
Comparison of Solving Techniques for
Non-Linear Sparse Equations over
Finite Fields with Application in

Cryptanalysis

Thorsten Ernst Schilling
June 2, 2008

Master Thesis

Department of Informatics
University of Bergen

Norway

ii

Acknowledgements/Danksagung

At first I would like to thank my family for their persistent support during my studies and in
all other circumstances.

Furthermore I would like to thank Igor Semaev who motivated me during the whole thesis
and was available for all questions to the topic of the thesis.

I thank also my friends for several liters of coffee, sensible discussions and miscellaneous kinds
of distraction.

Als erstes möchte ich mich bei meiner Familie für ihre ständige Unterstützung während meines
Studiums und in allen anderen Lebenslagen bedanken. Durch sie wurde diese Masterarbeit erst
möglich.

Des weiteren danke ich Igor Semaev, der mich von Anfang an motiviert hat und mir für alle
Fragen zum Thema der Arbeit bereit stand.

Ich bedanke mich ebenfalls bei meinen Freunden, für den ein oder anderen Liter Kaffee,
sinnvolle Diskussionen und verschiedene Arten der Ablenkung.

iii

iv

Contents

Contents 1

1 Introduction 5

2 Gluing and Agreeing 7
2.1 Basic Definitions . 7
2.2 The Gluing Algorithm . 7

2.2.1 Algorithmic Description . 7
2.2.2 Gluing1 Algorithm . 9
2.2.3 Expected Complexity of the Gluing Algorithm 11
2.2.4 Gluing2 Algorithm . 12
2.2.5 Expected Complexity of the Gluing2 Algorithm 12
2.2.6 Complexity Comparison . 13

2.3 The Agreeing Procedure . 14
2.3.1 Algorithmic Description . 14
2.3.2 Upper Bound Complexity of the Agreeing Procedure 15

2.4 The Agreeing1 Algorithm . 15
2.4.1 Algorithmic Description . 15
2.4.2 Upper Bound Complexity of the Agreeing1 Algorithm 16

2.5 The Agreeing2 Algorithm . 16
2.5.1 Algorithmic Description . 16

2.6 The Gluing-Agreeing Algorithm . 18
2.6.1 Algorithmic Description . 18
2.6.2 Expected Complexity of the Gluing-Agreeing Algorithm 19

2.7 The Gluing-Agreeing2 Algorithm . 20
2.7.1 Algorithmic Description . 20

2.8 Sorting Equations . 20
2.9 Implementation . 22

2.9.1 Code Notation . 22
2.9.2 Memory Representation . 22
2.9.3 Class Definitions . 24
2.9.4 Tree Representation . 25
2.9.5 Full Agreeing Representation . 26
2.9.6 Sorting . 28
2.9.7 The Agreeing2 Procedure . 28
2.9.8 The Solving Procedure . 30
2.9.9 The Main Program . 31
2.9.10 Preprocessing . 32

3 SAT Solving Techniques 33
3.1 Basic Definitions . 33
3.2 Conversion to SAT . 33
3.3 General Structure of a SAT-Algorithm . 34

1

Contents

3.4 DP and DPLL . 35
3.5 Algorithmical Improvements . 37
3.6 Branching Heuristics . 37

3.6.1 MOM’s Heuristic . 38
3.6.2 Jeroslow-Wang Heuristic . 38

3.7 Conflict Induced Clauses . 39
3.8 Non-Chronological Backtracking . 41
3.9 Watched Literals . 42

4 Gröbner Basis Algorithms 45
4.1 Basic Definitions and Lemmas . 45
4.2 Monomial Orderings and Division Algorithm . 46
4.3 Gröbner Basis and Reduced Gröbner Basis . 46
4.4 Buchberger’s Algorithm . 47
4.5 Properties of a Gröbner Basis . 47
4.6 Solving the Equation System . 48
4.7 Complexity of the Solving Procedure . 48
4.8 Improvements for Calculation a Gröbner basis . 48

5 Application 49
5.1 DES . 49
5.2 Trivium . 51

6 Experimental Results 55
6.1 Gluing Algorithm . 55

6.1.1 Pure Gluing Algorithm Unsorted . 55
6.1.2 Pure Gluing Algorithm Sorted . 55
6.1.3 Gluing Tree Depth Histograms . 55

6.2 Sorting . 57
6.2.1 Average |X(i)| − i Unsorted . 57
6.2.2 Maximum |X(i)| − i Unsorted . 57
6.2.3 Average |X(i)| − i Sorted . 57
6.2.4 Maximum |X(i)| − i Sorted . 58

6.3 Gluing-Agreeing2 Algorithm . 58
6.3.1 Number of Tuples . 58
6.3.2 Comment on Magma . 58
6.3.3 Comparison to Minisat . 58

7 Algorithmic and Implementation Improvements to the Gluing and Agreeing 63
7.1 Edge Removal . 63
7.2 Implied Equations . 64
7.3 Parallelization . 64
7.4 Watched Assignments . 65

8 Summary and Conclusions 67

A Program Sources 69
A.1 Test Instance Generator . 69

A.1.1 InstanceGenerator.py . 69
A.1.2 Eq2DimacsCNF.py . 72

A.2 fastglue2 . 73

2

Contents

A.2.1 Assignment.h . 73
A.2.2 Model.h . 74
A.2.3 Main.cpp . 74
A.2.4 Tree.h . 77
A.2.5 Branch.h . 77
A.2.6 Equation.h . 78
A.2.7 FullAgreeingStructure.h . 79
A.2.8 Sorter.h . 82
A.2.9 Solver.h . 82
A.2.10 Stats.h . 86

B Experimental Environment 91
B.1 Generating Random Instances . 91
B.2 Converting to SAT . 92
B.3 Compiler . 93
B.4 OS & CPU . 93

Bibliography 93

3

Contents

4

1 Introduction

Let Fq be a finite field of q elements and X = {x1, x2, . . . , xn} be variables where xi ∈ Fq. We
consider the following system of equations F

f1(X1) = 0, f2(X2) = 0, . . . , fm(Xm) = 0. (1.1)

In this system all fi are polynomials over Fq and for every 1 ≤ i ≤ m it holds that Xi ⊆ X.
Such an equation system is called l-sparse if for all 1 ≤ i ≤ m : |Xi| ≤ l.

The content of the following master thesis presents three different approaches to solve an
instance of (1.1).

The research in this field is motivated by the cryptanalysis done on symmetric block and
stream ciphers in the last years. By trying to break a cipher one can obtain for different systems
a system (1.1) and by obtaining the solution to it possibly reveal an inner state or even the key
to the crypto system itself. This kind of approach to break a cipher belongs to the group of
algebraic attacks and has the advantage that a relatively small number of plaintext ciphertext
pairs is needed to obtain a solution.

Solving this kind of equation system belongs to the class of NP -complete problems, since it
exists a many-to-one reducibility to the popular SAT -problem. Therefore there is little hope to
find an algorithm which does this task in polynomial time, thus efficient.

Recent attacks of this kind were often done by applying the theory of Gröbner basis to the
system. The root to the family of these algorithms is the so called Buchberger’s Algorithm
which, simply spoken, tries to obtain another, simpler to solve equation system from the input
instance. The related algorithms have often an unattractive run-time behavior. That means
that the cost of calculating a Gröbner basis often exceeds the cost of a brute force attack.

Another approach, especially attractive for systems (1.1) of characteristic 2, are so called
SAT-solving algorithms. The algorithms of this family try to obtain a solution by sophisticated
guessing heuristics, fast propagation and conflict resolution tactics. Despite the fact, that their
roots range from the 1960’s, they are currently the most successful, spoken in terms of speed,
to find a solution to (1.1) over F2, due to extensive research over the last 40 years.

Lately a new method was developed from the need of a fast solving algorithm. This is the
group of the Gluing/Agreeing Algorithms which were the main matter during the work of this
thesis. They also use a backtracking strategy: guess and determine. However Gluing and
Agreeing their selves are more general approaches than Clause Resolution and Unit Clause
propagation, which are main components of SAT-solvers. This is probably reason why expected
complexity bounds on Gluing/Agreeing algorithms are so low in comparison with the worst case
theoretical estimates provided by SAT-solving methods. The thesis was aimed to compare all
above methods in practice.

The work on this thesis gives a summary of the Gluing/Agreeing techniques, as well as a
reference implementation of this methods. Furthermore widely used SAT -solving techniques
are explained and a short insight to the theory of Gröbner basis is given. To demonstrate
the application of this techniques two ciphers are presented along with an explanation how to
obtain a system (1.1) for them. By the reference implementation obtained experimental results
are presented in comparison to results of an up-to-date SAT-solver, called minisat. In the
last part of this thesis further improvements to the Gluing/Agreeing techniques are presented.
Finally the results and cognitions obtained during the work on this thesis are discussed.

5

1 Introduction

6

2 Gluing and Agreeing

In the following chapter algorithms, originally developed by H̊avard Raddum, Igor Semaev and
independently discovered by A.D. Zakrevskii and I.V. Vasilkova, see [ZV00, Rad04, Sem05, RS06,
Sem07, RS07], are presented. They belong to the group of the Gluing/Agreeing Algorithms
whose aim is to find a solution to an equation system over a finite field. The main work during
this thesis was to implement the ideas beyond this algorithms and to find possibilities to speed
them up, either algorithmically or by implementation.

The fundament of the algorithms builds the Gluing Algorithm, and its tree search variant
from the family of the backtracking algorithms, presented at first. Afterwards the main matter
will be the Agreeing Algorithms which are polynomial algorithms to check if a partial solution
produced from a Gluing Algorithm is correct and to reduce the number of possible solutions to
an equation system.

2.1 Basic Definitions

To give an alternative representation for an equation from (1.1) we introduce the definition of
the symbol.

Definition 2.1 (Symbol) A symbol of an equation fi(Xi) = 0 is a tuple (Xi, Vi), where Xi is a
set of variables in which fi is defined and Vi = {v1, v2, . . . , vk} is a set of satisfying assignments
of fi.

Equipped with this definition we can express (1.1) as a set of symbols

E = {S1, S2, . . . , Sm} = {(X1, V1), (X2, V2), . . . , (Xm, Vm)}, (2.1)

where every symbol Si is referring to an equation fi(Xi) = 0.

Definition 2.2 (Landau Notation [Knu76]) To estimate the complexity of algorithms we
use the Landau notation which defines the following three sets of functions:

1. O(f(n)) denotes the set of all g(n) such that there exist positive constants C and n0 with
|g(n)| ≤ Cf(n) for all n ≥ n0.

2. Θ(f(n)) denotes the set of all g(n) such that there exist positive constants C,C ′, and n0

with Cf(n) ≤ g(n) ≤ C ′f(n) for all n ≥ n0.

2.2 The Gluing Algorithm

2.2.1 Algorithmic Description

Let us consider two symbols
(X1, V1), (X2, V2) (2.2)

as our input to the algorithm. We will first demonstrate how to obtain all common solutions to
that pair of symbols, denoted as a set of vectors U . If all common solutions to (2.2) are stored
as vectors defined in X1 ∪X2 we can create a new symbol (X1 ∪X2, U) which can be seen as

7

2 Gluing and Agreeing

the glued representation of (2.2) and therefore be substituted. To apply the method one defines
for the pair of symbols the set of variables Z = X1 ∪X2 and Y = X1 ∩X2. Then one computes
the set U of Z-vectors by

U = {(a1, b, a2)|(a1, b) ∈ V1 and (b, a2) ∈ V2}

where ai are (Xi \ Y)-vectors and b is an Y -vector, that is a projection of a vector to variables
Y . One can see, that the size of the outcome of this computation, namely the size of U is in
O(q|X1∪X2|). The overall complexity of the operation is

O(|U |+ |V1|+ |V2|)

where |V1| + |V2| can be considered as the sorting of the vectors through algorithms like the
bucket sort [CL04].

The single gluing operation is denoted by

(Z,U) = (X1, V1) ◦ (X2, V2),

where Z = X1 ∪X2. And by
a = b ◦ c

is denoted, that a is the combination of the vectors b and c.
To solve the equation system (2.1) one can apply this procedure repetitively to the problem

instance in the form of the following algorithm.

Algorithm 1 Gluing Algorithm
1: procedure Gluing(E)
2: (Z,U)← (X1, V1)
3: k ← 2
4: while k ≤ m do
5: (Z,U)← (Z,U) ◦ (Xk, Vk)
6: k ← k + 1
7: end while
8: return (Z,U)
9: end procedure

It is obvious, that this algorithm returns all possible solutions to the equation system. It
should be remarked, that the size of the memory used by the algorithm is equal to the time the
algorithm runs since the gluing algorithm is mostly dependent on finding common solutions and
storing them back to (Z,U).

Example To get a better understanding, here is an example of the procedure. In this case the
algorithm yields an unique solution, which is of course not the general case. For the most single
gluing steps the outcome will be a set of possible solutions, therefore the final computation step
may contain a set of solutions instead of a single one.

Let (2.1) consist of three symbols S1, S2, S3 in five variables X = {x1, x2, x3, x4, x5}

S1 x2 x4

a1 1 0
a2 1 1
a3 0 0

,

S2 x1 x3 x4

b1 0 1 0
b2 1 1 0
b3 1 0 1
b4 0 0 0

,
S3 x1 x4 x5

c1 1 1 1
c2 0 1 0

,

8

2.2 The Gluing Algorithm

then the gluing of the first two equation leads us to the equation system

S1 ◦ S2 x1 x2 x3 x4

d1 1 1 0 1
d2 0 1 1 0
d3 1 1 1 0
d4 0 1 0 0
d5 0 0 1 0
d6 1 0 1 0
d7 0 0 0 0

,
S3 x1 x4 x5

c1 1 1 1
c2 0 1 0

.

The last gluing operation yields

S1 ◦ S2 ◦ S3 x1 x2 x3 x4 x5

e1 1 1 0 1 1
,

where one can see that the vector a2 ◦ b3 ◦ c1 = e1 = (1, 1, 0, 1, 1) is the only solution to the
system. Another order of the equations would result in a different intermediate solution, but
the outcome is the same.

2.2.2 Gluing1 Algorithm

Since the memory requirement of the gluing algorithm is the same as the running time, namely
exponential, here another version of the algorithm, the Gluing1 Algorithm is presented. The
asymptotic running time of the algorithm is the same, but it requires only poly(n) bits memory.
In general it can be seen as a tree search [Wei94] through the possible gluings of equations. One
defines a rooted search tree T with the root ∅.

With Mi are vectors of length n denoted which keep track of a partial solution for every tree
depth 1 ≤ d ≤ m. The set of this vectors is denoted by M1,2,...,m. The level, or current depth of
the tree, where the algorithm is operating is denoted by d.

Through the tree search the algorithm keeps track of which assignments have already been
tried with a set of integer variables si, 1 ≤ d ≤ m, denoted by s1,2,...,m. Every si is specific for a
symbol Si and points to the next not yet tested vector in the ordered set V (Si) = Vi.

Now every possible gluing is tried sequentially from the root up to d = m until a solution is
found, which is Mm. The algorithm aborts if d < 1. In that case no initial gluing is any longer
possible and all vectors of S1 have been tried and NOSOLUTION is returned to announce that
there exists no solution for the equation system.

9

2 Gluing and Agreeing

Algorithm 2 Gluing1 Algorithm
1: procedure Gluing1(E)
2: d← 1
3: M1,2,...,m ← (−1,−2, . . . ,−n) . Empty vector with size of number of variables
4: s1,2,...,m ← 1
5: while d ≤ m and d > 0 do
6: if ∃i ≥ sd : ∃vi ∈ Vd : vi ◦Md then . First glueable vector of Vd
7: Md+1 ← vi ◦Md

8: sd ← sd + 1 . Keep track which vector was already used
9: d← d+ 1

10: else
11: sd ← 1 . Reset all evaluated vectors from this level
12: d← d− 1
13: end if
14: end while
15: if d = m then
16: return Mm

17: else
18: return NOSLUTION
19: end if
20: end procedure

Example According to our example we step through a search tree. Assume the equations
S1, S2, S3 in that order. The symbol S1 is located at d = 1, at d = 2 we have the assignments of
S2 and at d = 3 the assignments of S3. Now we define M = {M0,M1,M2,M3} which is a set of
vectors of length n and stands for the intermediate partial solutions at every depth in the tree.
At the root all Mi’s are empty, denoted (−,−,−,−,−).

M0,1,2,3 = (−,−,−,−,−).

Now we apply, according to the order of vectors in S1, the first vector to our model. That results
in an intermediate solution

M1 = (−, 1,−, 0,−).

The next step is to find a possible extension to the model. This step can be seen as an attempt
to find a possible gluing between two vectors ai and bj . Whenever a gluing is possible the model
is extended, if no gluing is possible to the partial solution we have to go one step back in the
search tree. In our case we find that the gluing a1 ◦ b1 is possible. That results in the model

M2 = (0, 1, 1, 0,−).

Now no further gluing to a vector from S3 is possible. That implies, that the guess was wrong
and so the algorithm tries another vector from S2. The gluings a1 ◦ b2 and a1 ◦ b4 are also
valid, but neither of them gives a intermediate result which can be further extended with an
assignment of S3. Therefore the algorithm goes one step back and tries the next vector from S1.
The result of a2 ◦ b3 yields

M2 = (1, 1, 0, 1,−)

which can be extended with c1 to
M3 = (1, 1, 0, 1, 1)

and so gives a final solution. Therefore the search tree of our example after termination by
finding a solution would look like figure (2.2.2).

10

2.2 The Gluing Algorithm

Figure 2.1: Search Tree

2.2.3 Expected Complexity of the Gluing Algorithm

Here we will give the mathematical expectation of the complexity of the Gluing Algorithm.
Equiprobable distribution on instances (1.1), each instance has the same probability, is as-

sumed. That is, given the sequence of natural numbers m and l1, . . . , lm ≤ l, equations in (1.1)
are generated independently. The particular equation fi(Xi) = 0 is determined by the subset
Xi of size li taken uniformly at random from the set of all possible li-subsets of X, that is with
the probability

(
n
li

)−1, and the mapping (polynomial) fi taken with the equal probability q−q
li

from the set of all possible mappings to Fq defined on li-tuples over Fq (the set of polynomials
of degree ≤ q − 1 in each of li variables).

With reference to [Sem05] let be
γ0 = g(α0)

be the maximum of

g(α) = f(zα)− α+ α ln α− α ln q

l
, α > 0

with
f(z) = ln(ez + q−1 − 1)− α ln(z)

as a real valued function in a real valued variable z for a positive number α. By zα the only
positive root of the equation

∂f

∂z
= 0

is denoted.

Theorem 2.3 Let ε be any positive real number and l ≥ 3 and q ≥ 2 be fixed natural numbers
when n tends to infinity. Then the mathematical expectation of the complexity of the Gluing
Algorithm is

O(qeγ0 + ε)n + poly(n)m)

operations, where γ0 = − ln q
l − (q

1
l − 1)ln

(
1−q−1

1−q−
1
l

)
and poly(n) is a polynomial in n.

as stated and proven by Igor Semaev in [Sem05].

11

2 Gluing and Agreeing

2.2.4 Gluing2 Algorithm

In order to find a way for even faster gluing the following lemma as stated and proven in [Sem05]
is presented.

Lemma 2.4 Let q ≥ 2 and l ≥ 3 be natural numbers. Then for α > 0 the function g(α) has
just one maximum value.

g(α0) = − ln q
l
− (q

1
l − 1)ln

(
1− q−1

1− q−
1
l

)
and α0 < l/2.

This lemma implies that there exists just one real number α1 > 0 such that

g(α1) = g(2α1)

and α1 < α0 < 2α1 ≤ l. So one finds natural numbers k1 and k2 such that

(k1 − 1)l
n

< α1 ≤
k1l

n

and
(k1 + k2 − 1)l

n
< 2α1 ≤

(k1 + k2)l
n

.

Let us consider two subsystems of equations (1.1):

f1(X1) = 0, f2(X2) = 0, . . . , fk1(Xk1) = 0

and
fk1+1(Xk1+1) = 0, fk1+2(Xk1+2) = 0, . . . , fk1+k2(Xk1+k2) = 0

in the form (2.1). Let X ′ = X1 ∪ X2 . . . ∪ Xk1 and V ′ be the set of all solutions to the first
subsystem in X ′-vectors. Similarly let X ′′ = Xk1+1 ∪Xk1+2 ∪ . . .∪Xk1+k2 and V ′′ be the set of
all solutions to the second subsystem in X ′′-vectors.

Algorithm 3 Gluing2 Algorithm
1: procedure Gluing2(E)
2: Apply the Gluing Algorithm to find (X ′, V ′) and (X ′′, V ′′)
3: (Z,U)← (X ′, V ′) ◦ (X ′′, V ′′)
4: k ← k1 + k2 + 1
5: while k ≤ m do
6: (Z,U)← (Z,U) ◦ (Xk, Vk)
7: k ← k + 1
8: end while
9: return (Z,U)

10: end procedure

2.2.5 Expected Complexity of the Gluing2 Algorithm

Theorem 2.5 Let ε be any positive real number and l ≥ 3 and q ≥ 2 be fixed natural numbers
when n tends to infinity. Then the mathematical expectation of the complexity of the Gluing2
Algorithm is

O(qeg(α1) + ε)n + poly(n)m)

operations.

as stated and proven by Igor Semaev in [Sem05].

12

2.2 The Gluing Algorithm

2.2.6 Complexity Comparison

Now one can compare the above stated complexity expectation values of the Gluing Algorithm
and the Gluing2 Algorithm based on the probabilistic model described in [Sem05].

The following table shows a comparison between worst-case values for the l-SAT problem (see
chapter 3) taken from [Iwa04] to the mentioned expectation values.

l 3 4 5 6
worst-case 1.324n 1.474n 1.569n 1.637n

Gluing1, expectation 1.262n 1.355n 1.425n 1.479n

Gluing2, expectation 1.238n 1.326n 1.393n 1.446n

It should be remarked that the huge difference between the values from [Iwa04] and the
values from the algorithms presented here are never the less caused by taking worst-case values
in comparison to expectation values and because the average instances of the l-SAT problem
and that of (1.1) are different.

13

2 Gluing and Agreeing

2.3 The Agreeing Procedure

The following section describes the Agreeing Algorithm [RS06, Sem07] which is a way to elimi-
nate in a system of equations 1.1 vectors that are not suitable to a solution to the whole equations
system.

2.3.1 Algorithmic Description

For symbols (2.2) one defines the set of variables Y = X1 ∩X2. V1,2 contains all subvectors of
V2 to the variables in Y and V2,1 contains all Y -subvectors of V2.

If V1,2 = V2,1 the symbols are called agreeing. If V1,2 6= V2,1 we apply a procedure which is
called Agreeing. Agreeing means, that we delete from the set V1 all vectors whose Y -subvectors
are not occuring in in V2,1 and vice versa we delete from the set V2 all vectors whose Y -subvectors
are not occurring in V1,2. In other words, we make the sets Vi,j equal and let in V1, respectively
V2 only the vectors occur which have a reference in V1,2 ∩ V2,1.

The vectors we deleted from the sets can obviously not occur in a solution to both symbols,
since they have no appropriate counterpart in the other symbol.

Now we want to express this procedure in an algorithmic way. By Vi(Y) we denote the set of
Y-subvectors of Vi. Similarly by ai(Y) we denote a single vector projection to the set of variables
Y of the vector ai.

Algorithm 4 Agreeing Procedure
1: procedure Agree((X1, V1), (X2, V2))
2: Y ← X1 ∩X2

3: V1,2 ← V1(Y)
4: V2,1 ← V2(Y)
5: if V2,1 = V1,2 then
6: return
7: else
8: Vagree = V2,1 ∩ V1,2

9: for ∀a ∈ V1 do
10: if a(Y) /∈ Vagree then
11: V1 ← V1 \ a
12: end if
13: end for
14: for ∀a ∈ V2 do
15: if a(Y) /∈ Vagree then
16: V2 ← V2 \ a
17: end if
18: end for
19: end if
20: end procedure

Example To illustrate that procedure we show here an example to the equation system of
symbols from section 2.2.1. We consider here the symbols S1, S3.

S1 x2 x4

a1 1 0
a2 1 1
a3 0 0

,
S3 x1 x4 x5

c1 1 1 1
c2 0 1 0

.

14

2.4 The Agreeing1 Algorithm

In order to agree these two symbols we create first the set

Y = X1 ∩X3 = {x4}.

This leads to the sets V1,3 and to V3,1. For a better understanding here the symbols which
contain only the projections of the vectors are shown first.

S1(Y) x4

a1(Y) 0
a2(Y) 1
a3(Y) 0

,
S3(Y) x4

c1(Y) 1
c2(Y) 1

.

Then
V1,3 = {(1), (0)} and V3,1 = {(1)}.

One sees immediately that V1,3 6= V3,1 and so we calculate Vagree = V1,3 ∩ V3,1 = {(1)}. All
vectors which have a projection to Y which is not contained in Vagree will be deleted from the
sets V1, V3. In our example the vectors a1 and a3 are deleted from the symbol S1 and the result
of the equation system is

S1 x2 x4

a2 1 1
,

S3 x1 x4 x5

c1 1 1 1
c2 0 1 0

.

It should be remarked that if the case Vi,j ∩ Vj,i = ∅ occurs and Xi ∩Xj 6= ∅, then there exists
no solution for such a system of equations. This fact becomes crucial later when we combine
both strategies, Gluing and Agreeing. Also quite important is the fact, that the Agreeing does
not always produce a single solution or a reduction in the number of vectors as one can see in
trying to agree the symbols S1 and S2.

2.3.2 Upper Bound Complexity of the Agreeing Procedure

To analyze the complexity of one Agreeing step lets take again a look to the algorithmic structure.
Let us assume that we can do the set intersection inO(1), e.g. by binary operations on bitsets. To
calculate the subvectors for the sets V1,2, V2,1 we need O(|V1|+ |V2|), again by binary operations
on bitsets. Since we want to get an upper bound we discard the case that V1,2 = V2,1 and take
a closer look what happens if V1,2 6= V2,1. We have to determine for every assignment a ∈ Vi,j if
it occurs in Vj,i, too. This could be done for example by a hash table lookup, therefore possible
in O(1). To determine that for all a ∈ V1 and all a ∈ V2 we get again the bound O(|V1|+ |V2|).
This sums up to

O(1 + 1 + 2(|V1|+ |V2|)) = O(|V1|+ |V2|)

for a single Agreeing operation on two symbols.

2.4 The Agreeing1 Algorithm

2.4.1 Algorithmic Description

Now we often run in the situation that two symbols Si, Sj are agreed, but symbols Si, St and/or
Sj , St are not after applying the Agreeing Procedure. To propagate now the changes made to
the symbols Si, Sj and to eliminate more solutions to our equation system we use the following
approach. The Agreeing1 Algorithm is therefore a way to propagate information obtained by
Agreeing about our equation system (2.1) through the whole system.

15

2 Gluing and Agreeing

Algorithm 5 Agreeing1 Algorithm
1: procedure Agreeing1(E)
2: while Si, Sj ∈ E which are not agreeing do
3: Agree(Si, Sj)
4: end while
5: end procedure

Here now a slightly modified version of the lemma that the outcome of the Agreeing1 Al-
gorithm does not depend on the order of the pairwise agreeing is presented. For the original
proof one should refer to [RS06] where also was shown, that the Agreeing1 Algorithm produces
a maximal agreed set.

Given the set of symbols (2.1) related to the initial system of equations (1.1), we consider a
set of subsymbols (Xi, Ui) ⊆ (Xi, Vi) meaning that Ui ⊆ Vi for all 1 ≤ i ≤ m. Such a set of
subsymbols is called a maximal agreed set of subsymbols if the symbols (Xi, Ui) pairwise agree
and for any sets U ′i

Ui ⊆ U ′i ⊆ Vi
with Ui ⊂ U ′i for at least one i, the set of subsymbols (Xi, U

′
i), 1 ≤ i ≤ m does not agree.

Lemma 2.6 The maximal agreed set of subsymbols is unique.

Proof 2.7 Assume there are two maximal agreed sets of subsymbols: (Xi, Ui), 1 ≤ i ≤ m and
(Xi, U

′
i), 1 ≤ i ≤ m. Then one constructs a new set of subsymbols (Xi, Ui ∪U ′i), 1 ≤ i ≤ m. The

latter subsymbols pairwise agree. That is only possible if Ui = U ′i , 1 ≤ i ≤ m. The statement is
therefore proved. �

Therefore, if the maximal agreed set of subsymbols is unique and the Agreeing1 Algorithm
produces a maximal agreed set, the outcome of the algorithm does not depend on the order of
the pairwise agreeing.

2.4.2 Upper Bound Complexity of the Agreeing1 Algorithm

We now try to approximate the upper bound complexity and recall that a single Agreeing
operation takes O(|V1| + |V2|) operations. Lets assume, that our equation system is l-sparse
with m equations in n variables over Fq. So we have at most ql assignments per symbol. Every
single agreeing step on two symbols involves investigating all possible assignments and deleting
some of them. As one should delete at most mql of them, this results in an overall complexity
for the Agreeing1 Algorithm of

O(m3q2l)

operations.

2.5 The Agreeing2 Algorithm

2.5.1 Algorithmic Description

The Agreeing2 Algorithm, also referred to as the Full Agreeing Algorithm is another way to
propagate the information of a single Agreeing step to the whole equation system. Instead of
working with the equations itself and agreeing pairwise every symbol we do some beforehand
calculations and use this information to create a graph which distributes our information ob-
tained by Agreeing. The method here presented refers to [RS07] in a modified version for our
problem instance. With Xi,j we denote the set Xi ∩Xj .

16

2.5 The Agreeing2 Algorithm

Algorithm 6 Agreeing2 Precomputation
1: procedure Agreeing2Precomputation(E)
2: for each Si, Sj ∈ E do
3: if |Xi,j | > 0 then
4: for each b of length |Xi,j | do
5: Store {Vi,j(b);Vj,i(b)}
6: end for
7: end if
8: end for
9: return List of all tuples {Vi,j(b);Vj,i(b)}

10: end procedure

In the precomputation the algorithm creates for every pair of symbols tuples {Vi,j(b);Vj,i(b)}
if the set Xi,j is not empty. The list Vi,j(b) consists of the addresses of the assignments a of Vi
whose projection to Xi,j is b. Similarly the list Vj,i(b) contains the addresses of assignments a of
Vj whose projection to Xi,j is b. This is done for every |Xi,j |-bit b. Additionally the address of
an assignment in the tuples gets a field to mark them. If an address is marked it is considered
to be deleted. That means that a list Vi,j(b) in which all assignment addresses a are marked is
considered as an empty list. A tuple t in which exactly one list, either Vi,j(b) or Vj,i(b) is empty
is called one-sided empty.

Algorithm 7 Agreeing2 Algorithm
1: procedure Agreeing2(E)
2: T ← Agreeing2Precomputation(E)
3: while exists a tuple t ∈ T , which is one-sided empty do
4: for each address a in t which is not yet marked do
5: for each tuple u in which an address of a exists do
6: Mark a in u
7: end for
8: end for
9: end while

10: if All tuples empty then
11: return FALSE
12: else
13: return TRUE
14: end if
15: end procedure

That means that the algorithm at first precomputes the list T of {Vi,j(b);Vj,i(b)} tuples.
Then it steps through all tuples which got one-sided empty. The algorithm propagates the
information that the assignment a is not agreeing to the rest of the equation system, since it has
in at least one symbol no counterpart. The algorithm stops if there exists no more one-sided
empty tuple. That is either all assignments which are still present agree to the equation system,
or the equation system has no solution. In the first case the Agreeing2 Algorithm returns TRUE
as an indication that the system is in an agreed state. In the second case FALSE is returned
to indicate that there is no common solution to all symbols.

An important condition for this method to work properly is that the system has to be con-
nected. Assume E is connected. That is for any Xi, Xj there is a path Xi = Xi1 , Xi2 . . . Xit =
Xj , where Xik ∩Xik+1

6= ∅ for all 1 ≤ k ≤ t− 1.

17

2 Gluing and Agreeing

Example Let us consider the example from section 2.2.1. At first we preprocess our equation
system and create the required list of tuples in equal projections b to the set Xi,j for every pair
of symbols.

{a1, a3; b1, b2, b4}, {a1, a3; ∅}, {a2; b3}, {a2; c1, c2}, {b3; c1}, {b1, b4; ∅}, {b2; ∅}, {∅; c2}

Note that the tuple {a1, a3; ∅} here implies, that the vectors a1, a3 have no counterpart for
X1,3 = {x4} in the symbol S3. And the tuples {b1, b4; ∅}, {b2; ∅} indicate, that there exists no
equation projection in S3 for X2,3 = {x1, x4} in b1, b2, b4. Similar {∅; c2} gives us the result, that
there is no vector bi in S2 which has the same projection on X2,3 = {x1, x4} as c2.

This precomputation now lets us continue with the main algorithm. We start with the first
one-sided empty tuple {a1, a3, ∅} and propagate the information to the other tuples. We get

{a1, a3; b1, b2, b4}, {a1, a3; ∅}, {a2; b3}, {a2; c1, c2}, {b3; c1}, {b1, b4; ∅}, {b2; ∅}, {∅; c2}

where x denotes a marked assignment. Further on going with receiving {a1, a3; b1, b2, b4} as
one-sided empty tuple we get

{a1, a3; b1, b2, b4}, {a1, a3; ∅}, {a2; b3}, {a2; c1, c2}, {b3; c1}, {b1, b4; ∅}, {b2; ∅}, {∅; c2}

finally by resuming with {∅; c2}

{a1, a3; b1, b2, b4}, {a1, a3; ∅}, {a2; b3}, {a2; c1, c2}, {b3; c1}, {b1, b4; ∅}, {b2; ∅}, {∅; c2}

which leads us to our overall resulting equation system after Agreeing2 of

S1 x2 x4

a2 1 1
S2 x1 x3 x4

b3 1 0 1
S3 x1 x4 x5

c1 1 1 1

in an agreed state.

Introducing a Guess To the Agreeing2 Structure Assume that the equation system is pairwise
agreed from the beginning. We should introduce a guess to the structure and use it to check if
the guess was correct. This can in general be done in a very easy way.

Given symbols Si = (Xi, Vi) a guess in variables Y , denoted by g(Y), is compared to all
projections a(Y ∩Xi) of Vi if Xi ∩ Y ≥ 1. If g(Y ∩Xi) 6= ai(Y ∩Xi) one marks a.

After this one should mark them in the appropriate tuples and save the tuples as starting
point if they get one sided empty. If the tuples get both sided empty there is nothing more to
do with them since they cannot propagate any more information.

One can run now the Agreeing2 Algorithm and check if the result is either TRUE or FALSE.
In case the system is consistent to the guess, the output of the Agreeing2 Algorithm is TRUE,
otherwise FALSE.

2.6 The Gluing-Agreeing Algorithm

2.6.1 Algorithmic Description

Up to this point we obtained two different approaches. Gluing and Agreeing of equations. From
now on we will combine the two strategies to introduce our qualified guess obtained by the
Gluing Algorithm into our structure of Agreeing2 and check if the guess is correct. This is done
by continuously updating our equation system due to agreeing our intermediate result with the
rest of the equations.

As input to the algorithm we take the system (2.1).

18

2.6 The Gluing-Agreeing Algorithm

Algorithm 8 Gluing-Agreeing Algorithm
1: procedure Gluing-Agreeing(E)
2: (Z,U)← (X1, V1)
3: k ← 2
4: while k ≤ m do
5: s← k
6: while s ≤ m do
7: Agree((Z,U), (Xs, Vs))
8: s← s+ 1
9: end while

10: (Z,U)← (Z,U) ◦ (Xk, Vk)
11: k ← k + 1
12: end while
13: return (Z,U)
14: end procedure

2.6.2 Expected Complexity of the Gluing-Agreeing Algorithm

The expected complexity of the Gluing-Agreeing is the same like for the Gluing-Agreeing1 algo-
rithm, which utilizes the algorithmic structure above as a tree search and uses only polynomial
memory. Let (X(1), U ′1) be the symbol (X1, V1) after m− 1 agreeings with the symbols (Xi, Vi),
where 1 < i ≤ m. For any 1 ≤ k < m let (X(k + 1), U ′k+1) denote the symbol (X(k), U ′k). The
complexity of the algorithm is then

O(m(Σm−1
k=1 |U

′
k|+ 1))

operations with Fq-vectors of length at most n, where q and l are fixed and n or m may grow
as showed in [Sem07].

We compare this values to the worst case scenario here again as for the Gluing1 and Gluing2
algorithms in section (2.2.6).

l 3 4 5 6
worst-case 1.324n 1.474n 1.569n 1.637n

Agreeing-Gluing1, expectation 1.113n 1.205n 1.276n 1.334n

19

2 Gluing and Agreeing

2.7 The Gluing-Agreeing2 Algorithm

2.7.1 Algorithmic Description

In order to utilize the agreeing we use in this approach the Agreeing2 Algorithm since it has
a better runtime behavior due to the preprocessing steps which make repeating assignment
comparisons unnecessary. Furthermore it propagates the knowledge about not agreed vectors
more efficient due to its structure in comparison to the Agreeing1 Algorithm which simply tries
for every step if there are any not agreed equation pairs left. As mentioned before is the tree
search the desirable solution, since its memory requirements are polynomial and it has the same
asymptotic run time than the plain approach.

The core structure of the Gluing-Agreeing2 Algorithm is similar to the Gluing1 Algorithm,
but we introduce a new variable f which indicates the tree depth at which we check our solution
obtained so far by the Gluing Algorithm with the Agreeing2 Algorithm.

Algorithm 9 Gluing-Agreeing2 Algorithm
1: procedure Gluing-Agreeing2(E)
2: d← 1
3: M0,1,...,m ← (−1,−2, . . . ,−n)
4: s1,2,...,m ← 1
5: while d ≤ m and d > 0 do
6: if ∃i ≥ sd : ∃vi ∈ Vd : vi ◦Md then
7: Md+1 ← vi ◦Md

8: if d = f then . Start at tree depth f the Agreeing2 and check the result
9: if not Agreeing2(Md+1) then

10: sd ← sd + 1
11: goto 6 . If Agreeing2 failed resume with the next vector
12: end if
13: end if
14: sd ← sd + 1
15: d← d+ 1
16: else
17: sd ← 1
18: d← d− 1
19: end if
20: end while
21: if d = m then
22: return Mm

23: else
24: return NOSLUTION
25: end if
26: end procedure

2.8 Sorting Equations

In order to keep the number of new variables arising through the tree search small one should
somehow sort the equations to get a low magnitude in |X(i)| = |X1 ∪ X2 ∪ . . . ∪ Xi| before
starting the computation. For example consider a 4-sparse equation system with the sets Xi of
variables

{1, 2, 3, 4}, {5, 6, 7, 8}, {3, 4, 7, 8}

20

2.8 Sorting Equations

in that order. If one would start the Gluing Algorithm on that order it is obvious, that in the
Gluing step for the first symbol and the second step all combinations have to be tried in the
worst case. Since we have a number of q4 satisfying assignments in the worst case it would result
in the number of q8 possible gluings.

If we consider a better ordering like

{1, 2, 3, 4}, {3, 4, 7, 8}, {5, 6, 7, 8}

it would yield a potential of q6 solutions for the first gluing step since two variables are already
defined through the first assignment chosen. This fact makes it pretty obvious how important a
good sorting for a fast gluing is.

Here a simple sorting approach is presented, which has an upper bound of O(m2). The
algorithm takes as the input a list E of symbols and sorts them in the way, that for every
i the locally lowest |X(i)| is archived iteratively. There exist of course other, more efficient
possibilities to sort, but in the face of the practicability of this algorithm and the polynomial
running time it is still senseful to use this approach.

Algorithm 10 Simple Sorting Algorithm
1: procedure Sort(E)
2: n← |X(E)| . Store the number of variables
3: T1 ← S1

4: T2 ← S2

5: for each Si, Sj ∈ E do . Find pair Si, Sj with the smallest |X(Si) ∪X(Sj)|
6: if |X(Si) ∪X(Sj)| < |X(T1) ∪X(T2)| then
7: T1 ← Si
8: T2 ← Sj
9: end if

10: end for
11: E ← E \ {T1, T2}
12: R[1]← T1 . Result list becomes the first two symbols as first elements
13: R[2]← T2

14: while |E| > 0 do
15: s← n
16: for each Si ∈ E do
17: if |X(R) ∪X(Si)| < s then
18: s← |X(R) ∪X(Si)|
19: e← Si
20: end if
21: end for
22: E ← E \ e
23: Append e at R . Append iteratively the locally smallest equation
24: end while
25: end procedure

21

2 Gluing and Agreeing

2.9 Implementation

During the work on this master thesis the program ”fastglue2” developed. The program itself
is a result of working with the algorithms from this chapter, and only one in a row while finding
a efficient way to implement the methods. In this section the implementation of the program
”fastglue2” is described. It uses the Gluing-Agreeing2 Algorithm to find a solution to a non-
linear equation system over F2.

The main goal during the development of this program was to keep the implementation as
easy as possible but at the same time retaining performance. In the early states of experimenting
with different implementations it turned out that the only sensible way is to go the tree search
way, since only polynomial memory is required. This had to be iterative and not recursive due
to technical reasons and this immediately affected the speed of the program.

Also easy was the decision to write the solver exclusively for F2. Here is a strong competitor
available, namely minisat see [ES04] and [ES03] which uses a filed version of the DPLL algorithm
(described in chapter 3).

The programming language used to implement the program is C++. This has different rea-
sons. Firstly it is fast. Since it is in comparison to other high level programming languages (for
example to Java) quite hardware oriented and gives the control of the memory to the program-
mer. On the other hand it is object oriented and it is possible to produce a good readable code
and a lot of well developed libraries are available. One could argue, that a implementation in C
could increase the speed even more, but a test implementation in C showed that the increasing
unreadability outweighed the speed advantage.

2.9.1 Code Notation

In this section the following pseudo code notation is used and throughout the rest of the docu-
ment whenever to written program code is referred.

• A C/C++ internal datatype is announced by datatype, for example int, float or short
int.

• Predefined C/C++ classes, for example from the std/stl-lib or the boost library are de-
noted by verbatim text, e.g. boost::dynamic bitset or std::vector.

• Types and classes which are written or defined in the context of the work for this thesis
or for other projects which are mentioned and are crucial parts of the functioning of this
programs are denoted by Classname. For example Equation or Assignment.

• Template classes are like in C++ denoted with the datatype and the template parameter
in brackets (<>), like boost::dynamic bitset <unsigned long long int>.

• Blank types, for example for the definition of templates are denoted italic, e.g. BlankType.

2.9.2 Memory Representation

General Considerations The first problem in implementing the algorithms was to find a rea-
sonable representation in the memory of a standard personal computer with a x86 architecture.
The representation should be easy to handle and also perform well in the comparison of single
vectors. First recall the input data of the program.

An equation, or symbol Si is a tuple (Xi, Vi), where Xi is a set of indices of the variables in
which it is defined and Vi is a list of vectors which make the equation satisfiable. This could in
a real problem for example be the symbol

Sj = ({2, 5, 9}, {a1 = (1, 1, 0), a2 = (0, 0, 1), a3 = (1, 0, 1), a4 = (1, 1, 1)}),

22

2.9 Implementation

where the equation system over F2 is 3-sparse and the number of variables is n = 10. The simple
approach is to represent the Xj as a set of integer values and the satisfying vectors in that case
as C++ vectors (or arrays) of length |Xj | of boolean values.

Let us assume that the algorithm reached the point where we have to find out wether or not
an intermediate result Mk = (0,−, 1,−, 1,−,−,−, 0,−) and the vector a1 are glueable.

The first task is that we have to know the set intersection between the variables in which
model Mk is so far defined and Xj . It is obviously possible to calculate that beforehand, since
the ordering of the symbols in the search tree does not change during the computation and can
therefore be stored for each depth of the tree in advance in the variable ModIntk, where k is
the tree depth (see 2.9.10). So this value is accessible in Θ(1).

The next problem is the comparison of the intermediate solution Mk to the vector a1. In
the above mentioned scenario we have to compare the subvectors a1[x5, x9] and Mk[x5, x9] for
equality. Since the positions 5 and 9 are not the real positions of the desired indices in the
vector (or array) a1 we have to perform additional calculations to form the vector a1[x5, x9] =
a1[2, 3] = a′1 = (1, 0) in order to compare it with Mk[x5, x9] = Mk[5, 9] = (1, 0). A possible
solution here would be for example a hash table which allows the lookup of correct indices in a1

for the variables x5 and x9. Nevertheless would every single access to an index equal a single
operation, so a comparison of a vector to a intermediate solution would take O(l).

To avoid this behavior and since we are working in F2 the decision was obvious to choose a
construct like a stl std::bitset [MS95]. Since this data structure is not very flexible, e.g. needs
its size specified at compile time, the decision was made to use the boost::dynamic bitset
[Kar05]. Here during the runtime of the program the programmer can specify through variables
the size of the bitset and resize it.

The comparison procedure now depends on the size of the bitset blocks and the number of
variables n. Let us assume that our processor has 64 bit registers and the problem instance has
n=10 variables. The current calculation step is as above and we want again compare vector a1

to the model in order to find out if it is gluable or not. The vector a1 consists now of two bitsets.
The first one represents the values of the vector, the second one a mask. That represents the
variable names. In the memory we would have a representation, bitwise, such as

a1 = (0, 1, 0, 0, 1, 0)
am1 = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0)

where am1 represents the mask. The advantage is that we can put our whole a1 in one int variable
since its size is usually 32 bit on a 64 bit x86 architecture; the same holds for am1 . Similar to
our vectors we have to represent the model as a bitset of that kind and give it a mask, which
indicates X(k) = X1 ∪X2 ∪ . . . ∪Xk. In other words, the variables which are through previous
gluings already set in the model and have to be considered in the calculation. The model would
now be

Mk = (0, 0, 1, 0, 1, 0)
Mm
k = (1, 0, 1, 0, 1, 0, 0, 0, 1, 0)

along with its mask Mm
k . To find out if a1 is gluable with Mk it fits to apply the following

algorithm with the input M = (Mk,M
m
k) and A = (aj , amj) where ⊗ denotes a bitwise ”and”

and ⊕ a bitwise ”xor” operation.

23

2 Gluing and Agreeing

Algorithm 11 Model Assignment Comparison
1: procedure Gluable(M, A)
2: if not A.is agreeing then
3: return FALSE
4: end if
5: T ←Mk

6: T ← T ⊕ aj
7: T ← T ⊗Mm

k

8: T ← T ⊗ amk
9: if T > 0 then

10: return FALSE
11: else
12: return TRUE
13: end if
14: end procedure

The important point is that the comparison no longer depends on the sparsity and the number
of variables in the first place. It depends more on the possible blocksize of the bitset. In a ”big”
real world example with n = 128, l = 10 and a block with the datatype unsigned long long
int of 64 bit the comparison takes always constant 8 steps. That are the bitwise ”xor” and
”and” operations and the determination if the outcome is > 0. One does not need to determine
the subvectors aj [X(k)] and Mk[X(j)]. If the assignment is for some reason already not in an
agreed state it is beforehand rejected.

In the algorithm above one might ask, why use a temporary variable T to calculate the result
of the comparison. In the implementation itself the variable is static. The consequence is that
only on the first call of the function space is allocated for the variable. Until the end of the
program this space is neither deallocated nor reallocated. Since we have to store somewhere
the result of our comparison it would be very inconvenient to allocate for every comparison the
space of the size of the model again. Therefore, through the static declaration in the function
this is done once and one can use that allocated memory over and over again.

One should also note, that all masks in that example are calculated beforehand and are
accessible in Θ(1).

2.9.3 Class Definitions

An outline of the class definitions of the primitive datatypes, together with explanations is given
in this paragraph. That means all logically important parts of the classes are mentioned and for
clarity all too technical details, e.g. ”setter/getter methods”, are omitted in this documentation.
Let us start with the most basic datatype, the assignment, which models a satisfying vector of
an specific equation.

class Assignment : boost::dynamic bitset <BlockType>
Equation* get parent equation()
boost::dynamic bitset <BlockType>* get equation projection(Equation* e)
boost::dynamic bitset <BlockType>* get mask()
std::vector <ProjectionContainer*>* get projection containers()
bool is agreeing

Figure 2.2: Class Assignment

24

2.9 Implementation

This class is a straightforward implementation of the strategy mentioned above. The As-
signment class is inherited from the boost::dynamic bitset <BlockType> and has therefore
all its methods and operators, especially the ”and” and ”xor” operators which are used later on
for the calculations. It contains additionally the function get equation projection(Equation*
e) in order to determine the projection of the assignment to a given equation. This is done
by referring to the address of the Equation object and storing beforehand (see below). The
last function, get projection containers(), returns a vector of pointers to ProjectionContainer
objects in which this assignment occurs. This is used later for the Agreeing2 Procedure, see
below. The is agreeing variable of the type bool indicates if the assignment is in an agreed or
disagreed state to the current state of the calculation and is for performance reasons directly
accessible.

class Equation

Branch* get parent branch()
std::vector <unsigned int>* get variables()
std::vector <Assignment*>* get assignments()
unsigned int num agreeing assignments

Figure 2.3: Class Equation

The Equation class reflects a symbol and contains therefore the variables and the assign-
ments. Both collections are from the type std::vector <Type> to ensure that all information
is stored back-to-back. The num agreeing assignments variable of type unsigned int indicates
the number of assignments in an agreed state which are left in an agreeing state in the equation
at the current state. If num agreeing assignments equals 0 it is clear that a contradiction of
the current state to the solution of the equation system occurred and appropriate actions must
be taken. Moreover the Equation class contains a pointer to a Branch object, which can be
accessed, in order to determine at which depth of the tree the symbol occurs.

class Model : boost::dynamic bitset <BlockType>
boost::dynamic bitset <BlockType>* get mask()

Figure 2.4: Class Model

The Model class is, like the Assignment, just a inheritance of the boost::dynamic bitset
<BlockType> to have the necessary operators and the storing strategy mentioned above. It
holds the mask information ready for access.

2.9.4 Tree Representation

Since the program implements a tree-search, or a backtracking algorithm, we introduce here the
parts crucial for this algorithm.

25

2 Gluing and Agreeing

class Branch

Equation* get equation()
Model* get model()
std::vector <unsigned int>* get variables()
AssignmentsToModelIterator* get assignments current()
AssignmentsToModelIterator* get assignments end()
void reset iterators()

Figure 2.5: Class Branch

The Branch class represents literally the branch of the tree. At every depth of the tree
position we have an equation through sorting and a model which stands for our (partial) in-
termediate solution. Moreover we have at every tree depth i a set of variables X(i) which
is accessible through the method get variables(). The methods get assignments current() and
get assignments end() are responsible for returning iterators to assignments which are appropri-
ate for gluing to the current model. The AssignmentsToModelIterator type is explained in
section 2.9.8. If during the tree search a step back is performed, which means that we found a
partial solution is not applicable, these iterators are reset through the method reset iterators().

class Tree : vector <Branch*>
bool has next()
Branch* current()
Branch* next()
Branch* last()
void forward()
void back()
unsigned int pos

Figure 2.6: Class Tree

The Tree class represents the structure for the backtracking algorithm. The function has next()
indicates if we are at the end of our tree search or if we have to continue with normal opera-
tion. The function current() returns a pointer to the current Branch object; the same holds
for next() and last() respectively for the next and the last Branch object. The forward() and
backward() routines are setting the state of the tree to one step back or one step forward. The
internal variable pos indicates the current tree depth.

2.9.5 Full Agreeing Representation

struct ProjectionContainer : std::vector <Assignment*>
ProjectionTuple* parent
unsigned int num agreeing assignments

Figure 2.7: ProjectionContainer struct

If we take a look at the structure of the Agreeing2 we are working with tuples {A,B} of pairwise
agreeing subvectors of some equations. The ProjectionContainer class now represents one
side of this tuple. The pointers to the assignments referring to one side are stored in the form of

26

2.9 Implementation

a std::vector. Additionally a counter of how many agreed assignments are currently present
in that side of the tuple is available in the structure.

struct ProjectionTuple : std::pair <ProjectionContainer*, ProjectionContainer*>

Figure 2.8: ProjectionTuple struct

Tuples of the form {A,B} now are nothing else than a pair from the single containers above,
here modelled as a std::pair.

struct FullAgreeingStructure

bool run agreeing2(Model* m)
void undo()

Figure 2.9: FullAgreeingStructure class

The FullAgreeingStructure structure holds the information to run the Agreeing2 to the
current instance on with a given model. Therefore the function run agreeing2 has as only
parameter a pointer to a model. Furthermore to undo changes, for example if a wrong guess
was introduced to the equation system, the function undo() is offered. It sets the problem
instance to the last known state, in particular the assignments which were set in the last call of
run agreeing2 to agreeing again.

27

2 Gluing and Agreeing

2.9.6 Sorting

During the implementation of the program we developed several possibilities to sort the input
instances. But since the sorting takes in comparison to the actual solving process a relatively
short time even with a slow algorithm, most of the effort was done by me in enhancing the
solving procedures. So a quite intuitive algorithm, presented below, was implemented but as
one can see in the experiments section (??) it fits the needs to give reasonable results.

Let us assume, that the input E to the procedure is a std::vector of Equation* objects
and n is the number of variables in the equation system. The return value of the procedure
is a std::vector of Equation* objects in the best sorting with respect to the algorithmic
structure. The operator X(Si) returns here the set of variables to an equation Si.

Algorithm 12 Sorting Procedure
1: procedure Sort(E, n)
2: R← (E[0]) . The result list becomes E[0] as first element
3: while |E| > 0 do
4: sizenew ← n+ 1
5: for S ∈ E do
6: if |

⋃
iX(R(i)) ∪X(S)| < sizenew then

7: Snew ← S
8: sizenew ← |

⋃
iX(R(i)) ∪X(S)|

9: end if
10: end for
11: E ← E \ Snew
12: Append Snew at R
13: end while
14: return R
15: end procedure

As one can see is to the previously determined result list R always the equation appended in
which

⋃
i |X(i)| has the lowest growth.

2.9.7 The Agreeing2 Procedure

In the Agreeing2 Procedure we have to handle the set of assignments organized as tuples. A
guess has to be introduced in the system and the outcome has to be determined. There exist
again two possibilities of how to handle the algorithm, the iterative and the recursive way. In
my implementation I choose the iterative way for speed reasons. The FullAgreeingStructure
holds as private variables a vector of tuples of the datatype std::vector<ProjectionTuple*>,
here denoted as pt vector. The second private structure hold by FullAgreeingStructure is a
std::vector <Assignment*>, denoted as init vector, which holds all assignments which are
suitable for Agreeing while introducing the guess. A third structure, for the iterative process-
ing, here called queue and a fourth structure which keeps track of the empty tuples, here called
empty tuples are both of the type std::vector <ProjectionTuple*>. The guess introduction
as well as the Agreeing2 process are then handled as described below, where M is the intro-
duced model. The functions Dec and Inc are helper functions which decrease or increase an
integer value. The variable undo assignments keeps track of changed assignments. It is used
to determine later which assignments were altered and have to set to an agreeing state back in
case the undo() function is called.

28

2.9 Implementation

Algorithm 13 Agreeing2 Procedure
1: procedure Run Agreeing2(M)
2: for a ∈ init vector do . Introduce the guess in our set of predefined assignments
3: if not Gluable(M,a) then
4: a.is agreeing ← FALSE
5: Dec(a.get parent equation().num agreeing assignments)
6: for pc ∈ a.get projection containers() do
7: Dec(pc.num agreeing assignments)
8: if pc.parent got one sided empty then
9: Put pc.parent on queue

10: end if
11: if pc.parent got both sided empty then
12: Put pc.parent on empty tuples
13: end if
14: end for
15: Put a on undo assignments
16: end if
17: end for
18: while queue is not empty do . Run iteratively agreeing2 on the tuples
19: t← queue.pop()
20: p← ProjectionContainer which is not empty of t
21: for a ∈ p do
22: if a.is agreeing then
23: a.is agreeing ← FALSE
24: Dec(a.get parent equation().num agreeing assignments)
25: for pc ∈ a.get projection containers() do
26: Dec(pc.num agreeing assignments)
27: if pc.parent got one sided empty then
28: Put pc.parent on queue
29: end if
30: end for
31: end if
32: Put a on undo assignments
33: if a.get parent equation().num agreeing assignments = 0 then
34: return FALSE
35: end if
36: end for
37: Put p on empty tuples
38: end while
39: if |empty tuples| = |pt vector| then
40: return FALSE
41: else
42: return TRUE
43: end if
44: end procedure

The undo() function for the Agreeing2, called whenever a revisit of the branch at point d occurs
is done as follows. Remember that we stored all assignments which were set in the last run of
the Agreeing2 Procedure in undo assignments. The preparation of the Agreeing2 Algorithm,
means the creation of the tuples is done in the preparation steps of the main program.

29

2 Gluing and Agreeing

Algorithm 14 Undo Procedure
1: procedure Undo
2: for a ∈ undo assignments do
3: a.is agreeing ← TRUE
4: Inc(a.get parent equation().num agreeing assignments)
5: for pc ∈ a.get projection containers() do
6: Inc(pc.num agreeing assignments)
7: end for
8: end for
9: end procedure

2.9.8 The Solving Procedure

It is necessary to explain first the function of the type boost::filter iterator in order to
explain the implementation principle of the solving procedure. The solving procedure imple-
ments the Gluing Procedure which calls itself the Agreeing2 Procedure at a given depth d.
The boost::filter iterator is a class template from the Boost C++ Library [DA08] which
becomes in my implementation the important role to find the assignments which are suitable
for Gluing instead of determining them by sorting. It takes as template parameter a predicate
function which determines assignments to skip. That means that while iterating through the
assignments of an Equation object only those which are in an agreed state are returned. The
following type of the iterator is created through a step forward in the tree. As template pa-
rameter it receives the function assignment model equality, the implementation of the Model
Assignment Comparison Algorithm which determines which assignment should be rejected dur-
ing the iterating process. It should be remarked here that only on a step forward is a new
iterator created with the current model and the current vector of assignments as parameter.

boost::filter_iterator<
std::binder2nd<assignment_model_equality<Assignment*, Model*> >,
std::vector<Assignment*>::iterator >

Figure 2.10: Filter Iterator Type

Should the case occur, that the backtracking algorithm jumps back to a branch which holds
an iterato, it is received through the function get assignments current() and the procedure of
choosing the next possible Gluing is resumed from the last known point. Only a jump over the
branch back that holds the iterators results in a deletion of them, since it can be assumed that
the model has been altered and the assignment model equality function has also to be altered in
the template parameter of Model*. Because these kind of iterators comes as pair to determine
the end of the sequence we have to generate a second iterator which is simply a pointer to the
end of the sequence.

The reason for the use of this construction is that sorting the assignments would take with a
method like bucket sort constant Θ(2l−1) on the average. With the method of the
boost::filter iterator’s we are still in O(2l−1), but very often we are below this upper
bound since it can be assumed that the resulting path of glueable assignments is somewhere
between the beginning and the end of all assignments. Moreover, if we would like to sort the
assignments, for example ascending by a numerical value or to handle a hash table the problem
arises of how to reflect this value in the memory. To distinguish vectors which are defined in n
different variables for F2 one needs at least 2n different hash values, which would in that case
immediately represent the vectors itself.

30

2.9 Implementation

The parameter T represents the beforehand generated Tree object. The return type of the
algorithm is a pointer to the final model which holds the result of the calculation. If the
equation system is not satisfiable, e.g. there exists at some point a contradiction in the system,
the function Tree ::back() is called for the position 0 at some point, an error occurs and the
program quits.

In the algorithmic description below the Agreeing2 structure is denoted by FA and d is the
beforehand determined treedepth at which the Agreeing2 should have been applied.

Algorithm 15 Solving Procedure
1: procedure Solve(T)
2: while T.has next() do
3: if T.pos = d then
4: FA.undo()
5: end if
6: asc← T.current().get assignments current()
7: ase← T.current().get assignments end()
8: if asc 6= ase then
9: T.next().get model()← T.current().get model() ◦ ∗asc

10: asc← asc+ 1
11: if T.pos = d then
12: if not FA.run agreeing2(T.next().get model()) then
13: goto 2
14: end if
15: end if
16: T.forward()
17: else
18: T.back()
19: end if
20: end while
21: return T.last().get model()
22: end procedure

In the algorithm the line 9 applies the assignment to the current model and stores the result
in the next branch as the model. If the Agreeing2 at line 12 yields a FALSE result, then we
know that a wrong guess occurred and we jump back to the begin of our while loop. Since we
incremented the iterator for the current assignments at line 10 we will receive the next vector
for the Gluing and we can proceed.

Only if the algorithm runs over the tree depth d, the changes from the Agreeing2 are undone.
That has the consequence that in the further gluing procedure it may occur that assignments
are already set to a disagreed state, therefore by the filter iterator dismissed.

2.9.9 The Main Program

The main program simply assembles all steps together. At first the data is read of a file and a
set of preprocessing steps is started. Afterwards the solving procedure starts and the result of
the procedure is printed out.

31

2 Gluing and Agreeing

Algorithm 16 Main Program
1: procedure Main(T)
2: Read equation system E from file
3: Sort(E)
4: Prepare(E)
5: print Solve(E)
6: end procedure

2.9.10 Preprocessing

Since memory is considered here to be cheap and CPU time as expensive the implementation
should tend in the direction to precalculate as much as possible beforehand. The preprocessing
steps in the implementation do not give an exponential speedup but a quite remarkable polyno-
mial speedup instead. This might be not important for the theoretical bound of the algorithms,
but is obvious while running the program. Moreover slow memory operations and repetitively
allocation of memory are avoided.

Sorting Although the sorting procedure is considered to be a separate step of the calculation
it is factual calculated beforehand.

Set Preprocessing One point at which time can be saved is the preprocessing of set operations.
It is a fact that during the tree walk the order of the equations is not changing, so we can
preprocess most of the sets along our tree for every branch. The first is for every branch the
X(i) in form of a n-length bitmask which indicates the variables set at the given tree depth of
the branch. Secondly the masks of the Model objects are pre calculated.

Agreeing2 Tuples Since we point out one d at which the Agreeing2 Algorithm should run,
we can calculate statically all our tuples from the beginning on and let the general structure
unchanged during the calculation.

Assignment Occurrences in Tuples In order to speed up the Agreeing2 Algorithm and to keep
track in which tuple a specific assignment occurs, every assignments gets a list of addresses of
tuples attached. This gives the opportunity to find in O(1) all tuples in which an assignment a
occurs.

Assignment Projections Whenever two equations Si, Sj have the property X(Si)∩X(Sj) 6= ∅
for every assignment of them the associated projection is calculated and stored in the assignment
object. This gives in the preprocessing of the occurrences in the tuples an advantage as well as
for further development of the routines.

Assignment Counters Instead of keeping track of the number of agreeing assignments in an
equation or in an tuple by counting, the structures have a member variable which indicates the
value. This makes it unnecessary to count always when this value is required. This fact is for
example important during the Agreeing2 procedure.

Parental Pointers Every assignment object owns a pointer to its parental equation, that is to
the equation where it belongs to. This makes it possible to directly decrement or increment the
number of agreeing assignments in the assignment counters.

32

3 SAT Solving Techniques

In the following chapter different complete SAT solving techniques are presented. Complete
means here that the outcome is always reliable in comparison to heuristic algorithms where the
correctness of the outcome is determined with some probability.

Our focused problem instances are l-sparse algebraic equations over finite fields, so section 3.2
deals with the transformation of a given instance from this set to the set of SAT problem
instances.

Most of the SAT solving techniques are based on the ideas behind the DP/DPLL backtrack
search algorithm, therefore it is explained first in section 3.4 and then different improvements
to this method are explained.

3.1 Basic Definitions

Definition 3.1 (Satisfiability Problem) The decision version of the satisfiability problem is
defined by

SAT = {φ | φ is a satisfiable boolean formula in CNF}.

For each fixed l ≥ 1 the restriction of the SAT problem is

l-SAT = {φ | φ is a satisfiable boolean formula in l-CNF}.

The task for a SAT solving algorithm is now to find out wether a given formula φ belongs to
the set SAT or respectively to the set l-SAT, which would yield a satsifiying assignment for the
given φ.

The two most common ways to express such a formula are the conjunctvie and disjunctive
normal form.

Definition 3.2 (Conjunctive Normal Form Formula (CNF-Formula)) A conjunctive nor-
mal form formula φ with n binary variables x1, x2, . . . , xn is the conjunction of m clauses
C1, C2, . . . , Cm of which each clause is the disjunction of one or more literals, where a literal is
the affirmative1 occurrence of a variable or as its negation.

Definition 3.3 (Disjunctive Normal Form Formula (DNF-Formula)) A disjunctive nor-
mal form formula φ with n binary variables x1, x2, . . . , xn is the disjunction of m clauses
C1, C2, . . . , Cm of which each clause is the conjunction of one or more literals, where a literal is
affirmative the occurrence of a variable or as its negation.

3.2 Conversion to SAT

Next it will be describe an easy and intuitive way how a sparse algebraic equation over a
finite field of characteristic 2 can be transformed to an instance of the SAT problem. Consider
the equation system (1.1). For every equation fi one creates a truth table T for all possible
assignments. One tests now all possible assignments if they satisfy fi. If they satisfy the equation
they are removed from T .

1The occurence of a variable without negation is called an affirmative occurence.

33

3 SAT Solving Techniques

Every truth assignment which still resides in T represents now a disjunction of the involved
variables and every true assignment stands for a negated variable and every false assignment
stands for a affirmative variable. The concatenation of the clauses gives us the equivalent solvable
conjunctive normal form formula for fi.

It is easy to see, why this transformation works. If one considers all satisfying assignments of
fi(Xi) = 0, the formula could be equally described as the disjunction of this assignments, which
group themselves their variables as conjunction. This would yield a DNF formula. And convert-
ing a DNF formula to a CNF formula is easily done by eliminating all satisfying assignments
from a truth table and grouping them together like mentioned above.

This transformation is due to a fixed l computable in O(m2l), so has a polynomial complexity
with respect to a fixed l.

Example Consider the equation

f(x1, x3, x4) = x1x3 ⊕ x4 = 0

so the satisfying assignments are

{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

Applied the step of deletion of this assignments to the whole truth table T of the variables
x1, x3, x4 one obtains

{(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}

which can be read in conjunctive normal form as

φ = (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

Every assignment to this boolean formula φ is satisfying if and only if it is satisfying for fi.

3.3 General Structure of a SAT-Algorithm

Here is a short summary about the general procedure of finding a satisfying assignment to a
given formula φ given in order to establish the terms of a backtracking algorithm.

Starting with an empty assignment to a formula φ a backtracking algorithm traverses the
search space of assignments in order to find a satisfying one. In doing so it maintains an
implicated search tree. Each branch in this search tree can be seen as a point of decision by
either local heuristics or by the result of a further branch. The depth of the branch in the tree
is referred to as the decision level. The algorithm steps iteratively through the different decision
levels according to the following steps:

1. Extend the current assignment. The main purpose here is to find a most appropriate
new variable assignment for an unassigned variable. This has the aim to explore new
regions of the search space. The algorithm terminates if all clauses get satisfied or no more
possible new variable assignment to an unbound variable can be done. In the last case the
remaining search space got empty and the given formula is unsatisfiable.

2. Propagate the assignment to the formula. In this state the solving algorithm derives
implications from a given assignment, also referred to as the deduction process. During
this process conflicts in so called conflict-clauses may arise. This conflict-clause would be
an unsatisfied clause in terms of the current assignment. The assignment is therefore a
contradicting assignment.

34

3.4 DP and DPLL

3. Undo the last decision made if a conflict arrises. This is called backtracking and allows
the algorithm to start at step 1. to explore the search space further in another direction.

The complexity of this steps depends on how decisions are made and of course the problem
instance itself.

3.4 DP and DPLL

DP In this section it follows the description of the Davis-Putnam algorithm[DP60]. The com-
plete DP algorithm has the intention to proof a formula of quantification theory but uses gen-
erally techniques which can be used to solve SAT problem instances.

Basic DP Algorithm Rules Let φ be a formula in conjunctive normal form so the core of the
algorithm uses the following rules.

1. Rule for the Elimination of One-Literal Clauses:

a) If φ contains a one-literal clause xi, that is a clause which contains only one variable,
and contains also its negation as one-literal clause, namely xi, then φ has no satisfying
assignment.

b) If a) does not apply and if φ contains a one-literal clause xi, then one may modify φ
by striking out all clauses that contain xi affirmatively and delete all occurrences of
xi from the remaining clauses.

c) If a) does not apply and if φ contains a one-literal clause xi, then one may modify φ
by striking out all clauses that contain xi and delete all occurrences of xi from the
remaining clauses.

d) In cases b) and c), if the modified φ gets empty, then φ has a satisfying assignment.

2. Affirmative-Negative Rule. If a variable xi is only occurring as affirmative literal or if xi
is only occurring as its negation, then one may delete all clauses which contain xi. (If φ′

is empty it is satisfiable.)

3. Rule of Eliminating Atomic Formulas2. Let φ be put into the form
(A∨xi)∧ (B ∨xi)∧R, where A,B and R are formulas, and free of xi, then φ is satisfiable
if and only if (A∨B)∧R is satisfiable. (To put φ in to the form mentioned above one can
group together the clauses containing xi and then factor out xi to obtain the expression
(A ∨ xi). The same procedure with respect to xi is applicable to the expression (B ∧ xi).
The remaining clauses are then grouped into R.)

Proof 3.4 To verify that the single rules of the DP algorithm are correct it is shown one by one
that applying them to a initial instance φ leads to a satisfiable transformation φ′ if and only if
the initial instance was satisfiable.
Rule 1) The case (a) is obvious, xi∧xi = 0, so the system is not satisfiable. Case (b) is justified
with the observation that for every φ = xi ∧ A, where xi is a one-literal clause, φ is solvable
if and only if xi = 1. Since we are working in CNF this yields automatically that every clause
which contains xi becomes true and can be striked out. In every clause which contains xi it can
be dismissed, since this literal will become false, so can be striked out. Case (c) is analog to
case (b). Case (d) reduces to the observation that if all literals and clauses deleted from φ so xi
occurred in all clauses and φ is satisfiable.

2The term ,,Atomic Formula” is used in the original paper [DP60] and is describing an expression p(p1, p2, . . . , pi)
if p is a predicate symbol and p1, p2, . . . , pi are terms. With respect to our problem instances (CNF formulas)
this terminus is not applicable but is used to preserve the rule name.

35

3 SAT Solving Techniques

Rule 2) Let xi occur in φ = (A ∧ R) only affirmatively, where A is the conjunction of clauses
containing xi and R be xi-free. Since A = 1 for xi = 1 the satisfiability depends only on R,
which means (A ∧ R) ⇔ R. The justification of the rule is similar to the case if xi occurs only
as its negation.
Rule 3) The formula φ = (A∨xi)∧ (B ∨xi)∧R might be satisfiable if xi = 1 or xi = 0. For the
first case that means (A ∧R) = 1 and for the second case (B ∧R) = 1. Since one case must be
true to keep φ satisfiable that results ins φ′ = (A ∧R) ∨ (B ∧R)⇔ (A ∨B) ∧R. �

Examples To illustrate the basic rules of the DP algorithm here some reformulated example
instances of the original publication are presented. Consider the following formulas in CNF:

1. φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ x1 ∧ x3

By rule 1 there are two one-literal clauses (x1 and x3) we can eliminate. After eliminating
x1 we get φ′ = (x2 ∨ x3) ∧ x2 ∧ x3 and eliminating x3 leads us to φ′′ = x2 ∧ x2 which is a
contradiction and φ is therefore not satisfiable.

2. φ = (x1 ∨ x2) ∧ x2 ∧ (x1 ∨ x2 ∨ x3)
By eliminating the one-literal occurrence of x2 we proceed with φ′ = x1 ∧ (x1 ∨ x3) which
in turn yields by rule 3 φ′′ = x3, so φ is satisfiable.

3. φ = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)
One can observe that the variable x3 occurs only as its negation which results by rule 2
in φ′ = (x1 ∨ x2) ∧ (x1 ∨ x2). Applying rule 3 to φ′ one can obtain the form φ′′ = x1 ∨ x1

which leads to φ′′ = 1, so φ is satisfiable.

DPLL The only difference in the DPLL algorithm[DLL62] which can be called an extension or
modification to the DP algorithm is the exchange of rule 3 to the following rule:

3*. Splitting Rule. Let the given formula φ be put in the form

φ′ = (A ∨ xi) ∧ (B ∨ xi) ∧R,

where A,B,R do not depend on xi. So φ is satisfiable if and only if (A∧R) or (B ∧R) is
satisfiable.

The proof of correctness is obviously the same as for rule 3.
The reason for the new Splitting Rule is described mostly technical since the Rule of Elimi-

nating Atomic Formulas easily increased the number and length of the clauses. It is also stated
in [DLL62] that the observation of many duplicated, thus redundant, clauses after performing
rule 3 was made.

The Algorithm Now we are ready to assemble everything together and to obtain the algorith-
mic structure of the DPLL algorithm. By convention let φ be our input formula in CNF and
φ(xi) the formula with the variable xi set to 1 (similar for φ(xi), where as xi = 1). A monotone
literal is called a variable which occurs only affirmatively or as its negation. The algorithm
returns whenever an input formula is satisfiable SATISFIABLE and if not UNSATISFIABLE.
To apply rule 3 it is stated to choose a variable, and both, original DP and original DPLL are
choosing the first variable from the first clause of minimal length.

36

3.5 Algorithmical Improvements

Algorithm 17 DPLL algorithm
1: procedure DPLL(φ)
2: while φ contains an one-literal clause do . Rule 1
3: if φ has an empty clause then
4: return UNSATISFIABLE
5: end if
6: v ← any one-literal clause
7: φ← φ(v)
8: end while
9: while φ contains a monotone literal do . Rule 2

10: v ← any monotone literal
11: φ← φ(v)
12: end while
13: if φ is empty then
14: return SATISFIABLE
15: end if
16: x← choose a variable in φ . Rule 3*
17: if DPLL(φ(x)) returns SATISFIABLE then
18: return SATISFIABLE
19: end if
20: if DPLL(φ(x)) returns SATISFIABLE then
21: return SATISFIABLE
22: end if
23: return UNSATISFIABLE
24: end procedure

Obtaining Satisfying Assignment On the first look it might not seem that the DPLL algorithm
also yields a satisfying assignment for the given instance φ, but implicitly it is generated through
the algorithm rules. By applying rule 1 to the given formula one knows, that the one-literal
clause, e.g. C = (xi), must have the value 1, since φ is a disjunction of clauses. By applying
the rule 2 the value of the literal can be assumed to be 1. Whenever the third rule is applied a
value is guessed and if the outcome is SATISFIABLE it can be assumed as a right guess.

3.5 Algorithmical Improvements

While the DPLL algorithm is the most common used general structure of SAT-solvers like
MiniSAT [ES03, ES04, EB05], Chaff[MMZ+01] and is still used as the basic foundation for more
sophisticated algorithms like GRASP[MSS96], many ideas for the improvement algorithmically
were introduced in this solvers to speed up the process of solving of a Boolean formula.

The following sections should give an overview about the different techniques used in modern
SAT-solvers.

The set of clauses given by the instance is called a clause database. The stage, that is the
depth in the decision tree at which a value for a variable xi was chosen, is denoted by δ(xi).
Then xi = v @ d means the variable xi got assigned the value v at tree depth d.

3.6 Branching Heuristics

One important part in the DPLL algorithm, or in backtracking algorithms also called for our
problem BCP (Boolean constraint propagation), is the fact that it recursively propagates knowl-

37

3 SAT Solving Techniques

edge obtained and chooses successively new variables to assign them with a value not yet tried
in that branch of the tree. This process of choosing a variable and assigning it a value is called
a branching heuristic which differs from algorithm to algorithm. Here a short overview of two
different branching heuristics is given as presented in [MS99].

3.6.1 MOM’s Heuristic

One of the most well-known and utilized branching heuristics is the Maximum Occurrences of
clauses of Minimum size (MOM’s) heuristic [DABC93, ZM88, Pre96, Fre95].

Let f∗(l) be the number or occurrences of a literal l in the smallest non-satisfied clauses. It
is widely accepted that a good variable to select is one that maximizes the function

[f∗(x) + f∗(x)] ∗ 2k + f∗(x) ∗ f∗(x). (3.1)

Intuitively, preference is given to variables x with a large number of clauses in x or in x (assuming
k is chosen to be sufficiently large), and also to variables with a large number of clauses in both
x and x. Several variations of MOM’s heuristic have been proposed in the past with heuristic
functions related to but different from (3.1). A detailed description of MOM’s heuristics can be
found in [Fre95]. We should also note that in general we may also be interested in taking into
account not only the smallest clauses, but also clauses of larger sizes.

3.6.2 Jeroslow-Wang Heuristic

Two branching heuristics were proposed by Jeroslow and Wang in [JW90], and are also analyzed
in [Bar95, BS97]. For a given literal l let us compute:

J(l) =
∑

l∈ω∧ω∈φ
2−|ω| (3.2)

The one-sided Jeroslow-Wang (JW-OS) branching heuristic selects the assignment that satisfies
the literal with the largest value J(l). The two-sided Jeroslow-Wang (JW-TS) heuristic identifies
the variable x with the largest sum J(x) + J(x), and assigns to x value true, if J(x) ≥ J(x),
and value false otherwise.

For another comparison of branching heuristics and how to ”fool” some of them one should
refer to [Ouy98].

38

3.7 Conflict Induced Clauses

3.7 Conflict Induced Clauses

The term conflict-induced clause is defined through the work on the algorithm GRASP[MSS96]
by M. Silva and K. Sakallah. The method describes a way of dynamic learning during a back-
tracking process in order to prune a large space of the search-tree. In simple terms it is one
among other algorithmical methods to extend the clause database to avoid wrong guesses al-
ready made. The description here is made with the help of examples of the original presentation
in [MSS96].

If a conflict arrises during the backtracking process we naturally do not want to run in the
same situation again. To avoid this case we can create a conflict-induced clause. Let us assume
we have the following clause database

ω1 = (x1 ∨ x2)
ω2 = (x1 ∨ x3 ∨ x9)
ω3 = (x2 ∨ x3 ∨ x4)
ω4 = (x4 ∨ x5 ∨ x10)
ω5 = (x4 ∨ x6 ∨ x11)
ω6 = (x5 ∨ x6)
ω7 = (x1 ∨ x7 ∨ x12)
ω8 = (x1 ∨ x8)
ω9 = (x7 ∨ x8 ∨ x13)

and a partial assignment

{x9 = 0 @ 1, x10 = 0 @ 3, x11 = 0 @ 3, x12 = 1 @ 2, x13 = 1 @ 2}

Now we are in our computation at d = 6 and we try the value for x1 = 1 @ 6. This would
yield us the following partial implication graph I = (V,E) for this tree depth which is defined
as follows. Let the assignment of a variable xi be implied due to a clause ω = (x1, . . . , xk)
where the antecedent assignment of xi, denoted as A(xi), is defined as the set of assignments
to variables other than xi with literals in ω. For example, the antecedent assignments of x1, x2

and x3 due to the clause ω = (x1 ∨x2 ∨x3) are, respectively, A(x1) = {x2 = 0, x3 = 1}, A(x2) =
{x1 = 0, x3 = 1}, A(x3) = {x1 = 0, x2 = 0}.

Definition 3.5 (Implication Graph[MSS96]) An implication graph I = (V,E) is defined by
the following rules:

1. Each vertex in I corresponds to a variable assignment x = v(x).

2. The predecessors of vertex x = v(x) in I are the antecedent assignments A(x) corresponding
to the unit clause ω that led to the implication of x. The directed edges from the vertices
in A(x) to vertex x = v(x) are all labeled with ω. Vertices that have no predecessors
correspond to decision assignments.

3. Special conflict vertices are added to I to indicate the occurrence of conflicts. The prede-
cessors of a conflict vertex κ correspond to variable assignments that force a clause ω to
become unsatisfied and are viewed as the antecedent assignments A(κ). The directed edges
from the vertices in A(κ) to κ are all labeled with ω.

39

3 SAT Solving Techniques

Figure 3.1: Implication Graph

As one can see this new assignment of x1 leads to the contradiction κ. If one interprets this
implication graph it is obvious that from the outermost nodes, namely the decisions, the assign-
ment

AC(κ) = {x1 = 1 @ 6, x9 = 0 @ 1, x10 = 0 @ 3, x11 = 0 @ 3}

is the reason for this contradiction during the computation. In terms of a conjunction

ζC = (x1 ∧ x9 ∧ x10 ∧ x11)

led to the conflict. In order to prevent the algorithm to use again this partial assignment one
could now insert a new clause in the clause database which is the negation of the reason, namely

ωC(κ) = (x1 ∨ x9 ∨ x10 ∨ x11)

By inserting this new implicate in the clause database we prevent the algorithm at any depth of
the search to step into the same conflicting assignment again. Remark that only variables are
included into the conflict clause whose decisions are made at the accordant depth d or at depths
< d. This is justified by the fact that only this variable assignments led to the conflict.

Now we will give a set of rules to construct such an assignment. One can determine the
decision level of an implied variable x with its antecedents by

δ(x) = max{δ(y)|(y, v(y)) ∈ A(x)}

and x denotes either κ or a variable that is assigned at the current decision level. At first we
split A(x) into two sets

∆(x) = {(y, v(y)) ∈ A(x)|δ(y) < δ(x)}

Σ(x) = {(y, v(y)) ∈ A(x)|δ(y) = δ(x)}

The conflicting assignment AC(κ) can now be determined by the recursive formula

AC(x) =


(x, v(x)) if A(x) = ∅

∆(x) ∪

[⋃
(y,v(y))∈Σ(x)

AC(y)

]
otherwise


starting with x = κ. The conflict-induced clause for A(κ) is now determined by

ωC(κ) =
∨

(x,v(x))∈AC(κ)

xv(x)

40

3.8 Non-Chronological Backtracking

where x0 ≡ x and x1 ≡ x.
By introducing successively these clauses to the clause database one can prune large spaces

of the search tree but makes the problem instance at the same time also more complicated,
means that it becomes larger. This can lead to a problem if it grows to big. Therefore most
SAT solvers are supporting limits for the introduction of this clauses and are from time to time
deleting them.

One example for this deleting behavior is given as the Rule of Decaying in Chaff[MMZ+01]
where every conflict-induced clause gets a specific value which is reduced by some rule every
time the clause database is updated. The value is increased in case a conflict arrises through
this clause. If the value drops beyond a specific threshold the conflict-induced clause is removed
from the clause database.

3.8 Non-Chronological Backtracking

General backtracking algorithms like DPLL work chronological. The intention is to learn dy-
namically from errors made and to jump a branch back in the search tree (either recursively or
iteratively) to try another variable assignment in case the predecessor failed in both ways. If
that happened one knows, that at a previous depth a wrong guess was made and this satisfies the
backtracking of one step. Chronological is in that case that on any problem occurred, namely
a conflict arrised, it is assumed that the last decision made is the most probable causing this
problem. Therefore the last branch is taken and the assignment made is tried in its opposite
way. The algorithmical improvement is to analyze at what tree depth the wrong guess was
made.

If we take again a look at our previous example from 3.7 we can determine that inserting
the conflict induced clause would immediately yield a unit clause and that the variable x1 is
determined to be x1 = 0 @ 6, since we are still at tree depth d = 6. That gives the following
implication graph.

Figure 3.2: Implication Graph II

Obviously another conflict κ′ occurred. Where the conflicting assignment is

AC(κ′) = {x9 = 0 @ 1, x10 = 0 @ 3, x11 = 0 @ 3, x12 = 1 @ 2, x13 = 1 @ 2}

along with the conflict-induced clause

ω(κ′) = (x9 ∨ x10 ∨ x11 ∨ x12 ∨ x13)

We can already conclude from the fact that in ωC(κ′) are only occurring variables that are not
assigned or determined at our current decision level d = 6 that the reason for the conflict can
only be related to a previous branch at a depth < d − 1. A chronological backtracking engine

41

3 SAT Solving Techniques

would now jump one step back and eventually waste time by investigating futile branches. To
avoid this one can determine the backtrack level β by

β = max{δ(x)|(x, v(x)) ∈ AC(κ′)}

If however β = d− 1 then it is obvious that we jump chronologically. In the case that β < d− 1
we have a non chronological back-jump and go back several decisions.

In our case β = 3 and thus the following figure illustrates that behavior for the given example.

Figure 3.3: Decision Tree

A justification of the method can be found in [GCE93].

3.9 Watched Literals

One key factor for a SAT solver is an efficient BCP engine since the general backtracking
algorithm spends the most time in jumping forth and back in its tree structure. One strategy
to do this is by so called watched literals[MMZ+01].

Every time a decision is made a BCP algorithm searches through the clauses for one-literal
implications. This progress stops if no new one-literal implication can be found. The goal is to
determine and visit those clauses which became newly empty. One intuitive approach would be
to keep a counter for the false assignments per clause and to step through the list of clauses in
order to find one which contains a literal that the current assignment sets to 0.

But it is not necessary to visit a clause if 1, 2, . . . , N − 1 variables are set to zero, if N is the
number of literals in the clause. The only important moment is to visit a clause is if the counter
of the number of variables assigned to 0 changes from N − 2 to N − 1, which would yield an
implication.

In order to realize that one can create so called watched literals per clause. That means
one just observes two variables per clause and one needs only to visit the clause if one of this
variables gets assigned 0. If the clause is visited the following conditions must hold:

1. The clause is not implied. That means that there is one literal left which is not yet assigned
to 0. The one watched literal gets now replaced by the other which is not assigned 0.

2. The clause is implied. Follow the one-literal rule and follow the implication from the other
watched literal.

42

3.9 Watched Literals

Example Consider the following clause

ω = (x1 ∨ x2 ∨ x3 ∨ x4),

where xi denotes a watched literal and we have N = 4 literals. At some tree depth di becomes
x4 = 1 @ di. Nothing has to be done in that case, since we only visit the clause in the case one
of the watched literals gets assigned 0. Now x1 = 0 @ di + 1 and by our strategy of watched
literals we have to visit the clause. The condition holds that the clause is not yet implied. That
is that we have still 2 free variables in the clause not assigned to 0 which are x2 and x3. Thus
we replace the status of being watched of x1 by x3. That results in

ω = (x1 ∨ x2 ∨ x3 ∨ x4).

If now either x2 or x3 gets at some point assigned 0 we know that the clause becomes implied,
which would force the other variable to be 1. That is if x2 gets assigned 0 we know that x3 has
to be 1 and vice versa. So no counter has to be maintained and number of visits to a clause is
reduced.

This process may speedup the BCP process tremendous since only clauses are visited where
the chance is given that they really became one-literal through the last decision or the last
implication which was passed down. Furthermore should be remarked that with this technique
the unassigning process of an variable for a backtracking jump can be done in constant time.

43

3 SAT Solving Techniques

44

4 Gröbner Basis Algorithms

The subject to the following chapter is the Gröbner basis and algorithms related to it. The roots
of this method can be found in investigating the question inherited by following geometrical
definition.

Definition 4.1 Let k be a field and let f1, . . . , fm be polynomials in k[x1, . . . , xn]. Then we set

V (f1, . . . , f2) = {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ m}. (4.1)

We call V (f1, . . . , fm) the affine variety defined by f1, . . . , fm.

As one can see (4.1) is the set of all solutions of the system of equations f1(X1) = 0, . . . , fm(Xm) =
0. If the condition holds that the size of all sets of variables Xi, 1 ≤ i ≤ m is ≤ l we have an
equivalent equation system to (1.1).

With the following definitions and algorithms we establish a method how to solve this equa-
tions in an algebraic way.

4.1 Basic Definitions and Lemmas

Definition 4.2 A subset I ⊂ k[x1, . . . , xn] is an ideal if it satifies:

1. 0 ∈ I.

2. If f, g ∈ I, then f + g ∈ I.

3. If f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I.

Definition 4.3 Let f1, . . . , fm be polynomials in k[x1, . . . , xn]. Then we set

〈f1, . . . , fm〉 =

{
m∑
i=1

hifi : h1, . . . hm ∈ k[x1, . . . , xn]

}
. (4.2)

Lemma 4.4 If f1, . . . , fm ∈ k[x1, . . . , xn], then 〈f1, . . . , fs〉 is an ideal of k[x1, . . . , xn]. We will
call 〈f1, . . . , fm〉 ∈ k[x1, . . . , xn] the ideal generated by f1, . . . , fm. The latter is called basis of
the ideal.

Proof 4.5 The proof that (4.2) is an ideal can be found in [CLO92].

An ideal can be seen as all polynomial consequences of the initial equation system. For
example for hi ∈ k[x1, . . . , xn], 1 ≤ i ≤ m we can obtain

h1f1 + h2f2 + . . .+ hmfm

which is exactly an element of (4.2) and it is zero on (4.1).
In order now to utilize (4.1) we state the following lemmas, both proved in [CLO92].

Lemma 4.6 If f1, . . . , fm and g1, . . . , gt are bases of the same ideal in k[x1, . . . , xn], so that
〈f1, . . . , fm〉 = 〈g1, . . . , gt〉, then V (f1, . . . , fm) = V (g1, . . . , gt).

45

4 Gröbner Basis Algorithms

4.2 Monomial Orderings and Division Algorithm

Definition 4.7 A monomial ordering on k[x1, . . . , xn] is any relation ≥ on Zn≥0, or equiva-
lently, any relation on the set of monomials xα, α ∈ Zn≥0, satisfying:

1. ≥ is a total (or linear) ordering on Zn≥0.

2. If α ≥ β and γ ∈ Zn≥0, then α+ γ ≥ β + γ.

3. ≥ is a well-ordering on Zn≥0. This means that every nonempty subset of Zn≥0 has a smallest
element under ≥.

Definition 4.8 (Lexicographic Order) Let α = (α1, . . . , αn), and β = (β1, . . . , βn) ∈ Zn≥0.
We say α ≥lex β if, in the vector difference α− β ∈ Zn, the left-most nonzero entry is positive.
We will write xα ≥lex xβ if α ≥lex β.

It should be mentioned, that there exist several other orderings, for example the Graded
Reverse Lex Order [CLO92].

Definition 4.9 Let f =
∑

α aαx
α be a nonzero polynomial in k[x1, . . . , xn] and let ≥ be a

monomial order.

1. The multidegree of f is

multideg(f) = max(α ∈ Zn≥0 : aα 6= 0)

where the maximum is taken with respect to >.

2. The leading coefficient of f is

LC(f) = amultideg(f) ∈ k.

3. The leading monomial of f is

LM(f) = xmultideg(f)

with its coefficient 1.

4. The leading term of f is
LT (f) = LC(f)LM(f).

4.3 Gröbner Basis and Reduced Gröbner Basis

Definition 4.10 Let I ⊂ k[x1, . . . , xn] be an ideal other than {0}.
1. We denote by LT (I) the set of leading terms of elements of I. Thus,

LT (I) = {cxα : there exists f ∈ I with LT (f) = cxα}.

2. We denote by 〈LT (I)〉 the ideal generated by the elements of LT (I).

Definition 4.11 Fix a monomial order. A finite subset G = {g1, . . . , gt} of an ideal I is said
to be a Gröbner basis (or standard basis) if

〈LT (g1), . . . , LT (gt)〉 = 〈LT (I)〉.

Definition 4.12 A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis G for
I such that:

1. LC(p) = 1 for all p ∈ G.

2. For all p ∈ G no monomial of p lies in 〈LT (G− {p})〉.

46

4.4 Buchberger’s Algorithm

4.4 Buchberger’s Algorithm

In order to compute a Gröbner basis we state the following algorithm whose proof for correctness
can be found in [CLO92].

Definition 4.13 Let f, g ∈ k[x1, . . . , xn] be nonzero polynomials.

1. If multideg(f) = α and multideg(g) = β, then let γ = (γ1, . . . , γn), where γi = max(αi, βi)
for each i. We call xγ the least common multiple of LM(f) and LM(g), written xγ =
LCM(LM(f), LM(g)).

2. The S-polynomial of f and g is the combination

S(f, g) =
xγ

LT (f)
f − xγ

LT (g)
g.

3. fG denotes the remainder (see [CLO92]) on division of f by the ordered m-tuple G =
(f1, . . . , fm).

The input E to the algorithm are polynomials f1(X1), . . . , fm(Xm), the output G the resulting
Gröbner basis.

Algorithm 18 Buchberger’s Algorithm
1: procedure Buchberger(E)
2: G← E
3: repeat
4: G′ ← G
5: for each pair p, q, p 6= q in G′ do

6: S ← S(p, q)
G′

7: if S 6= 0 then
8: G← G ∪ {S}
9: end if

10: end for
11: until G = G′

12: return G
13: end procedure

4.5 Properties of a Gröbner Basis

Here the key properties of a Gröbner basis are presented which enable us to solve our equation
system (1.1). This is at first the definition of an elimination ideal. In order to utilize it the
Elimination Theorem is stated. It enables us to find an ordering, with respect to the lex order,
for eliminating variables from our equation system.

Definition 4.14 Given I = 〈f1, . . . , fm〉 ∈ k[x1, . . . , xn], the kth elimination ideal Ik is the
ideal of k[xk+1, . . . , xn] defined by

Ik = I ∩ k[xk+1, . . . , xn].

Thus Ik consists of all consequences of f1, . . . , fm which eliminate the variables x1, . . . , xk.

47

4 Gröbner Basis Algorithms

Theorem 4.15 (Elimination Theorem) Let I ⊂ k[x1, . . . , xn] be an ideal and let G be a
Gröbner basis of I with respect to lex order where x1 > x2 > . . . > xn. Then for every 0 ≤ k ≤ n,
the set

Gk = G ∩ k[xk+1, . . . , xn]

is a Gröbner basis of the kth elimination ideal Ik.

Proof 4.16 See [CLO92]

4.6 Solving the Equation System

This gives us a method for solving the equation system (1.1). We know from lemma 4.6 that
instead of obtaining a solution to our initial equation system we can obtain a solution from our
Gröbner basis since both are equivalent. This gives us the advantage to use theorem 4.15. By
calculation all solutions to one equation of the Gröbner basis we can extend our solution to all
other variables if the Gröbner basis of I was generated with respect to the lex order. That gives
an easy and convenient way to solve the whole system of equations.

4.7 Complexity of the Solving Procedure

The complexity of the computation mostly depends on the time which is spend by calculating
the Gröbner basis. In case of m Boolean equations in n variables of algebraic degree d one can
find that the running time of the Buchberger’s Algorithm and its variants for d = 2 is O(1.7n).
If d raises, that is d ≥ 3 the cost of calculating a Gröbner Basis already exceeds the cost of a
brute force attack to obtain the solution, that is 2n [YCC04].

4.8 Improvements for Calculation a Gröbner basis

There exist different improvements to calculate a Gröbner Basis which are there the XL algo-
rithm [CKPS00] and the F4/F5 algorithms [Fau99, Fau02] algorithms. For the XL algorithm it
was shown, that it is a redundant version of the F4 algorithm. The F4 and F5 algorithms use
different methods to improve the performance mostly based on matrix operations.

48

5 Application

In this chapter two ciphers are as examples described. The first is the well known DES [oCoST99]
cipher which is in its form as 3-DES still widely used in various kinds of applications. The second
one is Trivium [CP05], a minimized stream cipher.

5.1 DES

The DES (Data Encrypt Standard) cipher is a widespread algorithm used in many applications.
It is not longer used in its original form since by its structure the key length of single DES with
56 bits is considered to be insecure.

Description of the Cipher DES works as a symmetrical block cipher where the plaintext is
substituted and permuted by a feistel scheme in 16 iterations. The block size is 64 bits as well as
the key size where the effective key size is only 56 bits, the rest is dedicated to parity checking.

The algorithm consists of 16 identical stages, so called rounds. Moreover the algorithm consists
of an initial permutation and a final permutation. The initial permutation is here denoted by
IP , the reverse operation by −IP . Just as well as the final permutation is denoted by FP and
its reverse operation by −FP . Before every round one 64 bit block is divided into two 32 bit
half blocks and processed alternately by a round function F .

Figure 5.1: DES Structure

For every round 16 different sub keys are determined for the round functions F . From the

49

5 Application

initial 64 key bits are 56 taken by the initial permutation P1, the rest is for parity checking or
are discarded. This 58 bits are split up into two blocks of size 28 bits and then by P2 are 24
bits from the left and 24 bits from the right half chosen and permuted to assemble a 48 bit sub
key. This process continues for every sub key and ”<<<” denotes that the input key is rotated
specifically for every stage of the key schedule.

Figure 5.2: DES Key Schedule

Equipped with this sub keys for every round the function F first expands every half 32 bit
block to 48 bits by duplicating some bits. The result of this expansion is then processed by a
bitwise XOR with the sub key obtained by the key schedule. Afterwards the 48 bit outcome is
split up into 6 bit blocks and processed by 8 S-boxes which substitute the input by a defined
scheme to 4 bit blocks. The outcome is then again permuted.

Figure 5.3: DES Round Function

50

5.2 Trivium

Obtaining an Equation System The generation of an equation system in ANF works as follows
as described in [RS06].

Each bit in the ouput of a DES S-box can be expressed as a function of its six inputs and so
defines an equation. The four equations coming from the same S-box share all variables input
to the S-box, so they can be glued immediately. In doing so one obtains an equation for each
S-box in every round. The general form of the equation from the jth S-box in round i is

V
(i−1)
j ⊕ V (i+1)

j = Sj [V
(i)
j ⊕K

i
j]

where V (i−1)
j and V

(i+1)
j are two four-bit strings and V

(i)
j and Ki

j are two six-bit strings. Ki
j

are the six bits of round key i going into S-box j, determined by the key schedule. The bits in
V

(i−1)
j and V

(i+1)
j are taken from the input to the previous and the next round. Determined

by the permutation in the output of the round function, they represent the ouput of S-box j in
round i. V (i)

j are the six bits of expanded input to round i going into S-box j.

When the equation comes from an S-box in one of the two first or the two last rounds some
of the V (·)-values will be constants from the plaintext or the ciphertext. Adding up the number
of bits in the general equation we see that no equation contains more than 20 variables. In the
second and the second last round the equations contain 16 variables each since V (1) and V (r)

comes from the plaintext and ciphertext. In the first and the last round the equations contain
only 10 variables each.

The general equation defines a four-bit condition to be satisfied. If an equation contains a
variables only 2a−4 of the 2a configurations will satisfy the equation, so the largest configuration
lists in the system will contain 216 configurations.

The description above is using only one plaintext/ciphertext pair, but can easily be extended.
To build a system using several plaintext/ciphertext pairs, the V (i)-variables will have to be
diffrent fo reach plaintext/ciphertext pair used, but the key variables remain the same across all
equations.

5.2 Trivium

The Trivium stream cipher was developed with the aims on simplicity. The authors say itself
that they do not recommend it in a productive environment [CP05]. Nevertheless makes this
simplicity the Trivium cipher an interesting study object and should be mentioned as an example
how to generate a set of non-linear equations over F2 in order to break the cipher.

Description of the Cipher Trivium is a hardware oriented stream cipher and was originally an
exercise how far a stream cipher could be simplified in order not to sacrifice its security. It is
designed to generate up to 264 bits of key stream and consists of 3 NLFSRs, has a 80-bit secret
key and a 80 bit initialization vector. The inner state is described by 288 bits.

51

5 Application

Figure 5.4: Trivium [CP05]

In general a sequence of length N ≤ 264 is generated by using iterative 15 specific bits of the
internal state to generate the key stream bit and for updating the internal state. The generation
of the key stream bit can be expressed algorithmically as follows.

Algorithm 19 Trivium key stream generation
1: for i← 1, N do
2: t1 ← s66 ⊕ s93

3: t2 ← s162 ⊕ s177

4: t3 ← s243 ⊕ s288

5: zi ← t1 ⊕ t2 ⊕ t3 . Key stream bit
6: t1 ← t1 ⊕ s91s92 ⊕ s171

7: t2 ← t2 ⊕ s175s176 ⊕ s264

8: t3 ← t3 ⊕ s286s287 ⊕ s69

9: (s1, s2, . . . , s93)← (t3, s1, . . . , s92)
10: (s94, s95, . . . , s177)← (t1, s94, . . . , s176)
11: (s178, s179, . . . , s288)← (t2, s178, . . . , s287)
12: end for

This algorithm can be equally expressed as recursive equations

wn = yn−66 ⊕ yn−110yn−109 ⊕ wn−69

xn = wn−66 ⊕ wn−93 ⊕ wn−92wn−91 ⊕ xn−78

yn = xn−69 ⊕ xn−84 ⊕ xn−83xn−82 ⊕ yn−87

zn = yn−66 ⊕ yn−111 ⊕ wn−66 ⊕ wn−93 ⊕ xn−69 ⊕ xn−84

52

5.2 Trivium

where the initial configuration is

(w−1, w−2, ..., w−93) ≡ (s1, s2, ..., s93)
(x−1, x−2, ..., x−84) ≡ (s94, s95, ..., s177)
(y−1, y−2, ..., y−111) ≡ (s178, s179, ..., s288)

The key setup of Trivium is described by the following algorithm.

Algorithm 20 Trivium key and IV setup
1: (s1, s2, . . . , s93)← (K1, . . . ,K80, 0, . . . , 0)
2: (s94, s95, . . . , s177)← (IV1, . . . , IV80, 0, . . . , 0)
3: (s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)
4: for i← 1, 4 ∗ 288 do
5: t1 ← s66 ⊕ s91s92 ⊕ s93 ⊕ s171

6: t2 ← s162 ⊕ s175s176 ⊕ s177 ⊕ s264

7: t3 ← s243 ⊕ s286s287 ⊕ s288 ⊕ s69

8: (s1, s2, . . . , s93)← (t3, s1, . . . , s92)
9: (s94, s95, . . . , s177)← (t1, s94, . . . , s176)

10: (s178, s179, . . . , s288)← (t2, s178, . . . , s287)
11: end for

Obtaining an Equation System The first observation from the above definitions is that the
key stream is obtained linearly from the state registers, so the key stream is correlated with the
state register bits in the following way

zi ≡ t1 ⊕ t2 ⊕ t3
≡ s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288

That implies that the bits (zi, zi+1, . . . , zi+65) are all linear combinations of the state bits.
If we have 288 variables, namely the initial state register bits s1, s2, . . . , s288 and our key

stream bits z0, z1, . . . , zn we can obtain after 66 clocks the following equation system yields only
by looking only at the key stream algorithm.

z0 = y−66 ⊕ y−111 ⊕ w−66 ⊕ w−93 ⊕ x−69 ⊕ x−84

z1 = y−65 ⊕ y−110 ⊕ w−65 ⊕ w−92 ⊕ x−68 ⊕ x−83

...
z65 = y−1 ⊕ y−45 ⊕ w−1 ⊕ w−27 ⊕ x−3 ⊕ x−18

which is a linear equation system with 66 equations in 198 variables. But the original content
of the state registers is still 288 so we have to obtain more equations. There are in general two
ways for the example of Trivium to realize that.

The first way is obvious and given by the recursive equation system of the cipher and would
let the degree of equations grow. That means after 66 clock cycles we have our linear equation
system. Further 66 clock cycles we have through the new register bits 66 more equations of
degree 2. After the next 66 cycles we have new equations of degree 4, then 8 etc.

The second way would be to increase the number of variables by introducing 3 new variables
wn, xn, yn for the state update function and their equations as above to compute them.

53

5 Application

This approach would yield after k clocks 3k equations of degree 2 in 3k variables and k linear
equations in 288 unknowns.

At this point it should be remarked that there exists another possibility to interpret equation
systems which are partial linear, namely as MRHS equations (Multiple Right Hand Side Equa-
tions). For further reading about MRHS equations and systems and the Gluing and Agreeing
Algorithm one should consult [RS07].

54

6 Experimental Results

The following experimental results were obtained by using the program ”fastglue2” developed
during the work on this master thesis. For a detailed program description refer to section 2.9
and for a description of the experimental environment used to Appendix B.

6.1 Gluing Algorithm

The following diagram shows times obtained by solving sample instances with different values for
sparsity and different number of variables. In each case n = m. Here the Gluing Algorithm in its
tree search version was used exclusively without sorting. All values are average values obtained
by 10 sample runs on randomly generated instances. The values are measured in seconds.

6.1.1 Pure Gluing Algorithm Unsorted

l n = m = 32 n = m = 48 n = m = 64 n = m = 80 n = m = 96
3 0,0040986 0,0585903 35,3578084 535,1290413 7515,71725
4 0,0298945 4,8946569 514,66195 - -
5 0,4916236 73,297138 8291,282 - -
6 0,6016082 582,8163838 - - -
7 5,8607115 3863,0677 - - -
8 70,302769 - - - -

Figure 6.1: Pure Gluing Times (unsorted)

6.1.2 Pure Gluing Algorithm Sorted

l n = m = 32 n = m = 48 n = m = 64 n = m = 80 n = m = 96
3 0,002299 0,0034992 0,0096976 0,0195962 0,4248356
4 0,0033988 0,0111979 0,0288949 0,2650592 3,4559803
5 0,0045986 0,1436768 4,6506932 15,135003 253,278232
6 0,0302942 1,029543 32,049681 1450,41318 7661,973333
7 0,0894861 9,879398 232,70408 10701,0725 -
8 0,5925087 55,095221 2367,911 - -

Figure 6.2: Pure Gluing Times (sorted)

6.1.3 Gluing Tree Depth Histograms

The following graphs show two runs of ”fastglue2” on the same instance with l = 4,m = n = 56.
The abscissa indicates the tree depth values. On the ordinate the number of visits of the
algorithm for a specific depth in the tree is plotted. Booth instances use the same input file,
but in figure (6.4) the input data is unsorted and processed in that form and in figure (6.3) the
data is sorted beforehand.

55

6 Experimental Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60

V

is
its

Treedepth

m=n=56, l=4

Figure 6.3: Tree depth histogram for an example m = n = 56, l = 4 sorted

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 10 20 30 40 50 60

V

is
its

Treedepth

m=n=56, l=4

Figure 6.4: Tree depth histogram for an example m = n = 56, l = 4 unsorted

56

6.2 Sorting

6.2 Sorting

The sorting is one point to speed the process of Gluing up. That is because the size of the
Gluing or the elements of Ui in (X1, V1) ◦ . . . ◦ (Xi, Vi) = (X(i), Ui) is |Ui| = 2|X(i)|−i on the
average, so the complexity of the Gluing is

2
max

i
|X(i)|−i

,

with reference to [Sem05].
From the experiments of section 6.1.2 the following values for |X(i)| − i in the average and

for the maximum through the ordering are taken. First unsorted and then sorted.

6.2.1 Average |X(i)| − i Unsorted

l n = m = 32 n = m = 48 n = m = 64 n = m = 80 n = m = 96
3 6,9 9,6 12,9 15,9 18,7
4 9,2 12,9 17,5 21,2 25,2
5 10,5 15,1 20,4 25,1 30,3
6 11,6 17,1 21,8 27,9 32,67
7 12,4 18,3 24,3 30,25 -
8 13 19,1 24,67 - -

Figure 6.5: Average |X(i)| − i Unsorted

6.2.2 Maximum |X(i)| − i Unsorted

l n = m = 32 n = m = 48 n = m = 64 n = m = 80 n = m = 96
3 12,5 17,3 22,2 27,9 32,3
4 16,1 21,8 29,4 35,5 41,7
5 17,4 25,2 33,6 41,9 50,5
6 20 28,6 36 46,7 52
7 21,3 30,6 40,5 50,5 -
8 22,4 32,3 42,67 - -

Figure 6.6: Maximum |X(i)| − i Unsorted

6.2.3 Average |X(i)| − i Sorted

l n = m = 32 n = m = 48 n = m = 64 n = m = 80 n = m = 96
3 2,4 2,1 3,1 3,2 3,9
4 4,8 6,4 8,1 9,1 11,7
5 6,4 8,7 11,5 13,8 16,3
6 7,9 11,5 14,1 17,5 19,67
7 9 13,2 16,5 19,75 -
8 10,2 14,2 17,78 -

Figure 6.7: Average |X(i)| − i Sorted

57

6 Experimental Results

6.2.4 Maximum |X(i)| − i Sorted

l n = m = 32 n = m = 48 n = m = 64 n = m = 80 n = m = 96
3 4,9 5,2 7,2 7,8 9
4 7,8 10,4 13,2 14,8 18,7
5 10,2 13,7 17,9 21,4 25,5
6 12,7 18 21,5 27,3 31,33
7 14,4 20,4 25,4 30,5 -
8 15,9 21,9 27,56 - -

Figure 6.8: Average |X(i)| − i Sorted

6.3 Gluing-Agreeing2 Algorithm

6.3.1 Number of Tuples

The following tables show the number of tuples of the Agreeing2 structure and the initial tuples
to agree for different instances of the problem.

l n = m = 32 n = m = 48 n = m = 64 n = m = 80 n = m = 96
3 280 396 556 713 808
4 461 718 981 1211 1479
5 776 1210 1531 1996 2290
6 1152 1809 2186 2852 3378
7 1772 2488 3168 4001 4672
8 2673 3533 4326 5174 6403

Figure 6.9: Number of tuples in the Agreeing2 structure

6.3.2 Comment on Magma

While experimenting with magma[Mag08], a program that implements algorithms to produce a
Gröbner basis, it became obvious that it can, on the considered input, not compete with minisat
and fastglue2 and is therefore in the experiments discarded.

6.3.3 Comparison to Minisat

In this section selected times of the Gluing-Agreeing2 with sorting, as implemented in fastglue2,
and minisat[ES03] for different instances of the problem are compared. The minisat parameters
are here the following:

• Restarts Minisat employs a so called restart-mechanism to escape futile parts of the
search tree. If a branch exceeds a certain limit of conflicts the search is restarted with
possibly different parameters to the branching heuristic [ES03]. This number counts the
number of restarts.

• Decisions The number of decisions made according to minisats branching heuristic. See
section 3.6.

• Conflicts Number of conflicts during the solving procedure, see section 3.4

58

6.3 Gluing-Agreeing2 Algorithm

• Propagations A propagation occurs if a constraint is found in a watcher list during
propagation of unit information, see section 3.4, Rule for the Elimination of One-Literal
Clauses and section 3.9.

Furthermore are the tree depth histograms for the selected examples of fastglue2 presented.

Example 1

fastglue2
m = n 32

l 8
d 3

Average |X(i)| − i 11
Maximum |X(i)| − i 17

Number of tuples 2478
Initial tuples to agree 512
Guesses from Gluing 3635

Time spent Gluing 0,032235s
Time spent Agreeing2 6,77658s

Solve time 6,82778s
minisat
Restarts 8
Conflicts 4201
Decisions 4784

Propagations 25785
Solve time 0.116548s

Figure 6.10: Values for Example 1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35

V

is
its

Treedepth

m=n=32, l=8, d=3

Figure 6.11: Tree depth histogram for Example 1

59

6 Experimental Results

Example 2

fastglue2
m = n 48

l 7
d 5

Average |X(i)| − i 13
Maximum |X(i)| − i 21

Number of tuples 2276
Initial tuples to agree 320
Guesses from Gluing 49453

Time spent Gluing 0,385979s
Time spent Agreeing2 63.8821s

Solve time 64.4678s
minisat
Restarts 8
Conflicts 4627
Decisions 5555

Propagations 40085
Solve time 0.098998s

Figure 6.12: Values for Example 2

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 5 10 15 20 25 30 35 40 45 50

V

is
its

Treedepth

m=n=48, l=7, d=5

Figure 6.13: Tree depth histogram for Example 2

60

6.3 Gluing-Agreeing2 Algorithm

Example 3

fastglue2
m = n 64

l 7
d 8

Average |X(i)| − i 14
Maximum |X(i)| − i 20

Number of tuples 2221
Initial tuples to agree 192
Guesses from Gluing 108966

Time spent Gluing 0,469531s
Time spent Agreeing2 76,409s

Solve time 77,2692s
minisat
Restarts 9
Conflicts 5210
Decisions 6116

Propagations 64483
Solve time 0.100011s

Figure 6.14: Values for Example 3

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 10 20 30 40 50 60 70

V

is
its

Treedepth

m=n=64, l=6, d=8

Figure 6.15: Tree depth histogram for Example 3

61

6 Experimental Results

62

7 Algorithmic and Implementation
Improvements to the Gluing and Agreeing

The following techniques to improve the procedures and to enhance the running time of the
algorithms are discussed and developed while creating this masterthesis. They might not be all
considered to become a part of the algorithms, but some of them might find their way into the
methods if they show a enhancing behavior to the running time. This methods presented might
also interfere, which means that they partially may express the same algorithm in another way.

7.1 Edge Removal

This techniques aim is to decrease the running time of the agreeing algorithm. The running time
is already improved through the development of the Agreeing2 algorithm from the Agreeing1
algorithm by introducing a more sophisticated propagation of not agreed assignments, but this
can still be enhanced. In order to do this we try to reduce the number of tuples and do not
from every pair (Si, Sj) of equations create a new set of tuples for the full agreeing structure,
see [Sem08].

For this reason let us see our equation system as a graph G = (V,E), where the set of equations
is the set of vertices V and the set of edges is given by

E = {(Si, Sj)|X(Si) ∩X(Sj) 6= ∅}

That means whenever a given pair of equations has a nonempty intersection in their variables
we connect them through an edge. The Agreeing2 procedure can now be seen as an information
exchange between the equations Si and Sj about the agreeing state of their assignments.

As one can easy see is in the Agreeing2 algorithm intended that whenever an edge between
two equations exists a set of tuples is generated and introduced to the full agreeing structure.
To reduce this number of tuples one can utilize the following lemma.

Lemma 7.1 Let G = (V,E) be a graph with the equations vertices V = {S1, S2, . . . , Sm} and
the edges

E = {(Si, Sj)|X(Si) ∩X(Sj) 6= ∅}

Then one can remove edges (Si, Sj) if the following conditions hold:

1. There exists a path from Si to Sj, denoted by p(Si, Sj). That means there exists a set P =
{S1, S2,, Sl}, where S1 = Si and Sl = Sj and for all Sk, Sk+1 it holds that (Sk, Sk+1) ∈
E(G).

2. For the path p(Si, Sj) and the collection P it holds, that for all k : Xi,j ⊆ Xk,k+1

and G is still a connected graph after the removal of (Si, Sj).

Proof 7.2 Assume that we have two graphs G and G′. G′ is the modified graph after the
removal of the edges, G before. The outcome of Agreeing1 on G′ is different than the outcome
of G. W.l.o.g. this implies that in G′ an assignment aj of an equation Sj is still in the agreeing
state, which is in G deleted. We know that aj is in an disagreeing state to some set of variables

63

7 Algorithmic and Implementation Improvements to the Gluing and Agreeing

Xi,j and some equation Si. Furthermore we know that there exists a path p(Si, Sj) with the
criterion that Xi,j ⊆ Xk,k+1 for all k along the way. Therefore we have some chain

Xi,j ⊆ Xi,k, Xk,k+1, . . . , Xk+l−1,k+l, Xk+l,j

and by the structure of the Agreeing2 algorithm has to run through pairs of equations (Sx, Sy)
until all are in an agreeing state. So Sj would be disagreeing to some Sk+l in the subset Xk+l,j

for which Xi,j ⊆ Xk+l,j which leads to a contradiction and proves the lemma. �

7.2 Implied Equations

Another enhancement discussed during the further development of the above methods is to add
so called implied equations. The goal is to insert in a given ordering of equations new ones,
which are implied from equations given at a later point in the instance.

Consider an ordering o1 of the equations and a point for the Agreeing2 algorithm d. This
ordering was obtained through sorting equations by a specific pattern and let us assume that
this is the best ordering in terms of the size of X(i) we can achieve.

Now it can occur that some Si = (Xi, Vi) is missing a combination in j variables Y =
{xk1 , xk2 , . . . , xkj

} ⊂ Xi in its assignments. Vi(Y) is therefore not a full binary table. If it
holds that the variables Y ⊂ X(d) we can implicate an equation and insert it before some
branch ≤ d in order to make the Gluing more precise and to exclude some possible solutions.
The method works as follows.

1. After obtaining a sorting of the equations and specifying a senseful d for the point of
Agreeing2 calculate the set X(d) = X(1) ∪ . . . ∪X(d).

2. Let Y = Xi ∩X(d) for some symbol Si = (Xi, Vi). Test if Vi(Y) is full.

3. If Vi(Y) is not full create a new symbol Si = (Y, Vi(Y)), i > d.

4. Insert Si at some position < d and increment d.

As one can see does this operation not increase |X(d)|, but gives the opportunity to obtain
information of equations which are behind the point of Agreeing2 and with some probability
|X(Si) ∩X(d)| > 2 and we gain information about variables which are implied.

7.3 Parallelization

As one can find different approaches for parallelization of the SAT problem in [SV05] and for
a complete survey in [Sin06] the consideration to find a way how the Gluing and the Agreeing
approach could gain performance from parallelization techniques is an evident idea. The general
structure of the problem instance offers an easy way to find two distinct working partitions
which can be processed in parallel. If we consider the equation system (2.1) one easy approach
is after the preprocessing to split the first equation into a set of symbols. This could be for
example if we want to split S1 = (X1, V1) into k1 distinct symbols be a resulting set of symbols

S1,1 = (X1, V
1

1), S1,2 = (X1, V
2

1), . . . , S1,k1 = (X1, V
k1

1) (7.1)

where V i
1 ⊂ V1 and |V i

1 | ≈
|V1|
k1

. Equipped with this newly generated equations we can distribute
the instance them over k1 worker nodes in the form of k1 different instances:

I1 = S1,1, S2, . . . , Sm

I2 = S1,2, S2, . . . , Sm
...

Ik = S1,k1 , S2, . . . , Sm

64

7.4 Watched Assignments

The advantage of this approach is, that the nodes need no or only very few communication. The
only communication task to do here is to deploy the instances to the worker nodes and to fetch
the result. There is no communication which could slow down the process needed. This simple
approach reflects the method of fixing a given set of variables. If more parallel resources are
available one could either increase k or if not possible split up S2 into S2,1, S2,2, . . . , S2,k2 and to
create k1k2 instances.

Another point, this time for shared memory optimization is the Agreeing2 Algorithm. Since
this algorithm is bound to one specific equation system and needs to be very fast there is no
sense in parallelizing it to multi processes, but it could be senseful to parallelize it in the task to
a multithreaded operation. Propagating the information of the empty tuples across the whole
Agreeing2 structure is a process which could easily implemented in shared memory parallel
mode with OpenMP[Boa08] for example. In using parallel loop techniques the graph traversal
of the Agreeing2 could start at different points simultaneously and traverse the it starting from
different one-sided empty tuples.

The last point for parallelization is to take the Implicated Equations approach and share
found implicated equations with all worker nodes. Only equations obtained by (7.1) may not
be distributed since they are modified through the parallelization and therefore to dismiss.

7.4 Watched Assignments

As in the SAT solving techniques it could be applicable to introduce so called watched assign-
ments. The technique should work similar for the Agreeing2 algorithm such that not every tuple
is visited if a modification is made there but only if there is one watched assignment changing
its state to not agreeing. In comparison to the method from the SAT algorithms (see 3.9) there
are no implications to make if there is only one assignment left in an agreed state so there is
only need for one watched assignment instead of two. This could improve the running time of
the Agreeing2 algorithm.

65

7 Algorithmic and Implementation Improvements to the Gluing and Agreeing

66

8 Summary and Conclusions

In this thesis three approaches were presented to solve a system (1.1) with application in crypt-
analysis. The first approach are the Gluing Agreeing strategies (short GA strategies) and the
second the SAT-solving techniques. In the end a short introduction to Gröbner basis algorithms
was given. The GA strategies and the Gröbner basis algorithms are designed to obtain all so-
lutions to an equation system in contrast to the SAT-techniques, which are in general designed
to yield only one solution.

During the work on this thesis the main focus was the implementation of the Gluing and
Agreeing strategies and to understand how they are related with the problem instance and
could be improved to make the solving procedures faster.

While considering the experiments from section 6.3.3 one can conclude that the SAT-solving
programs are still the most successful to solve l-sparse equation systems over finite fields, at
least in this region of parameters. They are well developed, a wide range of literature as well
as a lot of research is done on them. The DPLL algorithm was mentioned first in 1960 and all
further work bases on this technique.

Nevertheless, the GA strategies can become a serious competitor for them. If one compares
the values for the time spent in the Gluing and the time spent in the Agreeing2 Algorithm, then
one sees that the Agreeing2 Algorithm is consuming remarkably more computing time. With
the fact that this algorithm has a polynomial complexity in m and n, with respect to a fixed l, it
is reasonable to assume that there exist possibilities to reduce its running time tremendously. It
should be remarked, that currently no new methods are known which could improve SAT-solving
algorithms.

Moreover the Agreeing2 Algorithm is nothing else than a graph representation of information
on the equation system. So it is natural to assume that there exist methods to improve the
complexity of the information propagation through the graph. For instance, that is the strategy
mentioned in chapter 7, namely the Edge Removal. Furthermore it could be found a better
memory representation and probably there exist already algorithmical solutions to use.

The approach of implicated equations should result in fewer guesses. So the whole algorithm
works faster. If one compares the Gluing times from section 6.3.3 it becomes clear that with a
fast verification of the generated guesses the GA strategies are on a competitive basis with the
SAT-solving strategies.

In spite of very low complexity expectations the GA family algorithms are still behind SAT-
solving programs. The theoretical bounds are valid under assumption that main parameters
of the problem may grow. However the exploration of instances with a high number in m,n, l
is very difficult. For both, SAT and Gluing/Agreeing techniques one can for large m,n, l only
give approximations how they will behave if this values raise, since calculations are very time
intensive for sufficiently large instances. To resolve this problem it should be considered to apply
the parallelization techniques mentioned in this thesis.

Furthermore should be in the implementational part some changes be considered. While
creating the reference implementation ”fastglue2” the program was built upon widely used
libraries, which may be not perfectly suitable for the application. Implementational primitives
should be reconsidered and a machine depend improvement could be applicable.

To summarize the results can it be said that all three solving techniques are not yet ready to
take the challenge of solving huge, complex instances (1.1) yielded by a nowadays used cipher
on a single workstation. The the SAT-solving techniques and the GA strategies are the most

67

8 Summary and Conclusions

probable candidates to achieve this task. For the GA strategies there exist some reasonable
approaches for improvement not yet examined in a practical implementation.

68

A Program Sources

A.1 Test Instance Generator

A.1.1 InstanceGenerator.py

1 #!/usr/bin/python
2 import random

3 import sys

4 import math

5 from copy import deepcopy

6
7 class Sorter:
8 @staticmethod

9 def flatten(x):
10 result = []
11 for el in x:
12 if hasattr(el, "__iter__") and not isinstance(el, basestring):
13 result.extend(Sorter.flatten(el))
14 else:
15 result.append(el)
16 return result

17
18 # Calculate max |X(i)|−i for every step
19 @staticmethod

20 def sizesXiSum(l):
21 sizes = []
22 for i in range(0, len(l)):
23 sizes.append(len(set(Sorter.flatten([s.getVariables() for s in l[:i]])))−i)
24 return sizes

25
26 @staticmethod

27 def stats(l):
28 sizes = Sorter.sizesXiSum(l)
29 # Sum up positive sizes
30 sizesSum = 0
31 nSum = 0
32 for s in sizes:
33 if s > 0:
34 sizesSum += s

35 nSum += 1
36
37 print "c Maximum |X(i)|-i: " + str(max(sizes))
38 print "c Average |X(i)|-i: " +str(sizesSum/nSum)
39
40 @staticmethod

41 def sort(sList,n):
42 X = deepcopy(sList)
43 sortedList = [X[0]]
44 X.remove(sortedList[0])
45
46 while len(X) > 0:
47 # Find element which yields smallest |X(i)|−i
48 XiMi = n+1
49 for Xi in X:
50 setLength = len(set(Sorter.flatten([s.getVariables() for s in sortedList] + [Xi.getVariables()])))
51 if setLength < XiMi:
52 minXi = Xi

53 XiMi = setLength

54
55 sortedList.append(minXi)
56 X.remove(minXi)
57
58 return sortedList

59
60 class Symbol:
61 def __init__(self, variables, vectors):
62 self.__variables = variables

63 self.__vectors = vectors

64
65 def getVariables(self):
66 return self.__variables
67
68 def getVectors(self):
69 return self.__vectors
70
71 def __str__(self):
72 result = str(self.__variables) + "; "

73 for i in range(0, len(self.__vectors)−1):
74 result += str(self.__vectors[i])+": "

75 result += str(self.__vectors[len(self.__vectors)−1])
76 return result

69

A Program Sources

77
78 class SortedSet(list):
79 def __str__(self):
80 result = ""

81 for i in self:
82 result += str(i)+" "

83 return result

84
85 class Vector(list):
86 def __str__(self):
87 result = ""

88 for i in self:
89 result += str(i)+" "

90 return result

91
92 class InstanceGenerator:
93 def __init__(self, numVariables, numSymbols, sparsity, solvable, strict, noFixedVariables):
94 self.__sparsity = sparsity

95 self.__index = numSymbols

96 self.__assignments = []
97 self.__variables = [x for x in range(numVariables)]
98 self.__generateAssignments()
99 self.__solvable = solvable

100 self.__strict = strict

101 self.__noFixedVariables = noFixedVariables

102
103 if self.__solvable:
104 self.__solution = [random.choice([0,1]) for x in range(numVariables)]
105
106 def __iter__(self):
107 return self

108
109 def getSolution(self):
110 return self.__solution
111
112 def next(self):
113 if self.__index == 0:
114 raise StopIteration

115 self.__index = self.__index−1
116
117 if self.__strict:
118 numVars = self.__sparsity
119 else:
120 numVars = random.randint(3,self.__sparsity)
121
122 vars = SortedSet(random.sample(self.__variables, numVars))
123 vars.sort()
124 vecs = random.sample(self.__assignments[numVars−1], 2∗∗(numVars−1))
125
126 if self.__solvable:
127 trueVector = Vector([self.__solution[v] for v in vars])
128 if not trueVector in vecs:
129 vecs[random.randint(0,len(vecs)−1)] = trueVector

130
131 if self.__noFixedVariables:
132 vecs = self.__eliminateFixedVariables(vecs, vars)
133
134 result = Symbol(vars,vecs)
135 return result

136
137 def getFixedAssignment(self):
138 vars = SortedSet(random.sample(self.__variables, 1))
139 vars.sort()
140 vecs = [Vector([self.__solution[v] for v in vars])]
141 return Symbol(vars, vecs)
142
143 def getFixedAssignment(self, n):
144 vars = SortedSet([n])
145 vecs = [self.__solution[n]]
146 return Symbol(vars, vecs)
147
148 def __generateAssignments(self):
149 bin = lambda n: n>0 and bin(n>>1)+[n&1] or []
150 fill = lambda l, s: [0 for x in range(s−len(l))]+l

151
152 for i in range(1, self.__sparsity+1):
153 self.__assignments.append([])
154 for j in range(2∗∗i):
155 self.__assignments[i−1].append(Vector(fill(bin(j),i)))
156
157 def __eliminateFixedVariables(self, vecs, vars):
158 leftAssignments = deepcopy(self.__assignments[len(vars)−1])
159 for v in vecs:
160 leftAssignments.remove(v)
161
162 sum = [0 for i in range(0, len(vars))]
163 for v in vecs:
164 sum = [sum[i] + v[i] for i in range(0, len(vars))]
165
166 while(0 in sum or len(vars)+1 in sum):
167 vecs = random.sample(self.__assignments[len(vars)−1], 2∗∗(len(vars)−1))
168 if self.__solvable:
169 trueVector = Vector([self.__solution[v] for v in vars])
170 if not trueVector in vecs:
171 vecs[random.randint(0,len(vecs)−1)] = trueVector

172
173 sum = [0 for i in range(0, len(vars))]

70

A.1 Test Instance Generator

174 for v in vecs:
175 sum = [sum[i] + v[i] for i in range(0, len(vars))]
176 return vecs

177
178 if __name__ == "__main__":
179 if len(sys.argv) < 4:
180 sys.stderr.write("Usage: " + sys.argv[0] + " <#Variables> <#Symbols> <#Sparsity> [-sort] [-fl] [-nf] [-nsol] [-fixed=<int>]\n")
181 sys.exit(1)
182
183 if "-sort" in sys.argv:
184 sortFlag = True

185 else:
186 sortFlag = False

187
188 if "-nf" in sys.argv:
189 noFixedVariables = True

190 else:
191 noFixedVariables = False

192
193 if "-fl" in sys.argv:
194 fixedLength = True

195 else:
196 fixedLength = False

197
198 if "-nsol" in sys.argv:
199 solvableFlag = False

200 else:
201 solvableFlag = True

202
203
204 numFixedVariables = 0
205 for argument in sys.argv:
206 if "-fixed=" in argument:
207 (arg, num) = argument.split(’=’)
208 numFixedVariables = int(num)
209
210 numVariables = int(sys.argv[1])
211 numSymbols = int(sys.argv[2])
212 sparsity = int(sys.argv[3])
213
214 if sparsity < 3 and not fixedLength:
215 sys.stderr.write("If no fixed length sparsity has to be at least 3\n")
216 sys.exit(1)
217
218 g = InstanceGenerator(numVariables, numSymbols, sparsity, solvableFlag, fixedLength, noFixedVariables)
219 symbolList = [symbol for symbol in g]
220
221 print "c Number of Variables: "+sys.argv[1]
222 print "c Number of Equations: "+sys.argv[2]
223
224 print "c Sparsity: "+sys.argv[3]
225
226 if numFixedVariables:
227 print "c Number of fixed Variables: " + str(numFixedVariables)
228
229 if sortFlag:
230 sortedList = Sorter.sort(symbolList, numVariables)
231 print "c Sorted:"

232 Sorter.stats(sortedList)
233 else:
234 sortedList = symbolList

235 print "c Unsorted:"

236 Sorter.stats(symbolList)
237
238 if solvableFlag:
239 print "c Solution: " + str(g.getSolution())
240 else:
241 print "c Not neccessarily solvable"

242
243 # If variables are sorted insert at the front variables which are not part of the intersection of symbols from the beginning
244 # Otherwise append random fixed variables at the end
245 if numFixedVariables:
246 if not sortFlag:
247 for i in range(0, numFixedVariables):
248 sortedList.append(g.getFixedAssignment())
249 else:
250 i = 0
251 varUnion = set([])
252 fixedVars = set([])
253
254 while len(fixedVars) < numFixedVariables:
255 if i == 0:
256 fixedVars = set(sortedList[0].getVariables())
257 else:
258 varUnion = varUnion.union(set(sortedList[i].getVariables()))
259 fixedVars = fixedVars.union(set(sortedList[i+1].getVariables()) − varUnion)
260 i = i+1
261
262 while len(fixedVars) > numFixedVariables:
263 fixedVars.pop()
264
265 sortedList = [g.getFixedAssignment(i) for i in fixedVars] + sortedList

266
267 # Prefix
268 print "p anf " + str(numVariables) + " " + str(numSymbols)
269 for symbol in sortedList:
270 print symbol

71

A Program Sources

271
272 sys.exit(0)

A.1.2 Eq2DimacsCNF.py

1 #!/usr/bin/python
2 import sys

3
4 class ANFtoCNFConverter:
5 # Example clause in ANF:
6 # [[1,2,3],[[1,0,1],[0,0,1],[0,1,1],[1,1,1]]]
7 # to CNF:
8 # [[1,2,3],[[0,0,0],[0,1,0],[1,0,0],[1,1,0]]]
9 @staticmethod

10 def convert(symbol):
11 cnfAssignments = ANFtoCNFConverter.__generateAssignments(len(symbol[0]))
12 for anfAssignment in symbol[1]:
13 cnfAssignments.remove(anfAssignment)
14 symbol[1] = cnfAssignments

15 return symbol

16
17 @staticmethod

18 def __generateAssignments(num_variables):
19 bin = lambda n: n>0 and bin(n>>1)+[n&1] or []
20 fill = lambda l, s: [0 for x in range(s−len(l))]+l

21 assignments = []
22
23 for j in range(2∗∗num_variables):
24 assignments.append(fill(bin(j),num_variables))
25 return assignments

26
27 def recur_map2(fun, data):
28 if hasattr(data, "__iter__"):
29 return [recur_map2(fun, elem) for elem in data]
30 else:
31 return fun(data)
32
33 if __name__=="__main__":
34 f=open(sys.argv[1], ’r’)
35
36 dimacsClauses = []
37 maxVariable = −1
38
39 for line in f:
40 if line[0] == ’#’ or line[0] == ’c’:
41 sys.stdout.write(line)
42 continue

43 if line[0] == ’p’:
44 (p, cnf, numVariables, numEquations) = line.split(" ")
45 continue

46
47 (strVariables, strClauses) = line.split(";")
48
49 variables = strVariables.split(" ")
50 variables.remove(’’)
51 variables = map(int, variables)
52
53 clauses = strClauses.split(":")
54 clauses = [c.split(" ") for c in clauses]
55
56 for c in clauses:
57 for l in c:
58 if l == ’’ or l == ’\n’:
59 c.remove(l)
60
61 clauses = recur_map2(int, clauses)
62
63 symbol = [variables, clauses]
64
65 cnfSymbol = ANFtoCNFConverter.convert(symbol)
66
67 dimacsBlock = []
68 for c in cnfSymbol[1]:
69 dimacsClause = ""

70
71 for i in range(0, len(cnfSymbol[0])):
72 minus = ’’

73 if c[i] == 1:
74 minus = ’-’

75 dimacsClause += minus + str(cnfSymbol[0][i]+1) + " "

76 dimacsClause += "0"

77 dimacsBlock.append(dimacsClause)
78 dimacsClauses += dimacsBlock

79
80 sys.stdout.write("p cnf " + numVariables + " " + str(len(dimacsClauses)) + "\n")
81 for c in dimacsClauses:
82 sys.stdout.write(c+"\n")

72

A.2 fastglue2

A.2 fastglue2

A.2.1 Assignment.h

1 #ifndef ASSIGNMENT H
2 #define ASSIGNMENT H
3 #include <map>
4 #include <boost/dynamic bitset.hpp>
5 #include "Model.h"

6
7 typedef boost::dynamic_bitset<unsigned long long int> Projection;
8 class Equation;
9 class ProjectionContainer;

10
11 /∗∗ The equality operator template.
12 ∗
13 ∗/
14 template <class T, class U>
15 struct assignment_model_equality : public std::binary_function<T, U, bool> {
16 bool operator()(const T x, const U y) const {
17 //If the assignment isn’t agreeing at all, return immediatly false
18 if (!(∗x).is_agreeing) {
19 return false;
20 }
21 /∗ The old one had too may calls to constructor of
22 dynamic bitset<unsigned long long int>()
23 Therefore:
24 a m = assignment mask
25 m m = model mask
26 p = projection
27 m = model
28 (a m AND m m AND p) XOR (a m AND m m AND m) here substituted by
29 (p XOR m) AND a m AND m m
30 The old method creates overall at least 3 new objects
31 #define MASK ((∗(∗x).get model mask() & ∗(∗y).get mask()))
32 return (MASK & ∗(∗x).get model projection()) == (MASK & (∗y));
33 #undef MASK
34 The new method exactly 1
35 boost::dynamic bitset<unsigned long long int> result(∗(∗x).get model projection());
36 result ˆ= (∗y);
37 result &= ∗(∗x).get model mask();
38 result &= ∗(∗y).get mask();
39 return !result.any();
40 And even better method without any renewed allocation of memory ∗/
41 static boost::dynamic_bitset<unsigned long long int> compare_field;
42 compare_field = ∗(∗x).get_model_projection();
43 compare_field ˆ= (∗y);
44 compare_field &= ∗(∗x).get_mask();
45 compare_field &= ∗(∗y).get_mask();
46 return !compare_field.any();
47 }
48 };
49
50 class Assignment : public boost::dynamic_bitset<unsigned long long int> {
51 public:
52 Assignment() : is_agreeing(true) {};
53 Assignment(unsigned int size, bool value) :
54 boost::dynamic_bitset<unsigned long long int>(size, value),
55 is_agreeing(true) {};
56 Assignment(unsigned int size, unsigned long value) :
57 boost::dynamic_bitset<unsigned long long int>(size, value),
58 is_agreeing(true) {};
59 virtual ˜Assignment() {};
60 /∗∗ Set the parent equation ∗/
61 inline void set_parent_equation(Equation∗ e) {
62 m_parent_equation = e;
63 };
64 /∗∗ Get the parent equation ∗/
65 inline Equation∗ get_parent_equation(void) {
66 return m_parent_equation;
67 };
68 /∗∗ Set the projection to a specified Equation ∗/
69 inline void add_equation_projection(Equation∗ e, Projection p) {
70 m_equation_projections.insert(make_pair(e,p));
71 };
72 /∗∗ Fetch a projection to a specific Equation
73 ∗ Only used in the preprocessing for the full agreeing so far.
74 ∗/
75 inline Projection∗ get_equation_projection(Equation∗ e) {
76 return &m_equation_projections[e];
77 }
78 /∗∗ Set the projection to a model ∗/
79 inline void set_model_projection(Projection& p) {
80 m_model_projection = p;
81 };
82 /∗∗ Set the mask to the model ∗/
83 inline void set_mask(boost::dynamic_bitset<unsigned long long int>& m) {
84 m_model_mask = m;
85 };
86 //Get the mask to the model
87 inline boost::dynamic_bitset<unsigned long long int>∗ get_mask() {
88 return &m_model_mask;
89 };
90 /∗∗ Get the projection to a model ∗/

73

A Program Sources

91 inline Projection∗ get_model_projection() {
92 return &m_model_projection;
93 };
94 /∗∗ Get the projection containers the assignments is in ∗/
95 inline std::vector<ProjectionContainer∗>∗ get_projection_containers() {
96 return &m_projection_containers;
97 };
98 /∗∗ The agreeing flag ∗/
99 bool is_agreeing;

100 private:
101 /∗∗ Projections to specific equations ∗/
102 std::map<Equation∗, Projection> m_equation_projections;
103 /∗∗ Projection to a model ∗/
104 Projection m_model_projection;
105 /∗∗ Adress of the Equation which the Assignment belongs to ∗/
106 Equation∗ m_parent_equation;
107 /∗∗ Mask all variables which are not set in that assignment ∗/
108 boost::dynamic_bitset<unsigned long long int> m_model_mask;
109 /∗∗ Projection containers which the assignment belongs to ∗/
110 std::vector<ProjectionContainer∗> m_projection_containers;
111 };
112
113 #endif /∗ASSIGNMENT H ∗/

A.2.2 Model.h

1 #ifndef MODEL H
2 #define MODEL H
3
4 #include <boost/dynamic bitset.hpp>
5
6 class Model : public boost::dynamic_bitset<unsigned long long int> {
7 public:
8 Model() {};
9 ˜Model() {};

10 inline boost::dynamic_bitset<unsigned long long int>∗ get_mask() {
11 return &m_mask;
12 };
13 private:
14 boost::dynamic_bitset<unsigned long long int> m_mask;
15 };
16
17 #endif /∗MODEL H ∗/

A.2.3 Main.cpp

1 #define NDEBUG
2
3 #include <iostream>
4 #include <string>
5 #include <vector>
6 #include <fstream>
7 #include <sstream>
8 #include <stdlib.h>
9 #include <boost/foreach.hpp>

10 #include <boost/tokenizer.hpp>
11 #include <getopt.h>
12 #include <stdio.h>
13 #include "Stats.h"

14 #include "Equation.h"

15 #include "Assignment.h"

16 #include "Model.h"

17 #include "Branch.h"

18 #include "Tree.h"

19 #include "Solver.h"

20 #include "Sorter.h"

21
22 #define FreeBSD 1
23
24 using std::cerr;
25 using std::cout;
26 using std::endl;
27
28 Tree Solver::m_tree;
29 unsigned int Solver::m_num_variables;
30 unsigned int Solver::m_num_equations;
31 unsigned int Solver::m_average_sparsity;
32 int Solver::m_fa_position;
33 FullAgreeingStructure Solver::m_fa_structure;
34
35 static void usage(char∗ s_exec);
36 static inline void read_from_file(std::ifstream &file, EquationVector& e, int& num_equations, int& num_variables);
37 static inline double cpu_time(void);
38
39 int main(int argc, char∗∗ argv) {
40 /∗∗ Program flags options ∗/
41 int sort_mode = 0;
42 int verbose_mode = 0;

74

A.2 fastglue2

43 int fa_position = −1;
44 std::ifstream infile;
45 std::fstream histo_out;
46 std::fstream stats_out;
47 std::fstream solution_out;
48
49 static struct option longopts[] = {
50 {"i", required_argument, NULL, ’i’},
51 {"s", no_argument, &sort_mode, 1},
52 {"v", no_argument, &verbose_mode, 1},
53 {"d", required_argument, NULL, ’d’},
54 {"hout", required_argument, NULL, ’h’},
55 {"sout", required_argument, NULL, ’o’},
56 {"sol", required_argument, NULL, ’l’},
57 {NULL, 0, NULL, 0}
58 };
59
60 char ch;
61 while((ch = getopt_long_only(argc, argv, "svi:d:h:o:l:", longopts, NULL)) != −1){
62 switch(ch){
63 case ’i’:
64 infile.open(optarg, std::fstream::in);
65 if(!infile.good()){
66 cerr<<"Error opening in file!"<<endl;
67 exit(1);
68 }
69 break;
70 case ’d’:
71 fa_position = atoi(optarg);
72 break;
73 case ’h’:
74 histo_out.open(optarg, std::fstream::app | std::fstream::out);
75 if(!histo_out.good()){
76 cerr<<"Error opening histogram file!"<<endl;
77 exit(1);
78 }
79 break;
80 case ’o’:
81 stats_out.open(optarg, std::fstream::app | std::fstream::out);
82 if(!stats_out.good()){
83 cerr<<"Error opening statistic file!"<<endl;
84 exit(1);
85 }
86 break;
87 case ’l’:
88 solution_out.open(optarg, std::fstream::app | std::fstream::out);
89 if(!solution_out.good()){
90 cerr<<"Error opening solution file!"<<endl;
91 exit(1);
92 }
93 break;
94 case 0:
95 break;
96 default:
97 usage(argv[0]);
98 exit(1);
99 break;

100 }
101 }
102
103 int num_variables = 0;
104 int num_equations = 0;
105 EquationVector equation_vector;
106
107 /∗∗ Timing ∗/
108 double start_time = 0;
109 double parse_time = 0;
110 double sorting_time = 0;
111 double preparation_time = 0;
112 double solve_time = 0;
113
114 start_time = cpu_time();
115 /∗∗ Read equation system from file ∗/
116 read_from_file(infile, equation_vector, num_variables, num_equations);
117 parse_time = cpu_time() − start_time;
118
119 if(verbose_mode) cout<<"Parse time: "<<parse_time<<endl;
120
121 int unsorted_avg_xi;
122 int unsorted_max_xi;
123 Sorter::stats(&equation_vector, unsorted_avg_xi, unsorted_max_xi);
124 /∗∗ Sort if applicable ∗/
125 if(sort_mode){
126 Sorter::sort(&equation_vector, num_variables);
127 }
128 int sorted_avg_xi;
129 int sorted_max_xi;
130 Sorter::stats(&equation_vector, sorted_avg_xi, sorted_max_xi);
131 sorting_time = cpu_time() − parse_time;
132
133 if(verbose_mode){
134 if(sort_mode){
135 cout<<"Sorting time: "<<sorting_time<<" "<<", |X(i)|-i unsorted avg: "<<unsorted_avg_xi<<" max: "<<unsorted_max_xi

<<", sorted avg: "<<sorted_avg_xi<<" max: "<<sorted_max_xi<<endl;
136 }else{
137 cout<<"|X(i)|-i unsorted avg: "<<unsorted_avg_xi<<" max: "<<unsorted_max_xi<<endl;
138 }

75

A Program Sources

139 }
140
141 Stats.sorting_time = sorting_time;
142 Stats.unsorted_avg_xi = unsorted_avg_xi;
143 Stats.unsorted_max_xi = unsorted_max_xi;
144 Stats.sorted_avg_xi = sorted_avg_xi;
145 Stats.sorted_max_xi = sorted_max_xi;
146
147 /∗∗ Set the position for the full agreeing ∗/
148 Solver::set_fa_position(fa_position);
149 Solver::prepare(num_variables, num_equations, &equation_vector);
150 preparation_time = cpu_time() − sorting_time;
151 if(verbose_mode){
152 cout<<"Perparation time: "<<preparation_time<<endl;
153 cout<<"Number of tuples: "<<Stats.tuples<<endl;
154 cout<<"Initial assignments to agree: "<<Stats.initial_assignments<<endl;
155 }
156 Stats.preparation_time = preparation_time;
157
158 Model ∗res = Solver::solve();
159 solve_time = cpu_time() − preparation_time;
160 Stats.solve_time = solve_time;
161 if(verbose_mode){
162 cout<<"Guesses produced by gluing: "<<Stats.guesses_produced<<endl;
163 cout<<"Time gluing: "<<Stats.time_gluing<<endl;
164 cout<<"Time agreeing2: "<<Stats.time_agreeing2<<endl;
165 cout<<"Solve time: "<<solve_time<<endl;
166 cout<<"Overall time: "<<cpu_time()<<endl;
167 }
168
169 Stats.overall_time = cpu_time();
170
171 if(histo_out.good()) Stats.print_histo(histo_out);
172 if(stats_out.good()) Stats.print_stats(stats_out);
173 if(solution_out.good()) solution_out<<∗res<<endl;
174 return EXIT_SUCCESS;
175 }
176
177 void usage(char∗ s_exec) {
178 cerr<<"Usage: "<<s_exec<<" <equation file>"<<endl;
179 }
180
181 void read_from_file(std::ifstream &file, EquationVector& e, int& num_variables, int& num_equations) {
182 std::string s_line;
183 typedef boost::tokenizer<boost::char_separator<char> > tokenizer;
184 boost::char_separator<char> eq_sep(";");
185 boost::char_separator<char> var_sep(" ");
186 boost::char_separator<char> ass_sep(":");
187 boost::char_separator<char> x_sep(" ");
188
189 while (getline(file, s_line)) {
190 if (s_line[0] == ’c’) {
191 //Comment line
192 continue;
193 } else if (s_line[0] == ’p’) {
194 //Parameter line
195 tokenizer p_tok(s_line);
196 tokenizer::iterator p_tok_it = p_tok.begin();
197 ++p_tok_it;
198 ++p_tok_it;
199 num_variables = atoi((∗p_tok_it).c_str());
200 ++p_tok_it;
201 num_equations = atoi((∗p_tok_it).c_str());
202 } else {
203 //Equation
204 tokenizer eq_tok(s_line, eq_sep);
205 std::vector<std::string> equation;
206 BOOST_FOREACH(std::string s, eq_tok) {
207 equation.push_back(s);
208 }
209
210 //Variables
211 std::vector<std::string> variables;
212 tokenizer var_tok(equation[0], var_sep);
213 BOOST_FOREACH(std::string s, var_tok) {
214 variables.push_back(s);
215 }
216
217 //Assignments
218 std::vector<std::string> assignments;
219 tokenizer ass_tok(equation[1], ass_sep);
220 BOOST_FOREACH(std::string s, ass_tok) {
221 assignments.push_back(s);
222 }
223
224 //Treat Variables
225 std::vector<unsigned int> vars;
226 BOOST_FOREACH(std::string str_variable, variables) {
227 vars.push_back(atoi(str_variable.c_str()));
228 }
229
230 //Treat Assignments
231 std::vector<Assignment∗> ass;
232 BOOST_FOREACH(std::string str_assignment, assignments) {
233 tokenizer x_tok(str_assignment, x_sep);
234 Assignment∗ a = new Assignment();
235 BOOST_FOREACH(std::string str_var, x_tok) {

76

A.2 fastglue2

236 a−>push_back(atoi(str_var.c_str()) == 1 ? true : false);
237 }
238 ass.push_back(a);
239 }
240
241 //Create new equation
242 Equation ∗eq = new Equation(vars, ass);
243 e.push_back(eq);
244 }
245 }
246 }

A.2.4 Tree.h

1 #ifndef TREE H
2 #define TREE H
3
4 #include <vector>
5 #include "Branch.h"

6
7 class Tree : public std::vector<Branch∗> {
8 public:
9 Tree() : pos(0) {};

10 inline bool has_next(void) {
11 return pos == this−>size()−1 ? false : true;
12 };
13 inline void forward(void) {
14 ++pos;
15 };
16 inline Branch∗ current(void) {
17 return this−>at(pos);
18 };
19 inline Branch∗ next(void) {
20 return this−>at(pos+1);
21 };
22 inline Branch∗ last(void) {
23 return this−>at(this−>size()−1);
24 };
25 inline void back(void);
26 inline void repeat_from(unsigned int d);
27 unsigned int pos;
28 };
29
30 void Tree::back(void) {
31 //Reset iterators
32 this−>at(pos)−>reset_iterators();
33 this−>at(pos)−>get_model()−>reset();
34 //And go one step back
35 −−pos;
36 }
37
38 void Tree::repeat_from(unsigned int d) {
39 while (pos > d) {
40 back();
41 }
42
43 −−(∗this−>at(pos)−>get_assignments_current());
44 }
45
46 #endif /∗TREE H ∗/

A.2.5 Branch.h

1 #ifndef BRANCH H
2 #define BRANCH H
3
4 #include <vector>
5 #include <boost/dynamic bitset.hpp>
6 #include "Equation.h"

7
8 class Branch {
9 public:

10 Branch(int num_variables, Equation∗ eq, std::vector<unsigned int>& variables) :
11 m_variables(variables),
12 m_equation(eq),
13 m_current_assignment(NULL),
14 m_end_assignments(NULL) {
15 m_model.resize(num_variables, false);
16 m_equation−>set_parent_branch(this);
17 };
18 virtual ˜Branch() {};
19 inline std::vector<unsigned int>∗ get_variables() {
20 return &m_variables;
21 };
22 inline Model∗ get_model() {
23 return &m_model;
24 };
25 inline Equation∗ get_equation() {

77

A Program Sources

26 return m_equation;
27 }
28 inline AssignmentsToModelIterator∗ get_assignments_current();
29 inline AssignmentsToModelIterator∗ get_assignments_end() {
30 return m_end_assignments;
31 };
32 inline void reset_iterators(void) {
33 delete m_current_assignment;
34 delete m_end_assignments;
35 m_current_assignment = NULL;
36 m_end_assignments = NULL;
37 };
38 private:
39 //Model of the current Branch
40 Model m_model;
41 //The variables involved to this branch
42 std::vector<unsigned int> m_variables;
43 //The current equation
44 Equation∗ m_equation;
45 AssignmentsToModelIterator∗ m_current_assignment;
46 AssignmentsToModelIterator∗ m_end_assignments;
47 };
48
49 AssignmentsToModelIterator∗ Branch::get_assignments_current() {
50 if (m_current_assignment == NULL) {
51 m_current_assignment =
52 new boost::filter_iterator<std::binder2nd<assignment_model_equality<Assignment∗, Model∗> >, std::vector<Assignment∗>::iterator>
53 (std::bind2nd(assignment_model_equality<Assignment∗, Model∗>(), &m_model),
54 m_equation−>get_assignments()−>begin(),
55 m_equation−>get_assignments()−>end());
56 m_end_assignments =
57 new boost::filter_iterator<std::binder2nd<assignment_model_equality<Assignment∗, Model∗> >, std::vector<Assignment∗>::iterator>
58 (std::bind2nd(assignment_model_equality<Assignment∗, Model∗>(), &m_model),
59 m_equation−>get_assignments()−>end(),
60 m_equation−>get_assignments()−>end());
61
62 }
63 return m_current_assignment;
64 }
65
66 #endif /∗BRANCH H ∗/

A.2.6 Equation.h

1 #ifndef EQUATION H
2 #define EQUATION H
3
4 #include <vector>
5 #include <iostream>
6 #include <boost/iterator/filter iterator.hpp>
7 #include "Assignment.h"

8
9 class Branch;

10
11 typedef boost::filter_iterator<std::binder2nd<assignment_model_equality<Assignment∗, Model∗> >, std::vector<Assignment∗>::iterator>

AssignmentsToModelIterator;
12
13 class Equation {
14 public:
15 Equation(std::vector<unsigned int> variables, std::vector<Assignment∗> assignments) :
16 m_variables(variables),
17 m_assignments(assignments) {
18 BOOST_FOREACH(Assignment∗ a, m_assignments) {
19 a−>set_parent_equation(this);
20 }
21 num_agreeing_assignments = assignments.size();
22 };
23 Equation() {};
24 ˜Equation() {};
25 inline void set_parent_branch(Branch∗ b) {
26 m_parent_branch = b;
27 };
28 inline Branch∗ get_parent_branch(Branch∗ b) {
29 return m_parent_branch;
30 };
31 inline std::vector<unsigned int>∗ get_variables() {
32 return &m_variables;
33 };
34 inline std::vector<Assignment∗>∗ get_assignments() {
35 return &m_assignments;
36 };
37 friend std::ostream& operator<<(std::ostream& out, const Equation &e);
38 unsigned int num_agreeing_assignments;
39 private:
40 std::vector<unsigned int> m_variables;
41 std::vector<Assignment∗> m_assignments;
42 Branch∗ m_parent_branch;
43 };
44
45 std::ostream& operator<<(std::ostream& out, const Equation &e) {
46 out<<"{[";
47 std::copy(e.m_variables.begin(), e.m_variables.end(), std::ostream_iterator<int>(out, " "));
48 out<<"],";

78

A.2 fastglue2

49 for (std::vector<Assignment∗>::const_iterator it = e.m_assignments.begin(); it != e.m_assignments.end(); ++it) {
50 if ((∗it)−>is_agreeing) {
51 out<<"[";
52 out<<∗(∗it);
53 out<<"]";
54 }
55 }
56 out<<"}||="<<e.num_agreeing_assignments;
57 return out;
58 }
59
60 #endif /∗EQUATION H ∗/

A.2.7 FullAgreeingStructure.h

1 #ifndef FULLAGREEINGGRAPH H
2 #define FULLAGREEINGGRAPH H
3
4 #include <string>
5 #include <vector>
6 #include <map>
7 #include <iostream>
8 #include <set>
9 #include <queue>

10 #include <boost/foreach.hpp>
11 #include <boost/dynamic bitset.hpp>
12 #include "Assignment.h"

13 #include "Equation.h"

14 #include "Model.h"

15 #include "Branch.h"

16
17 using std::cerr;
18 using std::cout;
19 using std::endl;
20 using std::make_pair;
21
22 #define PRINTTUPLES \
23 cerr<<endl; \
24 BOOST_FOREACH(ProjectionTuple ∗p, m_tuples){ \
25 cerr<<"|{"; \
26 BOOST_FOREACH(Assignment ∗a, ∗p−>first){ \
27 if(a−>is_agreeing()) cerr<<∗a−>get_model_projection()<<","; \
28 } \
29 cerr<<"}|="<<p−>first−>num_agreeing_assignments<<", |{"; \
30 BOOST_FOREACH(Assignment ∗a, ∗p−>second){ \
31 if(a−>is_agreeing()) cerr<<∗a−>get_model_projection()<<","; \
32 } \
33 cerr<<"}|="<<p−>second−>num_agreeing_assignments<<endl; \
34 } \
35 cerr<<endl;
36
37 struct ProjectionContainer;
38 //The Projections tuple
39 struct ProjectionTuple : public std::pair<ProjectionContainer∗, ProjectionContainer∗>{
40
41 };
42
43 //Container for the projections
44 struct ProjectionContainer : public std::set<Assignment∗> {
45 ProjectionTuple ∗parent;
46 unsigned int num_agreeing_assignments;
47 };
48
49 class FullAgreeingStructure {
50 public:
51 FullAgreeingStructure() {};
52 virtual ˜FullAgreeingStructure() {};
53 inline void init(std::vector<unsigned int> ∗ initial_variables, std::vector<Equation∗> ∗eqv);
54 inline void add_equation_pair(Equation∗ e1, Equation∗ e2);
55 inline bool run_agreeing2(Model ∗m);
56 inline void undo();
57 inline unsigned int get_num_tuples(){return m_tuples.size();}
58 inline unsigned int get_num_initial_assignments(){return m_initial_agreeing_assignments.size();}
59 private:
60 //Tuples of equal projections
61 std::vector<ProjectionTuple∗> m_tuples;
62 //For the depth first search
63 std::vector<ProjectionTuple∗> m_processing_queue;
64 //Assignments for the initial agreeing in the beginning
65 std::set<Assignment∗> m_initial_agreeing_assignments;
66 //All assignments to undo after a run
67 std::vector<Assignment∗> m_undo_assignments;
68 //Keep track about the empty tuples, allocated beforehand
69 std::vector<ProjectionTuple∗> m_empty_tuples;
70 };
71
72 bool FullAgreeingStructure::run_agreeing2(Model ∗m) {
73 //cerr<<endl;
74 for (std::set<Assignment∗>::iterator as_it = m_initial_agreeing_assignments.begin();
75 as_it != m_initial_agreeing_assignments.end();
76 ++as_it) {
77 static boost::dynamic_bitset<unsigned long long int> compare_field;
78 compare_field = ∗(∗as_it)−>get_model_projection();

79

A Program Sources

79 compare_field ˆ= ∗m;
80 compare_field &= ∗m−>get_mask();
81 compare_field &= ∗(∗as_it)−>get_mask();
82 if (compare_field.any()) {
83 //cerr<<∗∗as it<<endl;
84 (∗as_it)−>is_agreeing = false;
85
86 −−(∗as_it)−>get_parent_equation()−>num_agreeing_assignments;
87 for (std::vector<ProjectionContainer∗>::iterator pc_it = (∗as_it)−>get_projection_containers()−>begin();
88 pc_it != (∗as_it)−>get_projection_containers()−>end();
89 ++pc_it) {
90 −−(∗pc_it)−>num_agreeing_assignments;
91
92 //Check if one side got empty, if yes put it to the processing queue, if booth sides got empty add it to empty tuples
93 if ((∗pc_it)−>parent−>first−>num_agreeing_assignments == 0 ˆ
94 (∗pc_it)−>parent−>second−>num_agreeing_assignments == 0) {
95 m_processing_queue.push_back((∗pc_it)−>parent);
96 }
97 if (((∗pc_it)−>parent−>first−>num_agreeing_assignments == 0) &&
98 ((∗pc_it)−>parent−>second−>num_agreeing_assignments == 0)) {
99 m_empty_tuples.push_back((∗pc_it)−>parent);

100 }
101 }
102
103 m_undo_assignments.push_back((∗as_it));
104
105 if ((∗as_it)−>get_parent_equation()−>num_agreeing_assignments == 0) {
106 return false;
107 }
108 }
109 }
110
111 //Treat all one sided empty tuples
112 while (m_processing_queue.size() > 0) {
113 ProjectionTuple ∗t = m_processing_queue.back();
114 m_processing_queue.pop_back();
115
116 //Decide which side to treat (side which is not empty)
117 ProjectionContainer ∗p = t−>first−>num_agreeing_assignments != 0 ? t−>first : t−>second;
118
119 //Set every assignment of a one sided empty tuple to not agreeing (if not already done)
120 for (std::set<Assignment∗>::iterator as_it = p−>begin(); as_it != p−>end(); ++as_it) {
121 if ((∗as_it)−>is_agreeing) {
122 (∗as_it)−>is_agreeing = false;
123
124 −−(∗as_it)−>get_parent_equation()−>num_agreeing_assignments;
125 for (std::vector<ProjectionContainer∗>::iterator pc_it = (∗as_it)−>get_projection_containers()−>begin();
126 pc_it != (∗as_it)−>get_projection_containers()−>end();
127 ++pc_it) {
128 −−(∗pc_it)−>num_agreeing_assignments;
129
130 //Check if the projection container got one sided empty, if yes insert into the processing queue
131 if ((∗pc_it) == p) continue; //Continue if it is the current projection contianer
132 if ((∗pc_it)−>parent−>first−>num_agreeing_assignments == 0 ˆ
133 (∗pc_it)−>parent−>second−>num_agreeing_assignments == 0) {
134 m_processing_queue.push_back((∗pc_it)−>parent);
135 }
136 }
137
138 m_undo_assignments.push_back((∗as_it));
139
140 if ((∗as_it)−>get_parent_equation()−>num_agreeing_assignments == 0) {
141 return false;
142 }
143 }
144 }
145
146 //The tuple is now on both sides empty, insert it into the empty tules set
147 m_empty_tuples.push_back(t);
148 }
149
150 return m_empty_tuples.size() == m_tuples.size() ? false : true;
151 }
152
153 inline void FullAgreeingStructure::undo() {
154 //Reset assignments
155 for (std::vector<Assignment∗>::iterator as_it = m_undo_assignments.begin();
156 as_it != m_undo_assignments.end();
157 ++as_it) {
158 (∗as_it)−>is_agreeing = true;
159 ++(∗as_it)−>get_parent_equation()−>num_agreeing_assignments;
160 for (std::vector<ProjectionContainer∗>::iterator pc_it = (∗as_it)−>get_projection_containers()−>begin();
161 pc_it != (∗as_it)−>get_projection_containers()−>end();
162 ++pc_it) {
163 ++(∗pc_it)−>num_agreeing_assignments;
164 }
165 }
166 m_undo_assignments.clear();
167 m_empty_tuples.clear();
168 m_processing_queue.clear();
169 }
170
171 //Initialize the graph structure, neccessary to set for example m variables occurences and m assignment occurences also
172 //on which variables the initial agreeing will operate
173 void FullAgreeingStructure::init(std::vector<unsigned int> ∗initial_variables, std::vector<Equation∗> ∗eqv) {
174 //Create a copy of initial variables to be able to modify it
175 std::set<unsigned int> work_initial_variables(initial_variables−>begin(), initial_variables−>end());

80

A.2 fastglue2

176
177 //In order to introduce the whole guess fetch as long equations to introduce until we have no variables left in ”initial variables”
178 while (work_initial_variables.size() > 0) {
179 unsigned int max_intersection_size = 0;
180 std::set<unsigned int> max_intersection;
181 Equation ∗max_intersection_equation = 0;
182 BOOST_FOREACH(Equation∗ eq, ∗eqv) {
183 std::set<unsigned int> intersection;
184 std::insert_iterator<std::set<unsigned int> > ins_intersection(intersection, intersection.begin());
185 set_intersection(work_initial_variables.begin(), work_initial_variables.end(), eq−>get_variables()−>begin(), eq−>get_variables()

−>end(), ins_intersection);
186
187 if (intersection.size() > max_intersection_size) {
188 max_intersection_equation = eq;
189 max_intersection_size = intersection.size();
190 max_intersection = intersection;
191 }
192 }
193 BOOST_FOREACH(Assignment∗ as, ∗max_intersection_equation−>get_assignments()) {
194 m_initial_agreeing_assignments.insert(as);
195 }
196
197 BOOST_FOREACH(unsigned int var, max_intersection) {
198 work_initial_variables.erase(var);
199 }
200 }
201 }
202
203 //Dublicates are already avoided already in Solver.h
204 void FullAgreeingStructure::add_equation_pair(Equation∗ e1, Equation∗ e2) {
205 //Get pairwise equal projections from e1 to e2 from e1
206 std::multimap<unsigned long int, Assignment∗> e1_value_assignment_table;
207 std::multimap<unsigned long int, Assignment∗> e2_value_assignment_table;
208 std::set<unsigned long int> e1_value_set;
209 std::set<unsigned long int> e2_value_set;
210
211 //Get common projection values
212 BOOST_FOREACH(Assignment∗ as, ∗e1−>get_assignments()) {
213 e1_value_assignment_table.insert(make_pair(as−>get_equation_projection(e2)−>to_ulong(), as));
214 e1_value_set.insert(as−>get_equation_projection(e2)−>to_ulong());
215 }
216 BOOST_FOREACH(Assignment∗ as, ∗e2−>get_assignments()) {
217 e2_value_assignment_table.insert(make_pair(as−>get_equation_projection(e1)−>to_ulong(), as));
218 e2_value_set.insert(as−>get_equation_projection(e1)−>to_ulong());
219 }
220
221 std::vector<unsigned long int> common_projection_values;
222 std::insert_iterator<std::vector<unsigned long int> > ins_common_projections(common_projection_values,
223 common_projection_values.begin());
224 set_intersection(e1_value_set.begin(), e1_value_set.end(),
225 e2_value_set.begin(), e2_value_set.end(),
226 ins_common_projections);
227
228 //For every common projection value create a Tuple of the assignments
229 //During creation of m variable occurences keep track of the uniqueness of m variable occurences pairs
230 BOOST_FOREACH(unsigned long int projection_value, common_projection_values) {
231 ProjectionTuple ∗tuple = new ProjectionTuple();
232 ProjectionContainer ∗tuple_left = new ProjectionContainer();
233 ProjectionContainer ∗tuple_right = new ProjectionContainer();
234 //Set the parent tuple for the container and initialize the number of assignments
235 tuple_left−>parent = tuple;
236 tuple_right−>parent = tuple;
237
238 //Treat the left side (eq1)
239 std::multimap<unsigned long int, Assignment∗>::iterator left_it = e1_value_assignment_table.find(projection_value);
240 std::multimap<unsigned long int, Assignment∗>::iterator left_end = e1_value_assignment_table.upper_bound(projection_value);
241 while (left_it != left_end) {
242 tuple_left−>insert(left_it−>second);
243 left_it−>second−>get_projection_containers()−>push_back(tuple_left);
244 ++left_it;
245 }
246
247 //Treat the right side (eq2)
248 std::multimap<unsigned long int, Assignment∗>::iterator right_it = e2_value_assignment_table.find(projection_value);
249 std::multimap<unsigned long int, Assignment∗>::iterator right_end = e2_value_assignment_table.upper_bound(projection_value);
250 while (right_it != right_end) {
251 tuple_right−>insert(right_it−>second);
252 right_it−>second−>get_projection_containers()−>push_back(tuple_right);
253 ++right_it;
254 }
255
256 //Set the number of assignments in the ProjectionTuples
257 tuple_left−>num_agreeing_assignments = tuple_left−>size();
258 tuple_right−>num_agreeing_assignments = tuple_right−>size();
259
260 tuple−>first = tuple_left;
261 tuple−>second = tuple_right;
262 m_tuples.push_back(tuple);
263 }
264 }
265
266 #endif /∗FULLAGREEINGGRAPH H ∗/

81

A Program Sources

A.2.8 Sorter.h

1 #ifndef SORTER H
2 #define SORTER H
3
4 #include <set>
5
6 class Sorter {
7 public:
8 inline static void sort(EquationVector ∗equation_vector, int num_variables);
9 inline static void stats(EquationVector ∗equation_vector, int &avg_xi, int &max_xi);

10 };
11
12 /∗ Archieve minimal |X(i)|−i to given number of equations ∗/
13 void Sorter::sort(EquationVector ∗equation_vector, int num_variables) {
14 EquationVector ∗result_eqv = new EquationVector();
15 std::set<unsigned int> xi;
16
17 //Start with the first equation
18 result_eqv−>push_back(equation_vector−>at(0));
19 equation_vector−>erase(equation_vector−>begin());
20 std::insert_iterator<std::set<unsigned int> > ins_xi(xi, xi.begin());
21 std::set_union(xi.begin(), xi.end(), result_eqv−>at(0)−>get_variables()−>begin(), result_eqv−>at(0)−>get_variables()−>end(), ins_xi);
22
23
24 //Try every equation in order to find the smallest xi
25 while (equation_vector−>size() != 0) {
26 Equation∗ minimal_growth_equation;
27 int new_xi = num_variables+1;
28
29 BOOST_FOREACH(Equation∗ eq, ∗equation_vector) {
30 std::set<unsigned int> current_xi;
31 std::insert_iterator<std::set<unsigned int> > ins_current_xi(current_xi, current_xi.begin());
32 std::set_union(xi.begin(), xi.end(), eq−>get_variables()−>begin(), eq−>get_variables()−>end(), ins_current_xi);
33
34 if ((int)current_xi.size() < new_xi) {
35 new_xi = current_xi.size();
36 minimal_growth_equation = eq;
37 }
38 }
39
40 std::insert_iterator<std::set<unsigned int> > ins_xi(xi, xi.begin());
41 std::set_union(xi.begin(), xi.end(), minimal_growth_equation−>get_variables()−>begin(), minimal_growth_equation−>get_variables()−>

end(), ins_xi);
42
43 result_eqv−>push_back(minimal_growth_equation);
44 equation_vector−>erase(find(equation_vector−>begin(), equation_vector−>end(), minimal_growth_equation));
45 }
46
47 equation_vector−>clear();
48 BOOST_FOREACH(Equation ∗eq, ∗result_eqv) {
49 equation_vector−>push_back(eq);
50 }
51
52 delete result_eqv;
53 }
54
55 void Sorter::stats(EquationVector ∗equation_vector, int &avg_xi, int &max_xi) {
56 avg_xi = 0;
57 max_xi = −1;
58
59 int i = 0;
60
61 std::set<unsigned int> xi;
62 BOOST_FOREACH(Equation ∗eq, ∗equation_vector) {
63 std::insert_iterator<std::set<unsigned int> > ins_xi(xi, xi.begin());
64 std::set_union(xi.begin(), xi.end(), eq−>get_variables()−>begin(), eq−>get_variables()−>end(), ins_xi);
65
66 //Sum up only positive grow values
67 avg_xi += xi.size() − i > 0 ? xi.size() − i : 0;
68 if ((int)xi.size() − i > max_xi) {
69 max_xi = xi.size() − i;
70 }
71 ++i;
72 }
73 avg_xi /= i;
74 }
75 #endif /∗SORTER H ∗/

A.2.9 Solver.h

1 #ifndef SOLVER H
2 #define SOLVER H
3
4 #include <boost/foreach.hpp>
5 #include <iostream>
6 #include <vector>
7 #include "Equation.h"

8 #include "Assignment.h"

9 #include "Tree.h"

10 #include "Branch.h"

82

A.2 fastglue2

11 #include "Model.h"

12 #include "Assignment.h"

13 #include "FullAgreeingStructure.h"

14
15
16 typedef std::vector<Equation∗> EquationVector;
17
18 /∗∗ Main class which coordinates the solving.
19 ∗ This class is responsible for the solving of the given instance. At first the function
20 ∗ prepare() should be called with suitable values for num variables, num equations and an
21 ∗ EquationVector to initialize the FullAgreeingStructure and to start the before hand
22 ∗ calculations of set intersections and other task which can be done before hand. After
23 ∗ that the function solve() can be executed, which returns a pointer to the resulting
24 ∗ Model if a solution is found. If the routine does not find any solution it exits with
25 ∗ an error.
26 ∗/
27 class Solver {
28 public:
29 /∗∗ An empty constructor.
30 ∗ This constructor can be empty, since all member functions and member variables
31 ∗ are static and at no time a instance of the class is generated.
32 ∗/
33 Solver();
34
35 /∗∗ Function to prepare the equation system and perform before hand calculations.
36 ∗ Different preparations are done in that procedure. At first ...
37 ∗ @param num variables Number of variables in the equation system.
38 ∗ @param num equations Number of equations in the equation system.
39 ∗ @param eqv A pointer to the vector of Equation pointers.
40 ∗ @return A pointer to the resulting model.
41 ∗ @see Equation
42 ∗ @see Model
43 ∗/
44 inline static void prepare(int num_variables, int num_equations, EquationVector∗ eqv);
45
46 /∗∗ The Main solving routine.
47 ∗
48 ∗/
49 inline static Model∗ solve();
50
51 /∗∗ Set the desired value for the agreeing2 algorithm ∗/
52 inline static void set_fa_position(int d){
53 m_fa_position = d;
54 }
55
56 /∗∗ Fetch the treedepth for the full agreeing ∗/
57 inline static int get_fa_position(){
58 return m_fa_position;
59 }
60 /∗∗ An empty destructor.
61 ∗ This destructor can be empty, since all member functions and member variables
62 ∗ are static and at no time a instance of the class is generated.
63 ∗/
64 virtual ˜Solver();
65 private:
66
67 /∗∗ The tree structure for the Gluing Algorithm.
68 ∗ This static variable holds the tree structure for the Gluing Algorithm. It will be
69 ∗ generated through the prepare function and will not be changed during the whole
70 ∗ computation.
71 ∗ @see Tree
72 ∗ @see prepare
73 ∗/
74 static Tree m_tree;
75
76 /∗∗ The Full Agreeing structure.
77 ∗ Holds the Full Agreeing structure generated by the prepare function. The general
78 ∗ structure will not be altered during the whole computation.
79 ∗ @see FullAgreeingStructure
80 ∗ @see prepare
81 ∗/
82 static FullAgreeingStructure m_fa_structure;
83
84 /∗∗ Number of variables ∗/
85 static unsigned int m_num_variables;
86
87 /∗∗ Number of equations ∗/
88 static unsigned int m_num_equations;
89
90 /∗∗ The average sparsity ∗/
91 static unsigned int m_average_sparsity;
92
93 /∗∗ Integer value at which point the Full Agreeing procedure should be applied ∗/
94 static int m_fa_position;
95 };
96
97 Model∗ Solver::solve() {
98 Stats.timer_gluing_start();
99 while (m_tree.has_next()) {

100 //cerr<<m tree.pos<<” ”;
101 ++Stats.depth_histo[m_tree.pos];
102 //In case we are at the point of full agreeing undo previous changes
103 if ((int)m_tree.pos == m_fa_position) {
104 Stats.timer_gluing_stop();
105 Stats.timer_agreeing2_start();
106 m_fa_structure.undo();
107 Stats.timer_agreeing2_stop();

83

A Program Sources

108 Stats.timer_gluing_start();
109 }
110
111 Model∗ current_model = m_tree.current()−>get_model();
112 Model∗ next_model = m_tree.next()−>get_model();
113
114 /∗ Fetch iterators to the assignments which are fitting to the current model from
115 ∗ the last point read ∗/
116 AssignmentsToModelIterator ∗current_assignment =
117 m_tree.current()−>get_assignments_current();
118 AssignmentsToModelIterator ∗end_assignments =
119 m_tree.current()−>get_assignments_end();
120
121 if (∗current_assignment != ∗end_assignments) {
122 //Copy the old model (without the mask)
123 ∗next_model |= ∗current_model;
124 //Apply the current assignment to the next model
125 ∗next_model |= ∗(∗(∗current_assignment))−>get_model_projection();
126 //Increment filter iterator
127 ++(∗current_assignment);
128 //The full agreeing
129 if ((int)m_tree.pos == m_fa_position) {
130 ++Stats.guesses_produced;
131
132 Stats.timer_gluing_stop();
133 Stats.timer_agreeing2_start();
134 bool agreeing2_result = m_fa_structure.run_agreeing2(next_model);
135 Stats.timer_agreeing2_stop();
136 Stats.timer_gluing_start();
137
138 if (!agreeing2_result) {
139 //Try the next guess
140 next_model−>reset();
141 continue;
142 }
143 }
144 m_tree.forward();
145 } else {
146 m_tree.back();
147 }
148 }
149 return m_tree.last()−>get_model();
150 }
151
152 void Solver::prepare(int num_variables, int num_equations, EquationVector∗ eqv) {
153 //Since we have only model
154 BOOST_FOREACH(Equation∗ e, ∗eqv) {
155 BOOST_FOREACH(Assignment∗ a, ∗e−>get_assignments()) {
156 Projection model_p(num_variables);
157 boost::dynamic_bitset<unsigned long long int> model_m(num_variables);
158 for (std::vector<unsigned int>::iterator v_it = e−>get_variables()−>begin();
159 v_it != e−>get_variables()−>end(); ++v_it) {
160 //Get the position/index of the variable in the vector by
161 //subtracting begin() from the current vector iterator (address)
162 model_p[∗v_it] = (∗a)[v_it − e−>get_variables()−>begin()];
163 model_m[∗v_it] = true;
164 }
165 a−>set_model_projection(model_p);
166 a−>set_mask(model_m);
167 }
168 }
169
170 //Calculate projections to other Equations
171 //First find intersections
172 std::vector<std::vector<Equation∗> > equations_to_variables(num_variables);
173 BOOST_FOREACH(Equation∗ e, ∗eqv) {
174 BOOST_FOREACH(int var, ∗e−>get_variables()) {
175 equations_to_variables[var].push_back(e);
176 }
177 }
178
179 //Second calculate for every variable pair (e1,e2) where e1 != e2
180 //their projections and add that equation pair to
181 //the full agreeing graph, iff there is a variable interseciton
182 typedef std::pair<Equation∗, Equation∗> EquationPair;
183 std::set<EquationPair> pairs_treated;
184
185 BOOST_FOREACH(std::vector<Equation∗> eq_var, equations_to_variables) {
186 BOOST_FOREACH(Equation∗ eq1, eq_var) {
187 BOOST_FOREACH(Equation∗ eq2, eq_var) {
188 //Keep track of duplicates and unneccessary information
189 if (eq1 == eq2) continue;
190 EquationPair eq_pair1(eq1, eq2);
191 EquationPair eq_pair2(eq2, eq1);
192 if (pairs_treated.find(eq_pair1) == pairs_treated.end() &&
193 pairs_treated.find(eq_pair2) == pairs_treated.end()) {
194
195 //Calculate set intersection
196 std::vector<unsigned int> var_intersection;
197 std::insert_iterator<std::vector<unsigned int> >
198 var_intersection_inserter(var_intersection, var_intersection.begin());
199 set_intersection(eq1−>get_variables()−>begin(),
200 eq1−>get_variables()−>end(),
201 eq2−>get_variables()−>begin(),
202 eq2−>get_variables()−>end(),
203 var_intersection_inserter);
204

84

A.2 fastglue2

205 /∗ If we have a variable interseciton calculate the indices and append
206 ∗ equation projections ∗/
207 if (var_intersection.size() >= 1) {
208 //Calculate indices
209 std::vector<unsigned int> eq1_indices;
210 std::vector<unsigned int> eq2_indices;
211 BOOST_FOREACH(unsigned int var, var_intersection) {
212 eq1_indices.push_back(find(eq1−>get_variables()−>begin(),
213 eq1−>get_variables()−>end(), var) −
214 eq1−>get_variables()−>begin());
215 eq2_indices.push_back(find(eq2−>get_variables()−>begin(),
216 eq2−>get_variables()−>end(), var) −
217 eq2−>get_variables()−>begin());
218 }
219
220 //For each assignment calculate projection and append in equation 1
221 BOOST_FOREACH(Assignment∗ a, ∗eq1−>get_assignments()) {
222 Projection p;
223 BOOST_FOREACH(unsigned int i, eq1_indices) {
224 p.push_back((∗a)[i]);
225 }
226 a−>add_equation_projection(eq2, p);
227 }
228
229 //For each assignment calculate projection and append in equation 2
230 BOOST_FOREACH(Assignment∗ a, ∗eq2−>get_assignments()) {
231 Projection p;
232 BOOST_FOREACH(unsigned int i, eq2_indices) {
233 p.push_back((∗a)[i]);
234 }
235 a−>add_equation_projection(eq1, p);
236 }
237
238 //Insert into the full agreeing graph
239 m_fa_structure.add_equation_pair(eq1, eq2);
240 }
241 }
242 //Insert to avoid duplicates
243 pairs_treated.insert(eq_pair1);
244 pairs_treated.insert(eq_pair2);
245 }
246 }
247 }
248
249 //Create the search tree and sum up variables/equation to get average sparsity
250 std::vector<unsigned int> variables_so_far;
251 unsigned int sum_variables_per_equation = 0;
252 BOOST_FOREACH(Equation∗ eq, ∗eqv) {
253 Branch∗ branch = new Branch(num_variables, eq, variables_so_far);
254 branch−>get_model()−>resize(num_variables, false);
255 branch−>get_model()−>get_mask()−>resize(num_variables, false);
256 //Mask variables which are not yet used.
257 BOOST_FOREACH(unsigned int var, variables_so_far) {
258 (∗branch−>get_model()−>get_mask())[var] = true;
259 }
260
261 //Push branch back to tree
262 m_tree.push_back(branch);
263
264 //Fill variables so far to keep track of which variables are already involed and to create the model mask
265 std::vector<unsigned int> new_variables_so_far;
266 std::insert_iterator<std::vector<unsigned int> >
267 ins_new_variables_so_far(new_variables_so_far, new_variables_so_far.begin());
268 set_union(variables_so_far.begin(),
269 variables_so_far.end(),
270 eq−>get_variables()−>begin(),
271 eq−>get_variables()−>end(),
272 ins_new_variables_so_far);
273 variables_so_far = new_variables_so_far;
274 sum_variables_per_equation += eq−>get_variables()−>size();
275 }
276
277 //At the end of the tree insert a new blank branch to store the result in
278 Branch ∗b = new Branch(num_variables, new Equation(), variables_so_far);
279 b−>get_model()−>get_mask()−>resize(num_variables, true);
280 m_tree.push_back(b);
281
282 //Calculate the average sparsity of the equations and store the number of variables
283 m_average_sparsity = sum_variables_per_equation / eqv−>size();
284 m_num_equations = eqv−>size();
285 m_num_variables = num_variables;
286
287 //Initialize full agreeing
288 if(m_fa_position >= 0){
289 m_fa_structure.init(m_tree[m_fa_position+1]−>get_variables(), eqv);
290 Stats.initial_assignments = m_fa_structure.get_num_initial_assignments();
291 Stats.tuples = m_fa_structure.get_num_tuples();
292 }
293
294 //Initialize Statistics
295 Stats.init(eqv−>size());
296 Stats.n = num_variables;
297 Stats.m = eqv−>size();
298 Stats.l = m_average_sparsity;
299 Stats.d = m_fa_position;
300 }
301

85

A Program Sources

302 #endif /∗SOLVER H ∗/

A.2.10 Stats.h

1 #ifndef SOLVER H
2 #define SOLVER H
3
4 #include <boost/foreach.hpp>
5 #include <iostream>
6 #include <vector>
7 #include "Equation.h"

8 #include "Assignment.h"

9 #include "Tree.h"

10 #include "Branch.h"

11 #include "Model.h"

12 #include "Assignment.h"

13 #include "FullAgreeingStructure.h"

14
15
16 typedef std::vector<Equation∗> EquationVector;
17
18 /∗∗ Main class which coordinates the solving.
19 ∗ This class is responsible for the solving of the given instance. At first the function
20 ∗ prepare() should be called with suitable values for num variables, num equations and an
21 ∗ EquationVector to initialize the FullAgreeingStructure and to start the before hand
22 ∗ calculations of set intersections and other task which can be done before hand. After
23 ∗ that the function solve() can be executed, which returns a pointer to the resulting
24 ∗ Model if a solution is found. If the routine does not find any solution it exits with
25 ∗ an error.
26 ∗/
27 class Solver {
28 public:
29 /∗∗ An empty constructor.
30 ∗ This constructor can be empty, since all member functions and member variables
31 ∗ are static and at no time a instance of the class is generated.
32 ∗/
33 Solver();
34
35 /∗∗ Function to prepare the equation system and perform before hand calculations.
36 ∗ Different preparations are done in that procedure. At first ...
37 ∗ @param num variables Number of variables in the equation system.
38 ∗ @param num equations Number of equations in the equation system.
39 ∗ @param eqv A pointer to the vector of Equation pointers.
40 ∗ @return A pointer to the resulting model.
41 ∗ @see Equation
42 ∗ @see Model
43 ∗/
44 inline static void prepare(int num_variables, int num_equations, EquationVector∗ eqv);
45
46 /∗∗ The Main solving routine.
47 ∗
48 ∗/
49 inline static Model∗ solve();
50
51 /∗∗ Set the desired value for the agreeing2 algorithm ∗/
52 inline static void set_fa_position(int d){
53 m_fa_position = d;
54 }
55
56 /∗∗ Fetch the treedepth for the full agreeing ∗/
57 inline static int get_fa_position(){
58 return m_fa_position;
59 }
60 /∗∗ An empty destructor.
61 ∗ This destructor can be empty, since all member functions and member variables
62 ∗ are static and at no time a instance of the class is generated.
63 ∗/
64 virtual ˜Solver();
65 private:
66
67 /∗∗ The tree structure for the Gluing Algorithm.
68 ∗ This static variable holds the tree structure for the Gluing Algorithm. It will be
69 ∗ generated through the prepare function and will not be changed during the whole
70 ∗ computation.
71 ∗ @see Tree
72 ∗ @see prepare
73 ∗/
74 static Tree m_tree;
75
76 /∗∗ The Full Agreeing structure.
77 ∗ Holds the Full Agreeing structure generated by the prepare function. The general
78 ∗ structure will not be altered during the whole computation.
79 ∗ @see FullAgreeingStructure
80 ∗ @see prepare
81 ∗/
82 static FullAgreeingStructure m_fa_structure;
83
84 /∗∗ Number of variables ∗/
85 static unsigned int m_num_variables;
86
87 /∗∗ Number of equations ∗/
88 static unsigned int m_num_equations;
89

86

A.2 fastglue2

90 /∗∗ The average sparsity ∗/
91 static unsigned int m_average_sparsity;
92
93 /∗∗ Integer value at which point the Full Agreeing procedure should be applied ∗/
94 static int m_fa_position;
95 };
96
97 Model∗ Solver::solve() {
98 Stats.timer_gluing_start();
99 while (m_tree.has_next()) {

100 //cerr<<m tree.pos<<” ”;
101 ++Stats.depth_histo[m_tree.pos];
102 //In case we are at the point of full agreeing undo previous changes
103 if ((int)m_tree.pos == m_fa_position) {
104 Stats.timer_gluing_stop();
105 Stats.timer_agreeing2_start();
106 m_fa_structure.undo();
107 Stats.timer_agreeing2_stop();
108 Stats.timer_gluing_start();
109 }
110
111 Model∗ current_model = m_tree.current()−>get_model();
112 Model∗ next_model = m_tree.next()−>get_model();
113
114 /∗ Fetch iterators to the assignments which are fitting to the current model from
115 ∗ the last point read ∗/
116 AssignmentsToModelIterator ∗current_assignment =
117 m_tree.current()−>get_assignments_current();
118 AssignmentsToModelIterator ∗end_assignments =
119 m_tree.current()−>get_assignments_end();
120
121 if (∗current_assignment != ∗end_assignments) {
122 //Copy the old model (without the mask)
123 ∗next_model |= ∗current_model;
124 //Apply the current assignment to the next model
125 ∗next_model |= ∗(∗(∗current_assignment))−>get_model_projection();
126 //Increment filter iterator
127 ++(∗current_assignment);
128 //The full agreeing
129 if ((int)m_tree.pos == m_fa_position) {
130 ++Stats.guesses_produced;
131
132 Stats.timer_gluing_stop();
133 Stats.timer_agreeing2_start();
134 bool agreeing2_result = m_fa_structure.run_agreeing2(next_model);
135 Stats.timer_agreeing2_stop();
136 Stats.timer_gluing_start();
137
138 if (!agreeing2_result) {
139 //Try the next guess
140 next_model−>reset();
141 continue;
142 }
143 }
144 m_tree.forward();
145 } else {
146 m_tree.back();
147 }
148 }
149 return m_tree.last()−>get_model();
150 }
151
152 void Solver::prepare(int num_variables, int num_equations, EquationVector∗ eqv) {
153 //Since we have only model
154 BOOST_FOREACH(Equation∗ e, ∗eqv) {
155 BOOST_FOREACH(Assignment∗ a, ∗e−>get_assignments()) {
156 Projection model_p(num_variables);
157 boost::dynamic_bitset<unsigned long long int> model_m(num_variables);
158 for (std::vector<unsigned int>::iterator v_it = e−>get_variables()−>begin();
159 v_it != e−>get_variables()−>end(); ++v_it) {
160 //Get the position/index of the variable in the vector by
161 //subtracting begin() from the current vector iterator (address)
162 model_p[∗v_it] = (∗a)[v_it − e−>get_variables()−>begin()];
163 model_m[∗v_it] = true;
164 }
165 a−>set_model_projection(model_p);
166 a−>set_mask(model_m);
167 }
168 }
169
170 //Calculate projections to other Equations
171 //First find intersections
172 std::vector<std::vector<Equation∗> > equations_to_variables(num_variables);
173 BOOST_FOREACH(Equation∗ e, ∗eqv) {
174 BOOST_FOREACH(int var, ∗e−>get_variables()) {
175 equations_to_variables[var].push_back(e);
176 }
177 }
178
179 //Second calculate for every variable pair (e1,e2) where e1 != e2
180 //their projections and add that equation pair to
181 //the full agreeing graph, iff there is a variable interseciton
182 typedef std::pair<Equation∗, Equation∗> EquationPair;
183 std::set<EquationPair> pairs_treated;
184
185 BOOST_FOREACH(std::vector<Equation∗> eq_var, equations_to_variables) {
186 BOOST_FOREACH(Equation∗ eq1, eq_var) {

87

A Program Sources

187 BOOST_FOREACH(Equation∗ eq2, eq_var) {
188 //Keep track of duplicates and unneccessary information
189 if (eq1 == eq2) continue;
190 EquationPair eq_pair1(eq1, eq2);
191 EquationPair eq_pair2(eq2, eq1);
192 if (pairs_treated.find(eq_pair1) == pairs_treated.end() &&
193 pairs_treated.find(eq_pair2) == pairs_treated.end()) {
194
195 //Calculate set intersection
196 std::vector<unsigned int> var_intersection;
197 std::insert_iterator<std::vector<unsigned int> >
198 var_intersection_inserter(var_intersection, var_intersection.begin());
199 set_intersection(eq1−>get_variables()−>begin(),
200 eq1−>get_variables()−>end(),
201 eq2−>get_variables()−>begin(),
202 eq2−>get_variables()−>end(),
203 var_intersection_inserter);
204
205 /∗ If we have a variable interseciton calculate the indices and append
206 ∗ equation projections ∗/
207 if (var_intersection.size() >= 1) {
208 //Calculate indices
209 std::vector<unsigned int> eq1_indices;
210 std::vector<unsigned int> eq2_indices;
211 BOOST_FOREACH(unsigned int var, var_intersection) {
212 eq1_indices.push_back(find(eq1−>get_variables()−>begin(),
213 eq1−>get_variables()−>end(), var) −
214 eq1−>get_variables()−>begin());
215 eq2_indices.push_back(find(eq2−>get_variables()−>begin(),
216 eq2−>get_variables()−>end(), var) −
217 eq2−>get_variables()−>begin());
218 }
219
220 //For each assignment calculate projection and append in equation 1
221 BOOST_FOREACH(Assignment∗ a, ∗eq1−>get_assignments()) {
222 Projection p;
223 BOOST_FOREACH(unsigned int i, eq1_indices) {
224 p.push_back((∗a)[i]);
225 }
226 a−>add_equation_projection(eq2, p);
227 }
228
229 //For each assignment calculate projection and append in equation 2
230 BOOST_FOREACH(Assignment∗ a, ∗eq2−>get_assignments()) {
231 Projection p;
232 BOOST_FOREACH(unsigned int i, eq2_indices) {
233 p.push_back((∗a)[i]);
234 }
235 a−>add_equation_projection(eq1, p);
236 }
237
238 //Insert into the full agreeing graph
239 m_fa_structure.add_equation_pair(eq1, eq2);
240 }
241 }
242 //Insert to avoid duplicates
243 pairs_treated.insert(eq_pair1);
244 pairs_treated.insert(eq_pair2);
245 }
246 }
247 }
248
249 //Create the search tree and sum up variables/equation to get average sparsity
250 std::vector<unsigned int> variables_so_far;
251 unsigned int sum_variables_per_equation = 0;
252 BOOST_FOREACH(Equation∗ eq, ∗eqv) {
253 Branch∗ branch = new Branch(num_variables, eq, variables_so_far);
254 branch−>get_model()−>resize(num_variables, false);
255 branch−>get_model()−>get_mask()−>resize(num_variables, false);
256 //Mask variables which are not yet used.
257 BOOST_FOREACH(unsigned int var, variables_so_far) {
258 (∗branch−>get_model()−>get_mask())[var] = true;
259 }
260
261 //Push branch back to tree
262 m_tree.push_back(branch);
263
264 //Fill variables so far to keep track of which variables are already involed and to create the model mask
265 std::vector<unsigned int> new_variables_so_far;
266 std::insert_iterator<std::vector<unsigned int> >
267 ins_new_variables_so_far(new_variables_so_far, new_variables_so_far.begin());
268 set_union(variables_so_far.begin(),
269 variables_so_far.end(),
270 eq−>get_variables()−>begin(),
271 eq−>get_variables()−>end(),
272 ins_new_variables_so_far);
273 variables_so_far = new_variables_so_far;
274 sum_variables_per_equation += eq−>get_variables()−>size();
275 }
276
277 //At the end of the tree insert a new blank branch to store the result in
278 Branch ∗b = new Branch(num_variables, new Equation(), variables_so_far);
279 b−>get_model()−>get_mask()−>resize(num_variables, true);
280 m_tree.push_back(b);
281
282 //Calculate the average sparsity of the equations and store the number of variables
283 m_average_sparsity = sum_variables_per_equation / eqv−>size();

88

A.2 fastglue2

284 m_num_equations = eqv−>size();
285 m_num_variables = num_variables;
286
287 //Initialize full agreeing
288 if(m_fa_position >= 0){
289 m_fa_structure.init(m_tree[m_fa_position+1]−>get_variables(), eqv);
290 Stats.initial_assignments = m_fa_structure.get_num_initial_assignments();
291 Stats.tuples = m_fa_structure.get_num_tuples();
292 }
293
294 //Initialize Statistics
295 Stats.init(eqv−>size());
296 Stats.n = num_variables;
297 Stats.m = eqv−>size();
298 Stats.l = m_average_sparsity;
299 Stats.d = m_fa_position;
300 }
301
302 #endif /∗SOLVER H ∗/

89

A Program Sources

90

B Experimental Environment

B.1 Generating Random Instances

In order to run the experiments there is a need to generate several sample random instances.
The ”InstanceGenerator” itself is a python program as one can see in A.1.1. The program takes
default 3 parameters, namely the number of variables, the number of symbols and the sparsity.
Moreover it has the following optional parameters:

Parameter Description
-nf No fixed variables
-sort Sort the instance in terms of X(i)
-fl Fixed length
-fixed=n Fix n variables
-nsol Do not guarantee solvability

Figure B.1: InstanceGenerator.py Parameters

If the ”-nf” flag is set it is assured that the instance contains no fixed variables in one symbol.
That means all vectors of the instance are summed up (integer) and it is checked if the resulting
vector contains an element which is either 0 or 2l−1. If that happened a new set of assignments
is chosen at random. If the sort flag is set the instance get sorted and the ”-fl” flag guarantees
that all equations contain l variables. With the ”-fixed” flag one can specify the number of fixed
variables in the instance and if the ”-nsol” flag is set it is not guaranteed that the instance is
solvable, means its outcome is undetermined.

Sample Random Instance As a sample for the output consider the command

InstanceGenerator.py 10 10 3 -fixed=2 -nf -sort -fl

in which we want to generate 10 symbols in 10 variables where 2 variables are fixed and the rest
not and the size of Xi is fixed to 3. Furthermore the equation system should be sorted. This
would result in the following output:

c Number of Variables: 10
c Number of Equations: 10
c Sparsity: 3
c Number of fixed Variables: 2
c Sorted:
c Maximum |X(i)|-i: 2
c Average |X(i)|-i: 1
c Solution: [1, 1, 0, 0, 0, 0, 1, 1, 1, 0]
p anf 10 10
3 ; 0
5 ; 0
1 3 5 ; 1 0 1 : 1 0 0 : 0 0 0 : 1 1 1
3 5 6 ; 0 0 0 : 1 0 0 : 0 1 0 : 0 0 1

91

B Experimental Environment

0 5 6 ; 0 0 1 : 1 1 1 : 1 0 1 : 0 0 0
2 3 5 ; 1 1 0 : 0 0 0 : 1 0 1 : 0 1 1
0 1 8 ; 1 0 0 : 1 1 1 : 0 0 0 : 0 0 1
3 7 8 ; 1 1 0 : 0 1 1 : 1 1 1 : 0 0 1
1 6 7 ; 0 1 0 : 1 0 1 : 1 1 1 : 0 1 1
0 2 7 ; 0 1 0 : 1 0 1 : 1 1 0 : 0 0 1
7 8 9 ; 0 1 0 : 1 0 1 : 0 0 0 : 1 1 0
0 4 8 ; 1 0 1 : 0 0 1 : 1 1 0 : 0 1 0

which is further referred to as ANF form.

B.2 Converting to SAT

The process of converting an instance in the given format above is described in 3.2. The tool
used for this procedure is called ”Eq2DimacsCNF.py” and presented in A.1.2. The process
of conversion works exactly as described, except that for tests with fixed variables there is a
modification in the process since a fixed variable in the ANF form would result in 2l−1 − 1
clauses. This was considered as an ”unfair” disadvantage for sat solvers and therefore avoided.
Instead there are inserted single clauses as like a symbol with only one vector.

The output of the above example instance would result in the following file in CNF form:

c Number of Variables: 10
c Number of Equations: 10
c Sparsity: 3
c Number of fixed Variables: 2
c Sorted:
c Maximum |X(i)|-i: 2
c Average |X(i)|-i: 1
c Solution: [1, 1, 0, 0, 0, 0, 1, 1, 1, 0]
p cnf 10 42
-4 0
-6 0
2 4 -6 0
2 -4 6 0
2 -4 -6 0
-2 -4 6 0
4 -6 -7 0
-4 6 -7 0
-4 -6 7 0
-4 -6 -7 0
1 -6 7 0
1 -6 -7 0
-1 6 7 0
-1 -6 7 0
3 4 -6 0
3 -4 6 0
-3 4 6 0
-3 -4 -6 0
1 -2 9 0
1 -2 -9 0
-1 2 -9 0

92

B.3 Compiler

-1 -2 9 0
4 8 9 0
4 -8 9 0
-4 8 9 0
-4 8 -9 0
2 7 8 0
2 7 -8 0
-2 7 8 0
-2 -7 8 0
1 3 8 0
1 -3 -8 0
-1 3 8 0
-1 -3 -8 0
8 9 -10 0
8 -9 -10 0
-8 9 10 0
-8 -9 -10 0
1 5 9 0
1 -5 -9 0
-1 5 9 0
-1 -5 -9 0

B.3 Compiler

As compiler to translate the programs it was used the Intel compiler [DKK+99] in the version
10.0.

B.4 OS & CPU

While running the experiments it was made use of the IBM e1350 cluster of the Parallab which
is dedicated to run sequential jobs. The key stats are the following:

• 86 e326 nodes

• 172 AMD/opteron 250 (2.4 Ghz) processors (2 cpus per node)

• 258 Gigabyte memory (on average 3 Gigabyte per node)

• 6880 Gigabyte disk (80 Gigabyte per node)

• Linux operating system (Redhat)

• Gigabit Ethernet on all 86 nodes, and a low latency SCI/Dolphin interconnect on 25 nodes

More information about the system can be obtained at www.parallab.uib.no.

93

B Experimental Environment

94

Bibliography

[Bar95] Peter Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-
Boolean optimization. Technical Report MPI–I–95–2–003, Max-Planck-Institut
für Informatik, 1995. Available from: citeseer.ist.psu.edu/article/
barth95davisputnam.html.

[Boa08] OpenMP Architecture Review Board. Openmp c and c++ application program
interface [online]. 2008. Available from: www.openmp.org.

[BS97] Roberto J. Jr. Bayardo and Robert C. Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence (AAAI’97), pages 203–208, Providence, Rhode Island, 1997.
Available from: citeseer.ist.psu.edu/article/bayardo97using.html.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
algorithms for solving overdefined systems of multivariate polynomial equations. In
EUROCRYPT, pages 392–407, 2000.

[CL04] Edward Corwin and Antonette Logar. Sorting in linear time - variations on the
bucket sort. J. Comput. Small Coll., 20(1):197–202, 2004.

[CLO92] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Algebra (Un-
dergraduate Texts in Mathematics). Springer, 1992.

[CP05] Christophe De Canniere and Bart Preneel. Trivium specifications. Technical report,
European Network of Excellence for Cryptology (Ecrypt), 2005. Available from:
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf.

[DA08] Beman Dawes and David Abrahams. Boost c++ libraries [online]. 3 2008. Available
from: http://www.boost.org [cited June 2, 2008].

[DABC93] Olivier Dubois, Pascal André, Yacine Boufkhad, and Jacques Carlier. SAT versus
UNSAT. Second DIMACS Implementation Challenge, 1993.

[DKK+99] Carole Dulong, Rakesh Krishnaiyer, Dattatraya Kulkarni, Daniel Lavery, Wei Li,
John Ng, and David Sehr. An overview of the Intel IA-64 compiler. Intel
Technology Journal, 1(Q4):15, 1999. Available from: citeseer.ist.psu.edu/
dulong99overview.html.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
J. ACM, 7(3):201–215, 1960.

[EB05] Niklas Eén and Armin Biere. Effective preprocessing in sat through variable and
clause elimination. Theory and Applications of Satisfiability Testing, pages 61–75,
2005. Available from: http://dx.doi.org/10.1007/11499107_5.

95

Bibliography

[ES03] Niklas Eén and Niklas Sörensson. An extensible sat-solver [ver 1.2] [online]. 2003.
Available from: http://citeseer.ist.psu.edu/een03extensible.html.

[ES04] Niklasn Eén and Niklas Sörensson. An extensible sat-solver. Theory and Ap-
plications of Satisfiability Testing, pages 502–518, 2004. Available from: http:
//www.springerlink.com/content/x9uavq4vpvqntt23.

[Fau99] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases (f4).
Journal of Pure and Applied Algebra, 139(1):61–88, June 1999.

[Fau02] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases with-
out reduction to zero (f5). In ISSAC ’02: Proceedings of the 2002 international
symposium on Symbolic and algebraic computation, pages 75–83, New York, NY,
USA, 2002. ACM.

[Fre95] Jon W. Freeman. Improvements to Propositional Satisfiability Search Algorithms.
PhD thesis, University of Pennsylvania, Philadelphia, 1995. Available from:
citeseer.ist.psu.edu/freeman95improvement.html.

[GCE93] Matthew L. Ginsberg, James M. Crawford, and David W. Etherington. Dynamic
backtracking. Journal of AI Research, 1:25–46, 1993. Available from: citeseer.
ist.psu.edu/ginsberg96dynamic.html.

[Iwa04] Kazuo Iwama. Worst-case upper bounds for ksat (column: Algorithmics). Bulletin
of the EATCS, 82:61–71, 2004.

[JW90] Robert G. Jeroslow and Jinchang Wang. Solving propositional satisfiability prob-
lems. Ann. Math. Artif. Intell., 1:167–187, 1990.

[Kar05] Björn Karlsson. Beyond the C++ Standard Library: An Introduction to Boost.
Addison Wesley Professional, 2005.

[Knu76] Donald E. Knuth. Big omicron and big omega and big theta. SIGACT News,
8(2):18–24, 1976.

[Mag08] Magma computational algebra system [online]. May 2008. Available from: http:
//magma.maths.usyd.edu.au/magma/ [cited 31.05.2008].

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference (DAC’01), 2001. Available from: citeseer.ist.psu.edu/
moskewicz01chaff.html.

[MS95] David R. Musser and Atul Saini. The STL Tutorial and Reference Guide: C++
Programming with the Standard Template Library. Addison Wesley Longman Pub-
lishing Co., Inc., Redwood City, CA, USA, 1995.

[MS99] Joao P. Marques-Silva. The impact of branching heuristics in propositional satisfi-
ability algorithms. In EPIA ’99: Proceedings of the 9th Portuguese Conference on
Artificial Intelligence, pages 62–74, London, UK, 1999. Springer-Verlag.

[MSS96] Joao P. Marques-Silva and Karem A. Sakallah. GRASP - A New Search Algo-
rithm for Satisfiability. In Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, pages 220–227, 1996. Available from: citeseer.ist.psu.
edu/marques-silva96grasp.html.

96

Bibliography

[oCoST99] U.S. Department of Commerce and National Institute of Standards & Technology.
Data encryption standard (des). Federal Information Processing Standards Publica-
tion, 1999.

[Ouy98] Ming Ouyang. How good are branching rules in dpll? Discrete Applied Mathematics,
89(1-3):281–286, 1998.

[Pre96] D. Pretolani. Efficiency and stability of hypergraph sat algorithms. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 26:479–498, 1996.

[Rad04] H̊avard Raddum. Solving non-linear sparse equation systems over gf(2) using graphs.
University of Bergen, 2004.

[RS06] H̊avard Raddum and Igor Semaev. New technique for solving sparse equation sys-
tems. Cryptology ePrint Archive, 475, 2006. Available from: http://eprint.iacr.
org/.

[RS07] H̊avard Raddum and Igor Semaev. Solving mrhs linear equations. Extended abstract
in Proceeding of WCC’07, Versailles, France, pages 323–332, April 2007.

[Sem05] Igor Semaev. On solving sparse algebraic equations over finite fields. extended ab-
stract. Design, Codes and Cryptography, 2005. Available from: http://dx.doi.
org/10.1007/S10623-008-9182-x.

[Sem07] Igor Semaev. On solving sparse algebraic equations over finite fields ii. Cryptology
ePrint Archive, Report 2007/280, 2007. Available from: http://eprint.iacr.org.

[Sem08] Igor Semaev. Solving sparse boolean equations with circuit lattices. submitted, 2008.

[Sin06] Daniel Singer. Parallel Resolution of the Satisfiability Problem: A Survey, chap-
ter 5. Wiley Interscience, October 2006. Available from: http://lita.sciences.
univ-metz.fr/~singer/SatReview.pdf.

[SV05] Daniel Singer and Alain Vagner. Parallel resolution of the satisfiability problem (sat)
with openmp and mpi. In PPAM, pages 380–388, 2005.

[Wei94] Mark Allen Weiss. Data structures and algorithm analysis in C++. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994.

[YCC04] Bo-Yin Yang, Jiun-Ming Chen, and Nicolas Courtois. On asymptotic security es-
timates in xl and gröbner bases-related algebraic cryptanalysis. In ICICS, pages
401–413, 2004.

[ZM88] Ramin Zabih and David A. McAllester. A rearrangement search strategy for deter-
mining propositional satisfiability. In AAAI, pages 155–160, 1988.

[ZV00] A. Zakrevskii and I. Vasilkova. Reduction of large systems of logical equations. 4th
Int. Workshop on Boolean Problems, Freiberg University, pages 21–22, 2000.

97

