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CHAPTER 1

INTRODUCTION

In ultrasonic transit time flow meters a sinusoitiathe burst is often used to measure the
transit time and the transit time difference. Addurst is sent into the medium and detected
after travelled through it. The detected pulse Wheatirely different in shape from the input
pulse, is used to make measurements. The correctfidbe measurements, to the required
accuracy, depend on the correct interpretatiomefdetected pulse. A good understanding of
the pulse forming mechanism of the system helprpné¢ the detected pulse correctly and
make good measurements. This problem constitueeshbme of this thesis. There can be a
number of factors involved in determining the foointhe pulse. But, this thesis looks only
into some of the acoustic aspects that contritutbea shape of the pulse.

The matters under discussion in this thesis arevatet towards the ultrasonic transit-time
flow meter. However, the discussed effects areunofddmental importance in a variety of
applications in the field of ultrasound technology.

This thesis consists of 8 chapters. In Chapteh@,nature of the problem, studied in this
work, is described. Zero crossing method, one efflilw measurement methods, is taken as
an example to illustrate the problem and to indidhe importance of the knowledge of pulse
forming in measurement systems. This knowledgeatso be used in systems using other
flow measurement principles.

Chapter 3 describes the measurement system bétbgimency and time domains. The major
parts of the system are represented as blocks. tHewadjacent blocks are interfaced is
mainly described in this chapter. With a simplegbrahe open circuit output impedance of
the receiving transducer is shown to be equal ¢oelectrical input impedance. The same
result can be found in an article written by Beg®¥nbut the proof is omitted.

Chapter 4 is devoted to discuss the effect ofalition on pulse forming. A system where two
transducers of equal dimensions placed on theirntmmaxis is mainly considered. The
transducer faces and the medium in between theduaers are considered as a linear, time
invariant filter. The filter is described by a fregncy domain transfer function which connects
the particle velocity on the transmitter to the rage pressure on the receiver. The impulse
response of the filter is found using the tranfdection. The impulse response is shown to be
the same found by Rhy#efor a same type of configuration of the transdsicasing pure
time domain consideration. Using the impulse ardjdency responses, the pressure pulses
are calculated. The calculated pressure pulse faraspresented as a function of Seki
parameters, S and ka values. The pressure pulsesoarpared with the well-known point
receiver models; 1) Pressure due to a circulaopisibrator on the axis 2) Pressure due to a
circular piston vibrator on its axis, with far-fieapproximation.

Khimunin? tabulated the diffraction correction for the trdmser configuration described in
the beginning of the above paragraph as a funcip8 and ka values. Khimunin verified the
diffraction correction for a few combinations okd a values to show that the diffraction
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correction is the same for any combination of k andhlues. It is shown in this dissertation
that this verification is not necessary (see Sdg)(4.

In Chapter 5, the effects of the transducers orstiape of the transmitted pulse is studied.
Mason's model for thickness extentional mode vibnat of a piezo electric plate is used as
models for the transmitter and receiver. The baséchanism of pulse forming is studied
using a few terms of the impulse response of thesttucer element. The pulse forms,
calculated by the time domain method, are comparitd that of the frequency domain
method.

In Chapter 6, the total effect of the transmittexelimm-receiver system on the shape of the
transmitted pulse is studied. A sinusoidal burstisged as the input voltage signal to the
transmitting transducer. Using a frequency domampmuter programme, the signals at every
node is simulated and the pulse forms are discu3sed is, 1) Velocity signal at the face of
the transmitter, 2) Free field pressure at thereewitthe receiving transducer and 3) The open
circuit voltage at the output terminal of the reasg transducer. The effects of matching layer
is studied.

In Chapter 7, the experiment, performed in conpnacwith the research, is described and the
results are presented. The experimental resulte wealysed as follows. Measurements for
two different separations of the transducers avelued in the analysis. Using the measured

voltage signal for the first separation, the outpalitage signal for the other separation is

predicted. The predicted result is compared withabtual measurement. The deviations are
discussed. The theoretical simulation of the mesamsants, using the parameters used in the
experiment, and comparison with the measuremergsmeanded. But, because of shortage of
time, this was not done. However, this comparisomone and an excellent agreement in
shape of the voltage signal is found by Ve¥vik

Conclusions of this work are presented in Chapter 8

Mathematical derivations of some results are pr&ityg and involved. But they are an
integral part of the thesis. The absence of thehemaatical derivations, however, will not
disturb the continuity of the thesis. Thereforeythee placed in the appendices and classified
as appendices(A-x). The computer programs usedlgaulations are listed out and placed in
appendices(B-x) and constants and parameters uselthei calculations are placed in
appendices(C-x).

The problem for my Cand. Scient. degree was creat@d-operation between the Dept. of
physics, and the Chr. Michelsen Research instiDNEY), in connection with the project for
developing an ultrasonic high-precision flow mdtarnatural gas at CMR. But this research
has been done independently, not as a part ofrthegb. At the same period another research
on the transit time determination of the same floeter was done by Mr. Steinar Vervik.
Although these two researches have been startedasely, in the course of the work we
found the two problems are closely related to edbbr. As a result, most of the experimental
and programming works have been done in co-operdbetween me and Mr.Vervik.
Information on the variation of the transit-timeedio properties of the various parts of the
system can be found in the Cand. Scient tHesisvir. Vervik.



CHAPTER 2

MOTIVATION

2.1 INTRODUCTION

Ultrasound techniques have several advantagesloe@onventional methods, such as orifice
plate, venturi and turbine meters, for the measargrof fluid flow. Munk? and Nolan and
O'Hair® discussed some of the advantages. There are twcigbes widely used in
commercially produced ultrasound flow meters; caqropagating and Doppler method. Of
these two methods, Doppler method is not applickdyldow measurement of natural gas as
it contains no particles which are necessary tttexcthe sound waves. TeStwith 24-inch
pipe lines show that the contra propagating ultradoflow meter can be calibrated to
accurately measure gas flow rates in large dianpaperlines over a wide range of flow.

2.2 ULTRASOUND TRANSIT-TIME FLOW METER

Transducer 2

I SN
Flow tlﬁ P/

Transducer 1 \/

Figure(2.1) Transit-time flow meter with single paP is the distance between transducers. The apgleen
the acoustical axis of the transducers and thetibre of flow is6. The mean flow velocity of the
medium along the axis of the pipe is v.

The Fig.(2.1) illustrates a single beam transitetifiow meter. Transducers are oriented such
that their common acoustical axis makes an afghath the direction of the flow. P is the

distance between the transduceyrsand t, are the times taken for sound to travel(transit-
times) from transducer 1 to transducer 2 and fransducer 2 to transducer 1 respectively.

The expression for the velocity of flow can be fdtras,

V= AT P (2.1)
toit;, 2C0D
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where
AT =t -t, (2.2)

In the Eq.(2.1), v is the average velocity along $bund path. But in a real situation the flow
velocity is not uniform over the cross-section lud pipe. As a result the flow rate calculated
using the measured velocity would be different frima true. Therefore it is important to
determine the flow profile correctly to find theroect flow rate. In high precision transit-time
flow meters, several pairs of transducers are gepl@and the velocity is measured at many
places over the cross-section of the pipe.

Consider one sound transmission link in a multilbeéeansit-time flow meter. The Fig.(2.2)
illustrates such a single beam sound transmissforvoltage signal is applied to the
transmitting transducer by the transmitting elaaits. This signal, after travelled through the
transmitting transducer, the medium and the reogittiansducer, is received by the receiving
electronics. The time interval between the trangditind the received signals is registered.
The registered times, obviously, contain the tirkags in the non-liquid parts and has to be
corrected for.

Electronics Transducer Transducer  Electronics
(transmitting) (transmitting) (receiving) (receiving)
Medium
A Vi B
V=0

Figure(2.2) Simplified block diagram of a singleab®sound transmission link in a transit-time ulirds flow
meter.

2.3 NO-FLOW CONDITION

Transit-times at no-flow condition are utiligeé¢44to eliminate the time delays in the non-
liquid parts of the meter from the measured traimsies. The transit times and the transit time
difference at no-flow conditions are measured tfi@rrequired environmental conditions, and
stored in the flow computer. This is known as zeambbration. Using these data, during the
flow measurement, the transit-time measurementscareected and the flow velocity is
calculated according to the corrected transit-times

The measurement errors occur in the measuremeahedfansit-time at no-flow conditions,

thus, may reduce the accuracy of the meter. Inwhisk an attempt has made to illustrate
some possible source of errors due to the misirgtton of the received signal. The signal
transmission through transmitting and receivingctetics, shown in Fig.(2.2), can be
modelled. Therefore the signal transmission betwm®nts A and B in the Fig.(2.2) is only

investigated in this study.
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In transit-time flow meters voltage signals of tfem of sinusoidal bursts, chirps and
spikes(an approximate delta function) are used easure the transit-times. The choice of a
particular form of the signal depends on the systeimusoidal tone bursts are usually used to
measure low flow velocities(<30m#%)like in gas transfer pipe lines, in narrow bapstems.

A voltage signal of the form of a sinusoidal bussapplied to the electrical terminal of the
transmitting transducer. This signal is detectedtiyy receiving electronics after it has
travelled through the transmitting transducer, riiedium and the receiving transducer. Zero
crossing methad is addressed here for the measurement of theitttans. The detection
unit of the receiving electronics is programmediébect the zero crossings that come after a
pre defined signal level. And these zero crossargscompared with the corresponding zero
crossings of the transmitted signal to measurérémesit-time. That is, the 1st zero crossing of
the transmitted signal is compared with that of tkeeived, 2nd zero crossing of the
transmitted signal is compared with that of theere®d and so on and the time difference is
taken to be the transit-time. If the pre defineghal level is misinterpreted as if it belongs to a
particular cycle of the signal, for example as fingt while it is being the second, then the
measured time using the detected zero crossinganliain en error of one period.

Inter transducer distance divided by the propagatielocity of sound in the medium,
ignoring the time delays in the transducer pockstsaken to be the transit-time. This is the
plane wave model for time calculations. Considez ttme measured using the method
described in the previous paragraph. To calculaeransit-time, the time delays in the non-
liquid parts are subtracted from the measured tiAssume there is no absorption in the
medium. The calculated transit-time will obey thved relationship of the plane wave model
if the measurement were made using the first drak/the received signal. For zero crossings
in the signal to obey the time relationship of gl@ne wave model, the signal had to travel
through the medium as a plane wave. But, this ighmcase at all because of the finite size
of the transmitter. The deviation of the measuigda from the plane wave depends on the
geometrical configuration and the dimensions of tlaasducer-medium-transducer system.
This deviation from the plane wave is found to laeised by the phenomena known as
diffraction. If the zero crossings of the receivaatst are to be used for the measurements,
which is often the case because the first few pleraf the signal usually buried in the noise,
the measured times of the zero crossings must bgpaosated for the above mentioned
deviation from the plane wave. Otherwise, in higacgsion measurements, the accuracy will
be reduced. The deviation of the measured sigoah the plane wave due to diffraction is
demonstrated and discussed in detail in Chapter 4.

With proper mathematical models for the transdycdiffraction and the electronics, the
voltage level of each peak of the signal in thagrant region and the entire form of the signal
can be predicted. The predicted pulse may not mttehreal one. But, it will help the
experimenter to interpret the measured signal ctbyrand to make the measurements more
precisely. The knowledge of pulse forming effectdl give a better understanding of the
system which can be used to control and improve it.

2.4 DISCUSSION

The time of arrival of the received signal is styimot equal to the time of arrival of the plane
wave, d/c, if the medium is dispersive, where thesdistance between the transducers and ¢
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is the phase velocity of the centre frequency @&f signal. In a dispersive medium, high
frequency components of the signal travel fastel amive at the receiver earlier than the
centre frequency. The zero crossings will also lbered by the absorption in a dispersive
medium. If it can be assumed that variation ofwéecity of sound is small for a large band
width then this effect may be neglected. Howewer tlie simulation of the received signal to
be more close to the real one, absorption shoulddbeded in the model.
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SYSTEM MODEL

3.1 INTRODUCTION

In this chapter a simulation mod#&&t which is comparable to the experimental set-up tha
used to study the single beam ultrasound transomgsirough a medium is described. The
model consists a number of blocks representing tmajor parts such as
electronics(transmitting), transducer(transmittjng) propagation medium,
transducer(receiving), and electronics(receivirfghe experimental set-up. The input, output
guantities involved in each block and how thesentjtias related to the adjacent blocks are
discussed.

In coming chapters the influence of blocks, repnéag the medium and the transmitting and
the receiving transducers, on the shape of theakigeing transmitted are discussed. The
analysis is done for isolated and integrated bloTke suffixes of the parameters in the block
diagram do not follow the numbers of the nodes.

Electrical
termination

Matching

Generator Transmitter Medium Receiver network

Z | ) 3 4 5

“«Q >
(=
<

3 |

Vo

Fig(3.1)
Figure(3.1) The block diagram of the system model.

V(1) Voltage signal from the generator in volts.

v,(t) Input signal(volts) to the transducer(trangimg).

u,(t) Particle velocity of the radiating surfacetlé transmitting transducer.
py(1m,t) Far-field pressure at a distance 1m on e & the transmitting transducer.
P,(t) Free field pressure at the centre of the keegitransducer.

V(1) Output signal(volts) from the transducer(recegy).

V(1) Output signal(volts) from the electrical matapnetwork.
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3.2 FREQUENCY DOMAIN DESCRIPTION OF THE SYSTEM
MODEL

From basic signal analysis theory it is known ttheg output, y(t), of linear time invariant

system for an input, x(t), is given by the invefsaurier transform of the product of the

spectrum of the input with the transfer functiortled system, provided the Fourier transform
of x(t) and y(t) are exist.

Y(w) = X(w) H(w) (3.1)

where Y (), X(w) are frequency spectrum of the output and thetismals respectively and
H(w) is the transfer function of the system.

The Fourier pair of a time function f(t) is definasg,

Fw) = j f (e idt (3.2a)
_iD joot
f(t)= o jD F(w)e'“ dw (3.2b)

Assuming the blocks in Fig(3.1) as linear time maat filters, the inputs and outputs can be
related through their respective frequency domeangfer functions. When the blocks are
connected as shown in the Fig(3.1), the relatignbbtween the input voltage,\and output

voltage, \, can be writtehas follows.

Ve(w)zvl(w) Uy(w) PR(w) Vs(w) Ve(w)
Vo(w) Vo(w) Vi(w) Uy(w) Ry(w) Vs(w)

(3.3)
= Hoy(w) Hip(w) Haz(w) Hagw) Hsfw)

where,

H,,(w) Transfer function relates the generator voltagéhto transmitting transducer's input
voltage.

H,,(w) Transfer function relates the transmitting trarsalis input voltage to the particle
velocity of its radiating face.

H,,(w) Transfer function relates the particle velocity the surface of the transmitting
transducer to the free field pressure at centthefeceiving transducer.

H,{(w) Transfer function relates the free field pressatethe centre of the receiving
transducer to the receiving transducer's outpuayel

H.(w) Transfer function relates the input voltage andpou voltage of the electrical
matching network.
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The block representing the transmitting transduseharacterised by the voltage to velocity
transfer function, H(w). This transfer function is described by the Magge of model for a

thickness extensional piezoelectric vibrator. Thandfer function, H(w), using the above
model, is found in Chapter 5.

The block representing the medium is characterigethb transfer function, J{w). This
transfer function is described by the following rfalifferent mathematical models.

1. Plane wave model

2. Near-field, point receiver model
3. Far-field model

4. Near-field, finite receiver model

These models are discussed in detail and the trafsfetion, H,(w), for each model are
found in Chapter 4.

The transfer function j{w) can be splited into two functions as,

U(w) Vs(w)
P,(w) U(w)

H, (w) = (3.4)

where U) is the spectrum of the particle velocity, u(th,tiee active face of the receiving
transducer.

U(w)

U(w
The term; ,
A()

the particle velocity, U, of the receiving transducTo calculate this transfer function,
consider plane waves impinging on the receiver. Hiigation can be representedby
Thevenin equivalent circuit with the open circuitde, F, as the mechanical generator, the

radiation impedance, Zas its internal impedance and the acoustic imppedance of the
transducer with a finite electrical termination,, s the load, as shown in Fig.(3.2). This
representation is explained using the Thevenin #maoshortly. £ and B are the Fourier
transforms of their respective time functions.

in Eq.(3.4) is the transfer function which relaties free-field pressure,,Ro

Z,
(] U

F,= DAP, Z

Figure(3.2) Thevenin equivalent circuit for plamaves incident on the transducer

Thevenin theorem can be found in any network aralgsit book. However, in order to make
the discussion easier, the theorem is stated higflybn its technical form.
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Thevenin theorem:
Suppose the current through an impedance in atrielaetwork is asked.

Step 1 Put the circuit in a blackox, pull out the branch of the circuit with thepedance
through which the current is under question andafisect the impedance from
the rest of the circuit as shown in Fig.(3.3).

b
Black box E:l 7,
a

Figure 3.3  An electric network is put in a blackxband the impedance through which the current under
question is pulled out from the box and disconricte

Step 2 Find the open circuit voltage between the ternsirsalnd b. This is equivalent to
find the voltage y, while the terminals a and b are connected to &nite

impedance. This is known as Thevenin equivalent gelend denoted as.E

Step 3 Replace all the generators in the network withrtiternal impedance and find
the impedance between the terminal a and b. Thiedapce can be found either
by using simple resistor addition law or alternaly$ by finding the voltage to
current ratio at the test voltage source conndotddeen the terminals a and b.

Thevenin equivalent circuit then would be,

Zy, i
L]

Eo o ]z

Figure 3.4  The Thevenin equivalent circuit for tlectrical network considered in Fig.(3.3).

and the current, i, under question is given by,
i = _En :
2+ 2y
Now, consider the situation where a plane waveder on the receiving transducer. Suppose
the particle velocity of the transducer is to benfd. The medium and the plane waves can be
thought as an unknown electrical network of gemesataind resistance in the black box

feeding a current(particle velocity U) in to a l¢acbustic impedance of the transducer with
the finite electrical termination,;Z To find the equivalent circuit, consider theldaing

steps and compare with the corresponding steps timeld hevenin theorem.

Step1  Disconnect the impedance,,Zrom the rest of the circuit.

-10 -
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Step 2 Find the open circuit voltage(force). This is dqt@ the force on a blocked
transducer while plane waves incident on it. Tilsagj = F,, the force on the
blocked transducer which can also be called, Idgicas the open circuit forte

The open circuit force, = DAP,, where D is the diffraction factor which, in theepent case,
is 2. A detailed proof of this relationship is givien Appendix(A-3).

Step 3 Remove all the generators. This means that tremoiwaves incident on the
transducer now. There is only medium in the bladkk.bConnect a test
voltage(force) source to the terminal. This is gglént to make any transducer to
emit waves in to the same medium. Then the voltagecurrent ratio,
voltage/current(force/velocity), at the test vodeieigrce) source gives the
Thevenin equivalent impedance and which is, of seuthe radiation impedance.
That is Thevenin impedance, Z Z..

The Thevenin equivalent circuit, then, would beslaswn in Fig.(3.2), and from this circuit,

U(w) PN A

P4 ((.0) - Zin +Zr ' (35)

V
The second term in Eq(3.4‘b—5, the velocity to voltage transfer function of thereiving

transducer while it is terminated with a finite iegance. This transfer function is considered
here to formulate a general description of theesysBut, in Chapter 5 and 6 only the transfer
function with open circuit condition is considered.

3.3 SYSTEM TRANSFER FUNCTION IN TERMS OF
SENSITIVITIES.

The overall transfer function of the system cam &ls expressed in terms of the sensitivities
of the transmitting and receiving transducers. Beg&howing this, it is important to define the
sensitivities.

Definition:

Free-field pressuré is the pressure due to a sound wave progressing
freely.

* Beissne¥ uses a same kind of representation for the plameesvincident on a transducer functioning as a
receiver. In his discussion, fs the open circuit pressure whereas in this $higsis the open circuit force., = A

p, Where A is the area of the transducer. He use®abrt Z parameter in his discussion, and i& the open
circuit acoustic impedance. In this thesjgs i& the acoustic impedance of the transducer wiiihiee electrical
termination.

Rhyne also uses a same kind of representatiomifosituation. The sentence "....This conditiorresponds to
an open-circuit loading of the wave and thus.n.page 319 of the artiddgis in support for this conclusion.

-11 -



CHAPTER 3 SYSTEM MODEL

Definition:

Transmitting voltage sensitivily S, of a transducer, for a given

frequency, is defined as the ratio of the freedfifglessure generated at a
reference point to the voltage across the elecktieaninal.

A point at 1m on the axis from the transducer isduas the reference and the pressure is
calculated according to the far-field model this discussion.

The transfer function j{w) can be written as

Hi(0) = Hyg(w)H,,(w), (3.6)
where
Py(w) P,(w)
Ho(w) = Uz((,t)) and H,(w) = P:((,O)'

The overall transfer function can then be written a
Hos(w) =Hp(w) Hi(w) Hodw) Hfw) H 4{w) H sfw) (3.7)

The transfer function, Hw)H,,(w), transfers the input voltage, Mo the far-field pressure at
1m from the transducer. If,{f) is chosen to be a sinusoidal voltage with fextpy w,,
v, (t)=Vexp(jupt), then the far-field pressure is given by,

P3(w) = H;(W)H,5(w)V (d(w-uy,) (3.8)
where
V0(w-wy) is the frequency spectrum ofy).

Taking inverse Fourier transform to Eq.(3.8) anithgisifting property of Dirac delta function
gives,

P3(t) = Hy(wp)H o) Vo exp(jot) (3.9)

The pressure at 1m, according to the above equaisoV,H,,(w)H,(w,). The source
sensitivity is then found by dividing the pressurg voltage, \ , across the electrical
terminals. That is,

S, = Hy(wp)H (). (3.10)

Since the choice af, is arbitrary Eq(3.10) can be written as,

S, = Hi(W)H,4(w) (3.11)

-12 -
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Definition:

Receiving sensitivity M, of a transducer is defined as the ratio of the
output open circuit voltage to the free-field prass due to plane
progressing wave, with the incident angle with pimcipal axis of the
transducer being zero, at the centre of the traosdu

The receiving transducer's output voltage,8an be written using Thevenin theorem as,

ZL

R — 3.12
open Z +Zy, ( )

Vs = (Vs)
where

Z,..is the output impedance of the receiving transdand
Z, is the impedance due to the rest of the circait $een by the receiving transducer.

Z.. i1s same as the Thevenin equivalent impedance. déms be found as follows. The
situation where plane waves incident on the tracsdoan be represented, as shown earlier in
this section, by a generator and the radiation dapee, Z as its internal impedance. The
transducer can be represented as an electricabriewy linear electric components. This
representation is shown in Fig.(3.5). To find thiee¥enin equivalent impedance, all the
generators in the network, as described in stefptl3eoThevenin theorem stated earlier in this
section, has to be removed and the impedance afitchias to be found while the terminals
are connected to a test voltage source. And thpedance is same as the electrical input

impedance, Z of the transducer while it is operating in thedmen used in the application.
That is,

for the
transducer

F, Network # 7
L

Figure 3.5 Representation of plane waves incidarg transducer as an electric circuit.

Dividing both sides of the Eq.(3.12) by the freeldi plane wave pressure, Bives,

ﬁ — (VS)open ZL

(3.13)
P4 P4 ZL+Zou1
Z
Hye(w) =M ——-— 3.14
(@) =M o (314)

Now the EQ.(3.7) can be rewritten as
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CHAPTER 3 SYSTEM MODEL

Z

Hos (W) = M
06( ) S\/1 ZZL+Zou|

Ho(w)H s{w)H s{w) (3.15)

where,

S, transmitting sensitivity of the transmitting traoger and
M,  receiving sensitivity of the receiving transducer.

The relationship in Eq(3.3) is mainly used to chltel the response of the total system.
However, the time domain calculations also usetthénanalysis. Therefore, it is necessary to
describe the system in the time domain. Next sedfialevoted to describe the system in the
time domain.

3.4 TIME DOMAIN DESCRIPTION OF THE SYSTEM MODEL

The input, x(t), and the output, y(t), of a lindane invariant system are related through the
time convolution as follows

y(t) =h(t) 0 x(t) (3.16)
where

h(t) is the impulse response of the system anhds the convolution
operation.

The time domain relationship in Eq(3.16) and thegfrency domain relationship in Eq(3.1)
are related through the Fourier transform as fadtfow

y(t) = h(t) O x(t) = Y(w) = H(w) X(w). (3.17)
The transfer function f{w) in Eq.(3.3) is given by

V(W) = Hyy(w)V o(w).
Taking the inverse Fourier transform of the aboygagion gives,

V(1) = hpy(t) T V(1) (3.18a)

where, R,(t) is the impulse response between nodes 0 arfdtiedrig.(3.1). Similarly, the

time domain relationships of the input and outpgugaxch block in the Fig(3.1) can be written
as follows.

Up(t) = hyo(t) T v, (1) (3.18b)
P4(t) = hpy(t) U uy(t) (3.18c)
Vs(t) = hys(t) O py(t) (3.18d)
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CHAPTER 3 SYSTEM MODEL

Ve(t) = heg(t) O V(1) (3.18¢)
where, h, (t) are the impulse responses between the noded ma

The overall response of the system in the time dloiren then be written as,

Ve(t) = hpy(t) O hyo(t) O hyy(t) O hyg(t) O hsg(t) O vg(t) (3.19)

As only the acoustic part of the system is studiiethis work, only the impulse responses
h,,(t), h,,(t) and h(t) are presented in this thesis,(t) is found in Chapter 5,}ft) is found in

Chapter 4 and K(t) is found, only for the open circuit case, inapter 5.

3.5 DISCUSSION

In calculating the transfer function,ftv), it was assumed that,Rn Eq.(3.3),is the pressure
due to a plane wave. But, this pressurg,i® calculated using four different mathematical

models. Therefore it is important to justify thhétpressure calculated by all these models are
of plane wave pressure at the receiver.

In the plane wave model, a plane wave which prajgsgaithout changing its plane wave
property is considered. Therefore, obviously, at abservation point the pressure wave is a
plane. In the near-field, point receiver model, teeeiver at the observation point has an
infinitely small dimension. Therefore, even thoufhk wave front is spherical, at the receiver,
it can be considered as a plane. In the far-fietdi@h the wave fronts are spheres with large
radii. For receivers with small dimensions the wé&eaits can be treated as planes. And for
the near-field, finite receiver model, the pressatréhe receiver is averaged over the surface
of the receiver. Since the amplitude and the ploasiee average pressure at every point over
the receiver surface is equal, the average pressuwrde consideréas the pressure due to a
plane wave.

In the calculation of the open circuit force in Agmalix(A-3), it is assumed that the receiving
transducer is mounted on an infinite baffle. Thisot true at all in practice. But, however, for
frequencies where the dimension of the transdwceeliy much larger compare to the wave
length of incident wave, the diffraction factory fleormal incidence, can be taken as 2. For
smaller transducers the diffraction factor becommsller and reaches 1 for an ideal point
receiver.

In the propagation models absorption has not bakentinto consideration. Therefore, in a
situation where the simulated sensitivity resuls @ be compared with the measurements,
one has to correct the measurements for absorption.

One can measure the sensitivities of a transduoedependently. The sensitivities
characterises the behaviour of the transducert Ags been recognised the sensitivities of the
transmitting and receiving transducers as trarfsfiections in the system model, the output
signal can be explained, qualitatively, in termstlod changes in transducers, for example
with temperature. The description of the system ehadth the sensitivities contains both
magnitude and the phase of the sensitivities.dfrtteasurement lacks the phase information,
a complete comparison of the simulated and expetmhagesults would not be possible.
However, with the magnitude of the sensitivitiesadsinction of frequency, the magnitude of
the output signal could be comparedith the simulated.

-15 -



CHAPTER 4

EFFECT OF DIFFRACTION ON PULSE
FORMING

4.1 INTRODUCTION

The diffracted field from a planar sound source isentury-old problem in acoustics. Lord
Rayleiglt addressed the problem in his famous book "The fhebSound” in 1878. But, it
gained more attention after 1940s. Numerous relearchave been performed both
theoretically and experimentally in this area immection with ultrasound imaging and
measurement of material properties, especiallynleasurement of attenuation of sound in
materials. An overview on the works done in th&diand a spectrum of references are given
by Harrigs.

The pressure due to a circular radiator, averagest a coaxial circular surface of equal
radius in front of the source, is of interest. Tinansit time flow meters, calibration of
transducers by self reciprocity method, absorpSpectrometers etc. use a configuration
where circular transducers of equal dimensiong;gulacoaxially, are used as transmitter and
receiver or, equivalently, one transducer is usetransmitter and receiver with a reflector.
These systems measure the average pressure. Will@aitulated the average velocity
potential, for such a configuration as describedvab for a sinusoidal excitation based on
King's?2 expression, while Rhyaecalculated the average velocity potential for apulse
excitation based on Stepanish&nlmpulse response results. In this dissertationyniels
impulse response result(corresponding pressurdpuad from the Williams' frequency
response result(corresponding pressure). The sestdtessentially the same however, for the
fact that both have the same origin; Stepanishewltee and King's expression can be
derived>1°from Rayleigh's integral.

Transit-time flow meter, which is under investigatiin this work, uses two transducers of
equal dimensions, placed on their common axisiaasmitter and receiver. As pointed out in
Sec.(2.3), if the effect of diffraction is not catered, the accuracy of the transit-time meters
may be reduced at high precision measurements.chiaigter is devoted to study the effects
of diffraction on the form of the pulse as it prgptes between the transducers. The space
between the planes passing through the transdaces falso denoted as the "medium" block
in Fig.(3.1), is considered as a linear, time imar filter and the effects of diffraction is
studied as the response of the filter both in feemy and time domains. Although the aim of
the work is more concerned about the configuratibtransducers described above, in order
to explain and compare the pulse forms, some atpecial cases are also considered. The
above mentioned filter is, therefore, described, foyr different mathematical transfer
functions based on piston type of model and thpaeses are compared and discussed.
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CHAPTER 4 EFFECTS OF DIFFRACTION ON PULSE FORMING

4.2 THEORY

In this section, as proposed in Sec.(3.2), thesfemrfunction that relates the particle velocity
at transmitting transducer and free field pressuréhe centre of the receiving transducer are
found for all four models. The theory of the modtgdsbe discussed in this chapter is well
established and can be found in the literature. éd@w for clarity, using the theories found in
Ref.(45) and Ref.(1), the desired results are obthi In the beginning of this section a
general expression for the velocity to free fietdgsure transfer function is found. Using this
general expression, the transfer functions forttinee propagation models, namely the plane
wave model, the near-field, point receiver modeld ahe far-field model, and the
corresponding impulse responses are found. Finiléyyelocity to average pressure transfer
function for the near-field, finite receiver modeid the corresponding impulse response are
found.

4.2.1 AGENERAL EXPRESSIONFOR TRANSFER FUNCTION

The Fig.(4.1) shows the geometry of the configorativhich is to be described shortly, in the
usual spherical polar co-ordinate system. Consaarircular sound source of radius, a,
mounted on a rigid infinite baffle(not shown) thias on the xy plane with its centre coincide
with the co-ordinate origin. The co-ordinates witle suffix, O, distinguish the points on the
sound source from the points in the field and hélyce /2. The space defined by z > 0 is
filled with an isotropic, homogeneous and non viscoedium. The source vibrates with a
velocity, u(g,¢,.t) in the z direction.

A X
P(r,0,0)
R
ds
(rOaOOa 0)
(0) >
Z

y

Figure(4.1) A circular piston source lies on theplgine whose centre lies on the co-ordinate ori@inThe
observation point, P, lies at@) in the spherical co-ordinate system. ds is emetgal area on
the source with co-ordinates,@,9,) where6, = 172.

The time dependent velocity potenti@(t,t), at a point, P, and at time, t, is given by wedl-
known Rayleigh's integral
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—-JkR
e J

__Lfoe) e
or.t) = ZHLI(anj s 4.1)

z=0

where ds is an infinitesimal elemental area onsth@ce, R is the distance of the observation
point from the infinitesimal elemental area, dg the distance of the observation point from

. . : . 0 .
the origin, O, s is the surface of the source argdthe unit normal to s(a—(pj is the normal
n z=0

particle velocity at the source.

The following expressioasfor particle velocity, u, and pressure, p, areduse this
dissertation.

u(r, t) = -0g(r,1) (4.2)

and

p(r,t) = o, % (tr, 1) (4.3)

wherep, is the density of the medium.

At the source region,

If u(re,do,t) = €<, the Eq.(4.1) can be written as,

e—ij '
ds@*. (4.5)
R

_ 1
o= j
Then the frequency domain expressions for the uglgmtential, ¢(r,t), for an arbitrary
velocity function, u(9,,t), assuming the system to be linear, can beexfits,
-jkR

R

e

¢(Lw)=%rﬂu(ro,¢o,w) ds (4.6)

where, U(§,$,,w) is the Fourier transform of y(@,t), k =w/c and c is the thermodynamic
speed of sound in the medium,
The frequency domain expression of the pressuneg E.(4.3), can be written as,

P(r, @) = jop,P(r, &) (4.7)
The formula given in Eq.(3.2) is used for Fourir@ansformation.

Now, assume the velocity is uniform over the swgfat the source. Then, Yf,w) can be
written as U@) and the Eq.(4.6) becomes,
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o(r,w) = U(oo)(z—ln e %Sj (4.8)
or
®P(w) = U()G(r,w) (4.9)
where
1 _ikr ds

The expression for pressure will then be,

P(r.o) = jopU(w)G(r,w) (4.11)
or

P(rw) = U(WH(r,w) (4.12)
where

H(r,0) = jopG(r,w) (4.13)

For linear time invariant systems the ratio of theput to input spectrum givethe transfer
function. Therefore, H(w) is the general expression for the velocity tospuee transfer
function. By taking the inverse Fourier transforinttte Eq.(4.12), in principle, one can find
the pressure, pf), at the observation point, P, for a given velgai(t). Some special cases
of interest which constitute the three propagatmmdels mentioned earlier in this chapter are
described and their transfer functions and thepulse responses are presented in the coming
sections. The function G(), as it is being a part of the transfer functiod @epends only on
the spatial co-ordinates, is called the spatialdier function of the system.

42.1.1 PLANEWAVE MODEL

This section describes a very simple and often wsedel. In Sec.(2.3), it is said that the
transmitted signal does not propagate like a plaaee in the medium due to diffraction. In
order to demonstrate the deviation and to calculaecorrections, this model is used as a
reference model in this work. A transfer functiendieveloped for this model in this section
which can be used to simulate plane pressure waléise observation point for a given
velocity function.

TRANSFER FUNCTION
Consider an infinite rigid plane(not shown) liestbe xy plane of a spherical polar co-
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ordinate system as shown in Fig.(4.2). The planeatés back and forth with a uniform
velocity, u(t), in the z direction. Denote the waty to pressure transfer function for this
model, as Hr,w). The corresponding spatial transfer function, deti@s (r,w), has to be

calculated first to calculate f,w).

If the elemental area ds in the expression fdr,&) is chosen as follows, the integration can
be calculated easily. Now, consider the Fig.(42)is the projection of the observation point,
P, on the xy plane. A reference axis, X', is draparallel to x-axis, from O'. The radial
distance of an arbitrary point on the xy-plane froms r' and the angle, measured anti clock
wise, between the line connecting the arbitrarynpaind O' and x'-axis i$'. The shaded
portion in the Fig.(4.2) is the chosen elementahadenoted as ds', and can be written as,

ds'=rdrd'. (4.14)

Then Eq.(4.10) takes the form for this case as

G,(r,w) :(%THG_W%) (4.15)

do

N
N
N
\
. N \
N \
NN
Y
7 A \
/
| N
¥ A
S Vo
MY Vo
| L P(1,6,9
I \
Do Vo »Us
|
|
I
I
i

v

y

Figure(4.2) An infinite plane lies on the xy plai@bservation point, P, lies atq) in spherical co-ordinate
system. Projection from the point P to the xy plan®'. R is the distance between the observation
point and the elemental area, ds'.

Let the distance of the observation point, P, ftbemxy plane be z(= rc6%

Since

R=vZ2 +1'2 (4.16)
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ma —'W
Gp(_r,(,o):iz_”ejk 2,2

21‘[00 /ZZ +r12

where a', a very large number, is the upper ligntthe integration variable r'. The integrand
in the above integrati@hcan be written as an exact differential,

r'dr'de’ (4.17)

G, (1w = —jikid[e-ikw } (4.18)

0

and then further can be written as,

G, (r,w) :.i[e‘jkz — gzt ] (4.19)
jK

Then, H(r,0), using Eq.(4.13), can be written as,

H, (o) = poc[e'ikz - e‘ik““a“] (4.20)

The pressure at point, P, p)y for a velocity function, u(t), can be found imyltiplying H(r,
w) with the spectrum of u(t), W), and taking inverse Fourier transform.

p(r,t) = ,ooc[u(t —%] - u[t - —MH (4.21)

C

This equation consists two wave components; oneeglat z/c on the time axis and the other
at (2+a?¥*/c. By letting a' tend to infinity, the contributioof the second term, for
applications with time limited signals, can be madgligible. The resulting wave would be a
plane wave. This corresponds to dropping the setermd in Eq.(4.20). Hence, the plane
wave transfer function can be written as,

H,(r,0) = poC ek (4.22)
Since this transfer function depend only on théatlise of the observation point from the xy

plane and not on the distance from the origin ef¢b-ordinate system the transfer function
can simply be written as,

Hp(z,0) = poc e, (4.23)

and called as plane wave transfer function. Thithésfirst of the four transfer functions
represent Lj(w) mentioned in Chapter 3.

IMPULSE RESPONSE

The velocity to pressure impulse response is thergg/Fourier transform of the velocity to
pressure transfer function in Eq.(4.23) and is givgn
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h,(z,t) =pgc o(t-z/c) (4.24)

whered is the Dirac delta function. The formula given in.@B®) is used to calculate the
inverse Fourier transform.

4.2.1.2 NEAR-FIELD, POINT RECEIVER MODEL

The Fig(4.3) shows the sketch of a circular soundgc®of radius, a, placed in the xy plane,
whose centre coincides with the origin of the cdhmaite system. An infinitesimal point
receiver is placed on the axis of the source. Tipeession for pressure for this model, as will
be shown, turns out to be very simple and compdw. forming of pulses can be explained
easily and may be considered as base to undertaqailse forming in the models explained
in later sections.

do,

7
e
,
,

ds)

,

o

[

Figure(4.3) A circular plane sound source liestomty plane being its centre coincide with the iorigf the
co-ordinate system. An infinitesimal point receii@placed on the axis of sound source. R is the
distance between the observation point and theezitaharea, ds.

TRANSFER FUNCTION

The spatial transfer function for this arrangem@&(r,w), is readily found using Eq.(4.10).
The points on the piston are denoted with a sults€ig-rom the geometry,

ds = gdrydd, (4.25)

Since the observation point always lies on the,axis simply replaced by the axial distance
zZ,r=z.

Since

R=yZ+1° (4.26)
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1 2ma e—jk 22+r02
G, (2.6) = [ [ ===t dr,dd, (4.27)

2T o0 4Z2 + I’O2
The above integration is similar to that in the EQ.{4, and can be written as,

G (z,oo)=_i gk giklzat | (4.28)
n Jk

Then the velocity to pressure transfer functiog(zld), using Eq.(4.13), can be written as,

H.(zw) = ,oocle‘jkz — g ke ] (4.29)

and called as near-field point receiver transfecfion. This is the second of the four transfer
functions represent f{w) mentioned in Chapter 3.

IMPULSE RESPONSE

Taking inverse Fourier transform for the Eq.(4.25Yes the impulse response of this model
as,

)= ot )43 (300

or

hu(2.) =PoclBit - ) - &t - t,)] (4.30b)

: : . z 2+ a . .
where &(.) is the Dirac delta function, & o la :zTa and R(z,t) is the velocity to

pressure impulse response for this model. The mgarif the above times will be explained
under the discussion of impulse responses in SBSj4

4.2.1.3 FAR-FIELD MODEL

This is an often used model for the situations wtiee measurements are made at distances
very much larger compared to the dimension of thece. The Fig(4.4) shows the geometry
of a circular sound source of radius, a, beinggdaon the xy plane, with its centre coincide
with the origin of the co-ordinate system. An ols#ion point, P, is at ®,9), in the
spherical polar co-ordinate system.
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TRANSFER FUNCTION

The spatial transfer function, (@), for this model is found, as for the previous misdusing
Eq.(4.10), as,

2ma . -jkR

1
G (rw)=5- ] eR r,dr,do, . (4.31)

00

For observation points lies at large distance caompa the dimension of the source, the
following approximation® can be made.

A X

P(1,6,9)

do,

v

y

Figure(4.4) A circular sound source is placed ia &y plane being its centre coincide with the arigf the
co-ordinate system. Observation point, P, is 8td(}, in the spherical polar co-ordinate system. R
is the distance between the observation point la@dhaded elemental area on the sound source.

n

= |

(4.32)

p s

and

R=r-r, cogp, sind (4.33)

This approximation implies that the equidistantp®ion the source from the observation
point are on straight lines instead of an arc len&tepanishen has mentioned about this
approximation in (page 1632 of Ref.(24)).

then

2ma

G (1w = % [ [etrmrocotosnOy dr dig, (4.34a)
00

or

1

G, (1,) = -~ et 2a(kasinG)
2T

: (4.34b)
(kasin®)
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The Eq.(4.34b) can be found elsewler&he velocity to pressure transfer function(r i),
will then be,

. _we @ 2J1(kasin®)
H, (r,0) = jpg ek & £atXasing) 4.35
(£,00) = Po 2r  (kasin®) (4.35)

For an observation point on the a¥is; 0,
2

Hia (1, 00) = jpo €7 % (4.36)

The above expression for f,w) is the velocity to pressure transfer function dbiservation
points on the axis in the far-field. As only the amis response is considered in this
discussion, the above transfer function will beated hereafter in this text simply as,

2

H¢ (z,w) = jpow e ;— (4.37)
z

and called as far-field transfer function, wheris zhe axial distance from the centre of the
source. This is the third of the four transfer fiiors represent Jw) mentioned in Chapter
3.

IMPULSE RESPONSE

The impulse response, as in the previous casefuisd by taking the inverse Fourier
transform of the far-field transfer function,(Elw) in (4.37),as,

a’ z
h. (z1t) = —o|t—-——|, 4.38
¢ (zt) = p, >y ( Cj ( )

where

d' is the time derivative of the Dirac delta function

4.2.2 NEAR-FIELD, FINITE RECEIVER MODEL

In the previous models the receiving probes weratéid as of point dimension. In this model
the receiving probe is an imaginary coaxial circdarface of same dimension as the source
in front it.
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TRANSFER FUNCTION

The average velocity potential on such a circulafage as mentioned above, for a continuous
sinusoidal velocity of the source, was found byl\fihs as,

%

U | ., 4
<<P(Z’t)>:j—k!e -]

1
g k(' eof 02 gj? 9d9] (4.39)
n 0

where k = Later this expression was used by Khimanafind the diffraction correction

for the same system.

The average pressure corresponds to the averageitygbotential in EqQ.(4.39), using the
Eq.(4.3) is given by,

o) % W2 2 %
(p.1)) = er"*"poc{e“Z _4 je_'z(z 40T 0% Gin? odo (4.40a)
n 0

or

(p(z,th = U g H(z,w) (4.40b)
where

%) % W2 2 %
H(z,w) = poc{e“Z _4 J'e_'?(Z T G2 6dg | (4.40c)
n 0

Assuming the system to be linear, as done in S@cl4 the expression for pressufg(z,t),
in Eq.(4.40b) can be extended to a more generalciglfunction, u(t). Calling H(zy) the
near-field finite receiver transfer function andndéng as H(z,w), the expression for the
average pressure will be,

(P(zp)) = U(W) H,(z,w), (4.41a)
where(P(zw)) and U¢v) are the Fourier transforms @f(z,t)) and u(t) respectively and
%

1
-j%z 4 -j2z2+422cof 0)2 .
H,@Zw-= po{e et 2 je Jeema 0* sin®6de | . (4.41b)
Tt

0

This is the forth of the four transfer functiongmesent H,(w) mentioned in Chapter 3.
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IMPULSE RESPONSE

The velocity to average pressure impulse respomséhis model is given by Eq.(4.42a) or
Eq(4.42b). The impulse response of the same typaaafel was first found by Rhyfée by
pure time domain consideration, from Stepaniskelrspulse response results for point
receiver model. In this work the impulse resporsdound by taking the inverse Fourier
transform of the velocity to average pressure fenfinction, H/(z,w), in Eq.(4.41b). A
detailed derivation of the impulse response fromtthnsfer function is given in Appendix(A-
1).

0 t<t,
2 2 242 2
ct |[4a“—-ct+z
hy(zt) = poc{é(t—tz)—mz\/ e }tzstst‘,az (4.42a)
O t>t4az
where
/ 2
tZ:E and 1‘4a224a—+22
o C
or
0 t<t,
cit [t -t?
h, (z,t) =< p,C 5(t_t1)_E :gz_tz t,<t<t,,. (4.42b)
O t>t4az

The times tand ., can be considered just as abbreviations for theend and the meanings
of these times will be cleared under the discussioimpulse responses in the next section.
The results given in Eq.(4.42b), differs from tledt Rhyne's by the factor ob.c as he
calculated the force to force impulse responses €an be explained as follows. Singgz)

in Eq.(4.42b) is the velocity to average pressompulse responsegeh, (z,t) is the velocity to
force impulse response, whemg is the area of the receiver. Sificthe force to velocity
ratio at the transmitter is the impedance Zwep,c, dividing the velocity to force impulse

response by Z gives the force to force impulsearsp as i(z,t)/p,C.

4.2.3 DISCUSSION

In the previous section, the transfer function dhd impulse responses of the different
models were calculated. In this section, transtercfions and the impulse responses are
represented graphically and the behaviours ofuhetions are discussed.
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TRANSFER FUNCTIONS

Figure(4.5) (a), (b) and (c) show the graphicalespntation of Kz,w), H;(z,w) and H(z,w)
respectively. The magnitude and the phase, for plgnof the near-field transfer function are
presented as 20la, (z,0)/H (z,0)0 andJ(H,(z,w)/H (z,0)) respectively. Similar quantities
are presented for other two transfer function #lbthree plots are calculated for the same
parameters; a = 4.5mm, z = 0.1m and ¢ = 344.35f/similar plot for the plane wave
transfer function would be just straight lines thb@WdB for magnitude ana @r phase.

The near-field, point receiver transfer functionshstrong oscillation with increasing
frequency. This can easily be explained by simpigythe expression of its transfer function
further as follows. Consider the near-field, pagdeiver transfer function in Eq.(4.29)

Using Euler's relation

e = coskx+ | sinkx (4.43)
the EQ.(4.29) can be written as,

.
Hn(z,a)):Zpocsin«{%je 22 (4.44)

The sine term in the above expression explain®sieélating behaviour of the magnitude of
the transfer function shown in Fig.(4.5)(a). Thepétade response takes minimum and
maximum values for frequencies equal to the eved add harmonics of 1/(2[tt)])

respectively. For the particular choice of paramsetd the plot in Fig.(4.5)(a) maxima and
minima occur at odd and even multiples of 1701.35kidspectively. The minima are exactly
zero.

The phase of the transfer function can be writen a

LYl (4.45)
2 2

and the phase relative to the plane wave, alsosowig.(4.5)(a) ,then will be,

Vi t,, -1,
> u{ 5 j (4.46)

The above expression shows that the phase relatiptane wave decreases with increasing
frequency. But, it changes from 9t +9Q® at frequencies equal to the even multiples of
1/(2[t,t]), as shown in Fig.(4.5)(a), because of the stnetin the expression for, ,w).

The magnitude of the far-field transfer functiomown in Fig(4.5)(b), is zero at zero
frequency, which can be seen from its expressioiqgr{4.37), and increases monotonically
with frequency. The phase iS72 - wt,). This shows that the phase of all frequency

components of the input signal is advancedyrelative to plane wave.

The magnitude of the near-field finite receivernsir function, shown in Fig(4.5)(c),
increases with frequency and reaches a limit ah Higquencies. And it is zero at zero
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frequency which can easily be shown by putting: O in its expression in Eq.(4.41b). The
phase of the transfer function relative to thathef plane wave decreases with frequency from
90 degrees and approaches zero at high frequencies.

o -~ 90 P
= o
_ 0 - L %0 =
g - 30 g
£ oz
=20 - =
5 -0 g
= 1 - 60 i_-i
o (a) -~ 90 \
-40 \ \ \
\ \ \ -
m (@)]
T oo — 90 _\g/
2 | - =
=, -~ 60 &
£ -z
3 ~—~~
N 20 — 30 ﬁ
T 4 L T
— b N
-40 ( ) T ‘ T ‘ T ‘ T O N
I ‘ I ‘ I ‘ I _
m 0 @)
S - 90 S
5 - =
= 0 B
T - Tz
3 3
N - 30 N
40 _(©) ‘ ‘ ‘ o N
0 2000 4000 6000 8000

Freq. (kHz)
Figure(4.5) Transfer function. (a) near-field, poireceiver, (b) far-field, (c) near-field finite geiver.

Magnitude is normalised to the plane wave magniautt phase is calculated relative to the plane
wave phase. Calculations are made for z = 0.1n¥.&mm, and ¢ = 344.35m/s.

Change in the axial distance will not change thgidoahape, except the amplitude, of the
pressure wave according to the far-field model.

This can be easily shown considering two differ@xial distances as follows. If and z are
two axial distances, then,

2

. ik A
H; (z,0) = jpw € ’klz (4.47)
1
. g, &
Hi (2,,0) = jpow €7 F (4.48)
Z
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or
Hi(z.0)=H(z,0)H, (2,2, ), (4.49)
where
H,(z,2,, w)= Zie_j?(ZZ_zl). (4.50)
2

Since the term responsible for the time delay,-£2), of the signal in the above transfer

function is independent of frequency, there is hage distortion in the signal. And since the
magnitude of the transfer function is also indegendof frequency, the change in axial
distance will not give any change to the basic stafgghe signal. The term/z, gives only an

amplitude reduction, if 2z,, to the signal.

IMPULSE RESPONSES

Fig.(4.6) (a), (b), (c) and (d) show the graphregiresentation of the impulse respons¢s,)

in Eq.(4.24), iz,t) in EqQ.(4.30b), fz,t) in Eq.(4.38) and [lz,t) in Eq.(4.42) respectively.
The magnitude axis of the plots are normalised wjth Therefore the weights of the Dirac
delta functions are 1. With the same normalisattbe, weight of the time derivative of the

Dirac delta functiond'(D)}, of the far-field model IS Time axis of the plots are presented as

(t - t) where § = z/c. That is, the arrival time of the plane wavenade the time origin of the
plots.

There are two delta functions in Fig.(4.6)(b). ¢t eévident from the time of arrival, in
Eq.(4.30b), that the first delta function is duelte direct plane wave and the second is due to
the wave from the edge of the piston. This facts baen discussed also by some other
authorg*26. According to Huygens principle, every point om ghiston vibrator acts like an
independent sound source. When the piston facebiating with an impulse velocity,
disturbance from different point on the piston rettee receiver at different times. Obviously,
the first arrival, (= z/c), corresponds to the centre of the pistbe, iearest point to the

receiver, and the last arriva;a(t\/ z +a2/c) corresponds to the points on the circumference
of the piston, the farthest points to the receivdter the time f, and before,f there is no
response. The duration of the impulse responskasefore, (i-t,).

(t.-t,) =5{1/1+a—z —1} (4.51)
C V4

It can be seen from the expressions foand § that t, > t,. And, as z increases the difference
between t and § becomes small and the delta functions in Fig.(8)@ecome close to each

other. At large distances compared to the radiusthef source, the impulse response
approaches the far-field impulse response in Fig)(d).
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Figure(4.6) Impulse response. (a) Plane wave md@deNear-field point receiver model, (c) Far-fiettbdel
and (d) Near-field finite receiver model. Magnitedire normalised to the magnitude of the plane
wave impulse response. The Dirac delta functiorsiraticated by arrows and the time derivative
of the Dirac delta function is indicated by two ogjte arrows. All the simulations are made for
the following parameters; a = 4.5mm, z = .1m ard3@4.35m/s
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The impulse response of the far-field model isdbavative of delta function. Therefore, the
far-field model is a differentiating filter. The eative of delta function is representetly a
pair of delta functions as in Fig.(4.6)(c). The uge response of an ideal high pass filter can
be representéadvith a positive delta function and a negative dumection. The width of the
sinc function is 1/f where § is the lower cut-off frequency of the ideal highsp filter. When
the lower cut-off frequency of the filter increaséise width of the sinc function becomes
narrower and approaches to a delta function, dt figguencies. This situation is comparable
to the far-field model. But, the frequency responsehe far-field model is zero at zero
frequency. However, the impulse response reveatslhie far-field model is a high pass filter.
Rhynés3 puts forward a similar argument to say that thar+field finite receiver model is also
a high pass filter, as it contain a delta functma a negative singularity function which goes
to zero with time, in its impulse response.

Fig.(4.6)(d) shows the impulse response of the-fiel finite receiver model. With reasons
similar to those given under the near-field poetsiver case, the first arrival, torresponds

to the communication between the points on theivecand the points immediately in front

of them on the piston source. The last arriva;z(=t\Ma2+zz/c), corresponds to the

communication between the points on the circumfszesf the receiver and the points on the
farthest edge on the piston source. There is mree before, ind after f, The duration of

the impulse response is, then,,@t).

(uﬂ—g):é{m§§+1—% (4.52)

Fig(4.7) shows the impulse response of the neblt-fieite receiver model for three different
values of z.By taking, s time origin of the plot, all the impulse respesare made to start at

the same place. All the impulse responses hava dieftctions at t =,t But, these delta

functions are omitted here in the plot for simgicit is evident from the figure and from the
expression for (f, - t) that, as z increases the duration of the impusponse become

shorter and approaches the far-field impulse respon

OE+0 |
0 i
© -2E+6
<
N
% -4E+6
<
-0.5 0.0 0.5 1.0 15 2.0 2.5
(t h tz)|JS

Figure(4.7) Impulse response,(h,t), for three different distances, 0.05 m, 0.Jamd 0.2 m. In all cases a =
4.5 mm, ¢ = 347m/s. The delta functions of all plate omitted for simplicity.
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4.3 CALCULATIONS

In the previous sections velocity to pressure fenfunctions of the four models and their
corresponding impulse responses were found and liediaviours were discussed. In this
section using the impulse responses and the trafusfetions the pressure will be calculated.
This pressure is same as the free field pressweotdd as p in the system model in
Chapter3. A sinusoidal burst with three cycles arginusoidal continuous wave are used as
the velocity signals for illustration. And the psase wave form for the sinusoidal bursts are
discussed. But, the velocity signal will not be iausoidal burst in a system like that
addressed in Chapter 3. However, similar pressgreals, as mentioned above, for a more
realistic velocity input are presented in Chapter 6

The pressure wave forms, for each model, are Gakulilby convolving the velocity wave

form with the respective impulse responses of tfepggation models. Calculation of the
pressure signal for the first three models, fos farticular velocity wave, is quiet easy. But
for the near-field, finite receiver model the prl has not been solved so far analytically.
Therefore the calculation of the convolution inedgs done numerically. The procedure for
the calculation is given in Appendix(A-2). The prag code is given in Appendix(B-1).

The following signals are used as input signakhécalculations.
1. Continuous wave (t) = U, sinut,

2. Pulsed sine wave : u(t) :OE.U(t) - U(t-T')] sinwt , whereU is the unit step function, ¥
3T and T is the period of the input signal. Thédeing abbreviations,

(2 +ad)?

Za

2 3
and t4az = M'
C C

t =2, t (4.53)
C

the meanings of which has already been discusste iprevious section, will be used.

4.3.1 PLANEWAVE MODEL
The pressure pulse due to this model is well-knenwd can be found in any text book on
waves. However, in order to make the discussiofegahe pressure pulses are presented

here and their characteristics are discussed. @sidts will be used in the coming sections.
The pressure, f1), at a distance, z, from the source can be tzted as follows,

p.(z,t) =u®U hy(z,1) (4.54)

where u(t) is the velocity function given in thegb®ing of this section and(,t) is the
plane wave impulse response found in Eq.(4.24).

p,(z1t) = TUO[U(t -1)-U(t-1- T']sinw, (t - T)p,cd(T — t, )t (4.55)
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Figure(4.8) The wave forms of particle velocity amarmalised pressure for the plane wave model.tithe
axis of all figures are normalised to the periodtaf input signal. The arrival time of the pulse is
made the time origin. (a) Particle velocity of tlaee of the transducer (b) Pressure wave at the
piston face (c) pressure wave at an observatiant.poi
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using sifting property of the Dirac delta function, the above expressam be written as,

p(z.t) = pOCUO[ U(tt,) - U(t-T'-tZ)] sin ay(t-t,) (4.56)

The particle velocity at the piston face, the puessat the piston face and the pressure at an
arbitrary observation point are shown in Fig.(4B)e time axis of the plots are normalised to
the period of the velocity signal. By subtractihg tarrival time of the pulse from the absolute
time, the arrival time is made as the time oridirth@ plot in Fig.(4.8)(c). It is clear from the
expression for pressure,(pt) and from Fig.(4.8)(b)&(c), that the presswrave is only
shifted in time and has not changed its form dugrépagation. This simple wave is used as a
reference to compare the wave forms predicted &yther models in the coming sections. It
can be seen from Fig.(4.8)(c) that the zeros ofstgeal coincides with the period and half
period #s of the time axis. This fact is used | ¢bming sections. For example, it may not be
possible to accommodate the plane wave and theyeesvave due to the other models in
one plot, because of the large difference in thative size of the two waves, but, still the
period and half period #s of the time axis denbteflane wave zero crossings. This is not
true for an input signal other than a sinusoidashubut, still one can have a plane wave.

4.3.2NEAR-FIELD, POINT RECEIVER MODEL

CONTINUOUS WAVE

Pressure at a distance, z, for a continuous exmitai.(t) is found as,

pnC(Zit) = l‘b(t) D hn(z1t) (457)
where h(z,t) is the impulse response of this model foung&dg.(430Db).

|
Poc (z1) = '[ U, sinog (t - T)pOC[5(T - tz) - 6(T - tza)]dT (4.58)
-0
Using sifting property of the Dirac delta functidhe above expression can be written as,

Pac(Z:t) =PeCU, ( Sinwy(t-t,)-sin aa(t-t,)) (4.59)

1 tza _tZ tZ +tza
P.c(zt) =2p,0U, sma)o[ 5 jcoscuo(t - j (4.60)

PULSED SINE WAVE

For the sinusoidal burst, u(t), the pressure astawice, z, from the source is given by,
Pa(z,t) = u)d hy(z,1) (4.61)
p.(zt) = juo[U(t—r)—U(t—r—T')]sinmo(t—r)

* pocfd(r—t,) - 8t -t )l

(4.62)
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Using sifting property of the Dirac delta functidhe integration is simplified as follows.
p,(z.1) :pOCUO[ U(tt,) - U(t—tZ-T')] sin (-t (4.63)

Juet) Ut ] sinayt,)

The pressure, fz,t), is the resultant of two sinusoidal bursteeTirst one is the direct plane
wave, and the other is the negative of its rephicaved with the delay, t The resultant can

be written, if T> (t, - t), as,

0 Osts<t,
PoU,sina (t-t,) t,st<t,,
p,(z1)= 2p0cuosina)o(%jcoswo[t —%}tza <t<t,+T' (4.64)
- poCU,sinay(t-t,,) t,+T' stst +T'
0 t, +T'<t<w

In the above expression, one can notice that tbenskeand the fourth terms last for the same
time duration, (t-t,), and this time is equal to the time duration loé impulse response,

discussed under the subheading, "impulse respgneeSéc.(4.2.3). And the middle term can
be recognised as a continuous wave expression.ighhe expression is the same as that of
the pressure for continuous velocity signalty found in Eq.(4.60). As shown in Fig.(4.9),

the signal passes a transient region and reachadysstate and then again through a transient
region decays to zero.

If T'< (t,,-t) then,

0 Ostst,

PoJysingy(t—-t,) t,<t<t, +T'

p,(zt) =40 t,+T'<t<t,, (4.65)
- pcU,sinagt -t )t st<t +T'

za —
0 t, +T'<t<e

Since the time interval between the start of the signals are longer than the duration of the

signals or in other words the duration of the insputesponse is longer than the duration of
the input signal, they do not interfere with eatieo and remain separated.

Since the impulse response(ix) = 0, for t <J by inspecting the convolution integrabne
can say that the signal starts at .=t
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Figure(4.9) Axial response of near-field point rieee model for the case T' 3 t- t,. Transient regions of the
pulse are indicated by dotted lines parallel toahmplitude axis. The amplitudes are normalised to
the plane wave amplitude. The time axis is norredli®d the period of the velocity signal. The

simulation was made for the following parameters; 35mm, a = 6.5mm, f = 200kHz and ¢ =
344.35m/s.

The pressure fz,t) found in Eq.(4.64) can be written in a diéfet form as,

0 O=sts<t,
PoJ,sinw(t—-t,) t,<t<t

z za

t, -t
—j t,<t<t, +T' (4.66)

i tza _tz ; m
P, (21) = ZPocUOSInwO(Tjsm(%(t )+ m

- poUysinay(t-t,,) t,+T'stst, +T'
0 t,+T'St<o

Consider the third term of the expression, in EG&% As pointed out earlier, this is the
continuous part of the signal. With this expressisome important and, of course, known
results, for continuous excitation, can be deduted.

o= [% %} (4.67)

In the following discussion the observation poirgwes towards the source from infinity. At
infinity, with Eq.(4.51),0 = 0. Then from the expression in Eq.(4.66), siogi - t) is the
phase of the plane wave, the continuous part o$ireal leads the plane wave 2. As the
observation point moves towards the sougcecreases. I© can be written as ™2, where

N = 1,2...,then for odd values of N the continupast of the signal is in phase with the plane
wave and the amplitude is double that of the platawe and for even values of N the
continuous part of the signal becomes zero. Fomeig for N = 1, substitutin® = 172 in
Eq.(4.66) gives the continuous part fzpt) = Zp,cU, sin(wy(t-t,), and for N = 2, substituting
© =mtin the Eq.(4.66) makes the continuous part(f,p) zero and so on. This is a well-
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known result That is, as the observation point moves towardssburce on the axis from an
infinite distance the pressure, for a continuoustaion of the piston, reaches its maximum
at© =172 and then alternates its value betwegtd, and zero. And also the pressure waves

lags the plane wave when the observation point sidvem a pressure maximum to a
pressure minimum and leads when the observatiort pmves from a pressure minimum to a
pressure maximum. Consider, for example, the observ point, as it moves towards the
source, at which the pressure lies between thenfisximum and first minimum. Substituting

for ©, which isTv2 <© <1 in the continuous part of(z,t) gives,

20,cU, sma)o( 2t jsm(wo(t t,)-9), (4.68)

where

Tt
¢ :@-E (4.70)

This shows that the continuous part of the waves ltge plane wave. Similarly, for the
placement of the observation point between theé fiiimum and the second maximum, it
can be shown that the pressure wave leads the piawve as follows. Since< © < 3172 for
this case, substitutin® = (Tera), wherea < 172, in the expression for the continuous part of

p.(z.t) gives,

2p,cY, sin(re+a) sinfowy(t-t)) + 102-(Te+ar)] (4.71)
and this can be written as,

2p,cY, sinx sinfwy(t-t,) + (172-0)] (4.72)
This shows that the continuous part of the sigeadl$ the plane wave.

The phase of the continuous part of the pressuke welative to the plane wava/2-0), is
also found earlier from the transfer function in.gi4). This can be expressed in terms of
the parameters, known as seki parameters, S avdhiesie S = z/(ak)), k = 27A andA is the
wave length of the input signal. Substituting fgrand § in Eq(4.67) from Eq.(4.53) and with

some manipulations one can easily show the aboveioned phase relationship is given by
the following formula,

T_o_7_(ka)| oo (ka)® o (ka)

The amplitude of the signal relative to the plarsv&vcan easily be found simply by dividing
the amplitude by the plane wave amplitudgU,. And this relative amplitude, 2€ can be
written in terms of S and (ka) as,

25in[(k2a)[ SZ( a) +1- S(ka)D (4.74)

417 21T
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These are the plane wave diffraction correctiortofgcfor phase and amplitude, when a
measurement is made on the axis of a piston typedssource, with a receiver which can be
considered as a point.

4.3.3 FAR-FIELD MODEL

CONTINUOUS WAVE

The pressure at a distance, z, from the sourcthéocontinuous excitation ) is ,as in the
previous cases, given by,

Prc(z,) = w(t) U h(z,1) (4.75)
P (z,1) = _].;Uosinwo(t —r)poa—;é’(r—tz)dr (4.76)

where
o' is the time derivative of the Dirac delta function

using sifting property of the Dirac delta function,

2
Pic(z,t) = powoz Ug cosw, t—t, ) (4.77)

PULSED SINE WAVE

The pressure at a distance, z, from the source(fpas the input is given by,
Pe(z,t) = u(t)d hy(z,1) (4.78)
o a2
p, (z,t) = juo[U(t—r) -U(t-t —T')]sinwo(t—T)p()EB'(T—tz)dT (4.79)
using sifting property of the Dirac delta functigives,
a2
P (2= po@s -~ Uo [U(t=t,)=U(t—t, - T")]cosw, ¢ -1, ) (4.80)

This equation can also be written as,

p, (1) = powo‘;‘—iuo[U(t -t,)-U(t-t, —T')]sin[wo(t -t,) +’—2’j (4.81)
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The above expression shows that the pressifeet) phasv2 phase lead over the plane wave.
Fig(4.10) shows the plot of the amplitude normalisersion of the Eq.(4.80) and the plane
wave. Since fiz,t) = 0 for t <}, the signal starts at t = And, since the impulse response is
momentary, there is no transient region in the aigihe signal reaches its steady state
immediately after it started and after 3 perioddd&mnly decays to zero. As a consequence, the
length of the output pressure wave is equal torthet velocity wave.

l |
~ ] \ ’
?sz 0 M -
| \ / L
-1 4 — — Plane wave model \ / \ / /
Far-field model

-1 0 1 2 3 4
Period #

Figure(4.10) Axial response of the far-field modehe amplitude is normalised to the amplitude &f fitane
wave. The time axis is normalised to the periothefvelocity signal. The simulation is made for
the following parameters. z = .1m, a = 4.5mm, fI5kHz ¢ = 344.35m/s.

The amplitude of the pressure relative to the plaae easily be found by dividing the
magnitude of [fz,t) by the plane wave amplitudg,cU,. And this relative amplitude can be
written simply agvS, where S =2\.

4.3.4 NEAR-FIELD, FINITE RECEIVER MODEL

CONTINUOUS WAVE

In this model, as described in sec.(4.2.2), thequne is averaged over an imaginary circular
area, coaxially placed on the axis of the sourag, Biough it is an average pressure, in the
following discussion, it is simply called as pregsand denoted for a continuous excitation as
P.(z,t) and for a burst as(z,t).

The pressure, p ,at a distance, z, from the source for a continueestation, y(t), is given
by,

pnfC(Z1t) = Lb(t) U hnf(zit) (4-82)

= Ue(t) O (hypd2,t) +hpadz,1)) (4.83)
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where
h,(z,t) =pgcd(t-t,), (4.84)
ct| [t2,—t°
h,(zt) = —p;;az { ;‘gZ_tz }tz <t<t,, (4.85)
Pric (2:1) = [Ugsiney (t=1)(hyy (2.1) +hyy (2 D))clT (4.86)

using the sifting property of Dirac delta functiand since §(z,t) has values only between t
and 1,, the above integration can be written as,

taaz
P (Z,1) =p,cU,sinw, (t—t,) + juosinwo(t - 1T)h,, (z,T)dt (4.87)
tz
PULSED SINE WAVE

The pressure at a distance, z, from the source(fpas an input is,

P(z,t) = u(®)U h(z,1) (4.88)
Py (zt)= TUO[U(t -7)-U(t-t —T')]sinoo0 (t—-1th, (zt)dt (4.89)

Using sifting property of the Dirac delta functidfqg.(4.89) can be written as,
Do (2.1) = UgpodU(t - t,) - Ut —t, = T")]sinoy (t - t,)

+U, oJg[U(t -1) - Ut -1 -T")]sinw, (t - T)h,,; (z,T)dt (4.90)

For an input signal with length,' > (t,:t,), the above expression can be written,
remembering j(z,t) has values only betweerand §,, as,
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0 O<st<t

t
pocuosinooo(t—tz)+J'sinwo(t—t)h2nf (z,7) t,<t<t
t;

taaz

P (Z1) =3p,cU,Sinwy(t—t,) + J'sincoo(t -0h,; (z7) t,st<st,+T (4.91)
t;
taaz
[sina, (t=0h, (z 1)dt t,+T'<t<t, +T
t=T'
0 t, +T'<t<ow

The third term in the above expression is saméaitsaf the pressure output for a continuous
input velocity, y(t). Second and fourth terms are transient partBeabeginning and at the

end of the signal respectively. As in the neardfigloint receiver case, the pressurgzit),

has an initial transient region, continuous regand an end transient region. The time
duration of the transients at the both ends ofstgeal are equal to,(} - t,). Since h(z,t) =0

for t < t, the output signal starts at t = These facts are sketched in a plot in the Fitl{4.
The case with the velocity signal whose lengtk Tt,_, - t) is illustrated in Appendix(A-2).

The pressure pulse shown in Fig.(4.11) was caledlatsing two different methods. The
transient parts at the ends of pulse were calalilaging numerical calculation of the
convolution integral explained in Appendix(A-2). i$hmethod was preferred over the usual
Fourier transform(FFT) method in order to avoid aiysing problem. Though the same
method can be used to calculate the whole pulsecaasumes a lot of time for calculation, a
different method was used to calculate the contisyzart of the pulse.

The velocity to pressure transfer function of tliedel, H/(w), is given in Eq.(4.41b). The
pressure, for a velocity,.(t),can be found as follows. Consider a sinusoiddbcity wave
Uge“*. Its Fourier transform is J&(w-w,). The pressure corresponding to this velocity is
given by,

Pric (2,1) = IFT(H(z,0) Upd(w-ay)) (4.92)

or

Poic = Hur (2,000) U™ (4.93)
The desired pressure, that corresponds to theitielggt), is,

P (zt) = Im(H L (z a)O)UOej“bt). (4.94)
Since this method does not involve any numericiiutation with frequency spectrum, the
result is free from time aliasing due to truncatafrnthe frequency spectrum. The Eq.(4.94)
was used to calculate the continuous part of theepghown in Fig.(4.11). The time axis and

the amplitude axis of the plot are normalised te pieriod and the magnitude of the ideal
plane wave respectively. And the signals are gamearbitrary start.
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Figure(4.11) Average pressure of the near-fieldtdimeceiver model, normalised to the ideal plarevev
pressure. Time axis is normalised to the periothefideal plane wave. z = 0.1m, a = 4.5mm, f =
215kHz and ¢ = 344.35m/s.

The Fig.(4.11) shows that the continuous regiothefsignal has advanced in phase compare
to the ideal plane wave.

The duration of the transient regiong,dt both ends of the signal normalised with peobd
the input signal is a function of S and (ka) ofilgat is,

ty,.—t, _tt_rz(ka)2 ,  16m
T T 47 {\/S +(ka)2 S} (4.95)

t
The Fig(4.12) show% as a function of S for three different valueskaf)(

As S increases the transient duration becomes anzaltl smaller, for all ka values, and goes
towards zero. This means that this model tendseddr-field model at larger S values for all
ka values. At small S values, transient duratiocobees larger for larger ka values. At S =1

the expression for the normalised transient dumaitioEq(4.95) can be further simplified as
follows. Substituting S = 1 in Eq(4.95) gives,

t, (ka)z{ L, 167 }

= A7 (k)7 (4.96)
for large ka values

e _ (k&) |, 1167 _

T {1+2 ka) 1} (4.97)
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Figure(4.12) Transient duration for the near-fiiidte receiver model as a function of S. The Ssasiin log

scale. The transient time, is normalised to the period of the ideal planeava

—
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The transient duration is less than two periodsafioka values in the range>&l.

PULSE FORMS

(4.98)

In the previous sections methods to calculate tlessure waves for a sinusoidal velocity
burst and the explanations for the shapes of tloelleéed pressure waves were presented. The
basic shape of the pressure wave is determinedhdyparameters; radius of the source, a,
distance between the source and the observation, goand the velocity of the medium, c,
and the frequency of the velocity wave, f. This dan seen from the expression for the

convolution integral, Eq.(4.90), and the expresdionthe impulse response, l,t). The

density of the mediunp,, and the amplitude of the velocity wave,, dre just multiplication

factors and hence do not contribute to the basipsiof the wave.

In this section the changes in shape of the pressave due to above mentioned parameters,
a, z, ¢ and f, are discussed. It is cumbersomakt® &ll four variables in to the analysis. But,
fortunately, it is possible to express the presguiee in terms of Seki parameters, S and ka,
provided the time axis of the pulse is normalisedhe period of the ideal plane wave. A
proof that the pressure pulse can be written imseof S and ka is given in Appendix(A-4).
But, as the plot in Fig.(4.11), the continuous pdirthe pulse was calculated according to the

EqQ.(4.94) for the same reasons stated in the cetate. Consider the transfer function

% 1
_ﬂ '[e—jk(22+4a2c0529)2 sin?0de |
0

H,. (z,w) =p,d e™
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This equation can be written as follows,

i(k 472 i((kz)?+4(ka)? §e% ;
H,(@Zw=p,de’™ -—= Ie"‘( 2y at@)”eos 0% gin® 0de (4.99)
n 0
Since (kz) can be written agsi(ka)z, H.(z,w) is a function of S and ka onl9. does not
T
consist any physical quantitp, and c are constants. Therefore Eq.(4.94) can litemr

defining t :$ to be the normalised time, as
Puc @) = UgH, Ska)sin(ert + OH, (Ska)). (4.100)
This proves that this method of calculation of mntinuous part of the pulse is also

consistent with the normalisation and hence theesgmtation of the pulse in terms of S and
ka values.

1.0

0.9

Magnitude

0.8

o
\‘

Phase (deg)
w Y (o)
o o o

N
o

=
o

Figure(4.13) The (a) magnitude and (b) phase ofrdresfer function I,=|f(S,ka)/I—b(S,ka) as a function of S,
up to S = 3, for ka values 5, 20 and 50.
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Magnitude

Phase (deg)

30 ‘

10 100
S

Figure(4.14) The (a) magnitude and (b) phase otrdnesfer function Iﬁlf(S,ka)/I-L(S,ka) as a function of S for
ka values 5, 20 and 50. S axis is in log scale f8aim 100.

Now, it is natural to study the variation in theapk of the pulse due to one variable keeping
the other constant. Before this analysis, it mayseful to plot the transfer function & w),

as a function of S and ka values. The Figs.(4.13%.&4) show the magnitude and phase of
transfer function, relative to the plane wavey$ika)/H(S,ka), for three different ka values;
5, 20 and 50. The Fig.(4.13) show the magnitudepdnase of the transfer functions from S =
0 to 3in linear scale and the Fig.(4.14) show fi®m 3 to 100 in log scale.

In the analysis of the pulse forms with S and kles, first, the pressure pulses for two

different ka values for three different S valueseveimulated. These simulations are plotted
in Fig.(4.15). In all simulations a 4-period pulsas used. The time axes are normalised to
the period of the ideal plane wave. The extensicgh@transients, at both ends of the pulses,
are denoted by round marks. The initial transietdst at the beginning of the pulses and end
at the first round marks. The end transients sifdetr 4 periods and end at the round marks.
The duration of the transients are calculated,guBiq.(4.95), and tabulated in Table(4.1).

From the table, it can be seen that as S incredseshange in ka value becomes immaterial,
concerning the transient duration.
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Figure(4.15) Change in pulse form due to ka valoea constant S value. Pressure amplitude is nigsethto
the plane wave amplitude. Time axis is normalisedhte period of the ideal plane wave. Pulse
forms are presented for ka values 5 and 20 at @1 S(b) S = 2 and (c) S = 10. The round marks
denote the end of the transient regions.
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S=1 S=2 S=10
ka=5 1.079 0.767 0.196
ka =20 1.834 0.976 0.199

Table (4.1) Calculated transient duration of this@si shown in Fig.(4.15), using Eq.(4.95).

At S = 1, the difference between the magnitudesthaghases in the continuous part of the
two signals are very small. At S = 2 these diffeemnbecome, comparatively, large and at S =
10 become small again. These variations in theimoois part of the pulse due to the

variation in ka value can be related to the tran&dection, H,(S,ka), in Figs.(4.13) and

(4.14). The transfer functions are normalised te filane wave and the pulses under
consideration are also normalised to the plane wakerefore, the differences in the pulses,
both in magnitude and phase, can be compared Iglitectorresponding differences in the

transfer functions. From the plots of the trandéerctions, it can be seen that the difference
between the magnitudes and phases for ka valued 2@at S = 1 is small, at S = 2 is large
and at S = 10 is very small.

Fig.(4.16)(a), (b) and (c) show the variation ie thulse form with increasing S value while
ka being constant at 20. The time axis of the phoésnormalised to the plane wave periods.
The amplitude of the signals in Fig.(4.16)(a) daeses with increasing S. This effect is in
agreement with the behaviour of the transfer fuumcghown in Fig.(4.14)(a). The length, in
time, of the pulse is decreasing with increasingalbie and approaches to the length of the
input signal, four periods in this simulations. §hs due to the reduction in the transient
region of the pulse with increasing S value whiglalso shown in Figs.(4.16)(b) and (c). The
relation between the transient duration and theal8evis shown in Fig.(4.12). Fig.(4.16)(a)
shows that, as S increases, the peaks of the consnpart approach the zeros of the plane
wave. This indicates that the phase difference éetwthe continuous part of the pulse and
the plane wave increases with increasing S andoappes 90 degrees, which is also evident
from the phase of the transfer function,(8,ka)/H(S,ka), shown in Fig.(4.14)(b).

Fig.(4.16)(b) shows the initial transient portiori the signals shown in Fig.(4.16)(a).
Fig.(4.16)(c) shows the end transient and a snwatign of the continuous part of the signals
shown in Fig.(4.16)(a). The amplitudes of the psilsefigs.(4.16)(b) and (c) are normalised
to their respective steady state values. Therefogg4.16)(b) shows the change in the relative
size of the first peak of the pulse to the contimipart with increasing S value. At very large
values of S, the first peak of the signal beconmeskto the continuous part.

So far, the pulse forms of the near-field pointereer model ,far-field model and the near-
field finite receiver model are discussed individjpaomparing to the plane wave model. The
Fig.(4.17) compares the pulse forms of last thre¢he four models calculated for three
different transmitter-receiver separations. The lgoge of the waves are normalised to the
plane wave amplitude. The time axes of the plotsrearmalised to the period of the ideal
plane wave. The parameters radius, frequency alodityeof sound in the medium are same
for all three plots; a = 5.52mm, f = 200kHz and c347m/s. The transmitter-receiver
separation, z, are 35.2, 175.7 and 352mm for plajs (b) and (c) respectively. These
parameters correspond to ka = 20 and S value 2ad@,20 for plots (a), (b) and (c)

respectively.
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Figure(4.16)

Variation in pulse form due to the change in Sd@onstant ka value. Form of (a) the whole pulse,
(b) beginning of the pulses up to the continuoggare and (c) end transient of the pulses ,with a
small portion of the continuous part, for S vald€s 20, 50 and 100 at ka = 20. The amplitudes of
the pulses in (a) are normalised to the amplituidthe ideal plane wave. The amplitudes of the
pulses in (b) and (c) are normalised to their retspe steady state values. Time axes of all the
plots is normalised to the period of the ideal plarave.

As z increases the pulses predicted by the near-fieint receiver and near-field finite
receiver models approach to that predicted bydhdi¢ld model. This is an anticipated result,
as similar behaviour was observed in the impulspaeses of the three models. That is, the
impulse response of the near-field models apprdhah of the far-field model for large
transmitter-receiver separations. But, one mighhaes about the physics behind this. It may
be explained as follows. High frequency signals ramge directive than the low frequency
signals. That is, high frequency components ofgaadilie in narrow cones around the axis
while the low frequency components lie in wide can&hen the transmitter-receiver
separation increases, most of the low frequencypoorents do not reach the receiver, only
higher frequency components do. Then the receivgalk contains more high frequency
components.
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Figure 4.17 Pulse forms of near field point receifar-field and near-field finite receiver modéts different
transmitter-receiver separations. The parameteed irs the calculations are: a = 5.52mm, f =
200kHz, ¢ = 347m/s and (a) z = 35.2mm, (b) z = Z@®Bn and (c) z = 352mm.

The reduction in amplitude can be accounted byehergy lost with the low frequency
components. The far-field model is a high paser#tee under the subheading "impulse
responses”). The signal calculated by the neat-fimbdels, for large transducer separations,
and the far-field model contain the high frequepoytion of the initial spectrum. Therefore,
the near-field models approach the far-field maatelarge transmitter-receiver separations.
The enhancement of high frequency components intriresmitted signal with increasing
transmitter-receiver separation is shown experiaignby Cassereaet at2
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4.4 DISCUSSION

Pressure pulse forms due to a uniform sinusoidialcity pulse transmitted by a piston type

transducer through a non viscous medium are stuBigide forms due to the near-field finite

receiver model are presented as a function of Skandhlues. With this presentation one can
compare and study the pulse forms in different nn@adat different environmental conditions.

These differences can be accounted as a change patameter for velocity of sound in the
medium.

It has been showed that the pulse predicted bfidlrmodel has continuous region for input
pulses of any length in time. But the pulse prestidvy the other two models has continuous
region for sufficiently long input pulses. The combus region of the pulse predicted by the
near-field finite receiver model and the far-fieldbdel has advanced in phase compared to the
plane wave because of diffraction effects. In tharrfield point receiver model the pulse lags
and leads the plane wave alternatively in the reglose to the receiver. The advancement in
phase for the far-field casem? for all frequencies. For the other two casesaiteancement

in phase is a function of S and ka values. In datmns using plane wave model, the
advancement in phase has to be corrected. Othergisexample, in the calculation of the
velocity of sound one will end up with a velocityieh is larger than the actual one.

The Eq.(4.41) shows the function,#,w) and Eq.(4.23) shows ft,w). H(z,w)/H(z,w) is

the diffraction correction. The magnitude and phas$ethis function, are tabulated by
Khimunin’3¢ as a function of S and ka values. Khimunin vetifiee diffraction correction for

a few combinations of k and a values, which give ghme ka value, and concluded that the
diffraction correction depends on the ka value nmatter what the combinations of k and a
values are. This verification may not be necessmyause of the following reason. It is
shown in Eq.(4.99) and in the related text tha#dv) is a function of S and ka only. Since kz
can be written in terms of S and ka valuggzld) is also a function of S and ka values only.
Therefore, H(z,w)/H,(z,w), the diffraction correction, is a function of &daka only. The
magnitude and the phase of this function are plattérigs.(4.13) and (4.14) respectively.
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EFFECTS OF TRANSDUCER DYNAMICS ON
PULSE FORMING

5.1INTRODUCTION

The transducers, in an acoustical system such asdescribed in Chapter 3, play an
important roll in determining the shape of the smaitted pulse. Therefore it is of perticular
important to study the effect of transducers ors@dibrming to understand the system. In this
chapter the dynamic characteristics of the trartsrgiind receiving transducers and the pulse
forming machanism are discussed.

A frequency domain equivalant circuit representataf the one dimensional, thickness
extentional vibrations of a piezo-eletric transduekement was devoloped by MagbrTo
study the transient response of the piezo-elettiitsducer element, Redw@ddevoloped its
time domain response for the special case wherenduative capacitance, ;Cin the
equivalant circuit is ignored. Later Ver¥ik Gua® and others devoloped the time domain
response including -C

In this work, the equivalent circuit of the one d@insional Mason model is taken as the
starting point for the discussion. The voltage &boeity transfer function of the equivalant
circuit is found. Then the transfer function is eeried to Laplace domain to get the time
domain responses of Redwood and Vervik for thescageere -Cis excluded and included
respectively. Using these results the transducaamcs and the pulse forming effects are
studied. The time domain responses are too large@mncomplex to use to simulate the total
response of the transducer. Therefore, two frequetmmain models, TRANSCAD and
FLOSIM, developed at CMR for transducer modellimg &or flow simulation purposes, have
been used for simulations of the total responsehef transducer. These are also one-
dimensional Mason type models except for the eadtelectric and piezoelectric losses are
included. In addition, TRANSCAD and FLOSIM modelg alesigned so that the transducer
element can have many matching and backing lafrs.in this chapter the option for no
matching and no backing layer was chosen.

5.2TRANSMITTER

In this section theoretical models for a transmgtiransducer are developed and the transfer
functions and impulse responses of the modelsrasepted and explained. Then a method to
calculate the particle velocity of the transduaar d sinusoidal voltage excitation and some
examples of calculated velocity, with and witho&,- are presented and discussed.
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5.2.1THEORY

In the beginning of this section, the voltage tdogiy transfer function and the impulse
responses for the Mason's model are derived. Tihensimplified model is deduced and
similar transfer function and impulse responsedméved. Finally, the TRANSCAD model,
actually the implementation of loss factors in thedel, is briefed.

5.2.1.1THE MASON MODEL

The cross-sectional view of the thickness exparnueroelectric plate is shown in the
Fig.(5.1). The cross-section lies in a plane pakr#di the electric field and perpendicular to the

radiating face. The electric field is parallel ketvibration. Fand B are the forces acting on

the plate from the medium at acoustic port 1 aneéspectively. ¥ and  are the particle
velocity of the transducer faces at ports 1 andspectively. These quantities are taken to be
positive in their respective directions shown ig.(5.1). Z, and Z, are impedance of the

backing and radiation medium respectively.

p p
V; \%
a 2y
<P
F, F,
4’ 47
. Zrl . Zr2
Backing medium Radiation medium
0 14
1t
v
19 «—— ° 2
Electric port
Fig.5.1 Thickness expander piezoelectric platecteic field parallel to the thickness of the plate

The equivalent circuit for the thickness mode Milorzs of a piezoelectric transducer element
is well established and the derivation of it cobkl found in the literatutes. The Fig.(5.2)
shows the equivalent circuit of a thickness expatrd@sducer.

In the equivalent circuit ,

Z.=iZ, tar(k—;j (5.1a)

and
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Fig. 5.2 The equivalent circuit for one-dimensiottatkness extensional vibrations in a thin pieeotic
plate.
Z
Z,=— 0 (5.1b)
jsin(k¢)

are the transmission line impedance representahigséic reverberations in the transducer,
Z,=pcA (5.1¢)

is the mechanical impedance of the transducer, eylpers the density of the piezoelectric
material, ¢ is the speed of sound in the piezoetechaterial and A is the area of the
transducer plate,

C, =2 (5.1d)

¢ 33

is the clamped capacitance of the plate, witei® the thickness of the plate ae@ is the
permittivity of the piezo electric material at ctanst strain and

A
0= ?e33 (5.1e)

is a factor represents the electromechanical csrvewhere g is the stress coefficient of the
piezo electric material.

VOLTAGE TO VELOCITY TRANSFER FUNCTION

The relationships between voltage, forces, electricent and the particle velocities are found
by applying the basic network analysis laws toafeivalent circuit shown in Fig(5.2).

-54 -



CHAPTER 5 EFFECTS OF TRANSDUCER DYNAMICS ON PULSBRMING

For the transformer,

Ve =— (5.2a)

and
(V2 =vD)o=~I,, (5.2b)
where F, is the mechanical force produced at the transforme

For the rest of the circuit,

V =- L , (5.2¢)
JoC,
=1 +1, (5.2d)
Vv :Vba+_|—2, (5.2e)
jow(—Cy)
F:Lp = (Za + Zb) Vf - vag + Vba(p (5-2f)
and
B = Z,V) = (Z.+ Zp) V5 + V0. (5.29)

The boundary conditions give,
Fl=-2Z,V], (5.2h)

B=7 \L (5.20)

The negative sign in Eq.(5.2h) is because, theefort the medium and the particle velocity
are in opposite directions.

The relationship between the voltage and velositypund, using the above relationships, as

v, @
—= = (5.3a)
V Z,tZ,
(Za+ZbD+Zr2)+ZbDEZ +ZZ))
a rl
where
Zo=Z,—- ¢ (5.3b)
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If the voltage, V = iet then,

VP = ¢ ] i (5.3c)

(Za +Z)+ Z,2)+ Zf(éa :irz)
a rl

Assuming the system to be linear, the velocity dararbitrary input voltage, V(t), can be
writter® as,

VP () = ¢ V() (5.3d)
2 (Za-i_ZbD-i_ZrZ)-I_ZbD(Za Zr2)

where \j(w) and V() are the Fourier transforms dit) and V(t) respectively.
V(@) =H(w) V() (5.3e)

where,

¢
H, . (w) = , (5.3f)
2. +zE+zr2)+zE(éa "2

the ratio of the output spectrum to the input speot is the voltage to velocity transfer
functior?.

The transfer function of a linear time invariens®m is the Fourier transform of its impulse
responseTherefore, the inverse Fourier transform Qf(k) gives the corresponding impulse
response. But the inverse Fourier transform of E8f) is not straight forward. In order to
make the inverse transform easy the equivalentuitins representéd in its Laplace
transforms. In the Laplace domain is represented by s. Substituting farin Egs.(5.1a)
and (5.1b) gives,

Sto Sto

7 a2
Z, =iz, tar(k—;j =7 (5.42)
ez +e ?

and

_ oz, _ 2z
°* jsink¢) e —e=w

(5.4b)

where, k :%) , T = % and s is the Laplace variable. Substituting fpradd  in Eq.(5.3b)

gives,

Z = ———— & (5.4¢)
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Substituting for Zand Z in the Eq(5.3a) and with some manipulations, it ba shown that
the transfer function in the Laplace domain takesfollowing form.

(Zo + Zrl) _ Zzoe_ Mo+ (Zo B Zrl)e_ o

Hii(S) =@ } - (5.5)
k, +ke 0 —ke
where
_ @
Kk, = (Z5+Z,)(Z4+Z,) (2Z+Z,+Z,,), (5.6a)
sCO
K, = 4—‘"2—20 (5.6b)
sCO
and
ke = (ZoZ)(ZoZy) j% (2252,Z,). (5.60)
0

Some intermediate steps in the manipulation tovathe final form of the transfer function in
Eq.(5.5) are given in Appendix(A-5).

IMPULSE RESPONSE

The voltage to velocity impulse response of theddaicer element is given by the inverse
Laplace transform of H(w). Having expanded the denominator of the Eq(5.%)tle
binomial theorem using partial fraction method tledtage to velocity impulse response is
founds as,

ha® = 297" (1) + g) 120 (5.72)
27,
where
6(t) - (1+ rl)a(t _To) ton (1+ rz)a(t - 2T0)
—hh @+ I’1)5(t—3T0) + r2"12 (1+I’2)5(t—4'[0)
f(t) =3 —rfrZ@+r)d(t-5t,) + rirl@+r,)d(t-61,);, (5.7b)
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g(t) = (ko) ()

- (km + kﬂ(t—l_'ro)] At -1,)

- - 2 5.7c
+(k20 +k21 (t 1'21-0) +k22 (t S'TO) j@ﬁ(t—ZTO)u(t _21_0) ( )

(t-3r,) (t-3r,)? (t-3r,)° _ar,

_(kao Ky 1 2+ Ka ol ° +Kss 3 . (e )U(t—3T0)
2+, +r
B = 2{22 ( zl Oj, (5.7d)
0 0

= Zo=Zn r,= Zo~Zr , (5.7e)

Lo+ Z, Ly+Z,

andt, is the reverbaration period of the transducer el@m

The above expression for the impulse response icgrtze effect of the negative capacitance,
-C,. The effect of -Gcould be isolated and studied by comparing the@lbmpulse response

with the impulse response in which the terms dueQGg are ignored. A model, called
"simplified model" in which the -Cis ignored, and the impulse response of it aregued in
the next section.

5.2.1.2 SIMPLIFIED MODEL

In this model the -Cis ignored in the Mason equivalent circuit. Thised not mean any

removal of the negative capacitance from the Masequivalent circuit. Such a circuit
represend8 a length expander bar with electric field perpentdir to length. Therefore no
special equivalent circuit is needed. But, the &qguna for this model are found by ignoring
the terms involving -Cin the Egs.(5.2a)...(5.2g). This modification betequations of the

Mason equivalent circuit is exactly the same as fiiand in Redwood8 article, except for
the modifications are made by Redwood to the baaie equations.

TRANSFER FUNCTION

There is only one equation, Eq.(5.2e) involve. 4gnoring the term involving -Cfrom the
Eq.(5.2e) leaves,

V=V, (5.8)
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This equation together with other circuit equatidbgs.(5.2a)...(5.2g), and with the equations
of the boundary conditions, Egs.(5.3a),(5.3b), give relationship between the voltage and
the velocity as,

v, @
Y2 _ . (5.9)
\Y} Z,+Z,
(Za+zb+zr2)+zb ((Z +22;
a rl

Using the same arguments given for the Mason measier in this section, the voltage to
velocity transfer function can be written as,

Hy (@) = ¢ & . (5.92)
(

IMPULSE RESPONSE

The voltage to velocity impulse response of thisdelacan be found by taking the inverse
Fourier transform of the Eq.(5.9a). But, for thesen stated in the previous section, the
transfer function in Eq.(5.9a) is transformed irLaplace domain. As in the previous section,
substituting for Zand Z in the above transfer function and with some malafons, it can
be shown that the transfer function in the Lapldamain takes the form as,

(Zo + Zrl) B Zzoe_sr0 + (Zo B Zr1)e_23T0
Zo + Zrl)(ZO + Zr2 ) - (Zo - Zrl)(ZO - Zrz)e_zsr0

Hy o (s) = ¢( (5.10)

or

9= old-r,)1- (1+ rl)e'sr0 +r,e7°%0

H
tr2( erz 1- rlrze—ZSro

(5.11)

where [ and i, are same as that defined in Eq.(5.7e).

Some intermediate steps in the manipulation tovathe final form of the transfer function in
Eq.(5.10) are given in Appendix(A-5).

Then, the voltage to velocity impulse responselmafounds by expanding the denominator
of Eq.(5.11) by binomial theorem and taking itsarse Laplace transform. And it is given by,

O(t) = @+1r)d(t-1,) + 1 @L+r,)0(t-21,)
_r1r2(1+r1)6(t_3to) + r2r12(1+r2)6(t—4ro)

hMtFF“’ZrZ) RS -5T,) + 2 (L+r,)8(t - 61,) (5.12)
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5.2.1.3 TRANSCAD MODEL

The cross-sectional view of the transducer elemathtthe electrical terminals is the same as
that shown in Fig.(5.1). Fig.(5.3) shows the eql@mtcircuit of a thickness mode transducer

with losses. Fand B are forces acting on the transducer from the Ipackind radiation

medium respectively. vand ¢ are particle velocity of transducer faces at theking and
radiation ports respectively.

p p
Vi Va,
Z
-G E
||
||
p -RO
p
o £f e
l:0
Elektric port
L—oo o o0—
Backing port "Matching"port

: > X,

Figure(5.3) Distributed, lossey equivalent cirdaita thickness extensional mode transducer.(Frefi(B)

The losses in the transducer are accounted for diygucomplex quantities for elastic,

dielectric and piezoelectric constants in the daion of the equivalent circuit of the lossles
transducer model. The complex elastic, dielectnd piezoelectric constants used are as
follows:

The complex elastic constant,

Cart = C° + jon), (5.13a)
where € is the stiffness angE is the viscoelastic loss coefficient of the pideotic material
at constant electric field. The complex dielectonstant,

S —gS-jvs, (5.13b)

Eetf =

wherees is the permittivity ands is the dielectric loss coefficient of the piezattie material
at constant strain. The complex piezoelectric conist

ey=-€+ ¥ (5.13c¢)
where e is the piezoelectric stress constantyasndhe piezoelectric loss coefficient.

Making the elastic, dielectric and piezoelectrimstants complex result a complex wave
number and hence a complex speed of sound in dzeglectric material. The complex wave

L W . . . .
number, k, is given bk = rE wherec is the complex speed of sound in the piezoelectric
material, given by,
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o 4 (Bt iys)
33 s .

&35 V33
0

Since the coefficients), v, andy are not available in data sheets, the expressiorthi

complex speed of sound cannot be used as it isngimeEq.(5.14). There fore, an
approximated expression for the complex speed ahdoc, in terms of the mechanical
quality factor, Q , which represents the elastic, dielectric and geéxctric losses in the

transducer material, is used. The approximated ngpeed of sound is given by,

+jans,

o= (5.14)

C=c[l+ Jﬁ} (5.19)
and hence
Wl 1
S [1 J ZQJ (5.16)

And since the piezoelectric absorption coefficignts not available, the imaginary part of the
mechanical coupling factog, is set to zero.

-k )i (k)?)
aC,(tand)’

(5.17)

is the shunt resistance which represents the dirléass in the piezoelectric material

Transfer function

The voltage to velocity transfer function can gabi found as follows. First write down the
equations governing the equivalant circuit shownFig.(5.3) along with the boundary

conditions, as done for the Mason model, and caleuhe expression fof . Then find the
frequency domain expression, using the argumenenginder the Mason model earlier in
this section. And this transfer function is given b

Hys(w) = ¢ (5.18a)
(2.+z0+2,,)+ 2}

where

2
2y=2,~—+—, (5.18b)
j(*Co t o
RO

Z_and Z are similar to that given in Egs.(5.1)(a) andwith the complex velocity of sound

given in Eq.(5.15).
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5.2.2CALCULATIONS

In this section the impulse response and the tearfahction of the transmitting transducer
devoloped in the previous section are presentqaats and their behaviours are discussed.
The simplified model and the Mason model are coeghéw demonstrated the effects of.-C

CALCULATION OF VELOCITY

The velocity output of the transducer, for an adbpit input voltage can be calculated by
convolving the input voltage with the appropriatepulse response found in the previous
sections.

u() = h() T v(t) (5.19)

or
u(t) = Th(r)v(t -T)dt (5.20)

where u(t) is the velocity output of the transdudeft) is the impulse response of the
transducer and v(t) is the input voltage.

This integral cannot be calculated, by analyticaéanms, for an arbitrary input voltage

function. And, even for an input voltage functiomieh gives a closed form for the particle

velocity, u(t), the integration is evidently tedsobecause of the complexity of the expression
of the impulse response, h(t). However, in the abiowegral, the terms involve Dirac delta

function, for any input voltage function, can bdcotated easily using the symmetry and

sifting property of the Dirac delta function.

Té(T)V(t —T)dt = v(t) (5.21)

For the above reasons, the terms involve Dira@adaliction, in the integral in Eq.(5.20), are
calculated analytically and the rest are calculatednerically. A computer program in
FORTRAN to calculate the particle velocity, as disa above, is given in Appendix(B-3).

IMPULSE RESPONSE

The impulse response of the Mason and the simglifi@dels are given in Eq.(5.7a) and in
Eq.(5.12) respectively. These expressions contaiacRielta functions of various weights. It

is not possible to show these delta functions pioaby direct simulation of the expressions
mentioned above. Therefore an approximate impuespanse is presented using the
following method.
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Response, h'(t), to an impulse functiéft), is given by

h'(t) = h(t)O &(t) (5.22)
or
h'(t) = Th(r)é(t —-T)drt. (5.23a)

Using the symmetry property of the delta functigq,(5.23a) can be written as
h'(t) = j h(t)8(t - t)dt . (5.23b)

Using the sifting property of the delta functionth@ above equation gives
h'(t) = h(t). (5.23c)

The Dirac delta function can be represented as,
5(t) = g(t) =|im£sin[ﬁj05t <e, (5.24)
£-02¢ £

since g(t) satisfy,
[90a = 00 (524

for an arbitrary functiong(t), which is continuous at t = 0.

Proof
lim 2~ | sin[ﬁjga(t)dt Dgo(O)ﬂfsin[Ejdt = (0) . (5.24b)
£-02€ P 280 P

A proof comparable to the above is found in Ref.31.

The Fig(5.5)(a) and (b) show the voltage to veloaiipulse response of the simplified and
the Mason model respectively. The function defime&q.(5.24) withe = 1,/50 is used as the
voltage impulse for the simulations whergis the reverberation period of the transducer
element. The specifications of PZT-5A with no alpsion was used as the parameters of the
transducer for simulations. Specifications of PZA-&re given in Appendix(C-1). The
thickness and the radius of the transducer elemsed for simulations are 10.128mm and
4.51mm respectively. The specific impedance of Ilaeking material and the radiation
medium used are 1Mrayl and 419.35rayl respectively.
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The Fig.(5.5)(a) can be explairieads follows. Suppose a unit voltage impulse is iagpio
the electrical terminals of the transducer. The hmecal force produced by the
piezoelectric(inverse) effect is given by the eoque for the transformer in the equivalant
circuit of the simplified model. The equations bétsimplified model are same as that of the
Mason model except for Eq.(5.8). Combining the §g8a) and (5.8) gives the mechanical
force, F,, which is equal tap, for unit impulsive voltage. This force acts ortlbsurfaces of
the transducer and produce force waves into theiumednd the transducer as shown in

Fig.(5.4). Force transmitted into the medium1l jsafd into the transducer from facel is F

The forces Fand K are defined in a similar way. The velocity of fads v, and of face2 is

v,. The characteristic impedance of mediuml js & medium2 is Z and of transducer
material is Z. Consider the front face, face 2, of the transdusice the total force on the
mass less plane is zero,

(FFo) =@ (5.25)
Vi TN
Medium 1 Medium 2
F, FF F E
1 2
+ Vv -
Figure(5.4) Forces and velocities on the transdiams immediately after the voltage impulses islied

to the electrical terminals.

The characteristic impedance of the medium andrvesducer material, the forces and the
velocities, according to the directions shown ia ig.(5.4), have the following relationships.

Z, = -Rlv, and Z=FJlv, (5.26)

From the above two equations,

¢
F, = yi 5.27a
I 5.272)
and
P-__ % 7 5.27b
R Rt (5.27b)

F, = zZ, (5.27c)
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and

¢ Z
Z,+Z,

F = (5.27d)
The transmitted force waves in to mediuml and mediwill never come back because of
the asssumption of the model that the mediuml amude2of infinite extend. The waves
transmitted into the transducer element propagat@lane waves and at discontinuties a
portion reflected back and the rest transmitted the medium. The reflected and transmitted
portions can be calculated using reflection andsimassion coefficients. These coefficients
can be found in any text book on waves, see, &tante, page 126 of Ref.(1). The reflection
coefficients of facel and 2, and i, respectively, are defined in Eq.(5.7e). The trassion
coefficients of face 1 and 2 are, then, given by (] and (1 + j) respectively. It should be
noted here that the coefficients are defined fowesaincident on the transducer-medium
interface from the medium. For waves travellingtie opposite directions, the reflection
coefficients, 1 and r, should have a minus sign infront of them and kehe corresponding

transmission coefficients are given by (1)-and (1 - ).

6E+3 — | \ [ \ \ [
(@) (b)

3E+3 — I

OE+0 — = — =

Amplitude (m/s)

-3E43 f -

-6E+3 — T T T I T T T I

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
tho tho

Figure(5.5) Impulse response of transmitting traiced. (a) Simplified model (b) Mason model. Thediaxis
is normalised ta(=/¢/c), the reverberation period.

The quantity considered and calculated in thisudision is force. To calculate the velocity
one has to use the Eq.(5.26).

Now, F, is the magnitude of the first wave that comesfoun the transducer front face at

time t = 0. And this can easily be identified, wil.(5.26), as the first term in the voltage to
velocity impulse response in Eq.(5.12). The secwmnch in the voltage to velocity impulse
response corresponds to the transmitted part of/étve that comes from the back face, facel,

at time t =//c and is given by (12-}F(1). Substituting for y from Eq.(5.7e) and Ffrom

Eq.(5.27d) and substituting foy in the second term of Eq.(5.12), with Eq.(5.26yegthe
2¢Z,

(ZO + Zrl)(ZO + Zr2)

element from the front face at time t = 0 and tnaitied into the medium2 through the front

face at time t = &c after one reflection at the back face, facetl=at/c. And this is given by -

same result- . The third term corresponds to the wave sent th&
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rl(l-rz)FS. Similarly, the magnitude and the placement iretiai the rest of the terms in the
voltage to velocity impulse response can easilydyéied.

As described above, there is no response from rdmesducer between the reverberation
periods. But this is not true for a real transdudére response of the transducer in between
the reverberation periods are shown in Fig.(5.5)@)viously, the -¢in the equivalent
circuit is responsible for the additional respon¥ée mathematical result does not tell
anything about the physical insight of this behavidiscussions on this problem can be
found in the litrarure. The effect of ;Calso known as regeneration effect, on pulse fogmi

will be discussed in this section.

The effect of the -Con a uniform sinusoidal pulse is shown in Fig(5®)e response of the
transducer for a 4-period uniform sinusoidal putsealculated using the two models. The
frequency of the pulse was equal to the half wasemance frequency of the transducer and
the amplitude was 1 volt. The specification of ttremsducer was the same as that used for the
simulation of impulse responses above.

8E-4 ‘ |
| Simplified model L

5E-4 4 ———— Mason model

3E-4
e /\
€ ogv0 4+
CL>N i \\/

-3E-4 —|

-5E-4 —

-8E-4 ‘ f ‘

0 1 2 3 4
t/2'[0

Figure(5.6) Response of the transducer models4c geriod uniform sinusoidal pulse. The time asis

normalised to 2, = 2¢/c, which is also equal to the period of the ingighal.

Consider the response of the simplified model m(Bi6). This response was calculated using
the EQ.(5.19) with

h(t) = hy,(1)
where h,(t) is given by Eq(5.13) and,

v(t) = sinwt O< t <81,

wherew = 171, andt, is the reverberation time of the transducer eléniéme convolution of
the uniform sinusoidal function with the delta ftinoos result again uniform sinusoidal
functions of the same frequency as the originalsiidal function and with pure time delays.
This time delays, given by the corresponding deltections, are integer multiples of The
amplitudes are equal to the amplitude of the iffpattion multiplied with the weight of the
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corresponding delta function which are just reamnbars. Therefore the total response, the
summation of the functions resulted from the couatiohs, becomes as a sinusoidal function
of the same frequency as the original function thredzero crossings coincide with the integer
multiples oft,.

-20

A
o
|

@ |

Hy | (dB) re 1m/s/V
o) o)
o o
\ \
\

-100 —

-120 T T T T T T
-20 I I I I I I

(b)

oy N
o o
| |

'H,,| (dB) re 1m/s/V
co
O
\
\

-100 — -

-120 \ \ \ \ \
0 1 2 3 4 5 6
fif o
Figure(5.7) The magnitude of the voltage to velpditansfer function. (a) Simplified
model, (b) Mason model. Frequency axes are norewli® the half-wave resonance
frequency, §

In addition to the delta functions, the impulsepmsse of the Mason model contains response
due to the regeneration effect. Since this respact®e in the same direction with the delta
functions the signal, in the first couple of pespd larger than that of the simplified model.
But, later the regenerative response becomes langerthe delta functions become small.
Therefore, the signall becomes smaller than thatbh@fsimplified model. The later behaviour
of the transducer is not shown as only 8 term&énimpulse response is avaialble(rest are not
calculated because of the large size of the express In Fig.(5.13), the impulse response
upto 40 reverberation periods, calculated usingrdeuency domain calculations, is shown.

The Fig.(5.7)(a) and (b) show the magnitude ofvblégage to velocity transfer function of the
simplified and the Mason model respectively. Thegfrency axes are normalised to the half-

wave resonance frequency, ¥ 2¢//c. The transfer function of the simplified models
anticipated, has a resonance at frequency,fBut the Mason model reveals the resonance of
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the transfer function at a frequency which smahen f. This is, evidently, a consequence of
the negative capacitance,,;@ the equivalent circuit of the Mason model.

T Y A R

60 —

30 — -

ZH,, (deg)
o
|
I

-30 —

. _ ) .
Ty

30

ZH, (deg)
\

-30 —+

. R R U R S

0 1 2 3 4 5 6
fif

Figure(5.8) The phase response of the voltage lmcig transfer function. (a) Simplified model, (b)ason
model. Frequency axes are normalised to the halewesonance frequency, f

Fig.(5.8)(a) and (b) show the phase response ofdhage to velocity transfer function of the

simplified and the Mason model respectively. Thetgplstart at 90deg. and go down and
increase again. This behaviour repeats at evergszef the transfer function. From the

Fig.(5.9) it can be seen that this effect increasitls the backing impedance for a constant
radiation medium(air). But this effects of the biackimpedance are not analysed in detail in
this thesis. However, for the backing impedanc@M@ayl, used in all the simulations

presented in this work, the frequency componenthatneighbourhood of the zeros of the
transfer function have magnitudes, roughly, moest60dB down to the maximum and hence
will not alter the shape of the signal very much.

Even though the behaviour of the transfer functiotin backing impedance is not analysed
thoroughly, the general tendancy of the transfaction of the simplified model can be easily
checked for some special cases. Consider the daseevhe backing impedance is same as
that of the radiation medium. That ig Z Z,. Then the Eq.(5.9) becomes as,
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¢
Za +22b +Zr2) .

Hy (@) = ( (5.28a)

Using the expressions for,and Z in Eqgs.(5.1a) and (5.1b), the above equation ean b
written as,

jtan(ﬂ“’) e

2w NS ,
Zy+jZ, tanlz2) Tz cotz e )+ jz,,

Hyo(w) =@ (5.28h)

wherew, = Tc//.

The argument of the numerator of the Eq.(5.28b)3sAt very low frequenciesp « w,, the
argument of the denominator is almost zero. Theeethe argument of H is 2. As w
increases the argument of the denominator increstsaslily and hence the argument qf H
decreases steadily. This is true for any value p&Z,. But, the size of Zwill decide how
fast the argument of Fiwould decrease. This is shown in Fig.(5.9) ushegimpedance of air
and 10Mrayl. Atw = w,, the argument of the denominatorrig and hence the argument of
H,, is zero. Wherw > w,, the argument of H is approximately @2 and asw increases it
reaches m2. At w = 2w, the argument of H again becomesrv2. The magnitude of the

transfer function is zero at very low frequenciesreases withw and reaches the maximum,
@Z,,, atw=w, and then decreases wiito zero ato = 2w,

The other special case is "matched backing”. T)dahe impedance of the backing material is
same as that of the transducer materigl,=2Z,(= 33.75Mrayl). A direct simplification of
Eq.(5.9) may not be easy for this case. But, immp#his condition in Egs.(5.10) and (5.11),
remembering s =) and some simple manipulations will give the follogv expression for
the transfer function. That is,

Hy ()= —¢(le_ r2)25in(’—;g)e_jg(l_5) : (5.29)

r2

The phase of the above function decreases lindantyg 172 to -2, while the frequency
increases from zero tag and atw = 2w, the phase changes sudenly backi/t At w = w,,

the phase is zero. The magnitude varies sinusoialtause of the sine term in the
expression. This transfer function is compareablethat of the point receiver on axis
propagation model in Chapter 4. As this model, dheve perticular case of the transducer
model has two delta function in its impulse resgomse from the front face of the transducer
and the other from the back face, all the othezg@mlly lost in the backing medium.
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Figure (5.9) The voltage to velocity transfer fuant of the simplified model for some special set of

backing and radiation impedance. (a) Phase andMi@jnitude. The frequency axes are
normalised to the half wave frequency of the traced element.

MODEL COMPARISON

The basic transducer action is explained usingrglsi plane wave model. And, how the
regeneration is superimposed with the principgboese is also demonstrated. Forming of the
velocity pulse for a 4-period sinusoidal voltagdspus explained. The effect of regeneration
also demonstrated. All these calculations were desieg the time domain methods. But,
however, the time domain method, as pointed otieateginning of this section, is tedious
and thus limited. There fore, for calculations ighals required in the rest of this chapter and
in Chapter 6, TRANSCAD and FLOSIM models are udaat, before making results using
this models, it is reasonable to compare these Imadith the Mason model. The impulse
response is being taken to begin with.

The impulse response contains Dirac delta functidiese delta functions were modelled
and presented, using a high frequency(10.75MHZ) $iak wave as the voltage input, in
Fig.(5.5). Simulating the velocity function for $u@a high frequency voltage pulse in
FLOSIM requires a large memory. Thus a same kintteztment for the delta functions as
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shown in Fig.(5.5) is not possible. Therefore, tlegenerative response, in the impulse
response, only matched with the similar respongbeoMason model.

200 | Flosim model with Q =50 and,Q =75 | @ i

—— Mason model

100 —

-100 —

-200 —

Regeneration in impulse response (m/s)

———  Flosim model with Q =250 and,Q =375 ' b |

200 —
———  Mason model

100 —

-100 —

-200 —

Regeneration in impulse response (m/s)

4

th,

Figure(5.10) Regeneration in the impulse respofsganscad and Mason models for two different séts
absorption parameters, (a) 50,Q, = 75 and (b) Q= 250,Q, = 375.

In the Fig(5.10) the regenerative response in theuise response of the Mason model is
compared with that of the FLOSIM model for two difént sets of absorption parameters.
The radius and the thickness of the element us#teisimulation are 4.51mm and 10.128mm
respectively. The specifications of PZT-5A was uded the material constants of the

transducer element in both cases except for therpiien parameters for the plot in

Fig.(5.10)(b).

The Flosim model calculates the impulse responsevsrting the frequency domain transfer
function using IFFT. Thus the delta functions carmmleft out. Therefore the response of the
Flosim model in Fig.(5.10) contains some portion tbe delta functions. The plots
Fig.(5.10)(b) are in more agreement than the piot$ig.(5.10)(a). This is because, the
absorption in the FLOSIM model in Fig.(5.10)(b)simaller, which corresponds to larger Q
values, than that of in Fig.(5.10)(a). Becausehef large absorption, the delta functions in
Fig.(5.10)(a) are broadened by smearing effectthisccan make the system non causal.
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Figure(5.11) Voltage to velocity transfer functiorfsthe transmitter due the Transcad model andvthson
model, (a)magnitude and (b)Phase. The frequencg &xinormalised to the half wave

frequency, = c/2, of the transducer element.

The voltage to velocity transfer functions of thansmitting transducer due to Transcad and
the Mason models are compared in Fig.(5.11). Thésplare in good agreement. The plots
due to Transcad is diminishing with frequency beeawf the absorption. Absorption
increases with frequency. Since always there ispanse from the front face of the
transducer, the transfer function approaches tefalue. At this high frequencies the wave
produced by the back face does not reach the fiace, completely absorbed by the
transducer material. The phase of the emerging viveero, ie., it follows the exciting
voltage wave.
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Figure(5.12) Velocity output for a 4-period uniforsmusoidal voltage input due to Transcad and Mason
models.

The response of the transducer element for a 4geainusoidal voltage input calculated by
Transcad and Mason models are compared in Fig)(58t2he beginning, both signals are
prety much the same. But as the time increasesigimal, while it travels back and forth in
the transducer, looses energy to absorption. Ehibie reason the signal calculated by the
Flosim model is smaller than that of the Mason nhode

150
75 — —
@ L
E
~ 0O
= L
-75 —
-150 I I I
8 16 24 32 40
th,
Figure(5.13) Impulse response of the transducenahé up to 40-reverberation periods due Flosim rhode

Absorption parameters G 50 and Q = 75.

The Fig.(5.13) shows the impulse response from8thesverberation period up to the®™0

reverberation period. The simulation was made f&#Z3-5A transducer element with the
same dimensions as before. As time goes on thafdettions become smaller and the
response being smoothed out.
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Figure(5.14) Velocity output for a 70-period unifosinusoidal voltage input due to Flosim
model. The time axis is normalised to the periothefinput signal.

The Fig.(5.14) shows the velocity output of thens@ducer element for a 70-period uniform
sinusoidal voltage input calculated by the Flosimdel. The time axis is normalised to the
period of the input signal. Since there is no dawgyvforce the signal dies off after 70 periods.
The oscillating behaviour of the onvelope of thgnsi is also a consequence of thg irCthe
equivalant circuit of the transducer model. Thendrthucer element has the resonance
frequency at little less than 215kHz and the emgitfrequency is 215kHz. This two
frequencies interact and give a beating type effaxn in the transient part of the signal. This
fact is discussed in little more detail in Chag@er

5.3 RECEIVER

In this section, free field pressure to open circunltage transfer function and the
corresponding impulse response of a piezo eleotgeiving transducer are developed and
their behaviours are presented in plots.

5.3.1THEORY

A piezo electric element, which is similar to theted as the transmitter, in all respects, is
used as a receiver. In the derivation of the edemtacircuit of the transmitter, a one-
dimensional wave equitation is solved for the appete boundary conditions. There is no
presumption to distiguish the derivation is for trensmitter. Therefore, the same equivalent
circuit used for the transmitter, with the apprapgi boundary conditions, can be used for
receiver.
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5.3.1.1 MASONMODEL

The Fig.(5.15) shows the cross-sectional view efréteiving transducer element. The cross-
section lies on a plane parallel to the electridtl and perpendicular to the active surface.
The area of the active face is A. Plane waves émtichormally, on the element and \ are

the particle velocities of the transducer faces &hénd R are forces on the transducer
element from the medium. The velocities and forees taken to be positive in their
respective directions shown in the figure.

v, v
<« <
Propagation Backing
medium P ¢ P medium
F, F
4’ <7
Plane waves
1
\%

Lz o]

Figure 5.15 Cross-sectional view of plane waveddent on the receiving transducer. Cross-sect®n i
parallel to the electrical field and perpendicutathe active face of the element

The Fig.(5.16) shows the equivalent circuit of teeeiving transducer. In the receiving mode,
Z ., is the input mechanical impedance of the transdeleenent. That is, Z= Z,.

p p
v, Vi
o « Z a Z, . S— 0 o—
@
' 1 -C
Jo L, 2> )
—O0 O ‘ ‘
1 a
oo 33 ¥ 2
Zy 6 EE
@ Elektrical port

O O0——

"Matching" port Backing port

Figure(5.16) Equivalant circuit of the Mason moftelthe receiving transducer element.

The equations governing the above equivalent ¢irosging basic network analysis laws, are
found as follows.
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For the transformer,

Via = Fea (5.30a)
¢
and
(Vi =v))oe=-I, (5.30b)

and for the rest of the circuit,

I

V= m + V., (5.30c)

V=l1zZ, (5.30d)

=1 +1, (5.30e)

I=-I, (5.30f)

FP=(Z,+Z,)V} —-Z V5 +F, (5.3009)
and

FP=zZ Vv —-(Z,+Z,)V5+F, (5.30h)
The boundary conditions give,

F=-z,\, (5.30i)

Fo=-2Z,\ (5.30j)

At open circuit condition Z= O and | = 0.

TRANSFER FUNCTION

Using the Eqgs.(5.30), the relationship betweenutlecity and the open circuit voltage is
found as,

Voo -((Z.+Z,)
VD JWCo(Z,*Z,*Z,)

(5.31)

If the velocity input, ¥(t) is assumed to be an exponential function, taen the open circuit
voltage output will be,

V)= ¥ZatZa) g
J(*EO(Za +Zb+zﬂ)

(5.31a)
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Assuming the system to be linear, the open cireolitage output for an arbitrary velocity
function can be writteéras,

_([:(Za + Zﬂ)

V(w) =-
juCo(Z,+Z2,+2 )

VP (w), (5.31b)

where \f(w) and V() are Fourier transforms of(t) and V/(t) respectively.

V(@) =H (@) IV (), (5.31c)
where,
Ho(w)=— HZe*Za) (5.31d)
Joﬁo(za+zb+zﬂ)

the velocity to open circuit transfer function bétreceiving transducer.

But, the desired one is the transfer function esdhe from the free field pressure, P, to open
circuit voltage, V. This transfer function, t{w), can be written as,

V(w) _ V(w) V7 ()
P(w) VJ(w) P(w)
The first term in Eq.(5.32) is found in Eq.(5.3%Hd)d the second term is found in EQ.(3.5) in

Chapter 3. The Fig.(3.2) in Chapter 3 shows thavetpnt circuit representing plane waves
incident on the receiving transducer, whereifthe free field pressure, 4s the input

mechanical impedance of the receiving transduces, tbe particle velocity of the transducer
face, Z is the radiation impedance and A is area of rexeiVhe notations in Fig.(3.2) have

the following relationship with the notations usedthis chapter; P= P, as pointed in the

beginning of this section, 7= Z,, U = -\k. Then the Eq.(3.5) in the present notation would
be,

(5.32)

p
Voo g A (5.33)
P Z,+Z,

Combining Egs.(5.31d) and (5.33) gives,

H. (0) = 224 (Za+Z4) . (5.34)
JoCy (Z,+Z,+Z )(Z,+Z ;)

Using the Egs.(5.30), 4s found as,

2
Z, :Zr+Za+Zb—L (5.35)
Z,+Z, +7Z,
Substituting for Z in (5.34) gives,
+

H (@) = -2A<0 e 20 72 (5.36a)

° (Za +Zb +Zr1) Zr +Za +Zb -

Za + Zb + Zrl
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or
+
H o () = .ZA(F (Za*Z4) (5.36b)
J("'CO (Za+zr)(za+zb+za)+zb(z a+Z 1)
or
2A q
H o () =- (5.36¢)
o (2,472,472 )+2, 27 21)
(Za +Zr1)

IMPULSE RESPONSE

The inverse Fourier transform of the Eq.(5.36¢)primciple, will give the impulse response.
But, for the same reasons stated under the set(b).,2Eq.(5.36¢) is transformed to Laplace
domain. The Eq.(5.36¢) looks the same as Eq.(%&p the factor 2AHC,. Therefore, the
free field pressure to open circuit voltage trandtenction, H,,(s), can be written in the
Laplace domain as,

Ag(l-ry) 1-(1+r1)e™™ + g™

H (w)= 5.37a
(@) sC, Z, 1-rr,e > (5.372)
where
- Z,—-Z
fo = Zo=Ze and n=—2——-12 (5.37Db)
ZO + Zr ZO + Zrl
Taking inverse Laplace transform of Eq.(5.37a) give
u(t)— @+ru(t-to) +n@+r)ut-2t,)
—hly (1+ f )U(t _3T0) + I‘OI’|2 (1+ o )U(t - 4To)
Ag(L-
N () =% — 1212 (L 1)t = 5T)+ 1218 (L+ 1 )u(t - 6T,) (5.38)
0=r
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5.3.1.2 TRANSCADMODEL

The Fig.(5.17) shows the equivalent circuit of theeiver due to the Transcad model.

p p
Vo Vi
<« 7 i
0 @
PREGIRIN Ly

-R,
I 0 a
1L " 0 7,
— 1:0

@ Elektrical port

(e} o—

"Matching" port Backing port

Figure 5.17 Equivalant circuit of the distributddssey model for the receiving transducer elerfierdm
Ref.3)

TRANSFER FUNCTION

The free field pressure to open circuit voltagedfar function of the receiver, Kw), due to
the Tranacad model is given by,

\

V(a):l 2A ¢
P(o) (& +jaC,)

H es(@) =

TR (5.39)

Z . +Z +7Z)+Z
( a b r) b(za+zr1)

This transfer function is not explicitly given ing Transcad repgértBut it can easily be found
using the following equations in the TRANSCAD repp@&ubstituting the Eq.(2.1.1) with=
0, Eq.(2.2.3) with £ = Z,, Eq.(2.2.5) for the no matching condition, and(EQ.14) with Z
= 0 in the EQ.(2.1.3) gives the transfer functionkb). Z, can be found from the
Eqg.(2.2.13) imposing the condition Z .

5.3.2 CALCULATIONS
In this section the impulse response and the tearfsihction of the receiving transducer,

developed in the previous section, are presentauoits and the behaviour of the plots are
discussed.

IMPULSE RESPONSE

The Fig.(5.18) shows the free field pressure tanogecuit impulse response of the receiving
transducer.
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Figure 5.18 Free field pressure to open circuitage impulse response of the receiving transdudes.time
axis is normalised to the reverberation perigdof the transducer element.

The Eq.(5.38) is simulated, for the Mason modethvei = 4.51mm/ = 10.128mm and the
specifications of the PZT-5A for the material cams. The backing and radiation impedance
are 3.0e5 and 419.35rayls respectively. With theesparameters as above, for the Flosim
model, absorption, Q= 50 and @ = 75, is included. And for the Flosim model, thearse

Fourier transform of the open circuit transfer fiimie was calculated using IFFT.

The impulse response of the Flosim model startis thiat of the Mason model and because of
the absorption in the element, deviates as timeases. In the beginning of the response, the
Flosim model shows some oscillation. This is beeaok the trunction of the frequency
spectrum.

TRANSFER FUNCTION

The Fig.(5.19) shows the free field pressure tonogiecuit voltage transfer function of the
receiving transducer. The parameter used for tmelations are the same as those used for
the impulse response.

The transfer function of the receiving transducéropen circuit conditions, found in
Eq.(5.36c¢), is comparable to the transfer functbnhe simplified model of the transmitter,
found in Eq.(5.9), except the factor, 2&G,. Z,, in Eq.(5.9) denotes the radiation impedance,

Z.. Because of the in the denominator, the magnitude of the tranffiection of the receiver

decreases with frequency. The absorption has rddineeresonant tops compared to that of
the Mason model.

The phase of the transfer function of the trangnithanges between2 and 772, whereas,
because of the j in the denominator in the Eq.®.,36e phase of the receiver changes
between 0 andre The phase response of the transfer function aluleet Flosim model starts
out with that of the Mason model and later, at higgquencies, deviates because of the
absorption. It should be noted that the phase respdue to the Flosim model is shifted in the
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positive direction than that of the Mason modelsIvery much visible in low frequencies of
the response. This may be a consequence of thefnayplementation of absorption in this
model. This may be explained as follows. The plemawe pressure to open circuit voltage
transfer function of the receiver due to Flosim elad given in Eq.(5.39). This equation may
be further simplified using the expression fgrgrren in Eq.(5.17) as follows.

-20 \ \ \ \ \ \ I B R
Mason model (a)

Flosim model
40 - L

60 L

-80 —

Magnitude (dB) re 1V/Pa

-100 —

'120 T T T T T T T T T T

L ‘ L L L L L L L L ‘ L
20 Mason model (b)*

//j Flosim model [

-20
-40
-60
-80

-100

-120

-140
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-200 \ \ \ \ \ \ \ \ \ !

Phase (deg)

o
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N
w
I
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fifo
Figure 5.19 Free field pressure to open circuittage transfer function of the receiving transducer.

(a)Magnitude and (b)Phase. The frequency axis imalised to the half wave frequency of the
transducer element.

2A
H s (@) = ¢ Z 7)) (5.40a)
O+ jCpro) (Z, +Z,+Z,)+ 2, 212
Cro (Z,+Z,,)
where,
L2 (Lt )2
CRO:(l Kp) (1 (Kso)” (5.40b)

(tand )
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Consider the transfer function due to the Mason ehad Eq.(5.36¢). As explained in the
previous pargraph, the phase of the first tem,-reduce the phase of the second term from
("2 0 -1v2) to (0O -m). But, in the transfer function due to the Flosmdel, Eq.(5.40a),
the phase of the first term is greater thai2 -and faild to reduce the phase of the second term
to (0O -m). This may be the reason for the phase of thesfeariunction is more positive
than that of the Mason model in the low frequencies

Since the phase of the first term of Eq.(5.40ajndipendant of frequency, the whole
spectrum is given a positive phase shift. The Masodel is causal, known from its impulse
response. Since, as seen before, the phase respbtise Flosim model is shifted in the
positive side compared to that of the Mason matthel,Flosim model will give a non causal
response.
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CHAPTER 6

TOTAL ACOUSTIC RESPONSE

6.1 INTRODUCTION

In Chapter 4 and in Chapter 5 the effects on thenfof the transmitted pulse due to
diffraction and transducer dynamics were discusspadrately. In all circumstances a uniform
sinusoidal burst was used to illustrate the effdotshis chapter a sinusoidal voltage signal is
used as an input signal to the transmitting tracedand the changes on its form are observed
at nodes 2, 3 and 5, shown in Fig.(3.1) in Chaptand explained.

In Chapter 5 the effects of the dynamics of a glaner element with backing was discussed.
In this chapter a backed transducer with a matclayer is considered and the major effects
of the matching layer on pulse forming are discdsseorder to distinguish the difference the
signal produced by the matched transducer is coedpaith that of an unmatched transducer.

A time domain convolution was mainly used to cadtelthe pulse forms in Chapters 4 and 5.
It was realised that the time domain techniquegetdi®us and time consuming. Therefore the
frequency domain techniques were preferred to Gatledhe total pulse. At the end of each of
the chapters 4 and 5 the pulse forms calculatethéytime domain techniques have been
compared with the corresponding results calculatetheir frequency domain counterparts.
In this chapter the pulse forms are calculatedgusimly frequency domain techniques namely
the Fourier methods.

6.2 TRANSDUCERMODEL

In chapter 5 a single transducer element was useaqlain the basic transducer action and
its influence on pulse forming. In this chapter arenrealistic transducer models are used for
the transmitting and receiving transducers. Acyule models represent the transducers used
in the experiment; mas01 as transmitter and mas@2cziver. The details of the modelling of
the transducers is found in Ref.15. The models sate@ieved by empirically fitting the
magnitude of transmitting sensitivity of the model the magnitude of the measured
transmitting sensitivity of the transducer. The msdchave two main discrepancies; 1) some
parameters found for the transducer model is diffefrom that of the real transducer, 2) the
electrical properties of the model is not in agreetwith that of the measured. The later
gives an incorrect simulation result for outputtagke of the receiving transducer. However in
Ref.15, the author cleverly over come the problgmeplacing the electrical input impedance
by its measured data, i.e. by multiplying the speuntof the voltage signal with the transfer
function, Zu/Zis, Where Zu is the measured electrical input impedance ofttiiesducer
and ﬁ,s is simulated electrical input impedance of thendducer model. This is possible
because, the electrical input impedance of thesthacer is explicitly show up in the
expression for the output voltage while it is veittin terms transmitting sensitivity of the
receiving transducer instead of its receiving dentsi, assuming the transducer is reciprocal.
The electrical input impedance of the receivingsgucer(mas02) and of its model are shown
in Fig.(6.1).
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Figure 6.1 The measured(maling) electrical inputpédiance of mas02 and the simulated(simulering)
electrical input impedance of the fitted transducerdel as functions of frequency(frekvens). (a)
Magnitude and (b) Phase angle(fasevinkel) in dejgeader). These plots are copied from Ref.15
with the permission of the author.

6.3 CALCULATION

The velocity signal, 4it), and its frequency spectrum,(u), of the transmitting transducer for
a uniform sinusoidal voltage burst are calculatsidgithe FLOSIM program. Then, using the
FIELDSIM program the free field pressure(th and its frequency spectrum,(®), are

calculated. Finally, the output voltage, for thdcatated free field pressure, is calculated
using the FIELDSIM program. This program uses ttee ffield pressure to voltage transfer
function
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Figure 6.2  Form of the (a) Input signal, the vellpaignal at node 2 while the transducer is (b) matched
and (c) matched to the medium. The particle vejasimultiplied by the area of the transducer.

calculated by the FLOSIM program to calculate tiodlage output. The volume velocity is
presented instead of the particle velocity as FINDS8&lculates. The volume velocity is the
particle velocity multiplied by the area of thertsalucer. The transfer functions are used
accordingly. That is, for transmitter, voltage toelume velocity transfer function; for
propagation, volume velocity to pressure transf@ncfion. But for simplicity, volume
velocity is called velocity in the following discsisn.

The input signal used for the simulation in thisagter is a CW type sinusoidal burst of
frequency 215kHz and amplitude 1 volt with 150 eg¢las shown in Fig.(6.2)(a). Its
frequency spectrum is shown in Fig.(6.3)(a). Thieaigy output of the unmatched transducer
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for the above input signal is shown in Fig.(6.2)({@)e nature of this signal may be explained,
gualitatively, as follows. The frequency spectruihthis signal, shown in Fig.(6.3)(c), is

-60 | | | | |
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Figure 6.3  Magnitude of the frequency spectruma)flfiput signal shown in Fig.(6.1)(a) and (c) sigaa
node 2 shown in Fig.(6.1)(b). (b)The magnitude ahdse of the voltage to velocity transfer
function of the unmatched transducer.

found by multiplying the frequency spectrum of thput signal with the voltage to velocity
transfer function, shown in fig.(6.3)(b). Since th@nsfer function has one resonance peak at
225kHz, the velocity spectrum has two prominentkpeat 215kHz and 225kHz. The
interaction of these two frequencies is seen mamlthe beginning of the signal, i.e., the
beating type of behaviour. However, as time goestlon strongest of the frequency
components takes over. That is, the signal stakils 215kHz. After 150 cycles there is no
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Figure 6.4  Magnitude of the frequency spectruma)flfiput signal shown in Fig.(6.2)(a) and (c) sigaa

node 2 shown in Fig.(6.2)(c) and the magnitude pimakse of the (b) voltage to velocity transfer
function of the matched transducer.

driving signal, the transducer vibrates at its reltwuesonance frequency, 225kHz and the
signal dies off gradually. The frequency variatitmough the signal is estimated using the
consecutive zero crossings and plotted in Fig.(@.B¢ zero crossings are calculated by linear
interpolation method using every pair of conseaitpositive and negative values of the
signal and their corresponding times. The velociijput of the matched transducer is shown
in Fig.(6.2)(c) and its frequency spectrum in FBglj(c). This spectrum is found, as in the
previous case, by multiplying the frequency speutaf the input signal with the voltage to

velocity transfer function of the matched transduskown in Fig.(6.4)(b). The transfer

function has two resonance peaks around 210kHZ238KHz. Since the input spectrum has
its peak at 215kHz, beating type of behaviour @ ttansient region of the velocity signal
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must be the result of the interaction of theseethirequencies. After a while the signal
stabilises to the strongest of these three freqasn215kHz. As in the previous case, after
150 cycles the signal dies off gradually. But, sinitbhe transducers has two resonance
frequencies, as shown in Fig.(6.4)(b), the decayad of the signal, unlike the unmatched
case, shows a beating effect of the two frequenéied as the time goes on the transducer
vibrates at its stronger resonance frequency, 228KHe frequency variation through this
signal also estimated and plotted in Fig.(6.5) whien unmatched case.

| | | | | | |
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o 200 — —
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Figure 6.5  The frequency variation through the @uwalculated using consecutive zero crossings.

The Fig.(6.6)(a) and (b) show the first 1.5 perieasl the first 12 periods of the velocity
signals shown in Fig.(6.2) respectively. The velpsignal for the unmatched case starts at
time t = 0, i.e. immediately after the voltage ppked to the transducer. And, for the matched
case the signal starts with a time delay. This til@lay is the time taken by the wave to travel
through the matching layer. In this particular siation where the velocity of sound in the
matching material, ¢ = 1027m/s, thickness of the matching laygr=t1.215mm and the

frequency of the input signal f = 215kHz, the delgyic,,, is approximately 0.25 period of
the input signal.

In addition to the difference in time delays, them® some other important differences
between the velocity bursts produced by the unneata@md the matched transducers. The
velocity burst produced by the unmatched transdigesmall in amplitude and long in
duration compared to that of the matched transdubkis differences may be explained
gualitatively, in terms of flow of energy, as fols. The reflection coefficient, r, is defined in
Eq.(5.7e) and can be found any text book on waves. The power reflectiod lansmission
coefficients are giverby R = |r2and T_= 1 - R, respectively and, for normal incidence, the
power transmission is equal to the energy flowyret time.

In the case of the unmatched transducer, becaude ddérge difference in the impedance of
the transducer material and the load(air) a largeumt of the energy of the wave hitting the

transducer-air interface is reflected back into tf@sducer. This makes the transducer to
vibrate for a long time until it looses all the ege As a result the output signal is long in

time and small in amplitude. In contrast, compa&gedyi more energy of the wave hitting the

transducer-matching layer interface is transmiitéol the matching layer and of which a large

amount of energy is transmitted at the matchingtlioéerface in to the load(air). This makes

the output velocity signal large in amplitude arnbrs in duration compared to that of the

unmatched case. An approximate calculation wouldwshihe difference clearly. The
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impedance of the transducer, matching layer and ldlae used in the simulation are
Z,(33.75Mrayl), Z,(0.144Mrayl) and Z (415rayl) respectively. The power transmission

coefficient in the unmatched transducer is
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| Matched [ 1 Matche r
£ 5.0E-4 — 1.0E-2 — —
: /\
E 0.0E+0 wﬂﬁv/\ /\

5" 0.0E+0 74/\

o) &u

f il f

S -5.0E-4 — — -1.0E-2 — —
-1.0E-3 ‘ ‘ -2.0E-2 ‘ ‘ ‘ ‘ ‘
0.0 0.5 1.0 1.5 0 2 4 6 8 10 12
T uT
Figure 6.6  The start of the velocity signals showkig.(6.2)(b) and (c). (a) First 1.5 periods dbyl First 12
periods.
2z, Yz
L — (6.1)
ZL + ZO ZL

Similarly, for the matched transducer, if the apsion is omitted, the power transmission

coefficient is
2 2
2Z,, Z, 27, Z, ' 6.2)
ZM + ZO ZM ZL + ZM ZL

Since Z « Z,, « Z,, the transmitted power in the matched transducepproximately four
times larger than that in the unmatched transdudes. shows that the power transmission is
increased by using a matching layer. The transdhifitece can also be found in a similar
fashion using the corresponding force transmissaefficient. But this estimated force is just
for one wave. The output signal is the additiorse¥eral such waves reflected between the
transducer faces and the matching layer faceshamldf different magnitudes and phase. In
addition, the output signal contains the regenamatcontribution and the absorption
reductions due to both transducer and matching lagaerials.

The calculation of the output signal using the abaowethod is very difficult. However, the
first cycle of the output signal can be calculatedily using this method. The following is the
calculation of the signal up to the first reverliera time, i.e. until the time of arrival of the
wave originated at the back face of the transdalznent.
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The voltage input used in the simulation can beesgnted as,

v(t) = sinat 0<t< 150T, (6.3)
where T is the period.

The velocity output, ¥t), of the transducer up to the first reverberatione is given by the

convolution of v(t) with the first term of the valje to velocity impulse response of the
transducer given in Eq.(5.7a).

_ ¢ ¢
y,(t) = 717 [5(t) +Be |0 w(t) 0<t<T, (6.42)

wherert, is the reverberation time of the transducer elémen

y,(t) = z fZg [J: (5(r) + e )sin(t - r)dr} 0<t<Tt, (6.4Db)

A simple manipulation will result,
2
y, (t) = L 1- 2[9’ ~ |sinat +%cosa1— “p ~e” 0<t<t, (6.4C)
Z,+Z, W’ + B W’ + B W+ B

Assume Zis real. If Z = Z, then y(t) = ytla(t), the velocity of the transducer-air interfade o
the unmatched transducer.

Similarly, if Z, = Z,, then y(t) = y1 (1), the velocity of the transducer-matching ingesf. The
force transmitted into the matching layer is thémr(t),EZM and the velocity at the matching
layer-air interface, ¥ (t), is,

2Z 1
PO =yt EZy, D—— 0= <ts< 6.5

Y1 (t) Y1 (t) M[EZM'*'ZLJ[EZLJ Ty STST,+T,, (6.5a)
wherert,, is the transit time in the matching layer. Sin¢e<Z,,,

yr) = 2y1(1). T,St<T,+T,  (6.5b)
Since £ « Z,, « Z,

3+ I‘O t \2 ta tm
p=|= (k&) and () =yt (6.6)
0

Comparing the Eqgs.(6.6) and (6.5b) gives the vetamitput of the matched transducer up to
the first reverberation time is approximately twmes larger than that of the unmatched
transducer. It should be noted that the velociyail of the matched transducer is suffered an
absorption loss. However, this loss may be neglesitece the matching layer is very thin and
the absorption coefficient is very small. In theslation where the thickness of the matching
layer, ¢,, = 1.215mm and the absorption coefficiemip = 1.623e-5 Nepers*sec/rad*m, the

reduction in amplitude for 250kHz wave is approxiema0.004dB. The parameter used here
are found for the model fitted for the real tranzsluelement.
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The matching has shorten the length of the outfgmas In other words the matching has
increased the bandwidth of the transducer. Theeas® in bandwidth can also be achieved by
increasing the backing impedance but at a costeoéfficiency of the transducer.

The effect of matching on the shape of velocityhalghas been discussed. In the rest of the
analysis and discussion velocity output of the imadc transducer will be used. The
Fig.(6.7)(a), (b) and (c) show the free-field presswave form at the centre of the receiving
transducer calculated by the plane wave modelfi¢gat-model and the near-field finite
receiver model respectively for the velocity sigretiown in Fig.(6.2)(c), produced by the
matched transducer.

The Fig.(6.8) show (a)the spectrum of the inputegy signal, (b)velocity to free field
pressure transfer function and (c)the spectrunhefautput free field pressure signal due to
the far-field model. Since the overall shape offtrefield and near-field pressure signals are
very much the same, spectrum of one of the sigdals,to the far-field model, is shown. For
comparison, the transfer functions of both modetésstown in Fig.(6.8)(b). The parameters
used in the simulations are; ¢ = 344.35m/s, a B, p, = 1.20kg/m

The pressure wave due to the plane wave modestisajmultiplication of the velocity by the
characteristic impedance of qig¢ = 414.6rayl) and with a pure time delay. This banseen
from the plane wave transfer function, Eq.(4.19)Chapter 4. Therefore, it looks like the
velocity signal except the amplitude.

The Fig.(6.9)(a) shows the beginning of the pressignals shown in Fig.(6.7) up to one
period. Fig.(6.9)(b) compares the first 12 periofithe plane wave and near-field pressures
and Fig.(6.9)(c) compares the same number of periodthe far-field and near-field
pressures. Fig.(6.9)(b) shows the reduction in @ogd and the advancement in phase due to
diffraction. The reduction in amplitude in the ialtperiods as shown in Fig.(6.9)(a) will give
difficulties in signal detection. The Fig.(6.9)@hows the difference between the signals due
to the near-field finite receiver model and thatred far-field model.
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Figure 6.7  Free-field pressure at the centre ofélgeiving transducer by (a) Plane wave modelFgr}field
model and (c) Near-field finite receiver model.
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Figure 6.8 (a)The frequency spectrum of velocignai at the transmitter face. (b)The velocity teefr

field pressure transfer function. (c)The spectrdrthe free field pressure wave at the centre of
the receiver due to the far-field model.

The pressure signal due to the far-field model sheame undulating variations. This can be
explained as follows. Consider the velocity sigmaduced by an unmatched transducer. The
major contributors in building up the first few d¢gs of this signal are the waves resulted
from direct reflections and transmissions at tla@gducer faces. This construction process is
explained in Chapter 5. Since these waves are ftdreint amplitudes and come at time
t = N1,
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where N is an integer arg is the reverberation time of the transducer eléntae velocity
signal has breaking points at times t %.N'he first breaking point is visible, for exampiee
Fig.(5.6), and the rest are smoothed out, by thditiad of several such waves and the

0.2 | | | | | | 8 | | | | |
1(a) | (b)
c 0.1 —
o B 4 — L
5500 - Ve 1 i
201 \ ; | |
\Q_EL 1o \\ /, i _4 — [
02 - Plane wave model N
Far-field model | E Plane wave model F
Near-field finite receiver model Near-field finite receiver model
'03 ‘ T ‘ T ‘ '8 T ‘ T ‘ T
62.0 62.5 63.0 63.5 60 65 70 75
T T
3
1 () L
2 — L
© i L
o 1 -
= i
o3 i |
=1
-2 Near-field finite receiver model
b Far-field model [
'3 T ‘ ‘
60 65 70 75
T

Figure 6.9  The start of the pressure signals atc#mre of the receiving transducer shown in Fi§)6
(a)First period, (b) First 12 periods of the signdilie to Near-field finite receiver model and plane
wave model and (c)First 12 periods of the signals tb Far-field model and Near-field finite
receiver model.

regeneration contributions, and thus not visible.al matched transducer the number of
breaking points are increased because of the wasgedt from reflections at the matching
layer faces. The breaking points are associateld mgh frequency components. When this
signal is send through the filter of the far-fiettbdel the high frequency components are
amplified. And the invisible breaking points in tkielocity signal are represented by jumps
and visible in the far-field pressure signal. le tfoltage to velocity impulse response of the
transducer, the waves mentioned earlier in thiagraph are represented by impulse spikes.
Therefore the spikes in the impulse response carséd to locate the breaking points in the
signals. The Fig.(6.10) shows the voltage to v&oanpulse response of the matched
transducer and the far-field pressure signal. Thuise response is shifted by propagation
time in the medium in order to match its time saaitlh that of the pressure signal. It can be
seen from the Fig.(6.10) that every jump in thespoee signal is associated with an impulse
spike in the impulse response. Let the transduedcimng layer interface, transducer-backing
interface and matching layer-medium interface ag@oted by face numbers 1,2 and 3
respectively. When a
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voltage signal is applied to the transducer acowstives are produced at both faces 1 and 2
and after reflections and transmissions at thesttacer and matching layer faces these waves
finally transmitted to the medium through face BeTpath followed by each of these spikes in
the transducer element and in the matching layeslaown in Fig.(6.10).

2000 o | | 0.2 Spike # Path
h1a(t)
] I I 1 1.3
f 2 2-1-3
o 1000 — — 0.1 3 1-.3.,1-3
> | a 4 1.2-1-3
o j g 5 2-.1-3-1-3
E 07 ] \mﬁ RS 6 1-.3-1-.3-1-3
EE | i
-1000 — — 01 Figure 6.10 The voltage to velocity
impulse response of the transducer with the
i i corresponding far-field pressure and the
-2000 02 paths followed by impulse spikes in the
! ! ! ' transducer element and in the matching
62.0 62.5 63.0 63.5 layer.
Period #

The impulse spikes are smeared around their cbatt@use of the absorption. This may cause
some error in the size of the jump shown in the. plo

In the propagation model no absorption is impleménBut, in a practical situation, where
the absorption is in action, the effects shownha signal will be smoothed out and the
undulating variations may not be visible. Furthesrey the far-field model is very idealistic
whose transfer function is increasing monotonicaliyh frequency and the phase 2,
independent of the frequency. The near-field fiméeeiver model is more realistic and
approaches the far-field model at larger distande$arger distances the absorption loss also
will be large. Therefore the chance of detectirggdabove described effects is reduced.

The Fig.(6.11)(a),(b) and (c) show the open ciraaltage output signal of the receiving
transducer for the free-field pressure calculatgthle plane wave model, far-field model and
the near-field finite receiver model respectivalijie time axes are normalised to the period of
the input voltage burst.

The Fig(6.12)(a),(b) and (c) show the frequencycspen of the free field pressure wave form
due to the far-field model, free field pressur@pen circuit transfer function of the receiving
transducer and the frequency spectrum of the ojenitcvoltage output of the receiver
respectively. Since the overall shapes of the puse very much the same, the spectrums of
the pulse due to the far field model is only showfig.(6.12).

The overall shape of the signals are very muclséimee because the input pressure signals are
very much the same. The transient parts of thealsgare greatly reduced compared to the
corresponding pressure signals in Fig.(6.7). Ireotkords, the band width of the signals are
increased. This may be explained by the changlarnspectrums shown in Fig.(6.12). The
spectrum around 245kHz is improved by the peakeftéceiver transfer function at 245kHz.
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Figure 6.11 Open circuit voltage output of the ineiog transducer for the input free field pressaoadculated
by (a) Plane wave model, (b) Far-field model and\lear-field finite receiver model.
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Figure 6.12 (a) The frequency spectrum of the fiele-pressure at the centre of the receiving tansr due
to the far-field model, (b) The free-field presstweopen circuit transfer function of the receiving
transducer and (c) The frequency spectrum of thenogrcuit voltage output signal of the
receiving transducer.
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Figure 6.13 The start of the open circuit voltagépat signals of the receiving transducer showRign(6.11).
(a) First period of the signals due to Plane waweé Kear-field models. (b) First period of the
Near-field and far-field models. (c) First 17 peisoof the signals due to Near-field and far-field
models.

The Fig.(6.12)(a) compares the first period in hagig of the open circuit voltage output
signal calculated from the free field pressure ttuplane wave and near-field finite receiver
models and (b) compares the similar quantitiestdur-field and near-field finite receiver
models. The expected start of the signals are atelicby small circles. This time is the time
taken by the sound wave to travel from the matchaggr-transducer interface of the sending
transducer to the matching layer-transducer interfaf the receiving transducer. That is
(trm/Cry + /e + diC), where t,, and L, are the thickness of the matching layers of the

transmitting and receiving transducers respectjvgly and ¢, are the velocity of sound in

the matching layers of the transmitter and theivecaespectively, d is the inter transducer
distance and c is the velocity of sound in the mmexi

The voltage signals shown in Fig.(6.12), as poirdedin Sec.(6.2), is not final. To find the
exact value, the signals have to be modified withftequency domain transfer functiopwZ
Zis This modification is not done here. But the gaheehaviour of the transfer function is
used in the qualitative discussion of certain aspdérom the Fig.(6.1) it is seen that the
magnitude of the transfer function is almost -20dBh some fluctuation approximately
between 170 and 270 kHz. And, except in this fraqgueange, the phase is almost zero. The
fluctuation in the transfer function would causstditions in the shape of the signal. The
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magnitude of the steady state part of the signihbeireduced. It cannot be predicted whether
the individual peaks in the transient part of tiygmal become larger or smaller.

The first, second and third positive half cyclesfm of the voltage signal due to the near
field finite receiver model in Fig.(6.12) are 98dRLdB and 56dB down to the steady state
value respectively. These numbers will be alteridr ahe modification mentioned in the

previous paragraph. However, since the fluctuatathe transfer function is not very large, it

can be expected that the relative sizes of theptakhe steady state value will not altered
very much. If it can be assumed that the signaditmming units in the rest of the system are
ideal, i.e. the amplifier, filter and terminatiomue very large input and very low output
impedance and have wide band widths, then the abwrdioned relative sizes of peaks to
the steady state value will be unchanged. For gesysvhich capable to give, for example,
50dB S/N ratio, the first two peaks are undeteetalind the third can be detected and
identified correctly.

6.4 DSCUSSION

In this chapter the transmission of a sound sigmalugh the acoustic part of an experimental
system is studied. The effects of the matchingrlas/discussed. The changes on the shape of
the signal in terms of the transfer function arscdssed. The size of initial half periods
indicate that they may not be detectable. Thesg@atan indication of the use of a simulation
model. Using such a model like this one can stindysystem for transducers with different
matching and backings, for different excitationgirencies, different termination of the
receiving transducer and so on. The knowledge fthenstudy will help one to plan the
experiment efficiently and make the measuremen®ctly.

In the simulations in this chapter, a sinusoidasbof amplitude 1 volt is used. And the rest
of the discussions are based on the assumptiorin@atystem is linear and the transmitting
sensitivity of the transducer which used to modiel transducer was measured in the same
environmental conditions as used in the simulatB®ut the real system was found to have
non-linear behaviour. That is the response of yls¢éem to varying input voltage is not linear.
In such a situation the transmitting sensitivitytioé transducers must be measured not only
with the same environmental parameters but alsb thi same input voltage as used in the
simulation and the model for the transducers havee found accordingly. This is not a
complete remedy for the problem. However, if the hoearity is not large then the simulated
result can be used for qualitative identificatidriree experimental result.
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CHAPTER 7

EXPERIMENT

7.1 INTRODUCTION

An experiment was performed to verify some of tfieats shown in chapter 4 and chapter 5.
In the beginning of this chapter the experimentedragement is presented and the necessary
features of the instruments involved in the experitmare described. Then the experimental
procedure is described in detail. Finally the ressuf the experiment are analysed and
discussed. The experiment was done by me and Verg&-operation.

7.2 EXPERIMENTAL ARRANGEMENT

An experimental set-up which designed and alreadyuse at CMR was used in our
experiment. The Fig.(7.1) shows the block diagranthe experimental arrangement. The
instruments represented by the different blockslaseribed bellow.

3325 A Synthesizer/
function generator
Wavetek Dual Hi/Lo Filter
HEWLETT PACKARD model 442
Cage
Gating system Transmitter Receiver Measuring Amplifier
type 4440 |pulse out =I| i type 2636
Bruel & Kjzr ] Bruel & Kjer

Gate out|

Channel A iChannel B

. 5180 A Waveform Recorder
L ExtTrg, GPIB | |BM PC/AT
HEWLETT PACKARD

Fig.(7.1) Block diagram of the experimental arranget

SYNTHESIZER / FUNCTION GENERATOR (3325A, Hewlett-Packard)

This generator outputs a sinusoidal signal witrueacy oft1Hz at the frequency range used
in the experiment.
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GATEING SYSTEM (4440, Briiel & Kjeer)

The transmitting section of the instrument, usedh experiment, is capable of giving out
maximum 15V peak tone bursts of frequency up tokBa0+0.5dB through output terminal,
PULSE OUT, while the input terminal, GEN. INPUT,dsnnected to a signal generator. The
pulse rate and duration are adjustable within 6.83Hz and 100s to 1s respectively. The
GEN. INPUT can accept maximum of 1Vrms. The ouipytedance of PULSE OUT is less
than X2. Another terminal, PULSE GATE OUT, delivers a thdjisignal which, contains the
time information of the starting of the tone bussnd by the PULSE OUT, can be used to
trigger off the measuring device. The PULSE GATETOId TTL compatible and has an
output impedance of SD.

MEASURING AMPLIFIER(2636, Briel & Kjaer)

This instrument amplifies the signal fed into it$REBECT INPUT terminal then sends the
amplified signal through a filter, finally ampliethe filtered signal once again and delivers at
the output terminal, AC OUTPUT. The overall gaie(ttotal amplification at input and at
output) is from -30 to 100dB and can be selectednt 0.5)dB steps. The DIRECT INPUT
terminal accepts maximum of 42Vrms and has an impyedance of 1. The output
impedance at the terminal delivers the signal éoetkternal filter, TO(Ext.filter)INPUT, is 5k
QThe input impedance of the terminal accepts thenasigfrom the filter,
FROM(EXxt.filter)OUTPUT is 1M2. The output impedance of the AC OUTPUT terminal is
10kQ.

FILTER(Wavetek Dual Hi/Lo Filter, model 442)

This instrument consists two separate sections;fumetions as high pass filter and the other
as low pass filter. Each section has a frequenad badth of 10Hz - 1.1MHz and roll off of
24dB/octave. By connecting the output terminalhe high pass filter, OUT1, to the input
terminal of the low pass filter, IN2, the instrunheran be made to operate in a band pass
mode. The input signal should be fed through tipaiinerminal of the high pass filter, IN1,
and the output can taken out from the output teahmon the low pass filter, OUT2. The input
impedance and the output impedance of the instruarenl00K and 5@ respectively. The
maximum input to the instrumenti400Volts.

WAVEFORM RECORDER(5180 A, HEWLETT PACKARD)

This device(WR) can sample the analogue signalirfem one of its input channels with a
sampling frequency up to 20MHz and store as 1Oigital codes in a 16K memory. The
stored wave form can be transferred to a computdetle through a GPIB for further
analysis. In the chop mode the signals connectédet@hannels A and B are sampled at the
same time and stored. The sampling takes placealiecly between the two channels and
the maximum sampling frequency is 5MHz per chanmbk input channels accept fram
100mV tox10V. The input impedance of the channels are Q0M
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PulselLog

This is a manu driven computer prograndnoan be run on a IBM-AT compatible computer.
The different options in the manu enable the usetdcument the important information of
the experiment, initialise the WR and the signalegator and transfer the logged data to the
computer.

PC

This is an IBM-AT personal computer. This contted WR and the signal generator using the
PulseLogprogram and transfers the measurements made WyRh a computer diskette.

TRANSDUCERS(MAS 01 & MAS 02)

MASO1 & MASO2 are high frequency narrow beam ulbras transducers, Model E-188/215
of the Massa Products Corporation. MASO1 was usedha sender and MASO02 as the
receiver. The maximum driving voltage of the trarsets is 50Vp-p. Thickness and diameter
of the transducer elements are 1.57mm and 9.02rspecavely.

7.3 PROCEDURE& RESULTS

The transmitting and receiving transducers wermpkd, facing each other, to the stands of
an optical bench. The transducers were positiopnetthat their acoustical axes coincide. The
distance between the transducers was seflf@Omm and measured with an internal
micrometer. Then the optical bench was placed enciige together with the sensors of the
thermometer and the hygrometer. The cage was usedtd reduce any air currents which
cause jittering of the signal and to reduce fasinges in the environment. The inside wall of
the cage was made of cotton in order to reducepasgible reflections from the wall. The
cage was kept in a chamber for several hours dmél environmental conditions to be
stabilised.

When the environmental parameters changes veryhsltdve transducer terminals were
connected to the rest of the experimental set-ughawn in the Fig.(7.1). The input voltage
and frequency of the signal generator were seti@s the gating system give out the intended
voltage at the desired frequency. Then, the angptifon of the measuring amplifier and the
cut off frequencies of the filter were adjustedtiat a good wave form is seen on the WR.
With this measurement set-up a ten quick measuresmeTe taken. That is; when the option
"logdata” in the PulseLog program is chosen, the M/Bet to the "output” mode. The WR
immediately digitise the one shot input and theesponding output signals and transfer the
digitised data to the computer. And the computeesain a diskett. The logging process
being done in a matter of seconds. When the logginthe data is finished the WR is
switched manually to the normal position and corapig returned to log the data again. This
procedure was repeted ten times. Then anotherdneyufor the input burst was chosen and
the above procedure was repeated. Similarly, skeveeasurement sets with different
combinations of input voltages and input frequenciere taken. These measurements are
denoted as XX, X;;-X,0---Xg1-X 100 @Nd called "X" measurements. Then the cage wantak

out of the chamber and the separation of the traoesd was changed t@00mm and
measured with the internal micrometer. The set-ap ut again in to the chamber and left
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for hours to the environment to stabilise. Then sneaments were taken as in the X
measurements. The measurements were recordegd¥as, Y ,;-Y ... Ys,- Y, @nd called "Y"

measurements. Similarly, measurements for the drares separation400mm were taken
and called "Z" measurements. A sample measurerseig shown bellow.

Temper- Humid Pressu-

ature[°C] -ity[%] re[mbar]
Input voltage 15Vp-p

X, 20.139 50.1 1010
Frequency of the input signal 210kHz

X,, 20.140 50.1 1010

Band-pass filter (40-400)kHz
X, 20141 501 1010 Amplfication 40Db
X, 20.142 50.1 1010 WR channel A, rang 10
X;s 20143 50.1 1010 WR channel B, rang 2

X, 20144 501 1010
X,, 20144 501 1010
X, 20.145 501 1010
X,, 20145 50.1 1010

X,, 20.146  50.1 1010

7.4 ANALYSIS

In this section the effect of diffraction on pul$erming will be discussed using the
experimental results. The theory under the ne#d-fimite receiver model in Chapter 4 is
used for the analysis. Therefore, the analysis eédspbe considered as a varyfication of the
diffraction model. The analysis is done in the daling way. Consider the signal measured
for two different separations of the transduceysarm z. Using the signal measured fof z

the voltage signal for,s calculated. The calculated signal is then caegbavith the actual
measured signal for,.zBy doing this, the diffraction effect can be mteld. The theory for the
calculation is derived shortly.

THEORY

Assuming the two measurements were taken at extwtlysame environmental conditions
and with the same input voltage and using Eq.(@fX}hapter 3, the spectrum of the voltage
signal measured at distance ,(z,,w), can be written as,
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V6(23,0) = Hyy(0)H (W) H, (24, )H 45(0) Hs (W) V () (7.1)

and the spectrum of the voltage signal measurdds&nce zcan be written as,

Ve(2,,0) = Hyy(W)H (0 H,4(Z,, ) H y5(w)Hs (W) V (). (7.2)

Comparing the above two equations gives,

H,.(2,,)

Ve(z2,w) = Hy(20,0)

Vs(21, W) (7.3)

In the experiment described above the measuremerd mot made at same environmental
condition. Therefore, it is further assumed that ttansducers and the electronics are stable
for small change in the environmental parameteng. dhange in the environmental condition
was considered only for the propagation medium.tTikathe transfer function for the
medium was calculated for the appropriate densigiom) and velocity of sound in the
medium,

H,4(25,0,,C0«)
H,4(Z1,01,C1, W)

This idea was implemented in a computer programPi&2FILD, in FORTRAN. The
programme code is given in appendix(B-4). This prog prompts the user for the voltage
signal(time function) measured for distance betwertransducers .zlt also ask the user for
the following information of the two different measment situations;(1) the density of the
medium, (2) the velocity of sound in the mediumd af8) the distance between the
transducers. Then outputs the predicted voltageabihat would be measured for the distance
between the transducers, Zhe predicted wave form is compared with the wavm of the
corresponding measured signal. The predicted owigatl, however, cannot be expected to
match with the actual measurement both in ampliattd in phase, specially, because of the
absorption.

Vs(Z,,0) = Vs(z,,0). (7.4)

Before using this programme to analyse the measdedd, it was tested with purely
simulated data. As all the simulated signal doauottain absorption, one can expect an exact
match between the compared signals. The test was aofollows.

Test 1

First the voltage output signal for the separatidrthe transducers,;,zwas simulated as

described in sec.(6.3). This calculation is den@gdccasionl for future reference. Similarly
the output voltage signal for the separation of tla@sducers, ,z was simulated. And this

calculation is denoted as occasion2. Then, usiagv/titage signal of occasionl, the voltage
output for the separation of the transducej,syas calculated with the programme DIF2FILD

and denoted as occasion12. Finally, with the plaaee option of the programme DIF2FILD,
using the voltage wave form of occasionl, a plarsvenform for the distance, avas

calculated. In the plane wave option of the progrenDIF2FILD Eq.(7.4) was implemented
with the corresponding plane wave transfer fundtifam H,,(z,,p,,C,,0w) and H,(z,,p,,C,,w).

The parameters chosen for the calculations are,
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Occasionl Occasion2
z(mm) 100.50 401.86
c(m/s) 344.073 344.229
p(kg/me) 1.19476 1.17585

The frequncy and the radius of the transducer us#ds calculation are 210kHz and 4.51mm
respectively. The difference between the calculgiede wave form and the wave form of
occasionl?2 is due to geometrical diffraction an@fraition alone as absorption is not
implemented. The Fig.(7.2) shows the differencevben the zero crossings of the two wave
forms. The difference in amplitude and in the zerossings in the continuous part of the
wave forms can be calculated directly from therdifion correction formulas for continuous
excitations, for example, the one in Ref.7. Thdradtion correction formula in Ref.7 is
implemented in the programme DIFFKORR in FORTRAN Merviks, Using this
programme the diffraction correction between oawakiand occasion2 is calculated and
compared with that of calculated using the waven®of occasion12 and the corresponding
plane wave. This diffraction correction is sametlaat seen in the steady state part of
Fig.(7.2). The diffraction correction in the Fig2} reaches 216.1ns, except a few points. The
deviation of these few points is not explained. Timathematical calculation of the
comparison is shown shortly.

220 ‘ ‘
210

S S

N
o
o

190
180
170
160
150
140
130

Diffraction correction (ns)

120 \ \ \ \ \ \

o

20 40 60 80 100 120
Zero crossing #

Figure 7.2  Diffraction correction of the zero crogs, from the first to 125th, of the voltage sibffiar
separation between the transduceggpccasion2) and,foccasionl) calculated using the wave

forms of occasion12 and the corresponding planeewav

Occasionl Occasion2
S(=5) 8.09 32.38
ka 17.29 17.28
diffraction correction(phase) using DIFFKORR 68.06 84.44
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Therefore the diffraction correction between oasaiand occasion?2 is (84.44-68.06)

=16.38
The diffraction correction(phase) between occasiandl occasion2 using the wave forms
(continuous part) as described in the above pgpagea = 216.1ns * 210kHz * 360

=16.34
The difference in the above two calculations i49.This difference in phase corresponds to
0.5ns in time.

The diffraction correction in the transient partilcbnot be checked with any other alternative
method.

Test 2

The wave forms of occasion2 and occasionl2 are awoedp The Fig.(7.3) shows this
comparison.

6.0 —
40 i | I
20 - o

0.0

Amplitude (mV)
—

20 — | /\\/

-4.0 - cCalculated using the voltage signal at z Vo s

Calculated directly from the velocity signal at trensducer face Vo I
'60 ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ ‘

1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25
Time (ms)

Figure 7.3  The wave forms calculated using theagatsignal at,foccasion12) and calculated directly from
the velocity signal at the transducer face(occa&jion

The two wave forms overlaps each other so that ¢theyot be distinguished.

The above two tests show that DIF2FILD predicts thitage signal correctly for a given
separation of the transducers using the outputagelt signal for another given
separation(smaller) of the transducers with theragsion that the transducers and the rest of
the experimental system are remain unchanged fail @nvironmental changes. Now, the
programme DIF2FILD is ready to use.

There are measurements, X, Y and Z, for threeréiffietransducer separations as presented in
Sec(7.3). In the following analysis measured signaf Y and Z are predicted
theoretically(with programme DIF2FILD) using the asered signal of X and compared with
the corresponding measurements. In order to comjily the assumption, pairs of sets of
measurements with minimum temperature differenceewehosen. Each set of ten
measurements were averaged to reduce the noiseaEbrset, for their respective averaged
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temperature and humidity, velocity of sound andsitgrof the medium(air) were calculated.
Programmes LYDHAST and TETTHET in FORTRAN writtely Wervik!s were used to
calculated the velocity of sound in the medium #mel density of the medium respectively.
Absorption coefficients are calculated using thegpamme ABSORB in FORTRAN written
by Cad@s. The parameters of the chosen first pair of measants are shown Table(7.1). The
frequency of the bursts used in both cases wast24.0k

Temperature| Pressure | Humidity | Velocity Density Amplifica- | Absorp. coef.

.(°c) (mbar) (%) (m/s) (kg/md) tion.(dB) (dB/m)
XX, | 20.142 1010 50.1 344.073 1.19476 40 8.9471
-7, 20.395 995 49.9 344.229 1.17585 40 9.0970

Table 7.1 Measured and calculated parameters pfpai

8.0 | | | | |
nput voltage L

6.0 for z = 100.50mm|

4.0 for z = 401.86m

2.0 +
0.0 —

-2.0

Amplitude (V)

-4.0

-6.0 —

-8.0 I I I I

0 20 40 60 80 100
Sample #

Figure 7.4 A portion of the measured input voltagjignals used in a set of XX,z = 100.50mm)
measurements and-Z,,(z = 401.86mm) measurements.

One of the assumptions of the analysis is thatitipet voltage signals used in the two
measurement situations are same. The Fig.(7.4)skbwvinput voltage signals applied in the
XX, and Z-Z,, measurements. The input signals have a smalreifée in amplitude. But
this difference in amplitude can easily be accadirite, as long as the signals have same
frequency. And these signals have very much thedesmquency.

Using the averaged signal of the measurementsXX, first, signal with plane wave

propagation for the transducer separation z = 808 is found. This signal is shown in
Fig.(7.5)(a). As it propagated as plane wave, gignal is a time shifted version of the
original signal, that is, the signal measured lier transducer separation 100.50mm.
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15
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Figure 7.5 Simulated output voltage signals for the transdegraration z = 401.86mm using the measured output
voltage signals, measured for transducer separatiod00.50mm with (a) Plane wave model, (b) Neésldf
finite receiver model. (c) is the measured outpoitage signal for transduceseparation z = 401.86mm.
Measured signal belongs to the stz g and the signal used for the simulation belonghéaset X 1-Xoq.
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Therefore this signal can be used as a referencgedothe change in the signal due to
diffraction between the measurements for z = 10@r&0and z = 401.86mm. Fig.(7.5)(b)
shows the simulated output voltage signal for th@dducer separation z = 401.86mm with
the programme, DIF2FILD, using the signal of,-X,, Fig.(7.5)(c) shows the actual

measured signal for the transducer separation@=88mm. As the same amplification factor
was used during the two measurements, as showrale(l7.1), the relative values are
presented to compare the signals in Fig.(7.5).

The overall shape of the three signals are veryhnthe same. Diffraction has not alter the
overall shape of the signal. There are differemcéhie magnitude among the signals. The
difference in level of the signals in Fig.(7.5)@)d (b) is due to diffraction. The simulated
signal in Fig.(7.5)(b) is larger than the measusighal, shown in Fig.(7.5)(c). This is
generally anticipated as absorption is not implemeein the simulation programme and the
actual signal suffered absorption. However, thaligted signal is smaller than it should be,
because of the difference in the input signals shimFig.(7.4).

0.4 ‘ ‘

7 ———— Simulated r
0.3
] Measured |

0.2

0.1 —

= Iy

-0.1

Amplitude (V)

-0.2 —

-0.3 -

5800 5900 6000 6100 6200
Sample #

Figure 7.6 A portion in the start of the measured gimulated output voltage signals for the traosdu
separation 401.86mm are shown. The simulated sigaalcalculated using the measured output
voltage signal, measured for transducer separatmr100.50mm. The measured signal belongs to
the set £-Z,, and signal used to the simulation belongs to 1&g -X .

To see the predicted and the measured signals amsely, a portion in the beginning of
these signal are plotted and shown in Fig.(7.6gré&lis a considerable difference between the
two signals. There can be number of factors catlisdileviation; (1)the assumption that the
characteristics of the transducers remain unchafgethe temperature difference(0.28683
might be wrong. (2)absorption has not been impléetenn the model, (3)errors in the
measurements of temperature, humidity and transdieggaration and (4)physical radius of
the transducers has been used in the calculatstead of the effective radius, To check the
first of the four factors listed above, anotherrpafi measurements with even smaller
temperature was chosen and analysed.

Measurement sets of,XX,, and Z,-Z,, were chosen as the second pair for the analyses. T

necessary parameters of this pair are shown ine{agl). The frequency of the signal burst
used in both measurements was 216kHz.
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Temperature| Pressure | Humidity | Velocity | Density Amplificat | Absor. coeff.

(°c) (mbar) (%) (m/s) (kg/m?) -ion.(dB) | (dB/m)
Xo-X 100 | 20.480 1010 | 50.4 344.280 1.19324 30 9.4353
Z,-Z,, |20.472 995 50.0 344.279 1.17551 40 9.5350

Table 7.2 Measured and calculated parameters pPpai

First, as in the previous case, the input signséglun the two measurements are checked. The
input signals are shown in Fig.(7.7). The signas\gery much the same both in amplitude
and in frequency.

15 | |
Input voltage

10 - 7L for z=100.50mm /|

| for z = 401.86m L

5 — -

5 L

-10 —
I I I I

Amplitude (V)
o
|

-15

0 20 40 60 80 100
Samplw #

Figure 7.7 A portion of the measured input voltagmals used in a set of X(z = 100.50mm) measurémen
and Z(z = 401.86mm) measurements.

The Fig.(7.8)(a) and (b) show the predicted outfmliage signal for the transducer separation
z = 401.86mm, using the measured output voltageakigneasured for the transducer
separation z = 100.50mm, with the plane wave maddlthe near-field finite receiver model
respectively. Fig.(7.8)(c) shows the measured dutmitage signal for the transducer
separation z = 401.86mm. Different amplificatiorcttas has been used during the two
measurements, x%X,,, and Z,-Z,, as shown in the Table(7.2). Therefore, to complaee
signals, unlike the signals in Fig.(7.5), the absolvalues of the signals are presented in
Fig.(7.8).

The plots in Fig.(7.8) also show that diffracticaisimot alter the main shape of the signal. The
shape of the signals in Fig.(7.8) differ from tb&in Fig.(7.5), the signals of the pair used in
the previous analysis. This difference is due te ttansducer dynamics. In the pair of
measurements, used in the previous analysis, #mesducer was excited with 210kHz
frequency and in the pair, used in the later, RitbkHz. The Fig.(7.9) show a portion in the
beginning of the predicted and the measured sigehtsvn in Fig.(7.8)(b) and (c). There is a
considerable difference between the signals. THerdhce between this two signals looks
very much the same as the difference between gmalsiin Fig.(7.6), the simulated and the
measured signals of the previous case. The differbetween the zero crossings of the two
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Figure 7.8  Simulated output voltage signals for tila@sducer separation z = 401.86mm using the medsu
voltage signals, measured for transducer separatiot©00.50mm, with (a) Plane wave model, (b)
Near-field finite receiver model. (c) is the measlputput voltage signal for transducer separation
z = 401.86mm. Measured signal belongs to the ge¥ 7 and the signal used for the simulation

belongs to the setX o
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Figure 7.9 A portion in the start of the measured aimulated output voltage signals for the traosdu
separation 401.86mm are shown. The simulated sigaalcalculated using the measured output
voltage signal for transducer separation z = 10@r80 The measured signal belongs to the set
Z4-Z,0and signal used to the simulation belongs to éhe<g-X ;.

signals in both cases are found to be about 200ns.

In the analysis of the second pair a more agreefnmephase(zero-crossings) between the
simulated and measured signals than in the preyairs was expected. The reason is the
temperature difference between the mesurementseqgbdir2 is smaller(0.008 than that of
the pairl(0.25%). Had the temperature difference between the umeasents of pairl been
the reason for the difference in the zero-crossofgthe simulated and measured signals of
pairl then the difference between the zero-crossofgsimulated and measured signals of
pair2 should be smaller than that of pairl.

But, the results indicate that the variation in thensducer dynamics due to temperature
difference in both cases cannot be a reason fodidegreement. And it also indicate that
there must be some other systematic error to gisanae amount of disagreememRQ0ns).
There are three posibilities for the source of rembich is common for both pairs; 1)The
speed of sound in the medium used in the simulatame calculated using the programme,
LYDHAST, based on theoritical and experimental dathe error in the data could have
caused the systematic error. 2)Some inherent grtbe measurement of the separation of the
transducers, 3)Using the physical radius of thesdlacer instead of the effective radius. The
disagreement can be a combination of the threalgessrors mentioned above.

Let the speed of sound, for example, be 344.289Ariserror of 0.08m/s in the speed of
sound could easily have caused approximately 2Qfifisrence for the separation of
301.86mm.

To demonstrate, how an inherent error in the measent of separation of transducers can
cause a disagreement mentioned above, the follosimglations were made for both pairs
with z = 401.80mm instead of z = 401.86mm. The ltedor pairl and pair2 are shown in

Fig.(7.10) and Fig.(7.11) respectively.
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Figure 7.10 A portion in the start of the measuvettage output signal for the transducer separation
401.86mm and simulated output voltage signals far transducer separation 40In88 are
shown. The simulated signal was calculated usiegntieasured output voltage signal of the
X,11-X, for transducer separation z = 100.50mm. The meadssignal belongs to the setZ,,
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Figure 7.11 A portion in the start of the measuoediput voltage signal for the transducer separation
401.86mm and simulated output voltage signals Fa&r transducer separation 40In88 are
shown. The simulated signal was calculated usiegntieasured output voltage signal of the
Xq1-X 00 for transducer separation z = 100.50mm. The medssignal belongs to the se},Z,,

CALCULATION OF ABSORPTION

A decaying plane wave can be written as,
p = P, e gle) (7.5)

wheread is the attenuation coefficient whose unit i$.m
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The amplitude attenuation in dB is given by,

p (PO)I'mSe_aZ —_ o r4
20log —™_ | =20log| —2™s—__ | = 20logle™ ). 7.6
09[(P0)rmj g[ P j o) (76)

Consider the near-field finite receiver model ddsaxt in Sec.(4.2.2). The average pressure on
the circular plane placed on the common axis Withdender, for continuous excitationgty

t, is given by EQq.(4.35). Absorption can be inclutiedhis case by putting/c =k, a complex
wave number, ankl = (k-ja). Then the average pressue,(z,w)), can be written as,

%
. i o ik iaY 2 +antcod 0V -
<I0ab(2' a))> = p,cU el @ de m{l_euko Ja)zﬂje i(ko-ja)(2* +4a%cos 0)2 112 aje} (7.7

ﬂO
or
_ i(Ko—i 4"72 —i(Kn—1i 2 +4a? 326% fa2
(Pa (2, @) = poe™®| 1€/t "’)Z—J'e Ikoja)z+ia’cos O gin2 4@ |,  (7.8)
ITO
where

Py = PeCoU, g™ (7.9)

is the plane wave. The diffraction correction biotlmagnitude and in phase, as in Ref.(7) and
in Ref.(36), is given by the ratio of the averagesgure to the exponentially decaying plane
wave. That is,

7
<pab(z_’aczo)> _ 1_ei(ko—ja)zﬁJ‘e-i(ko-i")(ZZ*“’“‘z°°5'2‘9)}/Z sin&é|. (7.10)
Po€ %

It has been shown in Ref.(7) that, fioxk,, the effect of intrinsic absorption in the magdiu
of the diffraction correction can be neglectedisltshown in Ref.(36) that the effect of
intrinsic absorption in the phase of the diffrantmorrection can also be neglected whek,,.

Thereforeas, in the right hand side of the Eq.(7.10) candmaced by zeros. Then EQq.(7.10)
can be written, using Eq.(4.40), as,

(Pap(zW)) = €% { ZW)). (7.11)
=U(w)[H%(z,w) (7.12)

where,
H3: (z,w) = H (zw) €, (7.13)

is the velocity to free field pressure(average)hwabsorption. Then, using this transfer
function, Eq.(7.4) can be modified, to include #tesorption, as,

H (Z,,O,C,a)) ~a(z2,-2
VP(z,,w) =| -2 2 P Y (7, @) | @777 7.14
6 (Z2,0) [HM(Zl,pl’cl’w) 6(Z w)} (7.14)

In the above equation,gQ(zz,co) is the received voltage signal with absorptitee, term in the
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brackets is the received voltage signal withoutogitson(see EQ.(7.4)) and the term with
exponential is the absorption factor. Then, Eq4¥chn be written as,

V& (z,,w)=V,(z,,w)e "=, (7.15)

Inverse Fourier transform of the both sides of Hog(7.15) will give the corresponding time
signals,

V(1) = v (1) @), (7.16)

va(t) in the EQ.(7.16) can be taken as the measugeadls Then, this equation can be used to
calculate the absorption between the distancand z, using the calculated and measured

signals in Figs.(7.5) and (7.8). The measured s$igoatains both the diffraction effect and
absorption and the simulated signal contains dmydiffraction effects.

The absorption coefficient is, then,

v¥(z,,t
Vs (2,.1)
dB/m.
(Zz - 21)
Calculation of absorption of the measurement pagdds an additional data processing. The
simulated signal has to be corrected for the difiee in the input voltage signals shown in
Fig.(7.4). Consider the Egs.(7.1) and (7.2). Tleg@iency spectrum of the input signal(a,
in these equations are no longer equal. As theuénegjes of the input signals are equal, the
spectrums of the input signals in Egs.(7.1) and)(Zan be replaced by, ¥(w) and AV(w)

respectively, where Aand A are the amplitudes of the measured input voltageats for z =

100.50mm and z = 401.86mm respectively. This wikkrige the Eq.(7.4) by a multiplicative
factor AJA,. As this factor is a frequency independant coristdie correct voltage output

signal can be found by direct multiplication of teenulated signal by £A,. In order to
prevent any confusion, the simulated signal coeckdor amplitude difference is denoted as
ab . . . . ‘ab

Vs (t) and uncorrected signal is denoted with a prase& (t).

(7.12)

From the Table(7.1), the average absorption coefficis 9.01dB/m. To be with the same
scale as in Ref.(7), deviding the absorption comfit in dB/m by (8.69*1000) gives =

2 . . ,
0.001mnt. The value of %Tj for this pair(Table(7.1)) of measurements is 3BB6.

That is, this measurement pair satisfy the conaljitco<k. For the pair2, from Table(7.2),
average absorption coefficient is 9.48dB/m and 0.001mnt and k is 3.9420mr This pair

of measurements also satisfy the conditonxk. The calculated absorption from the two pairs
of measurements are given in Table(7.3).
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Pairl Pair2
The ampltude of the simulated signal (). (viots). 0.32 0.01091
Amplitude correction factor, £A,, 7.75/7.50| 1
Corrected amplitude ¢\tt) = vi ()*A JA,. (volts) 0.3306 | 0.01091
The amplitude of the measured signdi(ty, (volts) 0.237 0.00764
Distance between the receiver locations of thertvesurements 301.36 301.36
'(I'Tu;n?albsorp. coeff, from the measurements, usin¢/ BQ). (dB/m) 9.59 10.23
The average absorp. coeff. from Tables(7.1) & (A{d}/m) 9.01 9.48

Table 7.3 Absorption from the measurements.

7.5 DISCUSSION& CONCLUSION

There are two different measurements of separafiogransducers involved in the analysis of
each of pairl and pair2. Both measurements coukkiply have error. The separation
measurements were made with an internal micromitisr very difficult to decide when the
tip of the device touches the face of the transdunaddition, the face of the transducers are
made of rubber like material which makes it everramdifficult. One can easily make a few
hundredths of a millimeter error in the measurenoérsieparation. The Figs.(7.10) and (7.11)
demonstrate that a few hundredths of a millimeter easily lead to an error of couple of
hundred nano seconds.

The parameters used in the calculations for testinthe programme, DIF2FILD, and the
parameters of pairl are same. Hence, the thedipth@se correction of diffraction of pairl, is
216.6ns.

In the analysis, measurements "X" and "Z" were ehoas the environmental differences
between these measurements are very small. Bstathe kind of analysis has been done for
measurements "X" and "Y". That is, using the mearme@nts for the transducer separation,
0.10050m, the voltage signal for the transducearsgn, 0.20836m, was predicted. This
analysis is not documented because of short of. tBirece absorption is not implemented in
the simulation, one should expect the simulatedaitp be larger than the measured. But to
the surprise, the measured signal was larger tiasimulated. The reason to this must be the
increase in transmitting response of the transmitiee average temperature for the series of
measurements "X" was 20.IZ9 and for measurements "Y" was 21.904 In this
temperature variation the transmitting responsethaf transmitter has increased. Exact
measurements are not available to prove this, hetténdency of the behaviour for the
frequency, 210kHz, can be seen in Fig.(5.15) in.(R8f. The use of sensitivity plots in
explaining the shape of the received signal wastpdiout in the discussion in Chapter 3 in
Sec.(3.5).
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CHAPTER 8

SUMMERY AND CONCLUSION

The effects of the acoustic part of a transit-tifleev meter on pulse forming, at no flow
conditions, are studied in this work. The effedtsliffraction and of the transducer dynamics
on pulse forming are studied individually and asystem. Pulse forming mechanisms in the
transducers and of diffraction are studied usimgithpulse responses and time convolutions.
The effects of the total system on the form ofwhmwle pulse are studied using the frequency
domain methods; the Fourier methods. An experinvead performed and the results are
analysed and discussed.

The active face of a circular transducer, an imagircircular surface of dimension equal to
the transducer placed coaxially in front of it ahd medium in between are considered as a
linear time invariant filter. The transient respefa/erage pressure), for an impulsive
velocity, of this filter is found and compared withe earlier results Pulse forms for a
uniform sinusoidal velocity burst are calculated gresented as a function of S and ka
values. The pulse forms are also compared with diahe far-field and near-field point
receiver models.

The response of the system, for open circuit card{ with the model for real transducer, is
simulated. The effect of the matching layer onitfigal transient, ringing and the signal level

is discussed. It is indicated that, with proper eisdfor the transducer, propagation and
electronics, the simulations will guide the expemnter to interpret the received signal and
hence to make correct measurements.

The pulse form from the experiment, for z(separabd the transducers) = 401.86mm, was
predicted theoretically with the propagation modeding the measured pulse form for z =
100.50mm as the input. The predicted pulse form wnatsin good agreement with the
measured one. Possible reasons for this deviatediscussed.

In the analysis of the experimental results, it \®@asumed that the environmental condition
and the input voltage signals of the two measurérsénations are identical. But, these
assumptions were not fulfilled in the experimentekperiments, where the requirements are
achieved, this method can be used to calculatditfifraction correction. For example, in
Pulse Echo Overlap(PEO) method, the echoes com@aeetheasured at exactly the same
environmental conditions and have the same inpltage signal. Moreover this method does
not need a model for the transducers.
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Appendix A-1

Velocity to average pressure impulse response.

Velocity to average pressure transfer functionveig by (see Eq.(4.41b),

H e (@) = poc{e_mtZ _EIG_M(Q) sin® ede} (A-1-1)
n 0
where
t, = z/c, (A-1-2)
t(6) = (Z+4&cog0)/c (A-1-3)

Velocity to average pressure impulse response/enddy the inverse Fourier transform of the
velocity to average pressure transfer function.ifgknverse Fourier transform of Eq.(A-1-
1),

_ 17 ot
hye (0= j H  (w)e™* do (A-1-4)
_ 17 —jwt, Ljot 1 m4% —jwt(0) win2 joot
=p,C EI_J;E ze dw—ET_J;Eie sin“ 8dee’™ dw (A-1-5)
I 1T i i 4% 15 -jt(8) piot in2
=PoC E[_J;e ‘e doo—T—TJ; E[_J;e e dw |sin” 6d6 (A-1-6)
_ 4%
=p,c 3(t—t,) - j 3(t - t(8))sin® 6B (A-1-7)
0
From Eq.(A-1-3),
2 2
t(e):\/Z +4a’ cos 0 (A18)
C

[t(O)] - Z

cog0= ;
43

(A-1-9)

Differentiating Eq.(A-1-8) with respect bgives,
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Appendix A-1 Velocity to average pressure impukssponse

_—ct(e) 1.
 4a%sinBcos0 d[t(6)] (A-1-10)

Substituting for @ and sifd in Eq.(A-1-7) from Eg.(A-1-10) and Eq.(A-1-9) gse

1 c2t(0)y 4a2 - c?[t(0)]* + 22
hoe (1) =poC 8(t —t,) ——5 [ 8(t-1(6)) J 2[ | d[t(e)] (A-1-11)
@ g Ve [t®)) - 22
where
t,,,= (4a&+22)%lc (A-1-12)
The above integration takes valtiesly when t = ). Therefore,
2 2 2 242
hy (1) = po{a(t -t,)- = J zra el } tStst, (Al13)
@ ct" -z
or
c’t [t5,-t°
hnf (t) = p0C|:6(t - tz) - Tﬁz :27} tz sts t4az (A'1'14)
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Appendix(A-2)

Convolution integral for the near-field finite receiver
model.

Consider the convolution integral given Eq.(4.88)e equation is rewritten and renumbered
as (A.2.1).

Pn(z:t) = hy(z,t) O u(t) (A.2.1)
where

(1) = Rl2,1) + heZ,0) (A.2.2)

h,(z,) =pycd(t-t,), (A.2.3)

%) t2 —t? E

h,. (z,1) :—%[ﬁ} t<tst,,, (A.2.4)
and

u(t) = UO[U(t)-U(t-T')]simoot. (A.2.5)

P 1) = [u(t=Dlh,, @ 1)+ h,y @O (A.2.6)

P, (z,t) = T u(t —t)p,co(t —t, )dt+ T u(t —t)h,,, (z,T)dr. (A.2.7)
Using the sifting property of the Direc delta fuoct,

Pt (2.1) = pocu(t —t,) + [u(t = D)h,, (z,T)dlT. (A.2.8)

t;

The second term in the above expression f@z,p has to be calculated, as pointed out in the
beginning of the Sec.(4.3), numerically. The siagty in the function, )(z,t), makes the
task little difficult. The following method was u$¢o calculate the integration. (The method
to integrate the function at the singularity waggasted by Westrheim. This method is
implemented in the programme for calculating theodehconvolution integral in Eqg.(A-2-1)
given in Appendix(B-1). The programme was writtey ime and tested out with the
consultation of Westrheim.)
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Appendix (A-2) Convolution integral for the neaelfi finite receiver model

The second term in the Eq.(A-2-8) is splitted itwm parts. With this splitting, Eq.(A-2-8)
can be written as,

ty+A t
Pu (Z1) = pocu(t=t,) + [u(t=1)h,, @ T)dT+ [u(t-Dh,, (zT)dr, (A.2.9)
t, t,+A

whereA is a small interval in the neighborhood ofTto minimise the writting the following
aberiviations are used.

I, =pcu(t-t,), (A.2.93)
t,+A
l, = Jut-n)h,, (z1)dr (A.2.9b)
tZ
and
t
ly= Jut=1)h,, (ZT)dr. (A.2.9c)
t,+A

Substituting for b (z,t) in Eq.(A.2.9b) gives,

-

t,+A 3 2 272
_ —p,Cot| t2, -1
L= [ ut-1) — [:2 — } dt (A.2.10)
t, z
Let,
TSt A, (A.2.11)
where
A O, 4], (A2.12)
Then
ot = v (A2.13)
1
A 3 ' 2 n2 |2
—_ ! _pc(tZ+A) taz_(tz+A) I
1, = [u(t-t, -a)—=2 — (4t LY dA (A.2.14)
0 z z

SinceA' « t, t,.,, higher order terms i’ can taken to be negligible and the change in the
velocity signal is assumed to be very small in ierval A, 1, can be approximated as
follows.

_ 3 2 _2\3 A :
1, = u(t—t,)— PoC e i ~ t2) j[ 1,} da’ (A.2.15)

m’ <[ 20
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Appendix (A-2) Convolution integral for the neaelfi finite receiver model

_ 3 / 2 _ 42
:U(t—tz) pOCtz 2A(t4za tz) (A216)

na’

The integral J is proportional to the square root of the interval Therefore, smaller the
interval,A, higher the accuracy of the integral |

The integration J can be calculated using usual numerical integnatoethods. The
integration takes different limits in different igof time, t. This is explained shortly.

hr,fZ X(z,t) u A(t)
@ (b)

0 t4aZ

ﬁ t t

Case 1; T<(t,,-t

\4

v

hos (2T ) & ut - 1) hnf(zi)&ut -1) hne (1) & ut - 1)
(©) (d) (e)
/\ it (427 > t, tT /[t 40z t; T /\\/ﬂ t
/M% T
Case 2, T> (t,,,-
f(zr)%u: t) hnf(z,Ar)&m-t)
® )
?%% Z tﬂﬁ%@"‘““
hps (z )& Ut -
(h)
Tt N

e

Figure A.2.1 (a) a portion of the impulse respotgg(z,t) (b) velocity signal, u(t). (c), (d) and (&jrictions in
the integrand of ;I for different ranges of t while'T< (t,,, - t). (f), (g) and (h) functions in the
integrand of | for different ranges of t while'® (t,_,- t).

Fig.(A.2.1)(a) and (b) show the impulse responsetion and the velocity function involved
in the integration | given in Eq.(A.2.9c). These figures and the egstnot drawn to scale.

Considering the duration of the velocity functidhe integration splits into two cases; I
(t,.,-t)and T > (t,,- t) where T is the duration of the velocity function ang, (t t) is the
duration of the impulse response.
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Appendix (A-2) Convolution integral for the neaelfi finite receiver model

Fig.(A.2.1)(c) represents the functions in thegnéad of the following integral,
t
3= Jut=1)h,y (z1)dt t,<st<t,+T' (A.2.17)
ty+A

Similarly the Figs.(A.2.1)(d) and (e) represent faections in the integrand of the integrals
given in Egs.(A.2.18) and (A.2.19) respectively.

t
3= [u(t=0)h,y (2 1)dt t,+T'st<t,, (A.2.18)
t=T'
taaz
3= [u(t=0h,y (2 1)dt t,St<t, +T (A.2.19)

=T

Since the impulse response is larger than thetisgmal, there is no steady state in the
signal.

The Figs.(A.2.1)(f),(g) and (h) show the functiansthe integrand of the integrals given in
Egs.(A.2.20), (A.2.21) and (A.2.22) respectively.

t

3= [u(t=T)h,y (2 T)dT t, <ts<t,, (A.2.20)
t,+A
taaz

l, = ju(t ~Dh,., (z,T)d t,,st<t +T (A.2.21)
t,+A
t4az

3= Ju(t=1)h,, Z)dt t,+T'<t<t, +T (A.2.22)

t=T'

In the range, (t+ T') <t, there is no contribution from the integrgland |, for both cases.
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Appendix (A-3)

Diffraction factor for a circular receiver

The Fig(A-3-1) shows plane waves incident on autaicreceiver making an angl@, with
the normal to the face of the receiver. This plamee can be denoted as p(t) FdRR),

where R is the distance between the centre ofwvecand the source of the plane wave. The
free-field pressure, denoted agsifPthe text, due this plane wave at the centrthefreceiver

is P, elR. The pressure at the centre of the receiver iptesence of a receiver, assuming the
receiver as an infinite plane baffle, is,2P

ydr
4

a

=]

Figure(A-3-1)Plane wave incident on the surfacthefreceiver.
Consider a small stripe of thickness, dr, on tloeirer at a distance, r, from the centre of the
receiver. Since the pressure along this stripemnstant, the total pressure on this stripe, dp,
IS,

dp = R elk®+rsin®) 23 cosgh dr (A-3-1)

where a is the radius of the receiver.

The force, Kor the open circuit force in the text), on theaiger face, then, is,
F, = J'ZPOe‘jk(R+rS‘“e) 2acospdr (A-3-2)

From the figure it can be seen that r = a@sithen dr = a c@sdd. The force, F; then will
be

TEI
F, =2P, I e krsn® 292 cos’ pdd (A-3-3)
_ J;(kasin®) ol
R=2R2dm (kasin®) (A-3-4)
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Appendix (A-3) Diffraction factor for a circular ceiver

/=2 BA% (A-3-5)
where A is the area of the receiver.
or

F,=DAP, (A-3-6)

where D is known as the diffraction factor.

For normal incidence the diffraction factor, D, bews 2.
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Appendix (A-4)

Pulse form as a function of S and ka values.

The average pressurg(p,t) is given by,

P @1 = [Ny @O - TeR (A-4-1)
where

hnf (th) = pOC|:5(t _tz)_c_zz t:;Z_tt :|t ats t4&;12 (A'4'2)
where

t, =§ and az =@

u(t) = [U(t) - U(t-NT)]sirt (A-4-3)

— T _ _ CZT ttzlaz ?
Py @ 1) = I 90{5@ L) —t? } (A-4-4)
x[Ut-T)-U(t-T- NT)]sinoa(t —1)dt

pnf(z1t) = p.l.nf(zit) + pan(Z1t) (A'4'5)
where
P, (z1) = pocTé(T —t,)[U(t-1) - U(t -1 - NT)|sinoxt — T)dt (A-4-6)

c’1 tiaz

Dy (z,t):—pocj = [U(t ) - U(t -1 - NT)]sinoxt - T)dt (A-4-7)

In terms of normalised time the Eqgs.(A-4-6) and4A) can be written as follows. Defining,

. N
t=—,1=—t,=2&t,, =
z T 4az T

(A-4-8)

— |~

t
=
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Pulse form as a function of S and/kaes

Appendix (A-4)
b, (21) = poc j 3T -1, TJultr -17)- Ut - 5T - NT o)
xsina(fT —£T)d(TT)

Pant @)= F)o(:Té(f _fz )T[U(f B f)T B U(f -1- N)T] (A-4-10)

xsinwT (t - T)Tdt

Using
d(at) = = aI6(t) (A-4-11)
U(at) = U(t) (A-4-12)
D @ 1) = pocTé(f -1, Jult-1)- Ut -1 - N)Jsinznft - t)t (A-4-13)
Using sifting property of the Dirac delta function,
Py (1) = poc[U (t-t,)-ult-t, - N)JsinZT[(f -1,). (A-4-14)
: z a1 a _ (kay (A-4-15)

= =s :
l / ’ AcT N AT
The above relation proves tha,f ,$zis a function is a function of S and ka only

Recalling Eq.(A-4-7),

¢t 432 [U(t 1) - U(t -1 - NT)]sinw(t - T)dt

Pon (Z,1) = _poc.[

and considering the duration of(l,t), it can be written as,

[ t‘z‘az [U(t—r) U(t -1 - NT)]sina(t - )t . (A-4-16)

Pons (Z,1) = —P,C
2nf 0.([_’_B

Substituting for t and from (A-4-8), p,(z,t) can be written as follows,

dt = Tdi
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Appendix (A-4) Pulse form as a function of S and/kaes

~242
P (2, t)—-pochTT e =TT [ @7 - T) - U(ET -7 - NT)]

"2-|-2 t2 2
xsin(tT —TT)d(IT)

(A-4-17)

Using
U(at) = U(t)
- c*iT?
z,t) =—p,C tor = Ut-1)-U@{-1-N
Pow (21 =P, j sy [ G-n-vi-t-n] o
xsin2m(t - T)dt
141
z,t) = —p,C ‘20 - 1yt-1)-UE-t-N
Pow (2.0) =P, j 1/ [ (t-1)-UE-t-N) 1)
XSIﬂZT[(t-T)dT
2
2 = 4a ;rz 4a2 +(Ej
c c Cc
2 2
2 A7 1z (a1
4az C2 a% )\ C2T2
2.2 4
E‘21&12 4(ka2) 'f + 4f
4n°c C
2 _ka)? s’ ka)*
t4az - 2 + 4
1l 16n
Sincet,and,,, are functions of S and ka only, f,t) is also a function of S and ka only.

Therefore the total function,fz,t) is a function of S and ka only.
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Appendix(A-5)

Transfer functions of transmitting transducer in

Laplace domain

TRANSMITTER

THE MASON MODEL

Voltage to velocity transfer function of the trangar, in Eq.(5.3f), is,

Htrl(w) = ¢
(z,+2z0+z,)+z
where
Zb = Zb '__(ﬁ .
jaC

In Laplace domain,

2,= izt - z{— ,

eZ +e 2
s = Zo _ 2
b C ST, —s7
jsinke) e —e™n
and

w 4 . :
where, k == H=¢ and s is the Laplace variable.

0 C

Denote s, by x andg/sg, by k for simplicity.
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Appendix (A-5) Tranfer function of transmitting keducer in Laplace domain

Take the denominator of Eq.(A-5-1), and substifateZ, and Z give,

(Zo+Z, - K" +(Z,-Z,, + kg™

Htrl (S) = ex _ e_x

. P (A-5-6)
+[i—kj (ZO '*'Zrz)e2 _(Zo _Zrz)e 2
e -e” (Zo +Z, )eé - (Zo -Z, )e_é
[(Zo+202-K)€ +(Z0= Zo+ €] ( 2+ 2D €~ (2 7) €]
+[2z,+ k(e - €M)][(Z+ 7.) €~ (7~ 7)) &
- (A-5-7)

(e-e(2+2)e~(2- 2) &

Denote the numerator of the above equation pgrdl the denominator by,NT'hen,

_ . M
(Zo + Zrz - k)(zo + Zrl)e2 _(Zo + Zrz - k)(zo _Zrl)e2

_X _3x
N1 = +(Zo _Zrz + k)(zxo + Zrl)e 2 _(Zo _erz + k)(zo _Zrlgze 2 (A-5-8)
+ ZZO(ZO + Zr2 )eE _Zzo(zo _Zrz )e_E - k(zo + Zr2 )e?

X X _3x
Lt K(Zo—Z, ) +k(Zo+Z,)e? —k(Zo—Z ) ?

, (Zo + Zrz)(zo + Zrl) - k(ZZO +Z,+ Zr2) + (Zo + Zrz)(zo tZ, e’
=e?|+ k(ZZO - Zr1 - Zrz )e_x - (Zo - Zrz)(zo - Zrl )e—2x + k(Zzo + Zr1 + Zr2 )e—Zx . (A-5-9)
- (Zo - Zrz)(zo - Zrl )e—3x - k(ZZO - Zrl - Zrz )e—3x

Adding some dummies,

(Zo+Z3)(Zo +Z,)A+€7) = (Z, - Z,)(Z, ~ Z,,) A1+ €7 ™
w|—K@Z,+Z,+2,,)-k(2Z,+Z,,+Z,,)e " +k(2Z,+Z,,+Z,,)e"
-k(2z2,-2,-2,)e* -k(2Z,-2,-Z, > +k(2Z,-Z,, -Z,)e™*
+k(Zy-Z,-Z, " +kQZ,+Z,+Z,)*

(A-5-

10)
. (Zo + Zrl)(ZO + Zr2)(1+ e_x) - (Zo - Zrl)(ZO - Zrz)(l'l' e )e—zx
N, =e?| —k(2Z, +Z, +Z,)1+e™) - k(@2Z, - Z, - Z,,)L+e™ ™ (A-5-11)
+4kZ,(1+e™ )™
Defining,
Ky = (Z+Z,)(Z5tZ,,)-K(2Z,+ 2,1+ 7)) (A-5-12)
k, = 4kZ, (A-5-13)
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Appendix (A-5) Tranfer function of transmitting keducer in Laplace domain

ks = (Zo'zrl)(Zo'zrz)"'k(zzo'zrl'zrz) (A-5-14)
N; = ef (L1+ €*) k+ ke* - k&”] (A-5-15)
N, = (e~ €")(%+ Z) €-(2- ) & (A-5-16)

=(Zo+Z.)€* —(Zo=Z)€ ~(Zo+ Z) €2 +( Z~ Z) &7, (A-5-17)

adding some dummies,

— e32X|:ZO tZe " - Ze 2, +Z 87 —Ze + Zoe_zx - Zoe_zx

- —2X —2X —3x -3X
-Ze" -Ze"+Ze” -Z,e

} (A-5-18)

N, =e! (1+ €)[( %+ Z1) - 22 +( %- Z) &]. (A-5-19)

Combining these results,

_ N (Zo+2,)-2Z"+(Zy-2Z, )e—2x
Htrl (S) - (‘{ kl + kze—x _ k3e’2X (A‘5'20)
SIMPLIFIED MODEL
Transfer function of this model is,
q
H,,(w) = : (A-5-21)
(Za + Zb + Zr2)+ Zb (Za * ZrZ)
(Za + Zrl)

Consider the denominator of the Eq.(A-5-21). Suistig for Z and Z from Eqgs.(A-5-2) and
(A-5-4) gives,

(Zo + Zrz )ex + (Zo B Zrz )e_x
e —-e™”

+( 22o j(ZO+Zr2)e§—(ZO—Zr2)e_§
& =€) (Zo+Za)e ~(Zo-Zn)e ?

Hyo 6 =
(A-5-22)

This equation is exactly same as Eq.(A-5-6) with 8 There fore the simplified form of the
Eq.(A-5-22) can be found by putting k = 0 in Eq5A20). That is,

(Zo +Z 1) —2Z,e70 + (Zo -Z 1)e_zsr0
H = s ! _5-
trZ(S) qg(zo + Zrl)(ZO + Zrz) B (Zo B Zrl)(ZO B Zrz)e_zsr0 (A5-23)
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APPENDIX B-1

PROGRAM CONVLSN

This is an iterative program in FORTRAN to calcalai, Iy and b numerically and
to find the pressurerﬁ(z,t). This program uses a sine burst as an inglatcity signal

to convolve with the impulse response of the raafiatoupling filter and finds the
output pressure signal from the filter. It is afswssible to calculate a portion of the
output signal or a single point in the output sigmith this program. By increasing the
number of points in the decided time interval, oae achive the desired resolution.
The program estimates the inlegratiarin the initial interval using the Eq(A-2-16).
The initial interval may be decided by the usedegault value is set to 1blsec. The
integration é is calculated using a subroutine, QROMB

The following variables are used in the program.

INPUT SIGNAL PARAMETERS :

AMPL

WFRQ

PERI

RADIATION COUPLING FILTER PARAMETERS :

INTEGRATION VARIABLES :

TS

SS

SE

T1

T2

ILS

ILE

TI1

TINT

SUMM1

SUMM2

SIG1

SIG2

ANS

Amplitude of the input sin burst.
Frequency of the input signal

Number of periods in the input burst.

Radius of the sound source.
Distance between the source and the receiver.

Velocity of sound in the medium.

The time at which the signal being calculdfEche
Sample).

Starting time of the portion of the signabeo
calculated(Signal Start).

End time of the portion of the signal to beakated
(Signal End).

Number of points in the portion of the signabe
calculated.

Starting time of the impulse responsg (ised in the
text).

End time of the impulse responsgzg used in the text).

Lower limit of the integration (Integratiorirnit Start).
Upper limit of the integration (Integratiorirhit End).
Initial interval (Time Interval 1).

Interval between time samples Time INTerval)

Estimated integral in the initial inter\(ﬁ&, used in the
text).

Calculated integral in the rest of the ine (I3, used in
the text).

Result of convolution between the input algand the
delta function in the impulse response.

Result of convolution between the input algand the
rest of the impulseresponse (SUMM1+SUMM2).

Total result.
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SUBROUTINE QROMB(I,A,B,SS)
DOUBLE PRECISION A,B,SS,DSS,S,H,ER
PARAMETER(EPS=1.D-5,JMAX=25,JMAXP=JMAX+1,K=46\M=4)
DIMENSION S(JMAXP),H(JMAXP)
H(1)=1.D0
ER =1.D-15
IF (I .EQ. 2) THEN
SS=0
RETURN
ELSE
END IF
DO 11 J=1,JMAX
CALL TRAPZD(A,B,S(J),J)
IF (J.GE.K) THEN
L=J-KM
CALL POLINT(H(L),S(L),K,0.0D0,SS,DSS)
IF (ABS(SS-ER).LT.EPS*ABS(ER)) RETURN
ER =SS
ENDIF
S(I+1)=S(J)
H(J+1)=0.25D0*H(J)
CONTINUE
PAUSE 'Too many steps."
END

11

SUBROUTINE TRAPZD(A,B,S,N)
DOUBLE PRECISION A,B,S,FUNC,DEL,SUM,X
IF (N.EQ.1) THEN
S=0.5D0*(B-A)*(FUNC(A)+FUNC(B))
IT=1
ELSE
TNM=IT
DEL=(B-A)/TNM
X=A+0.5D0*DEL
SUM=0.D0
DO 11 J=1,IT
SUM=SUM+FUNC(X)
X=X+DEL
CONTINUE
$=0.5D0*(S+(B-A)*SUM/TNM)
IT=24T
ENDIF
RETURN
END

1

[

SUBROUTINE POLINT(XA,YAN,X,Y,DY)
DOUBLE PRECISION XA,YA,Y,DY,DIF,DIFT,C,D,HO,R,W,DEN,X
PARAMETER (NMAX=10)
DIMENSION XA(N), YA(N),C(NMAX),D(NMAX)
NS=1
DIF=ABS(X-XA(1))

DO 11 I=1,N

DIFT=ABS(X-XA(1))

IF (DIFT.LT.DIF) THEN
NS=I
DIF=DIFT

ENDIF

C()=YA()

D(1)=YA(l)

11 CONTINUE

Y=YA(NS)

NS=NS-1

DO 13 M=1,N-1

DO 12 I=1,N-M
HO=XA(I)-X
HP=XA(I+M)-X
W=C(1+1)-D(l)
DEN=HO-HP
IF(DEN.EQ.0.)PAUSE
DEN=W/DEN
D(l)=HP*DEN
C(I)=HO*DEN
CONTINUE

IF (2*NS.LT.N-M)THEN
DY=C(NS+1)

ELSE
DY=D(NS)

NS=NS-1

ENDIF

Y=Y+DY

13 CONTINUE
RETURN
END

12



PROGRAM CONVLSN

PARAMETER (PI = 3.14159265359D0)

DOUBLE PRECISION TI1,TS,SUMM1,T1,BT,SS,SHIDCA,
+ANS,ILS,ILE, T2, TINT,SIG1,SIG2,SUMM2,SE , WFRCERI
REAL AMPL, RHO

INTEGER N

COMMON WFRQ,AMPL,TS,T1,T2A,C

CHARACTER*15 FNAME1,SIGN*1

DO 101=1,20
WRITE(*,*)
10 CONTINUE
WRITE(**)' CONVLSN'
WRITE(**)'
WRITE(**)' This program calculatdee output signal
WRITE(**)' of the radiation coupy filter for a
WRITE(**)' uniform sinusoidal inpsignal using convolution.
WRITE(*,*)'
WRITE(**)' Author : Murugendran Kagasundram
WRITE(*,*)'
WRITE(**)' Date :23-03-93
WRITE(**)'
WRITE(*,*)
WRITE(*,*)' Further information(Y/Eet)?"

READ(*,2) SIGN
2 FORMAT(A1)
IF (SIGN .EQ. 'Y' .OR. SIGN .EQ. 'y) THEN
WRITE(**)' This program will prompt the esfor datas.
WRITE(*,%)
WRITE(**)" 1. The program uses a rectadagsin burst as an'

WRITE(**)' input velocity signal. Thesar will be prompted’
WRITE(**)' for the specifications dfi¢ signal. This pro-'
WRITE(*,*)' gram can be used to cal¢aléhe output for an'
WRITE(*,*)' arbitary input signal thi some'

WRITE(*,*)' changes,but not implementest.'

WRITE(*,*)

WRITE(**)" 2. Since the impulse responseinfinite at its'

WRITE(*,*)' start, the program estirea the convolution’
WRITE(**)' integral for a small inteal(initial interval)'
WRITE(**)' approximately. This initiainterval may be'
WRITE(**)' decided by the user.Defaudtlue is 10e-11sec.
WRITE(**)' For further details, seestdocumentation.’
WRITE(*,%)

WRITE(**)" 3. The program will calcuk the signal at'

WRITE(*,*)' equivally spaced pointsanuser defined time'
WRITE(*,*)' interval. The number of pa&will also decided'
WRITE(*,*)' by the user. By givinggeal time data and'
WRITE(*,*)' number of points as 1,e0oan find the value'
WRITE(*,*)' of the signal at one petlar time.'

WRITE(*,*)

WRITE(**)' Press enter to continue.'

READ(*,*)

ELSE

END IF

WRITE(*,*)'Enter freq. in Hz, amplitude in sand # of periods of
+the input signal.
READ(**) WFRQ, AMPL, PERI
WRITE(*,*)'Enter velocity of sound in the miech in (m/s) and denc
+ity of the medium in  Kg/m**3."
READ(*,*) C,RHO
WRITE(*,*)'Enter radious of the source in m."
READ(**) A
WRITE(**)'Enter the distance between thersetand the observati
+on point in m."
READ(*,*) D
WRITE(*,*)'The initial interval.'
WRITE(*,*)' (1) Manual (2) Default'
READ(*,*) J
IF (J .EQ. 2) THEN
DTI1=1.0D-11
ELSE
WRITE(**)'Enter the initial interval in se'
READ(**) TI1
END IF
WRITE(*,*)'Enter time(2) in sec. between whithe signal to be ca
+lculated.
READ(*,*) SS,SE
WRITE(*,*)'Enter # of points that construtietsignal.
READ(*,*) N
WRITE(**)'Enter a file name."
READ(*,1) FNAME1
1 FORMAT(A15)
OPEN(10, FILE = FNAME1,STATUS = 'NEW)

TINT = (SE-SS)/N
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TS =SS
SH1 = PERI/WFRQ

DO20L=0N
TS = SS + DBLE(L)*TINT
T1=DIC
T2 = SQRT(4*A*2+D**2)/C
IF (TS .GT. T1.AND. TS .LT. (T2 + SH1)) BN
M=1
IF (TS .LT. (T1+TI1)) THEN
SUMM1 = AMPL*SIN(2.0D0*PI*WFRQ*(TS-T1))
+  (-1)*C**2*SQRT(2.0DO*T1*(T2**2 - T1**2FTS)/(PI*A**2)
SUMM2 =0
ELSE
SUMM1 = AMPL*SIN(2.0D0*PI*WFRQ*(TS-T1))
+  (-1)*C*2*SQRT(2.0DO*TI*(T2%2 - TI*2PTIL)/(PI*A*2)
BT = T1+TI1
IF (TS .LE. T2) THEN
IF ((TS-SH1) .LE. T1) THEN
ILS =BT
ILE=TS
ELSE
SUMML1 =0
ILS = TS-SH1
ILE=TS
END IF
ELSE
IF ((TS-SH1) .LE. T1) THEN
ILS =BT
ILE = T2
ELSE
SUMM1 =0
ILS = TS-SH1
ILE = T2
IF(L.EQ. N)M=2
END IF
END IF
CALL QROMB(M,ILS,ILE, SUMM2)
END IF
SIG1 = AMPL * SIN(2.0DO*PI*WFRQ*(TS-T1))
SIG2 = SUMM1 + SUMM2
IF (TS .GT. T1+SH1) SIGL = 0
ANS = (SIG1+SIG2)/AMPL

ELSE

ANS =0.

END IF

WRITE(10,*) TS, (TS-T1)*WFRQ, ANS
*Before use the next write statement the initialalmp number should
*be changed to 1.
*  WRITE(**) TS*1.0D6,ANS
20 CONTINUE

CLOSE(10)

STOP
END

FUNCTION FUNC(TAU)

DOUBLE PRECISION TAU,FUNC,Y1,Y2,TS,T1,T2,C\WFRQ
REAL AMPL

PARAMETER (PI = 3.14159265359D0)

COMMON WFRQ,AMPL,TS,T1,T2,A,C

Y1 = AMPL * SIN(2.0D0* Pl * WFRQ * (TS - TAD)
IF ((T2*2 - TAU*2) .LE. 0) THEN

Y2=0

ELSE

Y2 = (-1) * C*2 * TAU * SQRT((T22 - TAU*2)/(TAU*2 - T1*:2))
+ (Pl * A¥2)

END IF

FUNC = Y1* Y2

RETURN

STOP

END
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PROGRAM FIELDSIM

The program calculates the on-axis soundseresfor a given
frequency spectra of an arbitrary volume eélpburst from a
piston. The pressure can be calculated adogtd tree
different propagation models, theese are:

(1) planewave model

(2) farfield model

(3) nearfild model, finite receiver

As an option, the output voltage of the systdue to the
pressure can be calculated, both in timefeeguency domain.
The total transfer function of the receivecson is needed.

The program is mainly written for a combiratiwith responses
from FLOSIM, in order to calculate response® to other
propagation models than the farfield model.

Variables in the main program and the subinmst

XW - An array as working space

TFUNC - An array as working space

SPEC - An array as working space

TO - A pure time shift (to more efficienteisf the array)
RAD - Radius of the transducer

RHO - Density of the propagation media

C - Speed of sound in the propagation media

R - Axial distance between the transduceefa

K - Wave number

SFRQ - Sampling frequency

F - Frequency variable

DF - Frequency resolution

LIMIT - Buffer length

Written by : Murugendran Kanagasundram arelrér Vervik
Date :13-11-1993

INTEGER LIMIT,ULIMIT

REAL XW,TO,TFUNC

CHARACTER FILE*25, ANS*1

PARAMETER (LIMIT=16384, ULIMIT=LIMIT+2)
DIMENSION XW(ULIMIT), TFUNC(ULIMIT)

WRITE(**)
WRITE(**)
CALL READFILE(XW)

CALL INPAR(RAD,RHO,C,R,SFRQ,TO,LIMIT)

WRITE(*,*)' PROPAGATION MODELS'
(V=1 1 =T S ———— '

WRITE(**)' (1) plane wave model'
WRITE(**)" (2) farfield model

WRITE(**)' (3) nearfield model, finiteeceiver'
WRITE(*,*)

WRITE(**)' Choose 1, 2 or 3
READ(*,*)MODEL

IF (MODEL .EQ. 1) THEN

CALL PFIELD(TFUNC,RHO,RAD,C,SFRQ,R,TO0)
ELSE IF (MODEL .EQ. 2) THEN

CALL FFIELD(TFUNC,RAD,RHO,C,SFRQ,R,T0)
ELSE IF (MODEL .EQ. 3) THEN

CALL DIFIELD(TFUNC,RHO,RAD,C,SFRQ,R,T0)
ELSE

WRITE(*,*)".....non of the above modelsskn!"

GOTO 5
END IF

CALL FRQCONV(XW,TFUNC)

WRITE(**)'Calculate the output voltage (Y/N)

READ(*,110)ANS

IF (ANS .EQ. 'Y" .OR. ANS .EQ. 'y') THEN
WRITE(**)'Enter file containing Hrec'
CALL READFILE(TFUNC)
CALL FRQCONV(XW,TFUNC)

WRITE(*,*)'Calculate the specter of thetjput voltage (Y/N)?:'
READ(*,110)ANS

IF (ANS .EQ. 'Y' .OR. ANS .EQ. 'y') THEN
WRITE(*,*)'Enter file to store the miified spectra’
READ(*,100)FILE
OPEN(10,FILE=FILE,STATUS='NEW')

DF = SFRQ/(LIMIT-1)
J=0
DO 10| =1,LIMIT-1,2
PHASE = ATAN2(XW(I+1),XW(1))*3&TOPI
MAGN = 20*LOG10(SQRT(XW(I)**2€W(I+1)**2))
WRITE(10,*) J*DF, CMPLX(XW(I),-4/(1+1))
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J=J+1
10 CONTINUE
ELSE
END IF
ELSE
END IF

CALL REALFT(XW,LIMIT/2,-1)
WRITE(*,*)'Enter file to store the time sesle
READ(*,100)FILE
OPEN(10,FILE=FILE,STATUS='NEW')
DO 20| =1, LIMIT/2
WRITE(10,*)1,(I-1.)/SFRQ+T0,2*SFRQ*XW(I)AMIT
20 CONTINUE
100 FORMAT(A25)
110 FORMAT(A1)
CLOSE(10)
STOP
END

SUBROUTINE INPAR(RAD,RHO,C,R,SFRQ,TO,LIMIT)
WRITE(*,*)' Input parameters’

write(*,*¥)" e !

WRITE(*,*)'Enter:'

WRITE(*,*)'radius of the sendertransducer {m)
READ(**)RAD

WRITE(**)'the density of the medium (kg/m*}3
READ(*,*)RHO

WRITE(**)'the speed of sound in the propématmedium (m/s):'
READ(*,*)C

WRITE(**)'the axial distance between thensducers (m):'
READ(*,*)R

WRITE(*,*)'the sampling frequency (Hz):'
READ(**)SFRQ

TO = R/C-0.1*LIMIT/SFRQ

RETURN

END

SUBROUTINE READFILE(XW)

REAL XW

INTEGER TLINES,LIMIT,ULIMIT

COMPLEX C

CHARACTER TEXT*79, FILE*25
PARAMETER (LIMIT=16384,ULIMIT=LIMIT+2)
DIMENSION XW(ULIMIT)

100 FORMAT(A25)
200 FORMAT(A79)

** Open file containing the spectra of the ingignal * *
WRITE(*,*)'Open file containing the spectritbe input signal’
WRITE(**)'Enter filename:'
READ(*,100)FILE
OPEN(10,FILE=FILE,STATUS='0OLD")
WRITE(*,*)'Enter number of text lines in theader'
READ(*,*)TLINES
Read header of the file * *
DO 101=1,TLINES
READ(10,200)TEXT
10 CONTINUE
** Convert complex data to real
K=1
DO 20 J=I+1,I+LIMIT/2
READ(10,*)N,F,C
XW(K) = REAL(C)
XW(K+1) = -AIMAG(C)
K=K+2
20 CONTINUE
CLOSE(10)
RETURN
END

*

*

SUBROUTINE FRQCONV(SPEC, TFUNC)
*  This routine multiplies two frequency spectra

INTEGER LIMIT,ULIMIT
PARAMETER (LIMIT=16384,ULIMIT=LIMIT+2)
DIMENSION SPEC(ULIMIT), TFUNC(ULIMIT)

SPEC(1) = 0
DO 10 | = 3,(LIMIT+1),2

B1 = SPEC(l)

B2 = SPEC(I+1)

A4 = TFUNC(I)

A3 = TFUNC(I+1)

IF (I .EQ. LIMIT+1) THEN

B1 = SPEC(2)



B2=0 B = D1*4.02.0/TOPI*COS(K*R)-C1%4.0R/TOPI*SIN(K*R)
SPEC(2) = (B1*A4 - B2*A3) PM = CMPLX(A,(-1)*B)
ELSE PO = RHO * C * EXP(CMPLX(0.0,(K*R-K*C*T0))

H =PM* PO
A3 = REAL(H)*2/(TOPI*RAD**2)

SPEC() = (B1*A4 - B2*A3)
SPEC(I+1) = (B2*A4 + B1*A3)

ENDIF A4 = AIMAG(H)*2/(TOPI*RAD**2)
10 CONTINUE TFUNC(l) =A3
RETURN TFUNC(I+1) = A4
END J=J+1
10 CONTINUE
SUBROUTINE PFIELD(TFUNC,RHO,RAD,C,SFRQ,R,T0) RETURN

This routine calculates the transfer functafrihe END
planewave model
*  Routines from Numerical Recipes, numerica¢gration
INTEGER LIMIT, ULIMIT

REAL A3,A4,R,RHO,RAD,C,F,K,SFRQ,TFUNC

PARAMETER (LIMIT=16384,ULIMIT=LIMIT+2,TOPI=628318530718)
DIMENSION TFUNC(ULIMIT)

SUBROUTINE QROMB(I,A,B,SS)
DOUBLE PRECISION A,B,SS,DSS,S,H,ER
PARAMETER(EPS=1.D-4,JMAX=25,JMAXP=JMAX+1,K=46\=4)

COMPLEX PO DIMENSION S(JMAXP),H(JMAXP)
H(1)=1.D0
ER = 1.D-10
TFUNC(1) = 0 DO 11 J=1,JMAX
TFUNC(2) = 0 CALL TRAPZD(I,A,B,S(J),J)
J=1 IF (J.GE.K) THEN

DO 10 | = 3,(LIMIT+1),2
F =J*SFRQ/ (LIMIT-1)
K =TOPI*F/C
PO = RHO * C * EXP(CMPLX(0.0,(K*R-K*C*T0))
A3 = REAL(P0)*2/(TOPI*RAD*2)
A4 = AIMAG(P0)*2/(TOP*RAD**2)

L=J-KM

CALL POLINT(H(L),S(L),K,0.D0,SS,DSS)
IF (ABS(SS-ER).LT.EPS*ABS(ER)) RETURN

ER=SS
ENDIF
S(+1)=5(J)

TFUNC(l) =A3 H(J+1)=0.25D0*H(J)
TFUNC(I+1) = A4 11 CONTINUE
J=J+1 PAUSE 'Too many steps.'
10 CONTINUE END
RETURN
END SUBROUTINE TRAPZD(I,A,B,S,N)

SUBROUTINE FFIELD(TFUNC,RAD,RHO,C,SFRQ,R, T0)
This routine calculates the transfer functaifrihe

DOUBLE PRECISION A,B,S,FUNC,DEL,SUM,X

IF (N.EQ.1) THEN

$=0.5D0%(B-A)*(FUNC(I,A)+FUNC(],B))

farfield model IT=1
ELSE
INTEGER LIMIT,ULIMIT TNM=IT

REAL A1,A2,A3,A4,RAD,R,RHO,C,F,K,SFRQ,B
PARAMETER (LIMIT=16384,ULIMIT=LIMIT+2,TOPI=628318530718)
DIMENSION TFUNC(ULIMIT)
J=0
DO 10 I = 1,(LIMIT+1),2
F =J*SFRQ/ (LIMIT-1)
K =TOPI*F/C
Al = COS(K*R-K*C*T0)

11

DEL=(B-A)/TNM
X=A+0.5D0*DEL
SUM=0.D0
DO 11 J=1,IT
SUM=SUM+FUNC(I,X)
X=X+DEL
CONTINUE

S=0.5D0%(S+(B-A)*SUM/TNM)

A2 = SIN(K*R-K*C*T0) IT=2*IT
B =RHO *RAD**2 * TOPI*F /(2 *R) ENDIF
A3=(-1)*A1*B RETURN
A4=A2*B END

TFUNC(l) = A4*2/(TOPI*RAD**2)
TFUNC(1+1) = A3*2/(TOPI*RAD**2)

J=J+1 DOUBLE PRECISION XA,YA,Y,DY,DIF,DIFT,C,D,HO,R,W,DEN,X
10 CONTINUE PARAMETER (NMAX=10)
RETURN DIMENSION XA(N), YA(N),C(NMAX),D(NMAX)
END NS=1
DIF=ABS(X-XA(1))
SUBROUTINE DIFIELD(TFUNC,RHO,RADI,C,SFRQ,RR)Y DO 11 1=1,N

This routine calculates the transfer functafrihe
nearfield model, finite receiver

SUBROUTINE POLINT(XA,YAN,X,Y,DY)

DIFT=ABS(X-XA(I))
IF (DIFT.LT.DIF) THEN
NS=I

REAL A,B,A3,A4,RR,RHO,RADI,C,F,K,SFRQ, TFUNC DIF=DIFT
DOUBLE PRECISION C1,D1 ENDIF
INTEGER LIMIT, ULIMIT C()=YA(l)
PARAMETER (LIMIT=16384,ULIMIT=LIMIT+2, TOPI=628318530718) D()=YA(l)
DIMENSION TFUNC(ULIMIT) 11 CONTINUE
COMPLEX PM, PO, H Y=YA(NS)
COMMON R,K,RAD NS=NS-1
DO 13 M=1,N-1
R=RR DO 12 I=1,N-M
RAD = RADI HO=XA(1)-X
HP=XA(I+M)-X
TFUNC(1) =0 W=C(1+1)-D(l)
TFUNC(2) =0 DEN=HO-HP
J=1 IF(DEN.EQ.0.)PAUSE
DUMMY =0 DEN=W/DEN
DO 10 | = 3,(LIMIT+1),2 D(I)=HP*DEN
IF (I .GT. DUMMY+100) THEN C(I)=HO*DEN
WRITE(*,%)l 12 CONTINUE
DUMMY=I IF (2*NS.LT.N-M)THEN
END IF DY=C(NS+1)
F =J*SFRQ/ (LIMIT-1) ELSE
K =TOPI*F/C DY=D(NS)
CALL QROMB(1,0.0D0, TOPI/4.0D0,C1) NS=NS-1
CALL QROMB(2,0.0D0, TOPI/4.0D0,D1) ENDIF
A = 1.0-C1*4.0*2.0/TOPI*COS(K*R)-D1*4.0*D/TOPI*SIN(K*R) Y=Y+DY

135



13 CONTINUE

RETURN
END

FUNCTION FUNC(I,A)
Calculates the integrand (connected to thefiedd, finite
receiver transfer function)

DOUBLE PRECISION A,FUNC
REAL R,K,RAD

INTEGER |

COMMON R,K,RAD

IF (I .EQ. 1) THEN
FUNC=COS(K*SQRT(R**2+4.DO*RAD**2*(COS(A))**2)*(SIN(A))**2
END IF

IF (I .EQ. 2) THEN
FUNC=SIN(K*SQRT(R*2+4.DO*RAD*2*(COS(A))**2))*(SIN(A))**2
END IF

RETURN

END

Routines from Numerical Recipes, FFT and IFBlitines

SUBROUTINE REALFT(DATA,N,ISIGN)
REAL*8 WR,WI,WPR, WP, WTEMP, THETA
DIMENSION DATA(*)
THETA=6.28318530717959D0/2.0D0/DBLE(N)
C1=0.5
IF (ISIGN.EQ.1) THEN
C2=-05
CALL FOUR1(DATA,N,+1)
ELSE
C2=0.5
THETA=-THETA
ENDIF
WPR=-2.0D0*DSIN(0.5DO*THETA)**2
WPI=DSIN(THETA)
WR=1.0D0+WPR
WI=WPI
N2P3=2*N+3
DO 11 I=2,N/2+1
11=2*1-1
12=11+1
13=N2P3-I2
14=13+1
WRS=SNGL(WR)
WIS=SNGL(WI)
H1R=C1*(DATA(I1)+DATA(I3))
H1I=C1*(DATA(I2)-DATA(14))
H2R=-C2*(DATA(12)+DATA(I4))
H21=C2*(DATA(I1)-DATA(I3))
DATA(I1)=H1R+WRS*H2R-WIS*H2!
DATA(I2)=H1I+WRS*H2I+WIS*H2R
DATA(I3)=H1R-WRS*H2R+WIS*H2!
DATA(I4)=-H1I+WRS*H2I+WIS*H2R
WTEMP=WR
WR=WR*WPR-W*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI

11 CONTINUE

IF (ISIGN.EQ.1) THEN
H1R=DATA(1)
DATA(1)=H1R+DATA(2)
DATA(2)=H1R-DATA(2)

ELSE
H1R=DATA(1)
DATA(1)=C1*(H1R+DATA(2))
DATA(2)=C1*(H1R-DATA(2))
CALL FOURL(DATA,N,-1)

ENDIF

RETURN

END

SUBROUTINE FOUR1(DATA,NN, ISIGN)
REAL*8 WR,WI,WPR, WP, WTEMP, THETA
DIMENSION DATA(*)
N=2*NN
J=1
DO 11 1=1,N,2
IFQ.GT.THEN
TEMPR=DATA(J)
TEMPI=DATA(J+1)
DATA(J)=DATA(l)
DATA(J+1)=DATA(I+1)
DATA(I)=TEMPR
DATA(I+1)=TEMPI
ENDIF
M=N/2
IF ((M.GE.2).AND.(J.GT.M)) THEN
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M=M/2
GOTO1
ENDIF
J=3+M
CONTINUE
MMAX=2
IF (N.GT.MMAX) THEN
ISTEP=2*MMAX
THETA=6.28318530717959D0/(ISIGN*MMAX)
WPR=-2.D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
WR=1.D0
WI=0.D0
DO 13 M=1,MMAX,2
DO 12 I=M,N,ISTEP
J=I+MMAX
TEMPR=SNGL(WR)*DATA(J)-SNGL(WI)*DATA(J2)
TEMPI=SNGL(WR)*DATA(J+1)+SNGL(WI)*DATAJ)
DATA(J)=DATA(l)-TEMPR
DATA(J+1)=DATA(1+1)-TEMPI
DATA(I)=DATA(I)+TEMPR
DATA(I+1)=DATA(I+1)+TEMPI
CONTINUE
WTEMP=WR
WR=WR*WPR-W*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI
CONTINUE
MMAX=ISTEP
GOTO2
ENDIF
RETURN
END
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PROGRAM TRNSRESP

This program is calculating some portion,tamine times
the reverbaration time of the transducertheftransient
response of a lossless thickness mode vitgatiezoelectric
transduser.

The particle velocity is calculated for a famm
sinusoidal voltage pulse.

Variables in the main program and the subinmst

TMP - An array as working space

ANS - An array as working space

TS - Discrete version of time, t, in the convadut

integral

TAU - Time variable

T - Sample interval

ILS - Integration limit, lower

ILE - Integration limit, upper

SUM1 - Convolution without the delta-terms in timepulse
response

SUM2 - Convolution with the delta-terms in thegoise
response

RT - Reverberation time of the transducer

INT - RT/N, the interval between the time samples

CRS - Beginning time of a particular term in thepulse

response

Cco - Clamped capasitance

CP - Speed of sound in the piezoelectric material

Fi - Electromechanical coupling factor

Z0 - Characteristic impedance of the transducer

Z1 - Characteristic impedance of the backing raedi

z2 - Characteristic impedance of the radiatiordiae

RO - Reflection coeff. at x3 =0
RL - Reflection coeff. at x3 = L
TO - Transmission coeff. at x3 = 0
TL - Transmission coeff. at x3 = L
B - Betain the text

C1 - Constant defined in the text
C2 - Constant defined in the text
AF - Ampitude factor

Written by : Steinar Vervik and Murugendran Kaaagndram

Date 1 24-7-1993

INTEGER NUNIT, CH, CH1
REAL INT, ANS(4000)
CHARACTER*15 INFILE
COMMON /COMB1/ B,RT,T
COMMON /COMB2/ RO,RL
COMMON /COMB3/ T0,TL,C1,C2

100 FORMAT(25(/))
WRITE(*,100)
WRITE(**)"- Transient transducer respons -'
TV 2 L = — '
WRITE(*,*)
CALL INPAR(RO,RL,TO,TL,C1,C2,B,A,RT,AF)
WRITE(*,*)'Choose the input.'
WRITE(**)" 1) Dirac delta 2) sin burst'
READ(**) CH
IF (CH .EQ. 1) THEN
CALL IMPRES(A,AF,M,N,ANS)
ELSE
CALL INSIG(PL,T)
WRITE(*,*)'Choose transducer model.'
WRITE(**)' 1) Effect of regeneration duded"
WRITE(**)" 2) Effect of regeneration ilcled'
READ(**) CH1
CALL CONV(CH1,PL,A,AF,M,N,ANS)
END IF

INT = RT/N

WRITE(*,*)'Enter a file to store total restilt

READ(*,1) INFILE
1 FORMAT(A15)

CALL OPENER(INFILE,NUNIT,'NEW')

DO 10J=1,M*N

WRITE(NUNIT,*) (J-1)*INT/RT,AF*ANS(J)

10 CONTINUE

STOP
END

SUBROUTINE INPAR(RO,RL,T0,TL,C1,C2,B,A,RT,AF)

CALL PIEZO(Z0,FI,C0,A,RT)
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CALL MEDIA(Z1,22,A)

RO = (20-Z1)/(Z0+Z1)

RL = (20-22)/(20+22)

T0 = 1+R0

TL = 1+RL

C1 = FI**2/CO*(TO*TL)/ZO0

C2 = FI**2/(2*CO)*(RO*TL+RL*T0)/Z0
B = FI**2/(2*CO)*(TO+TL)/ZO

AF = FI*TL/(2*20)

RETURN
END

SUBROUTINE PIEZO(Z0,FI,C0,A,RT)
REAL L
PARAMETER (P! = 3.141592654)

WRITE(*,*)'Piezoelectric material (default PHA)"
WRITE(*,*)" !
WRITE(**)'Enter the thickness of the elemémm):'
READ(*,*)L

WRITE(*,*)'Give the radius of the element(mm):*
READ(*,*)R

L = L/1000.0

R = R/1000.0

A = PI*R**2

Piezoelectric constants  *
CD =14.7E10

E33 =158

EPS33 = 830.0*8.85E-12
RHO =7750.0

CP = SQRT(CD/RHO)
CO = AIL*EPS33

Fl = A/L*E33

Z0 = RHO*CP*A

RT = L/ICP

RETURN
END

SUBROUTINE MEDIA(Z1,Z22,A)

WRITE(*,*)

WRITE(*,*)'medium’

WRITE(*,*)"------"

WRITE(**)'Enter the spesific impedances (jay
WRITE(**)'radiation medium:'

READ(*,*)Z2

WRITE(*,*)'backing medium:*

READ(**)Z1

Z1=Z71*A

72 =72*A

RETURN
END

SUBROUTINE CONV(CH,PL,A,AF,M,N,ANS)

This routine calculates the convolution afigen input
signal, f(t), with the impulse response of thansducer,
h(t).

REAL ANS(4000),TMP(4000),TS,ILS,ILE,RT,PL,SUMBUM2,INT,CRS

INTEGER M,N,CH

COMMON /COMB1/ B, RT , T
COMMON /COMB4/ TS
CHARACTER*15 INFILE, SIGN*1

IF (CH .EQ. 1 .0OR. CH .EQ. 2) THEN

WRITE(*,*)'Enter, # of terms in the impelsesponse.'

READ(**) M

WRITE(*,*)'Enter, # of points to be calet¢d in one revebarat
+ion period.'

READ(**) N

WRITE(*,*)'Do you want to save the effexteach term in the i
+mpulse response?"

READ(*,2) SIGN

ELSE

END IF

INT =RT/N
DO201=1M



DO 30J =1, (-F1)*N
TMP(J) = 0
30 CONTINUE
DO 40 K = (I-1)*N+1, M*N
TS = INT*(K-1)
ILE=TS
CRS = ((I-1)*N)*INT
IF (CH .EQ. 2) THEN
IF (TS - PL) .LE. CRS) THEN
ILS = CRS
ELSE
ILS = TS-PL
END IF
IF (K .EQ. ((I-1)*N+1)) THEN
SUM1 =0
ELSE
CALL QROMB(ILS, ILE,SUML,)
END IF
ELSE
SUM1=0
END IF
IF ((CRS+PL) .GT. TS) THEN
SUM2 = FUNCIN(TS,CRS, )
ELSE
SUM2 =0
END IF
TMP(K) = SUM1+SUM2
40 CONTINUE
2 FORMAT(AL)
IF (SIGN .EQ. "Y' .OR. SIGN .EQ. 'y) TNE

WRITE(*,*)'Enter a file to store resgse due to term #',1

READ(*,1) INFILE
1 FORMAT(ALS5)
CALL OPENER(INFILE,NUNIT, NEW
DO 50 J =1, M*N
WRITE(NUNIT,*) (J-1)*INT/T, AF*TMP(J
50  CONTINUE
ELSE
END IF
DO 60 J = 1, M*N
ANS(J) = ANS(J) + TMP(J)
60 CONTINUE
20 CONTINUE

RETURN
END

SUBROUTINE INSIG(PL,T)
This routine gives the input voltage pulse

REAL WFRQ, AMPL, PL, OMG
PARAMETER (PI = 3.141592654)
COMMON /COMB5/ OMG, AMPL

WRITE(**)'Enter, amplitude, freq., and # périods of the input

+signal.’
READ(*,*) AMPL, WFRQ, PERI

PL = PERI/WFRQ
OMG = 2 * PI * WFRQ
T = 1/WFRQ

RETURN
END

FUNCTION FUNCIN(TS,TO,L)
The function gives the correct weight for thelta
terms in the impulse response

REAL TS, TO, Y, OMG, A0
INTEGER L, C1, C2, K1, K2
COMMON /COMB2/ RO, RL
COMMON /COMBS5/ OMG, AMPL
SAVE C1, C2, K1, K2
DATA C1 /1/, C2 /11, K1/2/, K2/3/
IF (L.LT.2) THEN
A0 =1.
ELSE
IF (L-AINT(L/2)*2 .EQ. 0) THEN
IF(L.GT.K1)C1=C1+1
AO = (-1)*(RO*RL)**(C1-1)*(1+R0)
Kl=L
ELSE
IF(L.GT.K2)C2=C2+1
AO = RO*(RO*RL)**(C2-1)*(1+RL)
K2=L
END IF
END IF

Y = A0 * AMPL * SIN(OMG*(TS-T0))
FUNCIN = Y

RETURN
END

FUNCTION FUNC(TAU,L,X)
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REAL RT, Y1, Y3
DOUBLE PRECISION FUNC, Y2, K11, K21, K22, K3&32,
+ K33, K41, K42, K43, K44, K51, K52, K53, K5455, K61, K62, K63,
+ K64, K65, K66, K71, K72, K73, K74, K75, K7E77, K81, K82, K83,
+ K84, K85, K86, K87, K88
INTEGER L, X
COMMON /COMB1/ B, RT ,T
COMMON /COMB4/ TS
IF (L .EQ. 1) THEN
CALL K1(K11)
Y2=K11*EXP(B*TAU)
ELSE IF (L .EQ. 2) THEN
CALL K2(K21,K22)
Y1=(TAU-RT)
Y2=(-1)%(K21+K22*Y 1)*EXP(B*Y1)
ELSE IF (L .EQ. 3) THEN
CALL K3(K31,K32,K33)
Y1=(TAU-2*RT)
Y2=(K31+K32*Y 1+K33*Y 1*+2/2)*EXP(B*Y1)
ELSE IF (L .EQ. 4) THEN
CALL KA(K41,K42,K43,K44)
Y1=(TAU-3*RT)
Y2=(-1)%(KA1+KA2*Y 1+KAZ*Y 152/2+KA4*Y 1++3/ 6)*EXP(B*Y 1)
ELSE IF (L .EQ. 5) THEN
CALL K5(K51,K52,K53,K54,K55)
Y1=(TAU-4*RT)
Y2=(K51+K52*Y 1+K53*Y 1#+2/2+K54%Y 1%+3/6-+K55*Y 1++4/24)*
+  EXP(B*Y1)
ELSE IF (L .EQ. 6) THEN
CALL K6(K61,K62,K63,K64,K65,K66)
Y1=(TAU-5*RT)
Y2=(-1)%(K61+KB25Y 1+KB3*Y 12/2+KB4*Y 1++3/ 6+KB5*Y 1++4/24+
+  KB6*Y1**5/120)*EXP(B*Y1)
ELSE IF (L .EQ. 7) THEN
CALL K7(K71,K72,K73,K74,K75,K76,K77)
Y1=(TAU-6*RT)

Y2=(K71+K724Y 1+K73¥Y 14+ 2/24 K74*Y 1¥+3/6+KT75+Y 1+4/24 +K76*Y1#+5/
+  120+K77*Y1**6/720)*EXP(B*Y1)
ELSE
CALL K8(K81,K82,K83,K84,K85,K86,K87,K88)
Y1=(TAU-7*RT)
Y2=(-1)%(KB1+KB2*Y 1+K83*Y 1:+2/2+KB8A4*Y 1++3/ 6+KB5*Y 1++4/24+
+ KBB*Y1*5/120+K87+Y1*6/720+K88*Y 1*7/5040)*EXP(B*Y1)
END IF

IF (X .EQ. 1) THEN
Y3=1

ELSE
Y3 = FUNCIN(TS,TAU,1)

END IF

FUNC = Y2*Y3

RETURN

END

*  Calculations of the regeneration coefficieintshe
*  impulse responses

SUBROUTINE K1(K11)

DOUBLE PRECISION K11
COMMON /COMB1/B, RT, T
COMMON /COMB2/ RO, RL
COMMON /COMB3/ TO, TL, C1, C2

Ki1=B

RETURN
END

SUBROUTINE K2(K21,K22)
DOUBLE PRECISION K21, K22
COMMON /COMB1/ B,RT,T
COMMON /COMB2/ RO, RL
COMMON /COMB3/ T0,TL,C1,C2

K21 =T0*B +C1
K22 = C1*B

RETURN
END

SUBROUTINE K3(K31,K32,K33)

DOUBLE PRECISION K31, K32, K33
COMMON /COMB1/ B,RT,T

COMMON /COMB2/ RO, RL

COMMON /COMB3/ T0O,TL,C1,C2

K31 = R0*B + TO*C1 + C2 + 2*RO*RL*B

K32 = T0*C1*B + C2*B + RO*RL*B**2 + C1**2
K33 = C1**2*B

RETURN
END



SUBROUTINE K4(K41,K42,K43,K44)
DOUBLE PRECISION K41,K42,K43,K44
COMMON /COMB1/ B,RT,T

COMMON /COMB2/ RO, RL

COMMON /COMB3/ T0,TL,C1,C2

K41 = RO*C1 + TO*C2 + 2*TO*RO*RL*B + 2*RO*RLT1

K42 = RO*C1*B + TO*C2*B + TO*RO*RL*B**2 + TO*C1**2 + 2*C1*C2 +
+ 4*RO*RL*C1*B

K43 = TO*C1**2*B + 2*C1*C2*B + 2*RO*RL*C1*B** 2 + C1**3
K44 = C1**3*B

RETURN
END

SUBROUTINE K5(K51,K52,K53,K54,K55)
DOUBLE PRECISION K51,K52,K53,K54,K55
COMMON /COMB1/ B,RT,T

COMMON /COMB2/ RO, RL

COMMON /COMB3/ T0O,TL,C1,C2

K51 = RO*C2 + 2*RO2*RL*B + 2*TO*RO*RL*C1 +2*RO*RL*C2 +
+  3%RO*RL)**2*B

K52 = RO*C2*B + RO**2*RL*B**2 + RO*C1**2 + 2*T0*C1*C2 + C2**2 +
+  4*TO*RO*RL*C1*B + 4*RO*RL*C2*B + 3*(RO*RL)**2*B**2 +
+  3*RO*RL*C1**2

K53 = RO*C1**2*B + 2*T0*C1*C2*B + C2**2*B + 2*TO*RO*RL*C1*B**2 +
+  2*RO*RL*C2*B**2 + (RO*RL)**2*B**3 + TO* C1**3 + 3*C1**2*C2 +
+  6*C1**2*RO*RL*B

K54 = TO*C1**3*B + 3*C1**2*C2*B + 3*C1*2*R0* RL*B**2 + C1**4
K55 = C1**4*B

RETURN
END

SUBROUTINE K6(K61,K62,K63,K64,K65,K66)
DOUBLE PRECISION K61,K62,K63,K64,K65,K66
COMMON /COMB1/ B,RT,T

COMMON /COMB2/ RO, RL

COMMON /COMB3/ T0O,TL,C1,C2

K61 = 2*R0**2*RL*C1 + 2*TO*RO*RL*C2 + 3*TO*(RO*RL)**2*B +
+  3*CI*(RO*RL)**2

K62 = 2*R0O*C1*C2 + TO*C2**2 + 4*R0**2*RL*C1*B + 4*TO*RO*RL*C2*B

+  3*TO*(RO*RL)**2*B**2 + 3*TO*C1**2*RO*RL + 6*RO*RL*C1*C2 +
+  9*C1*(RO*RL)**2*B

K63 = 2*R0O*C1*C2*B + TO*C2**2*B + 2*R0**2*RL* C1*B**2 +

+  2*TO*RO*RL*C2*B**2 + TO*(RO*RL)**2*B**3 + RO*C1**3 +

+  3TO*C1**2*C2 + 3*C1*C2**2 + 6*TO*C1**2*RO*RL*B +

+  12*RO*RL*C1*C2*B + 9*C1*(RO*RL)**2*B**2 + 4*C1**3*RO*RL

K64 = RO*C1**3*B + 3*T0*C1**2*C2*B + 3*C1*C2**2*B +
+  3*TO*C1**2*RO*RL*B**2 + 6*RO*RL*C1*C2*B **2 +
+  3*C1*(RO*RL)**2*B**3 + TO*C1**4 + 4*C1**3*C2 +
+ 8*C1**3*RO*RL*B

K65 = TO*CL*4*B + 4*C1*3*C2*B + 4*C1**3*R0* RL*B*2 + C1%5
K66 = C1=5*B

RETURN
END

SUBROUTINE K7(K71,K72,K73,K74,K75,K76,K77)
DOUBLE PRECISION K71,K72,K73,K74,K75,K76,K77
COMMON /COMB1/ B,RT,T

COMMON /COMB2/ RO, RL

COMMON /COMB3/ T0O,TL,C1,C2

K71 = 2*R0**2*RL*C2 + 3*R0O*(RO*RL)**2*B + 3*( RO*RL)**2*C2 +
+  3*TO*(RO*RL)**2*C1 + 4*(RO*RL)**3*B

K72 = RO*C2**2 + 4*RO**2*RL*C2*B + 3*R0*(RO*RL)**2*B**2 +
+  3*RO**2*RL*C1**2 + 6*TO*RO*RL*C1*C2 + 3*RO*RL*C2**2 +
+  9%RO*RL)**2*C2*B + 9*TO*(RO*RL)**2*C1* B +
+  6*RO*RL)**3*B**2 + 6*(RO*RL)**2*C1**2

K73 = RO*C2**2*B + 2*R0**2*RL*C2*B**2 + RO*(R 0*RL)**2*B**3 +
3*RO*C1**2*C2 + 3*TO*C1*C2**2 + C2**3 +6*RO**2*RL*C1**2*B +
12*TO*RO*RL*C1*C2*B + 6*RO*RL*C2**2*B + 4*(RO*RL)**3*B**3 +
4*RO*RL*TO*C1**3 + 12*RO*RL*C1**2*C2 +
18*(RO*RL)**2*C1**2*B + 9*T0*(RO*RL)**2 *C1*B**2 +
9*(RO*RL)**2*C2*B**2

+ o+ o+ o+ o+

K74 = 3*RO*C1**2*C2*B + 3*T0*C1*C2**2*B + C2**3*B +
+  3*RO*2*RL*C1**2*B**2 + 6*TO*RO*RL*C1*C 2*B**2 +
+  3*RO*RL*C2**2*B**2 + 3*(RO*RL)**2*C2*B* *3 +
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3*TO*(RO*RL)**2*C1*B**3 + (RO*RL)**3*B* *4 + RO*C1**4 +
4*TO*C1**3*C2 + 6*(C1*C2)**2 + 8*RO*RL*TO*C1**3*B +
24*RO*RL*C1**2*C2*B + 18*(RO*RL)**2*C1**2*B**2 +
5*RO*RL*C1**4

+ o+ o+ +

K75 = RO*C1**4*B + 4*TO*C1**3*C2*B + 6*(C1*C2)**2*B +
+  4*RO*RL*TO*C1**3*B**2 + 12*RO*RL*C1**2* C2*B**2 +
+  6*RO*RL)*2*C1**2*B**3 + TO*C1**5 + 5* C1**4*C2 +
+  10*RO*RL*C1**4*B

K76 = TO*CL5*B + 5*C1**4*C2*B + 5*RORL*CL* *4*B*2 + C1*6
K77 = C176*B

RETURN
END

SUBROUTINE K8(K81,K82,K83,K84,K85,K86,K87,KB8
DOUBLE PRECISION K81,K82,K83,K84,K85,K86,K&88
COMMON /COMB1/ B,RT,T

COMMON /COMB2/ RO, RL

COMMON /COMB3/ T0,TL,C1,C2

K81 = 3*R0O*(RO*RL)**2*C1 + 4*(RO*RL)**3*C1 + 4*T0*(RO*RL)**3*B +
+  3*TO*(RO*RL)**2*C2

K82 = 9*R0O*(RO*RL)**2*C1*B + 6*RO**2*RL*C1*C2 +
+  6*TO*(RO*RL)**2*C1**2 + 6*TO*(RO*RL)**3 *B**2 +
+  9*TO*(RO*RL)**2*C2*B + 3*TO*RO*RL*C2**2 +

+  16*%(RO*RL)**3*C1*B + 12*(RO*RL)**2*C1*C2

K83 = 4*R0**2*RL*C1**3 + 9*RO*(RO*RL)**2*C1*B **2 +
12*RO**2*RL*C1*C2*B + 3*R0O*C1*C2**2 +
18*TO*(RO*RL)**2*C1**2*B + 12*TO*RO*RL* C1**2*C2 +
4*TO*(RO*RL)**3*B**3 + 9*TO*(RO*RL)**2* C2*B**2 +
6*TO*RO*RL*C2**2*B + T0*C2**3 + 10*(RO*RL)**2*C1**3 +
24*%(RO*RL)**3*C1*B**2 + 36*(RO*RL)**2*C 1*C2*B +
12*RO*RL*C1*C2**2

+ o+ o+ A+ + o+

K84 = 8*RO**2*RL*C1*3*B + 4*R0O*C1**3*C2 +
3*RO*(RO*RL)**2*C1*B**3 + 6*RO*2*RL*C1 *C2*B**2 +
3*RO*C1*C2**2*B + 5*TO*RO*RL*C1*4 +
18*TOX(RO*RL)**2*C1**2*B**2 + 24*TO*R0O* RL*C1*2*C2*B +
6*TOX(C1*C2)**2 + TO*(RO*RL)**3*B**4 +
3¥TOX(RORL)*2*C2*B**3 + 3*TO*RO*RL*C2 **2*B**2 +
TO*C2*+3*B + 30*(RO*RL)**2*C1**3*B + 20*RO*RL*C1*3*C2 +
16*(RO*RL)**3*C1*B**3 + 36*(RO*RL)*2*C 1*C2*B**2 +
24*RORL*CI*C2**2*B + 4*C1*C2+*3

+ o+ o+ +

K85 = RO*C1**5 + 4*RO**2*RL*C1**3*B**2 + 4*R0 *C1**3*C2*B +
10*TO*RO*RL*C1**4*B + 5*T0*C1**4*C2 +
6*TO*(RO*RL)**2*C1**2*B**3 + 12*T0*RO*R L*C1**2*C2*B**2 +
6*T0*(C1*C2)**2*B + 6*RO*RL*C1**5 +
30*(RO*RL)**2*C1**3*B**2 + 40*RO*RL*C1* *3*C2*B +
10*C1**3*C2**2 + 4*(RO*RL)**3*C1*B**4 +
12*(RO*RL)**2*C1*C2*B**3 + 12*RO*RL*C1* C2**2*B**2 +
4*C1*C2**3*B

+ o+ o+ o+ o+

K86 = RO*C1**5*B + TO*C1**6 + 5*TO*RO*RL*C1**4*B**2 +

+  5*TO*C1**4*C2*B + 12*RO*RL*C1**5*B + 6*C1**5*C2 +
+  10*(RO*RL)**2*C1**3*B**3 + 20*RO*RL*C1* *3*C2*B**2 +
+  10*C1**3*C2**2*B

K87 = TO*C1*6*B + C1*7 + 6*RO*RL*CL**5*B*2 + 6*C1*5+C2*B
K88 = C1°7*B

RETURN
END

End coeff. calculations *
SUBROUTINE OPENER(FNAME,NUNIT,STAT)

INTEGER N, NUNIT
CHARACTER FNAME*15, STAT*3
SAVE N

DATA N/10/

OPEN(N,FILE = FNAME,STATUS = STAT)
NUNIT =N
N=N+1

SUBROUTINE IMPRES(A,AF,M,N,ANS)
This subroutine calculates the regeneratie of the impulse
response

REAL ANS(4000), TMP(4000), TS, RT, INT, PLM&, AMPL
DOUBLE PRECISION FUNC

INTEGER M,N

PARAMETER (PI = 3.141592654)

COMMON /COMB1/ B, RT ,T

COMMON /COMB4/ TS

COMMON /COMB5/ OMG, AMPL



WRITE(**)'Calculates the regenerative pdrtte impulse'
WRITE(**)'response’

M=8

WRITE(**)'Enter, # of points to be calcudakin one revebara
+tion period.'

READ(*,*) N

INT = RT/N

DO 201=1M
WRITE(**) |
DO 30J =1, (IF1)*N
TMP(J) = 0
30 CONTINUE
DO 40 K = (I-1)*N+1, M*N
TS = INT*(K-1)
TMP(K) = FUNC(TS,1,1)
40 CONTINUE
2 FORMAT(AL)
DO 60 J = 1, M*N
ANS(J) = TMP(J)
60 CONTINUE
20 CONTINUE

RETURN
END

Rutines from Numerical Recipes, numericaégration

SUBROUTINE QROMB(A,B,SS,W)
INTEGER W
PARAMETER(EPS=1.E-6,JMAX=25 JMAXP=JMAX+1,K#e\=4)
DIMENSION S(JMAXP),H(JMAXP)
H(1)=1.
DO 11 J=1,IJMAX
CALL TRAPZD(A,B,S(J),J,W)
IF (J.GE.K) THEN
L=J-KM
CALL POLINT(H(L),S(L).K,0.,SS,DSS)
IF (ABS(DSS).LT.EPS*ABS(SS)) RETURN
ENDIF
S(3+1)=S(J)
H(J+1)=0.25*H(J)

11 CONTINUE

PAUSE 'Too many steps.'
END

SUBROUTINE TRAPZD(A,B,S,N,W)
DOUBLE PRECISION FUNC
INTEGER W
IF (N.EQ.1) THEN
S=0.5*(B-A)*(FUNC(A,W,2)+FUNC(B,W,2))
IT=1
ELSE
TNM=IT
DEL=(B-A)/TNM
X=A+0.5*DEL
SUM=0.
DO 11 J=1,IT
SUM=SUM+FUNC(X,W,2)
X=X+DEL

11 CONTINUE

S=0.5%(S+(B-A)*SUM/TNM)
IT=24T

ENDIF

RETURN

END

SUBROUTINE POLINT(XA,YAN,X,Y,DY)
PARAMETER (NMAX=10)
DIMENSION XA(N), YA(N),C(NMAX), D(NMAX)
NS=1
DIF=ABS(X-XA(1))
DO 11 I=1,N
DIFT=ABS(X-XA(l))
IF (DIFT.LT.DIF) THEN
NS=I
DIF=DIFT
ENDIF
C()=YA(l)
D()=YA(l)

11 CONTINUE

Y=YA(NS)

NS=NS-1

DO 13 M=1,N-1

DO 12 I=1,N-M

HO=XA(I)-X
HP=XA(I+M)-X
W=C(1+1)-D(l)
DEN=HO-HP
IF(DEN.EQ.0.)PAUSE
DEN=W/DEN
D(I)=HP*DEN
C(I)=HO*DEN

12 CONTINUE
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IF (2*NS.LT.N-M)THEN
DY=C(NS+1)

13 CONTINUE
RETURN
END



APPENDIX B-4

PROGRAM DIF2FIELD

F——
This programme calculates the output voltage sidomela given separation of the
transmitter and receiver, using the simulated oasueed voltage output signal for a
different transmitter-receiver separation

Author:  Murugendran Kanagasundram
Date : 1-12 94.

Tk Rk AR RRRR AR

REAL SFRQ, RAD, R, K, K1, R1, S, CAl1, CA2HR1, RHO2, AF,TO1
DOUBLE PRECISION C1,D1,C2,D2

INTEGER LIMIT, P, STIM, ETIM, T

COMMON R, K, K1, RAD, R1

PARAMETER (LIMIT = 16384, TOPI = 6.2831853[8)

DIMENSION PSAM(LIMIT)

CHARACTER*15 FNAME2, FNAME4

COMPLEX PM1, PM2, H, PO

WRITE(**)GIVE THE SAMPLING FREQ..'
READ(*,*) SFRQ

2 FORMAT(A1)
1 FORMAT(A15)

WRITE(**)ENTER THE FILE WITH THE DATA.
READ(*,1) FNAME2

OPEN(20, FILE = FNAME2, STATUS = 'OLD!,

+ ACCESS = 'SEQUENTIAL)

WRITE(**) 'ENTER THE STARTING AND ENDING SAMPLE #F THE PULSE.
READ(**) STIM, ETIM

PSAM(1) = 0

1=2

READ(20,%) T,S

31F (T .GE. STIM .AND. T .LE. ETIM) THEN

PSAM(l) = S
I=1+1
READ(20,%) T,S
GOTO3

ELSE IF (T .LT. STIM) THEN
READ(20,%) T,S
GOTO3

ELSE

END IF

DO 40 J = I,LIMIT
PSAM(J) = 0
40 CONTINUE

P=LIMIT/2
CALL REALFT(PSAM,P,1)

WRITE(**)'ENTER THE RADIOUS OF THE SOURCE I{in).'
READ(**) RAD

WRITE(**ENTER DISTANCE BETWEEN SOURCE AND OBSERMIION POINTS'
WRITE(*,*)"1 AND 2 IN (m).’

READ(*,*) R, R1

WRITE(**ENTER THE VELOCITY OF SOUND DURING THE MESUREMENTS A'
WRITE(*,*)'T OBSERVATION POINTS 1 AND 2 IN (#s).'

READ(*,*) CA1,CA2

WRITE(*,*)'Enter the density of the mediumrihg the measurement’
WRITE(*,*)'s at observation points 1 and 2kg/m**3).'
READ(*,*)RHO1, RHO2

AF = (RHO2*CA2)/(RHO1*CAL)

T01= R1/CA2-0.1*LIMIT/SFRQ

WRITE(*,*)'Choose the model: (1)Plane wavgNear-field
READ(*,*)K

IF (K .EQ. 1) THEN
PSAM(1) = 0.
J=1
DO 70 | = 3,(2*P+1), 2
F =J*SFRQ/(2*P)
K =TOPI*F/CAL
K1 = TOPI * F/ CA2

PO = AF*EXP(CMPLX(0.0,(K1*R1-K*R-K1*CA2T01)))
H =PO

A3 = REAL(H)

A4 = AIMAG(H)

B11 = PSAM(I)
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B22 = PSAM(I+1)
IF (1 .EQ. (2*P+1)) THEN
B11 = PSAM(2)
B22=0
PSAM(2) = (B11*A3 - B22*A4)
ELSE
PSAM(I) = (B11*A3 - B22*A4)
PSAM(I+1) = (B22*A3 + B11*Ad)
END IF
J=J+1
70 CONTINUE
ELSE
PSAM(1) = 0.
J=1
DUMMY =0
DO 80 | = 3,(2*P+1), 2
IF (I .GT. DUMMY+100) THEN
WRITE(*,*)I
DUMMY = |
ENDIF
F =J*SFRQ/(2*P)
K =TOPI*F/CAl
K1 =TOPI*F/CA2
CALL QROMB(1,1,0.0D0,TOPI/4.0D0,C1)
CALL QROMB(2,1,0.0D0,TOPI/4.0D0,D1)
CALL QROMB(1,2,0.0D0,TOPI/4.0D0,C2)
CALL QROMB(2,2,0.0D0,TOPI/4.0D0,D2)
Al =1.0-C1*4.0*2.0/TOPI*COS(K*R) -D1*4*@.0/TOPI*SIN(K*R)
Bl = D1*4.0*2.0/TOPI*COS(K*R) -C1*4*@.0/TOPI*SIN(K*R)

A2 =1.0-C2*4.0*2.0/TOPI*COS(K1*R1)-D2*4*@.0/TOPI*SIN(K1*R1)

B2= D2*4.0*2.0/TOPI*COS(K1*R1)-C2*4*0.0/TOPI*SIN(K1*R1)
PM1=CMPLX(AL,(-1)*B1)
PM2=CMPLX(A2,(-1)*B2)
PO =AF*EXP(CMPLX(0.0,(K1*R1-K*R-K1*CA2*TQ)))
H =PO*PM2/PM1
A3 =REAL(H)
A4 =AIMAG(H)
B11= PSAM(I)
B22= PSAM(I+1)
IF (I .EQ. (2*P+1)) THEN
B11 = PSAM(2)
B22=0
PSAM(2) = (B11*A3 - B22*Ad)
ELSE
PSAM(I) = (B11*A3 - B22*Ad)
PSAM(I+1) = (B22*A3 + B11*Ad)
END IF
J=J+1
80 CONTINUE
END IF

WRITE(* *)ENTER A FILE TO STORE DATA.'
READ(*,1) FNAME4

OPEN(40, FILE = FNAME4, STATUS = 'NEW',
+ACCESS = 'SEQUENTIAL)

CALL REALFT(PSAM,P,-1)

WRITE(*,*)'Writing to file.'
DO 100 | = 1,LIMIT
WRITE(40,%)(I-1)+(STIM-1)+T01*SFRQ,PSAM(IYY
WRITE(40,*)I,PSAM(1)/P
100 CONTINUE

CLOSE(20)
CLOSE(40)
STOP

END

SUBROUTINE QROMB(,M,A,B,SS)
DOUBLE PRECISION A,B,SS,DSS,S,H,ER
PARAMETER(EPS=1.0D-5,JMAX=30,JMAXP=JMAX+1,K#6M=4)
DIMENSION S(JMAXP),H(JMAXP)
H(1)=1.0D0
ER = 1.0D-10
DO 11 J=1,JMAX
CALL TRAPZD(1,M,A,B,S(J),J)
IF (J.GE.K) THEN
L=J-KM
CALL POLINT(H(L),S(L).K,0.0D0,SS,DSS)
IF (ABS(SS-ER).LT.EPS*ABS(ER)) RETURN
ER=SS
ENDIF
S(I+1)=S(J)
H(J+1)=0.25D0*H(J)
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CONTINUE
PAUSE 'Too many steps.'
END

SUBROUTINE TRAPZD(I,M,A,B,S,N)
DOUBLE PRECISION A,B,S,FUNC,DEL,SUM,X
IF (N.EQ.1) THEN
$=0.5D0%(B-A)*(FUNC(I,M,A)+FUNC(,M,B))
Im=1
ELSE
TNM=IT
DEL=(B-A)/TNM
X=A+0.5D0*DEL
SUM=0.0D0
DO 11 J=1,IT
SUM=SUM+FUNC(I,M,X)
X=X+DEL
CONTINUE
S=0.5D0%(S+(B-A)*SUM/TNM)
IT=24T
ENDIF
RETURN
END

SUBROUTINE POLINT(XA,YA,N,X,Y,DY)
DOUBLE PRECISION XA YA,Y,DY,DIF,DIFT,C,D,HO,R,W,DEN,X
PARAMETER (NMAX=10)
DIMENSION XA(N), YA(N),C(NMAX),D(NMAX)
NS=1
DIF=ABS(X-XA(1))
DO 11 1=1,N
DIFT=ABS(X-XA(I))
IF (DIFT.LT.DIF) THEN
NS=I
DIF=DIFT
ENDIF
C(1)=YA(l)
D(I)=YA(l)
CONTINUE
Y=YA(NS)
NS=NS-1
DO 13 M=1,N-1
DO 12 1=1,N-M
HO=XA(l)-X
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HP=XA(I+M)-X
W=C(1+1)-D(l)
DEN=HO-HP
IF(DEN.EQ.0.)PAUSE 'ERROR'
DEN=W/DEN
D(l)=HP*DEN
C(I)=HO*DEN
CONTINUE
IF (2*NS.LT.N-M)THEN
DY=C(NS+1)
ELSE
DY=D(NS)
NS=NS-1
ENDIF
Y=Y+DY
CONTINUE
RETURN
END

FUNCTION FUNC(I,M,A)
DOUBLE PRECISION A,FUNC
REAL RAD,K,K1,R,R1
INTEGER I,M

COMMON R,K,K1,RAD,R1

IF (M .EQ. 1) THEN

IF (I .[EQ. 1) THEN

FUNC=COS(K*SQRT(R**2+4 *RAD*2*(COS(A))**2))(SIN(A))**2
END IF

IF (I .EQ. 2) THEN

FUNC=SIN(K*SQRT(R*2+4 *RAD**2*(COS(A))**2))*(SIN(A))**2
END IF

ELSE

IF (I .EQ. 1) THEN

FUNC=COS(K1*SQRT(R1*2+4 *RAD*2*(COS(A))*3)*(SIN(A))**2
END IF

IF (I .[EQ. 2) THEN
FUNC=SIN(K1*SQRT(R1**2+4. *RAD*2*(COS(A))*2)*(SIN(A))**2
END IF

END IF

RETURN

END



APPENDIX C-1

Transducer parameter(PZT-5A)

DensityQ,) 7750kg/m
Velocity of sound(c) 4355.2m/s
stiffness constant{y) 1.47*101 N/me

Piezo electric stress coefficienifd 5.8C/m

Dielectric constangg,) 830*8.85*10%
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