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Chapter 1

Introduction

Wireless networks have significantly impacted the world since World War 1I.
Using wireless networks, armies sent information overseas or behind enemy
lines easily and quickly. From then on wireless networks have continued to
develop and its uses have significantly grown. Today we use it in a number
of areas in our everyday life, sometimes even without noticing. People and
businesses use wireless networks to send and share data quickly whether in
a small office building or across the world. One of the advantages of wireless
connections is that they offer more mobility, one does not need to worry
about messy cables. The cellular phones we use every day make use of this
advantage and change the way people interact and communicate with each
other dramatically.

A wireless sensor network is a network made of numerous small indepen-
dent sensor nodes. The sensor nodes are self-contained, battery-powered
units with radio links that enable the entities to communicate with each
other and exchange data. Just like wireless networks, the development of
wireless sensor networks was originally motivated by military applications.
However, wireless sensor networks are now used in many civilian application
areas, including environment, habitat monitoring, home automation, and
traffic control and so on. In computer science and telecommunications, wire-
less sensor networks have become more and more popular over the last years.

Many network problems of practical interest can be modeled as coloring
problems. For example, when you are making a phone call using a mobile
phone, it is necessary to transform the voice signal into an electronic wire-
less signal. Each such signal requires a frequency. If two mobile phones close
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to each other are using the same frequency, they could interfere with each
other and disrupt the signals. If we assign colors to the different frequencies,
it is easy to see that a coloring of the phones where phones close to each
other receive different colors solves the frequency assignment problem. This
problem can easily be generalized so that one requires that phones within
a certain closeness of each other have to receive different frequencies. One
such generalization is the distance-k coloring problem where we view the
units as being connected in a graph and where units within distance-k, for
some k > 0, must have different colors.

In my thesis I will investigate self-stabilizing algorithms to solve the distance-
k coloring problem. The self-stabilizing approach is attractive when dealing
with fault tolerance in distributed systems. It provides a way to recover
from faults without the cost and inconvenience of human intervention: after
a fault is diagnosed, one simply has to repair the faulty components, and
the system, by itself, will return to a good global state within a relatively
short amount of time. There are several existing self-stabilizing coloring
algorithms in [6][8][11]. Paper [6] describes an algorithm for coloring the
nodes of a planar graph with no more than six colors using a self-stabilizing
approach. Paper [8] proposes two new self-stabilizing distributed algorithms
for proper A+1 (A is the maximum degree of a node in the graph) colorings
of arbitrary system graphs. In [11], they give a new simple self-stabilizing
distributed algorithm for coloring a bipartite graph. But what we are inter-
ested in is the distance-k Grundy coloring problem using the self-stabilizing
method. A Grundy coloring is a sequential coloring such that the color as-
signed to each vertex is the smallest available color which is not taken by
its neighbors. In a self-stabilizing algorithm, each node only has knowledge
about itself and its neighbors, no node knows the global graph. So to solve
the distance-k coloring problem, we need a mechanism so that a node can
obtain distance-k knowledge. There exists a paper by Hedetniemi et al. [7]
about obtaining distance-k knowledge using a self-stabilizing algorithm. It
explains how a node can obtain information that is distance-k away.

In this thesis we study how to obtain distance-k knowledge, then we de-
scribe how this scheme can be used in a coloring algorithm so that a node
can select a color that is different from its distance-k neighbors. We show
that the running time of this algorithm is O(n*n!°9*) where n is the number
of nodes of the graph. This approach is feasible but could require excessive
amounts of memory, on the order of O(n?) for the whole graph. Thus we also
design a distance-2 coloring algorithm that only requires five variables stored
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in each node and with a running time of O(mn?) where m is the number of
edges of the graph. This distance-2 coloring algorithm can only guarantee
to solve the distance-2 coloring problem, but both the number of different
colors and the value of the highest color could be high. We therefore give
an improved distance-2 coloring algorithm that limits the number of colors.
This algorithm requires eight variables stored in each node.

The remaining thesis is organized as follows. In Chapter 2 we give an in-
troduction to self-stabilizing algorithms and coloring problems. In Chapter
3 we present an existing self-stabilizing algorithm for providing distance-k
knowledge in general networks and point out some new results. In Chapter
4 we investigate how this distance-k knowledge can be used in coloring algo-
rithms to produce a self-stabilizing distance-k coloring algorithm DkCA.. In
Chapter 5 we design a distance-2 coloring algorithm D2UCM. Compared
with the DkCA algorithm, this D2UCM algorithm requires less memory.
In Chapter 6, we improve the D2UCM algorithm, to make the final config-
uration close to a Grundy coloring. Finally, in Chapter 7, we conclude and
mention some open problems.
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Chapter 2

Background

In this chapter, we present our graph model then give a short introduction
to self-stabilizing algorithms and coloring problems. Also some examples are
given.

2.1 Graph model

Before we introduce the problem and algorithms of this thesis, it is necessary
to present our graph model for networks. Let us take the mobile phone
network as an example. We regard each phone as a vertex of a graph, and
for two mobile phones within a certain distance, we put an edge between
these two vertices. Thus our network can be modeled as an undirected graph
G(V, E), where V is the node set and F is the edge set. We assume |[V| =n
and |E| = m. Each node has a unique ID. For a node i, we let N(7) denote
the set of nodes to which ¢ is adjacent, we call these the neighbors of 7. Let
Ni] = N(i)U{i} denote the set of all the neighbors of 7 and i itself. We let
d; = |N(i)|, the number of neighbors of node 4, and let A = max{d;|i € V}.
We define the distance from a node ¢ to another node j as the minimum
distance from ¢ to j.

2.2 Self-stabilizing algorithms

In this section, we explain what a self-stabilizing algorithm is and motivate
its use. We also show an example to illustrate the use of such algorithms.

The notion of a self-stabilizing algorithm was introduced by Edsger W. Dijk-
stra in 1973 |2]. In a self-stabilizing algorithm, each node only has knowledge
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about itself and its neighbors, no node knows the global graph. On each
node, there is a set of variables that denotes the local state of the node. A
self-stabilizing algorithm is given as a set of rules, where each rule is com-
posed of a predicate p(i) (i is a node) and a move M (an action which causes
a change in the local state of 7) on the form "if p(i) then M". If p(i) is
true then we say the node 7 is privileged. Until a node becomes privileged
the corresponding moves cannot be executed. If no node is privileged we
say that the algorithm becomes stable and that we have reached a stable
configuration.

The environment of a self-stabilizing algorithm is modeled by the notion
of a daemon. This is like a supervisor that controls which node makes the
next move. There are two main characteristics for the daemon: it can be
either central (meaning that exactly one privileged node can be executed at
a given time) or distributed (meaning that any subset of privileged nodes
can be executed at a given time). In an orthogonal way, a daemon can ei-
ther be fair(meaning every privileged node will be executed eventually) or
adversarial(meaning the daemon always works against you, and only some
of the privileged nodes will be executed eventually). In this thesis, we only
consider the central and adversarial daemon.

Self-stabilization algorithm is an attractive approach for dealing with prob-
lems of fault tolerance in distributed systems. Normally, when a fault hap-
pens in a network, one needs to shut down the whole network and restart
it to get a good global state again. This requires a large amount of work
and is also very time consuming. But a self-stabilization algorithm provides
a way to recover from faults without the cost and inconvenience of a gen-
eralized human intervention: after a fault is diagnosed, one simply has to
repair the faulty components. The system will return to a good global state
within a relatively short amount of time by itself. Because of this property, a
self-stabilizing algorithm can reach a stable state in a finite number of moves
regardless of the initial configuration of the graph. For further reading about
self-stabilizing algorithms, the reader can consult the book by Dolev [3].

In the following we give an example of a self-stabilizing algorithm that com-
putes a maximal independent set of an undirected graph. The formal proof
that the algorithm is self-stabilizing can be found in [9]. In graph theory,
a maximal independent set is an independent set of vertices that is not a
subset of any other independent set. That is, a set S such that every edge of
the graph has at least one endpoint not in S and every vertex not in S has at
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least one neighbor in S. To achieve this, we assign a color to each node, for
a node i its color is denoted by ¢(i). The nodes in S cannot have the same
color as their neighbors.

The algorithm is as followed:

ENTER: if (i) = 0 A (Yj € N(9))(c(j) = 0)
then c(i) =1

LEAVE: if c(i) = 1 A (3j € N(i))(c(j) = 1)
then c¢(i) =0

In this algorithm, let ¢(i) = 0 mean that the node 7 is white and let ¢(i) =1
mean that node 7 is black. The purpose of the ENTER rule is that if all
the neighbors of a white node are white, this node should change into black.
While the purpose of the LEAVE rule is that whenever a black node has a
black neighbor, it should change its color to white. When the algorithm ter-
minates, the maximal independent set S consists of the black nodes(c(i) = 1).
We assume no two nodes move simultaneously. In other words, there is a
daemon that selects which node moves next. So whenever there is a white
node and all its neighbors are white, the ENTER rule makes this node priv-
ileged. On the other hand, if a node is black and there exists at least one
neighbor which is black, the LEAVE rule makes this node privileged. The
daemon then decides which node among all the privileged nodes makes a
move and changes its color. The algorithm becomes stable when there are
no privileged nodes.

Figure 2.1 gives an example of how the algorithm could execute:

In Figure 2.1(a) nodes 7, a, and z are colored black, while nodes b, ¢, , and y
are colored white. According to the ENTER rule, node c is privileged, while
according to the LEAVE rule, nodes ¢ and a are privileged. The daemon
then decides which node makes the next move. Assume that this is ¢, then
¢ will change its color to black as shown in Figure 2.1(b). After this move
nodes ¢ and a are still privileged, then the daemon could decide that node a
makes the next move. After a changes its color to white, the algorithm will
become stable, because no node is privileged as one can see in Figure 2.1(c).
In the final solution nodes %, ¢, and z are colored black, and nodes a, b, x,
and y are colored white.

There can be many possible results depending on the order in which the
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(c)

Figure 2.1: The maximal independent set algorithm.
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privileged nodes execute the moves. For the example above, if node a makes
the first move, nodes b and ¢ become privileged. Then if b changes to black,
the algorithm will become stable. The graph will now end with nodes i, b,
and z with black color, and nodes a, ¢, x, and y with white color. This
example can also achieve the maximum solution if ¢ changes its color first.
This would make x privileged. After x changes its color to black, the algo-
rithm will become stable. The graph now ends with nodes ¢, b, and y with
white color, and nodes a, ¢, x, and z with black color which is the maximum
independent set in this example.

2.3 The coloring problem

Many problems of practical interest can be modeled as coloring problems.
The general form of these applications involves forming a graph with nodes
representing items of interest. An edge connects two incompatible items. For
example, if we want to schedule courses for a university, two courses given
at the same time slot cannot be scheduled into the same classroom. We can
construct a graph-coloring model for this problem where a graph consists of
nodes representing the courses, and we use an edge to connect the courses
given at the same time slot. We assign a color (represents a classroom) to
each node, then we can solve the problem by giving different colors to all the
adjacent nodes.

Technically a coloring of a graph is an assignment of a range of numbers
{1,2,...,n} (called colors) to its nodes such that no two adjacent nodes re-
ceive the same color. The assignment of colors is fulfilled by a function c¢. A
node ¢ is properly colored if for all j € N (i), c¢(i) # ¢(j). If all the nodes are
properly colored, c is a proper coloring. Finding a coloring of a general graph
where each node has the smallest color number not taken by any neighbor
is called a Grundy coloring [10], which can be solved in polynomial time.
But to find the minimum number of colors for a given graph is an NP-hard
problem [5]. Thus we do not expect to find a polynomial time algorithm to
solve this NP-hard problem. In practice, however, sequential greedy coloring
heuristics (Grundy coloring)[1] have been found to be quite effective.

The following describes the general Grundy coloring algorithm:

Set all nodes to uncolored
for each node i € V

set c(i) = min{l > 1|(vj € N(i))(c(4) # 1)}

15



(a) (b)

Figure 2.2: (a) Grundy coloring , (b)using the minimum number of colors.

The nodes can be colored in any order, but the result will be different de-
pending on which order is chosen. Note that a coloring using the minimum
number of colors may not be a Grundy coloring. On the other hand, a
Grundy coloring may not use the minimum number of colors either. But we
can apply the rules of Grundy coloring to a graph with the minimum number
of colors to get a Grundy coloring with the minimum number of colors. The
graphs in Figure 2.2 illustrate the difference between Grundy coloring and
using the minimum number of colors. The number in each node represents
its color number.

The regular coloring problem can be extended into a distance-k coloring
problem which consists of assigning colors to each node 4, such that it has a
different color than its neighbors within distance-k. We are interested in the
distance-k Grundy coloring problem, which is a distance-k coloring problem
where each node must have the minimum possible color number that is not
taken by its distance-k neighbors. The reason why we pay this much atten-
tion to Grundy coloring is that colors to some extend are resources. Thus
to limited the number of colors is a way to save resources. In the course
scheduling problem we mentioned previously, we can assign each course to a
different classroom. But this solution will waste a large amount of resources.
The distance-k Grundy coloring problem can be solved in polynomial time
by a greedy algorithm. But to find the minimum number of colors for a
distance-k coloring problem is an NP-hard problem, as it is at least as hard
as the distance-1 coloring problem using the minimum number of colors.

We are particularly interested in distance-2 coloring problem as it has ap-
plications in radio broadcast networks. We can model a radio network as a
graph. At any time step each node i is either transmitting (node 7 attempts
to deliver its message to all its neighbors) or listening (node i attempts to
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collect a message transmitted by one of its neighbors). If a node i is listening
and some of its neighbors are transmitting simultaneously on the same chan-
nel, then ¢ cannot hear anything because of interference. But if its neighbors
are transmitting on different frequencies (we give them different colors), then
there will be no collision. As we show in Figure2.3, when v and v are trans-
mitting simultaneously, we must give them different frequencies (colors) to
make sure i can hear everything from v and v.

OnOn0

Figure 2.3: An example of radio broadcast
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Chapter 3

Distance-k information

In the previous chapter, we gave an introduction to self-stabilizing algo-
rithms. Normally, for self-stabilizing algorithms, each node only has knowl-
edge about its immediate neighbors. But there are many problems that
require more information besides the immediate neighbors. The distance-k
coloring problem is one such example. These types of problems are much
easier to solve when a node has access to the extended graph. A recent
paper by Hedetniemi et al. |7] have described a self-stabilizing algorithm S,
for propagating this distance-k information. Since we are going to use this
information, it is necessary to first outline how Si works.

In this chapter, we expand more about distance-k knowledge in self-stabilizing
algorithms. First we give some notation, then we give an outline describing
how to get the distance-k information. After that, we give a small example.
Finally, we show a new result about which edges a node has information
about in the distance-k model.

3.1 Notation

We first define some notation that we will use in our presentation.

Let N*[i] denote the set of nodes whose distance from i is at most s, and let
N*(i) = N*[i] — {i}. Also let E*(i) denote the set of edges between nodes
j € N¥[i], and let G*(i) denote the graph composed by the nodes j € N*[i]
and the edges in E*(i). Also, let G*(i) — G'(i) (1 <1 < s) denote the graph
composed of the nodes j € (N®[i] — N'[i]) and the set of edges between
these nodes. Take Figure 3.1 as an example. The letter in each node is the
ID of the node. We can see that N1[i] = {i,a,2}, E'(i) = {(i,a), (i,2)}
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and G'(i) = {Ni], E'(i)}. Also N[i] = {i,a,b,2,y,c,d,z,w}, E4(i) =
{(i;a), (a,b), (i,2), (,9), (b c), (¢, ), (y, 2), (z,w)} and G*(i) =

{N4[i]7 E4(Z)} So G4(Z) - Gl(z) = {{bv y,¢,d, z, w}7 {<b7 c), (C7 d)v (y7 z),
(2,w)}}.

We define dk(i) as the set of nodes at exactly distance & from ¢. For a node i,
a (ds(i),dt(i)) edge denotes an edge between one of i’s distance-s neighbors
and one of its distance-¢ neighbors.

When we talk about the distance-k self-stabilizing model, we make the as-
sumption that each node 7 can directly access all the states of nodes in N*[i].

3.2 Distance-k knowledge in self-stabilizing algo-
rithms

In this section we explain how the algorithm Sy by Hedetniemi et al. works.
Since we will use the rules and explain the details of the algorithm in Chap-
ter 4, we do not give out all the rules here. Now we just give an outline of
how a node can get information which is distance-k away.

The idea of this algorithm is based on the technique “Distance-two infor-
mation in self-stabilizing algorithms” in [4]. This technique is a general
mechanism that allows a node to get its distance-2 knowledge. When we
use this technique recursively, we can get distance-4 knowledge based on the
distance-2 model, and then distance-8 knowledge based on distance-4 model
etc. Until we get the distance-k knowledge using the distance-k/2 model,
each time the distance is doubled, thus when we investigate a distance-k
algorithm, k is always a power of 2. In this way, it provides a method for
transforming any distance-k algorithm into a self-stabilizing algorithm.

3.2.1 Variables

Every node has:

e A local variable f, which stores the state of the node.

e A variable o that stores a local copy of f(j) for each j € Nk/Q(i). We say
o (i) is correct if for all j € N*¥/2(3), f(j) in (i) is correct.

e A pointer that stores the ID of a member of N*/2(3).

3.2.2 How the algorithm works

We now give an outline of how the algorithm S, works and how it obtains
this distance-k information.

20



This algorithm is used for each node ¢ to get the correct knowledge within
distance-k based on the correct o values of the distance-k/2 model. In the
distance-1 model, ¢ is empty, and node ¢ can directly read the state of nodes
j € N'(i). When we translate a distance-1 model to distance-2, for each node
i in the graph there is a o(i) value which stores a local copy of the state of
each node j € N''[i]. Since i can read the contents of nodes j € N'(i), which
contain o(j), node ¢ has indirect information about the nodes in d2(7). When
this distance-2 model is translated to distance-4, each node i will have a o(4)
variable that stores a local copy of the state of each node j € N2[i]. Because
node 7 already has a view of the nodes within distance-2, and ¢ can get the
contents of nodes u € d2(i), which contain o(u), then node ¢ has indirect
information about nodes in d3(i) and d4(7). It follows that when a distance-
k/2 model is translated to distance-k, each node ¢ will have a o(i) variable
that stores a local copy of the state of each node j € N*/2[i]. Because node
i already has a view of the nodes within distance-k/2, and i can get the
contents of nodes u € dk/2(i), which contain o(u). So node i has indirect
information about nodes from distance-k/2 to distance-k. In other words, i
can have knowledge about all the nodes within distance-k.

In this algorithm, we assume there is already a distance-k/2 model, we show
how to turn this into a distance-k model by the following rules: UPDATE-o,
ASK, RESET, and CHANGE. We use a pointer for each node to tell the
system which node should make the next move. The UPDATE-¢ rule will
update an incorrect o value of a node. The remaining three rules are all
executed based on the correct o value. We say that node 7 is Sg-alive if it
is privileged for Si. A node 7 that notices it is Sk-alive will try to make an
ASK move. This node can make this ASK move if it and all its distance-k/2
neighbors are all pointing to NULL. When making an ASK move, node i sets
its pointer to point to itself. The next time that the node becomes privileged,
it will either change its f value (by a CHANGE move) or make a RESET
move. The RESET move is made if 7 has a distance-k/2 neighbor that is
pointing to itself and has a lower ID than ¢, this move sets the pointer of ¢
to the distance-k/2 neighbor that is pointing to itself with smallest ID. The
CHANGE move is made if all neighbors within distance-k/2 of i are pointing
to 4. This move then updates f(i) and sets i’s pointer back to NULL.
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3.2.3 Example

We now give an example to illustrate how the algorithm works. In this
example we skip the pointer part, and just concentrate on the o values.

For the example in Figure 3.1, in the distance-1 model, node ¢ can directly
read the state of nodes a and x. When we translate a distance-1 model to
a distance-2 model, node ¢ can read the contents of nodes a and x, which
contain o(a) and o(x) respectively. Thus node i has indirect information
about f, and f,. When this distance-2 model is translated to distance-4
then, because node i already has a view of a,b, x, and y, and ¢ also can read
the contents of nodes b and y, which contain o(b) and o(y) respectively, node
1 has indirect information about f., fg, f., and f.

Figure 3.1: Example

3.3 The (dk(i),dk(i)) edges

In [7] it is shown that in a network with n nodes, a distance-k algorithm
that stabilizes in A moves can be implemented in the distance-1 model by
an algorithm that stabilizes in An®U°8%) moves. If the same distance-k
algorithm uses F' bits per node, then the corresponding distance-1 algorithm
uses FnOU°ek) bits per node. But besides the running time and memory
needed there are still some details that need to be pointed out. When we
say that a node ¢ has a distance-k knowledge, intuitively, we think node ¢
knows all the nodes within distance-k and the edges between them. But as
the following shows this is not true.
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Lemma 1 For a distance-k model, a node ¢ has knowledge about each edge
in E*(i) except the (dk(i), dk(i)) edges.

Proof: The proof is by induction on the k in distance k.

For k =1 the distance is 2:

The node i already knows G'(i), except any (d1(i),d1(i)) edges. Node i
can read the o(j) information from any node j € N'(i), and from this 4
can calculate the set of nodes in d2(i). It can also get all the (d1(),d1(7))
and (d1(i),d2(i)) edges. But i cannot know if there are (d2(i),d2(i)) edges,
because it can only read o(j) information from nodes in N'(i), and o(5)
only stores the direct neighbors of nodes in d1(i). This again proves that the
claim is true for k = 1.

Assume the result is true for k — 1, we will show that this implies that
it is also true for k.

For distance k:

From the induction hypothesis, node 7 already knows the structure of Gh/2 (1),
except the (dk/2(i),dk/2(i)) edges. It also follows that, if we just consider
the graph H (i) = G*(i) — G*/2=1(i), the set of nodes in dk/2(i) has knowl-
edge about H (i), except the (dk(i),dk(i)) edges. This follows because the
distance from nodes in dk/2(i) to any node in H (i) is at most k/2. Next we
consider G*(i). Because node i can read o(j) where j € dk/2(i), it follows
that node 7 can know from o(j) if there are (dk/2(i),dk/2(i)) edges, and i
can also get the entire structure of H(i), except the (dk(i),dk(i)) edges, by
reading what is already stored in the nodes of dk/2(i). Note that there is
no edge between any vertex in G¥/2(i) and one in H(i), because if there is
such an edge, both of the two nodes will belong to G¥/2(i). So in this way,
the claim is also true for k.

We notice that if we want to color the nodes within distance-k from node ¢
just by the information we can get from 7, we can give the nodes within
distance-k — 1 the correct color. But since we have no idea about the
(dk(7),dk(7)) edges, we cannot guarantee to give the right color to the nodes
in dk(i). In this way, we get the corollary below.

Corollary 2 In a distance-k model, if an algorithm requires that each node
i has knowledge about its (dk(i),dk(i)) edges, then every node must store the
local copy of f(j) for each j € N*(i) in the o(i) information.

In other words, if one wants to know these (dk(i),dk(i)) edges, one must
double the distance in which one is gathering information from k/2 to k.
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But this also increases the amount of memory used. One way to get these
(dk(1),dk(i)) edges information without doubling the distance is to change
the algorithm in the following way. Each node not only stores its own state
but also stores its neighbor list. So for each node 4, instead of using N*]i]
memory, we can use N¥/2[i]+ N (i) memory. We can generalize this idea into
the distance-l problem, where k < [ < 2k. Instead of doubling the distance
from k to 2k, we can make each node not only store its own state but also
store its distance-(I — k) neighbor list.
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Chapter 4

The self-stabilizing distance-k
coloring problem

In the previous chapter, we presented how to get distance-k knowledge in
self-stabilizing algorithms. In this chapter we are going to use this distance-k
knowledge to design a self-stabilizing algorithm for the distance-k coloring
problem.

There are several existing self-stabilizing coloring algorithms in [6][8][11].
But we are interested in the distance-k Grundy coloring problem using the
self-stabilizing method. We have given an introduction to Grundy coloring
in Chapter 2. Here we present the self-stabilizing Grundy coloring algorithm
from [8] first. Then we show our new algorithm DkCA which is based on
Hedetniemi et al.’s algorithm [7] and the self-stabilizing Grundy coloring
algorithm from [§].

4.1 Self-stabilizing Grundy coloring algorithm

In this section, we introduce the self-stabilizing Grundy coloring algorithm
from [8]. Similarly to the sequential Grundy coloring algorithm in Chapter 2,
in the self-stabilizing Grundy coloring algorithm, a node % also has a variable
¢(7) to represent the color of this node. The value of ¢(7) must be one of the
numbers in the range {1,2,...,n}.

The self-stabilizing Grundy coloring algorithm is as follows:

if (i) # min{l > 1/(¥] € N(0))(c(j) £ D)}
then set ¢(i) = min{l > 1|(Vj € N(i))(c(j) # 1)}
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In the algorithm above, if a node has not been assigned the smallest color
not taken by any of its neighbors, then it should change into this color. It
shows in [8] that the algorithm has a running time O(n + 2m).

Under the distance-k model (each node i knows the state information of
all nodes in N*[i]), we can modify this algorithm into a distance-k self-
stabilizing Grundy coloring algorithm as follows:

if (i) £ min{l > 1/(v) € N*0)(c(j) £ D)}
then set c(i) = min{l > 1|(Vj € N*(0))(c(j) # 1)}

It follows that if we want to solve a distance-k coloring problem without
having the distance-k knowledge, we should use the Hedetniemi et al.’s al-
gorithm to get the distance-k knowledge and then combine this with the
distance-k Grundy coloring algorithm.

4.2 Variables and notation

We first give some variables and notations that will be used in our DkCA
algorithm to be presented.

For a graph G(V, E), every node has:

e A local variable ¢, which represents the color of the node.

e A variable o (i) that stores a local copy of ¢(j) for each node j € N*/2(4).
e A pointer that stores the ID of a member of N*/2(3).

Let d¥ =| N*(i) |, the number of distance-k neighbors of node i. We say
that node i is DkCA-alive if it is privileged for DkCA.. Define minN*/2[i] as
the node with the smallest ID among those that point to themselves within
distance-k/2 of i.

4.3 The algorithm

First, we will give an outline of how the algorithm works, and after this we
give the details of the algorithm.

The algorithm is to get the distance-k information based on the distance-
k/2 model, and then solve the distance-k coloring problem. For a node i,
whenever its o (i) value is incorrect, the UPDATE-o rule will make it correct.
Based on the correct o(i) value of 4, if i needs to change its color, an ASK
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move will change the pointer of ¢ from NULL to point to itself. Note that
this can only happen when all the nodes in N*/2[i] are all pointing to NULL.
If a node is not pointing to the node with the smallest ID in N*/2[i], a RE-
SET move will make it point to this node with the smallest ID. A node 7 will
change its color only when all the nodes within distance-k/2 are pointing to
it. The CHANGE rule will change the color of ¢ according to the distance-k
Grundy coloring algorithm. After a node ¢ has changed its color, the pointer
of 7 will point to NULL again.

The following are the rules in the distance-k Grundy coloring algorithm
DKCA based on the distance-k/2 model. The algorithm is designed by re-
placing the update f(7) rule in [7] with the distance-k Grundy coloring rules :

UPDATE-o: if o(i) is incorrect
then update o(1)

ASK: if i is DkCA-alive A(Vj € N¥/2[i] : j — NULL) \ o (i) is correct
then 7 — ¢

RESET: if i /£ min N*/2[i] A 0(i) is correct
then i — min N*/2[j]

CHANGE: if Vj € N*/2[i] : j — i A o(i) is correct

if (i) # min{l > 1/(%] € N*()(c(j) £ D)},
then ¢ then set c(i) = min{l > 1|(Vj € N¥(i))(c(j) # 1)}
1 — NULL

4.4 Correctness and running time

In this section, we first prove that a stable solution of the distance-k Grundy
coloring algorithm is a correct solution. Then we look at the complexity of
each rule. Finally we give the complexity of the whole algorithm.

First we define some notation that will be used in the following lemmas.

We let M, denote the tth move. The state resulting from M; is denoted by
s¢. We define a REAL-CHANGE move as a CHANGE move in which the
variable c is assigned a new value. If the CHANGE move increases the value
of ¢(i) , then we say that it is an increasing move. Otherwise, we call it a
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decreasing move. We say that node ¢ makes a correct move when o(j) is
correct for all j € N*/2(i). Otherwise, we say that the move is incorrect.

Theorem 3 Any stable solution of the distance-k Grundy coloring algorithm
s a correct solution.

Proof: We assume that the final configuration is still not a distance-k col-
oring when the algorithm stops. This means that there exists a node 7 that
still has the same color as at lease one of the nodes in N*(i). We assume
that the ID of ¢ is the lowest in the whole graph among the nodes that have
the same color as one of their distance-k neighbors.

There are then two cases to consider. It could be either that node ¢ has not
noticed that it needs to change its color, or that node 7 has already noticed
but is not ready for a CHANGE move. The first case can only happen when
o(i) is incorrect. This will force an UPDATE-o move. For the second case,
after ¢ notices that it needs to change its color, an ASK move will change
its pointer to point to itself. Note this can only happen when all the nodes
in N*/2[i] are pointing to NULL. Otherwise, for each node j in N*/2[i] that
is not pointing to NULL, a RESET move will force each node in N*/2(3) to
point to the node with the smallest ID in N*/2(3), or to make a CHANGE
move that sets its pointer to NULL. If the distance-k/2 neighbors of i are
all pointing to ¢, then a CHANGE move of i should be executed. So in
either case, the algorithm is not stable if the final solution is not a correct
distance-k coloring. This causes a contradiction. It follows that when the
algorithm stops it must be a correct distance-k coloring.

A REAL-CHANGE move of j is not always correct, it can also be incor-
rect meaning that o(j) is not correct for all j € Nk/2(i). But as shown
in [7], an incorrect REAL-CHANGE move can only occur as a node’s first
CHANGE move, and any subsequent CHANGE moves will be correct. So
each node can make at most one incorrect REAL-CHANGE move.

Lemma 4 After any correct REAL-CHANGE move made by a node i, 1 <
c(i) < dF +1.

Proof: After a correct REAL-CHANGE move, c(7) is set so that 1 < ¢(7).
Also, ¢(i) should be equal to the minimum possible color that is not taken
by any of its distance-k neighbors. Since 4 only has d¥ neighbors, the result
follows.

A correct REAL-CHANGE move can be a decreasing move or an increasing
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move. Now we look separately at how many decreasing and increasing moves
a node can make, and when the node will make these moves.

Lemma 5 After the first correct REAL-CHANGE move, a node i can make
at most d¥ + 1 consecutive decreasing moves.

Proof: This follows from Lemma 4.

Lemma 6 A node can make a correct increasing REAL-CHANGE move M,
only if it is not properly colored in state sy_1.

Proof: Node i can only execute an increasing move when one of its distance-
k neighbors has the same color ¢(i).

Lemma 7 After node i executes the first correct REAL-CHANGE movwe, it
becomes properly colored and remains so.

Proof: Node i becomes properly colored after executing a REAL-CHANGE
rule, this is obvious. It will remain so because, after executing any REAL-
CHANGE rule, no node can destroy the proper coloring of any of its distance-
k neighbors.

Lemma 8 FEzcept for the initial incorrect REAL-CHANGE mowve, each node
t can make at most one increasing move, and that can only occur before it
makes any decreasing move.

Proof: This follows from Lemma 6 and Lemma 7.

We now show the total number of correct REAL-CHANGE moves each node
can make.

Lemma 9 FEach node i can make at most d¥ + 1 correct REAL-CHANGE

mouves.

Proof: By Lemma 5, if node ¢ never makes an increasing move, then it will
make at most d¥ + 1 consecutive decreasing moves. If it makes an increasing
move, then due to Lemma 8 this occurs only once before all the decreasing
moves. After this first move, the remaining moves must be decreasing moves,
and by Lemma 4 there are at most d¥ such moves.

We can now look at the time complexity of the whole algorithm.

Corollary 10 Given a graph, based on the distance-k/2 model, we can find
a distance-k Grundy coloring in at most O(n*) moves.
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Proof: Based on Lemma 9, there are at most n? correct REAL-CHANGE
moves. In [7] it is shown that there are at most n incorrect REAL-CHANGE
moves and also there are O(n?) moves during an interval without REAL-
CHANGE moves. We see that any sequence of moves takes time O(n%).

Corollary 11 A distance-k coloring algorithm can be implemented in the
distance-1 model by an algorithm that stabilizes in O(n*n'°9%) moves.

Proof: A distance-k Grundy coloring can be computed by at most O(n*)
moves based on the distance-k/2 model by Corollary 10. Transferring the
distance 1 model to the distance-k/2 model gives a slowdown of O(n!°9%/2)
as is shown in [7].

4.5 Example

The example in Figure 4.1 illustrates the distance-1 coloring problem, and
Figure 4.2 and Figure 4.3 illustrate the distance-2 coloring problem. The
number at the top right corner of a node ¢ is the local variable ¢(i) of 7.
The numbers in the bracket at the top right corner of ¢ is o(i). To simplify
the graph, we just list the nonrepetitive variables. This means that if there
are several identical numbers in o(7), we only list it once. We assume that
the privileged nodes execute the rules in alphabetic order according to their
IDs. To simplify the graphs, for each pair of graphs we actually make sev-
eral moves: Figure 4.1(b) is the final Grundy coloring starting from Figure
4.1(a). Each node chooses the minimum possible color number which is not
taken by any of its neighbors. The nodes change their colors in the order
a,c,d,h,e.

Between each pair of graphs in Figure 4.2 and Figure 4.3 there is one
CHANGE move and all the possible UPDATE-c moves. The dark node
is the node that will make the next CHANGE move. We assume that there
are no incorrect REAL-CHANGE moves.
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Figure 4.1: (a) the original graph , (b)For the distance-1 coloring problem, all
the nodes just execute the rules in the sequential Grundy coloring algorithm.
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4(1,23)

Figure 4.2: The distance-2 problem. (a) update o(a). (b) change ¢(a) and
update o(a) and o(b). (c) change ¢(b) and update o(a), o(b), and o(c). (d)
change ¢(c) and update o(a) and o(b). (e) change ¢(b) and update o(a),
o(b), o(c), o(d), and o(e). (f) change c¢(e) and update o(a), o(b), o(c), o(d),
o(e), and o(f).



Figure 4.3: The distance-2 problem. (a) change c(f) a)nd update o(a). (b)
change c(a) and update o(a), o(b), and o(c). (c) change ¢(c) and update
o(a), o(b), o(c), o(d), o(e), and U(Qj' (d) change ¢(f) and update o(a),
a(b), o(c), o(d), o(e), o(f), and o(¢). (e) change c¢(g) and update o(a),
a(b), a(c), o(d), a(e), a(f), o(g), o(h), and o(i). (f) change c(i). After
that, there is no privileged node, thus the algorithm is stable.
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Chapter 5

A self-stabilizing distance-2
coloring algorithm

The distance-k coloring algorithm presented in Chapter 4 stabilizes in O(n*n'°9%)
moves. However, each node i needs O(| N*/2[i] |) memory to store the o
information. For a large value of k, this could be a significant amount of
memory. Thus it would be of interest to find an algorithm that uses less
memory. For any new problem, it is always easy to start with the simplest
case. For this reason we start with the distance-2 coloring problem. What we
are interested in is a distance-2 coloring algorithm that only uses a constant
number of variables per node. When we run the distance-2 coloring algo-
rithm using the DkCA algorithm in Chapter 4, the running time is O(n°)
and each node needs to store O(| N[i] |) variables. As we can see, even for
k = 2, the total memory is as large as 2m.

Before describing the algorithm in detail, we first explain the variables that
the algorithm uses. We also give an outline of how the algorithm works.

5.1 Variables

For a graph G(V, E), every node i has:

e A unique ID.

e A local variable ¢(i), which represents the color of the node.

e A pointer — that either points to one of i’s neighbors or to NULL. We
use the notation ¢ — j both for assigning ¢ to point to 5 and for testing if ¢
is pointing to j. On the other hand, we write i /~ j to mean that i is not
pointing to j.
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e A boolean flag(i) variable which denotes if the node wants to change its
color or not. When the value of flag(i) is true, we assign it to 1, otherwise
0.

e A ¢pin(i) variable will be used in the algorithm. We will explain the use
of this value later in Section 5.2.

In this distance-2 algorithm only five variables are stored in each node, thus
the total memory used by the algorithm is O(n). This should be compared
with O(m) variables from the DkCA algorithm in Chapter 4, when DkCA
is used to solve the distance-2 coloring problem.

5.2 The algorithm

In this section, we give this distance-2 coloring algorithm D2UCM that
only uses five variables per node. Before outlining of the algorithm, it is
necessary to investigate the distance-2 coloring problem and the purpose of
the variables in Section 5.1.

A node i has a distance-2 coloring problem when it has the same color as
at least one node in N2(i). If i has the same color as any node in N (i),
then this is easy to deal with. We can solve this problem by executing the
rule of the self-stabilizing distance-1 Grundy coloring presented in Section
4.1. But if ¢ has the same color as one of its distance-2 neighbors v, then
there are more things that we need to consider. It is feasible to consider
this problem from the point of view of a node j that is adjacent to both
¢ and v. Since j can read the information in its neighbors ¢ and v, j can
discover this distance-2 coloring problem. Among the nodes in N(j), there
could be more node pairs than {i,v} with the same color, we call each such
pair a distance-2 coloring conflict. We let sN(j) denotes the set of all the
nodes in N(j) that have a distance-2 coloring conflict with some node in
N(j), and let min sN(j) denote the node u € N(j) with the smallest ID
among the nodes in sN(j). The flag value of a node denotes if the node
wants to change its color or not. The flag value of a node is equal to 1
when this node wants to change its color. We let fN(j) denote the set of
all the nodes in N(j) that have the flag value equal to 1, and min fN(j)
denotes the node u € N(j) with the smallest ID among the nodes in fN(j).
The pointer of j is then used to show which node in N(j) might need to
change its color and to avoid that nodes with a distance-2 coloring con-
flict change to the same color again. The pointer of j should point to the
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node u with the smallest ID among the nodes in sN(j) and fN(j). When
J — u, the variable ¢, (7) is used to tell u the smallest color number larger
than w’s current color that u could change into without causing a distance-2
coloring conflict. If both sN(j) and fN(j) are empty, j should point to
NULL. A node can only change its color when all its neighbors are pointing
to it. After a node changes its color, the node will update its flag value to 0.

Now let us look at how the algorithm works. For a node ¢, if it has the
same color as any node in N (i), ¢ will change its color into the minimum
possible color that is different from any node in N(i). A RESET move
will implement this, it is the same as a distance-1 Grundy coloring. Note
that ¢ with this move could change into the same color as some nodes of its
distance-2 neighbors. We say that node ¢ is D2UCM-alive when sN (i) or
fN(i) is not empty. If a node i is D2UCMe-alive, its pointer should point
to the node with the smallest ID among the nodes in s/N (i) and fN(i). This
is achieved by executing the SET MIN rule. If node ¢ is not D2UCM-alive
and not pointing to NULL, the SET NULL rule will make ¢ point to NULL.
For each node i, if ¢ — j where j = min sN (i), the variable ¢, (i) stores
the smallest color number that is bigger than the current color of j. Note
that ¢ (i) also cannot be the same as the color of any node in NT[i|. If
i /> min sN (i), then ¢in(7) should be equal to 0. The UPDATE rule will
update the ¢ (7) value if it is not correct. The SET FLAG rule will set the
flag value of @ to 1 when there exists at least one neighbor j that is pointing
to it and ¢min(j) is larger than c(i). Whenever a node ¢ notices that all
the nodes in N (i) are pointing to it, and at least one node j in N(i) has a
Cmin(Jj) value larger than c(i), @ will change its color and then set flag(i) to
0 by executing a CHANGE move. Note that each time after a node changes
its color, the color number always increases.

For a node i, we define a function CorrectValue to update its ¢pin (i) value,
and a function CorrectColor to change its color.

The following function will return the minimum color number that is bigger
than the color of j where 7 = minsN(i). Note that the value that is re-
turned cannot be the same as the color of any node in N[i].

int CorrectValue(, j){
if i — j, where j = min sN (i)

return (minf{a,a > ¢(j) AVj € N[i| : a # ¢(j)})
else
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return (0)

}

The following function is used for changing the color of a node. It returns the
minimum color value that does not cause a distance-1 or distance-2 coloring
conflict within N[i], that is, the smallest value larger or equal to the max-
imum ¢ (j) value, where j € N(i). Note that the value that is returned
will not be the same as the color of any node in NJi|.

int CorrectColor(7){
return (min{b,Vj € N (i) : b > cmin(j) N1 # c(j)})
}

The following set of rules give our self-stabilizing distance-2 coloring algo-
rithm D2UCM. We assume that whenever a node ¢ can execute the RESET
rule, it will execute this before executing any of the other rules. The rest of
the rules are executed in order:

RESET: if 3j € N(i) : ¢(i) = c(j)
then c(i) = min{l > 1|Vj € N(i) : ¢(j) # I}

SET MIN: if i is D2UCMe-alive Ai /4 min{sN (i), fN(i)}
then i — min{sN (i), fN (i)}

SET NULL: if ¢ is - D2UCM-alive A¢ /~ NULL

then 1 - NULL

UPDATE: if ¢;in(i) # CorrectValue(i, —)
then ¢, (i) =CorrectValue(i, —)
SET FLAG: if flag(i) Z1A3j € N(i): (j — i A cmin(j) > (i)
then flag(i) =1
CHANGE: if (Vke N(i): k — i) AN(Fj € N(4) : cmin(j) > ¢(i))
then c(i) = CorrectColor(i)
flag(i) =0
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5.3 Example

We now give an example in Figure 5.1 that illustrates how the algorithm
works. The ID of each node is represented by a letter, and nodes execute the
rules in alphabetic order according to their IDs. The number inside node ¢
is the value of ¢(i). The arrows on the edges represent pointer values. The
number on the top of each arrow is the value of ¢,;,. The number on the
left side of the node is its flag value. To simplify the graphs, for each pair
of graphs we actually make several moves. Also, we do not show the NULL
pointers and the 0 flag values.

Figure 5.1(a) is the initial configuration. Since nodes B and H are D2UCM-
alive, they both change their pointers to point to A and update ¢ (B) and
¢min(H). Then node A changes flag(A) to 1. It follows that nodes K and
F also change their pointers to point to A and update ¢ (K) and ¢pin (F).
This is the configuration that is shown in Figure 5.1(b). After this, node
A changes its color and sets flag(A) to 0 and node H and F' change their
pointers to NULL. This causes nodes B and K to be D2UCM-alive, and
they change their pointers to point to A and update cpin(B) and ¢pin(K).
Then node A will change flag(A) back to 1. It follows that node H and
F also will change their pointers to point to A and update c¢pn(H) and
Cmin(F'). This is the configuration that is shown in Figure 5.1(c). Node A
then changes its color and sets flag(A) to 0. Nodes B, K, and F' will then
change their pointers to NULL. Then node H becomes D2UCM-alive and
changes its pointer to point to A and updates ¢pin(H). This forces node A
to change flag(A) to 1. It follows that nodes B, K, and F' will also change
their pointers to point to A and update ¢pin(B), Cmin(K), and ¢y (F'). This
is the configuration that is shown in Figure 5.1(d). After node A changes
its color and sets flag(A) to 0, nodes B, H, and F will also change their
pointers to NULL. Then node K becomes D2UCM-alive and it changes its
pointer to point to A and updates ¢pin(K). Now node A changes flag(A) to
1. It follows that nodes B, H, and F also will change their pointers to point
to A and update ¢pin(B), ¢min(H), and ¢pin(F). This is the configuration
that is shown in Figure 5.1(e). After node A has changed its color, node
A changes flag(A) to 0. All the pointers now point to NULL as shown in
Figure 5.1(f). There is no privileged node and the algorithm is stable.
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Figure 5.1: Example illustrates how the D2UCM algorithm works.
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5.4 Correctness and running time

In this section, we show that D2UCM is a correct self-stabilizing algorithm
for the distance-2 coloring problem. We do this by first proving that a stable
solution is a correct solution. Then we bound the complexity of each rule
before finally giving the complexity of the whole algorithm.

Before we discuss the correctness of the algorithm, we first look at a special
case.

Lemma 12 In a stable solution of D2UCM, a node ¢ cannot have ¢ — j
where j does not have a distance-2 coloring conflict.

Proof: We assume that there exists a node ¢ in a stable solution such that
t — 7 where 7 does not have a distance-2 coloring conflict. Since j does not
have a distance-2 coloring conflict, it follows from the SET MIN rule that
flag(j) must be equal to 1. Since if flag(j) = 0, then i cannot point to j.
From the SET FLAG rule, there must therefore exist a node u € N(j) — {i}
such that v — j and c¢pin(u) > ¢(j). Node u can only have ¢pin(u) > ¢(j)
when there exists a node v € N(u) — {j} such that ¢(v) = ¢(j), which is a
contradiction. Thus the result follows.

We are now going to use Lemma 12 to show that we have a legal distance-2
coloring when the algorithm is stable.

Theorem 13 Any stable solution for D2UCM is a correct solution for the
distance-2 coloring problem.

Proof: We assume that the final configuration is still not a distance-2
coloring when the algorithm stops. There are then two possibilities. One
is that a node ¢ still has the same color as at least one of its neighbors 7,
while the other is that a node ¢ has the same color as at least one of its
distance-2 neighbors u. The final configuration can contain either or both
of these cases. For the first case, a RESET move will be made to solve this
problem. Thus this cannot be the case in a stable configuration. For the
second case, we assume that the ID of ¢ is the lowest among those nodes
that have the same color as one of their distance-2 neighbors. Then there
are three subcases. First, if the node j between ¢ and v does not point to
any node, then since j is D2UCMe-alive, this will force j to make a SET
MIN move. Second, if j is pointing to another node v # 1, it follows from
Lemma 12 that v also must have a distance-2 coloring conflict and since the
ID of i is the lowest among all the nodes with a distance-2 conflict, j will
be forced to make a SET MIN move such that j — ¢. Third, if j is pointing
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to i, then since i = min{sN(j), fN(j)}, it follows from the CorrectValue
function that ¢p,(j) will be updated to a correct value larger than c(i).
There are now again two possibilities depending on the other neighbors of <.
(1) There exists at least one neighbor x of ¢ that is not pointing to i. This
could be caused by two instances. If node ¢ did not change its flag value to
1, then ¢ should make a SET FLAG move. Otherwise if flag(i) is already
equal to 1, then x should make a SET MIN move to make its pointer also
point to . In either case, the solution is not stable. (2) If all neighbors of i
are pointing to 4, then 4 should execute a CHANGE move. So in both cases,
the algorithm cannot be stable, which causes a contradiction. It follows that
when the algorithm stops we must have a correct distance-2 coloring.

We are now going to discuss the complexity of each rule. We first look
at the RESET rule.

Lemma 14 Each node can make at most one RESET mowve.

Proof: Note that each node executes the RESET rule before any other
rules, and node ¢ only makes a RESET move when it has the same color as
at least one of its neighbors j. Thus after the RESET move, the color of ¢
will change into the smallest possible color different from all of its neighbors.
Due to the definition of the CorrectColor function, a node will never change
into the same color as any node in N (i) after a CHANGE move. It follows
that each node can make at most one RESET move.

Since we will use the complexity of the CHANGE rule when we discuss the
complexity of the rest of the rules, we now look at the CHANGE rule. We
define an incorrect CHANGE move of a node ¢ such that after the CHANGE
move, the color that ¢ changed from disappears from the distance-2 neighbors
of i. A CHANGE move that is not incorrect is a correct CHANGE move.
This means that after a correct CHANGE move, the color that a node is
changing from still exist in at least one of its distance-2 neighbors. First, let
us see how many incorrect CHANGE moves each node can make.

Lemma 15 Each node can make O(n) incorrect CHANGE moves.

Proof: We are going to show that there are two cases when a node will make
an incorrect CHANGE move. First, an incorrect CHANGE move can occur
as a node ¢’s first CHANGE move. At the start of the algorithm, it could be
that all of ¢’s neighbors are pointing to ¢ and that there exists a neighbor j
such that cpin(j) > c(i) without ¢(7) existing in any of i’s distance-2 neigh-
bors. Thus this could force i to make an incorrect CHANGE move where the
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initial color of ¢ disappears from the distance-2 neighbors of i. Each node ¢
can make at most one incorrect CHANGE move in this case.

Second, as we explain in the following, an incorrect CHANGE move of ¢ could
also occur after a RESET move by ¢’s distance-2 neighbor which initial had
the same color as ¢. Immediately after the initial CHANGE move, c(1) is
larger or equal to ¢pmin(j) for all j € N(i). So if ¢(i) is to change again, at
least one of the nodes in N (i), for instance j, should update cpin(j) > ¢(i).
At this time j will also point to . The node j can only do this if there exists
a node u € N(j) such that the ID of w is higher than 7 and ¢(i) = c(u).
As long as j is pointing to ¢, the value of ¢(u) cannot change, except that
u can execut a RESET move. So if u makes a RESET move before ¢ makes
the CHANGE move, then after ¢ makes the CHANGE move, ¢(7) might dis-
appear from the distance-2 neighbors of . It follows from Lemma 14 that
each node can make at most one RESET move. Since ¢ can have at most
n distance-2 neighbors, ¢ can make at most n incorrect CHANGE moves in
this case. After the RESET move of u, as long as j is pointing to i, the value
of ¢(u) cannot change. So if ¢ changes its color due to a distance-2 coloring
conflict with u, the color that ¢ is changing from still remains in the node u,
and the following CHANGE move by node ¢ is a correct CHANGE move. It
follows that each node can make O(n) incorrect CHANGE moves.

After considering the incorrect CHANGE moves, we now look at the cor-
rect CHANGE moves. We define G?*(i) as a subgraph of G. A node j is
part of G?#(3) if there exists a sequence of nodes i = vy, vy, ---,v = j such
that for each consecutive pair v, and v,41 the following two conditions are
satisfied: (1) The ID of v,41 is higher than the ID of v,. (2) v, and v, 41
are distance-2 neighbors. Figure 5.2 gives an example of how G?*(3) is de-
termined. The letter inside the node is the name of the node. The number
outside the node is the ID of the node. Only the dark nodes are parts of
G*(i). We define d**(i) as the number of nodes in the subgraph G2*(3).

Lemma 16 FEach node i can make O(n?) correct CHANGE moves.

Proof: After the first CHANGE move of 4, it follows from Lemma 15 that as
long as ¢’s distance-2 neighbors do not make a RESET move before ¢ makes
a CHANGE move, then all further CHANGE moves of i are correct. Only
a node with larger ID can force a node with smaller ID to change its color
through a CHANGE move. A node ¢ only makes a correct CHANGE move
when at least one of its distance-2 neighbors with higher ID has the same
color as it. After each correct CHANGE move by node 4, the color « that ¢
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Figure 5.2: Example of how G?¥(4) is determined

just changed from must still exist in at least one of its distance-2 neighbors
v. If v later changes from a with a correct CHANGE move, then a must
still be in G?*(4). This follows since G*(v) C G*#(i). The color a could
disappear from the subgraph G2¥(i) later on, but this would only be caused
by some other node’s incorrect CHANGE move or RESET move. Since each
node can make at most n incorrect CHANGE move and one RESET move,
there can at most be d?*(i)n incorrect CHANGE moves and d?*(i) RESET
moves in G?*(i). So at most d2*(i)(n + 1) colors can disappear from GZ*(3).
Each color that i changes away from must either remain in G**(i) or disap-
pears as a consequence of an incorrect CHANGE move in G?¥(7). Since at
most d**(i)(n + 1)n colors can disappear and G?¥(i) can only store d2*(q)
distinct colors, it follows that each node executes at most d2*(i)(n + 2) cor-
rect CHANGE moves. Since d?*(i) < n, the result follows.

It follows from Lemma 15 and Lemma 16 that each node can make O(n?)
CHANGE moves. After having analyzed the CHANGE moves, we now look
at the complexity of the remaining rules of our algorithm one by one.

Lemma 17 Each node i can make at most O(n?) SET FLAG moves.

Proof: On any node, SET FLAG moves and CHANGE moves must al-
ternate. There can at most be one more CHANGE move than SET FLAG
moves, this can only happen when the CHANGE move is the initial move

of the node. Since each node can make at most n> CHANGE moves, we get
that each node can make O(n?) SET FLAG moves.

Lemma 18 Each node i can make at most O(d;n?) SET MIN moves.

Proof: A SET MIN move can only happen when a node i is D2UCM-alive
and it is not pointing to the node with the smallest ID in {sN (i), fN(3)}.

44



We are going to show that there are two cases when a node will make a
SET MIN move. First, a SET MIN move causes the pointer of 7 to go from
NULL or to switch to some node j with higher priority(with lower ID) than
the node i is currently pointing to after j updates flag(j) to 1. It follows
from Lemma 17 that each node can make O(n?) SET FLAG moves. Thus
there could be O(d;n?) such SET MIN moves made by node i. Second, a
SET MIN move will make ¢ point to a node v with a higher ID than j when
j makes a CHANGE or RESET move. We know that each node can make
O(n?) CHANGE moves, and it follows from Lemma 14 that each node can
make at most one RESET move. Thus there are at most d;(n? 4+ 1) such
SET MIN moves. In total, each node i can make O(d;n?) SET MIN moves.

Lemma 19 FEach node i can make O(d;n?) SET NULL moves.

Proof: On any particular node, a SET NULL move and a SET MIN move
must alternate. There can at most be one more SET NULL move than SET
MIN moves, this only happen when the SET NULL move occure before the
first SET MIN move of the node. It follows from Lemma 18 that each node
i can make O(d;n?) SET MIN moves, and O(d;n?) SET NULL moves.

Lemma 20 Each node i can make at most O(d;n*) UPDATE moves.

Proof: Whenever a node ¢ changes its pointer, it will make an UPDATE
move. From Lemma 18 and Lemma 19, each node can change its pointer at
most O(d;n?) times. Thus each node i can make at most O(d;n?) UPDATE
moves.

We can now give the total complexity of our algorithm.

Theorem 21 The D2UCM algorithm will stabilize in O(mn?) moves with
a valid distance-2 coloring.

Proof: From Lemma 15 through Lemma 20, each node makes at most
O(d;n?) moves. Thus it follows that the number of moves of algorithm can
make is > ;e din? = n? Yoy di = 2mn? = O(mn?). From Theorem 13, a
stable solution is a correct solution and the result follows.
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Chapter 6

A grundy type self-stabilizing
distance-2 algorithm

The distance-2 algorithm D2UCM in the previous chapter can only guaran-
tee to solve the distance-2 coloring problem, but both the number of different
colors and the value of the highest color could be high. In the worst case,
the algorithm could use n colors. This is the case if each node starts with
a different color. Also the highest color could be any large value that can
be stored in ¢(i) and ¢pin (7). Thus in this chapter we are going to give an
improved algorithm IMPROVED D2UCM that limits the value of the
highest color. What we are trying to do is to limit the color number of a
node ¢ to the number of ¢’s distance-2 neighbors, or a little more but still
near the number of its distance-2 neighbors. To achieve this, a node must
know its number of distance-2 neighbors.

6.1 Variables

In this section, we will use all the notation and variables from the previous
chapter. Besides this, we require some new variables that we now present.
e Let nln(i) be a variable that is set to the number of i’s direct neighbors.
e n2nli] is a variable that contains the summation of nln(j),Vj € N(i) plus
1 for 7 itself.

e When a node 7 notices that one of its neighbors j has a coloring prob-
lem, ¢ will change its pointer to point to j. In addition node ¢ will also set
a variable p(7) to store the current color ¢(j) that j should change away from.

Thus in this algorithm eight variables are stored in each node. This should
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be compared with five variables from the previous D2UCM algorithm.

6.2 The algorithm

Like the former distance-2 algorithm, for a node ¢, we define a function Cor-
rectValue to update its ¢pin (i) value, and a function CorrectColor to change
its color. The CorrectColor function is the same as for D2UCM, but the
CorrectValue function is slightly different.

The following function will return the first value in the range (¢(j), - - -, n2n[j],1,2,-- -, c(j)—
1] that is not equal to ¢(r) for any r € N[i]. Notice that such a value must
exist if the value of this value n2n[i] is correct.

int CorrectValue(i, j){

if i — 7, where j = min sN (1)
return the first value a in (¢(j),---,n2n[j],1,2,---,¢c(j) — 1]:
Vr € N[i] - a # c(r)

else
return (0)

}

Compared with the D2UCM algorithm, we have added three new rules:
NUMD1, NUMD2, and LOWER. The NUMDI1 rule calculates | N(i)| for the
node ¢ and assigns this vale to nln(i). The NUMD2 rule gets an approxi-
mation of the number of nodes within distance-2 of ¢ and assigns this value
to n2nli]. If there are no cycles of length four containing i, the n2n[i] value
we get is exactly the same as the number of nodes within distance-2 from
i. But if there is any such cycle, n2n[i] will be more than the real number,
because nodes in the cycle are added more than once to n2n[i]. The reason
why we need the n2n[i] number is that we wish to limit the color of i to the
approximate number of i’s neighbors within distance-2. The purpose of the
LOWER rule is to make the large color number lower. If the color number
of a node i is larger than n2nli], we set ¢(i) = 1.

Besides these three new rules, we change slightly in the SET MIN rule, SET
FLAG rule, and the CHANGE rule. We introduce a new variable p(i) in
these three rules. The reason why we need to use this variable p(i) is as fol-
lows. Based on the CorrectValue function, when ¢ — j where j = min sN (1),
the correct ¢pin(i) value could be less than ¢(j). Thus if ¢ does not update
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Figure 6.1: Example illustrates the necessity of the variable p(7).

its pointer or ¢pin (i) value after 7 has made a CHANGE move, j will not
know if the pointer that is pointing to it and the ¢, (i) value i is providing
is because of the old coloring problem that is already solved or because of a
new coloring conflict. Thus j might be forced to make infinitly many wrong
CHANGE moves. For the D2UCM algorithm, the color number a node j
is changing into always increases. Thus if the node 7 that is pointing to j
does not update its pointer or ¢y (i) value after j has made a CHANGE
move, this will not force j to make unnecessary CHANGE moves.

Apart from these changes, the rules are the same as for the D2UCM algo-
rithm.

We now give an example in Figure 6.1 that shows what will happen if we do
not use the p(i) variable. We remind the reader that the ID of each node
is represented by a letter, and nodes execute the rules in alphabetic order
according to their IDs. The number inside node i is the value of ¢(i). The
arrows on the edges represent pointer values. The number on the top of
each arrow is the value of ¢,,i,. The number on the left side of the node is
its flag value. To simplify the graphs, for each pair of graphs we actually
make several moves. Also, we do not show the NULL pointers and the 0 flag
values.
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Figure 6.1(a) is the initial configuration. Since nodes B and D are IM-
PROVED D2UCM-alive, they both change their pointers to point to A
and update Cpin(B) and ¢pmin(D). Then node A changes flag(A) to 1.
This is the configuration that is shown in Figure 6.1(b). After this, node A
changes its color and sets flag(A) to 0. But B and D do not update their
pointers and ¢pin(B) and ¢ (D). This is the configuration that is shown
in Figure 6.1(c). Thus A might repeatly change its color between 4 and 5
an infinite number of times, since node A cannot tell if the pointers from B
and D and ¢pin(B) and ¢pin(D) are because of a new coloring conflict or a
problem that is already solved.

The following set of rules give our improved self-stabilizing distance-2 color-
ing algorithm. Note that whenever a node ¢ can execute the RESET rule, it
will execute this before executing any of the other rules. Also note that the
value returned by the CorrectValue function is slightly changed compared to
the D2UCM algorithm.

RESET: if 3j € N(i) : (i) = ¢(j)
then c(i) = min{l > 1|Vj € N(7) : ¢(j) # }

NUMD1: if nln(i) #| N(1) |
then nln(i) =| N (i) |

NUMD?2: if n2nli] # 1 + Y nln(j),Vj € N()
then n2nfi] = 1+ > nln(j),Vj € N(3)

LOWER: if ¢(i) > n2nl[i]
then c(i) =1

SET MIN: if i is IMPROVED D2UCM-alive A i /4 min{sN (i), fN (i)}
then i — min{sN (i), fN (i)}
p(i) = c(min{sN (@), fN(i)})

SET NULL: if i is - IMPROVED D2UCM-alive Ai A~ NULL
then i — NULL

UPDATE: if ¢, (i) # CorrectValue(i, —)
then ¢, (i) =CorrectValue(i, —)

SET FLAG: if flag(i) #1A3Jj € N(i): (j — i Ap(j) = c(i))
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then flag(i) =1

CHANGE: if Vk € N(i) : k — i Ap(k) = c(i)
then c(i) = CorrectColor(i)
flag(i) = 0

6.3 Example

We use the same graph as the one we used for the D2UCM algorithm, and
show that we can color the graph with fewer colors using the new algorithimn.
To simplify the graphs, several moves are made between each subfigure. The
number at the top right corner of each node ¢ is n2n[i]. The number in the
bracket near the pointer of i is p(i). The other symbols are the same as for
the former example.

Figure 6.2(a) is the initial configuration. Each node ¢ updates its n2n[i] value,
this is the configuration that is shown in Figure 6.2(b). Each node i such
that ¢(i) > n2n[i] should change its color to 1. Thus the colors of C, G, I, L,
and M are all changed to 1. This is the configuration that is shown in Figure
6.2(d). Nodes B and H are IMPROVED D2UCM-alive, and both B and
H change their pointers to point to A and update p(B),p(H), ¢min(B), and
¢min(H). Then node A changes flag(A) to 1. It follows that node K and
F also change their pointers to point to A and update p(K), p(F), cmin(K),
and ¢pin(F'). This is the configuration that is shown in Figure 6.2(e). Since
all the neighbors of A are pointing to A, and all the p value of them are equal
to ¢(A), node A then changes its color and flag(A) changes to 0. Nodes B
and K are now IMPROVED D2UCMe-alive. B changes its pointer to
point to C and K changes its pointer to point to L. Then B and K update
p(B),p(K), cmin(B), and ¢pmin(K). Both B and K then change their flag
values to 1. This is the configuration that is shown in Figure 6.2(f). In
Figure 6.2(c), C and L change their colors. After this, there is no privileged
node, and the algorithm is stable.

The same example, using the D2UCM algorithm in the previous chap-
ter, would result in the graph being colored with 10 colors. But using the
IMPROVED D2UCM algorithm, the graph can be colored with only 7
colors.
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Figure 6.2: Example illustrates how thé IMPROVED D2UCM algorithm
works.



6.4 Correctness and running time

Because of time limitations, we do not prove that a stable solution of the
IMPROVED D2UCM algorithm is a correct solution. Neither do we give
the complexity of the whole algorithm. We only discuss the complexity of
the new rules compare with the D2UCM algorithm.

Lemma 22 FEach node can make at most one NUMD1 mowe.

Proof: Node i only makes a NUMD1 move when the nln(i) value is in-
correct. Since ¢ can read the information from nodes in N (%), it only needs
to calculate nln(i) once. Then nln(i) will never change after the NUMD1
move of 7. It follows that each node can make at most one NUMD1 move.

Lemma 23 Each node can make at most d; +1 NUMD2 mowes.

Proof: First ¢ can make one initial NUMD2 move. Then whenever any
node j in N(i) updates its nln(j) value, node ¢ will make a NUMD2 move
to update n2nli]. It follows from Lemma 22 that each node can make at
most one NUMD1 move. Thus each node can make at most d; + 1 NUMD?2
moves.

Lemma 24 FEach node can make at most d; +2 LOWER moves.

Proof: Node i only makes a LOWER move when ¢(i) > n2n[i]. After the
LOWER move of i, ¢(i) will become 1. Later ¢(i) could change to any value
in the range of (c(i),---,n2n[i], 1,2, -, c(i) — 1], but never change to a color
number that is larger than the current n2n[i] again. It follows from Lemma
23 that each node can make at most d; + 1 NUMD2 move. The worst case
is every time after the NUMD2 move the value of n2n[i] decrease, and the
value ¢(7) changed into is always larger than the new n2n[i] value. Thus each
node can make at most d; + 2 LOWER moves.
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Chapter 7

Conclusion

In this chapter we first give a summary of the results in this thesis. We then
will point out some open problems.

7.1 Summary

In this thesis we have investigated the development of self-stabilizing al-
gorithms for the distance-k coloring problem. We have presented the pa-
per by Hedetniemi et al. [7] on how to get distance-k information using a
self-stabilizing algorithm. The DkCA algorithm showed how to use this
distance-k knowledge to solve the distance-k coloring problem to obtain a
Grundy coloring. This algorithm needs to store O(n) variables on each node
and has a running time of O(n*n!°9%). Since this algorithm can use quite a
bit of memory, we designed the distance-2 coloring algorithm D2UCM. This
only uses five variables on each node and has a running time of O(mn?) com-
pared to O(N[i]) and O(n®) respectively in the DkCA algorithm when ap-
plied to distance-2. We notice that, for a distance-2 problem, the D2UCM
algorithm is both faster and uses less memory than the DkCA algorithm.
However the D2UCM algorithm can only guarantee to solve the distance-2
coloring problem, but both the number of different colors and the value of
the highest color could be high. We therefore designed the IMPROVED
D2UCM algorithm where the color numbers are limited to approximately
the number of each node’s distance-2 neighbors. This algorithm has to store
eight variables on each node.
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7.2 Open problem

Because of the time limitation on this thesis, there are still some problems
of interest that we did not investigate. For the D2UCM algorithm, we only
considered the distance-2 case. Based on the idea of this algorithm, we could
have done further research to find out a way to solve the distance-k coloring
problem using a constant amount of memory on each node. One should try
k = 3 first. Also we could work on proving the correctness and bounding the
running time of the IMPROVED D2UCM algorithm.

As we have shown, for the distance-2 coloring problem, the D2UCM algo-
rithm is both faster and uses less memory than the DkCA algorithm. It is
possible that the same idea as were used in the D2UCM and IMPROVED
D2UCM algorithms could be used in designing efficient algorithms for other
problems other than the coloring problem.
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