
(Towards an) Implementation of a

Graphical Editor for Diagrammatic

Predicate Logic in the Eclipse Platform

Stian Skjerveggen

Department of Informatics
University of Bergen

June 2008

Contents

List of Figures v

Preface vi

1 Introduction 1

1.1 Motivation . 1

1.2 A short problem description . 1

1.3 Structure of thesis . 2

2 Background 3

2.1 Software Engineering . 3

2.2 Object Oriented Programming 4

2.3 Graphical Modeling Languages 4

2.4 Model-Driven Engineering . 5

2.4.1 Model-Driven Architecture 5

2.5 The problem with modeling languages 7

2.6 Diagrammatic Predicate Logic 8

2.6.1 Category Theory . 8

2.6.2 First Order Logic . 8

2.6.3 Modeling and the DPL Framework 8

2.6.4 A DPL Example . 9

3 Description of problem 11

3.1 Today’s situation and existing solutions 11

3.1.1 Sketcher95 . 11

3.1.2 Sketcher.Net . 15

3.2 The Project: Background and General Idea 16

i

4 Problem Analysis 18

4.1 Available Technology . 19

4.2 The Eclipse Platform . 19

4.2.1 History of Eclipse . 20

4.2.2 Structure of the Eclipse Platform 20

4.2.3 The Eclipse Modeling Framework Project 21

4.2.4 Standard Widget Toolkit 22

4.2.5 Graphical Editing Framework 23

4.2.6 Graphical Modeling Framework 25

4.3 Summary of analysis and issues to resolve 26

5 Solution and implementation 28

5.1 The core of the DPL formalism 28

5.2 How to implement the model in EMF 29

5.3 Letting GMF do its work . 31

5.4 An Example Graph Editor . 33

5.5 The GMF generated packages . 34

5.6 Extending the Simple Graph . 36

5.6.1 Adding Compartments . 36

5.6.2 Modifying Connection creation 37

5.7 Creating instances of a simple graph 38

5.8 Adding Constraints for Nodes and Arrows 38

5.9 Listening for changes . 39

5.10 Changing visualization of an Arrow 40

5.10.1 Connection Decorators in GMF 41

5.10.2 Simple geometric decorators 42

5.10.3 Circle Decorator . 42

5.10.4 Composed figures as decorators 43

5.10.5 Changing visualization on notification 44

5.11 Adding Specialized Types . 44

6 Conclusion and further work 47

6.1 A summary of the results . 47

6.2 Further work . 48

ii

A Eclipse Setup 51

A.1 Where to find it all . 51

A.2 GMF Examples . 52

B Resources 53

Bibliography 54

iii

List of Figures

2.1 Comparison between standard software engineering steps and MDA 6

2.2 A Σ specification . 10

3.1 Sketcher 95 in action . 12

3.2 The “Create new document” dialog from Sketcher95. 12

3.3 Node and Arrow Constraints . 13

3.4 Diagram Constraint . 14

3.5 Sample signature in Sketcher95 14

3.6 Adding a diagram constraint in Sketcher95 15

3.7 Σ-specification in Sketcher95 . 16

3.8 Sketcher.NET in action . 17

4.1 The Eclipse Platform User Interface 19

4.2 EMF unifies Java, XML and UML 21

4.3 Simplified subset of Ecore model 22

4.4 A simplified overview of the Shape hierarchy 23

4.5 Model-View-Controller . 24

4.6 Communication chain in GEF . 25

4.7 GMF dependencies . 26

5.1 A rough UML class diagram of the structure 30

5.2 GMF Overview . 31

5.3 The Ecore file of a simple graph 33

5.4 The GMFMap of a simple graph 34

5.5 A diagram editor creating instances of simple graphs 35

5.6 GMF compartment mappings . 37

5.7 Weird behavior of node layout . 37

5.8 Node layout fixed . 38

iv

v

5.9 Enumeration of the different visual types 39

5.10 The connection figure hierarchy 41

5.11 Decoration Factory . 42

5.12 Location and Reference point in a connection 42

5.13 Rhomb decorator, filled and open 43

6.1 Connections between connections in GMF 50

Preface

Foreword

This is my master thesis in the Program Development Master’s Programme at
the Department of Informatics, University of Bergen and the Bergen University
College.

Software modeling for me has always been about the UML and class dia-
grams. But I’ve often found that the theory and practice are not the same, and
my models usually gets thrown away or replaced through endless refactorings.
When I first took on this master thesis, my expectations were that I might get to
learn more about modeling software systems. What I have learned is that class
diagrams are just the tip of the iceberg. People use diagrams in many different
ways; as a quick sketch to show some aspect of a system or as a blueprint to
derive code from.

I am very grateful of getting the opportunity to work with the Eclipse Plat-
form. Having used it exclusively as a Java editor in the past, this project has
shown me that editing Java code is not at all the only thing Eclipse is capable
of. I hope to bring some of the things that I have learned while working with
Eclipse with me and put them to use in the future.

Acknowledgements

First of all I would like to thank Stine for her patience and understanding while I
have been working on this thesis and couldn’t give her the attention she deserves.
I wish to thank all those who have contributed to this thesis, I would especially
like to thank Uwe Wolter, Adrian Rutle and Yngve Lamo for all their help and
valuable comments. Without them, I could not have completed this thesis.

Stian Skjerveggen,
Bergen, June 2008.

vi

Chapter 1

Introduction

This master thesis is mainly about a new approach to software modeling. It is a
part of an ongoing project at the Bergen University College and the University of
Bergen started in early 2006, called Generic Diagrammatic Software Sketches1.
The project aims at investigating the theoretical and practical aspects of using
Diagrammatic Predicate Logic (DPL)2 [30] in specification of software.

1.1 Motivation

The diversity and heterogeneity of modeling languages make the needs for model
integration and model transformation mechanisms more relevant than ever. Es-
pecially in Model-Driven Engineering (MDE) where the primary software ar-
tifacts are graphical models of the system. These models can be considered
blueprints and most of the software is derived, either by hand-coding or code-
generation, from these blueprints.

Most of the graphical notations that are in use today does not have proper
semantics. The problem with this is that it can lead to ambiguous construc-
tions and semantic relativism, so the need for formal specification methods have
become a vital issue.

Diagrammatic Predicate Logic (DPL) is a specification formalism that is
able to define diagrammatic modeling languages with a strong mathematical
foundation. It is a graph-based specification format which takes ideas from both
Category Theory and First-Order Logic and adapts them to software engineering
needs.

1.2 A short problem description

The primary goal of this thesis is to explore how the Eclipse Platform can
be beneficial for the Generic Diagrammatic Software Specification project, and

1http://gs.hib.no
2The DPL framework is called Generalized Sketches in earlier publications

1

http://gs.hib.no

CHAPTER 1. INTRODUCTION 2

how a graphical editor in the Eclipse Platform can be put together. The Eclipse
Platform is designed for building integrated development environments, with
all its functionality based on various plug-ins. The objective is to explore the
plug-ins that are made especially for modeling software and find out how to
utilize them in the DPL framework.

1.3 Structure of thesis

The structure of this thesis is based on a template provided by Carsten Helgesen
of the Bergen University College. While some things didn’t fit in the template,
the structure has been altered slightly. Chapter 2 provides a background for
the thesis and explains the context the project is to be used in. Chapter 3
discusses the existing solutions and provides a general description of the foun-
dation of this thesis, while Chapter 4 shows a general overview of the Eclipse
Platform and explains why it was chosen as a base platform for the thesis.
Chapter 5 discusses some approaches on how to solve the problems from the
project description Chapter 6 evaluates how the Eclipse Platform performs
according to the requirements and provides some thoughts on further steps.

Chapter 2

Background

2.1 Software Engineering

The term “software engineering” was first coined at the first NATO Software En-
gineering Conference in 1968. The conference was held to discuss what was then
called the “software crisis” [28]. The term was used to describe the impact of
the increase in computing power and the increasing complexity of the problems
that could be solved. What was previously unrealisable computer applications
could now be implemented. But the immaturity of the software engineering
profession resulted in projects that were running over time, low quality software
and unmanageable projects with code that was difficult to maintain. The in-
crease in computer power had led to a decrease in software quality. In Edsger
Dijkstra’s 1972 ACM Turing Award lecture, “The Humble Programmer” [6],
Dijkstra stated that:

[The major cause of the software crisis is] that the machines have
become several orders of magnitude more powerful! To put it quite
bluntly: as long as there were no machines, programming was no
problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, pro-
gramming has become an equally gigantic problem.

– Edsger Dijkstra, The Humble Programmer

In the 1940s all machine code was written by hand. Some early tools such as
macro assemblers and interpreters were developed in the 1950s, and in the 1960s
optimizing code compilers were developed, helping productivity and quality. It
was first then that the really big programmer projects could be realized. The
resulting software were orders of magnitude larger and more complex than pre-
vious software systems. The early experience in building these systems showed
that informal software development was not good enough. Projects was de-
layed by large amounts, budgets were exceeded and the produced software was
difficult to maintain and performed poorly.

3

CHAPTER 2. BACKGROUND 4

To solve this crisis, several software engineering processes and methodologies
were created with various degrees of success. There is no ’ideal’ approach to
software engineering because of the wide diversity of software systems, this
means that there is a need for a diversity of approaches to software development.

In the 1970s the focus shifted to collaboration. Several collaborative soft-
ware tools were developed, such as Unix, code repositories and so on. By the
1980s, personal computers and personal workstations had become common, and
the rise of consumer software began. The first commercial object oriented pro-
gramming language, Smalltalk, was released in 1980 and introduced the term
object oriented programming. Smalltalk was influenced by Simula, a language
developed in Norway which was the first introducing the techniques we now
know as object oriented programming.

2.2 Object Oriented Programming

With the introduction of objects which define their own data and behavior, one
could begin to use a higher level of abstraction in the discussion of software
system design. The concept of Object Oriented Programming (OOP) led to a
variety of new object-oriented programming languages, database system as well
as software modeling approaches. OOP remained the dominant programming
methodology, largely because of C++ and the popularity of graphical user in-
terfaces, which is well suited for OOP. Instead of thinking in terms of processes
and how a computer would execute the processes, the focus was shifted to ob-
jects and their behavior. Object orientation could be described as a black box
technology were the implementation is abstracted away from the user.

Mainly due to the introduction of OOP, the level of abstraction in software
specifications has become higher. Raising the level of abstraction has been a
continuous goal of computer scientists since the beginning of computer science.
A widely used technique is to document system specifications and design using a
set of models. These models are graphical representations that describe business
models. Because they are a graphical representation it is easier to understand
them for software engineers than by using a detailed description in a natural
language. In software engineering, the software specifications has to be both
descriptive and comprehensible to be able to communicate its needs to the
different participants in a software project.

2.3 Graphical Modeling Languages

Graphical modeling languages have been around for a long time. In the 1970s,
Peter Chen’s Entity-Relationship Diagrams (ERD) [4] became very popular in
data modeling. The “standard” for modeling software today is the Unified
Modeling Language (UML). It is a family of graphical notations that help in
describing and designing software systems, and in particular, software systems
that are built using object oriented programming. In the late 1980s and early
1990s there were many different types of graphical notations around. The three
“founders” of the UML; Grady Booch, James Rumbaugh and Ivar Jacobson all

CHAPTER 2. BACKGROUND 5

had their own object oriented modeling approaches and worked together to unify
them. The UML is a fairly open standard which is controlled by the Object
Management Group (OMG), which is an open consortium of companies.

The fundamental reason as to why one uses a graphical modeling language in
describing the design of a software system is because a programming language is
not at an appropriate level of abstraction. Despite the usefulness of a graphical
notation describing the system design, there are many disputes in the software
engineering world about their role. One perspective is that the only important
thing is working code, not beautiful models. As Jack Reeves put it, “The code
is the design” [15]; pointing out that the only thing that truly is in sync with
the code is the code itself. Other software engineering approaches, such as
Agile Software Development [19] and in particular Extreme Programming [2],
use graphical modeling as a sketch. With this usage, developers use a graphical
model to help communicate some part or aspect of the system, not the whole
system up-front. This is more because of the agile software’s nature of being able
to respond to changing requirements and of responding to the changes rather
than following a plan.

Martin Fowler mentions in his book, UML Distilled [15], different ways of us-
ing UML. The most common one is using UML as a quick sketch to communicate
some aspect of the software, as it is done in Agile Development. Another usage
is UML as a blueprint. This is used more in the Big Design Up Front (BDUF)
methodologies; often associated with the Waterfall Model [28] of software de-
velopment. Here all of the system’s design should be completed and perfected
before the implementation begins and because of this more sophisticated tools
are needed to handle all the details that are required.

2.4 Model-Driven Engineering

With increasingly sophisticated software engineering tools it is possible to start
with Model-Driven Engineering (MDE). This is a recent concept, where the
model is the primary engineering artefact. Various degrees of model integra-
tions are used, either by hand-writing the code using the model as a blueprint,
or by generating the code from the models using code generators. As MDE con-
tinues its evolution it adds greater focus on the architecture of software systems
and automation in software development, and with it comes a higher level of
abstraction in software engineering. This abstraction allows for simpler mod-
els with a bigger focus on the problem space, while earlier methods were more
process-oriented.

2.4.1 Model-Driven Architecture

The best known approach to MDE is the Model-Driven Architecture (MDA)
from Object Management Group, launched in 2001. MDA provides a set of
guidelines for structuring software specifications expressed as models. The MDA
is focused on forward engineering ; which is to produce code from abstract hu-
man elaborated specifications. One of the aims of MDA is to separate design
from architecture. This is done by dividing the development work into two areas.

CHAPTER 2. BACKGROUND 6

Figure 2.1: Comparison between standard software engineering steps and MDA

An application is represented by creating a Platform Independent Model (PIM)
which is a UML model that is independent of any particular technology or plat-
form. Tools will then translate the PIM into a Platform Specific Model (PSM).
A comparison between a traditional approach and the MDA approach is seen
in figure 2.1.

In traditional software design one would go on to create the system specific
or language specific diagrams after the system design phase, and from there on
implement the system using the created diagrams. The result would be some
code which then will undergo some sort of testing before an eventual deployment
of the software. To shorten the process instead of going back to re-evaluate the
requirements and analysis to create updated diagrams, programmers will often
go directly back to the implementation phase and do changes there; thereby
leaving the diagrams not in sync with the code. In the MDA approach the
platform (system and/or programming language) specific diagrams will be au-
tomatically created, and the code will be generated from these diagrams. The
good thing about this is that the model will always be in sync with the code,
since the code is derived directly from the model. In Figure 2.1 an comparison of
the system development process in traditional development and MDA is shown.

CHAPTER 2. BACKGROUND 7

There are some concerns about MDA however. The MDA approach is set
by a variety of technical standards, some of them yet to be defined or yet to be
implemented in a standard manner. Take for example QVT (Queries/Views/-
Transformations) which is the OMG standard for model transformation which
there exist no full implementation of, although there are several projects which
are partially QVT-compliant.

As mentioned earlier, in MDA the application platform and the implement-
ing technology are chosen independently of the input models (the PIM). This
provides flexibility and survives changes made in the realization technologies
and software architectures. In addition, the domain model can be modified
(and regenerated) as a response to changes in requirements independently of
the application platform. This transformation between PIM and PSM are spec-
ified by a transformation definition language and executed by transformation
tools. In order to get inter-operability and models that also work with other
MDA-compliant environments, the models as well as the transformations be-
tween them are required to be defined formally. This means that there is a
need for techniques that can be used to specify formal models and formal model
transformations. Many tool vendors claim that they are fully MDA compliant,
while in truth, the PIM to PSM transformations are not 100% automated.

2.5 The problem with modeling languages

The problem with UML is that it is a general-purpose language. It is not
intended to be a complete development method [25]. It is intended to support
all, or at least most, of the existing development processes. But because it
is meant as a general-purpose modeling language the standard is so complex
that the standard is often open for multiple interpretations [15] also known as
semantic relativism. Criticism against UML claims that UML is bloated and
overly large and complex because, as it is a general-purpose language, it contains
many diagrams and constructs that are either redundant or rarely used. Because
of its complexity it makes it harder to learn and adopt, which could be why the
most frequent use of UML is as a sketch where precision and details is not as
important.

But in the field of Model-Driven Engineering, having precise formal seman-
tics for the diagrammatical notation is required [30]. This means that a good
modeling should be graph based, formalized and expressive enough to capture
the aspects of the universe it is modeling. The vast majority of the formal se-
mantics for diagrammatic languages that were built according to MDE’s needs
employed a First-Order or similar logic systems based on string-based formu-
las [30]. This makes writing models complicated and prone to errors, and as
mentioned earlier; it is easier to communicate a graphical model rather than a
detailed natural language description. Another point made is that since soft-
ware models are graph-based, modeling languages that use a string-based logic,
such as UML with OCL expressions, rather than a graph-based logic may fail
to express all the properties and aspects of the software system in an intuitive
way [26]. A graphical modeling language, or a diagrammatical model is thus
better than a string-based model. As it is graph-based it makes the relation

CHAPTER 2. BACKGROUND 8

between the syntax and the semantics of the model more compact and easier
for the domain experts to understand.

2.6 Diagrammatic Predicate Logic

Diagrammatic Predicate Logic(DPL) [30, 31] is a generic formalism. It is a spec-
ification formalism to define diagrammatic modeling languages with a mathe-
matical foundation. DPL is a graph-based specification format that borrows its
ideas from both categorical and first-order logic and adapts them to the needs
of software engineering.

2.6.1 Category Theory

In mathematics, category theory deals in an abstract way with mathematical
structures and relationships between them. Instead of focusing on the individual
objects (or groups) possessing a given structure, Category Theory emphasizes
the morphisms (relations) between the objects. Category theory characterizes
objects in terms of their “social life” [9]. A morphism is an abstraction derived
from structure-preserving relations between two mathematical structures. The
most typical application of category theory in the area of computer science is
in algebraic development techniques, but it can also be put to use in concurrent
and object-oriented systems, software architecture and service-oriented software
development [9].

2.6.2 First Order Logic

First-order logic (FOL) is a formal deductive system used in mathematics, phi-
losophy, linguistics, and computer science. It goes by many names, including:
first-order predicate calculus (FOPC), the lower predicate calculus, the language
of first-order logic or predicate logic. Unlike natural languages such as English,
FOL uses a wholly unambiguous formal language interpreted by mathemati-
cal structures. FOL is a system of deduction extending propositional logic by
allowing quantification over individuals of a given domain of discourse. FOL
can be applied in computer science in the areas of language semantics, formal
specifications, model checking and logic programming among others.

2.6.3 Modeling and the DPL Framework

Diagram specifications (DS) in DPL are categorical structures which consists of
a graph in which some diagrams are marked with predicates from a predefined
signature. A diagram is a visual representation of a part of the graph, while a
signature, denoted by Σ, is a collection of diagrammatic predicate symbols. To
make the DPL formalism suitable for software engineering it is a generalization
and adaption of the categorical sketch formalism where signatures are restricted
to a limited set of predicates: limit, colimit and commutative diagrams [27].
Signatures and diagram specifications are the concepts in the DPL framework

CHAPTER 2. BACKGROUND 9

which are used to represent modeling languages and models. The definitions of
these concepts are as follows (The definitions are taken from [26]):

Definition 1 A diagrammatic predicate signature Σ := (Π, ar) is an abstract
structure consisting of a collection of predicate symbols Π with a mapping that
assigns an arity (graph) ar(p) to each predicate symbol p ∈ Π, i.e. ar : Π →
Graph.

Definition 2 A diagram (p, δ) labeled with the predicate p in a graph G(S) is
a graph homomorphism δ : ar(p)→ G(S), where ar(p) is the arity of p.

Definition 3 A Σ-specification S := (G(S), S(Π)), is a graph G(S) with a set
S(Π) of diagrams in G(S) labeled with predicates from the signature Σ.

2.6.4 A DPL Example

The following example is adopted from [26]. The ΣUML-specification in Fig-
ure 2.2 specifies the class diagram of a simplified software system of persons,
companies and employment. Every person must work for zero or one company,
but a company must hire one or more persons. The first constraint is set by
a predicate [singlevalued] on the arrow worksFor while other constraint is set
by the predicate [total] on the arrow hires. For more information about the
example, see [26].

CHAPTER 2. BACKGROUND 10

Figure 2.2: A Σ specification

Chapter 3

Description of problem

Note: In this chapter the term “generalized sketches” is used frequently. As men-
tioned earlier, the name was later changed to Diagrammatic Predicate Logic as
the “sketch” concept can be misleading. This chapter is however about previous
application, so the original term “generalized sketches” will be used.

3.1 Today’s situation and existing solutions

There exists two solutions for creating models in DPL. But unfortunately, nei-
ther of them are complete. The first version, Sketcher95, was created in 1995 by
a group in Latvia to draw generalized sketches. It was originally a 16-bit appli-
cation, but was later rewritten to support 32-bit. Unfortunately, the company
that the group worked for stopped the project. Which resulted in an application
that has a few bugs, and not suitable for practical work. The source code for the
program has also regrettably been lost, but an executable version still exists,
which is very valuable for this project.

Another project attempted to recreate Sketcher95 in the .Net platform for
Windows. It is described in Ørjan Hatlands master thesis [24]. Unfortunately
not all of the functionality from Sketcher95 was implemented, and the features
missing were left for further development.

3.1.1 Sketcher95

The first version of Sketcher95 was created in 1995 by a group from Latvia. It
was originally created as a 16-bit application for Microsoft Windows. A year
later, probably due to the popularity of Microsoft Windows 95 and the 32-bit
platform, a pure technical job of rewriting the product to a 32-bit version was
done. Due to some problems with the funding of the project, the company
the programmers worked for stopped it. The lead programmer of the project
relocated to USA shortly after. Unfortunately, the source code from the project
was not conserved after this and the whereabouts of it is not known. Fortunately

11

CHAPTER 3. DESCRIPTION OF PROBLEM 12

Figure 3.1: Sketcher95 in action. To the left is the marker signature, the right shows a
signature sketch based on the marker signature.

Figure 3.2: The “Create new document” dialog from Sketcher95.

an executable version of the application is still available, but the source code
and documentation is as mentioned missing.

Sketcher95 is a 32-bit Microsoft Foundation Classes application, implemented
as a Multiple-Document Interface application. This means that it has a single
parent window that serves as a container for several other child windows. A
screenshot of Sketcher95 is shown in Figure 3.1. The main window in Sketcher95
has a menubar and a toolbar containing shortcuts to the most common used
features offered by the menubar and a statusbar at the bottom. The child win-
dows in the application provides the user interface to the two main parts of the
generalized sketches formalism; signatures and sketches.

When a user wants to create a new document two choices are presented; cre-
ating a Marker Signature or creating a Sketch Document (figure 3.2). A sketch
document depends on a marker signature, as the generalized sketches formalism
is that every sketch is based upon a specific signature [30, 31]. When creating

CHAPTER 3. DESCRIPTION OF PROBLEM 13

(a) Node Constraint

(b) Arrow Constraint

Figure 3.3: Node and Arrow Constraints

a marker signature, the user is presented with a marker signature window (as
seen to the left in figure 3.1).

The marker signature starts out empty except for a Constraintless Node and
a Constraintless Arrow, which are always available. The user has the choice
of creating three kinds of constraints. Constraints on a node (Figure 3.3(a)),
constraints on an arrow (Figure 3.3(b)), or constraints on a diagram (Figure
3.4. Each constraint has a marker (hence the wording “marker signature”). A
node constraint consists of three elements; a name, a description and a visual
notation. The visual notation shows how the node will be presented; a square,
square with rounded edges, a circle or other shapes. An arrow constraint has
the same elements, a name, description and visualization, but the visualization
is divided in three parts. This is because an arrow has three parts, a tail, a
body and a head.

In the DPL framework a signature (Σ) is defined as a collection of dia-
grammatic predicate symbols (See section 2.6.3). These predicate symbols, or
markers as they are called in Sketcher95, are to be interpreted as constraints
imposed on the diagrams that are labeled by these markers. The predicates are
divided in three parts, predicates on nodes, predicates on arrows and predicates

CHAPTER 3. DESCRIPTION OF PROBLEM 14

Figure 3.4: Diagram Constraint

Figure 3.5: Sample signature in Sketcher95

on diagrams, i.e. collections of nodes and arrows.

The marker signature thus holds a collection of node constraints, arrow
constraints and diagram constraints. In Sketcher95 all the marker collections
are associated with folders, and it is possible to further organize them by adding
sub-folders. Each marker is associated with an icon that depicts the visual
notation of the constraint while the more complex diagram constraints have a
simple icon, giving that the constraint may be too complex to be represented
by an icon. A sample marker signature is shown in figure 3.5. In the figure a
diagram constraint is selected.

A diagram constraint is, as explained, a collection of nodes and arrows.
When a user is adding a diagram constraint to a sketch document a new dialog
box comes up and the user must select which arrows in the sketch document cor-
responds with the arrows in the diagram constraint. To complete the process all
the arrows must have the same direction and the source and target nodes must

CHAPTER 3. DESCRIPTION OF PROBLEM 15

Figure 3.6: Adding a diagram constraint in Sketcher95

have the same constraints as they do in the corresponding diagram constraint.
As an example, consider a simple predicate denoted by the name [single-valued].
The arity of the predicate denotes the general shape of the predicate. To add
the diagram constraint to a sketch document, the user first have to choose which
constraint to add. The next step is to choose the arrows in the sketch document
that corresponds to the arrows in the diagram constraint as depicted in figure
3.6. The user then selects an arrow in the sketch document. If the diagram
constraint contains several arrows, the process is repeated until all the arrows
in the diagram constraint has a corresponding arrow in the sketch document.
The diagram constraint can also include options to produce missing elements
so it is possible to for example produce a connection between two nodes if there
are no previous arrows between them in the sketch document.

The problem with Sketcher95, as previously mentioned, is that it remains
unfinished and has some application errors. Most of the functionality is im-
plemented, but because of the errors it is not a distributable program. There
are also minor problems with the way things are visualized on the screen, some
arrows are painted wrong or not in the right place and there are unpredictable
application failures. There is also a lack of common GUI functionality such as
copy/paste, undo/redo, zooming abilities and some tool shortcomings. A screen
capture of Sketcher95 in Figure 3.7 shows the example from section 2.6.4.

3.1.2 Sketcher.Net

Sketcher.Net was developed by Ørjan Hatland in 2006 as part of his master
thesis [24] at University of Bergen. The application was written in C# using
the Microsoft.Net platform. Sketcher.Net uses the Sketcher95 as a basis and
takes the same approach as it when it comes to the separation of signatures and
sketches. The user interface was updated to use a Tabbed Document Interface

CHAPTER 3. DESCRIPTION OF PROBLEM 16

Figure 3.7: The example Σ-specification from Figure 2.2 in section 2.6.4 created in Sketcher95

to modernize the application from the traditional Multiple Document Interface.
The result can be seen in Figure 3.8. The project remained as a basis for further
work as all the GUI elements unfortunately did not get implemented. The key
parts that are missing is mainly to complete the framework of basic operations
for the diagrammatic predicate logic formalism and also a few graphical user
interfaces for creating arrow and diagram constraints and other functionality.

As Sketcher.Net is written in C# and the code is available, it makes it a
more viable project to continue on than Sketcher95. But eventually the Eclipse
Platform was chosen as a base for this thesis. The reasons as to why will
be discussed in greater detail later, but the short answer is that the features
and functionality of the Eclipse Platform, coupled with many related modeling
projects that exist in the Eclipse community was too great to ignore.

3.2 The Project: Background and General Idea

The current situation is that there exist no usable tool to create diagrammatic
specifications based on the Diagrammatic Predicate Logic framework. The exist-
ing applications lack the functionality to be considered as more than prototypes
and have been discontinued.

In the Java community the Eclipse Platform has become very popular in the
later years. Also, the frameworks, subprojects and components of the Eclipse
Platform supports most of the features that Model-Driven Engineering requires.
In fact, many implementations of MDA specifications have been implemented
as plug-ins to the Eclipse Platform.

CHAPTER 3. DESCRIPTION OF PROBLEM 17

Figure 3.8: Sketcher.NET in action

There is also the fact that the Eclipse Platform provides many features for
graphical editors as well and thus providing a standard look that can be used as
a base for many different types of graphical editors. The objective of this thesis
is to explore and discuss how the Eclipse Platform can be used or adapted for
use in the Diagrammatic Predicate Logic Project and in Model-Driven Engi-
neering in general. The foundation of the application is based on previous work
such as Sketcher95 and Sketcher.NET, and development will be done by using
their approaches to DPL. It should also, at some point in the future, support
transformations between different graphical modeling specifications. Secondary
tasks include the implementations of visual guides (Wizards) that guide the
signature designer through the design phase.

The Diagrammatic Predicate Logic formalism is a big topic by itself and
under permanent development, and an understanding of the formalism is needed
to develop tools for it. In the area of graphical editing, there a are a few things
that are common to any graphical editor; an underlying semantic model, a
visualization of the model and serialization.

What makes this project so interesting is that it is a whole new approach to
software specification and design. The new trend of Model-Driven Engineering
makes this project very relevant. Finally, there is a lot of focus on the Eclipse
Platform today, and learning more about it and how to manipulate and extend
it is very appealing.

Chapter 4

Problem Analysis

The basic problem at hand is to build a graphical editor for diagrammatic predi-
cate logic in the eclipse platform. This can be divided in two different problems,
with one being how to build a graphical editor in the eclipse platform and the
other one is how to build a graphical editor for diagrammatic predicate logic
(DPL). DPL is a generic formalism suited to define diagrammatic modeling lan-
guages with a strong mathematical foundation. But to produce any graphical
editor for it, the internal structure of DPL must be obtained. To program some-
thing within the Eclipse Platform there is of course a requirement to understand
how Eclipse works. Eclipse consists of many different plug-ins and it is impor-
tant to determine the ones that can be beneficial for this project. A short list
of the major parts in this process looks like the following:

• Obtaining the internal structure of the diagrammatic predicate logic for-
malism

• Implementing a generic graphical editor in the Eclipse Platform

• Customizing said editor to the needs of DPL

Getting the internal structure of the DPL formalism is mainly a theoretical
task, consisting of browsing through various documentation and papers on DPL.
As the project is about building a graphical editor that uses the DPL formalism,
it is important to create a model of the DPL structure. This model will act as
a metamodel for the graphical editor, and models built by the editor conforms
to this metamodel.

The second task is to implement a graphical editor in the Eclipse Platform.
This means that various aspects of a graphical editor must be covered. These
include the following:

• A drawing surface the user interacts with

• A set of tools that defines the operations a user can perform, especially
drawing tools

18

CHAPTER 4. PROBLEM ANALYSIS 19

Figure 4.1: The Eclipse Platform User Interface

• Managing the connection between the visual model and the semantic
model

• Storing the data generated by the graphical editor for future use and
maybe collaboration with other applications

The third task is to extend the graphical editor with the features of the DPL
formalism. This task is made easier by the fact that there exists a prototype of
how an editor for DPL should work, Sketcher95 (See section 3.1.1).

4.1 Available Technology

As mentioned earlier, the Eclipse Platform was chosen as the basis of this
project. This means that all the available technology comes from the Eclipse
Project itself. Luckily the list of subprojects within the Eclipse Project is quite
substantial and there are plenty of related projects to utilize.

4.2 The Eclipse Platform

To most people, Eclipse is a Java editor. While Eclipse is an excellent (and free)
Java IDE, it is also a platform. The Eclipse Platform is designed for building
integrated development environments (IDEs); it is an “IDE for everything and
nothing in particular” [21]. This means that Eclipse can be used for practically
anything, not just as a Java development environment. Figure 4.1 shows a
screen capture of the Eclipse workbench. The workbench is made up of different

CHAPTER 4. PROBLEM ANALYSIS 20

views and an editor. Eclipse also has perspectives which allows for different
arrangement and selection of different views and editors visible on the screen.
The views provide information about some object the user is working on, like
providing an outline of the document a user is editing via the outline view
(shown in Figure 4.1 in the lower left).

To sum it up, Eclipse was chosen because of its features. The plug-in archi-
tecture of Eclipse enables extensions of other plug-ins and loosely coupled func-
tionality. The Eclipse Modeling Framework contributes with a unified frame-
work for creating models and provides both code-generation and serialization
of the model. With the Graphical Modeling Framework you get a generated
diagram editor for the model with all the common user interface functionalities
like copy/paste, zoom and printing already in place. The next sections will
provide a general overview and some short introductions to Eclipse and some of
its frameworks.

4.2.1 History of Eclipse

The codebase in Eclipse originated from IBM VisualAge, developed by Object
Technology International (OTI), a subsidiary of IBM. VisualAge was a family
of computer integrated development environments (IDEs) which included sup-
port for a few popular programming languages like C++, COBOL, Fortran,
Java and others. A version of VisualAge, VisualAge Micro Edition, was a re-
implementation of the original IDE in Java, and this was the version that served
as the foundation for the Eclipse Platform [1]. OTI started the development of
Eclipse as a replacement of VisualAge and in November 2001 a consortium was
formed to further the development of Eclipse as an open source project.

The initial Eclipse Board of Stewards included industry leaders such as Bor-
land, IBM, Red Hat, SuSe, Rational Software and others. By the end of 2003
the initial consortium had grown to over 80 members. In 2004 Eclipse was
reorganized into a non-profit organization and Eclipse became an independent
body that drives the platform’s evolution to benefit the providers of software
development offerings and end-users. All technology and source-code provided
to and developed by this fast-growing community is made available royalty-free
via the Eclipse Public License [13].

4.2.2 Structure of the Eclipse Platform

The components that Eclipse is made up from are called plug-ins. A plug-in
is the smallest unit of Eclipse Platform functionality that can be developed
and distributed separately [21], in fact all of Eclipse’s functionality comes from
plug-ins except for a small kernel which is called the Platform Runtime. Small
tools may be written as a single plug-in and more complex tools may have the
functionality split across several plug-ins. Each plug-in has a manifest file which
declares its interconnections with other plug-ins. The interconnection model is
that a plug-in declares any number of named extension points and any number
of extensions to other plug-ins extension points.

CHAPTER 4. PROBLEM ANALYSIS 21

Figure 4.2: EMF unifies Java, XML and UML

The extension mechanism basically facilitates enhancement and communi-
cation between plug-ins. Each plug-in can define extension points that can be
used either internally or by other plug-ins. This is the main idea of Eclipse; to
extend, not replace. With the use of extension points one can enhance plug-
ins or loosely couple chunks of functionality in a controlled manner. Eclipse
also provides a mechanism for extending objects dynamically. A class that
implements an “adaptable” interface declares that its instances are open for
third-party extension of behavior, and any party can add behavior to existing
types of adaptable objects.

One of the interesting projects for this thesis is the Eclipse Modeling Project.
It is a project that focuses on the evolution and promotion of model-based
development technologies within the Eclipse community by providing a unified
set of modeling frameworks, tooling and standards implementations. One of
the stronger arguments to use Eclipse is a subproject of the Eclipse Modeling
Project, called the Eclipse Modeling Framework (EMF).

4.2.3 The Eclipse Modeling Framework Project

The EMF project1 is a modeling framework and code generation facility for
building tools and other applications based on a structured data model. EMF
started out as an implementation to OMGs Meta-Object Facility (MOF) spec-
ification [17]. In the latest proposal, MOF 2.0, a subset of MOF is filtered out,
called Essential MOF (EMOF). This subset is almost identical to the metamodel
of EMF, Ecore. In fact, EMF can transparently read and write serializations
of EMOF. The main purpose of EMF is to describe and build models. With
some higher level code, these models can be used to generate code which can
be used as a basis for any Java (or other programming languages) application.
The model used to represent models in EMF is called Ecore [3]. Ecore is itself
a EMF model, which means that it is its own metamodel.

For clarification, a simplified definition of a metamodel is that it is the set
of rules, constructs and constraints that a model must conform to. An example
of this could be that a UML class model must conform to the UML metamodel
specified by the UML to be “legal”.

EMF is intended to provide the benefits of formal modeling, but at a low cost
of entry [14]. It is a open source framework targeting MDA development [23].

1http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

CHAPTER 4. PROBLEM ANALYSIS 22

Figure 4.3: A simplified subset of the Ecore model, adopted from [3]

The input models can be created using annotated Java code, XML documents
or modeling tools like Rational Rose, then imported into EMF. The code gen-
erator in EMF then turns the model into a set of Java implementation classes.
Figure 4.2 shows how EMF unifies three important technologies: Java, XML
and UML. Regardless of which technology is used to define it, an EMF model
is the common high-level representation that “glues” them together [3]. With
the code-generation, the focus is on the model itself, not its implementation.

The default serialized form of an Ecore model and instances of the model
is XML Metadata Interchange (XMI). The XML Metadata Interchange is an
OMG standard [18] for exchanging metadata information via XML. The most
common use of XMI is as an interchange format for UML models although it can
be used for serialization of other languages and metamodels, such as an EMF
model. It can be used for any metadata whose metamodel can be expressed in
Meta-Object Facility (MOF).

A simplified subset of Ecore can be seen in figure 4.3. An EClass is used to
represent a model class, which can have attributes (EAttribute) of a certain
data type (EDataType), and it can reference other classes through EReference.
This means that by using EMF we get a nice, extendable and unified framework
for building meta-models.

The next sections provides more on the graphical aspects of the Eclipse
Platform, beginning with a short introduction of the widget toolkit that Eclipse
uses, and continues with an introduction of GEF and GMF.

4.2.4 Standard Widget Toolkit

For the GUI elements, Eclipse uses the Standard Widget Toolkit (SWT)2. SWT
is a graphical widget toolkit for use with the Java platform, originally created
by IBM as an alternative to the Abstract Window Toolkit (AWT) and Swing
Java GUI toolkits provided by Sun Microsystems as part of the Java Platform,
Standard Edition. SWT was designed to be a high performance toolkit; to
be faster and less resource consuming than Swing. This is done by using the
operating systems native widgets while Swing instead emulates them. SWT was
chosen as the GUI toolkit for Eclipse because it was believed that the native
look, feel and performance were critical to building desktop tools for demanding
developers [1].

2http://www.eclipse.org/swt/

http://www.eclipse.org/swt/

CHAPTER 4. PROBLEM ANALYSIS 23

Figure 4.4: A simplified overview of the Shape hierarchy

4.2.5 Graphical Editing Framework

The Graphical Editing Framework (GEF)3 provides a standard way to develop
feature rich graphical editors in Eclipse. The editing possibilities of GEF allows
the development of a graphical editor for nearly any kind of model, including an
EMF model. Using GEF it is possible to build almost any kind of graphical edit-
ing application like class diagram editors, GUI builders and even WYSIWYG
text editors.

For the actual graphical work, GEF depends on the Draw2d framework.
Draw2D is a standard 2D drawing framework based on SWT. It provides the
lightweight graphical system that GEF depends on for its display, and is pro-
vided with the GEF distribution in its own plug-in, org.eclipse.draw2d. Draw2D
is not only for use by GEF. It is a self-contained graphical library and can be
used by any Eclipse application.

Everything that is visible in a Draw2D window is drawn on a figure. The
Figure class is the base implementation of every figure, and many subclasses of
Figure provides useful additional functionality. These subclasses include Shape
which provides an abstract support for a variety of shapes. Some examples of
shapes are Ellipse, Polyline, RectangleFigure and so on. A simplified class
diagram of the shapes is shown in figure 4.4.

The purpose of GEF is to facilitate the display of any model graphically using
Draw2D figures, to support interactions from mouse, keyboard or the Eclipse
Workbench and to provide common related components to these operations.
GEF employs a strict Model-View-Controller architecture (see figure 4.5), an
architectural pattern often used in software engineering to isolate the business
logic from the user interface considerations. Separating the presentation from
the data allows for a change in the visual presentation without affecting the

3http://www.eclipse.org/gef/

http://www.eclipse.org/gef/

CHAPTER 4. PROBLEM ANALYSIS 24

Figure 4.5: Model-View-Controller

underlaying computational system [28].

The model is any data that gets persisted. In GEF any kind of model can
be used, but the model must employ some sort of a notification mechanism. It
is very common to use EMF as the model in GEF, since EMF already includes
a notification mechanism that is used throughout EMF. Whenever a model
element in EMF is changed, a notification is sent via the EMF notification
framework. The view is anything that is visible to the user. As explained
before, GEF uses Draw2D for its graphical display, and thus the view usually are
Draw2D figures. Each model object that is to be visualized needs a controller
to coordinate the semantical object (from the model) with the notational object
(from the view). The controller in GEF is called an EditPart, and they are the
link between the model and the view. They are also responsible for editing, and
contain helpers called EditPolicies which handle much of the editing task [7].

EditParts are the central element in GEF. Usually each model element class
will have a corresponding EditPart so the class hierarchy of EditParts will likely
be the same as for the model. The definition of an EditPart is done through
the interface org.eclipse.gef.EditPart, but it is recommended that clients
extend the base implementation, org.eclipse.gef.AbstractEditPart instead
of implementing the interface [20].

To respond to user events generated from using the mouse or keyboard,
GEF uses tools. A tool is a stateful object that translates low-level events,
such as a mouse button being pressed, into high level requests. The type of
request depends on the tool that was active. For example a creation tool will
generate a creation request to the editpart whose figure was beneath the mouse
pointer when the mouse button was pressed. The editpart does not handle
the request itself, instead it delegates the request to the registered edit policy.
The editpolicy will get the request and if it understands the request, it creates
a command which will be executed to fulfill the request. An overview of the
process is shown in Figure 4.6.

By using commands to execute requests, GEF employs the Command design
pattern [16]. A command is the part that actually modifies the model. Com-
mands also include support for execution limitations, undo and redo and also
combining or chaining different commands.

CHAPTER 4. PROBLEM ANALYSIS 25

Figure 4.6: Communication chain Request – EditPart – Command. Adopted from [20]

4.2.6 Graphical Modeling Framework

Let me be blunt: In the past, creating graphical editors within
Eclipse using the Graphical Editor Framework (GEF) was slow and
painful.

– Chris Aniszczyk, Software Engineer, IBM

The drawbacks of using GEF is that every element has to be hand-coded.
With larger model this evolves into very tedious work. GEF is a very complex
framework and to create an application based on GEF requires the programmer
to understand it.

The Graphical Modeling Framework (GMF)4 provides a generative compo-
nent and a runtime infrastructure for developing graphical editors based on EMF
and GEF. It provides a more userfriendly way to utilize these two frameworks,
by providing graphical interfaces to map elements from EMF and GEF together
and using this information to generate a ready-to-use graphical editor.

An overview of the dependencies between GMF, GEF and EMF can be
seen in Figure 4.7. Like GEF, GMF is also dependant of a domain model,
but unlike GEF, GMF requires the model to be in Ecore format. Creating (or
importing) the domain model is the first step in a GMF project. The next steps

4http://www.eclipse.org/modeling/gmf/

http://www.eclipse.org/modeling/gmf/

CHAPTER 4. PROBLEM ANALYSIS 26

Figure 4.7: UML 2.0 component diagram shows the dependencies between the generated
graphical editor, the GMF Runtime, EMF, GEF, and the Eclipse Platform. Adopted from
[22]

are to create a graphical and a tooling definition model. The graphical definition
model declares the various figures that will be shown in the editor. Although
it has no direct relation to the domain model, the domain model can be used
to generate a graphical definition model where the generative component of
GMF tries to derive which elements are to be classified as nodes and which
elements are connections. The tooling definition model defines which tools are
to be available to the user, which basically are creation tools or actions for the
graphical elements. These tools are eventually put in a palette.

The domain model, graphical definition and tooling definition gets mapped
together in the mapping definition model. This model maps each tool with a
notational (the visual element) and semantical (the domain element) element.
This is a key model to GMF development and will be used as input to gener-
ate the generation model. The generation model is then used to generate the
diagram editor plug-in, which will place itself in a new project in the Eclipse
workspace. This plug-in can then be run, and instances of the domain model
can then be created in the new generated diagram editor.

4.3 Summary of analysis and issues to resolve

Although it is very nice to get almost the entire graphical diagram editor for
free from the Eclipse plug-ins, there is still much work to be done. First of
all, the metamodel needs to be manually specified in an EMF model (Ecore).
Next, GMF does not generate the diagram editor all by its own, many things
needs to be manually specified. For instance, a connection generated by GMF
is by default just a line. Any extra graphical visualization (like an arrowhead

CHAPTER 4. PROBLEM ANALYSIS 27

decoration on the target end) must be added manually. Every model object
that is to be created in the diagram needs both a creation tool and a graphical
figure, which is mapped together.

Any custom graphical figures has to be made manually, which requires a deep
understanding of both the GEF and GMF frameworks, since GMF is using and
extending GEF for the visuals and the controllers. As if that wasn’t enough, the
graphical figures are not done by GEF itself, instead this is handled by another
plug-in, called Draw2d, which in turn is based on the Standard Widget Toolkit
that Eclipse is using for all its graphical interfaces and drawing. With any
complex and extensive framework comes a steep learning curve, and frameworks
in Eclipse are no different.

When modifying or extending plug-ins there are also other factors to con-
sider. The Eclipse Platform is made to be extended, and all of it’s plug-ins as
well. Which means that any plug-in must (or at least should) provide extension
points for other plug-ins to use. And with this behavior there are also certain
rules that one must follow. Like the Eclipse UI Guidelines [8] for example. Since
this is based mostly on GMF which is supposed to create a standard for graphi-
cal editors, people would expect certain things from the product, like the palette
that is used, the behavior of the tools, the different views that are created and
so on.

EMF was not made with DPL in mind, which means that EMF somehow
must be extended to support the extra constraints we impose on the objects.
There are also aspects of the diagrammatical notation that is not supported
at all by GMF. For example the arc between arrows in a DPL diagram is not
something that GMF was made to do, and has to be worked around.

As the documentation and library-API’s were piling up, it was clear that the
project description and the scope of this thesis had to be shortened. For now,
the requirements are:

1. Create a metamodel containing a simple graph using EMF and generate
a graphical editor for it

2. Create additional visual shapes for the editor, including different types of
connections

3. Mark nodes and arrows in the editor as being part of a diagram constraint

Since this is not the final piece in the parent project, all of this has to be
documented clearly. In fact, other people involved with the project will continue
working with Eclipse and its frameworks after this project is done, and hopefully
some of the documentation in this master thesis will be of use to them.

Chapter 5

Solution and
implementation

The design of the application tries to take the same approaches as the existing
solutions, Sketcher95 and Sketcher.Net. But there are of course differences
in the way the approaches are implemented, seeing as they have to follow the
standards of EMF and GMF in Eclipse. The ultimate goal is to have the Eclipse
version offer the same functionality as for example Sketcher95. Looking at how
Sketcher95 does things will at least help the end-users communicate how they
want the Eclipse implementation to perform.

By observing Sketcher95 it is possible to get the main structure of how the
domain model of the DPL formalism should look like. The user interface of both
Sketcher95 and Sketcher.Net is however dropped, as it would be too much work
trying to bend the GMF generated editor into their shape. It is not impossible
to do so however, but one of the points of using GMF is to get a standard
look and feel for graphical editors in Eclipse. Users who have used other types
of graphical editors in Eclipse expect certain things which the GMF generated
editor conforms to.

5.1 The core of the DPL formalism

The initial problem is to make a domain model for the DPL formalism. As most
papers on the formalism focuses mostly on the mathematical subject and the
possibilities, there are not much detailed information on the actual structure
except some definitions (see section 2.6). But observing Sketcher95 will bring
some additional information.

Skertcher95 does its work in two distinct parts, creating a marker signature
and creating a sketch document. The most interesting part here is the marker
signature and what it contains. A marker signature starts out empty, except for
two items, a constraint-less node and a constraint-less arrow. These two
elements is the minimal requirements for making any graph. A marker signature
can have three collections of constraints(which can be organized further into

28

CHAPTER 5. SOLUTION AND IMPLEMENTATION 29

sub-collections). These are: Node Constraints, Arrow Constraints and
Diagram Constraints. All of the mentioned collections are populated by
Markers, one marker for each constraint.

A node constraint marker (see figure 3.3(a)) has three elements; a Name, a
Description and a Visual Marker. The visual marker is selected by a pool
of primitives and has three parts, a Geometric Figure, a body Fill and a
Border.

An arrow constraint marker (Figure 3.3(b)) has the same Name and De-
scription elements as a node constraint marker, but the Visual Marker is
more extensive, containing two primitives for the Tail, two for the Head and
one for the Body.

A diagram constraint marker (Figure 3.4 is more complex than a node or
arrow constraint marker. It too contains a Name and Description. A diagram
constraint marker also contains a Shape (or Arity) which can contain Nodes
and Arrows with or without Constraints. It also has a Diagram Marker
which basically is a label, and an Arc.

Observing Sketcher95 has provided most of the terms, but it is important to
take in consideration that Sketcher95 currently is 13 years old, and terms and
concepts has been given new names in the later years.

The problem however is how to model all these things in a metamodel that
EMF can understand. The concept of splitting the functionality in two parts
as Sketcher95 does will not work in the scheme of GMF, since it requires one
metamodel. But as a beginning, the focus is on a simple graph. A (directed)
Graph consists of a collection of Nodes that can be connected by Arrows.
An Arrow has a target Node and a source Node. From the definitions in
DPL, we can consider a specification as a directed graph in which some parts
(diagrams) are marked with predicate labels taken from a predefined signature.
In Sketcher95 these predicate labels are logically divided into three categories
which are: predicates on a Node – interpreted as a node constraint, predicates on
an arrow – interpreted as an arrow constraint and finally predicates on diagrams
– interpreted as diagram constraints.

This translates (roughly) into the UML class diagram as shown in figure 5.1.

5.2 How to implement the model in EMF

As stated before, EMF requires a metamodel (see section 4.2.3). An EMF
model can be defined using either annotated Java code, UML class models (from
editors supporting XMI, like Rational Rose from IBM or the UML2 project1) or
by using XML Schema. The easiest for a Java programmer is to use annotated
Java code. For more information about how to define an EMF model, see [3].

To create the EMF model using Java code, one simply create the interfaces
that makes up the metamodel. The various classes, their attributes and op-
erations that is a part of the metamodel is marked with a @model tag in the

1http://www.eclipse.org/modeling/mdt/?project=uml2

http://www.eclipse.org/modeling/mdt/?project=uml2

CHAPTER 5. SOLUTION AND IMPLEMENTATION 30

Figure 5.1: A rough UML class diagram of the structure

respective JavaDoc2 comments. This also specifies any non-default values and
references for the Ecore objects. Since this Java programmers already under-
stand the syntax and the process only requires a text-editor, annotated Java
offers the lowest cost of entry into EMF. EMF uses a subset of the JavaBean
[29] simple property accessor naming patterns, which basically means that every
attribute (or property) needs a get and a set method. An example of annotated
Java is shown in Code Listing 5.1.

Listing 5.1: Example annotated Java interface

/**

* @model

*/

public interface Edge {

/**

* @model

*/

Node getSource ();

. . .

}

Regardless of the approach used, the result is two different models: the core
model (Ecore) and a generator model (genmodel). These two models will drive
the generation of a complete application. For each class in the model, the EMF
code generator will create one interface and one implementing class, complete
with accessors for every attribute (ie. getters and setters).

An important feature of EMF is the notification mechanism, and this is
included in every setter in the implementing class. This means that when a
user (or some feature) changes an attribute in a model element, a Notification
is sent to any observers. the Notification includes the object that has been

2A documentation generator from Sun Microsystems for generating API documentation

CHAPTER 5. SOLUTION AND IMPLEMENTATION 31

Figure 5.2: GMF Overview, adopted from [12]

changed, what kind of notification it is (like Notification.SET for a setter
method), a feature id for the attribute along with the previous value and the
new value of the attribute.

Every generated method has a @generated tag in their JavaDoc comments,
so if is modified it is necessary to either remove or change the tag (appending
’NOT’ to the tag is the convention) in order to prevent the modifications from
being overwritten if the codes is generated again.

The EMF code generator also creates a Factory for creating instances of the
objects in the model, and a Package interface that defines some properties of
the package, a static constant reference to an implementation of the package
and convenient access to all the metadata of the model. For more details on the
Eclipse Modeling Framework see [3].

From the genmodel the user also has the option of generating Edit code,
Editor code and Testing code. Generating editor code will produce an EMF
editor project that can be used to create instances of the model. The testing
code generates a testing project, complete with JUnit3 tests.

With the now completed “semantical” model for the diagram editor, it is
time to move on to GMF.

5.3 Letting GMF do its work

As explained in Section 4.2.6, GMF uses an Ecore file as input to derive the
different “templates” that the diagram editor will be built from. An overview
of the process in creating a diagram editor can be seen in Figure 5.2.

The graphical definition model is derived from the Ecore model, and put
in a file with the extension gmfgraph. GMF can almost automatically decide

3A unit testing framework for Java

CHAPTER 5. SOLUTION AND IMPLEMENTATION 32

which of the elements to include in the diagram and give them some default
visual figures; a Node gets a rectangle and a Arrow is represented as a line. But
in order to do so, GMF needs to know the diagram element of the model. The
diagram element is the “containing” element of the diagram, in this case it is
the element Graph.

The gmfgraph consists of a Canvas. The canvas consists of all the nodes and
connections from the Ecore model and a figure gallery. The figure gallery con-
tains all of the figure descriptors. Every node and connection in the model has
its own figure descriptor. The figure descriptor specifies the visual appearance
of the nodes and connections. A figure for a node is by default a rectangle, while
a connection is a line. There also exists several figure galleries that are intended
for re-use and are included with GMF. An example of this is some common
used figures in class diagrams, contained in classDiagrams.gmfgraph. These
galleries can be loaded as resources into the gmfgraph so that their components
can be used as part of the graphical definition.

The tooling definition model (gmftool) is also derived from the Ecore model.
This defines the palette of the diagram editor, which means the creation tools
for the diagram. Each model element that is to be created in the diagram has
its own creation tool. You can also add standard tools, which are the standard
tools in GMF like select, zoom etc. There is also support for generic tools which
really isn’t documented at all.

An important part to point out is that the actual palette is created program-
matically in the generated diagram editor instead of using the Eclipse provided
paletteProvider extension. Which is somewhat odd, considering that the run-
time tutorial made by the GMF developers use the mentioned extension for the
palette entries (see [11]). A consequence of filling it out programmatically is
that palettes cannot be provided to other editors easily4. It was discussed why
the mechanisms that were provided by the runtime was not used, but in the
end the developers decided that it was not a common usecase to reuse palettes
in different editors and the bug report5 was eventually closed.

Aside from the palette, the Tool Registry in the gmftool can also contain
other means of executing operations through context menus, popup menus, or
even through the Eclipse toolbar. There is however little or no documentation
around of how to actually do so, other than by trial and error.

The mapping model (gmfmap) combines the three existing models, the Ecore
model, the graphical definition and the tooling definition into one model. Here
each model element is mapped to a graphical visualization and a creation tool.
The wizard for this is not really accurate, often the connections needs to be
manually added. And since the names are often similar on connections there is
a problem knowing which source and target attribute to use.

The last model in GMF is the Diagram Editor Generation Model. This
contains all the previous information and some extra bits that are necessary
to generate a graphical editor. There are usually no reasons to modify this
manually.

4Original report of bug is found at https://bugs.eclipse.org/bugs/show_bug.cgi?id=

126199
5See discussion at https://bugs.eclipse.org/bugs/show_bug.cgi?id=168396

https://bugs.eclipse.org/bugs/show_bug.cgi?id=126199
https://bugs.eclipse.org/bugs/show_bug.cgi?id=126199
https://bugs.eclipse.org/bugs/show_bug.cgi?id=168396

CHAPTER 5. SOLUTION AND IMPLEMENTATION 33

Figure 5.3: The Ecore file of a simple graph

5.4 An Example Graph Editor

As an example, consider a simple directed graph only containing nodes and
arrows. The Ecore of the domain model is shown in figure 5.3. When creating
an Ecore it is important to make sure that every object is contained by a parent
object, and ultimately, the root element which in this case is Graph. If there
are some objects that does not have a proper parent, it will not show up in the
diagram editor as GMF will not generate any tools or graphical definitions for
it. It is also important to check on the multiplicities. Unless otherwise specified,
an object contained in Graph will have the multiplicity [0..1] which means that
a Graph will at most have one such object. To change this, set the “Upper
Bound” property for the reference (in this example, nodes and arrows listed
under Graph to -1 (meaning a multiplicity of *). Every Node and Arrow does
also have a label attribute of the type EString6 to help separating the different
objects of the same type.

From the Ecore the genmodel is derived and then the model code and edit
code is generated. For now, neither needs any modifications.

Next the graphical definition model is created, marking Graph as the root
element and Node as a node and Arrow as a connection. In the gmfgraph a Poly-
line Decoration is added and set as a Target Decoration in the the ArrowFigure.
No extra specification is needed as the default visual of a polyline decoration is
an open arrowhead. Both the NodeFigure and ArrowFigure has a child label
and a corresponding accessor method. The label will show the contents of the
label attribute in the model element.

The tooling definition model does not require any modifications, since a tool
in this sense basically just a name, description and some icons. The three mod-
els, Ecore, gmfgraph and gmftool is mapped together in the Mapping Model.
The wizard that is doing the work does have some issues deciding which ele-
ment is a node and which is a connection however as it initially defines Arrow
as a node. The Arrow element is changed to a link and its source and target
feature are set accordingly, as well as defining the proper tool which will create
the Arrow element. Another issue with gmfmap is that it does not know which
Diagram label it is supposed to put the information from the Node and Arrow
attribute to, so this needs to be specified manually in the Feature Label Mapping
child of Node and Arrow. The resulting gmfmap file is shown in figure 5.4.

6EString is EMF’s String equivalent

CHAPTER 5. SOLUTION AND IMPLEMENTATION 34

Figure 5.4: The GMFMap of a simple graph

The mapping model is then transformed into a Diagram Editor Generation
Model, and since it does not require any modifications, this is used as it is to
generate a diagram editor. Assuming the event is problem-free, the generator
will produce a new plug-in which can be loaded into the Eclipse workspace and
be able to create diagrams like shown in figure 5.5, complete with a canvas
to draw on, a palette with creation tools and default selecting and zooming
capabilities, a property view and a outline view.

5.5 The GMF generated packages

For the simple graph diagram editor as described in the previous section, there
is a total of 11 packages in the generated plug-in. These packages include a
total of 76 java files, meaning that there is a lot of information to get a grasp
of. The following is a brief explanation of each package:

diagram.edit.commands Commands are the part that actually modifies the
model. This package contains commands that when executed creates or
modifies the EMF resources.

diagram.edit.edithelpers An edit helper defines any behavior modification
for a metamodel type. For example if one wants to add some initialization
to the model elements, this is the place to do it. Every editpart has an
edithelper, but the default generated edithelper class is empty. This is
also the place to put edithelper advice, which basically are edithelpers for
any specialization types (explained later).

CHAPTER 5. SOLUTION AND IMPLEMENTATION 35

Figure 5.5: A diagram editor creating instances of simple graphs

diagram.edit.parts EditParts are the building blocks of GEF viewers, and
are the controllers that ties the application’s model to a visual represen-
tation. They are also responsible for requesting changes to the model.

diagram.edit.policies EditPolicies determines an EditPart’s editing capa-
bilities. Although it is possible to implement EditParts so that they handle
all the editing responsibilities themselves, it is more flexible and object-
oriented to use EditPolicies. As an example, when creating a connection
between nodes, the NodeItemSemanticEditPolicy will decide if the spec-
ified connection type is legal, thus deciding whether or not the user may
create a connection to or from the node.

diagram.navigator Deals with the navigator view in Eclipse and how to show
the different model elements in the navigator.

diagram.parsers Parses different text strings. Not much documentation pro-
vided for this one.

diagram.part The “business” part of a diagram editor. Here the pieces that
makes the editor application is put together.

diagram.preferences The preferences of the diagram editor. These include
printing preferences, appearance preferences and others. The default im-
plementation does not do much except to pass things to their superclasses.

CHAPTER 5. SOLUTION AND IMPLEMENTATION 36

diagram.providers Classes here provide instances of the different factories
that are in use in the diagram editor application. For example the EditPartProvider
provides the EditPartFactory.

diagram.sheet Makes the properties of the editparts displayable in the prop-
erties view (see Figure 5.5 at the bottom).

diagram.view.factories The View Factories for the notational elements.

5.6 Extending the Simple Graph

One of the requirements is to have diagrams in the graph. A diagram can be
considered as a fragment of a graph closed in some technical sense. To simplify
things for this thesis, a diagram is considered to be a collection of nodes and
arrows.

Then there is the issue of how to visualize this. In Sketcher95, a graph was
drawn using only constraintless nodes and arrows. When adding a diagram
constraint (see Figure 3.6), the user chooses which arrows in the graph that
corresponds with arrows in the constraint. This leads to the conclusion that a
diagram constraint contains, apart from a name and description, references to
nodes and arrows.

The GMFMap model only allows for one containing class. Which means
that the containment of nodes and arrows has to be moved to the new class,
Diagram. This results in re-creating all the generated files, because this kind
of change reflects badly in the pre-generated files and can lead to weird errors.
While it is a pain to have to create new GMF models, it is better than trying
to ‘fix’ the generated code. Unless of course there is a lot of custom code.
The process of creating new gmfgraph, gmftool and gmfmap files is somewhat
tedious if one does not have a clear metamodel.

5.6.1 Adding Compartments

The new GMFMap (and Ecore) is shown in Figure 5.6. The Diagram node is
added and has a Compartment mapping, which means that nodes (and arrows)
now are created inside a Diagram. The resulting diagram editor is shown in
Figure 5.7. The placements of the nodes inside the diagram looks weird though.
This is because of the default behavior of compartments. Originally meant to
contain things like labels for attributes and such (in the case of a diagram editor),
children in a compartment are placed in a ‘stack’, with every new element placed
beneath the previous one. While this is great for an UML editor for example,
it is not ideal for this project. To change this behavior, the generator model
needs to be changed. Inside the gmfgen file, the property for the compartment
can be changed. The property that needs to be changed is List Layout which
needs to be set to false. The fixed result is shown in 5.8.

There are some issues though. Arrows can be created between nodes in
different diagrams, while the intent is that diagrams should not have references
to other diagrams. This behavior is determined by Node, and a node will allow

CHAPTER 5. SOLUTION AND IMPLEMENTATION 37

Figure 5.6: Adding compartment mappings for simplegraph in GMFMap and Ecore

Figure 5.7: Weird behavior of node layout

creations of a connection start or end as long as the connection is of type Arrow.
Since arrows should not go outside of the Diagram that is the parent of the Node,
this behavior needs to be modified.

5.6.2 Modifying Connection creation

When the ‘Arrow Creation Tool’ is selected, the editpart that is directly under
the mousepointer will determine whether or not it will allow a connection to
be made. Neither the root Graph or Diagram allows this behavior and the
mouse pointer will show that it is not possible to create a connection. The Node
element however will allow this, and the behavior is determined by the class
NodeItemSemanticalEditPolicy in the diagram.edit.policies package.

The method that returns the creation commands for connections between
nodes are getStartCreateRelationShipCommand which will return a create

CHAPTER 5. SOLUTION AND IMPLEMENTATION 38

Figure 5.8: Node layout fixed

command if the node is a valid source end of the connection and getComplete-
CreateRelationshipCommand which returns a create command if the node is
a valid target of the connection. To have connections from a node inside a
diagram limited to end on only other nodes in the diagram, checks are needed
to decide whether or not the container of the target end is the same as the node
on the source end.

5.7 Creating instances of a simple graph

As shown in the previous section, diagrams now contain all the nodes and arrows
in the graph. This is partly because of Sketcher95’s separation of the concept of
a signature and a sketch. But because of time-limitations this is not done here,
and thus both the signature and the actual model-instance will be displayed in
the same editor window.

This means that Graph needs some Nodes and Arrows of its own. It seems
best to subclass Node into DiagramNode and GraphNode to avoid confusions.
As usual, it is best to delete previous work and start over. Tedious, but at least
it gets done faster.

5.8 Adding Constraints for Nodes and Arrows

Some new elements are introduced, NodeConstraint and ArrowConstraint.
These will be used for adding constraints to the constraintless nodes and ar-
rows. The constraint object consists of a name, a description and some visual-
ization. For now, the visualization is a simple Enumeration type, and will be
translated to visual decorations by the EditPart. Figure 5.9 shows the different
enumeration values of the constraint.

CHAPTER 5. SOLUTION AND IMPLEMENTATION 39

Figure 5.9: Enumeration of the different visual types

5.9 Listening for changes

In this section the subject is a GraphArrow and ArrowConstraint, which will
be referred to as simply ‘arrow’ and ‘constraint’. The idea is to change the visu-
alization of the arrow whenever the constraint changes. But since the constraint
is not “owned” by the arrow, the arrow is by default oblivious to any changes
made to the constraint. Which means that when the constraint’s values change,
the arrow will not reflect these changes. An example would be that a constraint
has the value of arrowHead changed from NONE to OPEN ARROW, which should be
reflected by the arrow visualization as an open arrowhead added to the arrow’s
target connection.

The remedy this, the solution is to add listeners to the arrow EditPart. All
the listeners to semantical children of an EditPart is automatically added, but
since the constraint is not a semantical children of an arrow (it is contained
by the Graph object so it can be accessible for other arrows) one must add it
manually. This is done by overriding the addSemanticalListeners method.

To have a figure reflect changes on other (not directly related) figures it
is necessary to make sure that the EditPart of the figure receives notification
of the changes. This is done by adding a listener for the semantical element.
The process of adding listeners to editparts is usually handled by the super
classes of the EditPart in question in the method addSemanticListeners which
automatically registers listener filters for any semantical children of the semantic
element of the EditPart. Each listener filter is made up from a filter id string,
the listener and an object to listen to. The object must of course be observable,
but every EMF object is observable by default.

To manually add listeners, the addSemanticListeners method must be

CHAPTER 5. SOLUTION AND IMPLEMENTATION 40

overridden. It is important to add a call to the super implementation of the
method. Also, the removeSemanticalListeners method must be overridden
to remove the manually added listener filters. In both methods, the operation of
adding a filter is handled by the addListenerFilter method. For each listener
filter that is to be added, simply add addListenerFilter(filterId, this,
myObject) to the overriden addSemanticalListeners() method, and the cor-
responding removeListenerFilter calls in the removeSemanticalListeners
method.

There is also the issue of adding the constraint to the list of constraints
contained by the arrow. The original idea was to add constraints to an arrow
by adding a connection between the arrow and the constraint. The constraint
would then be added to the arrow by using the EditHelper of the connection.
This initially worked out fine, until one tried to remove the arrow. It seems
that unless a connection is connecting two elements defined as nodes, it will be
considered as just a notation, so when trying to delete the connection only the
view would be removed. The semantic ArrowConstraintConnection element
would still remain in the model and be redrawn upon refreshing the diagram.

Usually when destroying an element, the semantical policy of the element
would pick up the request, create a DestroyElementCommand which would dis-
pose of both the View and the semantical object. When a connection be-
tween other connections is destroyed it is only removed from the view. The
getDestroyElementCommand from the connection’s semantical policy is never
called. It seems the reason for this behavior lies in ConnectionEditPolicy
and its method shouldDeleteSemantic(). In the end, createDeleteView-
Command() is called instead of the proper delete command. At this point there
seems to be no solution as to get connections between connections in the way
that is wanted.

After this setback the idea of adding constraints to arrows by connecting
them was abandoned. Because of this, the user has to edit the properties of the
arrow via the properties view and add constraints manually.

5.10 Changing visualization of an Arrow

When an ArrowConstraint has been added to an Arrow, the arrow now has
a way of listening to the changes made in the constraint. But just listening
to the changes does nothing. The EditPart of the arrow, ArrowEditPart is
responsible for creating the visual figure for the arrow, and it does this by
calling it’s createFigure method. All of the figures in GMF are various exten-
sions of Draw2D’s Figure. All figures for connections in GMF are subclasses
of PolylineConnectionEx which ultimately is a Figure. A simplified class
diagram is shown in Figure 5.10.

Source and target decorators of an arrow are added to a PolylineConnection
by the methods setSourceDecoration and setTragetDecoration. And since
the arrow figure is extending this class it has access to these methods. Nor-
mally the figure generated by GMF’s code generator would add the decorators
specified in gmfgraph in the figure’s createContents method. But since the
requirements calls for a more dynamic approach, this behavior is modified.

CHAPTER 5. SOLUTION AND IMPLEMENTATION 41

Figure 5.10: The connection figure hierarchy

When the figure is created, there are no decorators added to the connec-
tion. But when an ArrowConstraint is added to the connection, the decorators
should be added as specified in the constraint. The connection is added as a
listener to the constraints, as described in the previous section, and is notified of
the constraint’s properties. An added method to the figure implementation gets
a list of the constraints that are added and calls a custom factory that creates
the appropriate decoration. A class diagram is shown in figure 5.11.

5.10.1 Connection Decorators in GMF

By default, a polyline connection is just a line. The line has some options that
can be set, such as line type (eg. dotted, dashed etc). There is also built-in
support for decorating the connection. The ends of a PolylineConnection can
be decorated by specifying a RotatableDecoration for either the source, end or
both. The RotatableDecoration interface is, as the name suggests, designed
to allow the decoration figure to be rotated based on the position of a specified
reference point. Because of this feature, the decoration figure stays aligned with
the line it is decorating when the lines angle is changed.

A RotatableDecoration is in short an IFigure that can be rotated. The
interface only has two methods, setLocation(Point p) which sets the location
of the figure, and setReferencePoint(Point p) which sets a reference point
that is used to determine the rotation angle. For a target decorator, the loca-
tion is where the connection ends, and the reference point is either where the
connection begins or a bendpoint (see figure 5.12).

CHAPTER 5. SOLUTION AND IMPLEMENTATION 42

Figure 5.11: An ArrowFigure’s updateFace() method is called, getting the appropriate deco-
rator from DecoratorFactory

Figure 5.12: Location and Reference point in a connection

5.10.2 Simple geometric decorators

For simple geometric figures, making a decorator is relatively easy. There are al-
ready two classes in draw2d that does this, PolylineDecoration and Polygon-
Decoration. These takes a list of points as an argument and draws lines between
the points. GMF also directly supports adding template points to a decoration,
so all this can be done via GMF. For a simple open arrow-head, you would
have to add the points {(-1,1), (0,0), (-1,-1)} to a PolylineDecoration. For a
closed arrowhead, the same list of points applies, but the class used is Polygon-
Decoration. The last point is not needed, since the last point automatically
connects to the first point. A rhomb (diamond) decorator is shown in figure
5.13. The decorations are not added to the end of the connections, it is actually
“laid” over the line. So if the rhomb is not either filled or has a background
color, the underlaying connection will show through the rhomb.

5.10.3 Circle Decorator

For more advanced decorations more work is needed. Although it is possible to
make a circle out of points, it is not recommended. But first, the boundaries
needs to be explained.

CHAPTER 5. SOLUTION AND IMPLEMENTATION 43

Figure 5.13: Rhomb decorator, filled and open

Each element in a diagram has a boundary, retrieved by the method getBounds,
located in the Figure class from the draw2d package. This means that every
element that inherits from Figure has this method. The method returns the
smallest rectangle completely enclosing the figure. The reason for it is that if
only one element has changed, there is no need to repaint the whole diagram.
The boundaries helps GMF decide which part of the diagram to repaint.

So, for a circle, the bounds must encompass the whole of a circle, or else
parts of it will not be painted correctly. The linewidth of the circle must also
be taken into consideration. See code listing 5.2.

Listing 5.2: Calculating boundaries for a circle

public Rectangle getBounds () {

if (bounds == null){

int diameter = myRadius * 2;

bounds = new Rectangle(

myCenter.x - myRadius ,

myCenter.y - myRadius ,

diameter , diameter);

bounds.expand(lineWidth / 2, lineWidth / 2);

}

return bounds;

}

Fortunately, draw2d already has an Ellipse class which can be used to make
a circle. All the new class needs is some custom methods to set the radius of the
circle and the width of the line used to draw the circle. The class also needs to
implement RotatableDecoration to be accepted by GMF’s PolylineEx class,
which means that the setLocation(Point) and setReferencePoint(Point)
methods must be implemented. The reference point can safely be ignored, as it
makes no sense to rotate a circle. The setLocation(Point) is needed because
it is used to determine the center of the circle. The Ellipse class handles
the rest, such as the actual drawing of the circle (which uses getBounds() to
determine the size of it.

5.10.4 Composed figures as decorators

Simple figures can be passed on as a list of points to PolylineDecoration or
PolygonDecoration and generated automatically. But for a double arrowhead
it isn’t as easy, since there is no support for multiple lists of points.

The initial try on this was to have one list of points, draw the points and then
shift the list of points by an amount, and then draw it again, leaving a double

CHAPTER 5. SOLUTION AND IMPLEMENTATION 44

arrowhead. This approach means extending the original PolylineDecoration
and overriding the method that does the drawing, outlineShape(Graphics g).
The code is listed in 5.3.

Listing 5.3: Outlining a shape

protected void outlineShape(Graphics g) {

PointList points = getPoints ();

g.drawPolyline(points);

points.performTranslate (-2, 0);

g.drawPolyline(points);

}

The problem with this was that the rotation was not taken into account, and
the second arrowhead was shifted two points to the right, not two points in the
direction of the reference point. Also, the boundaries did not come out right.
The second arrowhead was in some cases only partially visible. The solution for
this was to add all the points to a list and then generate the bounds out of it
with PointList.getBounds(), then manually adding the points to two separate
lists of points, translate them using the reference point and then drawing the
lines.

The requirements also called for a filled double arrowhead. The first solution
was to do the same as with the double arrowhead as explained above, only using
PolygonDecoration as a base.

These solutions are far from optimal as there is no way to change the points,
all are static. A better solution for this particular problem is to build a more
extensive path and go through GMF’s own decorator setup. For a double ar-
rowhead the points need to overlap, but this should not be a problem. The list
of points is as follows: {(-1,1), (0,0), (-1,-1), (0,0), (-1,0), (-2,1), (-1,0), (-2,-1)}.
The same approach also works for a filled double arrowhead, only the list must
be extended more and closed.

5.10.5 Changing visualization on notification

Every EditPart has access to a handleNotification method. This method
takes care of any incoming notifications from the elements that the EditPart
is listening on. To have an arrow responding to a change in its constraints,
this method has to be overridden and modified. Every notification is of the
Notification type and has a reference to the object that has been changed,
via the getNotifier method. By checking if the notifier is an instance of
ArrowConstraint the appropriate method to change the visualization of the
arrow figure can be called.

5.11 Adding Specialized Types

The mission now is to create a predefined Diagram. The diagram that is going to
be created is a specialization of the standard DiagramConstraint, with Nodes
and Arrows already included.

CHAPTER 5. SOLUTION AND IMPLEMENTATION 45

The Element Type Registry [10] provides a way for GMF to extend the
metaclasses defined in EMF and provide specialized model elements for a GMF
application. All the things that can be displayed, created, modified and deleted
as logical elements in a GMF editor are described using element types. Each
element type describes how its model element are to be displayed and how
they are to be created, modified and destroyed, via edit helpers. There are
two kinds of element types, metamodel types and specialization types. While a
metamodel type corresponds directly to the EClass in the domains EMF model,
the specialization class is used to extend the metamodel type. This is because
it is not permitted [10] to define more than one metamodel type for a single
EClass in a given client context. A specialization type can extend the editing
behavior of the element type it specializes by its edit helper. While ‘normal’
element types has EditHelpers, specialization types have EditHelper Advice.

The default implementations of metamodel and specialization types are used
to instantiate types that are registered through the elementTypes extension
point. This registry helps GMF to find element types by their unique identifiers,
their matching model object (or EClass) and the edit helper advice that applies
to the object.

When editing an object, the object’s editing behavior is defined by its
EditHelper, which acts as a factory for edit commands. When a request to
edit a model element is made, the response is to instantiate the commands that
are defined by its EditHelper. The editing behavior for a specialized type is
defined by its edit helper advice, and the specialized behavior decorates the
default behavior for the metamodel type that it specializes. Which means that
when an element is edited, advice from all of the specializations that match the
object is contributed to the command.

GMF uses the extensible type registry in many areas. One area is the palette
creation tools. A creation tool in the palette is associated with the element
type that is to be created when the tool is selected. Other areas where the
type registry is used are the Semantic Edit Policy, Icon Service (for providing
metamodel types with icons) and the View Service.

To create a specialized type one has to add a specializationType to the
elementTypes extension point. The specializationType contains a unique
id, icon and name just as a normal metamodelType, but it also needs to know
the id of the metamodelType it is specializing. The diagram editor generated
by GMF also relies on a parameter called semanticHint (which the guide [10]
does not mention) that has to be added as well. The specializationType also
requires an EditHelperAdvice class, which is put in the diagram.edit.helpers
package. The class needs to implement the IEditHelperAdvice interface, but
since the AbstractEditHelperAdvice is already implementing it and provides
a default implementation to it, it is best to extend it. To configure the element
before its drawn, the best way is to override the getBeforeConfigureCommand
method. The result of the method is of the type ICommand which means that
it is required to build a custom command to return. The custom command is
built by creating a new instance of ConfigureElementCommand and overriding
the doExecuteWithResult method. In this method, the various elements that
goes into the specialization type is added to the container and configured, and
finally a CommandResult.newOKCommandResult is returned with a reference to

CHAPTER 5. SOLUTION AND IMPLEMENTATION 46

the element that was configured.

When a creation tool is active, the edit commands for the editpart that the
mousepointer is above will reflect whether or not the creation of the element is
allowed. This behavior is defined by the editpart’s editpolicy. The action of po-
sitioning a mousepointer above an editpart with a creation tool active will issue
a request for the editpart’s getCreateCommand. The request itself contains the
ID of the element that is to be created, and the getCreateCommand will return
the creation command (usually from the package diagram.edit.commands) if
the creation of an element is legal; if the request is not legal it will return null
and be reflected by changing the mousepointer to show that it is not allowed to
put the element at that location.

In conclusion, when adding a specialization for an element there are several
things that needs to be customized. The specialization type must be added to
the extension point elementTypes, and it must be added to the ElementTypes
provider in the diagram.providers package. In addition, an edithelper advice
must be added, and the creation tool must be added to the palette via the
editor’s paletteFactory. To actually allow the creation of the specialized types,
the editpolicy of the root diagram must be modified.

Chapter 6

Conclusion and further
work

6.1 A summary of the results

The main function of this thesis is to evaluate the Eclipse Platform and point
out the things that can be used and especially, how to use them. Also, how to
customize the things that almost can be used. There are no doubts that GMF
is well suited for making graphical editors. But the sheer complexity of the
Eclipse Platform makes it extremely frustrating to start out with. There is a
very steep learning curve for Eclipse plug-ins in general.

GMF is a relatively new framework, and as such, the documentation on
it is not exceptional. The documentation that does exist deals mostly with
beginner stuff, like how to create a simple diagram editor with the usual nodes
and connections. When one are trying to expand the editor and create things
that are not ‘standard’, there is not much documentation to speak of. There
may be some clue as to how to almost do it hidden deep inside some of the
provided examples, but that is if you are lucky. Another source of information
is the GMF newsgroup, which has been very helpful. Apart from that, you
are pretty much on your own. There has been a lot of trial and errors in this
project, and countless hours adding debug breakpoints trying to figure out how
GMF works.

I’m not saying that GMF is in any way bad, but it still has some issues.

The things that can be done:

• Creating a Graph consisting of Nodes and Arrows

• Assigning constraints to both Nodes and Arrows

• Changing visualization of Nodes and Arrows based on the constraints

• Creating Diagram constraints with a Shape

• Connecting a Node in the Graph with a Node in the Diagram

47

CHAPTER 6. CONCLUSION AND FURTHER WORK 48

• Connecting an Arrow in the Graph with an Arrow in the Diagram

• Creating pre-defined Diagrams

• Creating customized tools

• Adding specialized element creation

Given more time, I think I would have spent it on trying to get a deeper
understanding of the Eclipse Platform itself. Many of the features in GMF are
standard features that are used throughout the entire Eclipse Platform, and
many of the different approaches used are the standard ways of doing things in
Eclipse. There is also the GEF framework to explore. When deciding what to
start out out, I went for the GMF framework, only browsing through the EMF
and GEF documentation as I went along trying to save time.

6.2 Further work

As this project has been a preliminary research on GMF and Eclipse Platform
as a base for implementing the Diagrammatic Predicate Logic Framework there
is understandable a lot of work left to do. The pure basics are shown and
implemented as examples, but there exists no fully functional editor for the
formalism as of yet. The following sections are some short commentaries on
possible extensions.

Separate semantics from notation

At present time, the graph that is created in the diagram editor is created along
with its own specification. The graph depends on having the constraints in the
same diagram editor. The diagram editor should be able to load a predefined
signature and make the graph based on it. To do this, a custom resource
importer should be added, along with actions to load the diagram specification
from outside the editor.

Generating palette items from a graph

When loading a specification, it would be nice to have some tools generated
along with it. Instead of creating a default connection and then adding con-
straints to it, it would be better to have tools that did this automatically. But
because of GMF’s way of doing things, the creation of elements are bound to the
metaModelType of the element, meaning that the element that is to be created
must exist in the domain model of the diagram editor, and it’s type must be
specified in the plug-in manifest of the diagram editor.

One idea is to create new ECore elements by using the reflective EObject
API [3], but that would require that GMF should be able to use dynamic EMF
instead of generated code as the underlying diagram model. Such behavior is
not yet supported by GMF, but it might get implemented in the future. There is

CHAPTER 6. CONCLUSION AND FURTHER WORK 49

an open request for such a feature at https://bugs.eclipse.org/bugs/show_
bug.cgi?id=150177, but the last note on it was in February 2008.

Another approach is to decouple to whole creation process in GMF, but that
would take a substantial amount of time to do.

A third option could be to tinker with the code generation utility and the
Jave Emitter Templates (JET) to add support for other inputs when generating
the diagram editor. This will how ever not be very user-friendly.

Adding semantics to the diagram editor

At the moment there are no checks to decide if a diagram constraint that has
been added is legal or not. This is of course not good, since the diagram con-
straint is important in DPL. Now there is only a visual connection between a
node in a graph and a node in a diagram constraint. The graph portion should
have some visuals that shows if the diagram constraint is not valid, or possible
valid targets of elements, like the diagram constraint approach from Sketcher95.
A possible example of how to do this is from the review decorator example that
is provided with GMF. This plug-in adorns a note with an icon depending on
the text inside the note. If the text is equal to ‘passed’ a green icon is put above
the note, if the text is ‘failed’ a red icon is put up.

A more intuitive way of adding diagram constraints

Continuing on the previous section, at the moment a node in graph is linked
with a node in a diagram constraint by connecting the two. A better solution
would be to come up with something along the lines of Sketcher95’s approach,
by having some sort of wizard doing the job.

Arcs in diagram constraints

It is possible to create connections between connections in GMF. But the prob-
lem (as described in Section 5.9) is that connections are not considered seman-
tical elements for some reason. Further study is needed on this part to discover
why the edit commands are not gotten from the semantical edit policy and only
the view is affected when removing the element normally.

There are also some issues with the visual of a connection between connec-
tions. GMF has a built-in obstruction-avoidance feature that makes connections
try to take the “safest” route. This feature is shown in Figure 6.1. This is prob-
ably related to the RoutingStyle of the connection. According to the GMF
Newsgroup Q and A available at http://wiki.eclipse.org/GMF_Newsgroup_
Q_and_A, the routing style is applied in the View factory of the connection but
I have not been able to get it to work properly.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=150177
https://bugs.eclipse.org/bugs/show_bug.cgi?id=150177
http://wiki.eclipse.org/GMF_Newsgroup_Q_and_A
http://wiki.eclipse.org/GMF_Newsgroup_Q_and_A

CHAPTER 6. CONCLUSION AND FURTHER WORK 50

(a) Desired result (b) The actual result

Figure 6.1: Connections between connections in GMF

Appendix A

Eclipse Setup

After numerous attempts with different “distributions” or whatever they call it,
I have come to the conclusion that the simplest is to get Eclipse Classic. After
that, use the built-in update manager to get GMF et al. By using the update
manager at least you are ensured that the versions of GMF, EMF and GEF
fit together. Most likely they don’t anyway, but now you get someone else to
blame but yourself. This is a good thing.

The next version of Eclipse (codenamed Ganymede) has a better update
manager. Which is good, because from my experiences the one in the Europa
version has a slight tendency to stall sometimes.

A.1 Where to find it all

Eclipse Classic http://www.eclipse.org/downloads/

EMF SDK http://www.eclipse.org/modeling/emf/downloads/?project=
emf (XSD is not required at the moment; it is for XML Schema)

GEF and Draw2D SDK http://www.eclipse.org/gef/downloads/

GMF SDK http://www.eclipse.org/modeling/gmf/downloads/

SWT http://www.eclipse.org/swt/ (Not really needed, but ok if you want
to do small tests with graphical elements)

Trying to get some examples and SDK’s is a whole different thing. The
ones for EMF and GEF are fine I think, but the GMF SDK seems to have
disappeared. My solution was to download the GMF SDK after installing the
GMF plug-in from the Eclipse Updater. If you are not using the Eclipse Updater
to install GMF first there will be some weird dependency problems and missing
things, which means you have to install all of it again.

51

http://www.eclipse.org/downloads/
http://www.eclipse.org/modeling/emf/downloads/?project=emf
http://www.eclipse.org/modeling/emf/downloads/?project=emf
http://www.eclipse.org/gef/downloads/
http://www.eclipse.org/modeling/gmf/downloads/
http://www.eclipse.org/swt/

APPENDIX A. ECLIPSE SETUP 52

A.2 GMF Examples

The provided examples for the GMF project which can be installed in your
workspace by selecting “New → Example...” were broken in my installation
of GMF. It is possible to get new versions of all examples from the Eclipse
CVS site. For more information about gaining access to the CVS, see http:
//wiki.eclipse.org/index.php/CVS_Howto

Although the examples on the CVS use the absolute latest versions of GMF
(and dependencies) it is possible to get older versions that work with your
GMF version by right-clicking the project → “Team..” → “Switch to another
Branch/Tag”.

http://wiki.eclipse.org/index.php/CVS_Howto
http://wiki.eclipse.org/index.php/CVS_Howto

Appendix B

Resources

Seeing as GMF has yet to release a book, here is a list of useful resources for
dealing with GMF.

• http://help.eclipse.org/help32/index.jsp The section GMF Devel-
oper Guide has some very useful tutorials and various documentation on
GMF. The latest version (3.3 at the time of writing) has some missing
CSS files which makes some of the code examples very hard to read so its
better to use the 3.2 version.

• http://wiki.eclipse.org/GMF_Newsgroup_Q_and_A Various questions
that has been answered on the GMF newsgroup.

• http://wiki.eclipse.org/GMF The GMF wiki. The GMF Documenta-
tion link contains some examples (the mindmap example is pretty good)
and the Documentation Index serves as an index for GMF documentation
that is found in various locations.

• http://www.eclipse.org/articles/ The Eclipse Corner Articles. Ev-
ery article is written by members of the Eclipse development team or other
members of the Eclipse community.

• Eclipse Modeling Framework: a developer’s guide [3] — A book on EMF

• Eclipse : building commercial-quality plug-ins [5] — A book on creating
plug-ins in Eclipse

• http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/
sg246302.html A book on creating graphical editors using GEF and EMF.
Provides a great overview on how GEF works.

53

http://help.eclipse.org/help32/index.jsp
http://wiki.eclipse.org/GMF_Newsgroup_Q_and_A
http://wiki.eclipse.org/GMF
http://www.eclipse.org/articles/
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246302.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246302.html

Bibliography

[1] John Arthorne and Chris Laffra. Official Eclipse 3.0 FAQs. Addison-
Wesley, 2004.

[2] Kent Beck. Extreme programming explained : embrace change. Addison-
Weasley, 2000.

[3] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Tim-
othy J. Grose. Eclipse Modeling Framework: a developer’s guide. Addison-
Weasley, 2003.

[4] Peter Pin-Shan Chen. The entity-relationship model – toward a unified
view of data. ACM Transactions on Database Systems, 1(1):9–36, March
1976.

[5] Eric Clayberg and Dan Rubel. Eclipse : building commercial-quality plug-
ins. Addison-Wesley, 2 edition, 2006.

[6] Edsger Dijkstra. Ewd 340: The humble programmer. Communications of
the ACM, 10:859–866, 1972.

[7] The Eclipse Foundation. GEF Programmer’s Guide. http:
//help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gef.
doc.isv/guide/guide.html[Online; accessed 23-May-2008].

[8] Nick Edgar, Kevin Haaland, Jin Li, and Kimberley Peter. Eclipse user
interface guidelines, 2007. http://wiki.eclipse.org/User_Interface_
Guidelines[Online; accessed 23-May-2008].

[9] José Luiz Fiadeiro. Categories for Software Engineering. Springer, 2005.

[10] Eclipse Foundation. Developer’s guide to the extensible type registry. http:
//help.eclipse.org/[Online; accessed 22-May-2008].

[11] Eclipse Foundation. Tutorial: Configuring and extending the
diagram palette, 2006. http://help.eclipse.org/help32/
index.jsp?topic=/org.eclipse.gmf.doc/tutorials/diagram/
paletteConfigurationTutorial.html[Online; accessed 22-May-2008].

[12] The Eclipse Foundation. Gmf tutorial. http://wiki.eclipse.org/
index.php/GMF_Tutorial[Online; accessed 25-May-2008].

54

http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gef.doc.isv/guide/guide.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gef.doc.isv/guide/guide.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gef.doc.isv/guide/guide.html
http://wiki.eclipse.org/User_Interface_Guidelines
http://wiki.eclipse.org/User_Interface_Guidelines
http://help.eclipse.org/
http://help.eclipse.org/
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.gmf.doc/tutorials/diagram/paletteConfigurationTutorial.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.gmf.doc/tutorials/diagram/paletteConfigurationTutorial.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.gmf.doc/tutorials/diagram/paletteConfigurationTutorial.html
http://wiki.eclipse.org/index.php/GMF_Tutorial
http://wiki.eclipse.org/index.php/GMF_Tutorial

BIBLIOGRAPHY 55

[13] The Eclipse Foundation. About the eclipse foundation, 2008. http://www.
eclipse.org/org/[Online; accessed 23-May-2008].

[14] The Eclipse Foundation. Emf/faq, 2008. http://wiki.eclipse.org/
EMF-FAQ[Online; accessed 23-May-2008].

[15] Martin Fowler. UML distilled: a brief guide to the standard object modeling
language. Addison-Weasley, 3 edition, 1995.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns : elements of reusable object-oriented software. Addison-Weasley,
1995.

[17] Object Management Group. Meta object facility (mof) core specifica-
tion, 2006. http://www.omg.org/spec/MOF/2.0/[Online; accessed 22-
May-2008].

[18] Object Management Group. Meta object facility (mof) core specification,
2007. http://www.omg.org/spec/XMI/2.1.1/[Online; accessed 22-May-
2008].

[19] Robert C. Martin. Agile Software Development. Prentice Hall, 2003.

[20] Bill Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, and
Philippe Vanderheyden. Eclipse Development using the Graph-
ical Editing Framework and the Eclipse Modeling Framework.
IBM RedBooks. IBM International Technical Support Organiza-
tion, 2004. http://publib-b.boulder.ibm.com/Redbooks.nsf/
RedbookAbstracts/sg246302.html?OpenDocument[Online; accessed
23-May-2008].

[21] Inc Object Technology International. Eclipse platform technical overview.
Technical report, Eclipse Foundation, 2003. http://www.eclipse.org/
whitepapers/eclipse-overview.pdf[Online; accessed 1-May-2008].

[22] Frederic Plante. Introducing the gmf runtime. Eclipse Corner Articles,
2006. http://www.eclipse.org/articles/Article-Introducing-GMF/
article.html[Online; accessed 23-May-2008].

[23] Adrian Powell. Model with the eclipse modeling framework, part 1: Create
uml models and generate code. IBM developerWorks, 2004. http://www.
ibm.com/developerworks/opensource/library/os-ecemf1/[Online; ac-
cessed 23-May-2008].

[24] Ørjan Hatland. Skethcer .net - a drawing tool for generalized sketches.
Master’s thesis, Department of Informatics, University of Bergen, June
2006.

[25] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Weasley, 1999.

[26] Adrian Rutle, Uwe Wolter, and Yngve Lamo. A formal approach to model
transformations in software engineering. 2008. Proceedings, Wollic 2008,
Submitted. Available at gs.hib.no.

http://www.eclipse.org/org/
http://www.eclipse.org/org/
http://wiki.eclipse.org/EMF-FAQ
http://wiki.eclipse.org/EMF-FAQ
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/XMI/2.1.1/
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246302.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246302.html?OpenDocument
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://www.eclipse.org/articles/Article-Introducing-GMF/article.html
http://www.eclipse.org/articles/Article-Introducing-GMF/article.html
http://www.ibm.com/developerworks/opensource/library/os-ecemf1/
http://www.ibm.com/developerworks/opensource/library/os-ecemf1/

BIBLIOGRAPHY 56

[27] Adrian Rutle, Uwe Wolter, and Yngve Lamo. Generalized sketches and
model driven architecture. Technical Report 367, Department of Informat-
ics, University of Bergen, 2008. Presented at CALCO Young Researchers
Workshop 2007.

[28] Ian Summerville. Software Engineering. Addison-Weasley, 8 edition, 2007.

[29] Sun MicroSystems. JavaBeans(TM) API specification. http:
//java.sun.com/javase/technologies/desktop/javabeans/docs/
spec.html[Online; accessed 25-May-2008].

[30] Uwe Wolter and Zinovy Diskin. The next hundred diagrammatic specifica-
tion techniques: A gentle introduction to generalized sketches. Technical
Report 358, Dept of Informatics, University of Bergen, July 2007.

[31] Uwe Wolter and Zinovy Diskin. Generalized sketches: Towards a universal
logic for diagrammatic modeling in software engineering. 2008. Proceed-
ings, ACCAT 2007, ENTCS, Accepted.

http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html

	List of Figures
	Preface
	Introduction
	Motivation
	A short problem description
	Structure of thesis

	Background
	Software Engineering
	Object Oriented Programming
	Graphical Modeling Languages
	Model-Driven Engineering
	Model-Driven Architecture

	The problem with modeling languages
	Diagrammatic Predicate Logic
	Category Theory
	First Order Logic
	Modeling and the DPL Framework
	A DPL Example

	Description of problem
	Today's situation and existing solutions
	Sketcher95
	Sketcher.Net

	The Project: Background and General Idea

	Problem Analysis
	Available Technology
	The Eclipse Platform
	History of Eclipse
	Structure of the Eclipse Platform
	The Eclipse Modeling Framework Project
	Standard Widget Toolkit
	Graphical Editing Framework
	Graphical Modeling Framework

	Summary of analysis and issues to resolve

	Solution and implementation
	The core of the DPL formalism
	How to implement the model in EMF
	Letting GMF do its work
	An Example Graph Editor
	The GMF generated packages
	Extending the Simple Graph
	Adding Compartments
	Modifying Connection creation

	Creating instances of a simple graph
	Adding Constraints for Nodes and Arrows
	Listening for changes
	Changing visualization of an Arrow
	Connection Decorators in GMF
	Simple geometric decorators
	Circle Decorator
	Composed figures as decorators
	Changing visualization on notification

	Adding Specialized Types

	Conclusion and further work
	A summary of the results
	Further work

	Eclipse Setup
	Where to find it all
	GMF Examples

	Resources
	Bibliography

