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Summary 

 

There is great variation in the inter-individual sensitivity to glucocorticoids. The 

immunophilin FK506 binding protein (FKBP51) confers short-loop negative feedback 

inhibition of the glucocorticoid signalling pathway. FKBP51 keeps the human glucocorticoid 

receptor (hGR)-protein complex in a state of low hormone binding affinity, and will thus 

inhibit the effect of glucocorticoids. We investigated the role of FKBP51 for the variation in 

sensitivity to glucocorticoids in patients with primary adrenal insufficiency (Addison’s 

disease). The specific aim of this study was to evaluate the association between the single 

nucleotide polymorphism (SNP) rs1360780 in the FKBP5 gene encoding FKBP51 and the 

individual glucocorticoid sensitivity in patients with Addison’s disease.  

 

Seventeen patients with Addison’s disease and 19 controls were genotyped using allelic 

discrimination assay. In morning blood samples, taken after 18 hours medication fast in the 

patients, glucocorticoid sensitivity in leukocytes was assessed in an in vitro cell proliferation 

assay; that is, stimulation with mitogenic lectin phytohemagglutinin (PHA), and incubation 

with various concentrations of dexamethasone. The FKBP5 expression and the FKBP51 

protein levels in leukocytes was determined before and after intravenous infusion of 100 mg 

hydrocortisone to the patients; using real-time PCR and Western blot analysis respectively. 

 

The cell proliferation assay points to increased glucocorticoid sensitivity in Addison’s patients 

associated with the rs1360780 variant T-allele (P=0.001). No such association was found for 

the controls. The FKBP5 expression, FKBP51 protein levels and ACTH and cortisol levels 

showed no genotype specific pattern in our study.  

 

Increased understanding of the inter-individual glucocorticoid sensitivity and the mechanisms 

behind may improve treatment with glucocorticoids and increase the knowledge about the 

pathogenesis of diseases related to glucocorticoid sensitivity, such as depression and 

metabolic syndrome. Further research is needed to establish the definitive role of FKBP51 

and its isoforms, and the the association rs1360780 with glucocorticoid sensitivity. 
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Abbreviations 
A 
A   Adenine 
ACTH  Adrenocortotropic hormone 
ADP Adenosine diphosphate 
AF Activation factor 
AIRE  Autoimmune regulator 
AP    Alternative promoters 
APS  Autoimmune polyendocrine 

syndrome 
ATP Adenosine triphosphate 
 
B 
BMI   Body mass index 
BSA  Bovine serum albumin  
BTM  Basal transcription machinery 
 
C 
C    Cytosine 
CBG  Corticosteroid binding globulin 
CNP  Copy number polymorphism 
Cpm  Counts per minute 
CRH  Corticotropin releasing hormone 
CV Coefficient of variation 
CyP 40   Cyclophilin 40 
CYP 450 Cytochrome P450 
 
E 
EDTA  Ethylene diamine tetraacetic acid 
 
D 
DM1   Diabetes mellitus type 1 
DM2  Diabetes mellitus type 2 
DST  Dexamethasone suppression test 
 
F 
FKBP   FK506-binding protein 
 
G 
G    Guanine  
GADPH  Glyceraldehyde-3-phosphate 

dehydrogenase 
GRE   glucocorticoid responsive element 
 
H 
HAT Histone acetyl transferase 
HBSS Hank’s balanced salt solution 
hGR   human glucocorticoid receptor 
HOP    Hsp 90/70 organizing protein 
HPA Hypothalamic-pituitary-adrenal  
11�-HSD Hydroxysteroid dehydrogenase 
Hsp   Heat shock proteins 
 
I 
IC50  Inhibitory concentration at 50% 

inhibition 

IDV  Integrated density value 
IKK   I�B kinase 
I�B   Inhibitor of �B 
IL   Interleukin 
  
L 
LD  Linkage disequilibrium 
 
M 
MAF  Minor allele frequency 
MAP   Mitogen-activated protein 
MKP    MAP kinase phosphatase 
 
N 
NFAT  Nuclear factor of activated T-cell 
NF�B   Nuclear factor �B 
NLS   Nuclear localisation signal 
NO  Nitric oxide 
NTC  No template control 
 
P 
PBMC   Peripheral blood mononuclear 

cells 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PGP P-glycoprotein 
PHA Phytohemagglutinin 
pI    Isoelectric point 
PP5  Protein phosphatase 5 
PPI-ase   Peptidylpropyl isomerase 
PTSD  Post-traumatic stress disorder 
PVDF  Polyvinylidene fluoride 
 

R 
Rb-1 Retinoblastoma-1 
Rpm Revolutions per minute 
rtPCR Real time PCR 
 
S 
SEGRA  Selective glucocorticoid-receptor 

agoist 
SNP   Single nucleotide polymorphism 
 
T 
T    Thymine 
THE  Tetrahydrocortisol 
THF  Tetrahydrocortisone 
TNF   Tumor necrosis factor 
TPR   Tetratricopeptide repeat 
TSS   Transcription start site 
 
U 
UTR  Untranslated region
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1 Introduction 

1.1 Inter-individual variation in drug response 

Individual variation after administration of a drug is seen both in the plasma concentration of 

the substance and in response to a treatment. The reason for this variance in drug 

bioavailability and response is thought to be a complex interplay between genetic and 

environmental factors [1]. 

  

1.1.1 Pharmacogenetics 

Pharmacogenetics is the study of the genetic variance that gives rise to the different response 

to drugs. Polymorphisms are variances in the DNA-sequence of a gene, where the less 

frequent allele is present at a minor allele frequency (MAF) of 1% or greater in a population 

[1]. Different types of sequence polymorphisms are associated with variation in phenotype, i.e 

single nucleotide polymorphisms (SNP) and insertion/deletion polymorphisms [1]. The effect 

of SNPs on protein function is dependent on the localization of the base substitution within a 

gene, or whether the base change leads to an amino acid substitution or not. A SNP in the 

coding region of a gene can lead to an altered structure of the protein or even a truncated 

protein if the substitution produces a stop codon, whereas a SNP in the regulatory regions of a 

gene (promoter, exon, intron, boundaries and other) can lead to an altered expression of the 

gene or changes in mRNA-stability [1, 2]. In addition, a SNP can be in linkage disequilibrium 

(LD) with an unknown allele/SNP. Here, non-random associations exist between 

Alleles/SNPs at different loci, and the frequency of different haplotypes are therefore not 

consistent with the haplotype frequency that would be expected from the allele frequency in 

the population [2]. Polymorphisms are thought to give rise to intra-individual drug response 

by creating diversity in the proteins involved in the effects of drugs, such as drug transporters, 

metabolizing enzymes, target receptors and different signal proteins.  

 

Recently, another source of population variance was discovered, that is, variation in number 

of gene copies [3]. In copy number polymorphisms (CNP), the number of copies of larger 

segments of the genome is a subject of variation [2]. It is not known to what extent such CNP 

explains inter-individual variation in pharmacokinetics and pharmacodynamics.  
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Because polymorphisms are not pathological by themselves, they are inherited from 

generations to generations. This creates an ethnic diversity, where the polymorphisms differ 

in their frequencies within human populations [1]. If the population is large, and mating 

occurs randomly of the polymorphism in question, the allele frequency, and therefore the 

relative proportion of genotypes will remain constant over time. This is called the Hardy-

Weinberg equilibrium [2]. If q is the frequency of allele A and p is the frequency of allele a, 

the Hardy-Weinberg law states that the frequency of the genotypes AA, Aa and aa is  

 

q2 + 2pq + p2  

 

If the allele frequency in the study population does not comply with the Hardy-Weinberg 

equilibrium, the study population may not be representative for the whole population. In terms 

of SNP-studies, this selection bias can cause an incorrect conclusion. 

 

1.1.2 Pharmacokinetics: Drug absorption, distribution, metabolism and elimination  

Orally administrated drugs are mainly absorbed in the small intestine, where the drug 

molecule must transverse the plasma membranes of the epithelial cell layer to reach the 

systemic circulation. The absorption depends on the chemical properties of the drug, such as 

molecular size and shape, degree of ionization, and lipid solubility, and whether the drug is 

absorbed by active or facilitated transport [1]. 

 

Drugs absorbed into the epithelical cells in the gastrointestinal tract are subjected to efflux by 

the p-glycoprotein (PGP). PGP belongs to the superfamily of ATP-binding cassette (ABC)-

transporters, and uses energy to function as an efflux pump, transporting drugs back to the 

intestine. This reduces the intracellular concentration and thereby the bioavailability of drugs. 

PGP is also present in the liver, pancreas, colon, brain, testis and adrenal glands [4]. Genetic 

variation in membrane transporters has in recent studies been associated with variation in 

clinical response [1]. 

 

Once absorbed into the epithelial cells in the gastrointestinal tract, the metabolism of drugs by 

different enzyme systems begin. This involves reactions that convert the hydrophobic drugs 

into hydrophilic derivates that more easily can be eliminated by conjugation and excretion 

into the bile or urine [1]. Drug metabolism is grouped into two phases: phase I and phase II 
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reactions. Phase I reactions involves addition of functional groups, such as -OH, -COOH, -

SH, -O- , or -NH2 to the drug molecule. This is done by several superfamilies of enzymes, 

among them the cytochrome P450 (CYP)-enzymes, which metabolize the vast majority of 

drugs. In most cases, the addition of these functional groups leads to an inactivation of the 

substance [1]. There are great variations in the CYP-enzyme levels between individuals, and 

this may give rise to inter-individual differences in the capacity of metabolism of drugs [5]. In 

phase II reactions, a conjugate of the phase I product is formed by the addition of a 

hydrophilic moiety, for example glutathione, glucuronic acid, sulphate, or an acetyl group. 

This reaction is performed by different enzyme systems, and leads to improved water 

solubility and increased molecular weight, which facilitates elimination.  

 

Age, nutrition, liver disease, environmental chemicals and other drugs may influence the 

concentration and activity of the drug metabolizing enzymes, and can explain some of the 

inter-individual variation seen in the response to drugs [6]. 

 

The enzymes involved in metabolism are found in most tissues, the highest levels however, 

are present in the liver and the small and large intestine [1]. Orally administered drugs are 

absorbed by the gut, and transported to the liver by the portal vein. The CYP-enzymes 

cooperate with PGP in the small intestine to reduce the bioavailability of these drugs [4]. This 

metabolic processing, together with the first passage trough the liver make up the “first pass 

effect” seen in the pharmacokinetics of several drugs. Here, the metabolic capacity for the 

drug may be large, and a great proportion of the drug is metabolised and excreted in the bile 

before it can enter the systemic circulation and exert its effect [1]. By parenteral 

administration of drugs, for example intravenous, subcutaneous or inhalational administration, 

the substances are absorbed directly into the systemic circulation, and the “first pass effect” is 

bypassed.  

 

Gut micro-organisms are also known to have a metabolic capability for drugs. This includes 

hydrolysis and reduction transformations in particular, and may influence to which extent the 

drug is absorbed and which metabolites is formed [7]. Many drugs undergo entero-hepatic 

circulation, in which the drug is glucuronidated by phase II reactions in the liver and excreted 

together with the bile in the small intestine. Here, the conjugated drug undergoes cleavage by 

bacterial glucuronidases, and can be reabsorbed back to the circulation to exert an effect again 
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if the compound is active [1]. Both the absorption and the entero-hepatic reabsorption is 

dependent on the individuals gut microbes, and the inter- and intra-individual variation in gut 

microbe flora can therefore result in different response to drugs.  

 

After absorption of the drug into the systemic circulation, the drug distributes into interstitial 

and intracellular fluids. This process is dependent on several factors, including regional blood 

flow and the physiochemical properties of the drug [1]. In the blood stream, many drugs are 

bound reversibly to plasma proteins. The degree of binding is dependent on the concentration 

of the drug, its affinity to the binding site and the number of binding sites available on the 

plasma protein. Only the free fractions of drug escape the blood vessels and reach the target 

tissue to exert its effect [1]. Albumin is an abundant non specific binding protein in the 

plasma, which function as a carrier for acidic drugs. In addition, �-acid glycoprotein function 

a carrier for basic drugs, and several hormone binding globulins bind and carry hormones, 

such as sex hormone binding globulin (SHBG), thyroxine binding globulin (TBG) and 

corticosteroid binding globulin (CBG). 

 

Drugs are eliminated from the body either unchanged or as converted metabolites. Whereas 

the main site of drug metabolisation is the gastrointestinal tract (liver and intestines), the main 

elimination organ is the kidney, where the drug and its metabolites are cleared from the blood 

stream and excreted into the urine. Metabolites excreted into the bile are eliminated in the 

feces, together with orally administered unabsorbed drugs, and drugs that are excreted directly 

into the intestinal tract and not reabsorbed. Kidney, liver and intestinal diseases can influence 

the elimination of drugs, and must be considered in pharmacological treatment [1]. 

   

1.1.3 Drug-drug interactions 

The effect of one drug can be changed by the presence of another drug, both by interfering 

with the pharmacokinetics and the pharmacodynamics of the drug [8]. Pharmacokinetic 

interactions are those concerning the absorption, distribution, metabolism and elimination of a 

drug. Drug-drug interactions affecting the metabolism of a drug are thought to be the most 

clinically relevant. If two co-administered drugs are metabolized by the same enzyme, for 

example Tacrolimus (FK506) and glucocorticoids (see Table 2), the competition for the active 

site can affect the rate of metabolism and thereby increase the plasma concentration of one or 

both drugs. In addition, some drugs induce the expression of certain enzymes and transport 
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proteins (PGP) and consequently increase the metabolism and efflux of the substrates, leading 

to lower plasma levels. Other substances inhibit the action of one or more enzymes 

independent of being a substrate of the enzyme. This will decrease the metabolism of a 

substrate, and further result in elevated plasma levels. The transport pump PGP may also be 

inhibited by several drugs, and this will result in a higher concentration of the substrates of 

PGP. 

 

Pharmacodynamic interactions involve drugs acting on the same receptors or physiological 

systems, and may induce additive, synergistic or antagonistic effects of a drug. For example, 

Tacrolimus (FK506) is known to potentiate the human glucocorticoid receptor (hGR) 

response to glucocorticoids. This could partly be due to the pharmacokinetic interaction 

mentioned above, but also a pharmacodynamic mechanism involving FK506 binding protein 

(FKBP51). FKBP51 renders the hGR complex in a basal inactive state, with low hormone 

binding affinity and hGR transactivation capacity. It is thought that FK506 increases hormone 

binding affinity and thus hGR transactivation capacity through displacement of FKBP51 and 

subsequent recruitment of Protein phosphatase 5 (PP5), an immunophilin known to enhance 

hGR hormone binding affinity [9].   

 

Interactions may occur in some individuals, but not in others, and the interactions are 

therefore difficult to predict. Susceptible patients include those using several drugs, patients 

with renal and hepatic disease, and patients in intensive care or in chronic treatment. Drug-

drug interactions are most clinically relevant when drugs with narrow therapeutic range are 

administered [8].  
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1.2 Glucocorticoids and glucocorticoid treatment 

1.2.1 Glucocorticoids 

Glucocorticoids are produced and secreted from the adrenal glands [10]. The adrenal glands 

are small, pyramidal organs located on the top of each kidney, which consist of an outer 

cortex and an inner medulla. The inner medulla produces catecholamines i.e. adrenalin and 

noradrenalin, and releases the hormones upon stimulation from sympathetic nerves. The outer 

cortex is divided into three layers, each region producing different hormones of steroid nature. 

The outermost region, zona glomerulosa, produces mineralcorticoids where aldosterone is the 

principal hormone. Glucocorticoids, of which the most important is cortisol, are produced in 

the middle region of the adrenal cortex, zona fasiculata. The innermost region, zona 

reticularis, produces androgen precursor steroids. 

 

The level of cortisol in the blood is regulated by the hypothalamus, the pituitary and the 

adrenal glands, collectively referred as the hypothalamic-pituitary-adrenal (HPA) axis [1]. 

The cortisol secretion is dependent on the release of adrenocorticotropic hormone (ACTH) 

from the pituitary, which is regulated by corticotropin releasing-hormone (CRH) from the 

hypothalamus. Circulating cortisol in turn acts as a negative suppressor of the CRH- and 

ACTH-release in the hypothalamus and pituitary, respectively. The level of cortisol follows a 

diurnal rhythm, maintained by higher neuronal centres, with a peak level in the morning 

around 08.00. In addition, stress can lead to marked increase in the plasma concentration of 

cortisol and overrule the negative feedback mechanism. 

 

Subsequently with the circadian rhythm of the cortisol secretion, the sensitivity to 

glucocorticoids also displays a diurnal variation. In the general population, the glucocorticoid 

sensitivity is increased in the morning hours compared with that in the evening [11].  In 

addition, the steroid sensitivity shows great inter-individual variation in healthy subjects, 

measured by lymphocyte steroid sensitivity, suggesting that up to 30% of the healthy 

population would fail to respond to steroid therapy [12].  

 

The effects of cortisol are numerous and affect a wide variety of cells and organ systems. The 

physiological actions of cortisol include adjustment in the metabolism of carbohydrate, 

protein and fat, which result in increased levels of glucose and fatty acids in the circulation, 
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and maintenance of normal functions in the immune system, cardiovascular system, the 

kidney, skeletal muscle, the endocrine system and the nervous system. In addition, cortisol 

enables the organism to adapt in environmental changes and to resist stressful conditions, 

such as starvation, trauma, infections and noxious stimuli [1]. 

 

In supraphysiological concentrations, as during chronic therapy, the effects of glucocorticoids 

become more evident. Glucocorticoids have immunosuppressive and anti-inflammatory 

actions, which are exploited in the treatment of a wide range of conditions (see Table 3). Due 

to the wide range of target tissues and the non-specific nature of glucocorticoids, they also 

cause numerous side effects. These effects are further described in section 1.2.4. 

 

Synthetic glucocorticoids, such as prednisolone, metyl-prednisolone, betamethasone and 

dexamethasone, have enhanced potencies, longer duration and a greater separation of 

mineralcorticoid and glucocorticoid action, which removes the side effects associated with 

mineralcorticoid action. The clinical potencies of the various glucocorticoids is dependent on 

the rate of absorption, the concentration in the target tissues, the affinity for hGR, and the rate 

of metabolism and clearance [13]. Table 1 lists some of the different 

glucocorticoids/corticoisteroids available, and their relative potencies and duration of action.  

 

Table 1. Relative potencies and duration of action in different glucocorticoids available. Modified from [1] 

Compound Antiinflammatory 
potency 

Na+retaining potency 
(mineralcortidoid effect) Duration of action 

Cortisol/hydrocortisone 1 1 Short 
Cortisone 0.8 0.8 Short 
Fludrocortisone 10 125 Intermediate 
Prednisone 4 0.8 Intermediate 
Prednisolone 4 0.8 Intermediate 
6�-metylprednisolone 5 0.5 Intermediate 
Triamcinolone 5 0 Intermediate 
Betamethasone 25 0 Long 
Dexamethasone 25 0 Long 
Short acting, t1/2 = 8-12h; Intermediate, t1/2 = 12-36h; Long acting, t1/2 = 36-72h 

 

In addition, several glucocorticoids are developed for localized treatment, for example topical, 

pulmonary and ocular treatment. The advantage of local treatment is that the glucocorticoids 

are delivered directly to and exert its actions at the side of inflammation, whereas the systemic 

bioavailability is low. Thus, the side effects associated with systemic accumulation of 

glucocorticoids are avoided. 
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Subsequently with its role in treatment, glucocorticoids and dysregulation of the HPA-axis 

has been associated with the pathogenesis of several diseases, including depression, cognitive 

disorders (Alzheimer’s disease), cancer and metabolic syndrome [14-16]. Both and excess of 

cortisol and nonsuppression of cortisol production in the dexamethasone suppression test 

(DST) in depressed individuals have been reported [14, 17]. Normalization of the HPA-axis is 

also suggested to be the part of the mechanisms of action in antidepressant treatment [18]. In 

addition, Mifepristone (RU-486), an hGR antagonist used in the treatment of Cushing’ 

syndrome may be used in the treatment of neuropsychiatric disorders, such as depression and 

Alzheimer’s disease [17]. In genetically predisposed individuals, a study/studies suggest that 

certain environmental triggers could lead to disturbance in the HPA-axis, followed by visceral 

obesity, insulin resistance and diabetes mellitus type 2 (DM2), typical features of metabolic 

syndrome [16]. 

 

1.2.2 The pharmacokinetics of glucocorticoids 

Orally administered glucocorticoids are well absorbed from the gastrointestinal tract, and are 

classified as class II drugs (low solubility, high permeability) in the biopharmaceutics drug 

classification system (BCS) [19, 20]. Glucocorticoids are also systematically absorbed from 

sites of local administration, such as the eye, skin or the lungs. This systemic absorption may 

lead to systemic effects with prolonged administration, and if occlusive dressings are used or 

large areas of skin are covered in the case of topical administration [1]. Cortisol binds to 

CBG, which has a high affinity but low capacity to bind the hormones and to albumin, an 

abundant, non-specific plasma protein which has high binding capacity, but low affinity for 

the glucocorticoids. Syntetic glucocorticoids, such as prednisolone also binds to CBG, but 

others, such as metylprednisolone and dexamethasone bind albumin only [19]. Only free 

unbound glucocorticoids are biologically active [1, 21]. 

 

In order to become biologically active, glucocorticoids with an 11-keto substituent, such as 

cortisone and prednisone must be enzymatically reduced to an 11�-hydroxy derivate, cortisol 

and prednisolone, respectively. 11�- hydroxysteroid dehydrogenase type 1 (11�-HSD1) is 

responsible for this transformation, and is widely expressed in the body. The highest levels 

are found in the liver, but 11�-HSD1 is also present in lung, adipose tissue, circulatory 

system, ovary and the central nervous system (CNS) [22]. The opposite reaction, the 
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conversion from cortisol to cortisone is dependent on 11�- hydroxysteroid dehydrogenase 

type 2 (11�-HSD2). 11�-HSD2 is mainly expressed in the kidney, but also in other 

mineralcorticoid target tissues, including colon, salivary glands, and placenta, where its 

purpose is to prevent the cortisol from binding the mineralcorticoid receptor [19]. As cortisol 

binds to the mineralocorticoid receptor with similar affinity as aldosterone, the expression of 

11�-HSD2 and inactivation of cortisol (and prednisolone) secure the specific action of 

aldosterone in mineralocorticoid target tissues.  

 

Glucocorticoid metabolism is a two-step process, where hydrogen or oxygen atoms are added 

in the phase I reaction, and glucuronic acid or sulphate are added in the phase II conjugation 

reaction [19]. The result is a hydrophilic inactive metabolite, which can be easily eliminated 

by renal or biliary excretion. The main pathway of cortisol (chemical structure displayed in 

Figure 1) and cortisone metabolism is the reduction of the C4-C5 double bond to form 

dihydrocortisol and dihydrocortisone respectively. This is followed by a hydroxylation of the 

3-oxo group to form tetrahydrocortisol (THF) from cortisol, and tetrahydrocortisone (THE) 

from cortisone. THE and THF are rapidly conjugated before they are sercreted in the urine. 

Furthermore, THE and THF can also be reduced at the 20-oxo group, to yield cortols and 

cortolones, or be cleaved to the C19-steroids 11-hydroxy and 11-oxo androsterone or 

etiocholanalone. In the urine, approximately half the secreted cortisol appears as THF and 

THE, 25% appears as cortols and cortolones, 10% as C19-steroids and 10% as cortolic and 

cortolonic acid. The remaining metabolites are free, un-conjugated steroids and metabolites 

from other pathways [23]. 

 

  

Figure 1. Chemical structure of cortisol/hydrocortisone [24] 

 

Glucocorticoids can also be metabolized by CYP 3A4. Inducers and inhibitors of this enzyme 

will therefore decrease and increase the plasma concentration of administered glucocorticoids. 

Table 2 lists some of the substrates, inducers and inhibitors of CYP3A4. 
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Table 2. Some drug substrates, inducers and inhibitors of CYP3A4, modified from [1] 

P450 isoform Substrate Inducer Inhibitor 
CYP3A4 Amiodarone Carbamazepine Erythromycin 
 Terfenadine Phenytoin Itraconazole 
 Ciclosporin Barbiturates Cimetidine 
 Oral contraceptives Dexamethasone Ketoconacole 
 Tacrolimus Primidone Fluconazole 
 R-warfarin Rifampicin Ritonavir 
  St John’s wort  
 

1.2.3 Replacement therapy 

Glucocorticoids are used in the treatment of adrenal insufficiency, where the adrenal gland is 

unable to produce adequate amounts of the hormone cortisol [25]. There are two types of 

adrenal insufficiency, i.e. primary adrenal insufficiency, also called Addison’s disease and 

secondary adrenal insufficiency [26]. Addison’s disease has a prevalence of 100-140 per 

million [27]. 

 

In primary adrenal insufficiency, autoimmune inflammation of the adrenal glands 

(autoimmune adrenalitis) is the cause of about 90-95% of the cases in industrialised countries, 

with more than 80% of the patients having adrenal cortex autoantibodies or antibodies against 

21-hydroxylase [26]. The autoimmune adrenalitis can arise isolated or as a component of 

autoimmune polyendocrine syndrome (APS) type 1 or 2 [28]. APS-1 is a recessive monogenic 

disease arising from a mutation in the autoimmune regulator (AIRE) gene, which in addition 

to Addison’s disease characteristically gives rise to autoimmune hypoparathyroidism and 

chronic mucocutaneous candidiasis. APS-2 is co-appearance of Addison’s disease in a cluster 

of organ-specific autoimmune diseases, most typically diabetes mellitus type 1 and 

hypothyroidism. APS2 and isolated Addison’s disease are caused by a combination of 

polygenic risk factors and unknown environmental factors. Primary adrenal insufficiency can 

also be caused by other factors, for example infections such as tuberculosis and human 

immunodeficiency virus (HIV), single gene mutations, or defects in the steroid synthesis. 

 

Secondary adrenal insufficiency is most commonly caused by chronic therapeutic 

glucocorticoid administration, where exogenous glucocorticoids induce atrophy of pituitary 

corticotrophic cells and therefore disrupt the ACTH production. However, this type of adrenal 

insufficiency is most commonly temporary, and disappears a while after the treatment is 
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discontinued. Other causes of secondary adrenal insufficiency can be tumours in the pituitary 

or in the pituitary region, and isolated ACTH deficiency [26].   

 

The symptoms of adrenal insufficiency are rather non-specific, with loss of energy, reduced 

muscle strength and increased irritability. If the adrenal insufficiency is persistent, it will lead 

to weight loss, nausea and anorexia or failure to thrive in children [26] 

Hyperpigmentation is a specific finding of primary adrenal insufficiency, due to elevation of 

ACTH, which stimulates the melanocytes. The skin and mucous membranes, especially in 

areas exposed to sun or friction becomes darker, and typical areas are the hands and mucus 

membrane in the mouth. 

 

Acute adrenal insufficiency is a life threatening condition characterized by dehydration, 

hypotension and gastrointestinal symptoms such as nausea, vomiting and abdominal pain. The 

condition can sometimes follow after rapid withdrawal of glucocorticoids used in high doses 

or from prolonged periods. The immediate treatment of these patients includes intravenous 

injection of sodium chloride solution, supplemented with glucose and glucocorticoids. 

 

Chronic adrenal insufficiency is treated with supply of cortisone acetate or hydrocortisone 

tablets and with hydrocortisone for intramuscular or intravenous administration during 

intercurrent illnesses. Hydrocortisone is chemically identical to cortisol, but is named 

hydrocortisone in order to distinguish the endogenous hormone from the substance used in 

pharmacological treatment [19]. The glucocorticoid replacement is most often given in two or 

three daily doses, with a half or two-thirds of the dose in the morning to mimic the 

physiologic pattern of cortisol secretion. Cortisone acetate requires conversion to cortisol by 

11�-HSD-1 to become active. The activity of 11�-HSD-1 varies between individuals and 

cortisone acetate may result in unpredictable effect. However, this is not a common problem 

when cortisone acetate is used clinically [28]. Both hydrocortisone and cortisone acetate gives 

high peak concentrations shortly after administration, and the concentration declines rapidly 

to only just measurable concentrations after only a few hours. Long-acting glucocorticoids, 

such as prednisolone and dexamethasone can also be used for replacement. However, they are 

not recommended due to unfavourable high nigh-time glucocorticoid activity, and adverse 

effects such as insomnia and weight gain [26, 28]. 
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Mineralocorticoid deficiency occurs due to lack of aldosterone production in the zona 

glomerulosa and is only present in primary adrenal insufficiency. The lack of aldosterone 

leads to dehydration and hypovolemia, resulting in low blood pressure, postural hypotension 

and sometimes prerenal failure. 9�-fludrocortisone is a synthetic mineralcorticoid that is used 

for mineralocorticoid replacement in primary adrenal insufficiency. The need for 

mineralcorticoid is related to intake and loss of electrolytes, and is usually given in doses of 

0.05-0.2 mg once daily. 

 

1.2.4 Pharmacological treatment 

Glucocorticoids act anti-inflammatory and immunsuppressive by inhibiting leukocyte 

functions [1]. The number of lymphocytes is reduced and the immune response is altered in 

response to glucocorticoids. Thus, glucocorticoids can prevent or suppress inflammation in 

response to multiple provoking stimuli, such as radiant, mechanical, chemical, infectious and 

immunological events. In addition, glucocorticoids can be used to treat diseases caused by 

undesirable immune reactions, for example auto-immune diseases and transplant rejections. 

This makes glucocorticoids an important and frequently used class of drugs, despite the fact 

that glucocorticoids do not address the underlying cause of disease. Table 3 list some of the 

indications, where glucocorticoids are utilized. 

 

Table 3. Indications for glucocorticoid treatment [1] 

Systemic treatment Local treatment available 
Organ transplantation Allergic diseases 
Gastrointestinal diseases Bronchial asthma and other pulmonary diseases 
Renal diseases Ocular diseases 
Infectious diseases Skin diseases 
Hepatic diseases Rheumatic disorders 
Malignancies  
Cerebral edema  
 

The use of glucocorticoids is limited by the wide range of side effects associated with 

prolonged pharmacological treatment [13]. Side effects can both occur from continuous use of 

supraphysiological doses of glucocorticoids, and from withdrawal of steroid therapy [1]. 

Rapid withdrawal of glucocorticoids after prolonged therapy, where the HPA-axis has been 

suppressed, can lead to acute adrenal insufficiency. A flare up of the initial condition is also a 

regular problem associated with glucocorticoid withdrawal.  
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The side effects correlated to  therapeutic use of glucocorticoids affect several tissues and 

organ systems [13]. The most severe effects are seen after systemic treatment; however, side 

effects can also occur after local treatment.  

 

Prolonged use of glucocorticoids affects the skeleton by decreasing the bone density, leading 

to an increased risk of osteoporosis. In children, growth retardation and delayed puberty has 

been seen due to long-lasting glucocorticoid treatment. Muscle atrophy and myopathy, 

leading to generalized weakness has also been reported as a side effect of glucocorticoids. 

This can be prevented by physical exercise.  

 

Glucocorticoids also affect the central nervous system, provoking psychiatric symptoms such 

as mood swings, euphoria, depression and suicide attempts. Use of glucocorticoids also 

increases the risk of atherosclerosis, coronary artery disease and cardiovascular morbidity and 

mortality, caused by hypertension, dyslipidemia and reduced fibrinolytic potential.  

 

Metabolism and the endocrine system are disturbed by glucocorticoids. Altered glucose 

metabolism can lead to hyperglycemia and induce DM2, or worsen the glycemic control in 

existing diabetes. Furthermore, supraphysiological concentrations of glucocorticoids both 

result in decreased �-cell insulin production and insulin resistance. Effects on the metabolism 

and endocrine system lead to the typical Cushinoid characteristics, with moon face, buffalo 

hump and central obesity. In addition, side effects in the gastrointestinal systems are seen, 

such as peptic ulcers, upper gastrointestinal bleeding and pancreatitis. 

 

The effects on the immune system can also result in adverse effects. Use of glucocorticoids 

increase the risk of complicated infections, and the therapy can also mask infection symptoms 

which in turn prevents clinical recognition. 

 

In both systemic and topical treatment, glucocorticoids can lead to skin atrophy, where the 

skin becomes thin and fragile. In the eye, therapeutic use of glucocorticoids can lead to the 

development of cataract and glaucoma, and eye infection especially after topical treatment. In 

addition, glucocorticoids can lead to disturbed wound healing in skin, and oral candidiasis 

after inhalation therapy.  
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1.2.5 New developments  

The broad spectrum of side effects seen in the treatment with glucocorticoids demonstrates 

the need for more optimized anti-inflammatory and immunsuppresive treatment. Targeted 

delivery of conventional glucocorticoids and the development of new drugs, such as 

nitrosteroids and selective glucocorticoid-receptor agonists (SEGRA) are different approaches 

to optimize glucocorticoid therapy [29].  

 

Targeted delivery of conventional glucocorticoids utilizes liposomes as a carrier system for 

glucocorticoids. Liposomes are small vesicles about 100 nm in size, which will accumulate at 

the site of inflammation. Glucocorticoids encapsulated into liposomes can therefore give a 

high local concentration of glucocorticoids directly to their local site of action. Because the 

glucocorticoid is encapsulated, it is assumed that the occurrence of side effects will be 

reduced. This targeted delivery of glucocorticoids has shown promising results in 

experimental animal models of arthritis in rats [30], but is not tried in humans. 

 

The nitrosteroids are new agents composed of conventional glucocorticoids linked to nitric 

oxide (NO) via an aliphatic or aromatic molecule. NO is slowly released from the 

glucocorticoid and acts anti-inflammatory in addition to the glucocorticoid. Due to synergy, 

the anti-inflammatory effect in animal models is up to tenfold compared to the glucocorticoid 

alone. Therefore, the total dose of glucocorticoids can be reduced, with subsequent reduction 

in the adverse reactions. The nitrosteroids are not jet tried on humans. 

 

Another group of new agents is the selective GR agonists (SEGRA). It is thought that the anti-

inflammatory effects of glucocorticoids are primarily mediated by a transrepression 

mechanism rather than a transactivation mechanism via DNA-binding (see section 1.3…) [13] 

SEGRA utilizes this by activating predominantly the desired transrepression mechanism. 

Thus, adverse effects such as diabetes mellitus and glaucoma, which are mediated through the 

transactivation mechanism, are avoided. At present, numerous SEGRA are being investigated 

by cellular in vitro test for hGR-mediated transactivation and repression, followed by various 

animal models to discover alterations in side-effects [31]. 
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1.3 hGR and intra-cellular glucocorticoid response 

1.3.1 Characterisation of the human glucocorticoid receptor (hGR)  

Glucocorticoids exert their effect mainly trough the human glucocorticoid receptor (hGR), 

which unbound to ligand is located in the cytosol. Upon binding of a glucocorticoid receptor 

agonist, the hGR translocates into the nucleus, and acts as a transcription factor regulating 

gene expression (section 1.3.3). 

   

There is one known gene for the hGR; it consists of  10 exons, spanning a 110kb genomic 

region, and it is located at chromosome 5q31-32 [32] [33]. Exon 1 exists in different isoforms 

(1A, 1B and 1C) [34], and corresponds to the 5’ untranslated region of the protein. Exon 2 

represents the N-terminus of the receptor, which include the activation factor 1 (AF1) 

important in transcriptional activation of target genes. Furthermore, exon 3 and 4 separately 

encode two zink finger motifs involved in binding to the glucocorticoid responsive elements 

(GRE) in the promoters of glucocorticoid responsive genes. The ligand-binding domain and 

the ligand-dependent AF2 transactivation domain, together with the 3’ untranslated region are 

encoded by a total of 5 exons (exons 5, 6, 7, 8, 9� or 9�) [32, 35]. The structural organization 

of the hGR�-protein is shown in Figure 2. 

 

 

Figure 2. Structural organization of the hGR� protein. AF, activation factor; BTM, Basal transcription 

machinery; NLS, nuclear localization signal; hsp, heat shock proteins [36] 

 

The hGR-gene is subject to alternative splicing and promoter usage [37], giving rise to 

multiple mRNA transcripts. Three alternative promoters (promoter 1A, 1B and 1C) each 

control a unique isotype of exon 1, which despite the missing protein information play an 

important role in controlling cell-type specific hGR gene expression [37]. Alternative splicing 
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has been seen in exon 9, resulting in two mRNAs encoding hGR� and hGR� respectively 

[32]. The hGR�- isoform binds glucocorticoid ligand and alter transcription of target genes as 

described in section 1.3.3, whereas hGR� is thought to work as a dominant inhibitor of 

hGR�’s effect, by making an hGR�-� hetero complex that is not trancriptionally active. This 

has led to the hypothesis that the cellular ratio of hGR� to hGR� may determine the cell’s 

sensitivity to glucocorticoids [38]. However, recent work indicates that hGR� expressed in the 

absence of hGR� can regulate gene expression. Binding of hGR� to the glucocorticoid 

antagonist Mifepristone (RU-486) reduces this gene expression capacity [39].  

 

At the translation level, leaky ribosomal scanning [40] is responsible for the formation of two 

different isoforms of hGR: hGR-A and hGR-B. These isoforms exhibit similar distribution 

within the cell and both induce transactivation via ligand. The transrepression activity are 

similar for the two isoforms, but hGR-B is nearly twice as effective in transactivation 

compared to hGR-A [37]. In addition, post translational modifications generate further 

complexity among the different isoforms of hGR. Studies indicate that these modifications 

have profound effect on the receptor’s transcriptional activity and gene specificity, receptor 

turn over and stability, and the sub-cellular localization of the receptor [37].   

 

In the gene coding for hGR, several polymorphisms has been described [35, 41]. For example, 

the N363S-polymorphism (rs6195), where the asparagines amino acid is substituted with 

serine at exon 2, has been shown to correlate with increased sensitivity to glucocorticoids and 

thus more pronounced glucocorticoid effects [41, 42]. This involves enhanced  insulin 

response to dexamethasone (hypersensitive insulin secretion), more body fat and a tendency 

to decreased bone mineral density [43]. Obesity and hypersensitive insulin secretion is, 

together with increased cholesterol levels, hypertension and insulin resistance typical 

characteristics of metabolic syndrome. Other studies however, do not find an association 

between the polymorphism and metabolic syndrome [44] or obesity [45]. In addition, the 

BclI-polymorphism, which is a restriction fragment length polymorphism (RFLP) located at 

intron 2 in the gene for hGR, has also been related to metabolic syndrome  However, 

contrasting data exist, and it is unclear whether the polymorphism or other factors such as age 

are responsible for the metabolic differences and body composition among BclI carriers [41, 

46].   
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ER22/23EK (rs6189 and rs6190) is another polymorphism in hGR, possible involved in 

glucocorticoid resistance [42]. The ER22/23EK polymorphism consists of two linked single-

nucleotide mutations in exon 2 of the hGR. The second mutation causes an amino acid change 

from arginine to lysine, while the first mutation does not induce changes in the amino acid 

sequence. In relation to glucocorticoid sensitivity, this polymorphism seems to be associated 

with relative glucocorticoid resistence and a healthier metabolic profile, as indicated by the 

lower cholesterol levels and increased insulin sensitivity. Furthermore, this polymorphism is 

also associated with other favourable factors, such as a beneficial body composition at young 

age, and a lower risk of dementia and increased survival in the elderly [41] The ER22/23EK 

polymorphism have also been related to a faster clinical response to antidepressant treatment 

[47]. The relative glucocorticoid resistance may be caused by an increased expression of the 

translational isoform hGR-A, which is less transcriptionally active than the hGR-B [37, 48]  

 

Furthermore, a ATTTA to GTTTA-SNP in the 3’end of exon 9� has been described [49].  

This corresponds to a part of the 3’ untranslated region (3’UTR) of the GR� mRNA splice 

variant, and the polymorphism results in increased stability of the GR� mRNA and enhanced 

GR� protein expression. Increased levels of GR� may result in greater inhibition of GR� 

transcriptional activity, and therefore cause glucocorticoid insensitivity. The study of Syed et 

al. shows that this polymorphism is associated with reduced central adiposity in women and a 

more favourable lipid profile in men, and suggests that the polymorphism reduces the adverse 

effect of glucocorticoids on fat distribution and lipid metabolism.  

 

Mutations leading to cortisol resistance have also been described for hGR [35] These 

mutations are rare, but are leading to more severe cases of glucocorticoid resistance, where 

the HPA-axis compensate for the resistance by producing more glucocorticoids. This result in 

condition ranging from completely asymptomatic to severe hyperandgenism in females, 

fatigue and/or mineralcorticoid excess leading to hypertension and hypokalemic alkalosis [41, 

50].  
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1.3.2 hGR•hsp90 heterocomplex assembly 

When hGR is unliganded it resides in the cytosol associated with several other proteins, 

forming a multi-protein complex [51]. The function of these proteins is to stabilize the protein 

in an inactive, ligand-activable state, protect the receptor against degradation and to facilitate 

movement of the complex to the nucleus. 

 

The active hGR protein complex is formed in a dynamic process, involving several ATP- and 

K+ dependent steps [52], see Figure 3.  

 

 

Figure 3. hGR•hsp90 heterocomplex assembly. GR, glucocorticoid receptor; hsp, heat shock proteins; 

Hop, hsp organizing protein; IMM, immunophilin [52] 

 

First, hGR, hsp40 and hsp70 in ATP-bound state assemble in a complex, and thus preparing 

the receptor to be activated by an hsp90 homodimer. The heat shock protein 90 is a ubiquitous 

protein chaperone, regulating over 100 proteins involved in cellular signalling [51]. The 

bound ATP is hydrolysed to ADP and hsp90 binds to the hGR in its ligand binding domain. In 

a rate limiting step, ADP on the hsp90 is exchanged for ATP. This exchange induces a 

conformational change in hsp90, which in turn provoke a conformal change in the hGR, thus 

allowing glucocorticoid receptor ligand to bind the hGR. Furthermore, p23 is bound to hsp90, 

which stabilize the glucocorticoid-hGR complex.  
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Prior to ATP-binding, hsp organizing protein (hop) is attached to the tetratricopeptide repeat 

(TPR)-acceptor site on the hsp90. However, hop has a higher affinity for ADP-dependent 

conformation of the hsp90, and will leave the complex when the steroid cleft is opened. This 

liberates the TPR-acceptor site to other proteins with TPR-domains, for example the 

immunophilins. Immunophillins are intracellular proteins that bind immunosuppressive drugs, 

such as cyclosporin, FK506 and rapamycin. Binding of different immunophilins is thought to 

give diversity in the response mediated by the receptor, albeit the distinct functions of the 

immunophilins are largely unknown.  

 

The peptidylpropyl isomerase (PPI) domain of the immunophilin is thought to be responsible 

for the activity by its capacity to isomerize propyl peptide bonds. Binding of an immunophilin 

to the hsp90 in the protein complex can affect the receptor’s ability to bind ligand. In addition, 

immunuphilins have a variable ability to bind to the motor protein dynein via the PPI-ase 

domain, and thus inducing transport to the nucleus and modify transcription of target genes, 

see Figure 4. FKBP52 and cyP-40 are shown to bind dynein, whereas FKBP51 does not bind, 

or binds it very poorly. Although the immunophillins bind to the motor protein dynein by the 

PPI-ase domain, it has been shown that the movement of the protein complex is not dependent 

on the activity of the PPI-ase [51]. 

 

Figure 4. The hGR•hsp90 heterocomplex interacting with the motor protein dynein and microtubule. GR, 

glucocorticoid receptor, hsp, heat shock proteins; IMM, immunophilin; IC and HC are dynein subunits 

[51] 
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1.3.3 Mechanisms of glucocorticoid action 

The therapeutic effects of glucocorticoids are thought to be mediated by several mechanisms 

that involves both genomic and non-genomic pathways [53]. The genomic effects of 

glucocorticoids are characterized by a slow onset and a prolonged response, because the 

mRNA transcription and translation is a time-consuming process. Thus, protein levels can be 

affected after about 30 minutes, and hours or even days are needed to give effects on the 

tissue or organ level. When it comes to the non-genomic effects however, the response has 

been detected in less than 15 minutes (Czock, 2005). 

 

The classical genomic glucocorticoid signal pathway involves the cytosolic hGR. Here, 

binding of a glucocorticoid receptor ligand induces several conformational changes described 

in section 1.3.2, among them exposal of the nuclear localization signal (NLS). The hGR 

protein complex is transported along microtubules by the motor protein dynein, and is 

translocated into the nucleus via importin-� and –� in the nuclear pore [51]. In the nucleus, 

the chaperones dissociate from the hGR and the hGR homodimerize in order to bind GRE on 

target DNA. DNA-binding leads to recruitment of several coactivators, which stabilize the 

hGR-DNA interaction, and initiate assembly of the basal transcription machinery (BTM). In 

addition, co-activators have histone acetyltransferase (HAT) activity, which opens the DNA-

structure for transcription [54]. This mechanism is called transactivation and leads to 

transcription of anti-inflammatory proteins and regulatory proteins important in metabolism 

[36, 53].  

 

The hGR can also bind directly to negative GRE’s (nGRE) on DNA, inhibiting transcription 

of inflammatory genes, for example IL-1 and IL-2. The precise role of nGRE’s in 

glucocorticoid effect is however still unclear [53]. Very few glucocorticoid-regulated genes 

are reported to utilize nGRE, and nGREs may therefore be of minor importance [36]. 

 

hGR can influence the transcriptional activity via other transcription factors, both by direct 

protein-protein binding, and indirectly by modulating the signal pathways involved. The 

nuclear factor kappa B (NF�B) and activator protein 1 (AP-1) are transcription factors that 

both are repressed by hGR. NF�B and AP-1 promote expression of several genes involved in 

the inflammation and in diseases orginating from chronic activation of the immune system, 

such as asthma, atherosclerosis, inflammatory bowel disease, and autoimmune diseases 
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including multiple sclerosis and reumatoid arthritis. This involves the expression of several 

cytokines, chemokines, enzymes and adhesion molecules [55]. 

 

Inactive NF�B is localized in the cytoplasm, where the attached protein inhibitor of �B (I�B)-

� masks NF�B’s NLS, and thus prevents it from translocating into the nucleus and binding to 

DNA [36, 56]. A wide variety of stimuli can activate NF�B, including proinflammatory 

cytokines, for example IL-1 and tumor necrosis factor (TNF), by-products from bacterial, 

fungal and viral infections and some types of radiation (UV, �). Stimulation from these 

inducers leads to activation of I�B kinase (IKK), which phosphorylates I�B. Moreover, 

phosphorylated I�B is ubiquinated by ubiquitin ligase, and this targets the I�B for 

degradation. Without the I�B attached, NF�B is free to translocate into the nucleus and 

promote transcription of the inflammatory genes. 

  

Repression of NF�B inhibits immune responses and several mechanisms are involved [36]. 

First, in the cytoplasm hGR can enhance the activity of IKK; thereby reducing the activity of 

NF�B. Second, hGR is known to interfere with BTM, interrupting the transcription elongation 

of NF�B regulated genes. Competition for mutual cofactors is also thought to be a mechanism 

for hGR’s repression of NF�B. Furthermore, hGR can induce histone modifications, making 

DNA to compact for BTM to bind, and also interfere with proteins associated with NF�B and 

subsequently prevent NF�B from binding to DNA. In some cell lines, hGR also promotes the 

production of the NF�B inhibitor I�B, further repressing the activity of NF�B. 

 

The AP-1 complex is activated following a signal cascade, induced by proinflammatory 

cytokines. This leads to upregulation of the expression of many cytokine genes and tissue 

destructive enzymes such as collagenase [36]. It is thought that some of the same mechanisms 

which repress NF�B are involved in repression of AP-1, including direct protein-protein 

interaction and prevention of binding of AP-1 to DNA. The hGR also induces the 

transcription of MAP kinase phosphatase 1 (MKP-1), which suppresses the signal cascade 

needed to activate AP-1, and in addition destabilizes the mRNA of proinflammatory 

cytokines. 

 

In addition, treatment with glucocorticoids can give rapid outcomes that cannot be explained 

by the genomic mechanisms [57]. These non-genomic effects are operational in several 



   Introduction 

22 

 

tissues, such as muscle, heart, pancreas, adipose tissue, immune system and brain. For 

example, it has been shown that glucocorticoids induce NO release in the heart, which leads 

to rapid inhibition of smooth muscle contraction in the trachea. A number of mechanisms for 

these effects have been proposed [53]. First, cytosolic hGR can inhibit the release of 

arachidonic acid (AA) from cell membrane-associated phospholipids. AA is an important 

inducer for cell growth and several metabolic and inflammatory reactions. Furthermore, the 

release of signalling molecules from the cytosolic hGR protein complex upon ligand binding 

is also believed to be involved in non-genomic glucocorticoid signalling.  

 

A second hypothesis is that a membrane-associated, G-protein-coupled hGR and intracellular 

signalling downstream from the receptor can explain some of the rapid effect seen in 

therapeutic use of glucocorticoids [57, 58]. Membrane associated hGR has been identified in 

human peripheral blood mononuclear cells (PBMC), and it has been suggested that the 

membrane hGR is a variant of the cytosolic hGR produced by different splicing, promoter 

usage or post-translational editing. An up-regulation of the membrane associated hGR is 

found in cells after immunostimulation and in patients with rheumatoid arthritis [58].  

 

Third, non-specific interaction with cellular membranes, including plasma- and mitochondrial 

membranes has also been thought to mediate glucocorticoid action. Glucocorticoids at high 

concentrations have been shown to intercalate into membranes, and in that way changing the 

physiochemical properties of the membrane and the activity of associated membrane proteins. 

This physical interaction can affect the immune cells by reducing the calcium and sodium flux 

across the plasma membrane, which is thought to contribute to immunosuppression and thus 

reduced inflammatory response. Moreover, direct effect on the mitochondrial membrane can 

lead to proton leak, which in turn impairs the ATP-production. ATP is essential for the 

activity of a cell, both in housekeeping activities, and for the specific effector functions of an 

immune cell, such as migration, cytokine synthesis, phagocytosis and antigen processing and 

presentation.  
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1.4 The immunophillin FKBP51 

 

Of the immunophilins, FKBP51 is known to decrease the transcriptional response of hGR, 

and higher FKBP51 protein levels are associated with partial resistance to glucocorticoids [59, 

60]. Its central role as a short-loop feedback inhibitor of glucocorticoid action is evident from  

microarray studies in leukocytes from Addison’s patients before versus two hours after the 

infusion of hydrocortisone showing that FKBP5 is the gene most differentially expressed [61]. 

Furthermore, Woodruff et al. found that FKBP5 was the most differentially expressed gene in 

airways epithelial cells; low expression in responders and high expression in non-responders 

to glucocorticoid treatment in asthma [62]. 

 

1.4.1 Structure and function of FKBP51 

The FK506-binding protein 1 (FKBP51) is a 51kD immunophilin, which is abundant in many 

human tissues [63, 64]. FKBP51 resembles the structural organization of FKBP52, where 

both are composed of four distinct domains [65, 66], see Figure 5.  

 

 

Figure 5. The major structural domains of FKBP51. The FK1-domain includes the PPI-ase. TPR, 

tetratricopeptide repeat [67] 

 

The first FKBP-domain, named FK1 contains the PPI-ase thought to be involved in hormone 

binding affinity of the hGR and potential interaction with the motor protein dynein. Moreover, 

FK1 is also the binding site for the immunosuppressive drug FK506 known as Tacrolimus 

[68]. The FK2-domain has a similar structure, but in contrast to FK1, FK2 does not exhibit 
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any PPIase-activity. The TPR-domain is located in the C-terminal of the protein. This domain 

is made up of three tetratricopeptide repeats involved in protein-protein interactions, including 

the interaction with hsp90, which links the immunophilins to the hGR protein complex. 

Although the structural organization of FKBP51 and FKBP52 is similar, the relative 

orientations of the domains are different, and may explain the differential functions of the 

FKBPs [65]. In addition, some FKBP-proteins have a calmodulin-binding domain, 

represented by an amphiphilic �-helix that carries a net positive charge [69].  

 

The FKBPs are named after their ability to bind FK506. FK506 exert its immunosuppressant 

action by binding to an intracellular FKBP, presumably FKBP12. FK506 and FKBP12 form a 

complex with Ca2+, calmodulin and calcineurin, which inhibits the phosphatase activity of 

calcineurin. This prevents dephosphorylation and nuclear translocation of nuclear factor of 

activated T-cells (NFAT) and inhibits T-cell activation [1]. In addition, FK506 is thought to 

have a neuroprotective effect, mediated by a calcineurin-independent mechanism [70, 71]. 

The mechanism is still unclear, but FKBP52 is believed to be involved. In addition, FK506 is 

known to potentiate hGR-response to glucocorticoids, through displacement of FKBP51 and 

subsequent recruitment of PP5, as described in section 1.1.3. 

 

Compared to FKBP52, FKBP51 is shown to decrease the hGR affinity to hormone and thus 

decrease the transcriptional activity of hGR after hormone exposure [59, 60]. This is shown in 

squirrel monkeys, where high levels of FKBP51 has been suggested to be the origin of 

compensatory elevated cortisol levels [59, 66], and in mammalian cells, where higher 

concentrations of cortisol were needed to elicit a hGR response [60].  

 

FKBP51 and FKBP52 compete for binding to the hGR protein complex, and increasing the 

levels of FKBP52 can mitigate the inhibitory effect of FKBP51. The levels of the respective 

proteins can therefore determine the response to glucocorticoids [60]. The levels of FKBP51 

and FKBP52 do not influence the levels of the hGR, suggesting that the FKBP-proteins does 

not regulate the degradation (or induction) of hGR [60]. If FKBP51 is attached to the hGR 

protein complex when a ligand binds, this presumably induces a swapping of the 

immunophilins, where FKPB51 is replaced with FKBP52 and thus promoting nuclear 

translocation [72]. However, FKBP51 will keep the hGR-protein complex without hormone in 

a basal low hormone-binding affinity [67].    
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In addition to the decreased receptor affinity, the nuclear translocation of hGR is reduced with 

FKBP51 [60]. This was shown at saturated levels of hormone to ensure that the reduced effect 

of GR was because of impaired movement, and not a result of the reduced hormone binding 

affinity. It is thought that the delayed nuclear translocation is a result of FKBP51 not binding 

the motor protein dynein or binding very poorly [51]. See Figure 4 for the interaction of 

immunophilins with dynein. Furthermore, studies demonstrate that the expression of FKBP51 

is induced by glucocorticoids in a dose-dependent manner and in addition follows a circadian 

rhythm, with the highest levels of FKBP51 mRNA in the middle of the day. This indicates an 

autoregulatory mechanism between FKBP51 and glucocorticoids, where FKBP51 may down-

regulate the cellular responsiveness to glucocorticoids  [62, 73, 74].  

 

1.4.2 Isoforms and single nucleotide polymorphisms (SNP) of FKBP5 

The gene for FKBP51, FKBP5 is found on chromosome 6, and consist of 13 exons spanning 

over a region of 186 kb [75]. Five alternative transcription start sites (TSS) have been 

identified in FKBP5; resulting in five isoforms (in the size range 18-51 kDa) due to 

alternative promoter usage (AP1-AP5), see Figure 6. The isoform consisting of all 13 exons is 

wild type 51 kDa FKBP51, whereas the other four isoforms have various truncations in N-

terminals. In addition, several other isoforms at the same molecular weight but with different 

iso-electric points (pI) were identified; some of them found only after cortisol induced 

augment of the FKBP51 expression [75]. The differences in pI-values indicate 

posttranslational modifications.  
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Figure 6. Alternative promoter usage (A) gives rise to different isoforms of FKBP51 (B). The PPI lies 

within the FK1-domain. AP, alternative promoter; TGA, stop codon; AA, amino acid; MW, molecular 

weight; PPI, peptidylpropyl isomerase; TPR, tetratricopeptide repeat [76] 

 

Several SNPs in the gene for FKBP51 has been described, and three have been studied in 

relation to depression, i.e. rs4713916, rs3800373 and rs1360780 [77, 78]. The rs4713916 SNP 

is located in the promoter region, where the nucleotide change leads to the exchange of 

guanine (G) for adenine (A). Rs3800373 is found in the 3’UTR, where A is substituted for 

cytosine (C). We have looked at rs1360780, which is a SNP located in intron 2 in the FKBP5 

gene, and has a MAF of 0.24 in the European population [79].  In rs1360780, the nucleotide 

change results in a replacement of the base C for thymine (T). Rs1360780 is in strong LD 

with the rs4713916 SNP [80]. 

 

1.4.3 FKBP5 polymorphisms associated with disease and glucocorticoid sensitivity 

The FKBP5 SNP rs1360780 has been associated with increased relapse of depressive 

episodes and also rapid response to antidepressant treatment [77]. In this study, the TT variant 

had more than twice as many depressive episodes compared to the other genotypes, and TT-

patients responded earlier on medical treatment, independent on the type of antidepressant 

used. In addition, the FKBP51 protein levels were significantly higher for the TT genotype, 
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compared to the CT and the CC-variant. This difference was not shown for the FKBP5 

mRNA-levels. Lekman et al. also found modest evidence for the association of FKBP5 

polymorphisms with treatment response and depression [80]. However, another study was not 

able to replicate these findings [78]. Nevertheless, FKBP51 might be connected to basic 

mechanisms of stress related phenomena, as two polymorphisms in FKBP5, rs3800373 and 

rs1360780 were associated with peritraumatic dissociation in medically injured children [81]. 

Peritraumatic dissociation is a behavioural response to life-threatening stress, characterized by 

immobilization or freezing, and is a well known risk factor for the development of post 

traumatic stress disorder (PTSD). In addition, a recent study showed that four SNPs in the 

FKBP5 gene, including rs1360780, were predictors of both risk and resilience for PTSD as 

adult, among survivors of physical and sexual abuse as a child [82]. 

 

In a pilot project in our research group, Hammenfors et al found that the expression level of 

FKBP5 in leukocytes correlated positively with ACTH levels in seven patients with 

Addison’s disease [83], indicating that this could be an important determinant for individual 

glucocorticoid sensitivity in these patients. There was also a tendency to both higher levels of 

ACTH and increased FKBP5 expression in the CC- compared to the CT-variants, indicating a 

higher sensitivity in CT-subjects. In addition, an association of the rs1360780 SNP with 

glucocorticoid effects was found in a study of bone metabolism in Addison’s disease [84], 

indicating that carriers of the variant T allele are more sensitive to glucocorticoids than 

carriers of the wild-type C allele.  
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1.5 Aim of the study 

As reviewed above, there could be many reasons for the great inter-individual variation in 

glucocorticoid sensitivity. The literature and recent studies indicate that FKBP51 plays a 

central role in this phenomenon. A better understanding of the factors causing this variation 

could possibly lead to improved treatment outcomes both in replacement and pharmacological 

treatment with glucocorticoids. The aim of this study was to evaluate the association between 

the FKBP5 SNP rs1360780 and the individual glucocorticoid sensitivity in patients with 

Addison’s disease.  

 

The specific objectives of the study were 

• To evaluate whether FKBP5 genotype is associated with glucocorticoid sensitivity in a 

cell proliferation assay. 

• To evaluate whether the FKBP5 genotype is associated with FKBP5 expression and 

FKBP51 protein levels in leukocytes. 

• To determine whether glucocorticoid sensitivity in the cell proliferation assay correlate 

with the FKBP5 expression and FKBP51 protein levels. 

• To determine whether the ACTH levels in patients is associated with FKBP5 genotype 

and correlates with FKBP5 expression and FKBP51 protein levels.  
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2 Materials 

2.1 Chemicals 

Table 4. Chemicals 

Name Chemical formula Manufacturer 
Methanol CH3OH Merck 
Ethanol C2H5OH Arcus 
Dexamethasone C22H29FO5 Sigma-Aldrich 
Sodium Deoxycholate C24H39NaO4 Sigma-Aldrich 
 

2.2 Buffers and solutions 

BSA-protein standard 

Bovine serum albumin (BSA)-protein 

(Sigma-Aldrich) 

Phosphate buffered saline (PBS) (Gibco) 

RIPA-lysis buffer 

 

PBS 

PBS-tablets (Gibco) 

MilliQ-water 

 

RIPA-lysis buffer 

1% triton X-100 (Sigma-Aldrich) 

0.2% Sodium Deoxycholate (Sigma-

Aldrich) 

0.15 M NaCl (Ambion) 

50 mM Tris base, pH 7.4 (Sigma-Aldrich) 

1 �g/ml Aprotinin (Trasylol) (Bayer) 

2 mM Ethylene diamine tetraacedic acid 

(EDTA) (Ambion) 

1 mM phenylmethylsulphonyl fluoride 

(PMSF) (Sigma-Aldrich) 

20 U/ml Benzonase nuclease (Sigma-

Aldrich) 

RPMI medium 

RPMI 1640 medium (Lonza) 

10 mM Hepes (Lonza) 

10% charcoal-absorbed fetal calf serum 

(FCS) (Lonza) 

2 mM glutamine (Lonza) 

100 U/ml penicillin (Lonza) 

100 mg/ml Streptomycin (Lonza) 

1 mM sodium pyruvate (Lonza) 

1% non-essential amino acids (Lonza) 

 

Transfer buffer 

50 ml NuPage Transfer buffer 

100 ml Methanol 

1 ml NuPage antioxidant  

Milli-Q water to 1 L 

 

Transfer buffer (2 gels) 

50 ml NuPage Transfer buffer 

200 ml Methanol 

1 ml NuPage antioxidant  

Milli-Q water to 1 L
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2.3 Commercial kit 

Table 5. Commercial kits 

   
Reagent kit Manufacturer Section/purpose 
QIAamp® DNA Mini Kit Qiagen DNA extraction 
WesternBreeze® Chemiluminicent 
Western Blot immunodetection kit Invitrogen Western blot analysis 

 

Table 6. Buffers and solutions supplied with kit 

Name Description/Contents 
QIAamp® DNA Mini Kit  
QIAGEN protease Protease enzyme 
Buffer AL Lysis buffer 
Buffer AW1 Wash buffer 
Buffer AW1 Wash buffer 
Buffer AE Eluation buffer 
NuPage® SDS Page  
NuPage MOPS running buffer 
(20×) 

Denaturing running buffer for NuPAGE Bis-Tris Gels. 50 mM MOPS, 50 
mM Tris base, 0.1% SDS, 1 mM EDTA, pH 7.7 

NuPage Antioxidant For maintaining reducing conditions during electrophoresis and blotting of 
the NuPAGE gels. N,N-Dimethylformamide, Sodium bisulfite (1:1) 

4×NuPage LDS Sample buffer  
For preparing protein samples for denaturing gel electrophoresis. 106 mM 
TrisHCl, 141 mM Tris base, 2% LDS, 10% Glycerol, 0.51 mM EDTA, 0.22 
SERVA® Blue G250, 0.175 mM Phenol Red, pH 8.5 

10× NuPage Reduction agent For preparing reduced protein samples for NuPAGE gels. 

20× NuPage transfer buffer For western transfer of NuPAGE gels. 25 mM Bicine, 50 mM Tris base, 0.1 
% SDS, pH, 8.4.  

WesternBreeze® 
Chemiluminicent Western Blot 
immunodetection kit 

 

Blocker/Diluent A Concentrated buffered saline solution containing detergent 
Blocker/Diluent B Concentrated Hammersten casein solution 

Antibody Wash solution (16×) Concentrated buffered saline solution containing detergent 

Chemiluminiscent substrate Ready-to-use solution of CDP-star® chemiluminiscent substrate for alkaline 
phosphatase 

 

Table 7. Other solutions 

Name Contents Manufacturer Lot 
HBSS Hanks balanced salt solution Lonza  

Lymphoprep 9.1 % Sodium Diatrizoate, 5.7 % 
Polysaccharide Axis-shield  

Bradford reagent Brilliant Blue G, Phosphoric acid, methanol Sigma aldrich  
SeeBlue® prestained Standard (1×)  Invitrogen LC5625 
MagicMarkTM XP Western Standard  Invitrogen LC5602 
MicroscintTM 0 Scintillation cocktail Perkin Elmer  
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2.4 Enzymes, primers and probes 

Table 8. Enzymes 

Name Concentration Manufacturer Lot 
TaqMan® Universal PCR Master Mix  Applied Biosystem, Roche J12806 
AmpliTaq GoldTM  250 Units – 5 U/�l Applied Biosystem, Roche HV2860 
 

Table 9. Primers and probes 

Name Concentration Sequence Manufacturer Lot 
Allelic discrimination assay    
Fkbp51 probes and 
primers   c__8852038_10 Applied 

Biosystems  

Copy number analysis    
Ref.fkbp1 copy forward 
primer 

385.9 �g – 66.6 
nmol 

CAC-TCC-AGG-TGG-AAC-
AAA-C Eurogentec 794110 

Ref.fkbp1 copy reverse 
primer  

306.2 �g – 45.0 
nmol 

ACT-GAA-ATG-AGC-TGG-
ACT-TAA-G Eurogentec 794111 

Ref.fkbp1 copy probe 225.3 �g – 29.6 
nmol 

CAC-TCC-CTC-ACC-ACA-GTC-
A Eurogentec 794112 

 

2.5 Antibodies 

Table 10. Antibodies 

Name Concentration Manufacturer 

Anti FKBP51 mAb[85] 250 �g/ml Transduction laboratories/BD 
Biosciences 

 

2.6 Isotopes 

Table 11. Isotopes 

Isotope Concentration Manufacturer 
Metyl-[3H]-thymidine 1 mCi/ml Amersham/ GE Healthcare 
 

2.7 Technical equipment 

Table 12. Test tubes 

Name Content Manufacturer Section/Purpose 
BD Vacutainer® Plus Blood collection 
tubes 

Heparin BD Cell assay, Western blot 
analysis 

BD Vacutainer® SSTTM II Advance Plus 
blood collection tubes 

Spray coated silica, 
polymer gel  

BD Serum cortisol 

BD Vacutainer® K2EDTA Plastic Tube Spray dried K2EDTA BD DNA, ACTH 
TempusTM Blood RNA-tube 6 ml RNA stabilization 

solution 
Applied 
Biosystems rtPCR 

Salvivette Cotton swab Sarstedt Saliva cortisol 
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Table 13. Gels and membranes 

Name Manufacturer Cat.nr Lot 
NuPAGE® 10% Bis-Tris Gel 
1,5 mm×15 well Invitrogen NP0316 BOX 7071373 

ImmobilonTM PVDF-transfer 
membranes Millipore IPVH07850 KINN9370A 

 

Table 14. Plates 

Name Manufacturer 
MicroAmp™ Optical 384-Well Reaction Plate Applied biosystems 
Nunc-96 well transparent plate Nunc 
 

Table 15. Apparatus 

Apparatus Brand/Manufacturer 
Centrifuges  
Eppendorf centrifuge 5417C Eppendorf 
Labofuge 400R Heraeus 
Biofuge Fresco Heraeus 
  
Other apparatus  
automated harvester Packard 
Vacuum pump RV5 Edwards 
Topcount•NXTTM  Packard 
Tecan infinite 200 Tecan 
NuPAGE SDS-page: XCell SureLock™ Mini-Cell and XCell II™ Blot Module Invitrogen 
Hoefer EPS 2A200 Amersham Biosciences 
Thermomixer Compact Eppendorf 
FluorChem HD2 Alpha Innotech 
ABI 7900HT Genetic Analyzer Applied Biosystems 
Nano Drop® ND Spectrophotometer NanoDrop technologies 
 

2.8 Computer analysis 

Table 16. Programs used 

Software Purpose/section 
AlphaEaseFC (FluorChem HD2) Western blot analysis 
Magellan v 6.2 Protein concentration measurement 
ND-1000 v 3.3.0 DNA-concentration measurement 
TopCount NXT v 1.03 Cell assay 
SDS 2.3 SNP and copy number analysis 
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3 Methods 

3.1 Subjects 

Seventeen patients verified with Addison’s disease were included in the study. The patients 

were recruited from the National Registry for Addison’s disease, and were living in the 

vicinity of Bergen or Stavanger. Blood samples were collected before and two hours after 

intravenous administration of 100 mg hydrocortisone, and after having restrained from 

cortisone treatment for 18 hours. Information about age, diagnosis, weight and treatment were 

collected from the medical journal. 

 

Nineteen healthy controls were recruited among staff and fellow students at University of 

Bergen; any disease and use of glucocorticoid treatment being excluding criteria. Blood 

samples were collected in the morning (8-9 am), and the samples were anonymized. Age and 

gender was not recorded for the controls due to anonymity reasons.  

 

The subjects, both patients and controls, gave written informed consent and the regional ethics 

committee approved the study.  

 

3.2 Hormone levels 

 
Venous blood samples were drawn from the cubital vein, into gel and EDTA-tubes (BD) and 

saliva was collected by Salivette tubes (Sarstedt). At the Hormone laboratory, Haukeland 

University Hospital salivary cortisol was measured by cortisol enzyme immunoassay for 

saliva (Diagnostics Systems Labs, Webster TX, USA), and serum cortisol and plasma 

adrenocorticotropin (ACTH) were measured by immunoassay kits from Diagnostic Products 

Corp. (Los Angeles, CA, USA). The CV% for the assays are <10%. 
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3.3 Cell proliferation assay 

 

This assay measures the proliferation of peripheral blood mononuclear cells (PMBC) 

stimulated by the mitogenic lectin phytohemagglutinin (PHA) by measuring the incorporation 

of methyl-[3H]-thymidine. Cells are stimulated with PHA and incubated with various 

concentrations of dexamethasone, which inhibits the proliferation and thus reflects 

glucocorticoid sensitivity. The protocol was adapted from Vermeer et al. [86]. For the 

patients, blood drawn before the injection of hydrocortisone was used (0h). Briefly, 

heparinised whole blood was diluted 1:10 in RPMI-medium, supplemented with 10 mM 

HEPES, 10 % charcoal-absorbed fetal calf serum (FCS), 2 mM glutamine, 100 U/ml 

penicillin, 100 mg/ml streptomycin, 1 mM sodium pyruvate and 1 % non-essential amino 

acids, and cultured in a Nunc-96 well transparent plate with PHA and dexamethasone in 

increasing concentration, ranging from 10-10 -10-6 M, see Table 17. Each sample was analyzed 

in triplicates. The cells were incubated at 37ºC in 5% CO2 and ~90% humidity for 3 days (72 

hours). 

 

Table 17. Concentrations of dexamethasone in cell proliferation assay 

Well  

1 5 �g/ml PHA 
2 10-10 M Dexamethasone + 5 �g/ml PHA 
3 10-9 M Dexamethasone + 5 �g/ml PHA 
4 10-8 M Dexamethasone + 5 �g/ml PHA 
5 10-7 M Dexamethasone + 5 �g/ml PHA 
6 10-6 M Dexamethasone + 5 �g/ml PHA 
 

For the last 6 hours, 25 µl of methyl-[3H]-thymidine diluted in complete RPMI-medium, 

equivalent to an activity of 0.5 µCi per well was added. The cells were harvested onto 96-well 

glass fibre filters using an automated harvester and a vacuum pump (RV5, Edwards). After 

adding 20 µl of scintillation cocktail to each well of the glass fibre filters, the incorporation of 

methyl-[3H]-thymidine was measured as counts per minute (cpm) using a Topcount•NXTTM 

scintillation counter (Packard). Values twice as high as the mean of the other parallels, and 

not consistent with the other concentrations were excluded. 
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3.4 DNA-analysis 

3.4.1 Extraction of DNA from whole blood using QIAamp® DNA Mini Kit 

When using QIAamp® DNA Mini Kit, the DNA is extracted in several steps. First, the blood 

cells are lysed, and the DNA is precipitated and adsorbed to a silica gel membrane. Second, 

the DNA is washed with several buffers, before the DNA is eluded from the column using 

elution buffer. The method was conducted according to the manufacturer’s manual. In short, 

200µl of whole blood, collected in EDTA coated tubes were added to a 1.5 ml 

microsentrifuge tube, together with 20 µl QIAGEN protease and 200µl Buffer AL. The tube 

were mixed by pulse-vortexing for 15 seconds and incubated at 56ºC for 10 minutes. 200µl 

ethanol (100%) was added to the sample, and after mixing, the mixture was carefully added to 

a QIAamp Spin Column in a 2 ml collection tube. The tube was centrifuged at 8000 rpm for 1 

min, and the QIAamp Spin Column was put in a clean 2 ml collecting tube. 500 µl Buffer 

AW1 and Buffer AW2 were added in turn, each followed by a centrifugation at 8000 rpm for 

1 minute and 13000 rpm for 3 minutes respectively. The QIAamp Spin Column was placed in 

a clean 1.5 ml microcentrifuge tube, and 200µl Buffer AE (elution buffer) was added. After 

incubation at room temperature for 1 minute, the tube was centrifuged at 8000 rpm for 1 

minute, and the filtrate was collected. The DNA yield was analysed using Nano Drop® ND 

Spectrophotometer (Nano-Drop technology), and the samples were stored at -80ºC.  

 

3.4.2 Detection of SNP using TaqMan® allelic discrimination 

In this experiment, genotyping was performed using the 7900HT Fast Real-Time PCR 

system, the SDS 2.3 software and TaqMan® allelic discrimination assay for the SNP: 

rs1360780 (FKBP5) (Applied Biosystems). In allelic discrimination analysis, PCR 

amplification is used together with allele-specific probes to determine the presence of one or 

more SNPs. Two probes are used, one is specific for the wild type allele and the other is 

specific for the variant allele (assay number: c__8852038_10, Applied Biosystems). Each 

probe is labelled with its respective fluorescent tag, called the reporter dye, at the 5’end, and a 

quencher at the 3’end. The wild type probe is labelled to the VIC reporter dye, whereas the 

variant allele probe is tagged to the FAM reporter dye. The quencher for both the probes is 

non-fluorescent. As long as the probe is intact, the quencher will remain in close proximity to 

the reporter dye, and thus eliminate the fluorescent signal. During PCR, the probes will 

hybridize to its complementary DNA sequence, which are situated between the binding site 
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for the forward- and reverse primer. The 5’-nuclease activity of AmpliTaq Gold DNA-

polymerase cleaves the probe during amplification. This leads to separation of the quencher 

and reporter dye, and results in a detectable fluorescent signal. The fluorescence from each 

PCR-cycle is measured and normalized against an internal passive reference (ROX-present in 

the mastermix), giving a ratio �Rn representing a normalized flourescence. The measured 

fluorescence is plotted against the number of PCR-cycles, giving an amplification plot.  

 

In the PCR-apparatus, the samples were first heated to 50º C for 2 minutes, before 

denaturation at 95º C for 10 minutes, followed by a PCR-reaction of 40 amplification cycles 

each at 95º C in 15 seconds and 60º C for 1 minute. 

 

By performing a post-run using the software SDS 2.3, end-point analysis of the signals from 

the two probe-dyes is performed. The software then generates an allelic discrimination plot 

(Figure 8) and a list of the SNP identities. If the measured fluorescence from only one of the 

probes is displayed as a sigmoid curve in the amplification plot, this means that only one of 

the probes has hybridized to its allele, whereas the other probe has remained intact. Thus, only 

one allele is present in the sample, and the person is therefore homozygote for this allele. If 

fluorescence from both the probes is measured and displayed as sigmoid curves however, this 

indicates that both the probes have hybridized to their respective alleles, and that the person 

has a heterozygous genotype.  

 

The assay was performed following the recommendations from the supplier, although less 

volume of the reagents was used. DNA extracted by QIAamp® DNA Mini Kit was diluted to 

20 ng/�l and 2 �l was added to a MicroAmp™ Optical 384-Well Reaction Plate using a 

pipetting robot. Two wells were used as no template control (NTC), containing no DNA. Two 

�l of Mastermix, containing enzyme, primers and probes (assay name c_8852038_10) was 

added to the wells, also using a robot. 

 

3.4.3 Copy number analysis 

The theory behind the copy number analysis follows almost the same principle as in allelic 

discrimination although no post-run is performed (section 3.4.2). Here, one probe and its 

respective fluorescent reporter dye (FAM) are used for the gene of interest (FKBP5), and 

another for a reference gene, retinoblastoma-1 (Rb-1), tagged with HEX, with known copy 
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number (N=2, i.e. 1 copy in each allele). The determination of copy number is done by 

comparing the amount of DNA-product from the unknown sample with the amount of DNA-

product from the reference, using a standard curve generated from a control sample with 

known concentrations of DNA, and the CT-value from the amplification plot. The CT-value is 

the cycle number, where the fluorescence from the sample is significantly higher than the 

fluorescence from NTC, for the first time. If the gene is present in more than one copy in each 

allele, the result will be proportionally higher level of PCR-product (DNA) compared to the 

reference. 

 

DNA extracted by QIAamp® DNA Mini Kit was diluted to 15 ng/�l, and 3 �l was dried on a 

MicroAmp™ Optical 384-Well Reaction Plate. DNA from 196 individuals was analysed, 

including our subjects. DNA for the standard curve was prepared in five different 

concentrations ranging from 120 to 7.5 ng/�l using reference DNA. In addition 2 wells were 

used as NTC, containing no DNA. Eight �l of Mastermix containing enzyme, primers and 

probes (Sequences forward primer, CAC-TCC-AGG-TGG-AAC-AAA-C; reverse primer, 

ACT-GAA-ATG-AGC-TGG-ACT-TAA-G; copy number probe, CAC-TCC-CTC-ACC-

ACA-GTC-A, see Table 9) was added to the wells, using a pipetting-robot. 

 

3.5 RNA-analysis 

Whole blood was collected in Tempus tubes (Applied Biosystems). The RNA extraction and 

rtPCR procedures were performed by trained personnel at Centre for Genetics and Molecular 

Medicine, Haukeland University Hospital. 

3.5.1 rt-PCR  

The FKBP5 expression before and two hours after 100 mg intravenous hydrocortisone was 

measured. Results were only available for the 10 first patients. GADPH was used as house-

keeper gene control, and the expression was corrected for total serum cortisol: 

(CTfkbp5/CTgadph)/serum cortisol. 
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3.6 Protein analysis 

3.6.1 Isolation of PBMC from heparinised venous blood 

Whole blood was diluted 1:1 in 0.9% NaCl solution (HBSS) and carefully transferred, using a 

10 ml pipette, on top of Lymphoprep medium in the proportion of 2:1 into a 15 ml Falcon 

tube. The tubes were centrifuged at room temperature in a swing out rotor (without brake) at 

800 x g for 20 minutes, 30 minutes if the samples were collected more than two hours earlier. 

After centrifugation, the mononuclear cells could be seen as a distinct band in-between the 

plasma- and Lymphoprep layers. The cells were removed using a clean Pasteur pipette, and 

transferred to a clean 15 ml Falcon tube. The harvested cells were diluted in HBSS, and 

centrifuged at 250 x g for 10 minutes. The supernatant was decanted, and the pellet was 

resuspended in HBSS, followed by another centrifugation at 250 x g for 10 minutes. This was 

repeated once, and after the second centrifugation the pellet was dissolved in 1 ml HBSS and 

transferred to a 1.5 ml microcentrifuge tube. The sample was centrifugated at 20 800 g for 5 

minutes, and the supernatant was removed. The cells were resuspended in 15-20 µl RIPA-

lysis-buffer and then frozen at -80º C.  

 

3.6.2 Determining the protein concentration in cell-lysate using Bradford Reagent 

5 µl of a prepared BSA-protein standard, with concentration ranging from 0.10 to 1.25 µg/µl 

(see Table 18) was added to a 96 well plate (Nunc), in duplicates for each 

sample/concentration. Samples with unknown protein concentration were diluted 1:20 in PBS, 

and 5 µl was added in duplicates to the wells. 

 

Table 18. Concentration of BSA-protein standard   

Well Concentration BSA protein 
standard (µg/µl) 

1 0 
2 0.10 
3 0.25 
4 0.50 
5 0.75 
6 1.00 
7 1.25 
 

250 µl of Bradford reagent equilibrated to room temperature was added to each well being 

used, and the 96-well plate was mixed on an orbital shaker for approximately 30 seconds. The 
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samples were incubated at room temperature for 5-10 minutes, before the absorbance at 595 

nm was recorded using Tecan infinite 200 (Tecan). A standard curve was prepared plotting 

the net absorbance versus the protein concentration of each standard, and the protein 

concentration of the unknown samples by comparing the absorbance values against the 

standard curve. From the protein concentrations, the amounts of protein solution used in 

NuPage SDS Page and Western blot analysis were calculated.  

 

3.6.3 NuPage® SDS-Page and Western Blot analysis 

In Western blotting, gel electrophoresis is used in order to separate proteins by size, before the 

proteins are transferred to a membrane. Here the proteins are detected using antibodies 

specific to the target protein.  First, 13 µl of the protein solutions, containing 20 ng protein, 

together with 5 µl 4x NuPage sample buffer and 2 µl 10x NuPage Reduction agent were 

added to 1,5 ml microcentrifuge tubes and  heated at 70º C for 10 minutes (Thermomixer 

compact, Eppendorf). The SDS-PAGE apparatus was set up, and the inner chamber was filled 

with 200 ml NuPage Running buffer containing 500 µl NuPage Antioxidant solution. 15 µl of 

all the samples were loaded to the NuPAGE® 10% Bis-Tris Gel 1.5 mm×15 well, together 

with SeeBlue® prestained standard and the MagicMarkTM XP Western Standard. The outer 

chamber was filled with ~600 ml NuPage Running buffer and SDS-PAGE was run at 180 V 

for 70 minutes. 

 

The polyvinylidene fluoride (PVDF)-membrane (ImmobilonTM PVDF-transfer membranes, 

Millipore) was prepared for blotting by placing the membrane in methanol for 30 seconds, 

deionized water (milli Q) for 2 minutes, and in transfer buffer for � 5 minutes. Filter papers 

and blotting pads were soaked in transfer buffer and put in layers into the blotting cassette 

together with the gel and membrane, as shown in Figure 7. Before the gel, membrane and 

filter papers was positioned into the blotting cassette, air bobbles were removed using a clean 

tube. When using two gels, one additional blotting pad were use in order to separate the gels. 
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Figure 7. Blotting cassette with one and two gels 

 

The detection of the blot was performed using Western Breeze® Chemiluminescent Western 

Blot Immunodetection Kit. Here, the blot was run over night, at 10-12 V. After removing the 

membrane from the blotting cassette, the detection of the protein was performed according to 

the manufacturer’s protocol. In short, the PVDF-membrane was washed twice for 5 minutes 

in 20 ml pure water. The membrane was incubated in 10 ml of blocking solution on a rotary 

shaker set for 1 revolution/second, for 30 minutes. After decanting the blocking solution, the 

membrane was washed twice in 20 ml pure water, and then incubated for 1 hour with 10 ml if 

the Primary antibody solution (Anti FKBP51 mAb, Transduction laboratories, see Table 10). 

The membrane was washed in 20 ml Antibody wash four times, each wash for 5 minutes. The 

antibody wash was decanted, and the membrane was incubated in 10 ml of Secondary 

Antibody solution for 30 minutes. Again, the membrane was washed four times in 20 ml 

Antibody wash for 5 minutes, followed by rinsing twice in pure water for 2 minutes. 

 

The membrane was placed in a clean dish, and 2.5 ml Chemiluminescent Substrate was added 

evenly to the surface. After 5 minutes, the excess Chemiluminescent Substrate was removed 

from the surface using a filter paper (provided with the kit). Detection of the protein was 

performed using FluorChem HD2 and the AlphaEaseFC software, according to the 

manufacturer’s manual [87]. The integrated density value (IDV) was determined using Spot 

Denso and the Autospot function, with the use of automatic background. 
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The protein concentration for use in Western blotting was optimized by using five different 

concentrations of protein from the same person, ranging from 5-100 �g/�l (Table 24).  

 

Two independent replications of Western blot analysis were performed for all of the samples, 

and one of the controls (C1) was included in all of the replications. The IDV-value was 

measured and adjusted to a % -value of a max response, where the strongest band from the 

MagicMarkTM XP Western Standard was used.  

 

3.7 Statistics  

3.7.1 Coefficient of variation (CV%) 

The coefficient of variation (CV%) measures variation in a dataset independent of the units 

used, and can thus compare the variation between different datasets. CV is the standard 

deviation (�) divided by the mean (�) given as percent [88]: 

 

100% ⋅=
µ
σ

CV
  

          

3.7.2 Chi-square test 

To evaluate the frequency of the genotypes between patient and controls, and between the 

subjects and the European population, a chi-square test was performed. Here, the subjects are 

grouped in a table according to their genotype, and the expected number in each 

group/category (E) is calculated: 

 

n
K

RE ⋅=  

 

A test observer Q was calculated based on the observed number and the expected number (E), 

and compared with a tabled value. 
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3.7.3 Mann Whitney U-test 

To analyse the results from the cell proliferation assay (section 3.3), a Mann Whitney U-test, 

which is a non-parametric rank test was performed [88]. For both the patients and controls, 

two populations were defined, one CC-genotype and one T-allele bearing population (CT and 

TT-genotype). For the patients and controls respectively, the two populations were pooled and 

ranked in order according to their position at their inhibitory concentration at 50% 

proliferation (IC50), in order from the lowest to the highest percent proliferation at 10-7 and 

10-6 M dexamethasone, and at maximum inhibition. A higher ranking number indicate a lower 

sensitivity to dexamethasone. By using SPSS, the possible difference of the rank-value (W) 

for each of the group was calculated, and the p-value for the analysis was determined.   

 

3.7.4 Spearman’s rank correlation 

Like the Mann Whitney U-test, the Spearman’s rank correlation is a non-parametric method 

based on ranks. This involves ranking the values of each parameter independently into order 

of magnitude, and that the rank rather than the value of outcome is of importance [89]. By 

using SPSS, the correlation between the different parameters was calculated, and the R- and 

P-value determined. 

 

3.7.5 Unpaired T-test 

In the comparison of different patient characteristics and hormone levels between different 

groups, an unpaired T-test was performed. Here, the measured values (i.e. hormone levels, 

daily dose of cortisone) are compared between two groups. Based on the test observer T, the 

mean values are tested, and defined as similar or dissimilar [88]. In this research, the test was 

performed using Excel.  
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4 Results 

4.1 Patient characteristics 

Patient characteristics, including age, gender, weight, other diseases, the duration of 

Addison’s disease, and the treatment received for Addison’s disease are displayed in Table 

19. The mean age, duration of Addison’ disease and the dosage of cortisone and 

fludrocortisone are shown for each genotype. 

 

Table 19. Patient characteristics and treatment  

Treatment  
Patient 
no 

Gender Age Weight 
(kg) 

Duration of 
AD (years) 

Other 
diagnosis Cortisone 

(mg/day) 
Fludrocortisone 
(mg/day) 

CC-patients      
P1 M 78 ND 19  37.5  
P2 M 30 ND 4  50 0.1 
P3 F 51 68 14 PA  Cortisol pump 0.1 
P4 F 62 ND 16 HT  ND ND 
P5 M 31 ND 5  37.5 0.1 
P6 F 51 59 27  25 0.1 
P7 F 75 77 1 PA, HT 37.5 0.05 
P8 F 62 56 36 HT, V, GF 25 0.1 
P9 M 41 57 11 CD, PA 37.5 0.1 
Group mean 53  15  35.7 0.09 
CT-patients      
P10 F 66 68 4  37.5 0.1 
P11 F 39 105 4 DM1  37.5 0.15 
P12 F 40 62 8 HT  37.5 0.05 
P13 F 28 ND 2  20 0.1 
P14 M 47 72 8  50 0.15 
P15 F 52 61 12 HT 25 0.1 
P16 F 43 ND   25 0.1 
Group mean 45  6  33.2 0.11 
TT-patient       
P17 F 88 71 30  43.75 0.05 
Group mean 
CT/TT 50  9  34.5 0.1 

ND, not detected; AD, Addison’s disease; PA, pernicious anemia; HT, hypothyrodism; V, viltigo; GF, gonadal 

failure; CD, coeliac disease; DM1, diabetes mellitus type 1. 

 

From Table 19, it can be seen that there were more female than male patients (12 females, 5 

males) included. The age of the patients ranged from 28 to 88 years (median 51), the oldest 

being the TT-patient. The CC, CT and TT variants showed no significant variance in the daily 

dose of cortisone or fludrocortisone (P=0.7 and 0.7 respectively). 
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4.2 SNP- and copy number analysis 

 

To determine the genotype of the subjects included, an allelic discrimination assay was 

performed (see section 3.4.2). Most of the patients were genotyped from earlier studies, but 

the results from the genotyping of the controls and one of the patients are displayed in the 

allelic discrimination plot in Figure 8. Blue spots indicate the TT-genotype; green spots 

indicate the heterozygote CT-variant, and red spots point to the CC-variants. 

 

 

Figure 8. Allelic discrimination plot. TT, blue spot; CT, green spots; CC, red spots. 

 

The patients are sorted and numbered according to their genotype in Table 19. The T-allele 

frequency found was 26.4%. The controls are sorted and numbered according to their 

genotype and the results are displayed in Table 23. The T-allele frequency for the controls 

was calculated to 34.2%. Since the TT genotype was rare in the patient and control 

populations, all T-allele carriers (CT and TT genotypes) were analysed as one group in the 

statistical analyses. When performing a chi-square test, see Table 20, no difference was found 
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in the genotype frequency between patients and controls (P>0.1). E indicates expected 

number. 

 

Table 20. Chi-square test of the genotype frequency of patients and controls. E, expected number 

 CC-subjects CT/TT-subjects Total (R) 
Patients 9, E=8 8, E=9 17 
Controls 8, E=9 11, E=10 19 
Total (K) 17 19 n=36 
 

By using a chi-square test, see Table 21, the SNP was found to be in Hardy-Weinberg 

equilibrium (P >0.1) when compared to a study mapping 120 individuals in the European 

population [79]. 

 

Table 21. Chi-square test of the Hardy-Weinberg equilibrium. E, expected number 

 CC-subjects CT/TT-subjects Total (R) 
Our study 17, E=19 19, E=17 36 
European population 64, E=62 56, E=58 120 
Total (K) 81 75 n=156 
 

To exclude variation in the number of gene copies of FKBP5 as a cause of inter-individual 

variation in glucocorticoid sensitivity, a copy number analysis was performed (see section 

3.4.3). Figure 9 displays the DNA-yield (�Rn) from each PCR-cycle for the standard 

concentrations of DNA, which further gives rise to the standard curves seen in Figure 10. 

 

 

 

Figure 9. Amplification plot for standard concentrations of DNA for FAM-mgb (FKBP5) and HEX (Rb-1) 

respectively 
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Figure 10. The standard curves of FAM-mgb (FKBP5) and HEX (Rb-1) respectively, with unknowns 

displayed in red. 

 

Nearly all of the subjects lie within the range of the standard curve (see Figure 10), the ones 

beyond the range were excluded. When comparing the DNA-yield of the unknown DNA for 

the FKBP5 (FAM-mgb) and Rb-1 (HEX), the copy number analysis shows a ratio of ~1 

between the PCR-yield for FKBP51 and Rb-1. This confirms that only one copy of the 

FKBP5 gene exists.  
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4.3 Serum cortisol, salivary cortisol and ACTH levels 

 

Serum and salivary cortisol were measured to evaluate if the patients were cortisol deplete at 

baseline, and to assess the inter-individual variation cortisol levels two hours after infusion of 

100 mg hydrocortisone. In addition, the ACTH levels before and two hours after 

hydrocortisone infusion were measured as an indicator of glucocorticoid sensitivity in the 

HPA axis, as the ACTH secretion is feed-back inhibited by cortisol. The results from the 

assays are described in Table 22. No differences in hormone levels were seen between the 

genotypes neither at 0h nor 2h. 

 

Table 22. Hormone levels in patients before and 2 hours after intravenous injection of 100mg 
hydrocortisone 

  0h   2h   

Patient 
no Gender 

Serum 
cortisol 
(nmol/l) 

Salivary 
cortisol 
(nmol/l) 

ACTH  
(pmol/l) 

Serum 
cortisol 
(nmol/l) 

Salivary 
cortisol 
(nmol/l) 

ACTH 

CC-patients       
P1 M <28 ND >278 1862 >280 24,2 
P2 M <28 ND >278 1672 >280 35,7 
P3 F <28 46,1 39,1 2621 >280 3,5 
P4 F <28 ND 15,3 2687 >280 4,1 
P5 M <28 ND 178 1333 >280 11,4 
P6 F <28 <3 278 2072 582 17,3 
P7 F <28 <3 53,5 2246 549 6,6 
P8 F <28 <3 ND 3256 870 ND 
P9 M <28 <3 ND 2097 744 ND 
Group mean CC    2205  14.7 
CT-patients       
P10 F <28 ND >280 1879 ND >280 
P11 F <28 ND >280 1490 ND 104,6 
P12 F 109 ND 198 1708 >280 15,1 
P13 F <28 ND <1,1 2759 >280 5,5 
P14 M <28 ND <1,1 1873 >280 <1,1 
P15 F <28 ND 196 2925 ND 10,1 
P16 F <28 <3 ND 1998 654 ND 
Group mean CT    2253  33.81 

TT-patient       
P17 F 46 3.1 195 2431 672 10,7 
Mean CT and TT    2133  29.21 

Salivary cortisol samples >280 nmol/l and ACTH >278 pmol/l are not diluted 
1mean of exact values 
 

All, except two of the patients had undetectable serum cortisol levels (<28 nmol/l) before 100 

mg hydrocortisone was injected. Two hours after intravenous injection of 100 mg 

hydrocortisone, the serum cortisol levels were highly variable between the patients. In later 
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analysis, this variation is corrected for by dividing the results on the serum cortisol levels. In 

the female patients, the mean serum cortisol levels after intravenous injection of 100 mg 

hydrocortisone were significantly higher than the males’ serum cortisol levels (men= 1767 

nmol/l, women=2339 nmol/l, P = 0.02).  

 

Salivary cortisol before intravenous injection of hydrocortisone were <28 nmol/l in all the 

patients, except two patients, where the salivary cortisol levels were over the detectable limit. 

Two hours after intravenous injection of hydrocortisone, the salivary cortisol levels were all 

>280 nmol/l. The samples denoted >280 nmol/l were not diluted. 

 

The ACTH levels in the patients measured both before and 2 hours after intravenous injection 

of hydrocortisone range from > 278 pmol/l, to < 1.1 pmol/l. The average two hour ACTH 

levels are higher for the CT/TT genotype compared to the CC. However, the difference is not 

significant (P = 0.3). The samples denoted >278 and >280 are not diluted. Figure 11 shows 

the ACTH levels in fourteen patients before and two hours after intravenous injection of 

hydrocortisone.  
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Figure 11. ACTH levels before and 2 hours after hydrocortisone. CT/TT-variants are displayed with 

dotted line 
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As seen from the figure, there is great variation both in the levels of ACTH before and after 

hydrocortisone, and also in the extent of reduction in the ACTH levels as a response to 

hydrocortisone. However, this variation is not genotype specific. 

 

The correlation between ACTH and cortisol levels two hours after hydrocortisone infusion 

was analysed (see correlation plot, Figure 12) to evaluate if the great variation in ACTH 

levels relate to variation in serum cortisol levels to a greater extent than the SNP. Calculated 

by Spearman’ rank correlation test, a weak negative correlation (R=-0.59) exists between the 

ACTH levels and cortisol levels (P= 0.027). Performing the same test when the outlier (P10) 

is removed, gives a stronger negative correlation (R=-0.65, P=0.017). 
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Figure 12. Correlation plot of ACTH and serum cortisol levels after two hours 

 

Serum cortisol was measured in the controls to assess the variation in glucocorticoid 

sensitivity in the HPA axis, and to evaluate the possible impact the cortisol levels on FKBP51 

at baseline. The mean and median serum cortisol levels for the controls are shown in Table 

23. The serum cortisol levels for the controls varies widely and no differences are seen 

between the CC and T-carrying genotypes (P = 0.9). 

 

Table 23. Serum cortisol levels in controls  

Controls Mean serum cortisol  (nmol/L)  Standard deviation Median Range 
CC-controls n= 8   555 193 516 309-938 
CT-controls n= 9 566 202 560 270-836 
TT-controls n= 2 593 313  372-814 
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4.4 Cell proliferation assay 

 

The cell proliferation assay was performed to directly measure the glucocorticoid sensitivity 

in the leukocytes of the patients and controls, and to see if the FKBP5 SNP plays a significant 

role in glucocorticoid sensitivity. The results from the cell proliferation assay (section 3.3) are 

displayed in Figure 13 and Figure 14. The figures show the percentage proliferation of PBMC 

inhibited by different concentrations of dexamethasone, compared to the proliferation of PHA 

stimulated cells, for patients and controls respectively. CV% for the assay was 24%. Solid 

lines indicate the CC-genotype, whereas the CT- and TT-genotype is shown with dotted and 

dashed lines, respectively. In addition, the line indicating the TT genotype is thicker. 
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Figure 13. % proliferation of PHA-stimulated growth in patient cells after dexamethasone inhibition. CC, 

solid lines (P1-P9); CT, dotted lines (P10-P16); TT, thicker dashed line (P17) 

 

The Mann Whitney test (section 3.7) showed a significant difference in proliferation upon 

dexamethasone inhibition between the CC and CT/TT-patients ranked at IC50 and 10-7 M 

dexamethasone (P=0.001 and P=0.027), in which the T-allele was associated with greater 

dexamethasone sensitivity. The difference at 10-6 M dexamethasone and maximum inhibition 

were not significant (P=0.068 and P=0.082).  
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Figure 14. % proliferation of PHA-stimulated growth in cells from controls after dexamethasone 

inhibition. CC, solid lines (C1-C8); CT, dotted lines (C9-C17); TT, thicker dashed lines (C18-C19) 

 

The association between the T-allele and glucocorticoid sensitivity was not found in the 

control group at IC50 (P=0.74). Neither at 10-7 and 10-6 M dexamethasone, nor at maximum 

inhibition, were the differences between the genotypes significant (P=0.59, P=0.083 and 

P=0.21). 

 

By studying Figure 13 and Figure 14, we can see that most of the proliferation of the control 

samples shows a more intermediate proliferation inhibition than the patient samples, which 

tend to be severely or mildly inhibited by dexamethasone. In general, the controls show an 

intermediate sensitivity to dexamethasone, whereas the patients tend to be more extreme in 

their sensitivity.   
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4.5 FKBP5 expression 

 

Real time-PCR (rtPCR) was performed in order to investigate whether the FKBP5 SNP could 

lead to alterations in the expression of FKBP5, and whether increased expression of FKBP5 

correlate with lower levels of ACTH as a response to hydrocortisone, or a lower sensitivity to 

glucocorticoids in the cell proliferation assay. The FKBP5 expression relative to the GADPH 

was only available for 10 patients (only CC and CT-variants included) two hours after 

intravenous injection of hydrocortisone. The result for each of the patients is shown in Figure 

15, and displays the relative FKBP5 expression corrected for serum cortisol levels. No 

differences are seen between the genotypes, CC (P1-P5, white) and CT (P10-P14, dark gray) 

in the FKBP5 expression relative to the GADPH expression (P= 0.9) or when corrected for 

serum cortisol levels (P = 0.7). 
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Figure 15. FKBP5 expression relative to GADPH expression two hours after hydrocortisone infusion 

 

No correlation was found between the ACTH-levels two hours after hydrocortisone injection 

and FKBP5 expression, corrected for serum cortisol levels (R=0.38, P=0.28). No correlation 

was found between ranking number in the cell proliferation assay and the FKBP5 expression, 

independent of SNP, when serum cortisol levels were corrected for (R= -0.16, P=0.65).  
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4.6 Western blot analysis  

 

Western blot analysis was chosen to investigate whether the FKBP5 SNP determines the 

FKBP51 protein levels both in patients and controls. Further, we wanted to find a possible 

correlation between FKBP51 protein levels and sensitivity to glucocorticoids in the cell 

proliferation assay, and ACTH levels after infusion of hydrocortisone. The patient samples 

analysed in Western blot analysis was taken before the infusion of hydrocortisone.  

 

4.6.1 Results from optimization of the protein concentration in Western blot analysis 

Optimization of the protein concentration used in Western blot analysis is allowing us to find 

a protein concentration which is detectable on the blot, and also to determine if the protein 

concentration is proportional to the IDV-value calculated. Figure 16 displays the bands from 

the blot (AlphaEaseFC software) in increasing concentration from left to the right. The 

FKBP51 band using a protein concentration of 20 �g/�l (third from the left), gives a weak, but 

detectable band. 

 

 

Figure 16. Bands from the optimization of protein concentration 

 

The IDV-value from the optimization of Western blotting is shown in  

Table 24. From a protein concentration of 20 �g/�l, the IDV per ng protein are stabilised to a 

value around 12-13 IDV per ng protein.  

 

Table 24. Protein concentrations used in the optimization of Western blotting 

[protein] µg/µl IDV IDV per ng protein 
5 6944 1,4 
10 219144 21,9 
20 255852 12,8 
50 622832 12,5 
100 1374931 13,7 
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Preparing a standard curve (Figure 17) from the known protein concentration and the IDV 

values gives a linear correlation, allowing us to use IDV as a measure of the relative amount 

of FKBP51. A concentration of 20 �g/�l protein used later in the Western blot analysis, ends 

up in the linear region.  
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Figure 17. Optimization of the protein concentration 

 

4.6.2 FKBP51 protein levels measured in Western blot analysis 

Figure 18 displays the bands seen on the blot after Western blot analysis. Both patients and 

controls for each genotype (CC and CT/TT) are included in each blot.  

 

 

Figure 18. Bands from one Western blot analysis with standards seen furthest to the right 
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Figure 19 displays the mean FKBP51 protein levels for the CC, CT and TT genotype, 

presented as the percent of max IDV-value in the blot. The Western blot analysis has a CV% 

of 42%. 
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Figure 19. FKBP51 protein levels for the CC, CT and TT-genotype 

 

As can be seen from the figure, no differences are seen between the CC, CT and TT-variants 

among the patients (P=1.0). The figure indicates a greater variance in the FKBP51 protein 

levels among the controls, but no significant genotype specific pattern is observed.  

 

No correlation was found between the ACTH levels measured two hours after hydrocortisone 

infusion and FKBP51 protein levels using Spearman’s rank correlation test (R=-0.099, 

P=0.75). 

 

A correlation plot of FKBP51 protein levels (% of max IDV) and ranking at IC50 in cell 

proliferation assay is shown in Figure 20. A low ranking in the cell proliferation indicate a 

higher sensitivity. As seen from the figure, a weak positive correlation exists, indicating that 

high protein levels give a decreased sensitivity to glucocorticoids. This correlation is however 

not significant for patients (P=0.9) nor controls (P=0.5). 
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Figure 20. Correlation between FKBP51 protein levels (% of max IDV) and sensitivity in the cell 

proliferation assay for patients and controls. Low ranking indicate a higher sensitivity 
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5 Discussion 

5.1 Polymorphisms in FKBP5 and glucocorticoid sensitivity 

Several studies points to the involvement of FKBP51 in glucocorticoid sensitivity. FKBP51 is 

known to participate in a short negative feedback loop to limit hGR-signalling within cells, 

both by reducing the hormone binding affinity to the hGR, and impairing the nuclear 

translocation of the receptor complex [62, 73]. In squirrel monkeys, constitutively high levels 

of FKBP51, in connection with elevated cortisol levels also indicate a role of FKBP51 in the 

inhibition of glucocorticoid signalling, as the elevated cortisol levels are needed to 

compensate for the reduced glucocorticoid effects. In addition, the increased effect of 

glucocorticoids on hGR-signalling seen when FKBP51 is displaced from the hGR-complex 

and bound to FK506 further support that the FKBP51 might be involved in the sensitivity to 

glucocortioids [9]. This also means that variations in the FKBP5 gene, for example 

polymorphisms (SNP, CNP) could play a role in the inter-individual variation in sensitivity to 

glucocorticoids. We found however no indication that CNP exists for FKBP5. 

 

Our results from the cell proliferation assay suggest, together with findings in previous studies 

[77, 80, 82, 84] that the FKBP5 SNP rs1360780 is indeed associated with glucocorticoid 

sensitivity. Further studies are however needed, as most of our experiment did not establish 

this association. Our results are outlined below, referring to the specific objectives of the 

study (section 1.5). 

 

• Evaluation of whether FKBP5 genotype is associated with glucocorticoid sensitivity in a 

cell proliferation assay. 

The cell proliferation assay indicates that the patients carrying the T-allele are more sensitive 

to glucocorticoids compared to the homozygous CC-variants. The CT/TT-variants shows 

inhibition of the proliferation at lower dexamethasone concentrations, and also displays 

generally lower rates of proliferation at all dexamethasone concentrations in comparison with 

the CC-variants. This difference in glucocorticoid sensitivity between the genotypes was not 

found in the controls, who display intermediate inhibition by dexamethasone as compared to 

the variation in the patients. However, whereas the patients were cortisol deplete after having 

restrained their cortisone treatment for 24 hours, the controls have high levels of endogenous 
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cortisol in their blood during the night before leukocyte sampling. Even if this is corrected for 

by using the percent proliferation of the PHA-stimulated growth for each of the subjects 

rather than the actual value, the endogenous cortisol or level of FKBP51 at baseline could 

affect the interpretation of the assay.  

 

• Evaluation of whether the FKBP5 genotype is associated with FKBP5 expression and 

FKBP51 protein levels in leukocytes. 

Glucocorticoids are known to induce the expression of FKBP5 gene [62, 73] and its encoded 

protein FKBP51 including different isoforms (splice variants) with unknown functional 

capacities [76]. We did not, however, detect significant differences in the expression of 

FKBP5 or in the FKBP51 protein levels in leukocytes from subjects with the different 

genotypes. The poor reproducibility of the Western blot analysis (discussed below) and the 

limited number of subjects included make it impossible to establish a link between the SNP 

and FKBP51 protein levels. It is also evident that the cortisol levels obtained in the 

individuals after a standard intravenous hydrocortisone dose vary considerably. The observed 

difference in serum cortisol levels between men and women could be due to body size or 

amount of body fat. Women tend to have smaller bodies and a larger portion of fat compared 

to men. Thus, the in vivo assessment of FKBP5 gene expression and FKBP51 protein levels 

may be more influenced by cortisol levels than the SNP. In this way the in vitro cell 

proliferation assay is more standardised and the effects of the SNP more readily interpreted.  

Binder et al also found no significant correlation between FKBP5 expression in healthy 

controls and the rs1360780 SNP [77]. However, they found significantly higher FKBP51 

protein levels in the TT-variant compared to the CT and CC-variants in their Western blot 

analysis [77]. However, their analysis included few subjects, a mixture of depressed and 

healthy individuals, and showed the lowest values for the heterozygous subjects, which render 

their conclusion questionable. The association between FKBP51 levels and glucocorticoid 

sensitivity may however be far more complicated than previously thought, as several isoforms 

of the protein have now been identified [76]. 
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• Determination of whether glucocorticoid sensitivity in the cell proliferation assay 

correlates with the FKBP5 expression and FKBP51 protein levels. 

We did not establish a correlation between the individual FKBP5 expression level and the 

sensitivity to dexamethasone in the cell proliferation assay in the patients. Due to the limited 

number of subjects and the problems with the standardisation of the hydrocortisone infusion 

this analysis could by no means exclude that such a correlation may exist. Furthermore, no 

significant correlation was seen between the sensitivity in the cell proliferation assay and the 

FKBP51 protein levels, independently of SNP in neither patients nor controls (Figure 20). 

Because of the uncertainty in the Western blot results, the value of this correlation test is 

limited. 

 

• Determination of whether the ACTH levels in patients is associated with FKBP5 genotype 

and correlates with FKBP5 expression and FKBP51 protein levels.  

The levels of ACTH two hours after intravenous injection of 100 mg hydrocortisone were 

intended as an in vivo measure of glucocorticoid sensitivity of the HPA-axis. It can be seen in 

Table 22 that two individuals (P10, P11) are mainly responsible for the higher (non-

significant) average ACTH-levels in the CT/TT patients than in those with the CC genotype. 

However, in the cell proliferation assay the sensitivity to dexamethasone in PBMC is quite 

high in both of these patients (Figure 13). A mix-up of the samples of ACTH is possible, or 

there might be another explanation to these opposite findings. This could for example be 

different tissue specific sensitivity in PBMC compared to hypothalamus/pituitary, in other 

words that the FKBP5 SNP exhibit tissue specific effects. Furthermore, no correlation was 

found between ACTH levels and FKBP5 expression independent of the SNP; unlike the 

association found in the pilot project [83]. As discussed above, the hydrocortisone infusion 

study turned out not to be appropriate for assessment of the possible effects of the SNP, which 

are likely to be overruled by the variation in cortisol levels. This is illustrated by the 

significant negative correlation between the ACTH and cortisol levels in patients after two 

hours (Figure 12). No correlation was found between the ACTH levels and FKBP51 protein 

levels, indicating that the FKBP51 protein levels do not influence the secretion of ACTH as a 

response to hormone. However, due to the uncertainty in the results from the Western blot 

analysis mentioned above, this correlation test is of limited value. 
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Previous studies have shown that the T-allele in the FKBP5 SNP rs1360780 is associated with 

increased recurrence of depressive episodes [77, 80] and the risk of PTSD [81, 82]. Both 

depression and PTSD are conditions in which the HPA-axis and glucocorticoid sensitivity are 

thought to be involved [47, 82]. However, is the T-allele associated with increased sensitivity 

or resistance to glucocorticoids? Depression has been associated with glucocorticoid 

resistance causing impaired negative feedback regulation and a hyperactivity of the HPA-axis, 

but it has also been associated with increased hGR-activation in the limbic regions of the 

brain [47]. SNPs associated with either increased sensitivity or resistance to glucocorticoids 

could therefore explain this association to depression. Binder et al. found higher protein levels 

of FKBP51 in TT-subjects, compared to CT and CC-variants, and therefore suggested that the 

T-allele is associated with resistance to glucocorticoids. However, only a narrow selection of 

the study population was included in the Western blot analysis, and the subjects included were 

a mixture of depressed and healthy individuals. In addition, Western blotting is at best a 

semiquantitative method that is not very good for quantification of protein levels. In the same 

study, the TT-variants showed lower levels of ACTH and cortisol levels in the combined 

dexamethasone-suppression/CRH-stimulation (Dex-CRH) test, consistent with increased 

glucocorticoid sensitivity. This test is used to evaluate the HPA-axis hyperactivity in 

depressed patients, where the depressed subjects are associated with glucocorticoid resistance 

and thus get higher levels of ACTH and cortisol upon dexamethasone inhibition and CRH 

stimulation than healthy individuals. The low levels of ACTH and cortisol seen in the TT-

variants therefore indicate that depressed individuals carrying the T-allele are less resistant to 

glucocorticoid (the dexamethasone inhibition) than the other depressed patients, and further 

that the T-allele are associated with a higher sensitivity to glucocorticoids.  

 

Increased risk of osteoporosis is a well known side effect of glucocorticoids. The trend 

towards lower bone mineral density and reduced levels of bone markers seen in FKBP5 T-

allele carriers and homozygote TT-carriers demonstrated in Addison’s patients by Løvås et al 

[84], indicates that the T-allele carriers are more susceptible to this side effect. These results 

points to an association between the T-allele and increased glucocorticoid sensitivity in bone.  

 

The lower levels of ACTH and FKBP5 expression seen in the CT/TT-variants in the study by 

Hammenfors et al. [83], indicates that the lower expression of FKBP5 makes the CT/TT-

subjects more sensitive to the injected hydrocortisone, and therefore inhibits the ACTH 
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response at to a greater extent via the negative feedback mechanism than in CC-subjects. This 

indicates that the T-allele is associated with enhanced sensitivity to glucocorticoids. However, 

only seven Addison’s patients were included in the pilot project, and we were not able to 

replicate the findings in our sample of Addison’s patients. 

 

Despite the increased glucocorticoid sensitivity that we found in the cell proliferation assay, 

the CC and CT/TT-patients do not differ in the doses of cortisone acetate received in their 

replacement treatment. If the CT/TT-patients are more sensitive to glucocorticoids, the 

optimal treatment dose would be expected to be lower than in the CC-patients. However, the 

means for determining the appropriate dosage is crude, and we do not know whether the 

current treatment is optimal for these patients. Moreover, the increased glucocorticoid 

sensitivity seen in the T-allele carriers are perhaps too small in terms of the cortisone acetate 

dosage required in the patients. Most likely, other pharmacogenetic variation in several genes 

that govern cortisol metabolism (pharmacokinetics) and action (pharmacodynamics) 

contribute to the total picture of cortisone requirement. 

 

There are numerous ways in which the FKBP5 SNP rs1360780 could be associated with inter-

individual sensitivity to glucocorticoids. The T-allele can affect the glucocorticoid sensitivity 

by directly influencing the expression of FKBP5, and thereby also the protein levels of 

FKBP51. The rs1360780 SNP is located in an intron and could therefore affect the splicing of 

the FKBP5 mRNA, possibly by discrimination between the different AP giving rise to 

alternative splice variants of FKBP5 mRNA; resulting in different FKBP51 isoforms [76]. 

The polymorphism could also directly cause a decreased efficiency of the transcription of 

FKBP5, leading to a decreased level of FKBP5 mRNA and eventually lower level of FKBP51 

protein. This would comply with increased glucocorticoid effect due to the absent FKBP51 

inhibition. The opposite is seen in squirrel monkeys, where increased expression of FKBP5 is 

thought to give rise to glucocorticoid resistance [59].  

 

The isoforms might have altered characteristics or efficacy in inhibiting the hGR-signalling 

compared to the full-length FKBP51, and higher (or lower) levels of certain isoforms might 

therefore affect the sensitivity to glucocorticoids. If the SNP is associated with the expression 

of a variant isoform of FKBP51, this may not be detectable in Western blotting or in rtPCR. 

This will depend on the binding site to the FKBP51 protein for the antibodies used in Western 
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blotting and on the binding sites on FKBP5 mRNA for the primers used in rtPCR. The 

antibodies used in our Western blot analysis binds to amino acids 4-199 in the C-terminal of 

the FKBP51 protein [85]. The isoform utilizing AP1 and AP2 (Figure 6) will therefore both 

be detected by the antibody, but since the proteins have the same size, they will appear as one 

band in the blot, and the presence of the two different isotypes will not be discriminated. It is 

possible that the antibody used in the Western blot analysis will bind to the isoform at 31 kDa, 

since this isoform consists of amino acids 180-457. However, no band corresponding to 31 

kDa was identified on the blot in our experiment. The shorter isoforms described by Billing et 

al. [76], where AP4 and AP5 are utilized, are not detected by the antibody used in this 

experiment.  

 

Still many questions about the function of the introns remain unresolved, and the introns may 

have other purposes than are currently known. The rs1360780 SNP may therefore impact on 

the stability, and perhaps also alter the post translational modification of the FKBP51 protein. 

This can influence the level, but also the activity or efficacy of the protein. Post translational 

modifications can also affect the structure of the protein; hence it is possible that the 

polymorphism can alter for example the FK1-domain of the FKBP51. This domain is thought 

to be involved in the hormone binding affinity of hGR and the potential interaction with the 

motor protein dynein. An alteration in this domain is likely to affect these properties, which is 

important in hGR-signalling and thus glucocorticoid sensitivity. 

 

Linkage disequilibrium can produce doubt about an association between a SNP and the 

studied characteristic. The FKBP5 SNP rs1360780 is shown to be in strong linkage 

disequilibrium with a the SNP rs4713916 in the promoter region of FKBP5 [80]. It may 

therefore be the SNP in linkage disequilibrium/the promoter region causing the increased 

sensitivity seen with the T-allele in the SNP rs1360780, and not the SNP studied. The 

rs1360780 SNP may possibly also be in linkage disequilibrium with other SNPs in FKBP5, 

which can cause altered glucocorticoid sensitivity.  
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5.2 Evaluation of methods 

 

In our study, both in vivo and in vitro experiments were performed, and all methods used 

have both advantages and disadvantages. The cell proliferation assay is an in vitro 

standardized test, where equal amounts of glucocorticoids (dexamethasone) are added to 

blood from the patients and controls. The advantage of this is that the levels of steroids that 

actually reach the cells are equal in each individual, regardless of weight/body size and 

different levels of binding proteins. On the other hand, since the cell proliferation assay is 

performed by stimulating only blood cells, this does not necessary say anything about the 

glucocorticoid sensitivity in other tissues. The tissue specificity of FKBP51 is still unknown, 

and even if we find that the T-allele is associated with increased glucocorticoid sensitivity in 

blood cells, we cannot claim that the FKBP5 SNP is associated with increased glucocorticoid 

sensitivity in for example the brain.    

 

The ability to detect differences in glucocorticoid sensitivity by using whole blood instead of 

isolated PBMC has been discussed [86]. Vermeer et al. found that whole blood based assays 

may be less able to distinguish between different levels of glucocorticoid sensitivity. In 

addition, the glucocorticoid sensitivity in the PBMC may be altered by the stimulation from 

the mitogen (PHA), and such stimuli can also alter the transcription and translation pattern 

profoundly [86]. These factors might interfere with our results, especially if these alterations 

affect some samples more than others. The use of dexamethasone instead of the natural 

glucocorticoid hydrocortisone (cortisol) in the cell proliferation assay can also be discussed. 

Dexamethasone is a more potent and longer lasting glucocorticoid compared to 

hydrocortisone, and may therefore produce a different glucocorticoid sensitivity compared to 

the in vivo situation (Table 1). However, dexamethasone is frequently used in standardized 

FKBP5 in vitro bioassays [86], and can therefore be used to compare results in different 

studies. 

 

The results from the cell proliferation assay could also be affected by different experimental 

errors and uncertainties, such as pipetting inaccuracy, incomplete collection of the cells after 

incubation and uncertainties in the measurement of the incorporation of metyl-[3H]-thymidine 

by the scintillation counter or mix-up of the samples. 
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Real time PCR as performed here measures the levels of FKBP5 mRNA in vivo. The 

advantages of this method are that it measures the actual level of FKBP5 expression in each 

patient after they have received the same amount of hydrocortisone, and therefore displays a 

true picture of the FKBP5 expression in their leukocytes. However, the hormone levels two 

hours after hydrocortisone vary greatly between the patients, and even if we are correcting for 

serum cortisol levels in the calculation of FKBP5 expression, this in vivo test will not be 

perfectly controlled. In addition, the serum cortisol level is not a very precise measure of 

active hormone. Serum cortisol is a measure of both unbound and bound hormone, whereas 

the active hormone is found only as free unbound cortisol [21]. Therefore, differences in body 

weight/size and different levels of binding proteins among other factors, will lead to variation 

in hormone levels in the patients.  

 

The Western blot analysis in this study also reflects the situation in vivo, which could indicate 

a tendency towards less or greater levels of the FKBP51 protein. However, the disadvantage 

is that the method does not offer great possibilities for quantifying the protein levels. The 

many steps in preparation of the blot give rise to many experimental uncertainties. Irregular 

blocking of the membrane or uneven transfer of the proteins during blotting could possibly 

lead to an erroneous level of protein on the blot both on the same blot and between different 

blots. In addition, imprecision in the detection of protein concentration and IDV values, and 

pipetting inaccuracy may also lead to false protein levels. 

 

5.3 Further work / perspectives 

The results in this study indicate that the FKBP5 SNP rs1360780 might be associated with 

increased glucocorticoid sensitivity, not glucocorticoid resistance as the protein levels in the 

study of Binder et al could indicate [77]. However, further work is needed to establish this 

association. For later projects regarding polymorphisms in the FKBP5 gene, there are several 

possibilities for improvement. First of all, the experiments need to be done with higher 

number of subjects included, both patients and controls. By doing this, an assumption of 

associations can be made with more certainty, and false positive associations can be avoided. 

Furthermore, the use of a more quantitative method than Western blotting in order to detect 
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the protein levels of FKBP51 could give a more reliable result. This could possibly be 

achieved by the use of (indirect) ELISA or mass spectrometry. 

 

In addition, further investigation needs to be performed concerning the functional role of the 

FKBP5 SNP rs1360780 for glucocorticoid sensitivity. The SNPs in linkage disequilibrium 

with rs1360780, for example the rs4713916 [80] located in the promoter region of FKBP5, 

must be further examined. Moreover, the isotypes found in the proteomic study of FKBP51 

[76] must be studied with regard to their role in hGR signalling, and the potential influence on 

the levels of the different isoforms by the FKBP5 SNPs must be determined. 

 

A better knowledge about the variation in the glucocorticoid sensitivity among individuals 

could first and foremost improve the treatment with glucocorticoids. This applies both to the 

replacement therapy in patients with Addison’s disease, but also in the pharmacological 

treatment with glucocorticoids in other diseases such as asthma, rheumatoid arthritis and 

malignant diseases/cancer. By understanding the mechanisms behind variable glucocorticoid 

sensitivity, the treatment outcomes could be optimized by a reduction of the side effects, and a 

decreased incidence of iatrogenic Cushing’s disease. 

 

It is possible that the FKBP5 SNP may influence the increased glucocorticoid effects seen 

with concurrent use of Tacrolimus (FK506). Tacrolimus is known to potentiate glucocorticoid 

action by binding FKBP51 and replacing it with PP5 [9] and by competitive binding to the 

metabolizing enzyme CYP3A4 (Table 2). If the FKBP5 SNP rs1360780 decreases the levels 

of FKBP51, the inhibition form FKBP51 will be reduced and less Tacrolimus will be needed 

to potentiate the effect of glucocorticoids. This could possible be utilized after organ 

transplantation, where a life-long treatment of Tacrolimus and glucocorticoids are needed. By 

identifying individuals more exposed to this interaction, the dose of glucocorticoids could 

possibly be reduced, together with the susceptibility to side-effects. 

 

Improved understanding of factors influencing the inter-individual glucocorticoid sensitivity 

could advance the knowledge about the pathogenesis of diseases associated with increased 

sensitivity to glucocorticoids or glucocorticoid resistance. This includes diseases such as 

depression, metabolic syndrome, and cancer [14-16]. The FKBP5 SNP could be one of such 

factors, which may affect the susceptibility to disease. Indeed, the study of Binder et al. finds 
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an association between the FKBP5 SNP rs1360780 and the number of lifetime episodes of 

depression and response to antidepressant treatment [77]. Subsequently, a polymorphism in 

the hGR associated with glucocorticoid resistance (ER22/23EK) has also been linked to a 

faster response to antidepressive treatment [47].  

 

Prolonged stress, both physical and psychological, such as a depression is known to disturb 

the HPA-axis [47]. Through HPA-axis activation, mediators are released which suppress 

some parts of the immune system and impair the immune response. It is speculated that this 

might promote the initiation and progression of some types of cancer [15]. Furthermore, 

DNA-damage, accumulation of somatic mutations, alteration in DNA-repair and inhibition of 

apoptosis are also affected by prolonged stress, and might be involved in the onset and 

outcome of some types of cancer. Inter-individual variation in the glucocorticoid sensitivity, 

for example by FKBP5 SNP rs1360780 may therefore predict the susceptibility of an 

individual to cancer. 

 

Polymorphisms in hGR are shown to lead to increased glucocorticoid sensitivity, and further 

to increased risk of metabolic syndrome [41, 43]. Other polymorphisms in the hGR are 

associated to glucocorticoid resistence and a more healthy metabolic profile [41, 42]. There is 

a possibility that the FKBP51 SNP rs1360780, which we find to be in association with 

increased glucocorticoid sensitivity, could be a risk factor for metabolic syndrome as well. 

However, to date no studies are performed on this subject. 

 

In addition to the knowledge of the mechanisms behind this diseases, and how 

polymorphisms affect the susceptibility to disease, the understanding of glucocorticoid 

sensitivity could reveal new molecular targets for treatment and prevention of depression, 

cancer and metabolic syndrome. However, the individual glucocorticoid sensitivity is most 

probably a characteristic in which several factors are at play. This may include both genetic 

factors, including polymorphisms in genes involved in glucocorticoid signalling and 

pharmacokinetics, but also environmental factors such as gut microflora and drug interactions. 

 



   Discussion 

67 

 

5.4 Conclusion 

Our result from the cell proliferation assay points to increased glucocorticoid sensitivity 

associated with the T-allele in FKBP5 SNP rs1360780 in patients. No such association was 

found for the controls, but this could be due to less standardized experimental conditions in 

controls. No association was found in the in vivo studies in patients two hours after a 

standardized intravenous infusion of hydrocortisone between the studied SNP and FKBP5 

expression or FKBP51 protein levels in lymphocytes and no correlation was found between 

glucocorticoid sensitivity in the cell proliferation assay and FKBP5 expression or FKBP51 

protein levels. The ACTH levels did not vary between the different genotypes, and no 

correlation was found between the ACTH-levels and FKBP5 expression.  

 

Further studies are needed to confirm the association of FKBP5 SNP rs1360780 in 

glucocorticoid sensitivity; which would require a larger number of subjects and refined 

methodology. Research is also needed to establish the definitive role of FKBP51 and its 

isoforms in the regulation of glucocorticoid sensitivity. 

 

The growing understanding of inter individual variation in glucocorticoid sensitivity and the 

mechanisms behind may ultimately lead to improved glucocorticoid therapy and increase the 

knowledge about the pathogenesis common diseases, such as depression, cancer and 

metabolic syndrome. 
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