presented in this thesis. h12(t) is found in Chapter 5, h24(t) is found in 
Chapter 4 and h45(t) is found, only for the open circuit case, in Chapter 5. 

3.5 DISCUSSION 

In calculating the transfer function H45(ω), it was assumed that P4, in Eq.(3.3),is the pressure 
due to a plane wave. But, this pressure, P4, is calculated using four different mathematical 
models. Therefore it is important to justify that the pressure calculated by all these models are 
of plane wave pressure at the receiver. 

In the plane wave model, a plane wave which propagates without changing its plane wave 
property is considered. Therefore, obviously, at the observation point the pressure wave is a 
plane. In the near-field, point receiver model, the receiver at the observation point has an 
infinitely small dimension. Therefore, even though the wave front is spherical, at the receiver, 
it can be considered as a plane. In the far-field model, the wave fronts are spheres with large 
radii. For receivers with small dimensions the wave fronts can be treated as planes. And for 
the near-field, finite receiver model, the pressure at the receiver is averaged over the surface 
of the receiver. Since the amplitude and the phase of the average pressure at every point over 
the receiver surface is equal, the average pressure can be considered7 as the pressure due to a 
plane wave. 

In the calculation of the open circuit force in Appendix(A-3), it is assumed that the receiving 
transducer is mounted on an infinite baffle. This is not true at all in practice. But, however, for 
frequencies where the dimension of the transducer is very much larger compare to the wave 
length of incident wave, the diffraction factor, for normal incidence, can be taken as 2. For 
smaller transducers the diffraction factor becomes smaller and reaches 1 for an ideal point 
receiver. 

In the propagation models absorption has not been taken into consideration. Therefore, in a 
situation where the simulated sensitivity results are to be compared with the measurements, 
one has to correct the measurements for absorption. 

One can measure the sensitivities of a transducer independently. The sensitivities 
characterises the behaviour of the transducer. As it has been recognised the sensitivities of the 
transmitting and receiving transducers as transfer functions in the system model, the output 
signal can be explained, qualitatively, in terms of the changes in transducers, for example 
with temperature. The description of the system model with the sensitivities contains both 
magnitude and the phase of the sensitivities. If the measurement lacks the phase information, 
a complete comparison of the simulated and experimental results would not be possible. 
However, with the magnitude of the sensitivities as a function of frequency, the magnitude of 
the output signal could be compared15 with the simulated. 
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CHAPTER 4 

EFFECT OF DIFFRACTION ON PULSE 
FORMING 

4.1 INTRODUCTION 

The diffracted field from a planar sound source is a century-old problem in acoustics. Lord 
Rayleigh5 addressed the problem in his famous book "The Theory of Sound" in 1878. But, it 
gained more attention after 1940s. Numerous researches have been performed both 
theoretically and experimentally in this area in connection with ultrasound imaging and 
measurement of material properties, especially the measurement of attenuation of sound in 
materials. An overview on the works done in this field and a spectrum of references are given 
by Harris38. 

The pressure due to a circular radiator, averaged over a coaxial circular surface of equal 
radius in front of the source, is of interest. The transit time flow meters, calibration of 
transducers by self reciprocity method, absorption spectrometers etc. use a configuration 
where circular transducers of equal dimensions, placed coaxially, are used as transmitter and 
receiver or, equivalently, one transducer is used as transmitter and receiver with a reflector. 
These systems measure the average pressure. Williams6 calculated the average velocity 
potential, for such a configuration as described above, for a sinusoidal excitation based on 
King's22 expression, while Rhyne23 calculated the average velocity potential for an impulse 
excitation based on Stepanishen's24 impulse response results. In this dissertation, Rhyne's 
impulse response result(corresponding pressure) is found from the Williams' frequency 
response result(corresponding pressure). The results are essentially the same however, for the 
fact that both have the same origin; Stepanishen results and King's expression can be 
derived45,10 from Rayleigh's integral. 

Transit-time flow meter, which is under investigation in this work, uses two transducers of 
equal dimensions, placed on their common axis, as transmitter and receiver. As pointed out in 
Sec.(2.3), if the effect of diffraction is not considered, the accuracy of the transit-time meters 
may be reduced at high precision measurements. This chapter is devoted to study the effects 
of diffraction on the form of the pulse as it propagates between the transducers. The space 
between the planes passing through the transducer faces, also denoted as the "medium" block 
in Fig.(3.1), is considered as a linear, time invariant filter and the effects of diffraction is 
studied as the response of the filter both in frequency and time domains. Although the aim of 
the work is more concerned about the configuration of transducers described above, in order 
to explain and compare the pulse forms, some other special cases are also considered. The 
above mentioned filter is, therefore, described, by four different mathematical transfer 
functions based on piston type of model and the responses are compared and discussed. 
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4.2 THEORY 

In this section, as proposed in Sec.(3.2), the transfer function that relates the particle velocity 
at transmitting transducer and free field pressure at the centre of the receiving transducer are 
found for all four models. The theory of the models to be discussed in this chapter is well 
established and can be found in the literature. However, for clarity, using the theories found in 
Ref.(45) and Ref.(1), the desired results are obtained. In the beginning of this section a 
general expression for the velocity to free field pressure transfer function is found. Using this 
general expression, the transfer functions for the three propagation models, namely the plane 
wave model, the near-field, point receiver model and the far-field model, and the 
corresponding impulse responses are found. Finally, the velocity to average pressure transfer 
function for the near-field, finite receiver model and the corresponding impulse response are 
found. 

4.2.1 A GENERAL  EXPRESSION FOR TRANSFER FUNCTION 

The Fig.(4.1) shows the geometry of the configuration, which is to be described shortly, in the 
usual spherical polar co-ordinate system. Consider a circular sound source of radius, a, 
mounted on a rigid infinite baffle(not shown) that lies on the xy plane with its centre coincide 
with the co-ordinate origin. The co-ordinates with the suffix, 0, distinguish the points on the 
sound source from the points in the field and hence θ0 = π/2. The space defined by z > 0 is 
filled with an isotropic, homogeneous and non viscous medium. The source vibrates with a 
velocity, u(r0,ϕ0,t) in the z direction. 

 
Figure(4.1) A circular piston source lies on the xy plane whose centre lies on the co-ordinate origin, O. The 

observation point, P, lies at (r,θ,ϕ) in the spherical co-ordinate system. ds is en elemental area on 
the source with co-ordinates (r0,θ0,ϕ0) where θ0 = π/2. 

The time dependent velocity potential, φ(r,t), at a point, P, and at time, t, is given by the well-
known Rayleigh's integral5, 
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where ds is an infinitesimal elemental area on the source, R is the distance of the observation 
point from the infinitesimal elemental area, ds, r is the distance of the observation point from 

the origin, O, s is the surface of the source and n is the unit normal to s. 
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 is the normal 

particle velocity at the source. 

The following expressions1 for particle velocity, u, and pressure, p, are used in this 
dissertation. 

u r t r t( , ) ( , )= −∇φ  (4.2) 

and 
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where ρ0  is the density of the medium. 

At the source region, 
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If u(r0,ϕ0,t) = ejωt, the Eq.(4.1) can be written as, 
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Then the frequency domain expressions for the velocity potential, φ(r,t), for an arbitrary 
velocity function, u(r0,ϕ0,t), assuming the system to be linear, can be written9 as, 
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π
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where, U(r0,ϕ0,ω) is the Fourier transform of u(r0,ϕ0,t), k = ω/c and c is the thermodynamic 
speed of sound in the medium, 

The frequency domain expression of the pressure, using Eq.(4.3), can be written as, 

P r j r( , ) ( , )ω ωρ ω= 0Φ  (4.7) 

The formula given in Eq.(3.2) is used for Fourier transformation. 

Now, assume the velocity is uniform over the surface of the source. Then, U(r0,ϕ0,ω) can be 
written as U(ω) and the Eq.(4.6) becomes, 
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or 

Φ(ω) = U(ω)G(r,ω) (4.9) 

where 
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The expression for pressure will then be, 

P(r,ω) = jωρ0U(ω)G(r,ω) (4.11) 

or 

P(r,ω) = U(ω)H(r,ω) (4.12) 

where 

H(r,ω) = jωρ0G(r,ω) (4.13) 

For linear time invariant systems the ratio of the output to input spectrum gives9 the transfer 
function. Therefore, H(r,ω) is the general expression for the velocity to pressure transfer 
function. By taking the inverse Fourier transform of the Eq.(4.12), in principle, one can find 
the pressure, p(r,t), at the observation point, P, for a given velocity, u(t). Some special cases 
of interest which constitute the three propagation models mentioned earlier in this chapter are 
described and their transfer functions and their impulse responses are presented in the coming 
sections. The function G(r,ω), as it is being a part of the transfer function and depends only on 
the spatial co-ordinates, is called the spatial transfer function of the system. 

4.2.1.1 PLANE WAVE  MODEL 

This section describes a very simple and often used model. In Sec.(2.3), it is said that the 
transmitted signal does not propagate like a plane wave in the medium due to diffraction. In 
order to demonstrate the deviation and to calculate the corrections, this model is used as a 
reference model in this work. A transfer function is developed for this model in this section 
which can be used to simulate plane pressure waves at the observation point for a given 
velocity function. 

 

TRANSFER FUNCTION 

Consider an infinite rigid plane(not shown) lies on the xy plane of a spherical polar co- 
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ordinate system as shown in Fig.(4.2). The plane vibrates back and forth with a uniform 
velocity, u(t), in the z direction. Denote the velocity to pressure transfer function for this 
model, as Hp(r,ω). The corresponding spatial transfer function, denoted as Gp(r,ω), has to be 
calculated first to calculate Hp(r,ω). 

If the elemental area ds in the expression for Gp(r,ω) is chosen as follows, the integration can 
be calculated easily. Now, consider the Fig.(4.2). O' is the projection of the observation point, 
P, on the xy plane. A reference axis, x', is drawn, parallel to x-axis, from O'. The radial 
distance of an arbitrary point on the xy-plane from O' is r' and the angle, measured anti clock 
wise, between the line connecting the arbitrary point and O' and x'-axis is ϕ'. The shaded 
portion in the Fig.(4.2) is the chosen elemental area, denoted as ds', and can be written as, 

ds' = r'dr'dϕ'. (4.14) 

Then Eq.(4.10) takes the form for this case as  
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Figure(4.2) An infinite plane lies on the xy plane. Observation point, P, lies at (r,θ,ϕ) in spherical co-ordinate 

system. Projection from the point P to the xy plane is O'. R is the distance between the observation 
point and the elemental area, ds'. 

Let the distance of the observation point, P, from the xy plane be z(= rcosθ) 
 
Since 

R z r= + ′2 2  (4.16) 
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where a', a very large number, is the upper limit for the integration variable r'. The integrand 
in the above integration21 can be written as an exact differential, 
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and then further can be written as, 
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Then, Hp(r,ω), using Eq.(4.13), can be written as, 
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The pressure at point, P, p(r,t), for a velocity function, u(t), can be found by multiplying Hp(r,
ω) with the spectrum of u(t), U(ω), and taking inverse Fourier transform.  
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This equation consists two wave components; one placed at z/c on the time axis and the other 
at (z2+a'2)½/c. By letting a' tend to infinity, the contribution of the second term, for 
applications with time limited signals, can be made negligible. The resulting wave would be a 
plane wave. This corresponds to dropping the second term in Eq.(4.20). Hence, the plane 
wave transfer function can be written as, 

Hp(r,ω) = ρ0c e-jkz (4.22) 

Since this transfer function depend only on the distance of the observation point from the xy 
plane and not on the distance from the origin of the co-ordinate system the transfer function 
can simply be written as, 

Hp(z,ω) = ρ0c e-jkz, (4.23) 

and called as plane wave transfer function. This is the first of the four transfer functions 
represent H24(ω) mentioned in Chapter 3. 

IMPULSE RESPONSE 

The velocity to pressure impulse response is the inverse Fourier transform of the velocity to 
pressure transfer function in Eq.(4.23) and is given by, 
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hp(z,t) = ρ0c δ(t-z/c) (4.24) 

where δ is the Dirac delta function. The formula given in Eq.(3.2) is used to calculate the 
inverse Fourier transform. 

4.2.1.2 NEAR-FIELD, POINT  RECEIVER  MODEL 

The Fig(4.3) shows the sketch of a circular sound source of radius, a, placed in the xy plane, 
whose centre coincides with the origin of the co-ordinate system. An infinitesimal point 
receiver is placed on the axis of the source. The expression for pressure for this model, as will 
be shown, turns out to be very simple and compact. The forming of pulses can be explained 
easily and may be considered as base to understand the pulse forming in the models explained 
in later sections. 

 

Figure(4.3) A circular plane sound source lies on the xy plane being its centre coincide with the origin of the 
co-ordinate system. An infinitesimal point receiver is placed on the axis of sound source. R is the 
distance between the observation point and the elemental area, ds. 

TRANSFER FUNCTION 

 The spatial transfer function for this arrangement, Gn(r,ω), is readily found using Eq.(4.10). 
The points on the piston are denoted with a subscript, 0. From the geometry, 

ds = r0dr0dϕ0 (4.25) 

Since the observation point always lies on the axis, r is simply replaced by the axial distance 
z, r ≡ z. 

Since 

R z r= +2
0
2  (4.26) 
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The above integration is similar to that in the Eq.(4.17), and can be written as, 
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Then the velocity to pressure transfer function, Hn(z,ω), using Eq.(4.13), can be written as, 
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and called as near-field point receiver transfer function. This is the second of the four transfer 
functions represent H24(ω) mentioned in Chapter 3. 

IMPULSE RESPONSE 

Taking inverse Fourier transform for the Eq.(4.25), gives the impulse response of this model 
as, 
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or 

hn(z,t) = ρ0c[δ(t - tz) - δ(t - tza)] (4.30b) 

where δ(.) is the Dirac delta function, tz = 
z
c, t

z a

cza = +2 2

 and hn(z,t) is the velocity to 

pressure impulse response for this model. The meanings of the above times will be explained 
under the discussion of impulse responses in Sec.(4.2.3). 

4.2.1.3 FAR-FIELD MODEL 

This is an often used model for the situations where the measurements are made at distances 
very much larger compared to the dimension of the source. The Fig(4.4) shows the geometry 
of a circular sound source of radius, a, being placed on the xy plane, with its centre coincide 
with the origin of the co-ordinate system. An observation point, P, is at (r,θ,ϕ), in the 
spherical polar co-ordinate system. 
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TRANSFER FUNCTION 

The spatial transfer function, Gf(ω), for this model is found, as for the previous models, using 
Eq.(4.10), as, 
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For observation points lies at large distance compare to the dimension of the source, the 
following approximations25 can be made. 

 
Figure(4.4) A circular sound source is placed in the xy plane being its centre coincide with the origin of the 

co-ordinate system. Observation point, P, is at (r,θ,ϕ), in the spherical polar co-ordinate system. R 
is the distance between the observation point and the shaded elemental area on the sound source. 

1 1

R r
≈  (4.32) 

and 

R ≈ r-r0 cosϕ0 sinθ (4.33) 

This approximation implies that the equidistant points on the source from the observation 
point are on straight lines instead of an arc length. Stepanishen has mentioned about this 
approximation in (page 1632 of Ref.(24)). 
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The Eq.(4.34b) can be found elsewhere47. The velocity to pressure transfer function, Hf(r,ω), 
will then be, 
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For an observation point on the axis, θ = 0, 
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The above expression for Hfa(r,ω) is the velocity to pressure transfer function for observation 
points on the axis in the far-field. As only the on axis response is considered in this 
discussion, the above transfer function will be denoted hereafter in this text simply as, 

H z j e
a

z
f

jkz( , )ω ρ ω= −
0

2

2
 (4.37) 

and called as far-field transfer function, where z is the axial distance from the centre of the 
source. This is the third of the four transfer functions represent H24(ω) mentioned in Chapter 
3. 

IMPULSE RESPONSE 

The impulse response, as in the previous cases, is found by taking the inverse Fourier 
transform of the far-field transfer function, Hf(z,ω) in (4.37),as, 
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where 

δ′ is the time derivative of the Dirac delta function 

 

4.2.2 NEAR-FIELD, FINITE  RECEIVER  MODEL 

In the previous models the receiving probes were treated as of point dimension. In this model 
the receiving probe is an imaginary coaxial circular surface of same dimension as the source 
in front it. 
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TRANSFER FUNCTION 

The average velocity potential on such a circular surface as mentioned above, for a continuous 
sinusoidal velocity of the source, was found by Williams6 as, 
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where k = 
ω
c. Later this expression was used by Khimunin7 to find the diffraction correction 

for the same system. 

The average pressure corresponds to the average velocity potential in Eq.(4.39), using the 
Eq.(4.3) is given by, 
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or 

〈p(z,t)〉 = U 
0
ejωt H(z,ω) (4.40b) 

where 
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Assuming the system to be linear, as done in Sec.(4.2.1), the expression for pressure, 〈p(z,t)〉, 
in Eq.(4.40b) can be extended to a more general velocity function, u(t). Calling H(z,ω) the 
near-field finite receiver transfer function and denoting as Hnf(z,ω), the expression for the 
average pressure will be, 

〈P(z,ω)〉 = U(ω) Hnf(z,ω), (4.41a) 

where 〈P(z,ω)〉 and U(ω) are the Fourier transforms of 〈p(z,t)〉 and u(t) respectively and 
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This is the forth of the four transfer functions represent H24(ω) mentioned in Chapter 3. 
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IMPULSE RESPONSE 

The velocity to average pressure impulse response for this model is given by Eq.(4.42a) or 
Eq(4.42b). The impulse response of the same type of model was first found by Rhyne23, by 
pure time domain consideration, from Stepanishen's24 impulse response results for point 
receiver model. In this work the impulse response is found by taking the inverse Fourier 
transform of the velocity to average pressure transfer function, Hnf(z,ω), in Eq.(4.41b). A 
detailed derivation of the impulse response from the transfer function is given in Appendix(A-
1). 
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The times tz and t4az can be considered just as abbreviations for the moment and the meanings 
of these times will be cleared under the discussion of impulse responses in the next section. 
The results given in Eq.(4.42b), differs from that of Rhyne's by the factor of ρ0c as he 
calculated the force to force impulse response. This can be explained as follows. Since hnf(z,t) 
in Eq.(4.42b) is the velocity to average pressure impulse response, πa2hnf(z,t) is the velocity to 
force impulse response, where, πa2 is the area of the receiver. Since46 the force to velocity 
ratio at the transmitter is the impedance Z = πa2ρ0c, dividing the velocity to force impulse 
response by Z gives the force to force impulse response as hnf(z,t)/ρ0c. 

4.2.3 DISCUSSION 

In the previous section, the transfer function and the impulse responses of the different 
models were calculated. In this section, transfer functions and the impulse responses are 
represented graphically and the behaviours of the functions are discussed. 
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TRANSFER FUNCTIONS 

Figure(4.5) (a), (b) and (c) show the graphical representation of Hn(z,ω), Hf(z,ω) and Hnf(z,ω) 
respectively. The magnitude and the phase, for example, of the near-field transfer function are 
presented as 20logHn(z,ω)/Hp(z,ω) and ∠(Hn(z,ω)/Hp(z,ω)) respectively. Similar quantities 
are presented for other two transfer function too. All three plots are calculated for the same 
parameters; a = 4.5mm, z = 0.1m and c = 344.35m/s. A similar plot for the plane wave 
transfer function would be just straight lines though 0dB for magnitude and 0o for phase. 

The near-field, point receiver transfer function has strong oscillation with increasing 
frequency. This can easily be explained by simplifying the expression of its transfer function 
further as follows. Consider the near-field, point receiver transfer function in Eq.(4.29) 

Using Euler's relation 

e kx j kxjkx = +cos sin  (4.43) 

the Eq.(4.29) can be written as, 
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The sine term in the above expression explains the oscillating behaviour of the magnitude of 
the transfer function shown in Fig.(4.5)(a). The amplitude response takes minimum and 
maximum values for frequencies equal to the even and odd harmonics of 1/(2[tza-tz]) 
respectively. For the particular choice of parameters of the plot in Fig.(4.5)(a) maxima and 
minima occur at odd and even multiples of 1701.35kHz. respectively. The minima are exactly 
zero. 

The phase of the transfer function can be written as, 

z
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and the phase relative to the plane wave, also shown in Fig.(4.5)(a) ,then will be, 
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 (4.46) 

The above expression shows that the phase relative to plane wave decreases with increasing 
frequency. But, it changes from -900 to +900 at frequencies equal to the even multiples of 
1/(2[tza-tz]), as shown in Fig.(4.5)(a), because of the sine term in the expression for Hn(z,ω). 

The magnitude of the far-field transfer function, shown in Fig(4.5)(b), is zero at zero 
frequency, which can be seen from its expression in Eq.(4.37), and increases monotonically 
with frequency. The phase is (π/2 - ωtz). This shows that the phase of all frequency 
components of the input signal is advanced by π/2 relative to plane wave. 

The magnitude of the near-field finite receiver transfer function, shown in Fig(4.5)(c), 
increases with frequency and reaches a limit at high frequencies. And it is zero at zero 
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frequency which can easily be shown by putting ω = 0 in its expression in Eq.(4.41b). The 
phase of the transfer function relative to that of the plane wave decreases with frequency from 
90 degrees and approaches zero at high frequencies. 
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Figure(4.5) Transfer function. (a) near-field, point receiver, (b) far-field, (c) near-field finite receiver. 
Magnitude is normalised to the plane wave magnitude and phase is calculated relative to the plane 
wave phase. Calculations are made for z = 0.1m, a = 4.5mm, and c = 344.35m/s. 

Change in the axial distance will not change the basic shape, except the amplitude, of the 
pressure wave according to the far-field model. 

This can be easily shown considering two different axial distances as follows. If z1 and z2 are 
two axial distances, then, 

H z j e
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or 
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Since the term responsible for the time delay, (z1 -z2), of the signal in the above transfer 
function is independent of frequency, there is no phase distortion in the signal. And since the 
magnitude of the transfer function is also independent of frequency, the change in axial 
distance will not give any change to the basic shape of the signal. The term z1/z2 gives only an 
amplitude reduction, if z2>z1, to the signal. 

IMPULSE RESPONSES 

Fig.(4.6) (a), (b), (c) and (d) show the graphical representation of the impulse responses hp(z,t) 
in Eq.(4.24), hn(z,t) in Eq.(4.30b), hf(z,t) in Eq.(4.38) and hnf(z,t) in Eq.(4.42) respectively. 
The magnitude axis of the plots are normalised with ρ0c. Therefore the weights of the Dirac 
delta functions are 1. With the same normalisation, the weight of the time derivative of the 

Dirac delta function, δ'(⋅), of the far-field model is 
a2

2cz. Time axis of the plots are presented as 

(t - tz) where tz = z/c. That is, the arrival time of the plane wave is made the time origin of the 
plots. 

There are two delta functions in Fig.(4.6)(b). It is evident from the time of arrival, in 
Eq.(4.30b), that the first delta function is due to the direct plane wave and the second is due to 
the wave from the edge of the piston. This facts has been discussed also by some other 
authors24,26. According to Huygens principle, every point on the piston vibrator acts like an 
independent sound source. When the piston face is vibrating with an impulse velocity, 
disturbance from different point on the piston reach the receiver at different times. Obviously, 
the first arrival, tz(= z/c), corresponds to the centre of the piston, the nearest point to the 

receiver, and the last arrival, tza( )caz 22 +=  corresponds to the points on the circumference 
of the piston, the farthest points to the receiver. After the time tza and before tz, there is no 
response. The duration of the impulse response is, therefore, (tza-tz). 
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It can be seen from the expressions for tza and tz that tza > tz. And, as z increases the difference 
between tza and tz becomes small and the delta functions in Fig.(4.6)(b) become close to each 
other. At large distances compared to the radius of the source, the impulse response 
approaches the far-field impulse response in Fig.(4.6)(c). 
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Figure(4.6) Impulse response. (a) Plane wave model, (b) Near-field point receiver model, (c) Far-field model 
and (d) Near-field finite receiver model. Magnitudes are normalised to the magnitude of the plane 
wave impulse response. The Dirac delta functions are indicated by arrows and the time derivative 
of the Dirac delta function is indicated by two opposite arrows. All the simulations are made for 
the following parameters; a = 4.5mm, z = .1m and c = 344.35m/s 
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The impulse response of the far-field model is the derivative of delta function. Therefore, the 
far-field model is a differentiating filter. The derivative of delta function is represented40 by a 
pair of delta functions as in Fig.(4.6)(c). The impulse response of an ideal high pass filter can 
be represented9 with a positive delta function and a negative sinc function. The width of the 
sinc function is 1/f0, where f0 is the lower cut-off frequency of the ideal high pass filter. When 
the lower cut-off frequency of the filter increases, the width of the sinc function becomes 
narrower and approaches to a delta function, at high frequencies. This situation is comparable 
to the far-field model. But, the frequency response of the far-field model is zero at zero 
frequency. However, the impulse response reveals that the far-field model is a high pass filter. 
Rhyne23 puts forward a similar argument to say that the near-field finite receiver model is also 
a high pass filter, as it contain a delta function and a negative singularity function which goes 
to zero with time, in its impulse response. 

Fig.(4.6)(d) shows the impulse response of the near-field finite receiver model. With reasons 
similar to those given under the near-field point receiver case, the first arrival, tz, corresponds 
to the communication between the points on the receiver and the points immediately in front 

of them on the piston source. The last arrival, t4az( )cza 224 += , corresponds to the 
communication between the points on the circumference of the receiver and the points on the 
farthest edge on the piston source. There is no response before tz and after t4az. The duration of 
the impulse response is, then, (t4az - tz). 
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Fig(4.7) shows the impulse response of the near-field finite receiver model for three different 
values of z.By taking tz as time origin of the plot, all the impulse responses are made to start at 
the same place. All the impulse responses have delta functions at t = tz. But, these delta 
functions are omitted here in the plot for simplicity. It is evident from the figure and from the 
expression for (t4az - tz) that, as z increases the duration of the impulse response become 
shorter and approaches the far-field impulse response. 
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Figure(4.7) Impulse response, hnf(z,t), for three different distances, 0.05 m, 0.1 m and 0.2 m. In all cases a = 
4.5 mm, c = 347m/s. The delta functions of all plots are omitted for simplicity. 
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4.3 CALCULATIONS 

In the previous sections velocity to pressure transfer functions of the four models and their 
corresponding impulse responses were found and their behaviours were discussed. In this 
section using the impulse responses and the transfer functions the pressure will be calculated. 
This pressure is same as the free field pressure, denoted as p4, in the system model in 
Chapter3. A sinusoidal burst with three cycles and a sinusoidal continuous wave are used as 
the velocity signals for illustration. And the pressure wave form for the sinusoidal bursts are 
discussed. But, the velocity signal will not be a sinusoidal burst in a system like that 
addressed in Chapter 3. However, similar pressure signals, as mentioned above, for a more 
realistic velocity input are presented in Chapter 6.  

The pressure wave forms, for each model, are calculated by convolving the velocity wave 
form with the respective impulse responses of the propagation models. Calculation of the 
pressure signal for the first three models, for this particular velocity wave, is quiet easy. But 
for the near-field, finite receiver model the problem has not been solved so far analytically. 
Therefore the calculation of the convolution integral is done numerically. The procedure for 
the calculation is given in Appendix(A-2). The program code is given in Appendix(B-1). 

The following signals are used as input signals in the calculations. 

1. Continuous wave : uC(t) = U0 sinω0t, 

2. Pulsed sine wave : u(t) = U0[U(t) - U(t-T′)]sin ω0t , where U is the unit step function, T′= 
3T and T is the period of the input signal. The following abbreviations, 
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the meanings of which has already been discussed in the previous section, will be used. 

4.3.1 PLANE WAVE  MODEL 

The pressure pulse due to this model is well-known and can be found in any text book on 
waves. However, in order to make the discussion easier, the pressure pulses are presented 
here and their characteristics are discussed. The results will be used in the coming sections. 
The pressure, pp(t), at a distance, z, from the source can be calculated as follows, 

pp(z,t) = u(t) ⊗ hp(z,t) (4.54) 

where u(t) is the velocity function given in the beginning of this section and hp(z,t) is the 
plane wave impulse response found in Eq.(4.24). 
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Figure(4.8) The wave forms of particle velocity and normalised pressure for the plane wave model. The time 
axis of all figures are normalised to the period of the input signal. The arrival time of the pulse is 
made the time origin. (a) Particle velocity of the face of the transducer (b) Pressure wave at the 
piston face (c) pressure wave at an observation point. 
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using sifting property41 of the Dirac delta function, the above expression can be written as, 

pp(z,t) = ρ0cU0[U(t-tz) - U(t-T′-tz)]sin ω0(t-tz) (4.56) 

The particle velocity at the piston face, the pressure at the piston face and the pressure at an 
arbitrary observation point are shown in Fig.(4.8). The time axis of the plots are normalised to 
the period of the velocity signal. By subtracting the arrival time of the pulse from the absolute 
time, the arrival time is made as the time origin of the plot in Fig.(4.8)(c). It is clear from the 
expression for pressure, pp(z,t) and from Fig.(4.8)(b)&(c), that the pressure wave is only 
shifted in time and has not changed its form due to propagation. This simple wave is used as a 
reference to compare the wave forms predicted by the other models in the coming sections. It 
can be seen from Fig.(4.8)(c) that the zeros of the signal coincides with the period and half 
period #s of the time axis. This fact is used in the coming sections. For example, it may not be 
possible to accommodate the plane wave and the pressure wave due to the other models in 
one plot, because of the large difference in the relative size of the two waves, but, still the 
period and half period #s of the time axis denote the plane wave zero crossings. This is not 
true for an input signal other than a sinusoidal burst, but, still one can have a plane wave. 

4.3.2 NEAR-FIELD,  POINT  RECEIVER  MODEL 

CONTINUOUS WAVE  

Pressure at a distance, z, for a continuous excitation, uC(t) is found as, 

pnC(z,t) = uC(t) ⊗ hn(z,t) (4.57) 

where hn(z,t) is the impulse response of this model found in Eq.(430b). 

( ) ( )[ ]∫
∝

∝−

τ−τδ−−τδρτ−ω= dttc)t(sinU)t,z(p zaz000nC  (4.58) 

Using sifting property of the Dirac delta function, the above expression can be written as, 

pnC(z,t) = ρ0cU0 ( sin ω0(t-tz)-sin ω0(t-tza)) (4.59) 
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PULSED SINE WAVE 

For the sinusoidal burst, u(t), the pressure at a distance, z, from the source is given by, 

pn(z,t) = u(t) ⊗ hn(z,t) (4.61) 
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Using sifting property of the Dirac delta function, the integration is simplified as follows. 

pn(z,t) = ρ0cU0[ U(t-tz) - U(t-tz-T′)] sin ω0(t-tz) (4.63) 

-[U(t-tza)-U(t-tza-T′)] sin ω0(t-tza) 

The pressure, pn(z,t), is the resultant of two sinusoidal bursts. The first one is the direct plane 
wave, and the other is the negative of its replica arrived with the delay, tza. The resultant can 

be written, if T′ > (tza - tz), as, 
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In the above expression, one can notice that the second and the fourth terms last for the same 
time duration, (tza-tz), and this time is equal to the time duration of the impulse response, 
discussed under the subheading, "impulse responses", in Sec.(4.2.3). And the middle term can 
be recognised as a continuous wave expression. That is, the expression is the same as that of 
the pressure for continuous velocity signal, uC(t), found in Eq.(4.60). As shown in Fig.(4.9), 
the signal passes a transient region and reaches steady state and then again through a transient 
region decays to zero. 

If T ′< (tza - tz) then, 
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Since the time interval between the start of the two signals are longer than the duration of the  

signals or in other words the duration of the impulse response is longer than the duration of 
the input signal, they do not interfere with each other and remain separated.  

Since the impulse response, hn(z,t) = 0, for t < tz, by inspecting the convolution integral9, one 
can say that the signal starts at t = tz. 
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Figure(4.9) Axial response of near-field point receiver model for the case T' > tza - tz. Transient regions of the 
pulse are indicated by dotted lines parallel to the amplitude axis. The amplitudes are normalised to 
the plane wave amplitude. The time axis is normalised to the period of the velocity signal. The 
simulation was made for the following parameters; z = 55mm, a = 6.5mm, f = 200kHz and c = 
344.35m/s. 

The pressure pn(z,t) found in Eq.(4.64) can be written in a different form as, 
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 (4.66) 

Consider the third term of the expression, in Eq.(4.66). As pointed out earlier, this is the 
continuous part of the signal. With this expression, some important and, of course, known 
results, for continuous excitation, can be deduced. Let, 

Θ = 






 −
20

zza ttω . (4.67) 

In the following discussion the observation point moves towards the source from infinity. At 
infinity, with Eq.(4.51), Θ ≈ 0. Then from the expression in Eq.(4.66), since ω0(t - tz) is the 
phase of the plane wave, the continuous part of the signal leads the plane wave by π/2. As the 
observation point moves towards the source Θ increases. If Θ can be written as Nπ/2, where 
N = 1,2...,then for odd values of N the continuous part of the signal is in phase with the plane 
wave and the amplitude is double that of the plane wave and for even values of N the 
continuous part of the signal becomes zero. For example, for N = 1, substituting Θ = π/2 in 
Eq.(4.66) gives the continuous part of pn(z,t) = 2ρ0cU0sin(ω0(t-tz), and for N = 2, substituting 
Θ = π in the Eq.(4.66) makes the continuous part of pn(z,t) zero and so on. This is a well- 
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known result1. That is, as the observation point moves towards the source on the axis from an 
infinite distance the pressure, for a continuous excitation of the piston, reaches its maximum 
at Θ = π/2 and then alternates its value between 2ρ0cU0 and zero. And also the pressure waves 
lags the plane wave when the observation point moves from a pressure maximum to a 
pressure minimum and leads when the observation point moves from a pressure minimum to a 
pressure maximum. Consider, for example, the observation point, as it moves towards the 
source, at which the pressure lies between the first maximum and first minimum. Substituting 
for Θ, which is π/2 < Θ < π, in the continuous part of pn(z,t) gives, 

( )ϕωωρ −−






 −
)(sin

2
sin2 0000 z

zza tt
tt

cU , (4.68) 

where 

ϕ = Θ - 
π
2 (4.70) 

This shows that the continuous part of the wave lags the plane wave. Similarly, for the 
placement of the observation point between the first minimum and the second maximum, it 
can be shown that the pressure wave leads the plane wave as follows. Since π < Θ < 3π/2 for 
this case, substituting Θ = (π+α), where α < π/2, in the expression for the continuous part of 
pn(z,t) gives, 

2ρ0cU0 sin(π+α) sin[ω0(t-tz) + π/2-(π+α)] (4.71) 

and this can be written as, 

2ρ0cU0 sinα sin[ω0(t-tz) + (π/2-α)] (4.72) 

This shows that the continuous part of the signal leads the plane wave. 

The phase of the continuous part of the pressure wave relative to the plane wave,(π/2-Θ), is 
also found earlier from the transfer function in Eq.(4.44). This can be expressed in terms of 
the parameters, known as seki parameters, S and ka, where S = z/(a²/λ), k = 2π/λ and λ is the 
wave length of the input signal. Substituting for tza and tz in Eq(4.67) from Eq.(4.53) and with 
some manipulations one can easily show the above mentioned phase relationship is given by 
the following formula, 
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The amplitude of the signal relative to the plane wave can easily be found simply by dividing 
the amplitude by the plane wave amplitude, ρ0cU0. And this relative amplitude, 2sinΘ, can be 
written in terms of S and (ka) as, 
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These are the plane wave diffraction correction factors for phase and amplitude, when a 
measurement is made on the axis of a piston type sound source, with a receiver which can be 
considered as a point. 

4.3.3 FAR-FIELD MODEL 

CONTINUOUS WAVE  

The pressure at a distance, z, from the source for the continuous excitation, uC(t) is ,as in the 
previous cases, given by, 

pfC(z,t) = uC(t) ⊗ hf(z,t)  (4.75) 
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∞−
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a
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where 

δ′ is the time derivative of the Dirac delta function. 

using sifting property of the Dirac delta function, 
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z
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2

 (4.77) 

PULSED SINE WAVE  

The pressure at a distance, z, from the source for u(t) as the input is given by, 

pf(z,t) = u(t) ⊗ hf(z,t)  (4.78) 
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using sifting property of the Dirac delta function, gives,  
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This equation can also be written as, 
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The above expression shows that the pressure, pf(z,t), has π/2 phase lead over the plane wave. 
Fig(4.10) shows the plot of the amplitude normalised version of the Eq.(4.80) and the plane 
wave. Since hf(z,t) = 0 for t < tz, the signal starts at t = tz. And, since the impulse response is 
momentary, there is no transient region in the signal. The signal reaches its steady state 
immediately after it started and after 3 periods suddenly decays to zero. As a consequence, the 
length of the output pressure wave is equal to the input velocity wave. 
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Figure(4.10) Axial response of the far-field model. The amplitude is normalised to the amplitude of the plane 
wave. The time axis is normalised to the period of the velocity signal. The simulation is made for 
the following parameters. z = .1m, a = 4.5mm, f = 215kHz c = 344.35m/s. 

The amplitude of the pressure relative to the plane can easily be found by dividing the 
magnitude of pf(z,t) by the plane wave amplitude, ρ0cU0. And this relative amplitude can be 
written simply as π/S, where S = a2/λ.  

4.3.4 NEAR-FIELD, FINITE  RECEIVER  MODEL  

CONTINUOUS WAVE   

In this model, as described in sec.(4.2.2), the pressure is averaged over an imaginary circular 
area, coaxially placed on the axis of the source. But, though it is an average pressure, in the 
following discussion, it is simply called as pressure and denoted for a continuous excitation as 
pnfC(z,t) and for a burst as pnf(z,t). 

The pressure, pnfC ,at a distance, z, from the source for a continuous excitation, uC(t), is given 
by, 

pnfC(z,t) = uC(t) ⊗ hnf(z,t) (4.82) 

 = uC(t) ⊗ (h1nf(z,t) +h2nf(z,t)) (4.83) 
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where 

h1nf(z,t) = ρ0cδ(t-tz), (4.84) 
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ττ+ττ−ω= ∫
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d)),z(h),z(h()t(sinU)t,z(p nf2nf100nfC  (4.86) 

using the sifting property of Dirac delta function and since h2nf(z,t) has values only between tz 
and t4za, the above integration can be written as, 
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PULSED SINE WAVE  

The pressure at a distance, z, from the source for u(t) as an input is, 

pnf(z,t) = u(t) ⊗ hnf(z,t)  (4.88) 
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Using sifting property of the Dirac delta function, Eq.(4.89) can be written as, 
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For an input signal with length, T′ > (t4za-tz), the above expression can be written, 
remembering h2nf(z,t) has values only between tz and t4za, as, 
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The third term in the above expression is same as that of the pressure output for a continuous 
input velocity, uC(t). Second and fourth terms are transient parts at the beginning and at the 
end of the signal respectively. As in the near-field, point receiver case, the pressure, pnf(z,t), 
has an initial transient region, continuous region and an end transient region. The time 
duration of the transients at the both ends of the signal are equal to (t4az - tz). Since hnf(z,t) = 0 
for t < tz the output signal starts at t = tz. These facts are sketched in a plot in the Fig.(4.11). 
The case with the velocity signal whose length T′ < (t4az - tz) is illustrated in Appendix(A-2). 

The pressure pulse shown in Fig.(4.11) was calculated using two different methods. The 
transient parts at the ends of pulse were calculated using numerical calculation of the 
convolution integral explained in Appendix(A-2). This method was preferred over the usual 
Fourier transform(FFT) method in order to avoid any aliasing problem. Though the same 
method can be used to calculate the whole pulse, as it consumes a lot of time for calculation, a 
different method was used to calculate the continuous part of the pulse. 

The velocity to pressure transfer function of this model, Hnf(ω), is given in Eq.(4.41b). The 
pressure, for a velocity, uC(t),can be found as follows. Consider a sinusoidal velocity wave 
U ej t

0
0ω . Its Fourier transform is U0δ(ω-ω0). The pressure corresponding to this velocity is 

given by, 

pnfC (z,t) = IFT(Hnf(z,ω) U0δ(ω-ω0)) (4.92) 

or 

p H z U enfC nf
j t' ( , )= ω ω

0 0
0 . (4.93) 

The desired pressure, that corresponds to the velocity uC(t), is, 

( )tj
nfnfC eUzHtzp 0

00 ),(Im),( ωω= . (4.94) 

Since this method does not involve any numerical calculation with frequency spectrum, the 
result is free from time aliasing due to truncation of the frequency spectrum. The Eq.(4.94) 
was used to calculate the continuous part of the pulse shown in Fig.(4.11). The time axis and 
the amplitude axis of the plot are normalised to the period and the magnitude of the ideal 
plane wave respectively. And the signals are given an arbitrary start. 
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Figure(4.11) Average pressure of the near-field finite receiver model, normalised to the ideal plane wave 
pressure. Time axis is normalised to the period of the ideal plane wave. z = 0.1m, a = 4.5mm, f = 
215kHz and c = 344.35m/s. 

The Fig.(4.11) shows that the continuous region of the signal has advanced in phase compare 
to the ideal plane wave. 

The duration of the transient regions, ttr, at both ends of the signal normalised with period of 
the input signal is a function of S and (ka) only. That is, 
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The Fig(4.12) shows 
t 
tr

T as a function of S for three different values of (ka). 

As S increases the transient duration becomes smaller and smaller, for all ka values, and goes 
towards zero. This means that this model tends to the far-field model at larger S values for all 
ka values. At small S values, transient duration becomes larger for larger ka values. At S = 1 
the expression for the normalised transient duration in Eq(4.95) can be further simplified as 
follows. Substituting S = 1 in Eq(4.95) gives, 
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for large ka values  
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Figure(4.12) Transient duration for the near-field finite receiver model as a function of S. The S axis is in log 
scale. The transient time, ttr, is normalised to the period of the ideal plane wave. 

t 
tr

T ≈ 2 (4.98) 

The transient duration is less than two periods for all ka values in the range S > 1. 

PULSE FORMS 

In the previous sections methods to calculate the pressure waves for a sinusoidal velocity 
burst and the explanations for the shapes of the calculated pressure waves were presented. The 
basic shape of the pressure wave is determined by the parameters; radius of the source, a, 
distance between the source and the observation point, z and the velocity of the medium, c, 
and the frequency of the velocity wave, f. This can be seen from the expression for the 
convolution integral, Eq.(4.90), and the expression for the impulse response, hnf(z,t). The 
density of the medium, ρ0, and the amplitude of the velocity wave, U0, are just multiplication 
factors and hence do not contribute to the basic shape of the wave. 

In this section the changes in shape of the pressure wave due to above mentioned parameters, 
a, z, c and f, are discussed. It is cumbersome to take all four variables in to the analysis. But, 
fortunately, it is possible to express the pressure pulse in terms of Seki parameters, S and ka, 
provided the time axis of the pulse is normalised to the period of the ideal plane wave. A 
proof that the pressure pulse can be written in terms of S and ka is given in Appendix(A-4). 
But, as the plot in Fig.(4.11), the continuous part of the pulse was calculated according to the 
Eq.(4.94) for the same reasons stated in the related text. Consider the transfer function 
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This equation can be written as follows, 
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Since (kz) can be written as ( )2

2
ka

S

π
, Hnf(z,ω) is a function of S and ka only. θ does not 

consist any physical quantity, ρ0 and c are constants. Therefore Eq.(4.94) can be written, 

defining 
T

t
t̂ =  to be the normalised time, as 

( ))ka,S(Ht̂2sin)ka,S(HU)t̂,z(p nfnf0nfC ∠+π= . (4.100) 

This proves that this method of calculation of the continuous part of the pulse is also 
consistent with the normalisation and hence the representation of the pulse in terms of S and 
ka values.  
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Figure(4.13) The (a) magnitude and (b) phase of the transfer function Hnf(S,ka)/Hp(S,ka) as a function of S, 

up to S = 3, for ka values 5, 20 and 50. 
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Figure(4.14) The (a) magnitude and (b) phase of the transfer function Hnf(S,ka)/Hp(S,ka) as a function of S for 

ka values 5, 20 and 50. S axis is in log scale from 3 to 100. 

Now, it is natural to study the variation in the shape of the pulse due to one variable keeping 
the other constant. Before this analysis, it may be useful to plot the transfer function, Hnf(z,ω), 
as a function of S and ka values. The Figs.(4.13) & (4.14) show the magnitude and phase of 
transfer function, relative to the plane wave, Hnf(S,ka)/Hp(S,ka), for three different ka values; 
5, 20 and 50. The Fig.(4.13) show the magnitude and phase of the transfer functions from S = 
0 to 3 in linear scale and the Fig.(4.14) show from S = 3 to 100 in log scale. 

In the analysis of the pulse forms with S and ka values, first, the pressure pulses for two 
different ka values for three different S values were simulated. These simulations are plotted 
in Fig.(4.15). In all simulations a 4-period pulse was used. The time axes are normalised to 
the period of the ideal plane wave. The extension of the transients, at both ends of the pulses, 
are denoted by round marks. The initial transients start at the beginning of the pulses and end 
at the first round marks. The end transients start after 4 periods and end at the round marks. 
The duration of the transients are calculated, using Eq.(4.95), and tabulated in Table(4.1). 

From the table, it can be seen that as S increases, the change in ka value becomes immaterial, 
concerning the transient duration. 
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Figure(4.15) Change in pulse form due to ka value, for a constant S value. Pressure amplitude is normalised to 

the plane wave amplitude. Time axis is normalised to the period of the ideal plane wave. Pulse 
forms are presented for ka values 5 and 20 at (a) S = 1, (b) S = 2 and (c) S = 10. The round marks 
denote the end of the transient regions. 
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 S = 1 S = 2 S = 10 

ka = 5 1.079 0.767 0.196 

ka = 20 1.834 0.976 0.199 

Table (4.1) Calculated transient duration of the pulses shown in Fig.(4.15), using Eq.(4.95). 

At S = 1, the difference between the magnitudes and the phases in the continuous part of the 
two signals are very small. At S = 2 these differences become, comparatively, large and at S = 
10 become small again. These variations in the continuous part of the pulse due to the 
variation in ka value can be related to the transfer function, Hnf(S,ka), in Figs.(4.13) and 
(4.14). The transfer functions are normalised to the plane wave and the pulses under 
consideration are also normalised to the plane wave. Therefore, the differences in the pulses, 
both in magnitude and phase, can be compared directly to corresponding differences in the 
transfer functions. From the plots of the transfer functions, it can be seen that the difference 
between the magnitudes and phases for ka values 5 and 20 at S = 1 is small, at S = 2 is large 
and at S = 10 is very small. 

Fig.(4.16)(a), (b) and (c) show the variation in the pulse form with increasing S value while 
ka being constant at 20. The time axis of the plots are normalised to the plane wave periods. 
The amplitude of the signals in Fig.(4.16)(a) decreases with increasing S. This effect is in 
agreement with the behaviour of the transfer function shown in Fig.(4.14)(a). The length, in 
time, of the pulse is decreasing with increasing S value and approaches to the length of the 
input signal, four periods in this simulations. This is due to the reduction in the transient 
region of the pulse with increasing S value which is also shown in Figs.(4.16)(b) and (c). The 
relation between the transient duration and the S value is shown in Fig.(4.12). Fig.(4.16)(a) 
shows that, as S increases, the peaks of the continuous part approach the zeros of the plane 
wave. This indicates that the phase difference between the continuous part of the pulse and 
the plane wave increases with increasing S and approaches 90 degrees, which is also evident 
from the phase of the transfer function, Hnf(S,ka)/Hp(S,ka), shown in Fig.(4.14)(b). 

Fig.(4.16)(b) shows the initial transient portion of the signals shown in Fig.(4.16)(a). 
Fig.(4.16)(c) shows the end transient and a small portion of the continuous part of the signals 
shown in Fig.(4.16)(a). The amplitudes of the pulses in figs.(4.16)(b) and (c) are normalised 
to their respective steady state values. Therefore, Fig(4.16)(b) shows the change in the relative 
size of the first peak of the pulse to the continuous part with increasing S value. At very large 
values of S, the first peak of the signal becomes equal to the continuous part. 

So far, the pulse forms of the near-field point receiver model ,far-field model and the near-
field finite receiver model are discussed individually comparing to the plane wave model. The 
Fig.(4.17) compares the pulse forms of last three of the four models calculated for three 
different transmitter-receiver separations. The amplitude of the waves are normalised to the 
plane wave amplitude. The time axes of the plots are normalised to the period of the ideal 
plane wave. The parameters radius, frequency and velocity of sound in the medium are same 
for all three plots; a = 5.52mm, f = 200kHz and c = 347m/s. The transmitter-receiver 
separation, z, are 35.2, 175.7 and 352mm for plots (a), (b) and (c) respectively. These 
parameters correspond to ka = 20 and S value 2, 10, and 20 for plots (a), (b) and (c) 
respectively. 
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Figure(4.16)  

Variation in pulse form due to the change in S for a constant ka value. Form of (a) the whole pulse, 
(b) beginning of the pulses up to the continuous region and (c) end transient of the pulses ,with a 
small portion of the continuous part, for S values 10, 20, 50 and 100 at ka = 20. The amplitudes of 
the pulses in (a) are normalised to the amplitude of the ideal plane wave. The amplitudes of the 
pulses in (b) and (c) are normalised to their respective steady state values. Time axes of all the 
plots is normalised to the period of the ideal plane wave. 

As z increases the pulses predicted by the near-field point receiver and near-field finite 
receiver models approach to that predicted by the far-field model. This is an anticipated result, 
as similar behaviour was observed in the impulse responses of the three models. That is, the 
impulse response of the near-field models approach that of the far-field model for large 
transmitter-receiver separations. But, one might wonder about the physics behind this. It may 
be explained as follows. High frequency signals are more directive than the low frequency 
signals. That is, high frequency components of a signal lie in narrow cones around the axis 
while the low frequency components lie in wide cones. When the transmitter-receiver 
separation increases, most of the low frequency components do not reach the receiver, only 
higher frequency components do. Then the received signal contains more high frequency 
components. 
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Figure 4.17 Pulse forms of near field point receiver, far-field and near-field finite receiver models for different 

transmitter-receiver separations. The parameters used in the calculations are: a = 5.52mm, f = 
200kHz, c = 347m/s and (a) z = 35.2mm, (b) z = 175.7mm and (c) z = 352mm. 

The reduction in amplitude can be accounted by the energy lost with the low frequency 
components. The far-field model is a high pass filter(see under the subheading "impulse 
responses"). The signal calculated by the near-field models, for large transducer separations, 
and the far-field model contain the high frequency portion of the initial spectrum. Therefore, 
the near-field models approach the far-field model at large transmitter-receiver separations. 
The enhancement of high frequency components in the transmitted signal with increasing 
transmitter-receiver separation is shown experimentally by Cassereau et al42. 
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4.4 DISCUSSION 

Pressure pulse forms due to a uniform sinusoidal velocity pulse transmitted by a piston type 
transducer through a non viscous medium are studied. Pulse forms due to the near-field finite 
receiver model are presented as a function of S and ka values. With this presentation one can 
compare and study the pulse forms in different medium at different environmental conditions. 
These differences can be accounted as a change in the parameter for velocity of sound in the 
medium. 

It has been showed that the pulse predicted by far-field model has continuous region for input 
pulses of any length in time. But the pulse predicted by the other two models has continuous 
region for sufficiently long input pulses. The continuous region of the pulse predicted by the 
near-field finite receiver model and the far-field model has advanced in phase compared to the 
plane wave because of diffraction effects. In the near-field point receiver model the pulse lags 
and leads the plane wave alternatively in the region close to the receiver. The advancement in 
phase for the far-field case is π/2 for all frequencies. For the other two cases the advancement 
in phase is a function of S and ka values. In calculations using plane wave model, the 
advancement in phase has to be corrected. Otherwise, for example, in the calculation of the 
velocity of sound one will end up with a velocity which is larger than the actual one. 

The Eq.(4.41) shows the function, Hnf(z,ω) and Eq.(4.23) shows Hp(z,ω). Hnf(z,ω)/Hp(z,ω) is 
the diffraction correction. The magnitude and phase of this function, are tabulated by 
Khimunin7,36 as a function of S and ka values. Khimunin verified the diffraction correction for 
a few combinations of k and a values, which give the same ka value, and concluded that the 
diffraction correction depends on the ka value, no matter what the combinations of k and a 
values are. This verification may not be necessary because of the following reason. It is 
shown in Eq.(4.99) and in the related text that Hnf(z,ω) is a function of S and ka only. Since kz 
can be written in terms of S and ka values Hp(z,ω) is also a function of S and ka values only. 
Therefore, Hnf(z,ω)/Hp(z,ω), the diffraction correction, is a function of S and ka only. The 
magnitude and the phase of this function are plotted in Figs.(4.13) and (4.14) respectively. 
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CHAPTER 5 

EFFECTS OF TRANSDUCER DYNAMICS ON 
PULSE FORMING 

5.1 INTRODUCTION 

The transducers, in an acoustical system such as one described in Chapter 3, play an 
important roll in determining the shape of the transmitted pulse. Therefore it is of perticular 
important to study the effect of transducers on pulse forming to understand the system. In this 
chapter the dynamic characteristics of the transmitting and receiving transducers and the pulse 
forming machanism are discussed. 

A frequency domain equivalant circuit representation of the one dimensional, thickness 
extentional vibrations of a piezo-eletric transducer element was devoloped by Mason28. To 
study the transient response of the piezo-electric transducer element, Redwood30 devoloped its 
time domain response for the special case where the negative capacitance, -Co, in the 
equivalant circuit is ignored. Later Vervik15, Guo43 and others devoloped the time domain 
response including -Co. 

In this work, the equivalent circuit of the one dimensional Mason model is taken as the 
starting point for the discussion. The voltage to velocity transfer function of the equivalant 
circuit is found. Then the transfer function is converted to Laplace domain to get the time 
domain responses of Redwood and Vervik for the cases where -Co is excluded and included 
respectively. Using these results the transducer dynamics and the pulse forming effects are 
studied. The time domain responses are too large and too complex to use to simulate the total 
response of the transducer. Therefore, two frequency domain models, TRANSCAD and 
FLOSIM, developed at CMR for transducer modelling and for flow simulation purposes, have 
been used for simulations of the total response of the transducer. These are also one-
dimensional Mason type models except for the elastic, dielectric and piezoelectric losses are 
included. In addition, TRANSCAD and FLOSIM models are designed so that the transducer 
element can have many matching and backing layers. But, in this chapter the option for no 
matching and no backing layer was chosen. 

5.2 TRANSMITTER 

In this section theoretical models for a transmitting transducer are developed and the transfer 
functions and impulse responses of the models are presented and explained. Then a method to 
calculate the particle velocity of the transducer for a sinusoidal voltage excitation and some 
examples of calculated velocity, with and without -C0, are presented and discussed.
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5.2.1 THEORY 

In the beginning of this section, the voltage to velocity transfer function and the impulse 
responses for the Mason's model are derived. Then, the simplified model is deduced and 
similar transfer function and impulse response are derived. Finally, the TRANSCAD model, 
actually the implementation of loss factors in the model, is briefed. 

5.2.1.1 THE  MASON MODEL 

The cross-sectional view of the thickness expander piezoelectric plate is shown in the 
Fig.(5.1). The cross-section lies in a plane parallel to the electric field and perpendicular to the 
radiating face. The electric field is parallel to the vibration. F

p
1 and F

p
2 are the forces acting on 

the plate from the medium at acoustic port 1 and 2 respectively. v
p
1 and v

p
2 are the particle 

velocity of the transducer faces at ports 1 and 2 respectively. These quantities are taken to be 
positive in their respective directions shown in Fig.(5.1). Zr1 and Zr2 are impedance of the 
backing and radiation medium respectively. 

 
Fig.5.1  Thickness expander piezoelectric plate. Electric field parallel to the thickness of the plate. 

The equivalent circuit for the thickness mode vibrations of a piezoelectric transducer element 
is well established and the derivation of it could be found in the literature27,28. The Fig.(5.2) 
shows the equivalent circuit of a thickness expander transducer. 

In the equivalent circuit , 








=
2

tan0

lk
jZZa  (5.1a) 

and 
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Fig. 5.2 The equivalent circuit for one-dimensional thickness extensional vibrations in a thin piezoelectric 
plate. 

( )lksinj

Z
Z 0

b =  (5.1b) 

are the transmission line impedance represent the acoustic reverberations in the transducer, 

Z0 = ρcA (5.1c) 

is the mechanical impedance of the transducer, where, ρ is the density of the piezoelectric 
material, c is the speed of sound in the piezoelectric material and A is the area of the 
transducer plate, 

C0 = 
A 
l

εs
33

 (5.1d) 

is the clamped capacitance of the plate, where l is the thickness of the plate and εs
33

 is the 
permittivity of the piezo electric material at constant strain and 

φ = 
A
l

e33 (5.1e) 

is a factor represents the electromechanical conversion where e33 is the stress coefficient of the 
piezo electric material.  

VOLTAGE TO VELOCITY TRANSFER FUNCTION 

The relationships between voltage, forces, electric current and the particle velocities are found 
by applying the basic network analysis laws to the equivalent circuit shown in Fig(5.2). 
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For the transformer, 

V
F

ba
cd=
φ

 (5.2a) 

and 

( )v v Ip p
1 2 2− = −φ , (5.2b) 

where Fcd is the mechanical force produced at the transformer. 

For the rest of the circuit, 

V
I

j C
= 1

0ω
, (5.2c) 

I = I1 + I2, (5.2d) 

V V
I

j C
ba= +

−
2

0ω( )
, (5.2e) 

F Z Z v Z v Vp
a b

p
b

p
ba1 1 2= + − +( ) φ  (5.2f) 

and 

F Z v Z Z v Vp
b

p
a b

p
ba2 1 2= − + +( ) φ . (5.2g) 

The boundary conditions give, 

F
p
1 = - Zr1 v

p
1 , (5.2h) 

F
p
2 = Zr2 v

p
2. (5.2i) 

The negative sign in Eq.(5.2h) is because, the force on the medium and the particle velocity 
are in opposite directions. 

The relationship between the voltage and velocity is found, using the above relationships, as 

( ) ( )
( )1

2
2

2

ra

ra
brba

p

ZZ

ZZ
ZZZZV

v

+
++++

=
∗∗

φ
 (5.3a) 

where 

Z Z
j C

b b
∗ = − φ

ω

2

0

 (5.3b) 
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If the voltage, V = ejωt then, 
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brba

p e
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+
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=
∗∗

1

2
2

2 . (5.3c) 

Assuming the system to be linear, the velocity for an arbitrary input voltage, V(t), can be 
written9 as, 

( ) ( )
( )

)()(

1

2
2

2 ωφω V

ZZ

ZZ
ZZZZ

V

ra
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brba
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++++

=
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 (5.3d) 

where V
p
2(ω) and V(ω) are the Fourier transforms of v

p
2(t) and V(t) respectively. 

V H Vp
tr2 1( ) ( ) ( )ω ω ω= ⋅  (5.3e) 

where, 
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1 )(
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tr

ZZ
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H
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++++

=
∗∗

φω , (5.3f) 

the ratio of the output spectrum to the input spectrum, is the voltage to velocity transfer 
function9. 

The transfer function of a linear time invarient system is the Fourier transform of its impulse 
response9.Therefore, the inverse Fourier transform of Htr1(ω) gives the corresponding impulse 
response. But the inverse Fourier transform of Eq.(5.3f) is not straight forward. In order to 
make the inverse transform easy the equivalent circuit is represented14 in its Laplace 
transforms. In the Laplace domain, jω is represented by s. Substituting for jω in Eqs.(5.1a) 
and (5.1b) gives, 


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 (5.4a) 

and 

( ) 00 ss
00

b
ee

Z2

ksinj

Z
Z τ−τ −

==
l

 (5.4b) 

where, k = 
ω
c , τ 

0
 = 

l

c and s is the Laplace variable. Substituting for Zb and jω in Eq.(5.3b) 

gives, 

Z
Z

e e sc
b s s
∗

−=
−

−2 0
2

0
0 0τ τ

φ
 (5.4c) 
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Substituting for Za and Zb in the Eq(5.3a) and with some manipulations, it can be shown that 
the transfer function in the Laplace domain takes the following form. 

( ) ( )
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321
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10010
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ss
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r
tr
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=  (5.5) 

where 

k1 = (Z0+Zr1)(Z0+Zr2) - 
φ2

sC 
0

 (2Z0+Zr1+Zr2), (5.6a) 

k2 = 4
φ2

sC 
0

Z0 (5.6b) 

and 

k3 = (Z0 -Zr1)(Z0-Zr2) - 
φ2

sC 
0

 (2Z0-Zr1-Zr2). (5.6c) 

Some intermediate steps in the manipulation to arrive the final form of the transfer function in 
Eq.(5.5) are given in Appendix(A-5). 

IMPULSE RESPONSE 

The voltage to velocity impulse response of the transducer element is given by the inverse 
Laplace transform of Htr1(ω). Having expanded the denominator of the Eq(5.5) by the 
binomial theorem using partial fraction method the voltage to velocity impulse response is 
found15 as, 
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and τ0 is the reverbaration period of the transducer element. 

The above expression for the impulse response contains the effect of the negative capacitance, 
-C0. The effect of -C0 could be isolated and studied by comparing the above impulse response 
with the impulse response in which the terms due to -C0 are ignored. A model, called 
"simplified model" in which the -C0 is ignored, and the impulse response of it are presented in 
the next section. 

5.2.1.2 SIMPLIFIED MODEL 

In this model the -C0 is ignored in the Mason equivalent circuit. This does not mean any 
removal of the negative capacitance from the Mason equivalent circuit. Such a circuit 
represents29 a length expander bar with electric field perpendicular to length. Therefore no 
special equivalent circuit is needed. But, the equations for this model are found by ignoring 
the terms involving -C0 in the Eqs.(5.2a)...(5.2g). This modification of the equations of the 
Mason equivalent circuit is exactly the same as that found in Redwood's30 article, except for 
the modifications are made by Redwood to the basic wave equations. 

TRANSFER FUNCTION 

There is only one equation, Eq.(5.2e) involve -C0. Ignoring the term involving -C0 from the 
Eq.(5.2e) leaves, 

V Vba= , (5.8) 
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This equation together with other circuit equations, Eqs.(5.2a)...(5.2g), and with the equations 
of the boundary conditions, Eqs.(5.3a),(5.3b), give the relationship between the voltage and 
the velocity as, 

( ) ( )
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+
++++

= φ
. (5.9) 

Using the same arguments given for the Mason model earlier in this section, the voltage to 
velocity transfer function can be written as, 
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IMPULSE RESPONSE 

The voltage to velocity impulse response of this model can be found by taking the inverse 
Fourier transform of the Eq.(5.9a). But, for the reason stated in the previous section, the 
transfer function in Eq.(5.9a) is transformed in to Laplace domain. As in the previous section, 
substituting for Za and Zb in the above transfer function and with some manipulations, it can 
be shown that the transfer function in the Laplace domain takes the form as, 
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where r1 and r2 are same as that defined in Eq.(5.7e). 

Some intermediate steps in the manipulation to arrive the final form of the transfer function in 
Eq.(5.10) are given in Appendix(A-5). 

Then, the voltage to velocity impulse response can be found15 by expanding the denominator 
of Eq.(5.11) by binomial theorem and taking its inverse Laplace transform. And it is given by, 
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5.2.1.3 TRANSCAD MODEL 

The cross-sectional view of the transducer element with the electrical terminals is the same as 
that shown in Fig.(5.1). Fig.(5.3) shows the equivalent circuit of a thickness mode transducer 
with losses. F

p
1 and F

p
2 are forces acting on the transducer from the backing and radiation 

medium respectively. v
p
1 and v

p
2 are particle velocity of transducer faces at the backing and 

radiation ports respectively. 

 
Figure(5.3) Distributed, lossey equivalent circuit for a thickness extensional mode transducer.(From Ref.(3)) 

The losses in the transducer are accounted for by using complex quantities for elastic, 
dielectric and piezoelectric constants in the derivation of the equivalent circuit of the lossles 
transducer model. The complex elastic, dielectric and piezoelectric constants used are as 
follows:  

The complex elastic constant, 

c
E
eff = cE + jωηE, (5.13a) 

where cE is the stiffness and ηE  is the viscoelastic loss coefficient of the piezoelectric material 
at constant electric field. The complex dielectric constant, 

εs
eff

 = εS - jνS, (5.13b) 

where εS is the permittivity and νS is the dielectric loss coefficient of the piezoelectric material 
at constant strain. The complex piezoelectric constant, 

eeff = e + jγ, (5.13c) 

where e is the piezoelectric stress constant and γ is the piezoelectric loss coefficient. 

Making the elastic, dielectric and piezoelectric constants complex result a complex wave 
number and hence a complex speed of sound in the piezoelectric material. The complex wave 

number, k, is given by k = 
ω
c , where c is the complex speed of sound in the piezoelectric 

material, given by, 
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Since the coefficients η, ν, and γ are not available in data sheets, the expression for the 
complex speed of sound cannot be used as it is given in Eq.(5.14). There fore, an 
approximated expression for the complex speed of sound, c, in terms of the mechanical 
quality factor, Qm , which represents the elastic, dielectric and piezoelectric losses in the 
transducer material, is used. The approximated complex speed of sound is given by, 
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And since the piezoelectric absorption coefficient, γ, is not available, the imaginary part of the 
mechanical coupling factor, φ, is set to zero. 
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is the shunt resistance which represents the dielectric loss in the piezoelectric material 

Transfer function 

The voltage to velocity transfer function can easily be found as follows. First write down the 
equations governing the equivalant circuit shown in Fig.(5.3) along with the boundary 
conditions, as done for the Mason model, and calculate the expression for v

p
2 /V. Then find the 

frequency domain expression, using the arguments given under the Mason model earlier in 
this section. And this transfer function is given by, 
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2

0
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1
, (5.18b) 

Za and Zb are similar to that given in Eqs.(5.1)(a) and (b) with the complex velocity of sound  

given in Eq.(5.15). 
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5.2.2 CALCULATIONS 

In this section the impulse response and the transfer function of the transmitting transducer 
devoloped in the previous section are presented in plots and their behaviours are discussed. 
The simplified model and the Mason model are compared to demonstrated the effects of -C0.  

 CALCULATION OF VELOCITY 

The velocity output of the transducer, for an arbitrary input voltage can be calculated by 
convolving the input voltage with the appropriate impulse response found in the previous 
sections. 

u(t) = h(t) ⊗ v(t) (5.19) 

or 

∫
∞

ττ−τ=
0

d)t(v)(h)t(u  (5.20) 

where u(t) is the velocity output of the transducer, h(t) is the impulse response of the 
transducer and v(t) is the input voltage. 

This integral cannot be calculated, by analytical means, for an arbitrary input voltage 
function. And, even for an input voltage function which gives a closed form for the particle 
velocity, u(t), the integration is evidently tedious because of the complexity of the expression 
of the impulse response, h(t). However, in the above integral, the terms involve Dirac delta 
function, for any input voltage function, can be calculated easily using the symmetry and 
sifting property of the Dirac delta function. 

)t(vd)t(v)( =ττ−τδ∫
∞

∞−

 (5.21) 

For the above reasons, the terms involve Dirac delta function, in the integral in Eq.(5.20), are 
calculated analytically and the rest are calculated numerically. A computer program in 
FORTRAN to calculate the particle velocity, as described above, is given in Appendix(B-3). 

IMPULSE RESPONSE 

The impulse response of the Mason and the simplified models are given in Eq.(5.7a) and in 
Eq.(5.12) respectively. These expressions contain Dirac delta functions of various weights. It 
is not possible to show these delta functions on a plot by direct simulation of the expressions 
mentioned above. Therefore an approximate impulse response is presented using the 
following method. 
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Response, h'(t), to an impulse function, δ(t), is given by 

h'(t) = h(t) ⊗ δ(t) (5.22) 

or 

∫
∞

∞−

ττ−δτ= d)t()(h)t('h . (5.23a) 

Using the symmetry property of the delta function, Eq.(5.23a) can be written as 

∫
∞

∞−

τ−τδτ= d)t()(h)t('h . (5.23b) 

Using the sifting property of the delta function to the above equation gives 

h'(t) = h(t). (5.23c) 

The Dirac delta function can be represented as, 
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since g(t) satisfy, 

∫
∞

∞−

φ=φ )0()t()t(g  (5.24a) 

for an arbitrary function, φ(t), which is continuous at t = 0. 

Proof 
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A proof comparable to the above is found in Ref.31. 

The Fig(5.5)(a) and (b) show the voltage to velocity impulse response of the simplified and 
the Mason model respectively. The function defined in Eq.(5.24) with ε = τ0/50 is used as the 
voltage impulse for the simulations where τ0 is the reverberation period of the transducer 
element. The specifications of PZT-5A with no absorption was used as the parameters of the 
transducer for simulations. Specifications of PZT-5A are given in Appendix(C-1). The 
thickness and the radius of the transducer element used for simulations are 10.128mm and 
4.51mm respectively. The specific impedance of the backing material and the radiation 
medium used are 1Mrayl and 419.35rayl respectively. 
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The Fig.(5.5)(a) can be explained10 as follows. Suppose a unit voltage impulse is applied to 
the electrical terminals of the transducer. The mechanical force produced by the 
piezoelectric(inverse) effect is given by the equations for the transformer in the equivalant 
circuit of the simplified model. The equations of the simplified model are same as that of the 
Mason model except for Eq.(5.8). Combining the Eqs.(5.2a) and (5.8) gives the mechanical 
force, Fcd, which is equal to φ, for unit impulsive voltage. This force acts on both surfaces of 
the transducer and produce force waves into the medium and the transducer as shown in 
Fig.(5.4). Force transmitted into the medium1 is F1 and into the transducer from face1 is F

1
0. 

The forces F2 and F
2
0 are defined in a similar way. The velocity of face1 is v1 and of face2 is 

v2. The characteristic impedance of medium1 is Z1, of medium2 is Z2 and of transducer 
material is Z0. Consider the front face, face 2, of the transducer. Since the total force on the 
mass less plane is zero, 

(F2-F
2
0) = φ (5.25) 

 

Figure(5.4) Forces and velocities on the transducer faces immediately after the voltage impulses is applied 
to the electrical terminals. 

The characteristic impedance of the medium and the transducer material, the forces and the 
velocities, according to the directions shown in the Fig.(5.4), have the following relationships.  

 Z0 = -F
2
0/v2 and Z2 = F2/v2 (5.26) 

From the above two equations, 

F
Z Z

Z2
0 2

2=
+
φ

 (5.27a) 

and 

F
Z Z

Z0
2

0 2
0= −

+
φ

. (5.27b) 

With similar arguments it can be shown that, 

F
Z Z

Z1
0 1

1=
+
φ

 (5.27c) 
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and 

F
Z Z

Z0
1

0 1
0= −

+
φ

 (5.27d) 

The transmitted force waves in to medium1 and medium2 will never come back because of 
the asssumption of the model that the medium1 and 2 are of infinite extend. The waves 
transmitted into the transducer element propagate as plane waves and at discontinuties a 
portion reflected back and the rest transmitted into the medium. The reflected and transmitted 
portions can be calculated using reflection and transmission coefficients. These coefficients 
can be found in any text book on waves, see, for instance, page 126 of Ref.(1). The reflection 
coefficients of face1 and 2, r1 and r2 respectively, are defined in Eq.(5.7e). The transmission 
coefficients of face 1 and 2 are, then, given by (1 + r1) and (1 + r2) respectively. It should be 
noted here that the coefficients are defined for waves incident on the transducer-medium 
interface from the medium. For waves travelling in the opposite directions, the reflection 
coefficients, r1 and r2, should have a minus sign infront of them and hence the corresponding 
transmission coefficients are given by (1 - r1) and (1 - r2). 
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Figure(5.5) Impulse response of transmitting transducer. (a) Simplified model (b) Mason model. The time axis 
is normalised to τ0(=l/c), the reverberation period. 

The quantity considered and calculated in this discussion is force. To calculate the velocity 
one has to use the Eq.(5.26). 

Now, F2 is the magnitude of the first wave that comes out from the transducer front face at 
time t = 0. And this can easily be identified, with Eq.(5.26), as the first term in the voltage to 
velocity impulse response in Eq.(5.12). The second term in the voltage to velocity impulse 
response corresponds to the transmitted part of the wave that comes from the back face, face1, 
at time t = l/c and is given by (1-r2)F

1
0. Substituting for r2 from Eq.(5.7e) and F

1
0 from 

Eq.(5.27d) and substituting for r1 in the second term of Eq.(5.12), with Eq.(5.26), give the 

same result, −
+ +

2 0

0 1 0 2

φZ

Z Z Z Zr r( )( )
. The third term corresponds to the wave sent into the 

element from the front face at time t = 0 and transmitted into the medium2 through the front 
face at time t = 2l/c after one reflection at the back face, face1 at t = l/c. And this is given by -
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r1(1-r2)F
2
0. Similarly, the magnitude and the placement in time of the rest of the terms in the 

voltage to velocity impulse response can easily be verified. 

As described above, there is no response from the transducer between the reverberation 
periods. But this is not true for a real transducer. The response of the transducer in between 
the reverberation periods are shown in Fig.(5.5)(b). Obviously, the -C0 in the equivalent 
circuit is responsible for the additional response. The mathematical result does not tell 
anything about the physical insight of this behaviour. Discussions on this problem can be 
found in the litrarure. The effect of -C0, also known as regeneration effect, on pulse forming 
will be discussed in this section. 

The effect of the -C0 on a uniform sinusoidal pulse is shown in Fig(5.6). The response of the 
transducer for a 4-period uniform sinusoidal pulse is calculated using the two models. The 
frequency of the pulse was equal to the half wave resonance frequency of the transducer and 
the amplitude was 1 volt. The specification of the transducer was the same as that used for the 
simulation of impulse responses above. 
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Figure(5.6) Response of the transducer models to a 4 - period uniform sinusoidal pulse. The time axis is 
normalised to 2τ0 = 2l/c, which is also equal to the period of the input signal. 

Consider the response of the simplified model in Fig.(5.6). This response was calculated using 
the Eq.(5.19) with  

h(t) = htr2(t) 

where htr2(t) is given by Eq(5.13) and, 

v(t) = sinωt 0≤ t ≤8τ0,  

where ω = π/τ0 and τ0 is the reverberation time of the transducer element. The convolution of 
the uniform sinusoidal function with the delta functions result again uniform sinusoidal 
functions of the same frequency as the original sinusoidal function and with pure time delays. 
This time delays, given by the corresponding delta functions, are integer multiples of τ0. The 
amplitudes are equal to the amplitude of the input function multiplied with the weight of the 
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corresponding delta function which are just real numbers. Therefore the total response, the 
summation of the functions resulted from the convolutions, becomes as a sinusoidal function 
of the same frequency as the original function and the zero crossings coincide with the integer 
multiples of τ0. 
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Figure(5.7) The magnitude of the voltage to velocity transfer function. (a) Simplified 
model, (b) Mason model. Frequency axes are normalised to the half-wave resonance 
frequency, f0. 

In addition to the delta functions, the impulse response of the Mason model contains response 
due to the regeneration effect. Since this response acts in the same direction with the delta 
functions the signal, in the first couple of periods, is larger than that of the simplified model. 
But, later the regenerative response becomes larger and the delta functions become small. 
Therefore, the signall becomes smaller than that of the simplified model. The later behaviour 
of the transducer is not shown as only 8 terms in the impulse response is avaialble(rest are not 
calculated because of the large size of the expressions). In Fig.(5.13), the impulse response 
upto 40 reverberation periods, calculated using the frequency domain calculations, is shown. 

The Fig.(5.7)(a) and (b) show the magnitude of the voltage to velocity transfer function of the 
simplified and the Mason model respectively. The frequency axes are normalised to the half-
wave resonance frequency, f0 = 2l/c. The transfer function of the simplified model, as 
anticipated, has a resonance at frequency f = f0. But the Mason model reveals the resonance of 
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the transfer function at a frequency which smaller than f0. This is, evidently, a consequence of 
the negative capacitance, -C0, in the equivalent circuit of the Mason model. 
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Figure(5.8) The phase response of the voltage to velocity transfer function. (a) Simplified model, (b) Mason 

model. Frequency axes are normalised to the half-wave resonance frequency, f0. 

Fig.(5.8)(a) and (b) show the phase response of the voltage to velocity transfer function of the 
simplified and the Mason model respectively. The plots start at 90deg. and go down and 
increase again. This behaviour repeats at every zeros of the transfer function. From the 
Fig.(5.9) it can be seen that this effect increases with the backing impedance for a constant 
radiation medium(air). But this effects of the backing impedance are not analysed in detail in 
this thesis. However, for the backing impedance, 0.3Mrayl, used in all the simulations 
presented in this work, the frequency components at the neighbourhood of the zeros of the 
transfer function have magnitudes, roughly, more than 60dB down to the maximum and hence 
will not alter the shape of the signal very much. 

Even though the behaviour of the transfer function with backing impedance is not analysed 
thoroughly, the general tendancy of the transfer function of the simplified model can be easily 
checked for some special cases. Consider the case where the backing impedance is same as 
that of the radiation medium. That is Zr1 = Zr2. Then the Eq.(5.9) becomes as, 
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Using the expressions for Za and Zb in Eqs.(5.1a) and (5.1b), the above equation can be 
written as, 
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where ω0 = πc/l. 

The argument of the numerator of the Eq.(5.28b) is π/2. At very low frequencies, ω « ω0, the 
argument of the denominator is almost zero. Therefore the argument of Htr2 is π/2. As ω 
increases the argument of the denominator increases steadily and hence the argument of Htr2 
decreases steadily. This is true for any value of Zr2 < Z0. But, the size of Zr2 will decide how 
fast the argument of Htr2 would decrease. This is shown in Fig.(5.9) using the impedance of air 
and 10Mrayl. At ω = ω0, the argument of the denominator is π/2 and hence the argument of 
Htr2 is zero. When ω > ω0, the argument of Htr2 is approximately -π/2 and as ω increases it 
reaches -π/2. At ω = 2ω0, the argument of Htr2 again becomes  π/2. The magnitude of the 
transfer function is zero at very low frequencies, increases with ω and reaches the maximum, 
φ/Zr2, at ω = ω0 and then decreases with ω to zero at ω = 2ω0. 

The other special case is "matched backing". That is, the impedance of the backing material is 
same as that of the transducer material, Zr1 = Z0(= 33.75Mrayl). A direct simplification of 
Eq.(5.9) may not be easy for this case. But, imposing this condition in Eqs.(5.10) and (5.11), 
remembering s = jω and some simple manipulations will give the following  expression for 
the transfer function. That is, 

( ) ( )
02

0

1

2
2

2
2 sin2

2

)1(
)( ω

ωπ

ω
ωπφω −−−=

j

r
tr e

Z

r
H . (5.29) 

The phase of the above function  decreases linearly from π/2 to -π/2, while the frequency 
increases from zero to 2ω0 and at ω = 2ω0, the phase changes sudenly back to π/2. At ω = ω0, 
the phase is zero. The magnitude varies sinusoidaly because of the sine term in the 
expression. This transfer function is compareable to that of the point receiver on axis 
propagation model in Chapter 4. As this model, the above perticular case of the transducer 
model has two delta function in its impulse response; one from the front face of the transducer 
and the other from the back face, all the others are totally lost in the backing medium. 
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Figure (5.9) The voltage to velocity transfer function of the simplified model for some special set of  
backing and radiation impedance. (a) Phase and (b) Magnitude. The frequency axes are 
normalised to the half wave frequency of the transducer element. 

MODEL COMPARISON 

The basic transducer action is explained using a simple plane wave model. And, how the 
regeneration is superimposed with the principal response is also demonstrated. Forming of the 
velocity pulse for a 4-period sinusoidal voltage pulse is explained. The effect of regeneration 
also demonstrated. All these calculations were done using the time domain methods. But, 
however, the time domain method, as pointed out at the beginning of this section, is tedious 
and thus limited. There fore, for calculations of signals required in the rest of this chapter and 
in Chapter 6, TRANSCAD and FLOSIM models are used. But, before making results using 
this models, it is reasonable to compare these models with the Mason model. The impulse 
response is being taken to begin with. 

The impulse response contains Dirac delta functions. These delta functions were modelled 
and presented, using a high frequency(10.75MHz) half sine wave as the voltage input, in 
Fig.(5.5). Simulating the velocity function for such a high frequency voltage pulse in 
FLOSIM requires a large memory. Thus a same kind of treatment for the delta functions as 
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shown in Fig.(5.5) is not possible. Therefore, the regenerative response, in the impulse 
response, only matched with the similar response of the Mason model. 
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Figure(5.10) Regeneration in the impulse response of Transcad and Mason models for two different sets of 
absorption parameters, (a) QE = 50,QM = 75 and (b) QE = 250,QM = 375. 

In the Fig(5.10) the regenerative response in the impulse response of the Mason model is 
compared with that of the FLOSIM model for two different sets of absorption parameters. 
The radius and the thickness of the element used in the simulation are 4.51mm and 10.128mm 
respectively. The specifications of PZT-5A was used for the material constants of the 
transducer element in both cases except for the absorption parameters for the plot in 
Fig.(5.10)(b). 

The Flosim model calculates the impulse response by inverting the frequency domain transfer 
function using IFFT. Thus the delta functions cannot be left out. Therefore the response of the 
Flosim model in Fig.(5.10) contains some portion of the delta functions. The plots 
Fig.(5.10)(b) are in more agreement than the plots in Fig.(5.10)(a). This is because, the 
absorption in the FLOSIM model in Fig.(5.10)(b) is smaller, which corresponds to larger Q 
values, than that of in Fig.(5.10)(a). Because of the large absorption, the delta functions in 
Fig.(5.10)(a) are broadened by smearing effect and this can make the system non causal. 
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Figure(5.11) Voltage to velocity transfer functions of the transmitter due the Transcad model and the Mason 
model, (a)magnitude and (b)Phase. The frequency axis is normalised to the half wave 
frequency, f0 = c/2l, of the transducer element. 

The voltage to velocity transfer functions of the transmitting transducer due to Transcad and 
the Mason models are compared in Fig.(5.11). The plots  are in good agreement. The plots 
due to Transcad is diminishing with frequency because of the absorption. Absorption 
increases with frequency. Since always there is a response from the front face of the 
transducer, the transfer function approaches a finite value. At this high frequencies the wave 
produced by the back face does not reach the front face, completely absorbed by the 
transducer material. The phase of the emerging wave is zero, ie., it follows the exciting 
voltage wave. 
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Figure(5.12) Velocity output for a 4-period uniform sinusoidal voltage input due to Transcad and Mason 
models. 

The response of the transducer element for a 4-period sinusoidal voltage input calculated by 
Transcad and Mason models are compared in Fig.(5.12). At the beginning, both signals are 
prety much the same. But as the time increases the signal, while it travels back and forth in 
the transducer, looses energy to absorption. This is the reason the signal calculated by the 
Flosim model is smaller than that of the Mason model. 
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Figure(5.13) Impulse response of the transducer element up to 40-reverberation periods due Flosim model. 
Absorption parameters QE = 50 and QM = 75. 

The Fig.(5.13) shows the impulse response from the 8th reverberation period up to the 40th 
reverberation period. The simulation was made for a PZT-5A transducer element with the 
same dimensions as before. As time goes on the deltafunctions become smaller and the 
response being smoothed out. 
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Figure(5.14) Velocity output for a 70-period uniform sinusoidal voltage input due to Flosim 
model. The time axis is normalised to the period of the input signal. 

The Fig.(5.14) shows the velocity output of the transducer element for a 70-period uniform 
sinusoidal voltage input calculated by the Flosim model. The time axis is normalised to the 
period of the input signal. Since there is no driving force the signal dies off after 70 periods. 
The oscillating behaviour of the onvelope of the signal is also a consequence of the -C0 in the 
equivalant circuit of the transducer model. The transducer element has the resonance 
frequency at little less than 215kHz and the exciting frequency is 215kHz. This two 
frequencies interact and give a beating type effect, seen in the transient part of the signal. This 
fact is discussed in little more detail in Chapter 6. 

5.3 RECEIVER 

In this section, free field pressure to open circuit voltage transfer function and the 
corresponding impulse response of a piezo electric receiving transducer are developed and 
their behaviours are presented in plots. 

5.3.1 THEORY 

A piezo electric element, which is similar to that used as the transmitter, in all respects, is 
used as a receiver. In the derivation of the equivalent circuit of the transmitter, a one-
dimensional wave equitation is solved for the appropriate boundary conditions. There is no 
presumption to distiguish the derivation is for the transmitter. Therefore, the same equivalent 
circuit used for the transmitter, with the appropriate boundary conditions, can be used for 
receiver. 
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5.3.1.1 MASON MODEL 

The Fig.(5.15) shows the cross-sectional view of the receiving transducer element. The cross-
section lies on a plane parallel to the electrical field and perpendicular to the active surface. 
The area of the active face is A. Plane waves incident, normally, on the element. v

p
1 and v

p
2 are 

the particle velocities of the transducer faces and F
p
1 and F

p
2 are forces on the transducer 

element from the medium. The velocities and forces are taken to be positive in their 
respective directions shown in the figure. 

 
Figure 5.15 Cross-sectional view  of plane waves incident on the receiving transducer. Cross-section is  

parallel to the electrical field and perpendicular to the active face of the element 

The Fig.(5.16) shows the equivalent circuit of the receiving transducer. In the receiving mode, 
Zr2 is the input mechanical impedance of the transducer element. That is, Zr2 ≡ Zin. 

 

Figure(5.16) Equivalant circuit of the Mason model for the receiving transducer element. 

The equations governing the above equivalent circuit, using basic network analysis laws, are 
found as follows. 
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For the transformer, 

V
F

ba
cd=
φ

 (5.30a) 

and 

( )v v Ip p
1 2 2− = −φ  (5.30b) 

and for the rest of the circuit, 

V
I

j C
Vba=

−
+2

0ω( )
, (5.30c) 

V = IZE (5.30d) 

I' = I1 + I2, (5.30e) 

I = -I', (5.30f) 

F Z Z v Z v Fp
a b

p
b

p
cd1 1 2= + − +( )  (5.30g) 

and 

F Z v Z Z v Fp
b

p
a b

p
cd2 1 2= − + +( ) . (5.30h) 

The boundary conditions give, 

F
p
1 = - Zr1 v

p
1 , (5.30i) 

F
p
2 = - Zr2 v

p
2. (5.30j) 

At open circuit condition ZE = ∝ and I = 0. 

TRANSFER FUNCTION 

Using the Eqs.(5.30), the relationship between the velocity and the open circuit voltage is 
found as, 

V

v

Z Z

j C Z Z Zp
a r

a b r2

1

0 1

=
− +

+ +
φ

ω
( )

( )
. (5.31) 

If the velocity input, v
p
2(t) is assumed to be an exponential function, ejωt, then the open circuit 

voltage output will be, 

V t
Z Z

j C Z Z Z
ea r

a b r

j t( )
( )

( )
=

− +
+ +

⋅
φ

ω
ω1

0 1

. (5.31a) 
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Assuming the system to be linear, the open circuit voltage output for an arbitrary velocity 
function can be written9 as, 

V
Z Z

j C Z Z Z
Va r

a b r

p( )
( )

( )
( )ω

φ
ω

ω=
− +

+ +
⋅1

0 1
2 , (5.31b) 

where V
p
2(ω) and V(ω) are Fourier transforms of v

p
2(t) and V(t) respectively. 

V H Vre
p( ) ( ) ( )'ω ω ω= ⋅1 2 , (5.31c) 

where, 

H
Z Z

j C Z Z Zre
a r

a b r
1

1

0 1

' ( )
( )

( )
ω

φ
ω

=
− +

+ +
, (5.31d) 

the velocity to open circuit transfer function of the receiving transducer. 

But, the desired one is the transfer function is the one from the free field pressure, P, to open 
circuit voltage, V. This transfer function, Hre1(ω), can be written as, 

V

P

V

V

V

Pp

p( )

( )

( )

( )

( )

( )

ω
ω

ω
ω

ω
ω

= ⋅
2

2 . (5.32) 

The first term in Eq.(5.32) is found in Eq.(5.31d) and the second term is found in Eq.(3.5) in 
Chapter 3. The Fig.(3.2) in Chapter 3 shows the equivalant circuit representing plane waves 
incident on the receiving transducer, where P4 is the free field pressure, Zin is the input 
mechanical impedance of the receiving transducer, U is the particle velocity of the transducer 
face, Zr is the radiation impedance and A is area of receiver. The notations in Fig.(3.2) have 
the following relationship with the notations used in this chapter; P4 ≡ P, as pointed in the 

beginning of this section Zin ≡ Zr2, U = -V
p
2. Then the Eq.(3.5) in the present notation would 

be, 

V

P

A

Z Z

p

r r

2

2

2= −
+

. (5.33) 

Combining Eqs.(5.31d) and (5.33) gives, 

H
A

j C

Z Z

Z Z Z Z Zre
a r

a b r r r
1

0

1

1 2

2
( )

( )

( )( )
ω φ

ω
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+
+ + +

. (5.34) 

Using the Eqs.(5.30), Zr2 is found as, 

Z Z Z Z
Z

Z Z Zr r a b
b

a b r
2

2

1

= + + −
+ +

 (5.35) 

Substituting for Zr2 in (5.34) gives, 


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CHAPTER 5 EFFECTS OF TRANSDUCER DYNAMICS ON PULSE FORMING 

 - 78 - 

or 
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or 
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+

 (5.36c) 

IMPULSE RESPONSE 

The inverse Fourier transform of the Eq.(5.36c), in principle, will give the impulse response. 
But, for the same reasons stated under the sec(5.2.1.1), Eq.(5.36c) is transformed to Laplace 
domain. The Eq.(5.36c) looks the same as Eq.(5.9) except the factor 2A/jωC0. Therefore, the 
free field pressure to open circuit voltage transfer function, Hre1(s), can be written in the 
Laplace domain as, 

H
A r

sC Z

r e r e

r r ere
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1 1 1
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where 
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0 1

 (5.37b) 

Taking inverse Laplace transform of Eq.(5.37a) gives, 
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5.3.1.2 TRANSCAD MODEL 

The Fig.(5.17) shows the equivalent circuit of the receiver due to the Transcad model. 

 
Figure 5.17 Equivalant circuit  of the distributed, lossey model for the receiving transducer element.(From 

Ref.3) 

TRANSFER FUNCTION 

The free field pressure to open circuit voltage transfer function of the receiver, Hre3(ω), due to 
the Tranacad model is given by, 

( )
)(

)(
)(

2

)(

)(
)(

1

0
13

0

ra

ra
brba

R

re

ZZ

ZZ
ZZZZCj

A

P

V
H

+
+++++

== φ
ωω

ωω . (5.39) 

This transfer function is not explicitly given in the Transcad report3. But it can easily be found 
using the following equations in the TRANSCAD report. Substituting the Eq.(2.1.1) with θ = 
0, Eq.(2.2.3) with Z

m
N = Zr2, Eq.(2.2.5) for the no matching condition, and Eq.(2.2.14) with ZE 

= ∝ in the Eq.(2.1.3) gives the transfer function, Hre3(ω). Zr2 can be found from the 
Eq.(2.2.13) imposing the condition ZE = ∝. 

5.3.2 CALCULATIONS 

In this section the impulse response and the transfer function of the receiving transducer, 
developed in the previous section, are presented in plots and the behaviour of the plots are 
discussed. 

IMPULSE RESPONSE 

The Fig.(5.18) shows the free field pressure to open circuit impulse response of the receiving 
transducer. 
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Figure 5.18 Free field pressure to open circuit voltage impulse response of the receiving transducer. The time 
axis is normalised to the reverberation period, τ0, of the transducer element. 

The Eq.(5.38) is simulated, for the Mason model, with a = 4.51mm, l = 10.128mm and the 
specifications of the PZT-5A for the material constants. The backing and radiation impedance 
are 3.0e5 and 419.35rayls respectively. With the same parameters as above, for the Flosim 
model, absorption, QE = 50 and QM = 75, is included. And for the Flosim model, the inverse 
Fourier transform of the open circuit transfer function was calculated using IFFT. 

The impulse response of the Flosim model starts with that of the Mason model and because of 
the absorption in the element, deviates as time increases. In the beginning of the response, the 
Flosim model shows some oscillation. This is because of the trunction of the frequency 
spectrum. 

TRANSFER FUNCTION 

The Fig.(5.19) shows the free field pressure to open circuit voltage transfer function of the 
receiving transducer. The parameter used for the simulations are the same as those used for 
the impulse response. 

The transfer function of the receiving transducer at open circuit conditions, found in 
Eq.(5.36c), is comparable to the transfer function of the simplified model of the transmitter, 
found in Eq.(5.9), except the factor, 2A/jωC0. Zr2 in Eq.(5.9) denotes the radiation impedance, 
Zr. Because of the ω in the denominator, the magnitude of the transfer function of the receiver 
decreases with frequency. The absorption has reduced the resonant tops compared to that of 
the Mason model. 

The phase of the transfer function of the transmitter changes between π/2 and -π/2, whereas, 
because of the j in the denominator in the Eq.(5.36c), the phase of the receiver changes 
between 0 and -π. The phase response of the transfer function due to the Flosim model starts 
out with that of the Mason model and later, at high frequencies, deviates because of the 
absorption. It should be noted that the phase response due to the Flosim model is shifted in the  
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positive direction than that of the Mason model. It is very much visible in low frequencies of 
the response. This may be a consequence of the way of implementation of absorption in this 
model. This may be explained as follows. The plane wave pressure to open circuit voltage 
transfer function of the receiver due to Flosim model is given in Eq.(5.39). This equation may 
be further simplified using the expression for R0 given in Eq.(5.17) as follows. 
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Figure 5.19 Free field pressure to open circuit voltage transfer function of the receiving transducer. 

(a)Magnitude and (b)Phase. The frequency axis is normalised to the half wave frequency of the 
transducer element. 
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Consider the transfer function due to the Mason model in Eq.(5.36c). As explained in the 
previous pargraph, the phase of the first term, -π/2, reduce the phase of the second term from  
(π/2  -π/2) to (0  -π). But, in the transfer function due to the Flosim model, Eq.(5.40a), 
the phase of the first term is greater than -π/2 and faild to reduce the phase of the second term 
to (0  -π). This may be the reason for the phase of the transfer function is more positive 
than that of the Mason model in the low frequencies. 

Since the phase of the first term of Eq.(5.40a) is indipendant of frequency, the whole 
spectrum is given a positive phase shift. The Mason model is causal, known from its impulse 
response. Since, as seen before, the phase response of the Flosim model is shifted in the 
positive side compared to that of the Mason model, the Flosim model will give a non causal 
response. 
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CHAPTER 6 

TOTAL ACOUSTIC RESPONSE 

6.1 INTRODUCTION 

In Chapter 4 and in Chapter 5 the effects on the form of the transmitted pulse due to 
diffraction and transducer dynamics were discussed separately. In all circumstances a uniform 
sinusoidal burst was used to illustrate the effects. In this chapter a sinusoidal voltage signal is 
used as an input signal to the transmitting transducer and the changes on its form are observed 
at nodes 2, 3 and 5, shown in Fig.(3.1) in Chapter 3, and explained. 

In Chapter 5 the effects of the dynamics of a transducer element with backing was discussed. 
In this chapter a backed transducer with a matching layer is considered and the major effects 
of the matching layer on pulse forming are discussed. In order to distinguish the difference the 
signal produced by the matched transducer is compared with that of an unmatched transducer. 

A time domain convolution was mainly used to calculate the pulse forms in Chapters 4 and 5. 
It was realised that the time domain techniques are tedious and time consuming. Therefore the 
frequency domain techniques were preferred to calculate the total pulse. At the end of each of 
the chapters 4 and 5 the pulse forms calculated by the time domain techniques have been 
compared with the corresponding results calculated by their frequency domain counterparts. 
In this chapter the pulse forms are calculated using only frequency domain techniques namely 
the Fourier methods. 

6.2 TRANSDUCER MODEL 

In chapter 5 a single transducer element was used to explain the basic transducer action and 
its influence on pulse forming. In this chapter a more realistic transducer models are used for 
the transmitting and receiving transducers. Actually the models represent the transducers used 
in the experiment; mas01 as transmitter and mas02 as receiver. The details of the modelling of 
the transducers is found in Ref.15. The models are achieved by empirically fitting the 
magnitude of transmitting sensitivity of the model to the magnitude of the measured 
transmitting sensitivity of the transducer. The models have two main discrepancies; 1) some 
parameters found for the transducer model is different from that of the real transducer, 2) the 
electrical properties of the model is not in agreement with that of the measured. The later 
gives an incorrect simulation result for output voltage of the receiving transducer. However in 
Ref.15, the author cleverly over come the problem by replacing the electrical input impedance 
by its measured data, i.e. by multiplying the spectrum of the voltage signal with the transfer 
function, Z

E
in,M ⁄ZE

in,S, where Z
E
in,M is the measured electrical input impedance of the transducer 

and Z
E
in,S is simulated electrical input impedance of the transducer model. This is possible 

because, the electrical input impedance of the transducer is explicitly show up in the 
expression for the output voltage while it is written in terms transmitting sensitivity of the 
receiving transducer instead of its receiving sensitivity, assuming the transducer is reciprocal. 
The electrical input impedance of the receiving transducer(mas02) and of its model are shown 
in Fig.(6.1). 
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Figure 6.1 The measured(måling) electrical input impedance of mas02 and the simulated(simulering) 

electrical input impedance of the fitted transducer model as functions of frequency(frekvens). (a) 
Magnitude and (b) Phase angle(fasevinkel) in degrees(grader). These plots are copied from Ref.15 
with the permission of the author. 

6.3 CALCULATION 

The velocity signal, u2(t), and its frequency spectrum, U2(ω), of the transmitting transducer for 
a uniform sinusoidal voltage burst are calculated using the FLOSIM program. Then, using the 
FIELDSIM program the free field pressure, p4(t), and its frequency spectrum, P4(ω), are 
calculated. Finally, the output voltage, for the calculated free field pressure, is calculated 
using the FIELDSIM program. This program uses the free field pressure to voltage transfer 
function  
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Figure 6.2 Form of the (a) Input signal, the velocity signal at node 2 while the transducer is (b) not matched 
and (c) matched to the medium. The particle velocity is multiplied by the area of the transducer. 

calculated by the FLOSIM program to calculate the voltage output. The volume velocity is 
presented instead of the particle velocity as FLOSIM calculates. The volume velocity is the 
particle velocity multiplied by the area of the transducer. The transfer functions are used 
accordingly. That is, for transmitter, voltage to volume velocity transfer function; for 
propagation, volume velocity to pressure transfer function. But for simplicity, volume 
velocity is called velocity in the following discussion. 

The input signal used for the simulation in this chapter is a CW type sinusoidal burst of 
frequency 215kHz and amplitude 1 volt with 150 cycles, as shown in Fig.(6.2)(a). Its 
frequency spectrum is shown in Fig.(6.3)(a). The velocity output of the unmatched transducer 
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for the above input signal is shown in Fig.(6.2)(b). The nature of this signal may be explained, 
qualitatively, as follows. The frequency spectrum of this signal, shown in Fig.(6.3)(c), is  
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Figure 6.3 Magnitude of the frequency spectrum of (a) Input signal shown in Fig.(6.1)(a) and (c) signal at 

node 2 shown in Fig.(6.1)(b). (b)The magnitude and phase of the voltage to velocity transfer 
function of the unmatched transducer. 

found by multiplying the frequency spectrum of the input signal with the voltage to velocity 
transfer function, shown in fig.(6.3)(b). Since the transfer function has one resonance peak at 
225kHz, the velocity spectrum has two prominent peaks at 215kHz and 225kHz. The 
interaction of these two frequencies is seen mainly in the beginning of the signal, i.e., the 
beating type of behaviour. However, as time goes on the strongest of the frequency 
components takes over. That is, the signal stabilises at 215kHz. After 150 cycles there is no  
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Figure 6.4 Magnitude of the frequency spectrum of (a) Input signal shown in Fig.(6.2)(a) and (c) signal at 

node 2 shown in Fig.(6.2)(c) and the magnitude and phase of the (b) voltage to velocity transfer 
function of the matched transducer. 

driving signal, the transducer vibrates at its natural resonance frequency, 225kHz and the 
signal dies off gradually. The frequency variation through the signal is estimated using the 
consecutive zero crossings and plotted in Fig.(6.5). The zero crossings are calculated by linear 
interpolation method using every pair of consecutive positive and negative values of the 
signal and their corresponding times. The velocity output of the matched transducer is shown 
in Fig.(6.2)(c) and its frequency spectrum in Fig.(6.4)(c). This spectrum is found, as in the 
previous case, by multiplying the frequency spectrum of the input signal with the voltage to 
velocity transfer function of the matched transducer shown in Fig.(6.4)(b). The transfer 
function has two resonance peaks around 210kHz and 228kHz. Since the input spectrum has 
its peak at 215kHz, beating type of behaviour of the transient region of the velocity signal 
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must be the result of the interaction of these three frequencies. After a while the signal 
stabilises to the strongest of these three frequencies, 215kHz. As in the previous case, after 
150 cycles the signal dies off gradually. But, since the transducers has two resonance 
frequencies, as shown in Fig.(6.4)(b), the decaying part of the signal, unlike the unmatched 
case, shows a beating effect of the two frequencies. And as the time goes on the transducer 
vibrates at its stronger resonance frequency, 228kHz. The frequency variation through this 
signal also estimated and plotted in Fig.(6.5) with the unmatched case. 
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Figure 6.5 The frequency variation through the pulse calculated using consecutive zero crossings. 

The Fig.(6.6)(a) and (b) show the first 1.5 periods and the first 12 periods of the velocity 
signals shown in Fig.(6.2) respectively. The velocity signal for the unmatched case starts at 
time t = 0, i.e. immediately after the voltage is applied to the transducer. And, for the matched 
case the signal starts with a time delay. This time delay is the time taken by the wave to travel 
through the matching layer. In this particular simulation where the velocity of sound in the 
matching material, cM = 1027m/s, thickness of the matching layer, tM = 1.215mm and the 
frequency of the input signal f = 215kHz, the delay, tMf/cM, is approximately 0.25 period of 
the input signal. 

In addition to the difference in time delays, there are some other important differences 
between the velocity bursts produced by the unmatched and the matched transducers. The 
velocity burst produced by the unmatched transducer is small in amplitude and long in 
duration compared to that of the matched transducer. This differences may be explained 
qualitatively, in terms of flow of energy, as follows. The reflection coefficient, r, is defined in 
Eq.(5.7e) and can be found1 in any text book on waves. The power reflection and transmission 
coefficients are given1 by Rπ = |r |2 and Tπ = 1 - Rπ respectively and, for normal incidence, the 
power transmission is equal to the energy flow per unit time. 

In the case of the unmatched transducer, because of the large difference in the impedance of 
the transducer material and the load(air) a large amount of the energy of the wave hitting the 
transducer-air interface is reflected back into the transducer. This makes the transducer to 
vibrate for a long time until it looses all the energy. As a result the output signal is long in 
time and small in amplitude. In contrast, comparatively more energy of the wave hitting the 
transducer-matching layer interface is transmitted into the matching layer and of which a large 
amount of energy is transmitted at the matching-load interface in to the load(air). This makes 
the output velocity signal large in amplitude and short in duration compared to that of the 
unmatched case. An approximate calculation would show the difference clearly. The 
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impedance of the transducer, matching layer and the load used in the simulation are 
Z0(33.75Mrayl), ZM(0.144Mrayl) and ZL (415rayl) respectively. The power transmission 
coefficient in the unmatched transducer is 
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Figure 6.6 The start of the velocity signals shown in Fig.(6.2)(b) and (c). (a) First 1.5 periods and (b) First 12 

periods. 
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Similarly, for the matched transducer, if the absorption is omitted, the power transmission 
coefficient is 
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Since ZL « ZM « Z0, the transmitted power in the matched transducer is approximately four 
times larger than that in the unmatched transducer. This shows that the power transmission is 
increased by using a matching layer. The transmitted force can also be found in a similar 
fashion using the corresponding force transmission coefficient. But this estimated force is just 
for one wave. The output signal is the addition of several such waves reflected between the 
transducer faces and the matching layer faces and thus of different magnitudes and phase. In 
addition, the output signal contains the regeneration contribution and the absorption 
reductions due to both transducer and matching layer materials. 

The calculation of the output signal using the above method is very difficult. However, the 
first cycle of the output signal can be calculated easily using this method. The following is the 
calculation of the signal up to the first reverberation time, i.e. until the time of arrival of the 
wave originated at the back face of the transducer element. 
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The voltage input used in the simulation can be represented as, 

v(t) = sinωt 0 ≤ t ≤ 150T, (6.3) 

where T is the period. 

The velocity output, y1(t), of the transducer up to the first reverberation time is given by the 
convolution of v(t) with the first term of the voltage to velocity impulse response of the 
transducer given in Eq.(5.7a). 

y t
Z Z

t e v tt
1

0 2

( ) ( ) ( )=
+

⋅ + ⊗φ δ β β  0 ≤ t ≤ τ0, (6.4a) 

where τ0 is the reverberation time of the transducer element. 
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A simple manipulation will result, 
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Assume Z2 is real. If Z2 = ZL then y1(t) = y
ta
1(t), the velocity of the transducer-air interface of 

the unmatched transducer. 

Similarly, if Z2 = ZM then y1(t) = y
tm
1 (t), the velocity of the transducer-matching interface. The 

force transmitted into the matching layer is then y
tm
1 (t)⋅ZM and the velocity at the matching 

layer-air interface, y
ma
1 (t), is, 
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where τM is the transit time in the matching layer. Since ZL « ZM, 

y
ma
1 (t) ≈ 2y

tm
1 (t). τM ≤ t ≤ τM+τ0 (6.5b) 

Since ZL « ZM « Z0, 
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tm
1 (t) (6.6) 

Comparing the Eqs.(6.6) and (6.5b) gives the velocity output of the matched transducer up to 
the first reverberation time is approximately two times larger than that of the unmatched 
transducer. It should be noted that the velocity signal of the matched transducer is suffered an 
absorption loss. However, this loss may be neglected since the matching layer is very thin and 
the absorption coefficient is very small. In the simulation where the thickness of the matching 
layer, lM = 1.215mm and the absorption coefficient, α/ω = 1.623e-5 Nepers*sec/rad*m, the 
reduction in amplitude for 250kHz wave is approximately 0.004dB. The parameter used here 
are found for the model fitted for the real transducer element. 
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The matching has shorten the length of the output signal. In other words the matching has 
increased the bandwidth of the transducer. The increase in bandwidth can also be achieved by 
increasing the backing impedance but at a cost of the efficiency of the transducer. 

The effect of matching on the shape of velocity signal has been discussed. In the rest of the 
analysis and discussion velocity output of the matched transducer will be used. The 
Fig.(6.7)(a), (b) and (c) show the free-field pressure wave form at the centre of the receiving 
transducer calculated by the plane wave model, far-field model and the near-field finite 
receiver model respectively for the velocity signal, shown in Fig.(6.2)(c), produced by the 
matched transducer. 

The Fig.(6.8) show (a)the spectrum of the input velocity signal, (b)velocity to free field 
pressure transfer function and (c)the spectrum of the output free field pressure signal due to 
the far-field model. Since the overall shape of the far-field and near-field pressure signals are 
very much the same, spectrum of one of the signals, due to the far-field model, is shown. For 
comparison, the transfer functions of both models are shown in Fig.(6.8)(b). The parameters 
used in the simulations are; c = 344.35m/s, a = 4.51mm, ρ0 = 1.20kg/m3 

The pressure wave due to the plane wave model is just a multiplication of the velocity by the 
characteristic impedance of air(ρ0c = 414.6rayl) and with a pure time delay. This can be seen 
from the plane wave transfer function, Eq.(4.19) in Chapter 4. Therefore, it looks like the 
velocity signal except the amplitude. 

The Fig.(6.9)(a) shows the beginning of the pressure signals shown in Fig.(6.7) up to one 
period. Fig.(6.9)(b) compares the first 12 periods of the plane wave and near-field pressures 
and Fig.(6.9)(c) compares the same number of periods of the far-field and near-field 
pressures. Fig.(6.9)(b) shows the reduction in amplitude and the advancement in phase due to 
diffraction. The reduction in amplitude in the initial periods as shown in Fig.(6.9)(a) will give 
difficulties in signal detection. The Fig.(6.9)(c) shows the difference between the signals due 
to the near-field finite receiver model and that of the far-field model. 
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Figure 6.7 Free-field pressure at the centre of the receiving transducer by (a) Plane wave model, (b) Far-field 

model and (c) Near-field finite receiver model. 
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Figure 6.8 (a)The frequency spectrum of velocity signal at the transmitter face. (b)The velocity to free 

field pressure transfer function. (c)The spectrum of the free field pressure wave at the centre of 
the receiver due to the far-field model. 

The pressure signal due to the far-field model shows some undulating variations. This can be 
explained as follows. Consider the velocity signal produced by an unmatched transducer. The 
major contributors in building up the first few cycles of this signal are the waves resulted 
from direct reflections and transmissions at the transducer faces. This construction process is 
explained in Chapter 5. Since these waves are of different amplitudes and come at time 

0Nt τ= , 
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 where N is an integer and τ0 is the reverberation time of the transducer element, the velocity 
signal has breaking points at times t = Nτ0. The first breaking point is visible, for example see 
Fig.(5.6), and the rest are smoothed out, by the addition of several such waves and the 
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Figure 6.9 The start of the pressure signals at the centre of the receiving transducer shown in Fig.(6.8). 

(a)First period, (b) First 12 periods of the signals due to Near-field finite receiver model and plane 
wave model and (c)First 12 periods of the signals due to Far-field model and Near-field finite 
receiver model. 

regeneration contributions, and thus not visible. In a matched transducer the number of 
breaking points are increased because of the waves result from reflections at the matching 
layer faces. The breaking points are associated with high frequency components. When this 
signal is send through the filter of the far-field model the high frequency components are 
amplified. And the invisible breaking points in the velocity signal are represented by jumps 
and visible in the far-field pressure signal. In the voltage to velocity impulse response of the 
transducer, the waves mentioned earlier in this paragraph are represented by impulse spikes. 
Therefore the spikes in the impulse response can be used to locate the breaking points in the 
signals. The Fig.(6.10) shows the voltage to velocity impulse response of the matched 
transducer and the far-field pressure signal. The impulse response is shifted by propagation 
time in the medium in order to match its time scale with that of the pressure signal. It can be 
seen from the Fig.(6.10) that every jump in the pressure signal is associated with an impulse 
spike in the impulse response. Let the transducer-matching layer interface, transducer-backing 
interface and matching layer-medium interface are denoted by face numbers 1,2 and 3 
respectively. When a  
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voltage signal is applied to the transducer acoustic waves are produced at both faces 1 and 2 
and after reflections and transmissions at the transducer and matching layer faces these waves 
finally transmitted to the medium through face 3. The path followed by each of these spikes in 
the transducer element and in the matching layer are shown in Fig.(6.10). 

 Spike # Path 
 1 1→3 
 2 2→1→3 
 3 1→3→1→3 
 4 1→2→1→3 
 5 2→1→3→1→3 
 6 1→3→1→3→1→3 
 
 
Figure 6.10 The voltage to velocity 
impulse response of the transducer with the 
corresponding far-field pressure and the 
paths followed by impulse spikes in the 
transducer element and in the matching 
layer. 

The impulse spikes are smeared around their centre because of the absorption. This may cause 
some error in the size of the jump shown in the plot.  

In the propagation model no absorption is implemented. But, in a practical situation, where 
the absorption is in action, the effects shown in the signal will be smoothed out and the 
undulating variations may not be visible. Further more, the far-field model is very idealistic 
whose transfer function is increasing monotonically with frequency and the phase is π/2, 
independent of the frequency. The near-field finite receiver model is more realistic and 
approaches the far-field model at larger distances. At larger distances the absorption loss also 
will be large. Therefore the chance of detecting the above described effects is reduced. 

The Fig.(6.11)(a),(b) and (c) show the open circuit voltage output signal of the receiving 
transducer for the free-field pressure calculated by the plane wave model, far-field model and 
the near-field finite receiver model respectively. The time axes are normalised to the period of 
the input voltage burst. 

The Fig(6.12)(a),(b) and (c) show the frequency spectrum of the free field pressure wave form 
due to the far-field model, free field pressure to open circuit transfer function of the receiving 
transducer and the frequency spectrum of the open circuit voltage output of the receiver 
respectively. Since the overall shapes of the pulses are very much the same, the spectrums of 
the pulse due to the far field model is only shown in Fig.(6.12). 

The overall shape of the signals are very much the same because the input pressure signals are 
very much the same. The transient parts of the signals are greatly reduced compared to the 
corresponding pressure signals in Fig.(6.7). In other words, the band width of the signals are 
increased. This may be explained by the change in the spectrums shown in Fig.(6.12). The 
spectrum around 245kHz is improved by the peak of the receiver transfer function at 245kHz. 
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Figure 6.11 Open circuit voltage output of the receiving transducer for the input free field pressure calculated 

by (a) Plane wave model, (b) Far-field model and (c) Near-field finite receiver model. 
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Figure 6.12 (a) The frequency spectrum of the free-field pressure at the centre of the receiving transducer due 
to the far-field model, (b) The free-field pressure to open circuit transfer function of the receiving 
transducer and (c) The frequency spectrum of the open circuit voltage output signal of the 
receiving transducer. 
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Figure 6.13 The start of the open circuit voltage output signals of the receiving transducer shown in Fig.(6.11). 

(a) First period of the signals due to Plane wave and Near-field models. (b) First period of the 
Near-field and far-field models. (c) First 17 periods of the signals due to Near-field and far-field 
models. 

The Fig.(6.12)(a) compares the first period in beginning of the open circuit voltage output 
signal calculated from the free field pressure due to plane wave and near-field finite receiver 
models and (b) compares the similar quantities due to far-field and near-field finite receiver 
models. The expected start of the signals are indicated by small circles. This time is the time 
taken by the sound wave to travel from the matching layer-transducer interface of the sending 
transducer to the matching layer-transducer interface of the receiving transducer. That is 
(tT,M/cT,M + tR,M/cR,M + d/c), where tT,M and tR,M are the thickness of the matching layers of the 
transmitting and receiving transducers respectively, cT,M and cR,M are the velocity of sound in 
the matching layers of the transmitter and the receiver respectively, d is the inter transducer 
distance and c is the velocity of sound in the medium. 

The voltage signals shown in Fig.(6.12), as pointed out in Sec.(6.2), is not final. To find the 
exact value, the signals have to be modified with the frequency domain transfer function Z

E
in,M ⁄

Z
E
in,S. This modification is not done here. But the general behaviour of the transfer function is 

used in the qualitative discussion of certain aspects. From the Fig.(6.1) it is seen that the 
magnitude of the transfer function is almost -20dB with some fluctuation approximately 
between 170 and 270 kHz. And, except in this frequency range, the phase is almost zero. The 
fluctuation in the transfer function would cause distortions in the shape of the signal. The 
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magnitude of the steady state part of the signal will be reduced. It cannot be predicted whether 
the individual peaks in the transient part of the signal become larger or smaller. 

The first, second and third positive half cycles(peaks) of the voltage signal due to the near 
field finite receiver model in Fig.(6.12) are 98dB, 71dB and 56dB down to the steady state 
value respectively. These numbers will be altered after the modification mentioned in the 
previous paragraph. However, since the fluctuation in the transfer function is not very large, it 
can be expected that the relative sizes of the peaks to the steady state value will not altered 
very much. If it can be assumed that the signal conditioning units in the rest of the system are 
ideal, i.e. the amplifier, filter and termination have very large input and very low output 
impedance and have wide band widths, then the above mentioned relative sizes of peaks to 
the steady state value will be unchanged. For a system which capable to give, for example, 
50dB S/N ratio, the first two peaks are undetectable. And the third can be detected and 
identified correctly. 

6.4 DISCUSSION 

In this chapter the transmission of a sound signal through the acoustic part of an experimental 
system is studied. The effects of the matching layer is discussed. The changes on the shape of 
the signal in terms of the transfer function are discussed. The size of initial half periods 
indicate that they may not be detectable. These are just an indication of the use of a simulation 
model. Using such a model like this one can study the system for transducers with different 
matching and backings, for different excitation frequencies, different termination of the 
receiving transducer and so on. The knowledge from the study will help one to plan the 
experiment efficiently and make the measurements correctly. 

In the simulations in this chapter, a sinusoidal burst of amplitude 1 volt is used. And the rest 
of the discussions are based on the assumption that the system is linear and the transmitting 
sensitivity of the transducer which used to model the transducer was measured in the same 
environmental conditions as used in the simulation. But the real system was found to have 
non-linear behaviour. That is the response of the system to varying input voltage is not linear. 
In such a situation the transmitting sensitivity of the transducers must be measured not only 
with the same environmental parameters but also with the same input voltage as used in the 
simulation and the model for the transducers have to be found accordingly. This is not a 
complete remedy for the problem. However, if the non linearity is not large then the simulated 
result can be used for qualitative identification of the experimental result. 
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CHAPTER 7 

EXPERIMENT 

7.1 INTRODUCTION 

An experiment was performed to verify some of the effects shown in chapter 4 and chapter 5. 
In the beginning of this chapter the experimental arrangement is presented and the necessary 
features of the instruments involved in the experiment are described. Then the experimental 
procedure is described in detail. Finally the results of the experiment are analysed and 
discussed. The experiment was done by me and Vervik in co-operation. 

7.2 EXPERIMENTAL  ARRANGEMENT 

An experimental set-up which designed and already in use at CMR was used in our 
experiment. The Fig.(7.1) shows the block diagram of the experimental arrangement. The 
instruments represented by the different blocks are described bellow. 

 

Fig.(7.1) Block diagram of the experimental arrangement 

SYNTHESIZER / FUNCTION GENERATOR (3325A, Hewlett-Packard) 

This generator outputs a sinusoidal signal with accuracy of ±1Hz at the frequency range used 
in the experiment. 
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GATEING SYSTEM (4440, Brüel & Kjær) 

The transmitting section of the instrument, used in the experiment, is capable of giving out 
maximum 15V peak tone bursts of frequency up to 200kHz ±0.5dB through output terminal, 
PULSE OUT, while the input terminal, GEN. INPUT, is connected to a signal generator. The 
pulse rate and duration are adjustable within 0.5 to 15Hz and 100µs to 1s respectively. The 
GEN. INPUT can accept maximum of 1Vrms. The output impedance of PULSE OUT is less 
than 1Ω. Another terminal, PULSE GATE OUT, delivers a digital signal which, contains the 
time information of the starting of the tone burst send by the PULSE OUT, can be used to 
trigger off the measuring device. The PULSE GATE OUT is TTL compatible and has an 
output impedance of 50Ω. 

MEASURING AMPLIFIER(2636, Brüel & Kjær) 

This instrument amplifies the signal fed into its DIRECT INPUT terminal then sends the 
amplified signal through a filter, finally amplifies the filtered signal once again and delivers at 
the output terminal, AC OUTPUT. The overall gain(the total amplification at input and at 
output) is from -30 to 100dB and can be selected in (10 ± 0.5)dB steps. The DIRECT INPUT 
terminal accepts maximum of 42Vrms and has an input impedance of 1MΩ. The output 
impedance at the terminal delivers the signal to the external filter, TO(Ext.filter)INPUT, is 5k
ΩThe input impedance of the terminal accepts the signal from the filter, 
FROM(Ext.filter)OUTPUT is 1MΩ. The output impedance of the AC OUTPUT terminal is 
10kΩ. 

FILTER(Wavetek Dual Hi/Lo Filter, model 442) 

This instrument consists two separate sections; one functions as high pass filter and the other 
as low pass filter. Each section has a frequency band width of 10Hz - 1.1MHz and roll off of 
24dB/octave. By connecting the output terminal of the high pass filter, OUT1, to the input 
terminal of the low pass filter, IN2, the instrument can be made to operate in a band pass 
mode. The input signal should be fed through the input terminal of the high pass filter, IN1, 
and the output can taken out from the output terminal of the low pass filter, OUT2. The input 
impedance and the output impedance of the instrument are 100kΩ and 50Ω respectively. The 
maximum input to the instrument is ±100Volts. 

WAVEFORM RECORDER(5180 A, HEWLETT PACKARD) 

This device(WR) can sample the analogue signal fed into one of its input channels with a 
sampling frequency up to 20MHz and store as 10 bit digital codes in a 16K memory. The 
stored wave form can be transferred to a computer diskette through a GPIB for further 
analysis. In the chop mode the signals connected to the channels A and B are sampled at the 
same time and stored. The sampling takes place alternatively between the two channels and 
the maximum sampling frequency is 5MHz per channel. The input channels accept from ±
100mV to ±10V. The input impedance of the channels are 10MΩ. 
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PulseLog 

This is a manu driven computer programme35 can be run on a IBM-AT compatible computer. 
The different options in the manu enable the user to document the important information of 
the experiment, initialise the WR and the signal generator and transfer the logged data to the 
computer. 

PC 

This is an IBM-AT personal computer. This control the WR and the signal generator using the 
PulseLog program and transfers the measurements made by the WR to a computer diskette. 

TRANSDUCERS(MAS 01 & MAS 02) 

MAS01 & MAS02 are high frequency narrow beam ultrasonic transducers, Model E-188/215 
of the Massa Products Corporation. MAS01 was used as the sender and MAS02 as the 
receiver. The maximum driving voltage of the transducers is 50Vp-p. Thickness and diameter 
of the transducer elements are 1.57mm and 9.02mm respectively. 

7.3 PROCEDURE &  RESULTS 

The transmitting and receiving transducers were clamped, facing each other, to the stands of 
an optical bench. The transducers were positioned so that their acoustical axes coincide. The 
distance between the transducers was set to ∼100mm and measured with an internal 
micrometer. Then the optical bench was placed in the cage together with the sensors of the 
thermometer and the hygrometer. The cage was used here to reduce any air currents which 
cause jittering of the signal and to reduce fast changes in the environment. The inside wall of 
the cage was made of cotton in order to reduce any possible reflections from the wall. The 
cage was kept in a chamber for several hours until the environmental conditions to be 
stabilised. 

When the environmental parameters changes very slowly the transducer terminals were 
connected to the rest of the experimental set-up as shown in the Fig.(7.1). The input voltage 
and frequency of the signal generator were set as such the gating system give out the intended 
voltage at the desired frequency. Then, the amplification of the measuring amplifier and the 
cut off frequencies of the filter were adjusted so that a good wave form is seen on the WR. 
With this measurement set-up a ten quick measurements were taken. That is; when the option 
"logdata" in the PulseLog program is chosen, the WR is set to the "output" mode. The WR 
immediately digitise the one shot input and the corresponding output signals and transfer the 
digitised data to the computer. And the computer save it in a diskett. The logging process 
being done in a matter of seconds. When the logging of the data is finished the WR is 
switched manually to the normal position and computer is returned to log the data again. This 
procedure was repeted ten times. Then another frequency for the input burst was chosen and 
the above procedure was repeated. Similarly, several measurement sets with different 
combinations of input voltages and input frequencies were taken. These measurements are 
denoted as X1-X10, X11-X20,...X91-X100 and called "X" measurements. Then the cage was taken 
out of the chamber and the separation of the transducers was changed to ∼200mm and 
measured with the internal micrometer. The set-up was put again in to the chamber and left 
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for hours to the environment to stabilise. Then measurements were taken as in the X 
measurements. The measurements were recorded as Y1-Y10, Y11-Y20,...Y51-Y60 and called "Y" 
measurements. Similarly, measurements for the transducer separation ∼400mm were taken 
and called "Z" measurements. A sample measurement set is shown bellow. 

 

 Temper-
ature[°C] 

Humid
-ity[%] 

Pressu-
re[mbar] 

X11 20.139 50.1 1010 

X12 20.140 50.1 1010 

X13 20.141 50.1 1010 

X14 20.142 50.1 1010 

X15 20.143 50.1 1010 

X16 20.144 50.1 1010 

X17 20.144 50.1 1010 

X18 20.145 50.1 1010 

X19 20.145 50.1 1010 

X20 20.146 50.1 1010 

 

 

Input voltage 15Vp-p 

Frequency of the input signal 210kHz 

Band-pass filter (40-400)kHz 

Amplfication 40Db 

WR channel A, rang  10 

WR channel B, rang  2 

 

 

 

 

 

 

7.4 ANALYSIS 

In this section the effect of diffraction on pulse forming will be discussed using the 
experimental results. The theory under the near-field finite receiver model in Chapter 4 is 
used for the analysis. Therefore, the analysis also can be considered as a varyfication of the 
diffraction model. The analysis is done in the following way. Consider the signal measured 
for two different separations of the transducers, z1 and z2. Using the signal measured for z1, 
the voltage signal for z2 is calculated. The calculated signal is then compared with the actual 
measured signal for z2. By doing this, the diffraction effect can be isolated. The theory for the 
calculation is derived shortly. 

THEORY 

Assuming the two measurements were taken at exactly the same environmental conditions 
and with the same input voltage and using Eq.(3.3) of Chapter 3, the spectrum of the voltage 
signal measured at distance z1, V6(z1,ω), can be written as, 
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V6(z1,ω) = H01(ω)H12(ω)H24(z1,ω)H45(ω)H56(ω)V0(ω) (7.1) 

and the spectrum of the voltage signal measured at distance z2 can be written as, 

V6(z2,ω) = H01(ω)H12(ω)H24(z2,ω)H45(ω)H56(ω)V0(ω). (7.2) 

Comparing the above two equations gives, 

V z
H z

H z
V z6 2

24 2

24 1
6 1( , )

( , )

( , )
( , )ω ω

ω
ω=  (7.3) 

In the experiment described above the measurement were not made at same environmental 
condition. Therefore, it is further assumed that the transducers and the electronics are stable 
for small change in the environmental parameters. The change in the environmental condition 
was considered only for the propagation medium. That is, the transfer function for the 
medium was calculated for the appropriate density(medium) and velocity of sound in the 
medium, 

V z
H z c

H z c
V z6 2

24 2 2 2

24 1 1 1
6 1( , )

( , , , )

( , , , )
( , )ω ρ ω

ρ ω
ω= . (7.4) 

This idea was implemented in a computer programme, DIF2FILD, in FORTRAN. The 
programme code is given in appendix(B-4). This program prompts the user for the voltage 
signal(time function) measured for distance between the transducers z1. It also ask the user for 
the following information of the two different measurement situations;(1) the density of the 
medium, (2) the velocity of sound in the medium, and (3) the distance between the 
transducers. Then outputs the predicted voltage signal that would be measured for the distance 
between the transducers, z2. The predicted wave form is compared with the wave form of the 
corresponding measured signal. The predicted output signal, however, cannot be expected to 
match with the actual measurement both in amplitude and in phase, specially, because of the 
absorption. 

Before using this programme to analyse the measured data, it was tested with purely 
simulated data. As all the simulated signal do not contain absorption, one can expect an exact 
match between the compared signals. The test was done as follows.  

Test 1 

First the voltage output signal for the separation of the transducers, z1, was simulated as 
described in sec.(6.3). This calculation is denoted as occasion1 for future reference. Similarly 
the output voltage signal for the separation of the transducers, z2, was simulated. And this 
calculation is denoted as occasion2. Then, using the voltage signal of occasion1, the voltage 
output for the separation of the transducers, z2, was calculated with the programme DIF2FILD 
and denoted as occasion12. Finally, with the plane wave option of the programme DIF2FILD, 
using the voltage wave form of occasion1, a plane wave form for the distance z2 was 
calculated. In the plane wave option of the programme DIF2FILD Eq.(7.4) was implemented 
with the corresponding plane wave transfer functions for H24(z2,ρ2,c2,ω) and H24(z1,ρ1,c1,ω).  

 

The parameters chosen for the calculations are, 
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 Occasion1 Occasion2 
 
 z(mm) 100.50 401.86 
 
 c(m/s) 344.073 344.229 
 
 ρ(kg/m3) 1.19476 1.17585 
 
The frequncy and the radius of the transducer used in this calculation are 210kHz and 4.51mm 
respectively. The difference between the calculated plane wave form and the wave form of 
occasion12 is due to geometrical diffraction and diffraction alone as absorption is not 
implemented. The Fig.(7.2) shows the difference between the zero crossings of the two wave 
forms. The difference in amplitude and in the zero crossings in the continuous part of the 
wave forms can be calculated directly from the diffraction correction formulas for continuous 
excitations, for example, the one in Ref.7. The diffraction correction formula in Ref.7 is 
implemented in the programme DIFFKORR in FORTRAN by Vervik15. Using this 
programme the diffraction correction between occasion1 and occasion2 is calculated and 
compared with that of calculated using the wave forms of occasion12 and the corresponding 
plane wave. This diffraction correction is same as that seen in the steady state part of 
Fig.(7.2). The diffraction correction in the Fig.(7.2) reaches 216.1ns, except a few points. The 
deviation of these few points is not explained. The mathematical calculation of the 
comparison is shown shortly. 
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Figure 7.2 Diffraction correction of the zero crossings, from the first to 125th, of the voltage signal for 

separation between the transducers, z2(occasion2) and z1(occasion1) calculated using the wave 
forms of occasion12 and the corresponding plane wave. 

 Occasion1 Occasion2 

 S( = 
z

a2/λ) 8.09 32.38 

 
 ka 17.29 17.28 
 
diffraction correction(phase) using DIFFKORR 68.060 84.440 
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Therefore the diffraction correction between occasion1 and occasion2 is (84.44-68.06)0 

  = 16.380 
The diffraction correction(phase) between occasion1 and occasion2 using the wave forms 
(continuous part) as described in the above paragraph is  = 216.1ns * 210kHz * 360 

  = 16.340 
The difference in the above two calculations is 0.040. This difference in phase corresponds to 
0.5ns in time. 

The diffraction correction in the transient part could not be checked with any other alternative 
method. 

Test 2 

The wave forms of occasion2 and occasion12 are compared. The Fig.(7.3) shows this 
comparison. 
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Figure 7.3 The wave forms calculated using the voltage signal at z1(occasion12) and calculated directly from 

the velocity signal at the transducer face(occasion2). 

The two wave forms overlaps each other so that they cannot be distinguished.  

The above two tests show that DIF2FILD predicts the voltage signal correctly for a given 
separation of the transducers using the output voltage signal for another given 
separation(smaller) of the transducers with the assumption that the transducers and the rest of 
the experimental system are remain unchanged for small environmental changes. Now, the 
programme DIF2FILD is ready to use. 

There are measurements, X, Y and Z, for three different transducer separations as presented in 
Sec(7.3). In the following analysis measured signals of Y and Z are predicted 
theoretically(with programme DIF2FILD) using the measured signal of X and compared with 
the corresponding measurements. In order to comply with the assumption, pairs of sets of 
measurements with minimum temperature difference were chosen. Each set of ten 
measurements were averaged to reduce the noise. For each set, for their respective averaged 
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temperature and humidity, velocity of sound and density of the medium(air) were calculated. 
Programmes LYDHAST and TETTHET in FORTRAN written by Vervik15 were used to 
calculated the velocity of sound in the medium and the density of the medium respectively. 
Absorption coefficients are calculated using the programme ABSORB in FORTRAN written 
by Cao35. The parameters of the chosen first pair of measurements are shown Table(7.1). The 
frequency of the bursts used in both cases was 210kHz. 

 Temperature
.(°c) 

Pressure 
(mbar) 

Humidity 
(%) 

Velocity 
(m/s) 

Density 
(kg/m3) 

Amplifica-
tion.(dB) 

Absorp. coef. 
(dB/m) 
 

X11-X20 20.142 1010 50.1 344.073 1.19476 40 8.9471 
 

Z1-Z10 20.395 995 49.9 344.229 1.17585 40 9.0970 
 

Table 7.1 Measured and calculated parameters of pair 1. 
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Figure 7.4 A portion of the measured input voltage signals used in a set of X11-X20(z = 100.50mm) 
measurements and Z1-Z10(z = 401.86mm) measurements. 

One of the assumptions of the analysis is that the input voltage signals used in the two 
measurement situations are same. The Fig.(7.4) shows the input voltage signals applied in the 
X11-X20 and Z1-Z10 measurements. The input signals have a small difference in amplitude. But 
this difference in amplitude can easily be accounted for, as long as the signals have same 
frequency. And these signals have very much the same frequency. 

Using the averaged signal of the measurements X11-X20, first, signal with plane wave 
propagation for the transducer separation z = 401.86mm is found. This signal is shown in 
Fig.(7.5)(a). As it propagated as plane wave, this signal is a time shifted version of the 
original signal, that is, the signal measured for the transducer separation 100.50mm.  
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Figure 7.5 Simulated output voltage signals for the transducer separation z = 401.86mm using the measured output 
voltage signals, measured for transducer separation z = 100.50mm with (a) Plane wave model, (b) Near-field 
finite receiver model. (c) is the measured output voltage signal for transducer separation z = 401.86mm. 
Measured signal belongs to the set Z1-Z10 and the signal used for the simulation belongs to the set X11-X20. 
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Therefore this signal can be used as a reference to see the change in the signal due to 
diffraction between the measurements for z = 100.50mm and z = 401.86mm. Fig.(7.5)(b) 
shows the simulated output voltage signal for the transducer separation z = 401.86mm with 
the programme, DIF2FILD, using the signal of X11-X20. Fig.(7.5)(c) shows the actual 
measured signal for the transducer separation z = 401.86mm. As the same amplification factor 
was used during the two measurements, as shown in Table(7.1), the relative values are 
presented to compare the signals in Fig.(7.5). 

The overall shape of the three signals are very much the same. Diffraction has not alter the 
overall shape of the signal. There are difference in the magnitude among the signals. The 
difference in level of the signals in Fig.(7.5)(a) and (b) is due to diffraction. The simulated 
signal in Fig.(7.5)(b) is larger than the measured signal, shown in Fig.(7.5)(c). This is 
generally anticipated as absorption is not implemented in the simulation programme and the 
actual signal suffered absorption. However, the predicted signal is smaller than it should be, 
because of the difference in the input signals shown in Fig.(7.4). 
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Figure 7.6 A portion in the start of the measured and simulated output voltage signals for the transducer 

separation 401.86mm are shown. The simulated signal was calculated using the measured output 
voltage signal, measured for transducer separation z = 100.50mm. The measured signal belongs to 
the set Z1-Z10 and signal used to the simulation belongs to the set X11-X20. 

To see the predicted and the measured signals more closely, a portion in the beginning of 
these signal are plotted and shown in Fig.(7.6). There is a considerable difference between the 
two signals. There can be number of factors caused this deviation; (1)the assumption that the 
characteristics of the transducers remain unchanged for the temperature difference(0.2530c) 
might be wrong. (2)absorption has not been implemented in the model, (3)errors in the 
measurements of temperature, humidity and transducer separation and (4)physical radius of 
the transducers has been used in the calculation instead of the effective radius, To check the 
first of the four factors listed above, another pair of measurements with even smaller 
temperature was chosen and analysed. 

Measurement sets of X91-X100 and Z31-Z40 were chosen as the second pair for the analysis. The 
necessary parameters of this pair are shown in Table(7.2). The frequency of the signal burst 
used in both measurements was 216kHz. 



CHAPTER 7 EXPERIMENT 

 - 110 - 

 Temperature.
(°c) 

Pressure 
(mbar) 

Humidity 
(%) 

Velocity 
(m/s) 

Density 
(kg/m3) 

Amplificat
-ion.(dB) 

Absor. coeff. 
(dB/m) 
 

X91-X100 20.480 1010 50.4 344.289 1.19324 30 9.4353 
 

Z31-Z40 20.472 995 50.0 344.279 1.17551 40 9.5350 
 

Table 7.2 Measured and calculated parameters of pair 2. 

First, as in the previous case, the input signals used in the two measurements are checked. The 
input signals are shown in Fig.(7.7). The signals are very much the same both in amplitude 
and in frequency. 
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Figure 7.7 A portion of the measured input voltage signals used in a set of X(z = 100.50mm) measurements 

and Z(z = 401.86mm) measurements. 

The Fig.(7.8)(a) and (b) show the predicted output voltage signal for the transducer separation 
z = 401.86mm, using the measured output voltage signal, measured for the transducer 
separation z = 100.50mm, with the plane wave model and the near-field finite receiver model 
respectively. Fig.(7.8)(c) shows the measured output voltage signal for the transducer 
separation z = 401.86mm. Different amplification factors has been used during the two 
measurements, X91-X100 and Z31-Z40, as shown in the Table(7.2). Therefore, to compare the 
signals, unlike the signals in Fig.(7.5), the absolute values of the signals are presented in 
Fig.(7.8). 

The plots in Fig.(7.8) also show that diffraction has not alter the main shape of the signal. The 
shape of the signals in Fig.(7.8) differ from that of in Fig.(7.5), the signals of the pair used in 
the previous analysis. This difference is due to the transducer dynamics. In the pair of 
measurements, used in the previous analysis, the transducer was excited with 210kHz 
frequency and in the pair, used in the later, with 216kHz. The Fig.(7.9) show a portion in the 
beginning of the predicted and the measured signals, shown in Fig.(7.8)(b) and (c). There is a 
considerable difference between the signals. The difference between this two signals looks 
very much the same as the difference between the signals in Fig.(7.6), the simulated and the 
measured signals of the previous case. The difference between the zero crossings of the two  
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Figure 7.8 Simulated output voltage signals for the transducer separation z = 401.86mm using the measured 

voltage signals, measured for transducer separation z = 100.50mm, with (a) Plane wave model, (b) 
Near-field finite receiver model. (c) is the measured output voltage signal for transducer separation 
z = 401.86mm. Measured signal belongs to the set Z31-Z40 and the signal used for the simulation 
belongs to the set X91-X100. 
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Figure 7.9 A portion in the start of the measured and simulated output voltage signals for the transducer 

separation 401.86mm are shown. The simulated signal was calculated using the measured output 
voltage signal for transducer separation z = 100.50mm. The measured signal belongs to the set 
Z31-Z40 and signal used to the simulation belongs to the set X91-X100. 

signals in both cases are found to be about 200ns. 

In the analysis of the second pair a more agreement in phase(zero-crossings) between the 
simulated and measured signals than in the previous pair, was expected. The reason is the 
temperature difference between the mesurements of the pair2 is smaller(0.0080c) than that of 
the pair1(0.2530c). Had the temperature difference between the measurements of pair1 been 
the reason for the difference in the zero-crossings of the simulated and measured signals of 
pair1 then the difference between the zero-crossings of simulated and measured signals of 
pair2 should be smaller than that of pair1. 

But, the results indicate that the variation in the transducer dynamics due to temperature 
difference in both cases cannot be a reason for the disagreement. And it also indicate that 
there must be some other systematic error to give a same amount of disagreement(∼200ns). 
There are three posibilities for the source of error which is common for both pairs; 1)The 
speed of sound in the medium used in the simulations are calculated using the programme, 
LYDHAST, based on theoritical and experimental data. The error in the data could have 
caused the systematic error. 2)Some inherent error in the measurement of the separation of the 
transducers, 3)Using the physical radius of the transducer instead of the effective radius. The 
disagreement can be a combination of the three possible errors mentioned above. 

Let the speed of sound, for example, be 344.289m/s. An error of 0.08m/s in the speed of 
sound could easily have caused approximately 200ns difference for the separation of 
301.86mm. 

To demonstrate, how an inherent error in the measurement of separation of transducers can 
cause a disagreement mentioned above, the following simulations were made for both pairs 
with z = 401.80mm instead of z = 401.86mm. The results for pair1 and pair2 are shown in 
Fig.(7.10) and Fig.(7.11) respectively. 
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Figure 7.10 A portion in the start of the measured voltage output signal for the transducer separation z = 
401.86mm and simulated output voltage signals for the transducer separation 401.80mm are 
shown. The simulated signal was calculated using the measured output voltage signal of the set 
X11-X20 for transducer separation z = 100.50mm. The measured signal belongs to the set Z1-Z10. 
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Figure 7.11 A portion in the start of the measured output voltage signal for the transducer separation z = 

401.86mm and simulated output voltage signals for the transducer separation 401.80mm are 
shown. The simulated signal was calculated using the measured output voltage signal of the set 
X91-X100 for transducer separation z = 100.50mm. The measured signal belongs to the set Z31-Z40.  

CALCULATION OF ABSORPTION  

A decaying plane wave can be written as, 

p = P0 e-αz ej(ωt-kz) (7.5) 

where α is the attenuation coefficient whose unit is m-1. 
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The amplitude attenuation in dB is given by, 
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Consider the near-field finite receiver model described in Sec.(4.2.2). The average pressure on 
the circular plane placed on the common axis with the sender, for continuous excitation, U0ejω

t, is given by Eq.(4.35). Absorption can be included to this case by putting ω/c = k, a complex 
wave number, and k = (k0-jα). Then the average pressure, 〈pab(z,ω)〉, can be written as, 
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where 

p c U ej t k z
0 0 0 0

0= −ρ ω( )  (7.9) 

is the plane wave. The diffraction correction both in magnitude and in phase, as in Ref.(7) and 
in Ref.(36), is given by the ratio of the average pressure to the exponentially decaying plane 
wave. That is, 
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It has been shown in Ref.(7) that, for α«k0, the effect of intrinsic absorption in the magnitude 
of the diffraction correction can be neglected. It is shown in Ref.(36) that the effect of 
intrinsic absorption in the phase of the diffraction correction can also be neglected when α«k0. 
Therefore, αs, in the right hand side of the Eq.(7.10) can be replaced by zeros. Then Eq.(7.10) 
can be written, using Eq.(4.40), as, 

p z e p zab
z( , ) ( , )ω ωα= − . (7.11) 

 = ⋅U H zab( ) ( , )ω ω24  (7.12) 

where, 

H z H z eab
nf

z
24 ( , ) ( , )ω ω α= − , (7.13) 

is the velocity to free field pressure(average) with absorption. Then, using this transfer 
function, Eq.(7.4) can be modified, to include the absorption, as, 
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In the above equation, V
ab
6 (z2,ω) is the received voltage signal with absorption, the term in the  
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brackets is the received voltage signal without absorption(see Eq.(7.4)) and the term with 
exponential is the absorption factor. Then, Eq.(7.14) can be written as, 

V z V z eab z z
6 2 6 2

2 1( , ) ( , ) ( )ω ω α= ⋅ − − . (7.15) 

Inverse Fourier transform of the both sides of the Eq.(7.15) will give the corresponding time 
signals, 

v t v t eab z z
6 6

2 1( ) ( ) ( )= ⋅ − −α . (7.16) 

v
ab
6 (t) in the Eq.(7.16) can be taken as the measured signal. Then, this equation can be used to 

calculate the absorption between the distance z1 and z2, using the calculated and measured 
signals in Figs.(7.5) and (7.8). The measured signal contains both the diffraction effect and 
absorption and the simulated signal contains only the diffraction effects. 

The absorption coefficient is, then, 

mdB
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),(
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26
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
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










. (7.12) 

Calculation of absorption of the measurement pair1 needs an additional data processing. The 
simulated signal has to be corrected for the difference in the input voltage signals shown in 
Fig.(7.4). Consider the Eqs.(7.1) and (7.2). The frequency spectrum of the input signal, V0(ω), 
in these equations are no longer equal. As the frequencies of the input signals are equal, the 
spectrums of the input signals in Eqs.(7.1) and (7.2) can be replaced by A1V(ω) and A2V(ω) 
respectively, where A1 and A2 are the amplitudes of the measured input voltage signals for z = 
100.50mm and z = 401.86mm respectively. This will change the Eq.(7.4) by a multiplicative 
factor A2/A1. As this factor is a frequency independant constant, the correct voltage output 
signal can be found by direct multiplication of the simulated signal by A2/A1. In order to 
prevent any confusion, the simulated signal corrected for amplitude difference is denoted as 
v

ab
6 (t) and uncorrected signal is denoted with a prime as v

'ab
6 (t). 

From the Table(7.1), the average absorption coefficient is 9.01dB/m. To be with the same 
scale as in Ref.(7), deviding the absorption coefficient in dB/m by (8.69*1000) gives α = 

0.001mm-1. The value of k








=
2π
λ  for this pair(Table(7.1)) of measurements is 3.8339mm-1. 

That is, this measurement pair satisfy the condition, α«k. For the pair2, from Table(7.2), 
average absorption coefficient is 9.48dB/m and α is 0.001mm-1 and k is 3.9420mm-1. This pair 
of measurements also satisfy the condition, α«k. The calculated absorption from the two pairs 
of measurements are given in Table(7.3). 
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 Pair1 Pair2 
 

The ampltude of the simulated signal, v
'ab
6 (t). (vlots). 0.32 0.01091 

 
Amplitude correction factor, A2/A1, 7.75/7.50 1 

 

Corrected amplitude, v
ab
6 (t) = v

'ab
6 (t)*A 2/A1. (volts) 0.3306 0.01091 

 

The amplitude of the measured signal, v
ab
6 (t), (volts) 0.237 0.00765 

 
Distance between the receiver locations of the two mesurements 
(mm) 

301.36 301.36 
 

The absorp. coeff, from the measurements, using Eq.(7.12). (dB/m) 9.59 10.23 
 

The average absorp. coeff. from Tables(7.1) & (7.2). (dB/m) 9.01 9.48 
 

Table 7.3 Absorption from the measurements. 

7.5 DISCUSSION &  CONCLUSION 

There are two different measurements of separation of transducers involved in the analysis of 
each of pair1 and pair2. Both measurements could possibly have error. The separation 
measurements were made with an internal micrometer. It is very difficult to decide when the 
tip of the device touches the face of the transducer. Inaddition, the face of the transducers are 
made of rubber like material which makes it even more difficult. One can easily make a few 
hundredths of a millimeter error in the measurement of separation. The Figs.(7.10) and (7.11) 
demonstrate that a few hundredths of a millimeter can easily lead to an error of couple of 
hundred nano seconds. 

The parameters used in the calculations for testing of the programme, DIF2FILD, and the 
parameters of pair1 are same. Hence, the theoritical phase correction of diffraction of pair1, is 
216.6ns. 

In the analysis, measurements "X" and "Z" were chosen as the environmental differences 
between these measurements are very small. But the same kind of analysis has been done for 
measurements "X" and "Y". That is, using the measurements for the transducer separation, 
0.10050m, the voltage signal for the transducer separation, 0.20836m, was predicted. This 
analysis is not documented because of short of time. Since absorption is not implemented in 
the simulation, one should expect the simulated signal to be larger than the measured. But to 
the surprise, the measured signal was larger than the simulated. The reason to this must be the 
increase in transmitting response of the transmitter. The average temperature for the series of 
measurements "X" was 20.129°C and for measurements "Y" was 21.194°C. In this 
temperature variation the transmitting response of the transmitter has increased. Exact 
measurements are not available to prove this, but the tendency of the behaviour for the 
frequency, 210kHz, can be seen in Fig.(5.15) in Ref.(15). The use of sensitivity plots in 
explaining the shape of the received signal was pointed out in the discussion in Chapter 3 in 
Sec.(3.5). 
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CHAPTER 8 

SUMMERY AND CONCLUSION 

The effects of the acoustic part of a transit-time flow meter on pulse forming, at no flow 
conditions, are studied in this work. The effects of diffraction and of the transducer dynamics 
on pulse forming are studied individually and as a system. Pulse forming mechanisms in the 
transducers and of diffraction are studied using the impulse responses and time convolutions. 
The effects of the total system on the form of the whole pulse are studied using the frequency 
domain methods; the Fourier methods. An experiment was performed and the results are 
analysed and discussed. 

The active face of a circular transducer, an imaginary circular surface of dimension equal to 
the transducer placed coaxially in front of it and the medium in between are considered as a 
linear time invariant filter. The transient response(average pressure), for an impulsive 
velocity, of this filter is found and compared with the earlier results23. Pulse forms for a 
uniform sinusoidal velocity burst are calculated and presented as a function of S and ka 
values. The pulse forms are also compared with that of the far-field and near-field point 
receiver models. 

The response of the system, for open circuit conditions, with the model for real transducer, is 
simulated. The effect of the matching layer on the initial transient, ringing and the signal level 
is discussed. It is indicated that, with proper models for the transducer, propagation and 
electronics, the simulations will guide the experimenter to interpret the received signal and 
hence to make correct measurements. 

The pulse form from the experiment, for z(separation of the transducers) = 401.86mm, was 
predicted theoretically with the propagation model, using the measured pulse form for z = 
100.50mm as the input. The predicted pulse form was not in good agreement with the 
measured one. Possible reasons for this deviation are discussed. 

In the analysis of the experimental results, it was assumed that the environmental condition 
and the input voltage signals of the two measurement situations are identical. But, these 
assumptions were not fulfilled in the experiment. In experiments, where the requirements are 
achieved, this method can be used to calculate the diffraction correction. For example, in 
Pulse Echo Overlap(PEO) method, the echoes compared are measured at exactly the same 
environmental conditions and have the same input voltage signal. Moreover this method does 
not need a model for the transducers. 
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Appendix A-1 

Velocity to average pressure impulse response. 

Velocity to average pressure transfer function is given by (see Eq.(4.41b), 



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
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
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π
−ρ=ω ∫

∞
θω−ω−

0

2)(tjtj
0nf dsine

4
ec)(H z  (A-1-1) 

where 

tz = z/c, (A-1-2) 

t(θ) = (z2+4a2cos2θ)½/c (A-1-3) 

Velocity to average pressure impulse response is given by the inverse Fourier transform of the 
velocity to average pressure transfer function. Taking inverse Fourier transform of Eq.(A-1-
1), 
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From Eq.(A-1-3), 

t
z a

c
( )

cosθ θ= +2 2 24
 (A-1-8) 

cos
( )2

2 2 2

24
θ

θ
=

−c t z

a
 (A-1-9) 

Differentiating Eq.(A-1-8) with respect to θ gives, 
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d
c t

a
d tθ θ

θ θ
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24
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sin cos
( )  (A-1-10) 

Substituting for dθ and sin2θ in Eq.(A-1-7) from Eq.(A-1-10) and Eq.(A-1-9) gives, 
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where 

t4az = (4a2+z2)½/c (A-1-12) 

The above integration takes values8 only when t = t(θ). Therefore, 
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Appendix(A-2) 

Convolution integral for the near-field finite receiver 
model. 

Consider the convolution integral given Eq.(4.88). The equation is rewritten and renumbered 
as (A.2.1). 

pnf(z,t) = hnf(z,t) ⊗ u(t) (A.2.1) 

where 

hnf(z,t) = h1nf(z,t) + h2nf(z,t) (A.2.2) 

h1nf(z,t) = ρ0cδ(t-tz), (A.2.3) 
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π
ρ

, (A.2.4) 

and 

u(t) = U0[U(t)-U(t-T′)]sinω0 t. (A.2.5) 

[ ] ττ+ττ−= ∫
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Using the sifting property of the Direc delta function, 

τττ−+−ρ= ∫ d),z(h)t(u)tt(uc)t,z(p
t

t

fn2z0nf

z

. (A.2.8) 

The second term in the above expression for pnf(z,t) has to be calculated, as pointed out in the 
beginning of the Sec.(4.3), numerically. The singularity in the function, h2nf(z,t), makes the 
task little difficult. The following method was used to calculate the integration. (The method 
to integrate the function at the singularity was suggested by Westrheim. This method is 
implemented in the programme for calculating the whole convolution integral in Eq.(A-2-1) 
given in Appendix(B-1). The programme was written by me and tested out with the 
consultation of Westrheim.) 
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The second term in the Eq.(A-2-8) is splitted into two parts. With this splitting, Eq.(A-2-8) 
can be written as, 
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where ∆ is a small interval in the neighborhood of tz. To minimise the writting the following 
aberiviations are used. 
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Substituting for h2nf(z,t) in Eq.(A.2.9b) gives, 
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Let, 

τ = tz + ∆′, (A.2.11) 

where 

∆′ ∈ [tz  , tz+∆]. (A.2.12) 

Then 
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Since ∆′ « tz, t4az, higher order terms in ∆′ can taken to be negligible and the change in the 
velocity signal is assumed to be very small in the interval ∆, I2 can be approximated as 
follows. 
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The integral I2 is proportional to the square root of the interval, ∆. Therefore, smaller the 
interval, ∆, higher the accuracy of the integral I2. 

The integration I3 can be calculated using usual numerical integration methods. The 
integration takes different limits in different rang of time, t. This is explained shortly. 
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Case 2; T′ > (t4az - tz). 
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τ
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τ
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Figure A.2.1 (a) a portion of the impulse response, h2nf(z,t) (b) velocity signal, u(t). (c), (d) and (e) functions in 

the integrand of I3 for different ranges of t while T′ < (t4az - tz). (f), (g) and (h) functions in the 

integrand of I3 for different ranges of t while T′ > (t4az - tz). 

Fig.(A.2.1)(a) and (b) show the impulse response function and the velocity function involved 
in the integration I3, given in Eq.(A.2.9c). These figures and the rest are not drawn to scale. 
Considering the duration of the velocity function, the integration splits into two cases; T′ < 
(t4az - tz) and T′ > (t4az - tz) where T′ is the duration of the velocity function and (t4az - tz) is the 
duration of the impulse response. 
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Fig.(A.2.1)(c) represents the functions in the integrand of the following integral, 
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Similarly the Figs.(A.2.1)(d) and (e) represent the functions in the integrand of the integrals 
given in Eqs.(A.2.18) and (A.2.19) respectively. 
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 Since the impulse response is larger than the input signal, there is no steady state in the 
signal. 

The Figs.(A.2.1)(f),(g) and (h) show the functions in the integrand of the integrals given in 
Eqs.(A.2.20), (A.2.21) and (A.2.22) respectively. 

 az4z

t

t

fn23 tttd),z(h)t(uI
z

≤≤τττ−= ∫
∆+

 (A.2.20) 

 Ttttd),z(h)t(uI zaz4

t

t

fn23

az4

z

′+≤≤τττ−= ∫
∆+

 (A.2.21) 

 TttTtd),z(h)t(uI az4z

t

Tt

fn23

az4

′+≤≤′+τττ−= ∫
′−

 (A.2.22) 

In the range, (tz + T′) < t, there is no contribution from the integrals I1 and I2 for both cases. 
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Appendix (A-3) 

Diffraction factor for a circular receiver 

The Fig(A-3-1) shows plane waves incident on a circular receiver making an angle, θ, with 
the normal to the face of the receiver. This plane wave can be denoted as p(t) = P0 ej(ωt-kR), 
where R is the distance between the centre of receiver and the source of the plane wave. The 
free-field pressure, denoted as P4 in the text, due this plane wave at the centre of the receiver 
is P0 e-jkR. The pressure at the centre of the receiver in the presence of a receiver, assuming the 
receiver as an infinite plane baffle, is 2P4. 

 
Figure(A-3-1)Plane wave incident on the surface of the receiver. 

Consider a small stripe of thickness, dr, on the receiver at a distance, r, from the centre of the 
receiver. Since the pressure along this stripe is constant, the total pressure on this stripe, dp, 
is, 

dp = P0 e-jk(R+r sin θ) 2a cos ϕ dr (A-3-1) 

where a is the radius of the receiver. 

The force, Fb(or the open circuit force in the text), on the receiver face, then, is, 
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From the figure it can be seen that  r = a sinϕ,  then  dr = a cosϕ dϕ. The force, Fb, then will 
be 
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where A is the area of the receiver. 

or 

Fb = DA P4 (A-3-6) 

where D is known as the diffraction factor. 

For normal incidence the diffraction factor, D, becomes 2. 
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Appendix (A-4) 

Pulse form as a function of S and ka values. 

The average pressure pnf(z,t) is given by, 
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pnf(z,t) = p1nf(z,t) + p2nf(z,t) (A-4-5) 

where 
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In terms of normalised time the Eqs.(A-4-6) and (A-4-7) can be written as follows. Defining, 
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Using 
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Using sifting property of the Dirac delta function, 
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The above relation proves that p z tnf1 ( ,$) is a function is a function of S and ka only. 

Recalling Eq.(A-4-7), 
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and considering the duration of hnf(z,t), it can be written as, 
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Substituting for t and τ from (A-4-8), p2nf(z,t) can be written as follows, 

τ=τ ˆTdd  

0ˆ0 =τ→=τ  

t̂ˆt =τ→=τ  
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Using 

U(at) = U(t) 
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Since az4z t̂andt̂  are functions of S and ka only, p2nf(z,t) is also a function of S and ka only. 

Therefore the total function pnf(z,t) is a function of S and ka only. 

 

 

 

 

 

 



 

 - 129 - 

Appendix(A-5) 

Transfer functions of transmitting transducer in 
Laplace domain 

TRANSMITTER 

THE  MASON MODEL 

Voltage to velocity transfer function of the transmitter, in Eq.(5.3f), is, 
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In Laplace domain, 
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where, k = 
ω
c , τ 

0
 = 

l

c and s is the Laplace variable. 

Denote sτ0 by x and φ2/sc0 by k for simplicity. 
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Take the denominator of Eq.(A-5-1), and substitute for Za and Z
∗
b give, 
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Denote the numerator of the above equation by N1 and the denominator by N2. Then, 
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Adding some dummies, 
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Defining, 

k1 = (Z0+Zr1)(Z0+Zr2)-k(2Z0+Zr1+Zr2) (A-5-12) 

k2 = 4kZ0 (A-5-13) 
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k3 = (Z0-Zr1)(Z0-Zr2)+k(2Z0-Zr1-Zr2) (A-5-14) 
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adding some dummies, 
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Combining these results, 
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SIMPLIFIED  MODEL 

Transfer function of this model is, 
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Consider the denominator of the Eq.(A-5-21). Substituting for Za and Zb from Eqs.(A-5-2) and 
(A-5-4) gives, 
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This equation is exactly same as Eq.(A-5-6) with k = 0. There fore the simplified form of the 
Eq.(A-5-22) can be found by putting k = 0 in Eq.(A-5-20). That is, 
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APPENDIX  B-1 

 

PROGRAM CONVLSN 
This is an iterative program in FORTRAN to calculate I1, I2, and I3 numerically and 

to find the pressure pnf(z,t). This program uses a sine burst as an input velocity signal 

to convolve with the impulse response of the radiation coupling filter and finds the 
output pressure signal from the filter. It is also possible to calculate a portion of the 
output signal or a single point in the output signal with this program. By increasing the 
number of points in the decided time interval, one can achive the desired resolution.  
The program estimates the integration I2 in the initial interval using the Eq(A-2-16). 

The initial interval may be decided by the user, a default value is set to 10-11sec. The 

integration I3 is calculated using a subroutine, QROMB11. 

The following  variables are used in the program. 

INPUT SIGNAL PARAMETERS : 

AMPL : Amplitude of the input sin burst. 

WFRQ : Frequency of the input signal 

PERI : Number of periods in the input burst. 

RADIATION COUPLING FILTER PARAMETERS : 

A : Radius of the sound source. 

D : Distance between the source and the receiver. 

C : Velocity of sound in the medium. 

INTEGRATION VARIABLES : 

TS : The time at which the signal being calculated (Time 
  Sample). 

SS : Starting time of the portion of the signal to be 
  calculated(Signal Start). 

SE : End time of the portion of the signal to be calculated 
  (Signal End). 

N : Number of points in the portion of the signal to be 
  calculated. 

T1 : Starting time of the impulse response (tz, used in the 

  text). 

T2 : End time of the impulse response (t4za, used in the text). 

ILS : Lower limit of the integration (Integration Limit Start). 

ILE : Upper limit of the integration (Integration Limit End). 

TI1 : Initial interval (Time Interval 1). 

TINT : Interval between time samples Time INTerval). 

SUMM1 : Estimated integral in the initial interval (I2, used in the 

  text). 

SUMM2 : Calculated integral in the rest of the interval (I3, used in 

  the text). 

SIG1 : Result of convolution between the input signal and the 
  delta function in the impulse response. 

SIG2 : Result of convolution between the input signal and the 
  rest of the impulseresponse (SUMM1+SUMM2). 

ANS : Total result. 

 
 
 
 
 
 
 

      SUBROUTINE QROMB(I,A,B,SS) 
      DOUBLE PRECISION A,B,SS,DSS,S,H,ER 
      PARAMETER(EPS=1.D-5,JMAX=25,JMAXP=JMAX+1,K=5,KM=4) 
      DIMENSION S(JMAXP),H(JMAXP) 
      H(1)=1.D0 
      ER = 1.D-15 
      IF (I .EQ. 2) THEN 
      SS = 0 
      RETURN 
      ELSE 
      END IF 
      DO 11 J=1,JMAX 
        CALL TRAPZD(A,B,S(J),J) 
        IF (J.GE.K) THEN 
          L=J-KM 
          CALL POLINT(H(L),S(L),K,0.0D0,SS,DSS) 
          IF (ABS(SS-ER).LT.EPS*ABS(ER)) RETURN 
          ER = SS 
        ENDIF 
        S(J+1)=S(J) 
        H(J+1)=0.25D0*H(J) 
11    CONTINUE 
      PAUSE 'Too many steps.' 
      END 
 
      SUBROUTINE TRAPZD(A,B,S,N) 
      DOUBLE PRECISION A,B,S,FUNC,DEL,SUM,X 
      IF (N.EQ.1) THEN 
        S=0.5D0*(B-A)*(FUNC(A)+FUNC(B)) 
        IT=1 
      ELSE 
        TNM=IT 
        DEL=(B-A)/TNM 
        X=A+0.5D0*DEL 
        SUM=0.D0 
        DO 11 J=1,IT 
          SUM=SUM+FUNC(X) 
          X=X+DEL 
11      CONTINUE 
        S=0.5D0*(S+(B-A)*SUM/TNM) 
        IT=2*IT 
      ENDIF 
      RETURN 
      END 
 
      SUBROUTINE POLINT(XA,YA,N,X,Y,DY) 
      DOUBLE PRECISION XA,YA,Y,DY,DIF,DIFT,C,D,HO,HP,W,DEN,X 
      PARAMETER (NMAX=10) 
      DIMENSION XA(N),YA(N),C(NMAX),D(NMAX) 
      NS=1 
      DIF=ABS(X-XA(1)) 
      DO 11 I=1,N 
        DIFT=ABS(X-XA(I)) 
        IF (DIFT.LT.DIF) THEN 
          NS=I 
          DIF=DIFT 
        ENDIF 
        C(I)=YA(I) 
        D(I)=YA(I) 
11    CONTINUE 
      Y=YA(NS) 
      NS=NS-1 
      DO 13 M=1,N-1 
        DO 12 I=1,N-M 
          HO=XA(I)-X 
          HP=XA(I+M)-X 
          W=C(I+1)-D(I) 
          DEN=HO-HP 
          IF(DEN.EQ.0.)PAUSE 
          DEN=W/DEN 
          D(I)=HP*DEN 
          C(I)=HO*DEN 
12      CONTINUE 
        IF (2*NS.LT.N-M)THEN 
          DY=C(NS+1) 
        ELSE 
          DY=D(NS) 
          NS=NS-1 
        ENDIF 
        Y=Y+DY 
13    CONTINUE 
      RETURN 
      END 
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      PROGRAM CONVLSN 
      PARAMETER (PI = 3.14159265359D0) 
      DOUBLE PRECISION TI1,TS,SUMM1,T1,BT,SS,SH1,C,D,A, 
     +ANS,ILS,ILE,T2,TINT,SIG1,SIG2,SUMM2,SE,WFRQ,PERI 
      REAL AMPL, RHO 
      INTEGER N 
      COMMON WFRQ,AMPL,TS,T1,T2,A,C 
      CHARACTER*15  FNAME1,SIGN*1 
 
      DO 10 I = 1,20 
      WRITE(*,*) 
   10 CONTINUE 
 
      WRITE(*,*)'         CONVLSN' 
      WRITE(*,*)'         ************************* ********************' 
      WRITE(*,*)'          This program calculates the output signal  
      WRITE(*,*)'          of the  radiation  coupling  filter for a  
      WRITE(*,*)'          uniform sinusoidal input signal using convolution.               ' 
      WRITE(*,*)'                                                     
      WRITE(*,*)'          Author : Murugendran Kanagasundram         
      WRITE(*,*)'                                                     
      WRITE(*,*)'          Date   : 23-03-93                          
      WRITE(*,*)'         ************************* ********************' 
      WRITE(*,*) 
 
      WRITE(*,*)'         Further information(Y/Enter)?' 
      READ(*,2) SIGN 
    2 FORMAT(A1) 
      IF (SIGN .EQ. 'Y' .OR. SIGN .EQ. 'y') THEN 
      WRITE(*,*)'   This program will prompt the user for datas.       ' 
      WRITE(*,*) 
      WRITE(*,*)'    1. The program uses a rectangular sin burst as  an' 
      WRITE(*,*)'       input velocity signal.The user will be prompted' 
      WRITE(*,*)'       for the specifications of the signal. This pro-' 
      WRITE(*,*)'       gram can be used to calculate the output for an' 
      WRITE(*,*)'       arbitary  input  signal  with  some' 
      WRITE(*,*)'       changes,but not implemented yet.' 
      WRITE(*,*) 
      WRITE(*,*)'    2. Since the impulse  response  is infinite at its' 
      WRITE(*,*)'       start, the  program  estimates  the convolution' 
      WRITE(*,*)'       integral for a small interval(initial interval)' 
      WRITE(*,*)'       approximately. This  initial  interval  may  be' 
      WRITE(*,*)'       decided by the user.Default value is 10e-11sec.' 
      WRITE(*,*)'       For further details, see the documentation.' 
      WRITE(*,*) 
      WRITE(*,*)'    3. The  program  will  calculate   the  signal  at' 
      WRITE(*,*)'       equivally spaced  points in a user defined time' 
      WRITE(*,*)'       interval.The number of points will also decided' 
      WRITE(*,*)'       by  the  user. By giving  equal  time data and' 
      WRITE(*,*)'       number  of  points as 1, one can find the value' 
      WRITE(*,*)'       of the signal at one perticular time.' 
      WRITE(*,*) 
      WRITE(*,*)'       Press enter to continue.' 
      READ(*,*) 
      ELSE 
      END IF 
 
      WRITE(*,*)'Enter freq. in Hz, amplitude in m/s and # of periods of 
     +the input signal.' 
      READ(*,*) WFRQ, AMPL, PERI 
      WRITE(*,*)'Enter velocity of sound in the medium in (m/s) and denc 
     +ity of the medium in   Kg/m**3.' 
      READ(*,*) C,RHO 
      WRITE(*,*)'Enter radious of the source in m.' 
      READ(*,*) A 
      WRITE(*,*)'Enter the distance between the source and the observati 
     +on point in m.' 
      READ(*,*) D 
      WRITE(*,*)'The initial interval.' 
      WRITE(*,*)' (1) Manual (2) Default' 
      READ(*,*) J 
      IF (J .EQ. 2) THEN 
        DTI1 = 1.0D-11 
      ELSE 
        WRITE(*,*)'Enter the initial interval in sec..' 
        READ(*,*) TI1 
      END IF 
      WRITE(*,*)'Enter time(2) in sec. between which the signal to be ca 
     +lculated.' 
      READ(*,*) SS,SE 
      WRITE(*,*)'Enter # of points that construct the signal.' 
      READ(*,*) N 
      WRITE(*,*)'Enter a file name.' 
      READ(*,1) FNAME1 
    1 FORMAT(A15) 
      OPEN(10, FILE = FNAME1,STATUS = 'NEW') 
 
 
      TINT = (SE-SS)/N 

      TS = SS 
      SH1 = PERI/WFRQ 
 
      DO 20 L = 0,N 
       TS = SS + DBLE(L)*TINT 
        T1 = D/C 
        T2 = SQRT(4*A**2+D**2)/C 
        IF (TS .GT. T1 .AND. TS .LT. (T2 + SH1)) THEN 
        M = 1 
          IF (TS .LT. (T1+TI1))  THEN 
            SUMM1 = AMPL*SIN(2.0D0*PI*WFRQ*(TS-T1))* 
     +      (-1)*C**2*SQRT(2.0D0*T1*(T2**2 - T1**2)*TS)/(PI*A**2) 
            SUMM2 = 0 
          ELSE 
            SUMM1 = AMPL*SIN(2.0D0*PI*WFRQ*(TS-T1))* 
     +      (-1)*C**2*SQRT(2.0D0*T1*(T2**2 - T1**2)*TI1)/(PI*A**2) 
            BT = T1+TI1 
            IF (TS .LE. T2) THEN 
              IF ((TS-SH1) .LE. T1) THEN 
                ILS = BT 
                ILE = TS 
              ELSE 
                SUMM1 = 0 
                ILS = TS-SH1 
                ILE = TS 
              END IF 
            ELSE  
              IF ((TS-SH1) .LE. T1) THEN 
                ILS = BT 
                ILE = T2 
              ELSE 
                SUMM1 = 0 
                ILS = TS-SH1 
                ILE = T2 
                IF (L .EQ. N) M = 2 
              END IF   
            END IF 
            CALL QROMB(M,ILS,ILE,SUMM2) 
          END IF 
          SIG1 = AMPL * SIN(2.0D0*PI*WFRQ*(TS-T1)) 
          SIG2 = SUMM1 + SUMM2 
          IF (TS .GT. T1+SH1) SIG1 = 0 
          ANS = (SIG1+SIG2)/AMPL 
 
        ELSE 
         ANS = 0. 
        END IF 
      WRITE(10,*) TS, (TS-T1)*WFRQ, ANS 
*Before use the next write statement the initial do loop number should  
*be changed to 1. 
*      WRITE(*,*) TS*1.0D6,ANS 
   20 CONTINUE 
 
      CLOSE(10) 
 
      STOP 
      END 
 
 
      FUNCTION FUNC(TAU) 
      DOUBLE PRECISION TAU,FUNC,Y1,Y2,TS,T1,T2,C,A,WFRQ 
      REAL AMPL 
      PARAMETER (PI = 3.14159265359D0) 
      COMMON WFRQ,AMPL,TS,T1,T2,A,C 
 
      Y1  = AMPL * SIN(2.0D0* PI * WFRQ * (TS - TAU)) 
      IF ((T2**2 - TAU**2) .LE. 0 ) THEN 
      Y2 = 0 
      ELSE 
      Y2 = (-1) * C**2 * TAU * SQRT((T2**2 - TAU**2)/(TAU**2 - T1**2)) 
     + /(PI * A**2) 
      END IF 
      FUNC = Y1 * Y2 
      RETURN 
      STOP 
      END 
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      PROGRAM FIELDSIM 
 
*     The program calculates the on-axis sound pressure for a given 
*     frequency spectra of an arbitrary volume velocity burst from a 
*     piston. The pressure can be calculated according to tree 
*     different propagation models, theese are: 
* (1) planewave model 
* (2) farfield model 
* (3) nearfild model, finite receiver 
* 
*     As an option, the output voltage of the system due to the 
*     pressure can be calculated, both in time and frequency domain. 
*     The total transfer function of the receiver section is needed. 
* 
*     The program is mainly written for a combination with responses 
*     from FLOSIM, in order to calculate responses due to other 
*     propagation models than the farfield model. 
* 
*     Variables in the main program and the subroutines: 
* 
*      XW - An array as working space 
*      TFUNC - An array as working space 
*      SPEC - An array as working space 
*      TO - A pure time shift (to more efficient use of the array) 
*      RAD - Radius of the transducer 
*      RHO - Density of the propagation media 
*      C - Speed of sound in the propagation media 
*      R - Axial distance between the transducer faces 
*      K - Wave number 
*      SFRQ - Sampling frequency 
*      F - Frequency variable 
*      DF - Frequency resolution 
*      LIMIT - Buffer length 
*       
*     Written by : Murugendran Kanagasundram and Steinar Vervik  
*     Date  : 13-11-1993 
 
      INTEGER LIMIT,ULIMIT 
      REAL XW,T0,TFUNC 
      CHARACTER FILE*25, ANS*1 
      PARAMETER (LIMIT=16384, ULIMIT=LIMIT+2) 
      DIMENSION XW(ULIMIT),TFUNC(ULIMIT) 
 
      WRITE(*,*)'       ------ FIELDSIM ------' 
      WRITE(*,*) 
      CALL READFILE(XW) 
      CALL INPAR(RAD,RHO,C,R,SFRQ,T0,LIMIT) 
   5  WRITE(*,*)'         PROPAGATION MODELS' 
      WRITE(*,*)'         ------------------' 
      WRITE(*,*)'     (1) plane wave model' 
      WRITE(*,*)'     (2) farfield model' 
      WRITE(*,*)'     (3) nearfield model, finite receiver' 
      WRITE(*,*) 
      WRITE(*,*)'     Choose 1, 2 or 3:' 
      READ(*,*)MODEL 
 
      IF      (MODEL .EQ. 1) THEN 
         CALL PFIELD(TFUNC,RHO,RAD,C,SFRQ,R,T0) 
      ELSE IF (MODEL .EQ. 2) THEN 
         CALL FFIELD(TFUNC,RAD,RHO,C,SFRQ,R,T0) 
      ELSE IF (MODEL .EQ. 3) THEN 
         CALL DIFIELD(TFUNC,RHO,RAD,C,SFRQ,R,T0) 
      ELSE 
         WRITE(*,*)'.....non of the above models chosen!' 
         GOTO 5 
      END IF 
       
      CALL FRQCONV(XW,TFUNC) 
 
      WRITE(*,*)'Calculate the output voltage (Y/N):' 
      READ(*,110)ANS 
      IF (ANS .EQ. 'Y' .OR. ANS .EQ. 'y') THEN 
         WRITE(*,*)'Enter file containing Hrec' 
         CALL READFILE(TFUNC) 
         CALL FRQCONV(XW,TFUNC) 
 
         WRITE(*,*)'Calculate the specter of the output voltage (Y/N)?:' 
         READ(*,110)ANS 
 
           IF (ANS .EQ. 'Y' .OR. ANS .EQ. 'y') THEN 
              WRITE(*,*)'Enter file to store the modified spectra' 
              READ(*,100)FILE  
              OPEN(10,FILE=FILE,STATUS='NEW') 
              DF = SFRQ/(LIMIT-1) 
              J=0 
                DO 10 I = 1,LIMIT-1,2 
c                   PHASE = ATAN2(XW(I+1),XW(I))*360/TOPI 
c                   MAGN  = 20*LOG10(SQRT(XW(I)**2+XW(I+1)**2)) 
                   WRITE(10,*) J*DF, CMPLX(XW(I),-XW(I+1)) 

                   J = J+1 
   10           CONTINUE 
           ELSE 
           END IF  
      ELSE 
      END IF  
       
      CALL REALFT(XW,LIMIT/2,-1) 
      WRITE(*,*)'Enter file to store the time series' 
      READ(*,100)FILE  
      OPEN(10,FILE=FILE,STATUS='NEW') 
      DO 20 I = 1, LIMIT/2 
         WRITE(10,*)I,(I-1.)/SFRQ+T0,2*SFRQ*XW(I)/LIMIT 
   20 CONTINUE 
  100 FORMAT(A25) 
  110 FORMAT(A1) 
      CLOSE(10) 
      STOP 
      END 
 
      SUBROUTINE INPAR(RAD,RHO,C,R,SFRQ,T0,LIMIT) 
      WRITE(*,*)'        Input parameters' 
      write(*,*)'        ----------------' 
      WRITE(*,*)'Enter:' 
      WRITE(*,*)'radius of the sendertransducer (m):' 
      READ(*,*)RAD 
      WRITE(*,*)'the density of the medium (kg/m**3):' 
      READ(*,*)RHO 
      WRITE(*,*)'the speed of sound in the propagation medium (m/s):' 
      READ(*,*)C 
      WRITE(*,*)'the axial distance between the transducers (m):' 
      READ(*,*)R 
      WRITE(*,*)'the sampling frequency (Hz):' 
      READ(*,*)SFRQ 
      T0 = R/C-0.1*LIMIT/SFRQ 
      RETURN 
      END 
       
      SUBROUTINE READFILE(XW) 
      REAL XW 
      INTEGER TLINES,LIMIT,ULIMIT 
      COMPLEX C 
      CHARACTER TEXT*79, FILE*25 
      PARAMETER (LIMIT=16384,ULIMIT=LIMIT+2) 
      DIMENSION XW(ULIMIT) 
 
  100 FORMAT(A25) 
  200 FORMAT(A79) 
 
* *   Open file containing the spectra of the input signal * * 
      WRITE(*,*)'Open file containing the spectra of the input signal' 
      WRITE(*,*)'Enter filename:' 
      READ(*,100)FILE 
      OPEN(10,FILE=FILE,STATUS='OLD') 
      WRITE(*,*)'Enter number of text lines in the header' 
      READ(*,*)TLINES 
* *   Read header of the file * * 
      DO 10 I = 1,TLINES 
         READ(10,200)TEXT 
   10 CONTINUE 
* *   Convert complex data to real 
      K=1 
      DO 20 J=I+1,I+LIMIT/2 
       READ(10,*)N,F,C 
       XW(K)   = REAL(C) 
       XW(K+1) = -AIMAG(C) 
       K=K+2 
   20 CONTINUE 
      CLOSE(10) 
      RETURN 
      END 
 
      SUBROUTINE FRQCONV(SPEC,TFUNC) 
*     This routine multiplies two frequency spectra 
 
      INTEGER LIMIT,ULIMIT 
      PARAMETER (LIMIT=16384,ULIMIT=LIMIT+2) 
      DIMENSION SPEC(ULIMIT), TFUNC(ULIMIT) 
 
      SPEC(1) = 0 
      DO 10 I = 3,(LIMIT+1),2 
         B1 = SPEC(I) 
         B2 = SPEC(I+1) 
         A4 = TFUNC(I) 
         A3 = TFUNC(I+1) 
         IF (I .EQ. LIMIT+1) THEN 
            B1 = SPEC(2) 
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            B2 = 0 
            SPEC(2) = (B1*A4 - B2*A3) 
         ELSE 
            SPEC(I)   = (B1*A4 - B2*A3) 
            SPEC(I+1) = (B2*A4 + B1*A3) 
         ENDIF 
   10 CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE PFIELD(TFUNC,RHO,RAD,C,SFRQ,R,T0) 
*     This routine calculates the transfer function of the  
*     planewave model 
 
      INTEGER LIMIT, ULIMIT  
      REAL A3,A4,R,RHO,RAD,C,F,K,SFRQ,TFUNC 
      PARAMETER (LIMIT=16384,ULIMIT=LIMIT+2,TOPI=6.28318530718) 
      DIMENSION TFUNC(ULIMIT) 
      COMPLEX P0 
 
 
      TFUNC(1) = 0 
      TFUNC(2) = 0 
      J = 1 
      DO 10 I = 3,(LIMIT+1),2 
         F  = J * SFRQ / (LIMIT-1) 
         K  = TOPI * F / C 
         P0 = RHO * C * EXP(CMPLX(0.0,(K*R-K*C*T0))) 
         A3 = REAL(P0)*2/(TOPI*RAD**2) 
         A4 = AIMAG(P0)*2/(TOPI*RAD**2) 
         TFUNC(I)   = A3 
         TFUNC(I+1) = A4 
         J = J + 1 
   10 CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE FFIELD(TFUNC,RAD,RHO,C,SFRQ,R,T0) 
*     This routine calculates the transfer function of the  
*     farfield model 
 
      INTEGER LIMIT,ULIMIT 
      REAL A1,A2,A3,A4,RAD,R,RHO,C,F,K,SFRQ,B 
      PARAMETER (LIMIT=16384,ULIMIT=LIMIT+2,TOPI=6.28318530718) 
      DIMENSION TFUNC(ULIMIT) 
      J = 0 
      DO 10 I = 1,(LIMIT+1),2 
         F  = J * SFRQ / (LIMIT-1) 
         K  = TOPI * F / C 
         A1 = COS(K*R-K*C*T0) 
         A2 = SIN(K*R-K*C*T0) 
         B  = RHO * RAD**2 * TOPI * F / (2 * R) 
         A3 = (-1) * A1 * B 
         A4 = A2 * B 
         TFUNC(I)   = A4*2/(TOPI*RAD**2) 
         TFUNC(I+1) = A3*2/(TOPI*RAD**2) 
         J = J + 1 
   10 CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE DIFIELD(TFUNC,RHO,RADI,C,SFRQ,RR,T0) 
*     This routine calculates the transfer function of the  
*     nearfield model, finite receiver 
 
      REAL A,B,A3,A4,RR,RHO,RADI,C,F,K,SFRQ,TFUNC 
      DOUBLE PRECISION C1,D1 
      INTEGER LIMIT, ULIMIT  
      PARAMETER (LIMIT=16384,ULIMIT=LIMIT+2,TOPI=6.28318530718) 
      DIMENSION TFUNC(ULIMIT) 
      COMPLEX PM, P0, H 
      COMMON R,K,RAD 
 
      R = RR 
      RAD = RADI 
 
      TFUNC(1) = 0 
      TFUNC(2) = 0 
      J = 1 
      DUMMY = 0 
      DO 10 I = 3,(LIMIT+1),2 
         IF (I .GT. DUMMY+100) THEN 
             WRITE(*,*)I 
             DUMMY=I 
         END IF 
         F  = J * SFRQ / (LIMIT-1) 
         K  = TOPI * F / C 
         CALL QROMB(1,0.0D0,TOPI/4.0D0,C1) 
         CALL QROMB(2,0.0D0,TOPI/4.0D0,D1) 
         A  = 1.0-C1*4.0*2.0/TOPI*COS(K*R)-D1*4.0*2.0/TOPI*SIN(K*R) 

         B  =     D1*4.0*2.0/TOPI*COS(K*R)-C1*4.0*2.0/TOPI*SIN(K*R) 
         PM = CMPLX(A,(-1)*B) 
         P0 = RHO * C * EXP(CMPLX(0.0,(K*R-K*C*T0))) 
         H  = PM * P0 
         A3 = REAL(H)*2/(TOPI*RAD**2) 
         A4 = AIMAG(H)*2/(TOPI*RAD**2) 
         TFUNC(I)   = A3 
         TFUNC(I+1) = A4 
         J = J + 1 
   10 CONTINUE 
      RETURN 
      END 
 
*     Routines from Numerical Recipes, numerical integration 
 
      SUBROUTINE QROMB(I,A,B,SS) 
      DOUBLE PRECISION A,B,SS,DSS,S,H,ER 
      PARAMETER(EPS=1.D-4,JMAX=25,JMAXP=JMAX+1,K=5,KM=4) 
      DIMENSION S(JMAXP),H(JMAXP) 
      H(1)=1.D0 
      ER = 1.D-10 
      DO 11 J=1,JMAX 
        CALL TRAPZD(I,A,B,S(J),J) 
        IF (J.GE.K) THEN 
          L=J-KM 
          CALL POLINT(H(L),S(L),K,0.D0,SS,DSS) 
          IF (ABS(SS-ER).LT.EPS*ABS(ER)) RETURN 
          ER = SS 
        ENDIF 
        S(J+1)=S(J) 
        H(J+1)=0.25D0*H(J) 
11    CONTINUE 
      PAUSE 'Too many steps.' 
      END 
 
      SUBROUTINE TRAPZD(I,A,B,S,N) 
      DOUBLE PRECISION A,B,S,FUNC,DEL,SUM,X 
      IF (N.EQ.1) THEN 
        S=0.5D0*(B-A)*(FUNC(I,A)+FUNC(I,B)) 
        IT=1 
      ELSE 
        TNM=IT 
        DEL=(B-A)/TNM 
        X=A+0.5D0*DEL 
        SUM=0.D0 
        DO 11 J=1,IT 
          SUM=SUM+FUNC(I,X) 
          X=X+DEL 
11      CONTINUE 
        S=0.5D0*(S+(B-A)*SUM/TNM) 
        IT=2*IT 
      ENDIF 
      RETURN 
      END 
 
      SUBROUTINE POLINT(XA,YA,N,X,Y,DY) 
      DOUBLE PRECISION XA,YA,Y,DY,DIF,DIFT,C,D,HO,HP,W,DEN,X 
      PARAMETER (NMAX=10) 
      DIMENSION XA(N),YA(N),C(NMAX),D(NMAX) 
      NS=1 
      DIF=ABS(X-XA(1)) 
      DO 11 I=1,N 
        DIFT=ABS(X-XA(I)) 
        IF (DIFT.LT.DIF) THEN 
          NS=I 
          DIF=DIFT 
        ENDIF 
        C(I)=YA(I) 
        D(I)=YA(I) 
11    CONTINUE 
      Y=YA(NS) 
      NS=NS-1 
      DO 13 M=1,N-1 
        DO 12 I=1,N-M 
          HO=XA(I)-X 
          HP=XA(I+M)-X 
          W=C(I+1)-D(I) 
          DEN=HO-HP 
          IF(DEN.EQ.0.)PAUSE 
          DEN=W/DEN 
          D(I)=HP*DEN 
          C(I)=HO*DEN 
12      CONTINUE 
        IF (2*NS.LT.N-M)THEN 
          DY=C(NS+1) 
        ELSE 
          DY=D(NS) 
          NS=NS-1 
        ENDIF 
        Y=Y+DY 
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13    CONTINUE 
      RETURN 
      END 
 
      FUNCTION FUNC(I,A) 
*     Calculates the integrand (connected to the nearfield, finite 
*     receiver transfer function) 
 
      DOUBLE PRECISION A,FUNC 
      REAL R,K,RAD  
      INTEGER I 
      COMMON R,K,RAD 
 
      IF (I .EQ. 1) THEN 
      FUNC=COS(K*SQRT(R**2+4.D0*RAD**2*(COS(A))**2))*(SIN(A))**2 
      END IF 
 
      IF (I .EQ. 2) THEN 
      FUNC=SIN(K*SQRT(R**2+4.D0*RAD**2*(COS(A))**2))*(SIN(A))**2 
      END IF 
      RETURN 
      END 
 
*     Routines from Numerical Recipes, FFT and IFFT routines 
 
      SUBROUTINE REALFT(DATA,N,ISIGN) 
      REAL*8 WR,WI,WPR,WPI,WTEMP,THETA 
      DIMENSION DATA(*) 
      THETA=6.28318530717959D0/2.0D0/DBLE(N) 
      C1=0.5 
      IF (ISIGN.EQ.1) THEN 
        C2=-0.5 
        CALL FOUR1(DATA,N,+1) 
      ELSE 
        C2=0.5 
        THETA=-THETA 
      ENDIF 
      WPR=-2.0D0*DSIN(0.5D0*THETA)**2 
      WPI=DSIN(THETA) 
      WR=1.0D0+WPR 
      WI=WPI 
      N2P3=2*N+3 
      DO 11 I=2,N/2+1 
        I1=2*I-1 
        I2=I1+1 
        I3=N2P3-I2 
        I4=I3+1 
        WRS=SNGL(WR) 
        WIS=SNGL(WI) 
        H1R=C1*(DATA(I1)+DATA(I3)) 
        H1I=C1*(DATA(I2)-DATA(I4)) 
        H2R=-C2*(DATA(I2)+DATA(I4)) 
        H2I=C2*(DATA(I1)-DATA(I3)) 
        DATA(I1)=H1R+WRS*H2R-WIS*H2I 
        DATA(I2)=H1I+WRS*H2I+WIS*H2R 
        DATA(I3)=H1R-WRS*H2R+WIS*H2I 
        DATA(I4)=-H1I+WRS*H2I+WIS*H2R 
        WTEMP=WR 
        WR=WR*WPR-WI*WPI+WR 
        WI=WI*WPR+WTEMP*WPI+WI 
11    CONTINUE 
      IF (ISIGN.EQ.1) THEN 
        H1R=DATA(1) 
        DATA(1)=H1R+DATA(2) 
        DATA(2)=H1R-DATA(2) 
      ELSE 
        H1R=DATA(1) 
        DATA(1)=C1*(H1R+DATA(2)) 
        DATA(2)=C1*(H1R-DATA(2)) 
        CALL FOUR1(DATA,N,-1) 
      ENDIF 
      RETURN 
      END 
 
      SUBROUTINE FOUR1(DATA,NN,ISIGN) 
      REAL*8 WR,WI,WPR,WPI,WTEMP,THETA 
      DIMENSION DATA(*) 
      N=2*NN 
      J=1 
      DO 11 I=1,N,2 
        IF(J.GT.I)THEN 
          TEMPR=DATA(J) 
          TEMPI=DATA(J+1) 
          DATA(J)=DATA(I) 
          DATA(J+1)=DATA(I+1) 
          DATA(I)=TEMPR 
          DATA(I+1)=TEMPI 
        ENDIF 
        M=N/2 
1       IF ((M.GE.2).AND.(J.GT.M)) THEN 

          J=J-M 
          M=M/2 
        GO TO 1 
        ENDIF 
        J=J+M 
11    CONTINUE 
      MMAX=2 
2     IF (N.GT.MMAX) THEN 
        ISTEP=2*MMAX 
        THETA=6.28318530717959D0/(ISIGN*MMAX) 
        WPR=-2.D0*DSIN(0.5D0*THETA)**2 
        WPI=DSIN(THETA) 
        WR=1.D0 
        WI=0.D0 
        DO 13 M=1,MMAX,2 
          DO 12 I=M,N,ISTEP 
            J=I+MMAX 
            TEMPR=SNGL(WR)*DATA(J)-SNGL(WI)*DATA(J+1) 
            TEMPI=SNGL(WR)*DATA(J+1)+SNGL(WI)*DATA(J) 
            DATA(J)=DATA(I)-TEMPR 
            DATA(J+1)=DATA(I+1)-TEMPI 
            DATA(I)=DATA(I)+TEMPR 
            DATA(I+1)=DATA(I+1)+TEMPI 
12        CONTINUE 
          WTEMP=WR 
          WR=WR*WPR-WI*WPI+WR 
          WI=WI*WPR+WTEMP*WPI+WI 
13      CONTINUE 
        MMAX=ISTEP 
      GO TO 2 
      ENDIF 
      RETURN 
      END 
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APPENDIX B-3 
 
 

 
 

      PROGRAM TRNSRESP 
 
*     This program is calculating some portion, up to nine times 
*     the reverbaration time of the transducer, of the transient 
*     response of a lossless thickness mode vibrating piezoelectric 
*     transduser. 
* 
*     The particle velocity is calculated for a uniform 
*     sinusoidal voltage pulse. 
 
*     Variables in the main program and the subroutines: 
* 
* TMP - An array as working space 
* ANS - An array as working space 
* TS - Discrete version of time, t, in the convolution 
*    integral 
* TAU - Time variable 
* T - Sample interval 
* ILS - Integration limit, lower 
* ILE - Integration limit, upper 
* SUM1 - Convolution without the delta-terms in the impulse 
*                response 
* SUM2 - Convolution with the delta-terms in the impulse 
*                response 
* RT - Reverberation time of the transducer 
* INT - RT/N, the interval between the time samples 
* CRS - Beginning time of a particular term in the impulse 
*    response 
 
* C0 - Clamped capasitance 
* CP - Speed of sound in the piezoelectric material 
* Fi - Electromechanical coupling factor 
* Z0 - Characteristic impedance of the transducer 
* Z1 - Characteristic impedance of the backing media 
* Z2 - Characteristic impedance of the radiation media 
 
* R0   - Reflection coeff. at x3 = 0 
* RL   - Reflection coeff. at x3 = L 
* T0   - Transmission coeff. at x3 = 0 
* TL   - Transmission coeff. at x3 = L 
* B    - Beta in the text 
* C1   - Constant defined in the text 
* C2   - Constant defined in the text 
* AF   - Ampitude factor 
* 
* Written by : Steinar Vervik and Murugendran Kanagasundram 
* Date  : 24-7-1993 
 
      INTEGER NUNIT, CH, CH1 
      REAL INT, ANS(4000) 
      CHARACTER*15 INFILE 
      COMMON /COMB1/ B,RT,T 
      COMMON /COMB2/ R0,RL 
      COMMON /COMB3/ T0,TL,C1,C2 
 
  100 FORMAT(25(/)) 
      WRITE(*,100) 
      WRITE(*,*)'- Transient transducer respons -' 
      WRITE(*,*)'--------------------------------' 
      WRITE(*,*) 
      CALL INPAR(R0,RL,T0,TL,C1,C2,B,A,RT,AF) 
      WRITE(*,*)'Choose the input.' 
      WRITE(*,*)'     1) Dirac delta  2) sin burst' 
      READ(*,*) CH 
      IF (CH .EQ. 1) THEN 
         CALL IMPRES(A,AF,M,N,ANS) 
      ELSE 
         CALL INSIG(PL,T) 
         WRITE(*,*)'Choose transducer model.' 
         WRITE(*,*)'  1) Effect of regeneration excluded' 
         WRITE(*,*)'  2) Effect of regeneration included' 
         READ(*,*) CH1 
         CALL CONV(CH1,PL,A,AF,M,N,ANS) 
      END IF 
 
      INT = RT/N 
      WRITE(*,*)'Enter a file to store total result.' 
      READ(*,1) INFILE 
    1 FORMAT(A15) 
      CALL OPENER(INFILE,NUNIT,'NEW') 
      DO 10 J = 1,M*N 
         WRITE(NUNIT,*) (J-1)*INT/RT,AF*ANS(J) 
   10 CONTINUE 
 
      STOP 
      END 
 
      SUBROUTINE INPAR(R0,RL,T0,TL,C1,C2,B,A,RT,AF) 
 
      CALL PIEZO(Z0,FI,C0,A,RT) 

      CALL MEDIA(Z1,Z2,A) 
 
      R0 = (Z0-Z1)/(Z0+Z1) 
      RL = (Z0-Z2)/(Z0+Z2) 
      T0 = 1+R0 
      TL = 1+RL 
      C1 = FI**2/C0*(T0*TL)/Z0 
      C2 = FI**2/(2*C0)*(R0*TL+RL*T0)/Z0 
      B  = FI**2/(2*C0)*(T0+TL)/Z0 
      AF = FI*TL/(2*Z0) 
 
      RETURN 
      END 
 
      SUBROUTINE PIEZO(Z0,FI,C0,A,RT) 
      REAL L 
      PARAMETER (PI = 3.141592654) 
 
      WRITE(*,*)'Piezoelectric material (default PZT-5A)' 
      WRITE(*,*)'---------------------------------------' 
      WRITE(*,*)'Enter the thickness of the element (mm):' 
      READ(*,*)L 
      WRITE(*,*)'Give the radius of the element     (mm):' 
      READ(*,*)R 
      L = L/1000.0 
      R = R/1000.0 
      A = PI*R**2 
 
*     Piezoelectric constants    * 
      CD    = 14.7E10 
      E33   = 15.8 
      EPS33 = 830.0*8.85E-12 
      RHO   = 7750.0 
 
      CP = SQRT(CD/RHO) 
      C0 = A/L*EPS33 
      FI = A/L*E33 
      Z0 = RHO*CP*A 
      RT = L/CP 
 
      RETURN 
      END 
 
      SUBROUTINE MEDIA(Z1,Z2,A) 
 
      WRITE(*,*) 
      WRITE(*,*)'medium' 
      WRITE(*,*)'------' 
      WRITE(*,*)'Enter the spesific impedances (rayl):' 
      WRITE(*,*)'radiation medium:' 
      READ(*,*)Z2 
      WRITE(*,*)'backing medium:' 
      READ(*,*)Z1 
      Z1 = Z1*A 
      Z2 = Z2*A 
 
      RETURN 
      END 
 
      SUBROUTINE CONV(CH,PL,A,AF,M,N,ANS) 
*     This routine calculates the convolution of a given input 
*     signal, f(t), with the impulse response of the transducer, 
*     h(t). 
 
      REAL ANS(4000),TMP(4000),TS,ILS,ILE,RT,PL,SUM1,SUM2,INT,CRS 
      INTEGER M,N,CH 
      COMMON /COMB1/ B, RT ,T 
      COMMON /COMB4/ TS 
      CHARACTER*15 INFILE, SIGN*1 
 
      IF (CH .EQ. 1 .OR. CH .EQ. 2) THEN 
         WRITE(*,*)'Enter, # of terms in the impulse response.' 
         READ(*,*) M 
         WRITE(*,*)'Enter, # of points to be calculated in one revebarat 
     +ion period.' 
         READ(*,*) N 
         WRITE(*,*)'Do you want to save the effect of each term in the i 
     +mpulse response?' 
         READ(*,2) SIGN 
      ELSE 
      END IF 
 
      INT   = RT/N 
 
      DO 20 I = 1,M 
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         DO 30 J = 1, (I-1)*N 
            TMP(J) = 0 
   30    CONTINUE 
         DO 40 K = (I-1)*N+1, M*N 
            TS = INT*(K-1) 
            ILE = TS 
            CRS = ((I-1)*N)*INT 
            IF (CH .EQ. 2) THEN 
               IF ((TS - PL) .LE. CRS) THEN 
                  ILS = CRS 
               ELSE 
                  ILS = TS-PL 
               END IF 
               IF (K .EQ. ((I-1)*N+1)) THEN 
                  SUM1 = 0 
               ELSE 
                  CALL QROMB(ILS,ILE,SUM1,I) 
               END IF 
            ELSE 
               SUM1 = 0 
            END IF 
            IF ((CRS+PL) .GT. TS) THEN 
               SUM2 = FUNCIN(TS,CRS,I) 
            ELSE 
               SUM2 = 0 
            END IF 
            TMP(K) = SUM1+SUM2 
   40    CONTINUE 
    2    FORMAT(A1) 
          IF (SIGN .EQ. 'Y' .OR. SIGN .EQ. 'y') THEN 
             WRITE(*,*)'Enter a file to store response due to term #',I 
             READ(*,1) INFILE 
    1        FORMAT(A15) 
             CALL OPENER(INFILE,NUNIT,'NEW') 
             DO 50 J = 1, M*N 
                WRITE(NUNIT,*) (J-1)*INT/T,AF*TMP(J) 
   50        CONTINUE 
         ELSE 
         END IF 
         DO 60 J = 1, M*N 
            ANS(J) = ANS(J) + TMP(J) 
   60    CONTINUE 
   20 CONTINUE 
 
      RETURN 
      END 
 
      SUBROUTINE INSIG(PL,T) 
*     This routine gives the input voltage pulse 
 
      REAL WFRQ, AMPL, PL, OMG 
      PARAMETER (PI = 3.141592654) 
      COMMON /COMB5/ OMG, AMPL 
 
      WRITE(*,*)'Enter, amplitude, freq., and # of periods of the input 
     +signal.' 
      READ(*,*) AMPL, WFRQ, PERI 
 
      PL = PERI/WFRQ 
      OMG = 2 * PI * WFRQ 
      T = 1/WFRQ 
 
      RETURN 
      END 
 
      FUNCTION FUNCIN(TS,T0,L) 
*     The function gives the correct weight for the delta 
*     terms in the impulse response 
 
      REAL TS, T0, Y, OMG, A0 
      INTEGER L, C1, C2, K1, K2 
      COMMON /COMB2/ R0, RL 
      COMMON /COMB5/ OMG, AMPL 
      SAVE C1, C2, K1, K2 
      DATA C1 /1/, C2 /1/, K1/2/, K2/3/ 
      IF (L .LT. 2) THEN 
         A0 =1. 
      ELSE 
         IF (L-AINT(L/2)*2 .EQ. 0) THEN 
            IF (L .GT. K1) C1 = C1 + 1 
            A0 = (-1)*(R0*RL)**(C1-1)*(1+R0) 
            K1 = L 
         ELSE 
            IF (L .GT. K2) C2 = C2 + 1 
            A0 = R0*(R0*RL)**(C2-1)*(1+RL) 
            K2 = L 
         END IF 
      END IF 
 
      Y = A0 * AMPL * SIN(OMG*(TS-T0)) 
      FUNCIN = Y 
 
      RETURN 
      END 
 
      FUNCTION FUNC(TAU,L,X) 

      REAL RT, Y1, Y3 
      DOUBLE PRECISION FUNC, Y2, K11, K21, K22, K31, K32, 
     + K33, K41, K42, K43, K44, K51, K52, K53, K54, K55, K61, K62, K63, 
     + K64, K65, K66, K71, K72, K73, K74, K75, K76, K77, K81, K82, K83, 
     + K84, K85, K86, K87, K88 
      INTEGER L, X 
      COMMON /COMB1/ B, RT ,T 
      COMMON /COMB4/ TS 
      IF (L .EQ. 1) THEN 
         CALL K1(K11) 
         Y2=K11*EXP(B*TAU) 
      ELSE IF (L .EQ. 2) THEN 
         CALL K2(K21,K22) 
         Y1=(TAU-RT) 
         Y2=(-1)*(K21+K22*Y1)*EXP(B*Y1) 
      ELSE IF (L .EQ. 3) THEN 
         CALL K3(K31,K32,K33) 
         Y1=(TAU-2*RT) 
         Y2=(K31+K32*Y1+K33*Y1**2/2)*EXP(B*Y1) 
      ELSE IF (L .EQ. 4) THEN 
         CALL K4(K41,K42,K43,K44) 
         Y1=(TAU-3*RT) 
         Y2=(-1)*(K41+K42*Y1+K43*Y1**2/2+K44*Y1**3/6)*EXP(B*Y1) 
      ELSE IF (L .EQ. 5) THEN 
         CALL K5(K51,K52,K53,K54,K55) 
         Y1=(TAU-4*RT) 
         Y2=(K51+K52*Y1+K53*Y1**2/2+K54*Y1**3/6+K55*Y1**4/24)* 
     +      EXP(B*Y1) 
      ELSE IF (L .EQ. 6) THEN 
         CALL K6(K61,K62,K63,K64,K65,K66) 
         Y1=(TAU-5*RT) 
         Y2=(-1)*(K61+K62*Y1+K63*Y1**2/2+K64*Y1**3/6+K65*Y1**4/24+ 
     +      K66*Y1**5/120)*EXP(B*Y1) 
      ELSE IF (L .EQ. 7) THEN 
         CALL K7(K71,K72,K73,K74,K75,K76,K77) 
         Y1=(TAU-6*RT) 
         
Y2=(K71+K72*Y1+K73*Y1**2/2+K74*Y1**3/6+K75*Y1**4/24 +K76*Y1**5/ 
     +      120+K77*Y1**6/720)*EXP(B*Y1) 
      ELSE 
         CALL K8(K81,K82,K83,K84,K85,K86,K87,K88) 
         Y1=(TAU-7*RT) 
         Y2=(-1)*(K81+K82*Y1+K83*Y1**2/2+K84*Y1**3/6+K85*Y1**4/24+ 
     +      K86*Y1**5/120+K87*Y1**6/720+K88*Y1**7/5040)*EXP(B*Y1) 
      END IF 
 
      IF (X .EQ. 1) THEN 
         Y3 = 1 
      ELSE 
         Y3 = FUNCIN(TS,TAU,1) 
      END IF 
      FUNC = Y2*Y3 
      RETURN 
      END 
 
*     Calculations of the regeneration coefficients in the  
*     impulse responses 
 
      SUBROUTINE K1(K11) 
      DOUBLE PRECISION K11 
      COMMON /COMB1/ B, RT, T 
      COMMON /COMB2/ R0, RL 
      COMMON /COMB3/ T0, TL, C1, C2 
 
      K11 = B 
 
      RETURN 
      END 
 
      SUBROUTINE K2(K21,K22) 
      DOUBLE PRECISION K21, K22 
      COMMON /COMB1/ B,RT,T 
      COMMON /COMB2/ R0, RL 
      COMMON /COMB3/ T0,TL,C1,C2 
 
      K21 = T0*B + C1 
 
      K22 = C1*B 
 
      RETURN 
      END 
 
      SUBROUTINE K3(K31,K32,K33) 
      DOUBLE PRECISION K31, K32, K33 
      COMMON /COMB1/ B,RT,T 
      COMMON /COMB2/ R0, RL 
      COMMON /COMB3/ T0,TL,C1,C2 
 
      K31 = R0*B + T0*C1 + C2 + 2*R0*RL*B 
 
      K32 = T0*C1*B + C2*B + R0*RL*B**2 + C1**2 
 
      K33 = C1**2*B 
 
      RETURN 
      END 
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      SUBROUTINE K4(K41,K42,K43,K44) 
      DOUBLE PRECISION K41,K42,K43,K44 
      COMMON /COMB1/ B,RT,T 
      COMMON /COMB2/ R0, RL 
      COMMON /COMB3/ T0,TL,C1,C2 
 
      K41 = R0*C1 + T0*C2 + 2*T0*R0*RL*B + 2*R0*RL*C1 
 
      K42 = R0*C1*B + T0*C2*B + T0*R0*RL*B**2 + T0*C1**2 + 2*C1*C2 + 
     +      4*R0*RL*C1*B 
 
      K43 = T0*C1**2*B + 2*C1*C2*B + 2*R0*RL*C1*B** 2 + C1**3 
 
      K44 = C1**3*B 
 
      RETURN 
      END 
 
      SUBROUTINE K5(K51,K52,K53,K54,K55) 
      DOUBLE PRECISION K51,K52,K53,K54,K55 
      COMMON /COMB1/ B,RT,T 
      COMMON /COMB2/ R0, RL 
      COMMON /COMB3/ T0,TL,C1,C2 
 
      K51 = R0*C2 + 2*R0**2*RL*B + 2*T0*R0*RL*C1 + 2*R0*RL*C2 + 
     +      3*(R0*RL)**2*B 
 
      K52 = R0*C2*B + R0**2*RL*B**2 + R0*C1**2 + 2*T0*C1*C2 + C2**2 + 
     +      4*T0*R0*RL*C1*B + 4*R0*RL*C2*B + 3*(R0*RL)**2*B**2 + 
     +      3*R0*RL*C1**2 
 
      K53 = R0*C1**2*B + 2*T0*C1*C2*B + C2**2*B + 2*T0*R0*RL*C1*B**2 + 
     +      2*R0*RL*C2*B**2 + (R0*RL)**2*B**3 + T0* C1**3 + 3*C1**2*C2 + 
     +      6*C1**2*R0*RL*B 
 
      K54 = T0*C1**3*B + 3*C1**2*C2*B + 3*C1**2*R0* RL*B**2 + C1**4 
 
      K55 = C1**4*B 
 
      RETURN 
      END 
 
      SUBROUTINE K6(K61,K62,K63,K64,K65,K66) 
      DOUBLE PRECISION K61,K62,K63,K64,K65,K66 
      COMMON /COMB1/ B,RT,T 
      COMMON /COMB2/ R0, RL 
      COMMON /COMB3/ T0,TL,C1,C2 
 
      K61 = 2*R0**2*RL*C1 + 2*T0*R0*RL*C2 + 3*T0*(R0*RL)**2*B + 
     +      3*C1*(R0*RL)**2 
 
      K62 = 2*R0*C1*C2 + T0*C2**2 + 4*R0**2*RL*C1*B + 4*T0*R0*RL*C2*B 
+ 
     +      3*T0*(R0*RL)**2*B**2 + 3*T0*C1**2*R0*RL  + 6*R0*RL*C1*C2  + 
     +      9*C1*(R0*RL)**2*B 
 
      K63 = 2*R0*C1*C2*B + T0*C2**2*B + 2*R0**2*RL* C1*B**2 + 
     +      2*T0*R0*RL*C2*B**2 + T0*(R0*RL)**2*B**3  + R0*C1**3 + 
     +      3*T0*C1**2*C2 + 3*C1*C2**2 + 6*T0*C1**2*R0*RL*B + 
     +      12*R0*RL*C1*C2*B + 9*C1*(R0*RL)**2*B**2  + 4*C1**3*R0*RL 
 
      K64 = R0*C1**3*B + 3*T0*C1**2*C2*B + 3*C1*C2**2*B + 
     +      3*T0*C1**2*R0*RL*B**2 + 6*R0*RL*C1*C2*B **2 + 
     +      3*C1*(R0*RL)**2*B**3 + T0*C1**4 + 4*C1* *3*C2 + 
     +      8*C1**3*R0*RL*B 
 
      K65 = T0*C1**4*B + 4*C1**3*C2*B + 4*C1**3*R0* RL*B**2 + C1**5 
 
      K66 = C1**5*B 
 
      RETURN 
      END 
 
      SUBROUTINE K7(K71,K72,K73,K74,K75,K76,K77) 
      DOUBLE PRECISION K71,K72,K73,K74,K75,K76,K77 
      COMMON /COMB1/ B,RT,T 
      COMMON /COMB2/ R0, RL 
      COMMON /COMB3/ T0,TL,C1,C2 
 
      K71 = 2*R0**2*RL*C2 + 3*R0*(R0*RL)**2*B + 3*( R0*RL)**2*C2 + 
     +      3*T0*(R0*RL)**2*C1 + 4*(R0*RL)**3*B 
 
      K72 = R0*C2**2 + 4*R0**2*RL*C2*B + 3*R0*(R0*RL)**2*B**2 + 
     +      3*R0**2*RL*C1**2 + 6*T0*R0*RL*C1*C2 + 3*R0*RL*C2**2 + 
     +      9*(R0*RL)**2*C2*B + 9*T0*(R0*RL)**2*C1* B + 
     +      6*(R0*RL)**3*B**2 + 6*(R0*RL)**2*C1**2 
 
      K73 = R0*C2**2*B + 2*R0**2*RL*C2*B**2 + R0*(R 0*RL)**2*B**3 + 
     +      3*R0*C1**2*C2 + 3*T0*C1*C2**2 + C2**3 + 6*R0**2*RL*C1**2*B + 
     +      12*T0*R0*RL*C1*C2*B + 6*R0*RL*C2**2*B + 4*(R0*RL)**3*B**3 + 
     +      4*R0*RL*T0*C1**3 + 12*R0*RL*C1**2*C2 + 
     +      18*(R0*RL)**2*C1**2*B + 9*T0*(R0*RL)**2 *C1*B**2 + 
     +      9*(R0*RL)**2*C2*B**2 
 
      K74 = 3*R0*C1**2*C2*B + 3*T0*C1*C2**2*B + C2**3*B + 
     +      3*R0**2*RL*C1**2*B**2 + 6*T0*R0*RL*C1*C 2*B**2 + 
     +      3*R0*RL*C2**2*B**2 + 3*(R0*RL)**2*C2*B* *3 + 

     +      3*T0*(R0*RL)**2*C1*B**3 + (R0*RL)**3*B* *4 + R0*C1**4 + 
     +      4*T0*C1**3*C2 + 6*(C1*C2)**2 + 8*R0*RL*T0*C1**3*B + 
     +      24*R0*RL*C1**2*C2*B + 18*(R0*RL)**2*C1* *2*B**2 + 
     +      5*R0*RL*C1**4 
 
      K75 = R0*C1**4*B + 4*T0*C1**3*C2*B + 6*(C1*C2)**2*B + 
     +      4*R0*RL*T0*C1**3*B**2 + 12*R0*RL*C1**2* C2*B**2 + 
     +      6*(R0*RL)**2*C1**2*B**3 + T0*C1**5 + 5* C1**4*C2 + 
     +      10*R0*RL*C1**4*B 
 
      K76 = T0*C1**5*B + 5*C1**4*C2*B + 5*R0*RL*C1* *4*B**2 + C1**6 
 
      K77 = C1**6*B 
 
      RETURN 
      END 
 
      SUBROUTINE K8(K81,K82,K83,K84,K85,K86,K87,K88) 
      DOUBLE PRECISION K81,K82,K83,K84,K85,K86,K87,K88 
      COMMON /COMB1/ B,RT,T 
      COMMON /COMB2/ R0, RL 
      COMMON /COMB3/ T0,TL,C1,C2 
 
      K81 = 3*R0*(R0*RL)**2*C1 + 4*(R0*RL)**3*C1 + 4*T0*(R0*RL)**3*B + 
     +      3*T0*(R0*RL)**2*C2 
 
      K82 = 9*R0*(R0*RL)**2*C1*B + 6*R0**2*RL*C1*C2  + 
     +      6*T0*(R0*RL)**2*C1**2 + 6*T0*(R0*RL)**3 *B**2 + 
     +      9*T0*(R0*RL)**2*C2*B + 3*T0*R0*RL*C2**2  + 
     +      16*(R0*RL)**3*C1*B + 12*(R0*RL)**2*C1*C2 
 
      K83 = 4*R0**2*RL*C1**3 + 9*R0*(R0*RL)**2*C1*B **2 + 
     +      12*R0**2*RL*C1*C2*B + 3*R0*C1*C2**2 + 
     +      18*T0*(R0*RL)**2*C1**2*B + 12*T0*R0*RL* C1**2*C2 + 
     +      4*T0*(R0*RL)**3*B**3 + 9*T0*(R0*RL)**2* C2*B**2 + 
     +      6*T0*R0*RL*C2**2*B + T0*C2**3 + 10*(R0*RL)**2*C1**3 + 
     +      24*(R0*RL)**3*C1*B**2 + 36*(R0*RL)**2*C 1*C2*B + 
     +      12*R0*RL*C1*C2**2 
 
      K84 = 8*R0**2*RL*C1**3*B + 4*R0*C1**3*C2 + 
     +      3*R0*(R0*RL)**2*C1*B**3 + 6*R0**2*RL*C1 *C2*B**2 + 
     +      3*R0*C1*C2**2*B + 5*T0*R0*RL*C1**4 + 
     +      18*T0*(R0*RL)**2*C1**2*B**2 + 24*T0*R0* RL*C1**2*C2*B + 
     +      6*T0*(C1*C2)**2 + T0*(R0*RL)**3*B**4 + 
     +      3*T0*(R0*RL)**2*C2*B**3 + 3*T0*R0*RL*C2 **2*B**2 + 
     +      T0*C2**3*B + 30*(R0*RL)**2*C1**3*B + 20*R0*RL*C1**3*C2 + 
     +      16*(R0*RL)**3*C1*B**3 + 36*(R0*RL)**2*C 1*C2*B**2 + 
     +      24*R0*RL*C1*C2**2*B + 4*C1*C2**3 
 
      K85 = R0*C1**5 + 4*R0**2*RL*C1**3*B**2 + 4*R0 *C1**3*C2*B + 
     +      10*T0*R0*RL*C1**4*B + 5*T0*C1**4*C2 + 
     +      6*T0*(R0*RL)**2*C1**2*B**3 + 12*T0*R0*R L*C1**2*C2*B**2 + 
     +      6*T0*(C1*C2)**2*B + 6*R0*RL*C1**5 + 
     +      30*(R0*RL)**2*C1**3*B**2 + 40*R0*RL*C1* *3*C2*B + 
     +      10*C1**3*C2**2 + 4*(R0*RL)**3*C1*B**4 +  
     +      12*(R0*RL)**2*C1*C2*B**3 + 12*R0*RL*C1* C2**2*B**2 + 
     +      4*C1*C2**3*B 
 
      K86 = R0*C1**5*B + T0*C1**6 + 5*T0*R0*RL*C1** 4*B**2 + 
     +      5*T0*C1**4*C2*B + 12*R0*RL*C1**5*B + 6*C1**5*C2 + 
     +      10*(R0*RL)**2*C1**3*B**3 + 20*R0*RL*C1* *3*C2*B**2 + 
     +      10*C1**3*C2**2*B 
 
      K87 = T0*C1**6*B + C1**7 + 6*R0*RL*C1**5*B**2  + 6*C1**5*C2*B 
 
      K88 = C1**7*B 
 
      RETURN 
      END 
 
*     End coeff. calculations  * 
 
      SUBROUTINE OPENER(FNAME,NUNIT,STAT) 
 
      INTEGER N, NUNIT 
      CHARACTER FNAME*15, STAT*3 
      SAVE N 
      DATA N/10/ 
 
      OPEN(N,FILE = FNAME,STATUS = STAT) 
      NUNIT = N 
      N = N + 1 
      RETURN 
      END 
 
      SUBROUTINE IMPRES(A,AF,M,N,ANS) 
*     This subroutine calculates the regenerative part of the impulse 
*     response 
 
      REAL ANS(4000), TMP(4000), TS, RT, INT, PL, OMG, AMPL 
      DOUBLE PRECISION FUNC 
      INTEGER M,N 
      PARAMETER (PI = 3.141592654) 
      COMMON /COMB1/ B, RT ,T 
      COMMON /COMB4/ TS 
      COMMON /COMB5/ OMG, AMPL 
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      WRITE(*,*)'Calculates the regenerative part of the impulse' 
      WRITE(*,*)'response' 
       
      M = 8 
      WRITE(*,*)'Enter, #  of points to be calculated in one revebara 
     +tion period.' 
      READ(*,*) N 
       
      INT = RT/N 
 
      DO 20 I = 1,M 
      WRITE(*,*) I 
         DO 30 J = 1, (I-1)*N 
            TMP(J) = 0 
   30    CONTINUE 
         DO 40 K = (I-1)*N+1, M*N 
            TS = INT*(K-1) 
            TMP(K) = FUNC(TS,I,1) 
   40    CONTINUE 
    2    FORMAT(A1) 
         DO 60 J = 1, M*N 
            ANS(J) = TMP(J) 
   60    CONTINUE 
   20 CONTINUE 
 
      RETURN 
      END 
 
*     Rutines from Numerical Recipes, numerical integration 
 
      SUBROUTINE QROMB(A,B,SS,W) 
      INTEGER W 
      PARAMETER(EPS=1.E-6,JMAX=25,JMAXP=JMAX+1,K=5,KM=4) 
      DIMENSION S(JMAXP),H(JMAXP) 
      H(1)=1. 
      DO 11 J=1,JMAX 
        CALL TRAPZD(A,B,S(J),J,W) 
        IF (J.GE.K) THEN 
          L=J-KM 
          CALL POLINT(H(L),S(L),K,0.,SS,DSS) 
          IF (ABS(DSS).LT.EPS*ABS(SS)) RETURN 
        ENDIF 
        S(J+1)=S(J) 
        H(J+1)=0.25*H(J) 
11    CONTINUE 
      PAUSE 'Too many steps.' 
      END 
 
      SUBROUTINE TRAPZD(A,B,S,N,W) 
      DOUBLE PRECISION FUNC 
      INTEGER W 
      IF (N.EQ.1) THEN 
        S=0.5*(B-A)*(FUNC(A,W,2)+FUNC(B,W,2)) 
        IT=1 
      ELSE 
        TNM=IT 
        DEL=(B-A)/TNM 
        X=A+0.5*DEL 
        SUM=0. 
        DO 11 J=1,IT 
          SUM=SUM+FUNC(X,W,2) 
          X=X+DEL 
11      CONTINUE 
        S=0.5*(S+(B-A)*SUM/TNM) 
        IT=2*IT 
      ENDIF 
      RETURN 
      END 
 
      SUBROUTINE POLINT(XA,YA,N,X,Y,DY) 
      PARAMETER (NMAX=10) 
      DIMENSION XA(N),YA(N),C(NMAX),D(NMAX) 
      NS=1 
      DIF=ABS(X-XA(1)) 
      DO 11 I=1,N 
        DIFT=ABS(X-XA(I)) 
        IF (DIFT.LT.DIF) THEN 
          NS=I 
          DIF=DIFT 
        ENDIF 
        C(I)=YA(I) 
        D(I)=YA(I) 
11    CONTINUE 
      Y=YA(NS) 
      NS=NS-1 
      DO 13 M=1,N-1 
        DO 12 I=1,N-M 
          HO=XA(I)-X 
          HP=XA(I+M)-X 
          W=C(I+1)-D(I) 
          DEN=HO-HP 
          IF(DEN.EQ.0.)PAUSE 
          DEN=W/DEN 
          D(I)=HP*DEN 
          C(I)=HO*DEN 
12      CONTINUE 

        IF (2*NS.LT.N-M)THEN 
          DY=C(NS+1) 
        ELSE 
          DY=D(NS) 
          NS=NS-1 
        ENDIF 
        Y=Y+DY 
13    CONTINUE 
      RETURN 
      END 
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APPENDIX B-4 
 
 

 
 

      PROGRAM DIF2FIELD 
*************************************************** *************** 
This programme calculates the output voltage signal for a given separation of the 
transmitter and receiver, using the simulated or measured voltage output signal for a 
different transmitter-receiver separation 
 
 
       Author:     Murugendran Kanagasundram 
        Date   :       1-12 94. 
*************************************************** *************** 
 
 
 
      REAL  SFRQ, RAD, R, K, K1, R1, S, CA1, CA2, RHO1, RHO2, AF,T01 
      DOUBLE PRECISION C1,D1,C2,D2 
      INTEGER  LIMIT, P, STIM, ETIM, T 
      COMMON R, K, K1, RAD, R1 
      PARAMETER  (LIMIT = 16384, TOPI = 6.28318530718) 
      DIMENSION  PSAM(LIMIT) 
      CHARACTER*15 FNAME2, FNAME4 
      COMPLEX PM1, PM2, H, P0 
 
      WRITE(*,*)'GIVE THE SAMPLING FREQ..' 
      READ(*,*) SFRQ 
 
    2 FORMAT(A1) 
    1 FORMAT(A15) 
 
      WRITE(*,*)'ENTER THE FILE WITH THE DATA.' 
      READ(*,1) FNAME2 
      OPEN(20, FILE = FNAME2, STATUS = 'OLD', 
     +   ACCESS = 'SEQUENTIAL') 
 
      WRITE(*,*) 'ENTER THE STARTING AND ENDING SAMPLE # OF THE PULSE.' 

      READ(*,*) STIM, ETIM 
       
       
      PSAM(1) = 0 
      I = 2 
      READ(20,*) T,S 
    3 IF (T .GE. STIM .AND. T .LE. ETIM) THEN 
        PSAM(I) = S 
        I = I + 1 
        READ(20,*) T,S 
        GO TO 3 
      ELSE IF (T .LT. STIM) THEN 
        READ(20,*) T,S 
        GO TO 3 
      ELSE 
      END IF 
 
      DO 40 J = I,LIMIT 
        PSAM(J) = 0 
   40 CONTINUE 
 
      P = LIMIT / 2 
      CALL REALFT(PSAM,P,1) 
 
      WRITE(*,*)'ENTER THE RADIOUS OF THE SOURCE IN (m).' 
      READ(*,*) RAD 
      WRITE(*,*)'ENTER DISTANCE BETWEEN SOURCE AND OBSERVATION POINTS' 

      WRITE(*,*)'1 AND 2 IN (m).' 
      READ(*,*) R, R1 
      WRITE(*,*)'ENTER THE VELOCITY OF SOUND DURING THE MEASUREMENTS A' 
      WRITE(*,*)'T OBSERVATION POINTS 1 AND 2 IN (m/s).' 
      READ(*,*) CA1,CA2 
      WRITE(*,*)'Enter the density of the medium during the measurement' 
      WRITE(*,*)'s at observation points 1 and 2 in (kg/m**3).' 
      READ(*,*)RHO1, RHO2 
      AF = (RHO2*CA2)/(RHO1*CA1) 
      T01= R1/CA2-0.1*LIMIT/SFRQ 
 
       
      WRITE(*,*)'Choose the model: (1)Plane wave (2)Near-field' 
      READ(*,*)K 
 
      IF (K .EQ. 1) THEN 
        PSAM(1) = 0. 
        J = 1 
        DO 70 I = 3,(2*P+1), 2 
          F   = J * SFRQ /(2 * P) 
          K   = TOPI * F / CA1 
          K1  = TOPI * F / CA2 
          P0  = AF*EXP(CMPLX(0.0,(K1*R1-K*R-K1*CA2*T01))) 
          H   = P0 
          A3  = REAL(H) 
          A4  = AIMAG(H) 
          B11 = PSAM(I) 

          B22 = PSAM(I+1) 
          IF (I .EQ. (2*P+1)) THEN 
            B11 = PSAM(2) 
            B22 = 0 
            PSAM(2) = (B11*A3 - B22*A4) 
          ELSE 
            PSAM(I)   = (B11*A3 - B22*A4) 
            PSAM(I+1) = (B22*A3 + B11*A4) 
          END IF 
          J = J + 1 
   70   CONTINUE 
      ELSE 
        PSAM(1) = 0. 
        J = 1 
        DUMMY = 0 
        DO 80 I = 3,(2*P+1), 2 
          IF (I .GT. DUMMY+100) THEN 
            WRITE(*,*)I 
            DUMMY = I 
          ENDIF 
          F   = J * SFRQ /(2 * P) 
          K   = TOPI * F / CA1 
          K1  = TOPI * F / CA2 
          CALL QROMB(1,1,0.0D0,TOPI/4.0D0,C1) 
          CALL QROMB(2,1,0.0D0,TOPI/4.0D0,D1) 
          CALL QROMB(1,2,0.0D0,TOPI/4.0D0,C2) 
          CALL QROMB(2,2,0.0D0,TOPI/4.0D0,D2) 
          A1 =1.0-C1*4.0*2.0/TOPI*COS(K*R)  -D1*4.0*2.0/TOPI*SIN(K*R) 
          B1 =    D1*4.0*2.0/TOPI*COS(K*R)  -C1*4.0*2.0/TOPI*SIN(K*R) 
          A2 =1.0-C2*4.0*2.0/TOPI*COS(K1*R1)-D2*4.0*2.0/TOPI*SIN(K1*R1) 
          B2 =    D2*4.0*2.0/TOPI*COS(K1*R1)-C2*4.0*2.0/TOPI*SIN(K1*R1) 
          PM1=CMPLX(A1,(-1)*B1) 
          PM2=CMPLX(A2,(-1)*B2) 
          P0 =AF*EXP(CMPLX(0.0,(K1*R1-K*R-K1*CA2*T01))) 
          H  =P0*PM2/PM1 
          A3 =REAL(H) 
          A4 =AIMAG(H) 
          B11= PSAM(I) 
          B22= PSAM(I+1) 
          IF (I .EQ. (2*P+1)) THEN 
            B11 = PSAM(2) 
            B22 = 0 
            PSAM(2) = (B11*A3 - B22*A4) 
          ELSE 
            PSAM(I)   = (B11*A3 - B22*A4) 
            PSAM(I+1) = (B22*A3 + B11*A4) 
          END IF 
          J = J + 1 
   80   CONTINUE 
      END IF 
 
      WRITE(*,*)'ENTER A FILE TO STORE DATA.' 
      READ(*,1) FNAME4 
      OPEN(40, FILE = FNAME4, STATUS = 'NEW', 
     +ACCESS = 'SEQUENTIAL') 
         
      CALL REALFT(PSAM,P,-1) 
        
      WRITE(*,*)'Writing to file.' 
      DO 100 I = 1,LIMIT 
        WRITE(40,*)(I-1)+(STIM-1)+T01*SFRQ,PSAM(I)/P 
*        WRITE(40,*)I,PSAM(I)/P 
  100 CONTINUE 
 
       
      CLOSE(20) 
      CLOSE(40) 
      STOP 
      END 
 
      SUBROUTINE QROMB(I,M,A,B,SS) 
      DOUBLE PRECISION A,B,SS,DSS,S,H,ER 
      PARAMETER(EPS=1.0D-5,JMAX=30,JMAXP=JMAX+1,K=5,KM=4) 
      DIMENSION S(JMAXP),H(JMAXP) 
      H(1)=1.0D0 
      ER = 1.0D-10 
      DO 11 J=1,JMAX 
        CALL TRAPZD(I,M,A,B,S(J),J) 
        IF (J.GE.K) THEN 
          L=J-KM 
          CALL POLINT(H(L),S(L),K,0.0D0,SS,DSS) 
          IF (ABS(SS-ER).LT.EPS*ABS(ER)) RETURN 
          ER = SS 
        ENDIF 
        S(J+1)=S(J) 
        H(J+1)=0.25D0*H(J) 
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11    CONTINUE 
      PAUSE 'Too many steps.' 
      END 
 
      SUBROUTINE TRAPZD(I,M,A,B,S,N) 
      DOUBLE PRECISION A,B,S,FUNC,DEL,SUM,X 
      IF (N.EQ.1) THEN 
        S=0.5D0*(B-A)*(FUNC(I,M,A)+FUNC(I,M,B)) 
        IT=1 
      ELSE 
        TNM=IT 
        DEL=(B-A)/TNM 
        X=A+0.5D0*DEL 
        SUM=0.0D0 
        DO 11 J=1,IT 
          SUM=SUM+FUNC(I,M,X) 
          X=X+DEL 
11      CONTINUE 
        S=0.5D0*(S+(B-A)*SUM/TNM) 
        IT=2*IT 
      ENDIF 
      RETURN 
      END 
 
      SUBROUTINE POLINT(XA,YA,N,X,Y,DY) 
      DOUBLE PRECISION XA,YA,Y,DY,DIF,DIFT,C,D,HO,HP,W,DEN,X 
      PARAMETER (NMAX=10) 
      DIMENSION XA(N),YA(N),C(NMAX),D(NMAX) 
      NS=1 
      DIF=ABS(X-XA(1)) 
      DO 11 I=1,N 
        DIFT=ABS(X-XA(I)) 
        IF (DIFT.LT.DIF) THEN 
          NS=I 
          DIF=DIFT 
        ENDIF 
        C(I)=YA(I) 
        D(I)=YA(I) 
11    CONTINUE 
      Y=YA(NS) 
      NS=NS-1 
      DO 13 M=1,N-1 
        DO 12 I=1,N-M 
          HO=XA(I)-X 

          HP=XA(I+M)-X 
          W=C(I+1)-D(I) 
          DEN=HO-HP 
          IF(DEN.EQ.0.)PAUSE 'ERROR' 
          DEN=W/DEN 
          D(I)=HP*DEN 
          C(I)=HO*DEN 
12      CONTINUE 
        IF (2*NS.LT.N-M)THEN 
          DY=C(NS+1) 
        ELSE 
          DY=D(NS) 
          NS=NS-1 
        ENDIF 
        Y=Y+DY 
13    CONTINUE 
      RETURN 
      END 
 
      FUNCTION FUNC(I,M,A) 
      DOUBLE PRECISION A,FUNC 
      REAL RAD,K,K1,R,R1 
      INTEGER I,M 
      COMMON R,K,K1,RAD,R1 
 
      IF (M .EQ. 1) THEN 
       IF (I .EQ. 1) THEN 
       FUNC=COS(K*SQRT(R**2+4.*RAD**2*(COS(A))**2))*(SIN(A))**2 
       END IF 
 
       IF (I .EQ. 2) THEN 
       FUNC=SIN(K*SQRT(R**2+4.*RAD**2*(COS(A))**2))*(SIN(A))**2 
       END IF 
      ELSE 
       IF (I .EQ. 1) THEN 
       FUNC=COS(K1*SQRT(R1**2+4.*RAD**2*(COS(A))**2))*(SIN(A))**2 
       END IF 
 
       IF (I .EQ. 2) THEN 
       FUNC=SIN(K1*SQRT(R1**2+4.*RAD**2*(COS(A))**2))*(SIN(A))**2 
       END IF 
      END IF 
      RETURN 
      END 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 - 143 - 

 
APPENDIX C-1 
 
 
 
 
 
 

Transducer parameter (PZT-5A) 
 
 
 Density(ρ0) 7750kg/m3 

 Velocity of sound(c) 4355.2m/s 

 stiffness constant(c
D
33) 1.47*1011 N/m2 

 Piezo electric stress coefficient(e33) 15.8C/m2  

 Dielectric constant(ε33) 830*8.85*10-12  
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