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We generalize the total variation restoration model, introduced by Rudin, Osher, and Fatemi in 1992, to matrix-valued data, in
particular, to diffusion tensor images (DTIs). Our model is a natural extension of the color total variation model proposed by
Blomgren and Chan in 1998. We treat the diffusion matrix D implicitly as the product D = LLT, and work with the elements
of L as variables, instead of working directly on the elements of D. This ensures positive definiteness of the tensor during the
regularization flow, which is essential when regularizing DTI. We perform numerical experiments on both synthetical data and 3D
human brain DTI, and measure the quantitative behavior of the proposed model.
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1. INTRODUCTION

Image processing methods using variational calculus and
partial differential equations (PDEs) have been popular for
a long time in the image processing research community.
Among popular PDE methods are the anisotropic diffusion
method proposed by Perona and Malik [1], the total vari-
ation method introduced by Rudin et al. [2], and various
methods related to these [3—7]. Many of these methods were
originally introduced for scalar-valued (gray-scale) images,
and were later generalized to vector-valued (color) images.

During the last decade or so, a new magnetic resonance
modality called diffusion tensor imaging (DTI) has been ex-
tensively studied [8-13]. Using DTI, it is possible to study
anatomical structures like the nerve fibers in the human
brain noninvasively. The DTI images are matrix valued. In
each voxel of the imaging domain, we construct a diffu-
sion tensor (i.e., diffusion matrix) D based on a series of
K direction-specific MR measurements {Sk}le. The matrix
D € R¥3 is a symmetric, positive definite matrix

D=VAV!, (1)

where V is an orthogonal matrix, and A is a diagonal matrix
with positive elements. We may look at the diffusion matrix
as a hyperellipse where the eigenvectors {Vi}?zl span the el-
lipsoid, and the corresponding eigenvalues {1;};_; determine
the length of each semiaxis (see Figure 1). It is customary to

arrange the eigenvalues in decreasing order. By the diffusion
tensor model we assume that the set of images {Sk}kK:l is
related to the nonweighted image Sy by the Stejskal-Tanner
equation [14, 15]

S = Soe &% k=12 K (2)

Here g € R® denotes the direction associated with Sk, and
b > 0 is a scalar which among other factors depends on the
acquisition time and the strength of the magnetic field [16].
Since D € R*% is symmetric, it has six degrees of freedom.
Thus at least six measurements {Sk}2:1 are required to es-
timate the tensor, as well as the nonweighted measurement
So. The tensor D can be estimated from (2). In the case of
more than six measurements S, we can estimate D by, for
example, a least-squares minimization. From the eigenvalue
decomposition of the diffusion tensor, we can reveal proper-
ties like the dominant diffusion direction and the anisotropy
of diffusing water molecules [17]. This information can be
used to construct maps of the anatomy of the brain.

From the developments in DTI, a need for robust reg-
ularization methods for matrix-valued images has emerged.
As far as the authors are aware of, there exists no state-of-
the-art method for regularization of tensor-valued images,
although many methods have been proposed [18-21].

All measurements {Sx}X_, contain noise, which degrades
the accuracy of the estimated tensor. Compared with con-
ventional MR, direction-sensitive acquisitions have a lower
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Figure 1: The diffusion matrix D can be represented by a diffu-
sion ellipsoid, where the semiaxes are spanned by the eigenvectors
{Vi}i_, of D, and the length of each semiaxis is given by the eigen-
values {1;}:_,. In this illustration, the diffusion is anisotropic. The
principal diffusion direction is along eigenvector V.

signal-to-noise ratio (SNR). Thus the gradient weighted im-
ages {Sk}K_, contain more noise than S;. There are sev-
eral ways to increase the accuracy of the estimated tensor.
The most intuitive way is to make an average of a series of
repeated measurements. Alternatively, we can increase the
number of gradient directions. An obvious disadvantage of
both of these approaches is the increased scanner time. Per-
haps a better way to improve the quality of the tensor is by
postprocessing the data. In this paper, we follow this ap-
proach, by introducing a regularization method for tensor-
valued data.

Since D models diffusion, regularization methods in DTI
must preserve the positive definiteness of D. A positive defi-
nite matrix has only positive eigenvalues, which is necessary
from the physical modeling perspective. In a minimization
method for regularization of the tensor data, one possible
way to ensure positive definiteness would be to impose a con-
straint on the minimization problem. Then the constrained
problem would have a solution which is on the manifold
of positive definite matrices. Regularization of tensor-valued
data constrained to manifolds has been studied during the
last couple of years, see [22—24]. We however follow a differ-
ent strategy. Using essentially the same idea as Wang et al. did
in a slightly different setting, we treat D implicitly by writing
D as the product D = LL”, where L is a lower triangular ma-
trix [18]. Every symmetric positive definite (SPD) matrix has
a factorization on this form. We will in this work develop a
regularization method for diffusion tensor images by gener-
alizing methods previously developed for scalar- and vector-
valued images [2, 25].

Before we go into details of the proposed method, we
briefly introduce the total variation (TV) methods for scalar-
and vector-valued images. During the last 15 years or so,
TV models have undergone extensive studies, initiated by the
work of Rudin, Osher, and Fatemi (ROF) [2].

Define the total variation (TV) seminorm for scalar-
valued data as

Vil = | |Vuldx (3)
Q
Throughout this paper, V denotes the spatial gradient, while

V- denotes the divergence operator. In the ROF model, the
TV seminorm with an added L, fidelity norm is minimized

min {Gu f,1) = VIl + S~ FB). @

Note that we can write the functional G more abstractly as

G(u, f,A) = R(u) + %F(u,f), (5)

where R(u) is a regularization functional and F(u, f) is a
fidelity functional. The regularization term is a geometric
functional measuring smoothness of the estimated solution.
The fidelity term is a measure of fitness of the estimated solu-
tion compared to the input data. It is customary to measure
the fidelity in the sense of least squares. Equation (4) has the
corresponding Euler-Lagrange equation

@G:—V-Q§;>+AW—f) (©)

We can find a minimum of (4) by searching for a steady state
of

ou

i -0,G, (7)
which is the way the ROF model was first formulated [2].
Alternatively, we can directly attack the zero of the Euler-
Lagrange equation

-9,G =0, (8)

for example, by a fixed-point iteration [26]. This is in gen-
eral less time consuming than solving the equation using
the method of steepest descent, but more tedious to carry
out numerically. When we generalize the method to matrix-
valued images, we solve the minimization problem by the
method of steepest descent. Various methods have been pro-
posed to generalize the ROF model to vector-valued image
regularization. Among the successful methods, we find the
color TV model developed by Blomgren and Chan [25] and
the model by Sapiro [27]. Blomgren and Chan [25] gener-
alized the ROF model to color (vector) image regularization
using a set of coupled equations

{% :ocN-( Vu; )*/\(ui*fi)) i= 1,2,3} 9)

|Vu1-|
with
. TV[M,] .
‘xl - TV[u] > 1= 1) 2) 3)
5 (10)
TV([u] = ZTV[u,-f.
i=1

The weight «; in (9) acts as a coupling between the ge-
ometric part of the three image channels. In this work, we
extend in a natural way the color TV model of Blomgren and
Chan to a matrix TV model. However, the method we pro-
pose is not restricted to our choice of regularization func-
tional (TV). For a detailed treatment of TV regularization
methods we refer the reader to the recent book by Chan and
Shen [5].

In Section 2, we define the minimization problem that we
propose to solve, and arrive at the Euler-Lagrange equations



Oddvar Christiansen et al.

corresponding to this minimization problem. We perform
numerical experiments in Section 3, before we finish the pa-
per in Section 4 with a conclusion. Details on the Euler-
Lagrange equation and the numerical implementation are
given in the appendix at the end of the paper.

2. MINIMIZATION PROBLEM

In this section, we introduce the functional that we minimize
in order to regularize tensor-valued data. Let L be a lower
triangular matrix. We define D by

D=LL". (11)

This has immediate implications on D: symmetry, positive
definiteness, and orthogonality of eigenvectors. These prop-
erties are required by the diffusion tensor model. Thus (11)
is a natural choice. We define ¢;; as the element in the ith row
and jth column of L. The elements d;; are defined in the same
manner.

Let us look at the algebraic equation expressing D as a
function of ¢;;. We derive the expressions for D € R*? C
SPD. We explicitly write out the matrix multiplication (11),

& 01182 C11651
D= |¢t1tn @1 + e%z 01031 + €283, | . (12)
011831 621031 + €203, €§1 + €§2 + €§3

In our proposed model, we solve a minimization prob-
lem in terms of ¢;;. For each unique £, we minimize

(ST T ¢354~ dEf 0

where {kl} € {11,21,22,31,32,33} and dAij denotes the ele-
ments of the tensor estimated from the noisy data. As in the
scalar model, the functional (13) has the abstract form (5).
The scalar ROF (TV — L,) functional is convex. But when we
introduce the factorization (11) into the model, we cannot
expect the functional (13) to be convex or even quasiconvex.
However, from numerical experiments where we used dif-
ferent (random) intial conditions we ended up with almost
exactly the same solution. This means that even though we
are not able to prove that the functional is convex, we have
indications that it is at least quasiconvex.

We note that minimizing the functional (13) is related to
the functional used by Wang et al. [18]. Apart from the fact
that they simultaneously estimate and regularize the tensor,
there are fundamental differences between our proposed reg-
ularization functional and the functional proposed by Wang
et al. Even though we represent the diffusion matrix on the
form of a Cholesky factorization, we regularize the elements
of the full diffusion tensor D, while Wang et al. regularize the
elements of the lower triangular matrix L. Intuitively, reg-
ularizing the elements of D is more direct than regulariz-
ing the elements of L. We highlight the difference between
Wang’s method and our proposed method by a numerical
simulation in a simplified setting in Section 3. In addition,
the method proposed in this paper has a coupling between all

elements of D in the regularization PDE, while the method
proposed by Wang et al. does not have such a coupling be-
tween the channels.

We also note that the functional (13) is chosen mainly
because of the good properties of the corresponding scalar-
and vector-valued functionals [2, 25], with edge preservation
as the most prominent property. Depending on the applica-
tion at hand, other functionals might be considered as alter-
natives. The framework developed in this paper is however
applicable for other regularization functionals as well.

2.1. Euler-Lagrange equations

In this section, we derive the Euler-Lagrange equations cor-
responding to the minimization functional (13). We first dif-
ferentiate the fidelity functional

2
aekl agk 2 ||d’J inZ

-25 i) 20 "
B t] 0l
We differentiate D with respect to €k, for example
281 & 63
oD
— = ¢ 0 0. 15
01, o (15)

¢ 0 0

The other derivatives follow the same pattern. Writing out
(14), we find the derivative of the fidelity functional,

ai _ ddy; ddn
90 2[(6111 dy) S 9 +2(doy — doy) 22 e
od od
+ (dyy — doy) aeij 2(ds) — d3) a;l (16)
od od
+2(ds, - daz) 8832 + (dss — dss) 8{’33]
where {d,J}, 1j=1 denote the elements of the matrix D. We

differentiate the regularization functional in (13). Define the
total variation norm of a matrix D € R? X R> as

TV[D] = (TV[du(eij)]z + ZTV[dZI(eij)]Z
+TV[d22(€ij)]2 +2TV[d31 (&])]2 (17)
+2TV[d32(€ij)]2 +Tv[d33(€ij)]2>l/2'

This is a straightforward generalization of the total variation
norm of a vector [25].

Using the chain rule, we find the derivatives of the regu-
larization functional to be

Vd,‘j )ad,‘j
i > 18
aﬁ’kt %(x] ( Vdij| ) otu (18)
with
_ Tv[di]]
% = TV[D] (19)
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FIGURE 2: A synthetically produced purely anisotropic tensor field with four distinct regions is degraded with normally distributed noise.
The noisy field is then processed with our proposed method: (a) the clean vector field Dy; (b) the noisy field D; (c) the recovered field D.

Note here that this derivative is essentially similar to the
derivative in the color TV model of Blomgren and Chan [25],
but with the important difference that we represent the dif-
fusion matrix by its Cholesky factors.

In the next section, we perform numerical simulations
using the method proposed in this paper. We give more de-
tails on the Euler-Lagrange equations in the appendix, which
also contains some details on the numerical implementation
of the model.

3. NUMERICAL EXPERIMENTS

In this section we perform numerical experiments on syn-
thetically constructed tensor fields and real tensor fields
from a human brain. The numerical implementation of the
method is briefly discussed in the appendix.

For the synthetical fields we have constructed clean ten-
sor fields, which are degraded with noise with a prior known
distribution. Thus, we are able to measure how well the
method performs on synthetical data. For the real human
brain DTI, the “true” solution is of course not known in
advance. In this case, we measure the performance of the
method in terms of a reference solution where a large se-
ries of acquisitions are averaged. This is explained in de-
tail in Section 3.3. For the numerical implementation of the
method and some of the visualizations, we have used Matlab
[28].

3.1. Synthetical tensor fields

In the first numerical experiment, displayed in Figure 2, we
test the performance of the proposed method on a simple
tensor field. This field is mapping a square domain Q C R?,
with four distinct regions, to R>*2. We construct the clean
tensor-valued data by prescribing the eigenvalues and corre-
sponding eigenvectors. The values of each element of L is in
the range [0, 1]. Then we add normally distributed noise (o)
to each element of the Cholesky factorization of the matrix,
that is, L=L+ #(0). Finally, the degraded diffusion tensor
is constructed by D = LL". The noise levels in the simula-
tions in Figures 2 and 4 are given by ¢ = 0.35 and ¢ = 0.25,
respectively. The time step is At = 0.001. Note that the dis-
continuities in the data are preserved in the solution, that

is, the edge preserving property of scalar and vector-valued
TV flow is kept in the proposed matrix-valued flow. In the
first example, the diffusion is anisotropic in the whole do-
main. To show how the proposed method differentiates be-
tween isotropic and anisotropic regions we show a similar
example where one of the four regions is interchanged with
an isotropic region. The isotropic region is constructed by
considering the orthogonal matrix Q from the QR factoriza-
tion of a random 2 X 2 matrix. The columns of the matrix
Q are considered to be the eigenvectors of the diffusion ten-
sor. We specify two random numbers in the range [0, 1] as the
eigenvalues of the tensor. Thus the diffusion is random in the
isotropic region. As we can observe from these two numerical
examples on synthetical data, edges are preserved in the reg-
ularized images. We observe that even when the noise level
is high, we are able to reconstruct an image which is close to
the true noise-free image.

From these numerical experiments on synthetical data
we see that the proposed method gives encouraging results.
Similarly as in the scalar- and vector-valued settings, edges
are well preserved. We further investigate the edge preserva-
tion in the next experiment.

3.2. Qualitative experiments

To highlight the qualitative differences between regularizing
the elements of the tensor D and the elements of the Cholesky
factors L, we have constructed a simple numerical example in
1D. We have removed the fidelity measure from the model,
thus the method is in this setting merely a diffusion filter.
Thus we have simplified the model in such a way that we can
study the qualitative behavior of the two regularization fil-
ters in the same setting (see Figure 3). From this example,
we clearly see that when we regularize D the edges are bet-
ter preserved than when we regularize L. Note that Wang et
al. regularize the Cholesky factors [18].

We also present a numerical example in 2D where we
solve the PDEs first as an uncoupled system, that is, by em-
ploying the weighting factors a;; = 1, and then as a coupled
system where we use the weighting factors from (10). We de-
note the clean field by D, the noisy field by D, the field regu-
larized with the uncoupled system by D* and the field regu-
larized with the coupled system by D¢. In Figures 5(a)-5(d),
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F1GURE 3: A simple 1D example showing the qualitative behavior of the model for regularizers [, | VL| and [, |VD|. The noisy signal in (a)
is processed with both flows. Subfigures (b), (c), and (d) are snapshots during the flow at the three times t = 8, = 16, and t = 24.

we show the elements Dy, D1, D{,, and Df,, respectively.
Subindexes denote the elements of the matrix field. Figures
5(e)-5(h) show the elements Dy, Du, Diz, and Df,, while
Figures 5(i)-5(1) show the element Dy,, Dy, D%, and D5,.
From Figure 5, we observe that the uncoupled system does
not discriminate the noise from the weak signal. The coupled
system on the other hand better discriminates the noise from
the weak signal. A similar 1D example is shown by Blomgren
and Chan using the color TV model [25].

In the next section, we go one step further and process
real human brain DTMRI.

3.3. Human brain DTMRI

We also perform numerical experiments on DTMRI acqui-
sitions of a healthy human brain from a volunteer. The hu-
man subject data is acquired using a 3.0 T scanner (Magne-
tom Trio, Siemens Medical Solutions, Erlangen, Germany)
with an 8-element head coil array and a gradient subsys-
tem with the maximum gradient strength of 40 mT/m and
maximum slew rate of 200 mT/m/ms. The DTI data is based
on spin-echo single-shot EPI acquired utilizing general-
ized autocalibrating partially parallel acquisitions (GRAPPA)
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F1GURE 4: Visualization of (a) the true vector field, (b) the noisy field, and (c) the recovered field. In this example, the tensor field is isotropic

in the lower-left corner, anisotropic in the other parts.

0 0
(e) D12

0 o
(1) D5,

FIGURE 5: A noisy 2D tensor field is regularized. In this example, the smallest parts of the signal are not easily discriminated from the noise.

technique with acceleration factor of 2 and 64 reference lines.
The DTI acquisition consists of one baseline EPI and six dif-
fusion weighted images (b-factor of 1000 s/mm?) along the
following gradient directions: G; = 1/v/2[1,0,1]7, G, =
1/v/2[-1,0,1]T, G5 = 1/v2[0,1,1]1%, G4 = 1/+/2[0,1,-1]7,
Gs = 1/V2[1,1,0]7, Gs = 1/v/2[1,1,0]T. Each ac-
quisition has the following parameters: TE/TR/averages is
91 ms/10000 ms/2, FOV is 256 mm X 256 mm, slice thick-
ness/gap is 2 mm/0 mm, acquisition matrix is 192 X 192 pix-
els, and partial Fourier encoding is 75%.

For validation of the proposed regularization method on
real data, we construct a reference solution D* by averag-
ing 18 replications. Each replication consists of six-direction

weighted and one nonweighted acquisitions. This reference
solution is compared to solutions where averages of two,
four, and six replications are postprocessed with the pro-
posed regularization method. As a measure of the distance
between the reference solution and the processed solution,
we use the following metric:

m(D,D*) = ([du —diy ) +2dn - d)
+2[dis - dis ) + [doa — d5 ]’ (20)

.12 .12\ 12
+2[d23_d23] +[d33_d33] ) .
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Figure 6: Comparison of m(D,D*) for the original tensors
(dashed) and the regularized tensors (solid) versus the number of
averaged acquisitions.

TasLE 1: The distance m(D, D*) of the regularized and the nonreg-
ularized tensor fields from the numerical examples shown in Figures
7 and 8.

Averages A Reg. m(D, D*) Nonreg. m(D, D*)
2 9 136.1 208.3
4 13 113.5 154
6 19 84.8 105.6

TABLE 2: The average deviation angle (ADA) of the noisy data, the
processed data (two different regularization parameters), and the
reference data.

Data(l) ADA (—) Global ROI 1 ROI 2 ROI 3
Noisy (4 avgs.) 12.32 32.92 41.02 42.87
Denoised, A = 13 6.27 11.77 31.50 25.27
Denoised A = 20 7.58 13.34 32.88 28.86
Clean image (18 avgs.) 6.65 18.23 24.80 24.80

For each simulation, we report the regularization parameter
A and the metric m(-, -) in Table 1 and in Figure 6. We display
the result before and after applying the proposed method
on real DTMRI data in Figures 7 and 8. In the figures, we
display a 2D slice of an RGB direction encoded fractional -
anisotropy (FA) measure defined by

3 2 =Y 2 T 2
FA_Ja(A—Al) -0+ (- Ay) o

2 A+ A3+ A3 ’

where A = (A + A, + 13)/3. The FA measure is direction-
encoded as described by Pajevic and Pierpaoli [29]. We use
the DTMRI software DTIStudio to construct the visualiza-
tions [30]. In the figures, we show the color-coded FA.

The noise level is different for each simulation due to the
varying number of acquisitions. Consequently, the regular-
ization parameter A is different for each simulation. However,
for clinical applications, the regularization parameter is esti-
mated once for each imaging protocol. When this is done, the
same regularization parameter can be used for subsequent
applications of the same imaging protocol.

3.4. Human brain ROI study

Since our algorithm regularizes the tensor field, we focus on
the evaluation of the tensor field, and the derived scalar FA
map. However, we note that from the processed tensor field,
we may reconstruct the corresponding diffusion weighted
images {S;}%_, by (2). There are obvious visual improve-
ments in the processed diffusion weighted images compared
to the noisy diffusion weighted images. Edges are preserved
and noise is suppressed. Quantitatively, the mean and stan-
dard deviation at certain homogeneous regions of interests
(ROIs) show significant improvements. We will now assess
the visual and quantitative improvements in terms of the de-
noised tensors.

For qualitative evaluation, we select three regions of in-
terest (ROIs) from one slice of the acquired images, with a
15-by-15 voxel size. We plot the 2D projection of the eigen-
vector corresponding to the major eigenvalue in Figure 9.
From Figure 9, we can clearly see that our method preserves
discontinuities (edges) in the tensor field, while it smooths
the tensor field in homogeneous regions. The denoised ten-
sor field from the 4-average acquisition is close to the tensor
field obtained from the 18-average acquisition.

For quantitative measures, we use the average deviation
angle (ADA) index of Chen and Hsu to measure if the ten-
sor field undergoes gradual changes or sharp turns [21]. The
PDE filtering is performed after the tensors are computed,
so we use the angle deviation in adjacent voxels as a mea-
sure of its performance instead of normalized magnitude of
diffusion tensor error (NMTE) index [21]. Denote the eigen-
vector corresponding to the largest eigenvalue by V*. Define
the ADA by

Ao 1+ Ao + A(Xjfl + A(Xj+1 + Aak_1 + Aotk
6 b
(22)

ADA =

where, for example, Aa;—; = cos™'(|( i}’fk, Vl-fljk) |). We note
that we use the absolute value of the inner product (-, ) to
accommodate antisense directional vectors. A small change
in direction from one voxel to its neighbor gives a small ADA,
while a large change in direction gives a large ADA.

After masking the background, we compute the average
ADA within the brain, and call it the global ADA. From
Table 2, we see that the global ADA of the data is reduced
from 12.31 to 6.27 by the denoising algorithm, whereas the
18-average clean data has an ADA of 6.65. With a higher data
fidelity requirement (when A is larger, e.g., 20), the smooth-
ing is not very aggressive and the ADA is not as close as when
A = 13. When A is less than 13 (data not shown here), the
smoothing is excessive and the ADA values fall well below the
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(a) FA, 2 averages (c) FA, 4 averages (e) FA, 6 averages

(b) FA, 2 averages denoised (d) FA, 4 averages denoised (f) FA, 6 averages denoised

FiguUre 7: Color-coded fractional anisotropy (FA) maps constructed from averages of two (a), four (c), and six (e) acquisitions, and the

corresponding denoised maps (b), (d), and (f).

(a) FA, 4 averages ) FA, 4 averages denoised (c) FA, 18 averages

F1GuUre 8: The noisy 4-average acquisition (a) is compared with the denoised acquisition (b) and a reference solution at 18 averages.

ADA of the 18-average data. From this information, we con-  with the noisy 4-average data, the denoised data show sig-
clude that for the current acquisition data, A = 13 is the best ~ nificant improvements. Using the regularization parameter
choice. The ADA at selected ROIs is larger than the global A = 13, the ADA is close to the ADA of the 18-average data.
ADA because in those regions, there are obvious edges that ~ The ADAs of all the ROIs are however reduced compared to
contributed to the relatively large ADA values. Compared  the noisy data.
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FIGURE 9: ROI study. Top image shows the ROIs that we use. The second row from left to right: the noisy (4-average) data, denoised data
with A = 13, and clean (18-average) data of ROI 1. The third row from left to right: the noisy (4-average) data, denoised data with A = 13,
and clean (18-average) data of ROI 2. The fourth row from left to right: the noisy (4-average) data, denoised data with A = 13, and clean

(18-average) data of ROI 3.

4. CONCLUSION

In this work, we have generalized the color TV regulariza-
tion method of Blomgren and Chan [25] to yield a structure
preserving regularization method for matrix-valued images.
We have shown that the proposed method performs well as
a regularization method with the important property of pre-
serving both edges in the data and positive definiteness of
the diffusion tensor. Numerical experiments on synthetically

produced data and real data from DTI of a human brain of a
healthy volunteer indicate good performance of the proposed
method.
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APPENDIX

A. EULER-LAGRANGE EQUATION AND NUMERICAL
IMPLEMENTATION

In this appendix, we explicitly write out the Euler-Lagrange
equations corresponding to the minimization functional
(13). In addition, the numerical scheme used in the simu-
lations in Section 3 is briefly discussed.

Using the short-hand notation

inj )

p(xij) = a;jV - <W (A.1)

we can write out the derivatives of R and F as

oR
WM = 2(51117(8%1) + 32117(311521) +€31P(f11531)),
oR 2 2
FYy 2(6np(Lnla) + Lap (65 +65,)

21

+ 6310 (8131 + €22632)),
oR
3, 2(€0p (03, +63,) + L2 p (621631 + €22832)),
oR
9, =2(L11p(€11631) + L21p (621631 + €22832)
+ 831 p (65, + €3, +33)),

JR
% = 2(622P(€21€31 + 622632) + 63217(6%1 + €§2 + €§3)),
oR
Y (2633 (63, + €3, + £33)),

33
oF A ~ ~
% = 4[(dn — di1) i1 + (dar — do1) a1 + (ds1 — d31) 631],
oF A ~ N
% = 4[(d21 — )b + (dp — da2) a1 + (dsz — d32)€31],
oF ~ ~
Y 4[(dr — d2) b + (d32 — d32) 3],

22
oF ~ ~
Y 4[(dsy — d32) 22 + (ds3 — d33) 3],

32
aF -~ ~ A~
F 4[(ds1 — ds1) € + (dsa — ds) o + (d33 — d33)€31],
oF A~
Fr 4[(ds3 — ds3) €33].

(A.2)
By combining each of the equations

G _ 9R _OF
afij - afij af,‘j’

{ij} € {11,21,22,31,32,33}, (A.3)

we arrive at the Euler-Lagrange equations corresponding to
the minimization problem (13). In the numerical simula-

tions, we use the steepest descent method with a fixed time
step. Thus, we have the six equations,

JaG"
ae,»j ’

d?j” =d - At {kl} e {11,21,22,31,32,33},

(A4)

where 7 is the iteration index, and At is the time-step pa-
rameter. We approximate the gradient 0G/0¢;; by standard
finite difference schemes, see, for example, [4]. We here note
that each iteration of the form (A.4) is performed sequen-
tially. Thus, the equations are solved as a coupled system of
six PDEs.
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