Abstractions for
Language-Independent Program

Transformations

Karl] Trygve Kalleberg

Thesis for the degree of Philosophiae Doctor (PhD) at the
University of Bergen

2007-05-11

ISBN 978-82-308-0441-4
Bergen, Norway 2007

Copyright Karl Trygve Kalleberg
Produced by: Allkopi Bergen

Abstractions for
Language-Independent Program

Transformations

Karl Trygve Kalleberg

Department of Informatics

Thesis for the degree of Philosophiae Doctor (PhD) at the
University of Bergen

2007-05-11

v

Contents

Acknowledgements xi
I Introduction 1
1 Introduction 3
1.1 Software Evolution 4

1.2 Program Transformation 4
1.2.1 Strategic Programming 5

1.3 Program Models 6

1.4 Language Abstractions for Program Transformations 7
1.4.1 Extensible Languages 8

1.5 Methodo 9

1.6 Contributions v vt 9

1.7 Outline. . ..o 10

1.8 Summary 12

II Software Transformation Systems 13
2 Programmable Software Transformation Systems 15
2.1 Software Transformation Systemso .. 15
2.1.1 Anatomy of a Transformation System 16

2.1.2 Features of Software Transformation Systems. 17

2.2 FeatureModels 18
2.3 Program Representation. 19
2.3.1 Runtime Representation 20

2.3.2 Storage Representation 30

2.4 Transformation Language. 32
2.4.1 Organisationvuuententenennennennenn.. 32

2.4.2 Transformation Atoms covt it 36

243 Typing . ..o 47

2.5 DISCUSSION ..ottt 49
2.6 Summary 50

3 Strategic Term Rewriting 51
3.1 Term Rewritingot i 51
3.1.1 Algebraic Signatures and Language Signatures 51

3.1.2 Patternsand Terms 53

Contents vil
535 Weaving oottt 99

5.3.6 Modularisation o ol 100

54 CaseStudiesot 100
54.1 Logging 101

5.42 TypeChecking i 102

5.4.3 Extending Algorithms, 103

5.5 Implementation of the Weaver 109
5.5.1 A Weaving Example 111

5.5.2 Aspectsas Meta Programs 112

5.6 DISCUSSION . .t vttt ittt e 112

5.7 SUMMALY ...ttt 114

IV Supportive Abstractions for Transformations 115
6 An Extensible Transformation Language 117
6.1 An Extensible Compiler. L. 117
6.1.1 Declaring Syntax and Assimilator 117

6.1.2 Language Extensions 119

6.1.3 Compiler Pipeline L 119

6.1.4 StrategoCoreot 121

6.2 An Extensible Runtime 122
6.2.1 Design 122

6.2.2 Implementation 123

6.2.3 DPerformance i 123

6.3 Light-Weight and Portable Transformation Components 124
6.3.1 Transformlets L. 124

6.3.2 Implementation 125

6.4 SUMMATY ..ottt 125

7 Strategic Graph Rewriting 129
7.1 ADSEract . ..o i 129

7.2 Introduction i 130

7.3 Extending Term Rewriting Strategies to Term Graphs 131
7.3.1 Term Rewriting Strategies 131

732 References. 133

7.3.3 Rewrite Rules and References 134

7.3.4 Term Graph Traversal 135

7.4 From Terms to Term Graphs 137
7.4.1 Use-DefChains., 137

742 Call Graphs 139

vi

Contents

3.1.3 RewriteRules
3.1.4 Rewriting Strategiesc.........
3.2 System S — Strategic Term Rewriting.
3.2.1 Primitive Operators and Strategy Combinators
3.2.2 Primitive Traversal Strategies
3.2.3 Building and Matching Terms
3.2.4 Variable Scoping L
325 RewriteRules
3.2.6 Additional Constructs
33 Stratego ...
3.3.1 Signatures, Patterns and Terms
332 Congruences.couuiiiiianina.n.
3.3.3 Scoped, DynamicRules
334 Overlays i
335 Modules
3.3.6 Stratego/XT i
3.4 Summary

III Abstractions for Language Independence

4 Program Object Model Adapters

41 Introduction i,
4.2 The Program Object Model Adapter.................
4.2.1 Architecture Overview
422 Design Overview.
4.3 Implementation,
43.1 TermInterface.........
4.3.2 Design Considerations
44 Related Work
4.5 DISCUSSIONttt
46 Summary
5 Modularising Cross-Cutting Transformation Concerns
5.1 Introduction
5.2 Constant Propagation
5.3 ASPECTStIALEZO . « o v v vt e et e e e
5.3.1 JoInpointsovueniinninnennenen..
5.3.2 PoIntcutsiuiiiiiii
533 Advice ...

534 Cloning

viii Contents
743 FlowGraphs i i 140
7.5 Graph Algorithms and Applications 141
7.5.1 Finding Mutually Recursive Functions 142
7.5.2 Lazy Graph Loading 142
7.6 Implementation 143
7.7 Related Work 144
7.8 Discussion and Further Work 145
7.9 Conclusion 145
V Case Studies 147
8 Language Extensions as Transformation Libraries 149
8.1 ADStract 149
8.2 Introduction 150
8.3 TheAlert DSAL 151
8.3.1 TheTIL Languagec.ciuiuinininnnn.. 152
8.3.2 Alert Declarationsand Handlers. 152
8.4 Implementation of TIL+Alert......... 155
8.4.1 DSAL = library + notation 155
8.4.2 TypeChecking i 156
8.4.3 AlertWeaving 157
8.4.4 Coordination 160
8.5 DISCUSSION .. i 160
8.5.1 Program Transformation 160
8.5.2 Program Transformation Languages for Aspect Implemen-
151 103 » N 162
853 RelatedWork 164
8.6 Conclusion 165
8.7 TIL Grammarottt e 166
9 Interactive Transformation and Editing Environments 167
9.1 Introductionttt 167
9.2 Core Functionality i 169
9.2.1 Architecture 169
922 BuildWeavecoii 170
9.2.3 DProject Rebuilding L 170
9.3 Editor. 171
9.3.1 Content Completion 171
9.3.2 Syntax Highlighting, 171
9.3.3 Parenthesis Highlighter 172

Contents ix
934 Outline. 172

9.3.5 Source Code Navigation 173

93.6 BuildConsole....... 173

9.4 Scripting.ot 174
9.4.1 Script VIEWot it i 174

9.42 ScriptConsole i 174

9.4.3 Analysing and Transforming Source 176

9.4.4 Transformation Hooks. 176

9.5 Implementationc.i.iiii 176
9.6 Related Work 177
9.7 Summary 178
10 Extending Compilers with Transformation and Analysis Scripts 179
10.1 Introductiono 179
10.2 Scriptable Domain-Specific Analysis and Transformation 181
10.2.1 Architecture 182
10.2.2 MetaStratego as a Scripting Engine 183

10.3 Examples of Domain Support Scripting 184
10.3.1 Project-Specific Code Style Checking 184
10.3.2 Custom Data-Flow Analysis 188
10.3.3 Domain-specific Source Code Transformations 190

10.4 Implementationo 191
10.4.1 Analysis Architecture L oL 191
10.4.2 Transformlet Repositories., 192

10.5 Related work oo 192
10.6 DiSCUSSION « o vttt 193
10.7 Summaryt 194
11 Code Generation for Axiom-based Unit Testing 195
11.1 Introduction i 196
11.2 Expression AxiomsinJavac.oiuuiiiiia.n. 197
11.2.1 JUNIt ASSErtions . . .o vt v ittt et ie e e ee e eiee e 197
11.2.2 Java Specification Logics 198

11.3 Structuring the Specifications 201
11.3.1 Associating Axioms with Types.......... 202
11.3.2 Optional and Inherited-only Axioms 204

11.4 Java APl caveats.o ittt e 206
11.4.1 Overrideand Overload 206
11.4.2 clone and Other Protected Methods 207
11.4.3 The equals “congruence” relation 208

11.5 Testing . .o vt 208

X Contents

11.5.1 Test Data Generator Methods 209

11.5.2 Determining Test Set Quality 210

11.5.3 Runningthe Testso, 210

11.5.4 Interpreting Test Results 211

11.6 Test Suite Generationoiuiiiinuennnenn.. 211
11.6.1 Generating Tests from Axioms 212

11.6.2 Organising Generated Tests 215

11.6.3 ExecutingTests 215

11.7 Implementationoiiuiuinininnnnanenen.. 216
11.8 Discussion and Related Work 217
11.9 Summary 218
VI Conclusion 221
12 Discussion 223
12.1 Techniques for Language Independence 223
12.1.1 Abstractingover Data 223

12.1.2 Expressing Generic Algorithms. 224

12.1.3 Adapting Generic Algorithms. 225

12.1.4 Modular Language Descriptions 225

12.2 Other Approaches to Software Evolution. 226
12.3 Availability of Research Systems 226

13 Further Work 227
14 Conclusions 229

15 Summary 231

Acknowledgements

Most dissertation prefaces start with a sentence saying that the work would not have
been possible if it had not been for the supervisor(s). That’s the third sentence in this
preface. If it had not been for Magne Haveraaen and Eelco Visser, this dissertation
would not exist. I am extremely grateful to both for allowing me to play around
with what I consider to be really fun stuff for the last three and half years — and
getting paid for it! The different styles of Eelco and Magne have been a source of
inspiration, and sometimes a little bit of frustration. In some odd way, it’s like having
two parents who don't always agree on certain parts of your upbringing. Magne’s
socractic style of teaching and counseling together with his insistence on thorough
(algebraic!) analysis before anything else has taught me to think a lot harder about
the assumptions I would normally make without noticing. Eelco’s style of exploration
and research through construction has in many ways reinforced my natural tendency
to build things in order to understand how they work. The two styles can certainly be
made to mix, as Eelco and Magne have both done and shown themselves. I've come
to notice, however, that finding the best mix requires a good amount of patience and
experience.

Magne must bear most of the blame for luring me into computer science research
in the first place. His sneaky trick was: “If you're not planning on going into research,
there’s no need for me to spend any time commenting on your master thesis, since
you won't be needing good marks on it anyway.” It worked. (I was young and naive.)
I agreed to applying for a PhD scholarship, and the journey since has been most
enjoyable. This journey took me to Eelco’s lab at Utrecht University, The Netherlands
for the academic year 2004/2005. Escaping the rain in Bergen for ten months was
great. It was better still to work with Eelco and his band of merry hackers. Most of
the Stratego-specific work, such as GraphStratego, AspectStratego and MetaStratego,
has its origins from my time in Utrecht. Martin Bravenboer, Eelco Dolstra, Rob
Vermaas, Rui Guerra, Karina Olmos, Armijn Hemel, Iris Reinbacher, Andres Loh,
Peter Verbaan, Peter Lennartz and the rest of the gang in Utrecht made my stay there
truly memorable.

My journey did not end in Utrecht, however. I've also had the pleasure of visiting
the lab of Krzysztof Czarnecki at the University of Waterloo, Canada. I greatly appre-
ciate the insights provided by Krzsysztof. While there, I conducted most of the work
that went into the software transformation systems survey of this dissertation. Again,
I was extremely fortunate to spend time with some great lab mates: Barry Pekilis,
Sean Lau, Michal Antkiewicz, Krzysztof Pietroszek, Chang Hwan Peter Kim, Abbas
Heydarnoori, Igor Ivkovic and other passers by.

But wait. There’s more. I spent last summer at IBM’s T.J. Watson Research
Center in New York, USA. While there, I worked with Norman Cohen, Paul Chou
and Vijay Saraswat. Though not directly relevant to my thesis project, I got to hack

X1

xii Chapter 0. Acknowledgements

on compilers for three months straight, and was happy as a clam. I met heaploads of
nice people there as well, including my lab mates Marco Zimmerling and Young-Ri
Choi, and fellow interns Ilona Gaweda and Shane Markstrum. I also got very useful
feedback on my research from Bob Fuhrer, Frank Tip and John Field. My time at
Watson enforced my motivation for plugging transformation systems into existing
language infrastructures (of which they have a lot).

During my occasional stays Bergen, I've been surrounded by rain and supportive
friends. My brother Arne Kristian and Eva Kamilla have always had a warm meal and
a mattress ready. Tilde Broch Ostborg, the person apart from my family who knows
me the best, has been a constant support. Lately, Tormod Haugen has pleasantly
invaded my privacy and offered his dry wit and juicier cooking. At the office, Anya
Bagge has always had a solution to my LaTeX problems and there is nothing worth
knowing about building Stratego programs that Valentin David hasn’t mastered. Paul
Simon Svanberg has been my link to Real Life in the last few months and Eva Succi
has made me believe that I know a little bit about LaTeX, too.

Throughout the entire process, whenever something went awry, or whenever
something went allright, my mother has been but a phone call away. And in the
way only mothers can, she’s put things in perspective when I've been suffering from
the compulsory fits of PhD despair.

During the writing of this dissertation I have received thorough input from Eelco
and Magne, but I've also had great help from some very good friends. In alphabet-
ical order (because any rating would be inaccurate and unfair): Martin Bravenboer,

Tormod Haugen, Barry Pekilis.

Part |

Introduction

— I dont see how you in ten pages can do the whole thing
completely wrong!

— Barry Pekilis

Introduction

Software is a crucial part of the modern infrastructure on which we all rely, and,
therefore, it must be reliable, robust, correct and be able to evolve over time with our
changing needs. Ensuring these properties for the massive amounts of software in use
is considered one of the grand challenges in computer science. This social and tech-
nical challenge is often referred to as “dependable systems evolution” [Som00], “the
software maintenance challenge” [Art88], “the software crisis” [DT96] and “trust-
worthy computing” [MdVHCO03].

Better tools and techniques for processing and manipulating software are likely
to be part of any solution to this challenge. Development of software processing
tools and techniques is studied in the field of program transformation [PS83]. Many
results from this field have proven to be highly applicable for software evolution.
A frequently encountered drawback, however, is that implementations of program
transformation and analysis techniques are often language-specific; they tend to be
tied to the front-end or grammar they were written against, even when the underlying
algorithms are general. This significantly impairs reuse of transformation code and
systems.

This dissertation addresses the reuse limitation by introducing novel techniques
for constructing reusable, language-independent program analyses and transforma-
tions. The proposed techniques include a versatile approach for easily plugging
transformation systems into existing language infrastructures, such as compilers, and
a declarative, aspect-based approach for software practitioners to express transforma-
tion programs for language families, rather than just for a single language. With these
techniques in hand, the dissertation demonstrates how automatic software mainte-
nance tasks can be increasingly expressed in a reusable manner. Case studies illustrate
their applicability to encoding of architecture and design rules as executable program
analyses, expressing control- and data-flow transformations, and interactive code gen-
eration of unit tests from user-written axioms.

4 Chapter 1. Introduction

1.1 Software Evolution

Software maintenance and evolution is by far the most expensive and time-consuming
part of the software life-cycle [PHl05]. The trend during the last 30 years shows
that maintenance is an increasing part of the total software cost. Reports from
the 1970s suggest that 60-70% of the total cost went into maintenance and evo-
lution [ZS]JG79]. In the 1980s, this figure crept closer to 70% [McK84] and, during
the 1990s, it reached around 90% [Mo0a90, Erl00]. About 50% of the maintenance
time is spent understanding the existing software [FH83].

Organisations with an investment in software are perhaps affected by this fact
the most when they need to effect substantial changes. The sheer size of the code
bases make radical changes and redesigns prohibitively and increasingly expensive.
Ulrich [Ulr90] estimated that 120 billion lines of code was maintained in 1990. In
2000, the number was at 250 billion lines according to Sommerville [Som00]. Esti-
mates by Miiller suggest that the doubling happens around every 7 years [MWT94].

Software is becoming a limiting factor for progress in all kinds of organisations.
To escape this situation, software needs to be constructed differently, and in ways
which make it possible for small teams of programmers to understand, maintain and
change large projects with millions of lines of code. Large parts of maintenance need
to be done with (semi-) automatic software processing tools. Automation is key, but
automation cannot work until the substrate being processed, the software, is easily
managed by the tools. This means inventing better techniques for analysing and
transforming large code bases.

1.2 Program Transformation

The field of program transformation is concerned with developing theories, tools
and techniques for the analysis and transformation of programs. Typical applica-
tions in this field include transformation of programs to improve a certain metric
such as execution speed, class cohesion or memory footprint; translation between
languages, e.g. compilation, code generation and interpretation; analysis and veri-
fication of program properties such as absence of deadlocks, information leakage or
buffer overflows. Each of these examples constitutes a transformation problem or a
transformation task. A fuller discussion of program transformation is given in Chap-
ter 2.

Program transformation techniques aid in the development of robust language
infrastructures which in turn provide the basic components required for all forms of
language processing. On top of these infrastructures, scalable analyses and transfor-
mations have been realised for many problems such as searching for code defects and
security vulnerabilities. These analyses can handle multimillion line projects. How-

1.2. Program Transformation 5

ever, while these analyses and transformations generally consist of algorithms and
data types that are language independent, their implementation are usually specific
to a given infrastructure. This makes them very difficult to reuse across different
infrastructures, even for the same language. Presently, they are only accessible by a
handful of specialists and have not gained widespread acceptance. This effectively
reduces reuse of both knowledge and tools, and seriously lessens the promise of pro-
gram transformations as an approach for dependable software evolution.
This dissertation focuses on:

e methods for constructing versatile program transformation environments which
aid developers in implementing reusable, language-independent transforma-
tion programs;

e how to express transformation programs, and how to design transformation
languages such that transformations can become reusable across subject lan-
guages and between transformation tasks;

e how to capture subject language constructs, and other entities found in soft-
ware, using transformation functions and abstract data types in the transfor-
mation language; and

e how to manage these transformation functions and data types so that they are
convenient to use by programmers of transformation programs.

This work reuses and expands upon promising techniques that encourage lan-
guage independence and reuse of transformations. The paradigm of strategic pro-
gramming has a central part in this dissertation.

1.2.1 Strategic Programming

Strategic programming [VB98, Vis99, LVV03] is a generic programming technique
for processing tree- and graph-like object structures. The technique separates two
concerns: object transformations and traversal schemes. Strategies are built using
traversal combinators and provide complete control for expressing generic traversal
schemes. These strategies are parametrised with transformations that are responsible
for supplying the problem-specific transformations.

This separation is a particularly powerful approach for building reusable program
transformations. The strategies can be reused across transformation problems and
subject languages, whereas the transformation parameters, expressed as rewrite rules,
are used to adapt the generic strategies to a particular language and problem.

Relatively few programming languages have been built with strategic program-
ming in mind. One example of a “strategic” language is Stratego [BKVVO006], a

6 Chapter 1. Introduction

domain-specific language for program transformation based on a sub-paradigm of
strategic programming called strategic term rewriting.

In (strategic) term rewriting approaches to program transformation, programs
are described as terms which in most respects may be considered analogous to trees.
Using terms and rewriting allows the succinct expression of many transformation
problems, but the terms are sometimes also a limitation. The choice of model used
to describe programs in a given transformation system has consequences for which
transformation tasks that system is best applicable to.

1.3 Program Models

The effectiveness and applicability of a software transformation system depends to a
large extent on how its underlying program model has been formulated. The model
determines which transformation tasks will be easy and which will be difficult or
impossible. Particularly, the “abstractness” of the representation determines which
analyses and transformations are possible — if the model is too abstract, refactoring is
not possible, and if the model is too detailed, many analyses become too expensive.
Common representations include Prolog-style fact databases, relational databases,
various forms of graphs, lists of tokens and concrete syntax trees. All of these are
discussed in Chapter 2. One representation, which is noteworthy because it relates
very closely to the representation of programs as terms, is the abstract syntax tree.

Abstract Syntax Trees

Abstract syntax trees (ASTs) contain the essence of programs. They are a minimal
and precise form of syntax trees (sometimes called parse trees). Syntax trees are con-
structed by parsing the source code text. The resulting tree contains all the lexical
tokens of the original source code, possibly also including whitespaces, represented
as a tree according to a' subject language grammar.

For most transformation and analyses tasks, both the tokens and whitespaces are
redundant. Stripping them away is desirable, for efficiency reasons. This stripping
yields an AST which contains the essence of the original textual representation 2.

The AST has numerous appealing advantages:

e itisa high-level, as opposed to machine-level, representation;

'A previous version of this manuscript erroneously used the definite article here. As Peter Mosses
kindly pointed out, multiple variants (implementations) of a language grammar usually exist. Fur-
thermore, it is desirable to keep the AST interface decoupled from the underlying grammar as much
as possible, so that clients to the AST API are insulated from incidental (implementation-specific)
grammar changes.

“McCarthy, the father of Lisp, is generally credited with inventing the term AST.

1.4. Language Abstractions for Program Transformations 7

o ASTs capture the essence of the language;

e cverything in the source code that contributes to the executed program is in

the AST;

e using maximally shared, directed acyclic graphs, ASTs can be stored and ex-

changed very efficiently [vdBdJKOO00];

o there are a number of established techniques for augmenting ASTs with extra
information such as layout, line number information and traceability.

For these reasons, most of the examples in this dissertation will revolve around
ASTs — since an AST captures the essence of a subject language, abstracting over
languages implies abstracting over ASTs. ASTs also have their limitations. Some of
these will be addressed in Chapter 7 where strategic graph rewriting is discussed. It is
important to keep in mind that the techniques developed herein are not bound to just
ASTs; most will work for any tree or graph-like structures which may be arbitrarily
more or less abstract than ASTs.

1.4 Language Abstractions for Program Transformations

The strategic programming paradigm is an attractive starting point for expressing
reusable, language-independent transformations. This paradigm, and in particular
strategic term rewriting, provides an attractive level of genericity in the formulation
of transformation programs. Certain obstacles remain, however, many of which are
shared with other approaches to program transformation. These must be addressed
if substantially better levels of reuse and language independence are to be achieved.

One of these limitations is the inability of transformation systems to abstract over
its program model implementation. It would be attractive to separate the transfor-
mation engine logic from the program model representation. It should be comple-
mented with a versatile technique for adapting transformation engines to external
program models. This would make it possible to combine transformation engines
with any software development framework that provides a suitable program model.

Another limitation is the severely restricted ability of modern transformation sys-
tems to cope with cross-cutting concerns in transformation programs. Related to this
is the ability to adapt existing transformation programs to new subject languages, or
to changing program models.

A final limitation, particular to strategic term rewriting, is the poor support for
program models that are graph-like in nature, such as program flow graphs.

The strategic programming paradigm has been extended in this work to address
the above limitations using the following abstractions:

8 Chapter 1. Introduction

Program Object Model Adapters A program object model (POM) adapter is a
technique for abstracting over implementation details of the program model in a
given language infrastructure. The transformation system is written against the POM
adapter interface. It is a minimal interface for navigating and manipulating tree and
graph structures. By supplying infrastructure-specific adapters that translate oper-
ations on this interface to operations on the internal object model, transformation
engines can be freely reused across language infrastructures, e.g. across compiler
front-ends. A notable feature of the technique is that the majority of the adapter
code can be automatically generated by analysing the object model interface of the
language infrastructure.

Aspects Aspects extend the strategic programming paradigm with a general ap-
proach to capturing cross-cutting concerns and deal with properties such as traceabil-
ity, type checking and unanticipated extensibility. Using aspects, it becomes easier
to express generic transformation algorithm skeletons and to adapt these to specific
program object models and to specific subject languages.

References References provide an extension to the strategic term rewriting paradigm
for rewriting on graph-like structures. This allows the strategic term rewriting ma-
chinery to be applied to computing on control- and data flow graphs. References
provide a way to turn some global-to-local rewriting transformations into local-to-
local.

It should be noted that these abstractions can be recast for other transformations
languages and programming language paradigms. This will be discussed in the re-
spective chapters.

It must also be noted that the field of software verification and validation, which
is also an important direction for dependable systems evolution, largely falls outside
the focus of this thesis. Software verification and validation typically uses abstract
models of the underlying software. These models are partially or fully extracted from
the existing software using a variety of different tools. The techniques and tools
described in this dissertation can thus complement these approaches.

1.4.1 Extensible Languages

When expressing program transformations, one needs to handle domain abstractions
with cross-cutting properties such as scoping rules, variable bindings and state prop-
agation. The behaviour of these domain abstractions may be very complex. While
manipulating domain abstractions using functions and abstract data types is possible,
it is often notationally inconvenient. They frequently exhibit a cross-cutting nature
which results in cross-cutting concerns in the transformation program.

1.5. Method 9

In some cases, these concerns can be handled using techniques borrowed from
aspect-oriented programming. By extending the transformation language with sup-
port for aspects, one can modularise some of the cross-cutting concerns arising from
domain-abstractions into libraries. However, not all cross-cutting concerns are ex-
pressible in aspect-languages and many that are suffer from complicated notations.
Some of the proposed abstractions, such as the ones providing graph rewriting, are
therefore realised as active libraries [VG98]. Libraries in this form can interact with
the compiler to provide detailed, library-specific error messages when the abstractions
are misused and may also come with library-specific optimisations and notation.

Active libraries with notation extend the host transformation language with new
language constructs. Each new library thus becomes a small domain-specific em-
bedded language (DSEL). Those libraries with cross-cutting properties are termed
domain-specific aspect languages (DSALs). The extensible transformation language
framework called MetaStratego supports both forms of language extensions. The
framework allows Stratego developers to implement their own active transformation
libraries. To a certain extent, MetaStratego follows the approach to language exten-

sion described in [Vis05b].

1.5 Method

The method employed for arriving at each of the results in this dissertation followed
a simple, four step process:

1. Identify Problem — A specific limitation preventing language independence or
reusability was identified.

2. Formulate Solution — An analysis was conducted to describe the characteristics
of the problem, and then a design was formulated which sought to solve it.

3. Implement Solution — The formulated solution was implemented as a computer
program. In some cases, this led to language extensions, in other cases, it led
to transformation libraries or new infrastructure.

4. Demonstrate Applicability — One or more prototype applications demonstrating
the applicability of the implemented solution were constructed.

This process has been applied to each the proposed abstractions presented herein.

1.6 Contributions

The contributions of this dissertation are:

10 Chapter 1. Introduction

e a novel technique for plugging transformations into arbitrary language infras-
tructures;

® anovel extension of the strategic programming paradigm with aspects for han-
dling cross-cutting concerns;

e demonstrating how aspects can be used to adapt strategies and rule sets after-
the-fact, i.e. grey box reuse;

® a novel extension of the strategic programming paradigm for graph structures;

e the construction of a modern, interactive development environment for devel-
opment of and experimentation with interactive strategic programming;

® a state-of-the-art survey of design and architectural features found in contem-
porary program transformation systems;

e the design and implementation of an infrastructure for an extensible program
transformation language;

e avalidation of the proposed techniques and abstractions through the construc-
tion of several prototypes:

— alanguage extensions for alerts;
— an interactive development environment for Stratego;
— a compiler scripting for framework-checking; and

— an interactive generator of unit tests from axioms of algebraic specifica-
tions.

1.7 Outline

This dissertation is divided into five parts, as follows.

1. Software Transformation Systems — provides background material from the field
of program transformation. This introduction chapter is in part based on the
paper Stratego: A Programming Language for Program Transformation [Kal06].
Chapter 2 gives a detailed discussion of the state-of-the-art in software transfor-
mation system design and architectural features, with a focus on the capabilities
for language independence. In Chapter 3, the basic notions from universal al-
gebra and term rewriting are given along with a formulation of the System S
calculus for strategic term rewriting. The Stratego language is an implementa-
tion of the System S calculus.

1.7. Outline 11

2. Abstractions for Language Independence — contains the main contributions of
this dissertation. Chapter 4 introduces the program object model adapter tech-
nique and shows how it allows plugging transformation systems into existing
language infrastructures. This enables large-scale reuse of entire transformation
environments. The chapter is based on the paper Fusing a Transformation Lan-
guage with an Open Compiler [KV07a] written with Eelco Visser. In Chapter 5,
a language extension for capturing cross-cutting concerns in strategic program-
ming languages is introduced based on the paper Combining Aspect-Oriented
and Strategic Programming [KVO05] written with Eelco Visser. The chapter de-
scribes a flexible and declarative technique for adapting and extending general
transformation algorithm skeletons to specific problems and subject languages.

3. Supportive Abstractions for Transformations — provides additional abstractions
which augment the main abstractions proposed in the previous section. Chap-
ter 6 introduces the Stratego programming language and MetaStratego, an ex-
tensible variant Stratego language and its compiler infrastructure. This chap-
ter is partly based on Swarego/XT 0.16. A Language and Toolset for Program
Transformation [BKVVO7] and Stratego/XT 0.16: Components for Transforma-
tion Systems [BKVVO06], both written with Martin Bravenboer, Rob Vermaas
and Eelco Visser. The MetaStratego infrastructure forms the basis for all the
language abstractions proposed in this dissertation. Chapter 7 shows an exten-
sion to Stratego that supports a particular form of graph rewriting and moti-
vates its use by computations on control flow graphs. It is based on the paper
Strategic Graph Rewriting: Transforming and Traversing lerms with References
[KV06] written with Eelco Visser. This extension allows strategic term rewrit-
ing techniques to be applied to other program models than (syntax) trees.

4. Case Studies — discusses several prototypes where the abstractions from the pre-
vious parts have been tested in practise. Chapter 8 gives an application of
the language extension techniques explored in this dissertation to a domain-
specific aspect language for mouldable failure handling. It is based on the
paper DSAL = library+notation: Program Transformation for Domain-Specific
Aspect Languages [BKOG] written with Anya Bagge, but the alert extension was
first explored in Stayin’ Alert: Moulding Failure and Exceptions to Your Needs
[BDHKOG] written with Anya Bagge, Valentin David and Magne Haveraaen.
This chapter is included to demonstrate that the language extension techniques
employed in this dissertation are more generally applicable. Chapter 9 in-
troduces an interactive development environment for (Meta)Stratego called
Spoofax, based on the paper Spoofax: An Extensible, Interactive Development
Environment for Program Transformation with Stratego/XT [KVO07b] written
with Eelco Visser. Parts of the Spoofax infrastructure have served as a testbed

12

Chapter 1. Introduction

for many of the other case studies. Chapter 10 demonstrates the applicability
of the proposed abstractions with a case study demonstrating how the Strat-
ego transformation system may easily be plugged into an existing development
framework for Java. This allows library-specific analyses and transformation to
be written by developers of Java frameworks and libraries. Chapter 11 shows
how the transformation infrastructure and language abstraction may be applied
to interactive program generation. A code generator for unit tests from axioms
is presented, based on a testing methodology proposed by Magne Haveraaen.

Conclusion — contains some general reflections over language-independence as
well as the concluding remarks. Chapter 12 is devoted to a summary and
general discussion of the results obtained in this work. Chapter 13 discusses
further work. Chapter 15 summarises. Chapter 14 contains the conclusion.

1.8 Summary

Dependable software evolution is one of the grand challenges in computer science.

Automating maintenance tasks is one key way to tackling this challenge. Program

transformation provides scalable and robust techniques for automatic maintenance,
but is hindered by poor reuse and language-dependence. This dissertation claims that
better reuse and language-independence can be found by abstracting over program
models and by using aspects to adapt transformation algorithms to specific subject
languages and program models. The rest of this dissertation serves to substantiate
this claim.

Part 11

Software Transformation Systems

13

Programmable Software Transformation
Systems

This chapter gives an overview of the state-of-the-art in architectures and designs
for programmable software transformation systems. This is highly warranted be-
cause unlike for business systems, compilers and web applications, no books exist
which propose best practises for design and implementation of software transforma-
tion systems. In fact, even the research literature is to a large extent lacking in such
information.

Architectural features and design considerations for these systems are explored
using a formal notation called feature models, and further illustrated with examples
taken from a careful selection of a dozen concrete research systems. The feature
models [Bat05] are used to compare and contrast the design of both architectures
and transformation languages. They give a sense of the complexity and breadth of
the design space for software transformation systems. Special focus is placed on the
program models found in transformation systems, and how these interrelate with the
transformation languages.

2.1 Software Transformation Systems

A software transformation system is an application that takes a source program written
in a source language and transforms this into an target program in a target language,
according to instructions of a transformation program, written in a transformation
language. The source language can be any formal language. What some refer to
as (code) generators are included in the definition. In cases where distinguishing
between the source and target language is not necessary, the term subject language
will be used. It is meant to subsume both. The transformation is implemented by a
transformation programmer and is always designed to preserve certain semantics. The
exact semantics to be preserved are specific to the transformation, however. The goal
of a transformation T is to reduce some cost C,,(p) of some metric 7 on a program

15

16 Chapter 2. Programmable Software Transformation Systems

p: we want C,,(T(p)) < C,u(p), i.e. the transformed program should be “better”,
according to some metric [PP96, Pai96, CC02].

A traditional application area for software transformation is zransformation-oriented
programming [Par86, Fea87]. In this approach to software development, an exe-
cutable implementation in the target language is derived mostly automatically from
a formal, non-executable specification in the source language. Each transformation
step is proved correct, either by only applying transformations guaranteed to preserve
the desired semantics, or by manually filling in proof obligations the transformation
system cannot automatically resolve. Here, the metric is executability — eventually an
executable program is obtained, and the property being preserved is the correctness
of the behaviour of the program, with respect to the source specification.

Another important application is source-to-source transformations, where the tar-
get and source language is the same. Typical applications in this area include program
optimisation, where execution speed is the metric; re-engineering, where certain no-
tions of maintainability are used as metrics; and refactoring [Opd92], where (often
very loose) metrics for design quality are used. Software transformation techniques
and systems have also been used to create compilers, source code documentation
systems and program analysers. The survey by Partsch and Steinbriiggen [PS83] con-
tains additional examples of applications for transformation systems.

A note about compilers is warranted. While the general definition above also
treats compiler as software transformation systems, the subject of this survey — pro-
grammable transformation systems — differs from compilers in one crucial aspect:
the transformation programmer can extend and adapt the software manipulation fa-
cility by supplying new transformations. A programmable software transformation
system may be seen as a programming environment built specifically to manipulate
programs, i.e. to implement transformation programs. It is therefore more natu-
ral to compare programmable transformation systems to compiler construction kits,
so-called compiler compilers, rather than directly to compilers. Conceivably, trans-
formation systems could be built directly on top of compilers, however. This is the
subject of Chapter 10.

This chapter will show that software transformation systems are available in many
variants, ranging from extensions to general purpose programming languages, to fully
self-contained and stand-alone transformation environments.

2.1.1 Anatomy of a Transformation System

A common way to think about transformations is to divide them into stages. All
stages taken together is considered a pipeline. The syntax of the input and output
languages are specified by source- and target grammars, respectively. For source-to-
source transformation systems, as illustrated in, Figure 2.1, the source and target
language is the same.

2.1. Software Transformation Systems 17

cst

el trans-

semantic
analysis

abstract-
ion

pretty-
printer

parser

Figure 2.1: Conceptual pipeline for a source-to-source transformation system.

The process indicated in Figure 2.1 starts with the system parsing the source of the
input language. The format of the input language is described by a source language
grammar. The parsing stage constructs a parse tree, or concrete syntax tree (CST),
from the input text. Layout and unnecessary lexical elements such as parentheses and
keywords are removed from this tree in the abstraction stage, and an abstract syntax
tree (AST) is derived. Semantic analysis is performed and the AST is annotated with
type information. In practise, the AST may be constructed while parsing, and in
some implementations, type checking is also done concurrently with parsing. The
transformation rewrites the AST. After modifications are complete, the tree will be
serialised back to source code, using a code formatter, or prezty printer.

This model is highly conceptual. Many source-to-source transformation systems,
such as TXL [Cor04], transform the CST directly. ASTs are never derived. Some
systems do not support type contexts and the AST in these systems will not contain
type information. Others construct a higher level program model, or an abstract
syntax graph, which is then subjected to graph rewriting techniques.

A complete transformation, from program code to program code, is called a run.
Each of the boxes in Figure 2.1 represents a well-delineated transformation, and is
called a szage. Each stage may internally be split into phases. Each phase consists of a
sequence of rule application szeps. A step, or rule application, is the smallest unit of
transformation. They represent the atoms from which transformations are built.

Other architectural models for transformation systems also exist. A common
example is the incrementally updating system. In these systems, the output of one
run is the input to the next. A human operator is usually involved in adjusting the
transformation parameters between each run.

2.1.2 Features of Software Transformation Systems

A software transformation system may be decomposed into three closely related parts:
a program representation holding the program the system manipulates, a zransforma-
tion language for expressing these manipulations, and an environment which is used
to interact with the developer. Figure 2.2 shows a feature model fragment which vi-
sualises this decomposition. Details of each of these features will be described in the

18 Chapter 2. Programmable Software Transformation Systems

‘ Software Transformation System ‘

Program Representation(2.4)» ‘ ‘Environment ‘ ‘ Transformation Language(2.14)»

Figure 2.2: Top-level features of software transformation systems.

following sections. The numbers in parentheses refer to figure numbers for additional
diagrams which elaborate on a particular feature. Not all features will be discussed
in full detail. This dissertation is largely concerned with the interplay between ab-
stract models for programs and transformation languages used to manipulate these.
A full discussion of the user interface, i.e. environments, of transformation systems is
therefore out of scope. Before continuing, the feature model notation is explained.

2.2 Feature Models

Explanation

Solitary feature with cardinality [1..1], i.e., mandatory feature

Solitary feature with cardinality [0..1], i.e., optional feature

R Bl BB R RS

Solitary feature with cardinality [n..m], n > 0 Am > n Am > 1, i.e., mandatory clonable
feature

Grouped feature with cardinality [0..1]

Feature model reference F

v

Feature group with cardinality [1..1], i.e. xor-group

Feature group with cardinality [1..k], where k is the group size, i.e. or-group

Figure 2.3: Symbols used in cardinality-based feature modeling

Feature models [Bat05] provide a graphical notation for describing variation
points found in the design of software systems. The notation is well suited for vi-
sualising the relationship between features using the precise and general kernel lan-
guage described in Figure 2.3. Organising the feature space into hierarchical contexts
helps guide discussions. The application of feature models spans from the purely
conceptual, at the domain concept level, to implementation detail, at the design and
architectural level. This chapter mainly uses feature models for describing architec-
tural variation points.

2.3. Program Representation 19

By saying that feature models describe the essential variability of software trans-
formation systems, it is meant that they describe the characteristic concepts and fea-
tures for these systems, and that the models show the relationships and interactions
between these. The characteristic concepts and features are described using a design
vocabulary, which is introduced in the boxes of the feature diagrams. It is important
to point out that this chapter is guided by the notion of “characteristicness” a dis-
cussion of features which are also commonplace outside software transformation is
avoided; features which pertain to software systems in general will not be discussed.

Alternative formalisms for describing design knowledge are ontologies [Gru93].
Feature models were chosen here because they are better suited to visualise the vari-
ability and configuration aspects of software designs. For a discussion of the relation
between feature models and ontologies, refer to [CKKO06].

2.3 Program Representation

Software transformation systems operate on formal documents which have a precise
syntax definition and sometimes a detailed, formal semantics. These documents may
be programs or specifications, or simply structured specification documents with lit-
tle semantics. Both specifications and program source are commonly referred to as
program code or subject code in the rest of this chapter. Though programs are formal
documents, models representing programs are referred to as program object models
(sometimes just program models) throughout this dissertation, to distinguish them
from general document object models as found in the field of document processing.
This dissertation takes the stance that subject code usually has an a priori defined
semantics which operations on the program object model must preserve.

Due to its formal nature, program code has a clear structure, but this structure
does not necessarily match how the transformation system represents program code
internally. The choice of internal data structure used to represent programs affects the
ease with which various operations can be performed. For example, if the program
is represented as a control-flow graph, control flow analysis becomes easy, but struc-
tural or syntactic changes, such as refactoring is all the more difficult. The choice
of representation significantly affects the possible applications of a transformation
systems. Specific design and implementation choices for the representation further
influence both performance characteristics and the difficulty of expressing different
kinds of analyses and transformations. This argument also works in reverse: the in-
tended transformations of a system will to a large extent dictate the choice of internal
representation.

As an example, consider software transformation systems intended for source-
based re-engineering. These usually employ a parse tree representation that accurately
captures source code details. This may include layout and comments. On the other

20 Chapter 2. Programmable Software Transformation Systems

hand, systems intended for software modelling mostly use graph-like representations
that are far removed from the concrete syntax of the source language.

‘ Program Representation ‘

I

Runtime Representation(2.5)» ‘ ‘ Storage Representation(2.13)» ‘ ‘ Data Exchange

Figure 2.4: Feature decomposition for program representation.
Figure 2.4 shows a decomposition of the feature space for program representations.

® Runtime representation — refers to the data structure and features of how the
program code is represented at runtime. Of all the features related to program
representation, the choice of runtime representation has the largest impact on
the expressiveness and performance of a transformation system, see p. 20.

o Storage representation — refers to the facilities for storing program code on disk at
intermediate transformation stages. Choices pertaining to intermediate storage
on disk affects the interoperability and modularity of a system, see p. 30.

® Data exchange — refers to facilities for loading source code into the system
and produce target code as output. This might be features for parsing and
pretty-printing, used with source-to-source transformations. These features
fall mostly outside the scope of this dissertation.

The following sections discusses each feature in turn.

2.3.1 Runtime Representation

‘ Runtime Representation ‘

N ————

‘ Data Structure(2.6)» ‘ ‘ History(2.12)» ‘ ‘ Interface(*)» ‘ ‘ Syntax(2.10)» ‘ Subject
Language(2.11)»

Figure 2.5: Feature decomposition for runtime representation.

Subject programs are contained in a runtime representation when the software trans-
formation system executes. This may for example be an abstract syntax tree, a graph
model, or a database. Collectively, these are called program object models, and may be
described by the following features.

2.3. Program Representation 21

® Data structure — refers to the choice of (principal) abstract data type used for
the program object model. This is arguably the most important aspect of the
runtime representation. Common choices are trees and graphs, with various
invariants on the well-formedness of the subject program, see the next section.

® History — the representation may optionally support the notion of transforma-
tion history by keeping a modification history of the program code, see p. 29.

o [nterface — refers to the programming interface available for the runtime rep-
resentation. In many systems, the interface is available as language constructs
in the transformation language. That is, the transformation language is specif-
ically designed with primitive constructs for manipulating the program object
model. For this reason, the interface feature is discussed together with the
other language features, in Section 2.4.

o Syntax — refers to the types of syntaxes available — abstract or concrete — for
writing and reading program code when implementing transformation pro-
grams, see p. 27.

o Subject language — The language in which the program code must be expressed,
i.e. the supported source and target languages, see p. 29.
Data Structure

The feature model for the data structure in Figure 2.6 describes which data types
are used to represent the program code at runtime, and which support exists for
maintaining well-formedness of the program code structure.

Data Structure

‘ Representation(2.7)» ‘ ‘ Invariants(2.8)» ‘ ‘Annotations(2.9)> ‘

Figure 2.6: Feature decomposition for data structure.

® Representation — details the choice of abstract data type for the program code,
ranging from strings and lists to relational databases, see the next section.

® [nvariants — describes how structural and semantical invariants of the program
code can be placed and enforced on the representation, see p. 24

o Annotations — refers to the ability of the representation to handle meta-information
not part of the program code structure, see p. 26.

22

Chapter 2. Programmable Software Transformation Systems

Representation

Figure 2.7 describes the features of the data type used to represent the program code.
Under each principal choice (list, tree, graph, etc), the most common variants are

shown.

Representation

<

o o 0
Directed -Factual -Rel ational
Acyclic
o

Figure 2.7: Variants of data structure representations.

o Swring — The simplest choice of data structure for representing program code is

a text (or even binary) string. In this case, the transformation system amounts
to a string rewrite engine, as in the theory of formal languages and automata.
The C/C++ preprocessor is one example of such a “transformation system”.
The trio sed, grep and awk [DR97] of Unix tools is another, based on regular
expressions. Representing programs as strings fails to capture the grammatical
structure inherent in the program code. This quickly leads to subtle bugs for
any non-trivial transformation. String rewriting engines can hardly be called
software transformation systems.

List — A slightly more structured representation than the string is the token
stream output by a lexer, i.e. a /ist of tokens. Each token is marked with a type,
such as keyword, identifier, string literal or parenthesis, e.g:

["if":keyword, "(":left_paren, ..., ")":right_paren]

The ANTLR parser toolkit [PQ95] supports rewriting on token lists. Both
the string and token list representations of program code are useful for limited,
layout preserving rewriting. As long as no context or grammatical information
is needed, the matching can be done reliably at the lexical level.

Trees — Most practical transformations need at least grammatical structure and
most often also context knowledge such as variable binding or type infor-
mation. Extracting the grammatical structure from program code text can
be automated using syntax analysis, i.e. parsing. Syntax analysis produces
trees. Representing program code as trees dates back to the earliest compil-
ers, and multiple variants are possible. In the case of concrete syntax trees, the
tree contains a faithful representation of the source code, possibly excluding

2.3. Program Representation 23

non-essential whitespace. In the case of abstract syntax trees, all non-essential
nodes, such as whitespace, parentheses, statement and expression separators,
have been removed. These can be automatically regenerated. Normally, com-
ments and documentation are also left out. Trees are often given a textual
syntax, in the form of terms, e.g.:

If(False,Int(1l),Int(2))

The maximal sharing [vdBdJKOOO] technique is a variation of the tree repre-
sentation which improves execution time of matching and memory efficiency
is. The tree is represented as a directed, acyclic graph (DAG), where equal sub-
trees occurring multiple times in the tree are stored only once. This technique
improves the efficiency of term matching significantly. It has been used in
several transformation systems, including ASF+SDF [vdBvDH*01], Stratego,
ELAN [BKK*04], Tom [MRVO03] and derivates of these. It is important to
note that the maximal sharing technique hides the sharing, making the DAG
behave as a tree. This is required for the term rewriting theory. Rewriting on
DAGs, sometimes referred to as term graph rewriting, has different termina-
tion and confluence properties [Plu99, BEG*87]. An example of transforma-
tion system based around term graphs is HOPS [Kah99, KDO01], an interactive
program transformation and editing environment that ensures syntactic and
semantic correctness. HOPS may also be described as a syntax directed editor.

e Graph — Plain trees are not sufficient for explicitly capturing some important
types of context information, such as typing and variable binding. Section 2.4
discusses how tree-based transformation systems deal with this problem. The
program code may be expressed as a graph. This allows additional links (edges)
to be added from, say, a variable use to its definition, or from an identifier
to its type, thus capturing context information. Labelled edges are handy for
distinguishing between kinds of relationships between two nodes, for example,
between a use-def and a type-of relationship. Artributes are named proper-
ties of nodes that contain values. In most graph-based systems, a node may
have a set of named attributes. These can be matched on during rewriting.
Some systems, such as the modelling system MetaEdit [SLTM91], also allow
attributes on edges. Attribute grammar systems are capable of declaring depen-
dencies between attributes across nodes using directed equations. Nodes may
be related using embedded relations, as in PROGRES [Sch04]. These features
are closely tied to transformation language features and are discussed in Sec-
tion 2.4. None of the transformation systems known to the author employs
hypergraphs directly, i.e. graphs where edges connect more than two nodes.
The GAMMA multiset rewriting system [BM91, BM93], seems to come clos-

est in terms of hypergraph semantics. Other works have been derived from this,

24 Chapter 2. Programmable Software Transformation Systems

such as [CFGI6]. Neither of the systems is used for program transformation.

® Database — Linking together nodes in a graph or subterms of a term can be
done using a relational database. Transformation systems based on this ap-
proach are comparatively sparse. APTS is the only relational database system
that allows arbitrary transformation. In [SNDHO04], the authors describe an
interactive system focused on the refactoring of Clean programs. The system
described in [CNR90] extracts facts from C code into a database, but only
allows subsequent analysis, not transformation. In all cases, the program code
is expressed in tables with relations between them. Transformations and anal-
yses are expressed as relational queries, in styles similar to normal relational
databases. A feature unique to the database approach is the ability to declar-
atively construct custom views of the program code and do manipulation on
these. In all other approaches, similar functionality must be provided by the
developer, and is highly non-trivial. A related approach is the facrual databases
used in logic programming languages such as Prolog. This is employed by
JTransformer [Win03, KK04]. The structure of the program code is stored as
facts in a database. Questions (queries) may be asked. These are automatically
resolved against the database by the Prolog inference engine. A discussion of
the finer points of different database approaches is beyond the scope of this
chapter, save to point out that while the Prolog model is based on the theory
of predicate calculus, the relational database approach has its roots in relational
algebra.

Perhaps the principal tradeoff in the selection of a suitable representation is be-
tween expressiveness and efficiency. Low-level and simple abstract data types such as
lists and trees are very efficient to transform, but it often becomes difficult to embed
analysis results in flexible ways. That is why annotations (discussed later) are only
found as additions to the more “primitive” representations. The elaborate representa-
tions, such as general graphs and relational databases, are mainly used for high-level
concepts. Models are first extracted from the source code. Queries and computations
are performed on these models. The results are later used to guide transformations
on the low-level representations.

Relational databases are often used for various types of code querying and anal-
ysis, as in the case of CodeQuest [HVdMdVO05]. The program object models used
for this are removed from the primary grammar structure, because encoding recursive
data structures into relational databases (tables) is generally inefficient.

Invariants

The syntax and semantics of the program code, no matter how it is represented, give
rise to a large amount of invariants, see Figure 2.8. These must kept throughout the

2.3. Program Representation 25

transformation run, but may be lifted temporarily during transformation steps, or
even phases.

Invariants

Semantics

ol

Well-formedness

Constraints
Equality | | Subtypes r—r/o\t—\

Structural ||Handcoded

Declarations

Fixed | | Programmable

Figure 2.8: Feature decomposition for data structure invariants.

Syntactical Invariants

o Arity — A weak variant of typing, found in the term-based system Stratego. For
each type, only the numeric arity, i.e. the number of arguments is enforced.
An if-then-else node may look like If': Expr * Stmt * Stint, thus declaring terms
on the form /f{e,st,st;) where e must be an Expr and sty, st; must be Stz
Stratego only requires that three subterms be attached to /. It does not verify
their types.

o Typing — The most common way for ensuring grammatical well-formedness
on the subject code is to use the type system of a strongly typed transformation
language (not to be confused with the type system of the subject language).
The variants include basic equality-based systems (only terms of type T may be
used where T is expected) and systems which support the notion of subtyping
(any subtype of T may be used where T is expected). In either case, the syntac-
tical correctness of the program code with respect to a grammar can be ensured.
It is worth noting that although token lists discussed above are by definition
typed, they rarely offer any grammatical correctness guarantees. TXL [Cor04]
operates on concrete syntax trees. The language ensures that when a subtree is
replaced on a given node, the new subtree must be of a compatible type, i.e.
the new subtree must parse to the same production as the old. The types are
defined by the grammar for the language.

o Well-formedness constraints — A more powerful approach is to provide a declar-
ative language for expressing structural constraints. It is then possible to either
verify that a given transformation will never violate these constraints, or to in-
sert constraint checking between transformation phases, at declared safe sposs.

26 Chapter 2. Programmable Software Transformation Systems

AGG [Tac04] is a graph transformation system which provides structural con-
straints on its graphs. The constraints are specified as part of the graph gram-
mar.

One could consider the structural constraint feature an extension or variant of
user-defined types, but there are some essential differences. Ensuring that each rewrit-
ing step respects a given grammar is computationally feasible, because grammatical
constraints map relatively easily to most strongly typed languages. Checking struc-
tural constraints after a rewrite step may not terminate in the general case (for exam-
ple, if the constraint is given in a Turing-complete formalism). Even when the con-
straint language offers termination guarantees, the computational complexity may be
prohibitive.

Semantical Invariants In addition to syntactical well-formedness, facilities may ex-
ist for defining parts of the semantics of the program code.

® Fixed — The system comes with a fixed implementation that preserves (possibly
a subset of) the semantics of the subject language. In the case where the lan-
guage of the program code is fixed, a complete enforcement of the semantical
invariants is possible thanks to a priori hand coded logic in the system. JTrans-
former provides a library of conditional transformations for Java, many of
which are guaranteed to preserve Java semantics. The FermaT [War02, War89]
transformation library guarantees semantics preservation for FermaT’s fixed

subject language, WSL.

® Programmable — The system supports the programmer in implementing lan-
guage semantics constraints, for example by providing suitable generic libraries
or language constructs for capturing language semantics. Varying degrees of
support for this is present in most transformation systems. Notable features
are discussed in Section 2.4.

Few transformation systems enforce type-correctness of the subject code or sim-
ilar forms of semantical correctness on their transformations. It may be exceedingly
difficult to check for these during the runtime of the transformation, and it is also an
open problem how to efficiently encode semantics for the subject language into the
type system of the transformation language. For this reason, it is not uncommon to
“outsource” questions of correctness to theorem provers.

Annotations

The structure used to represent the program code should be precise and minimal.
This reduces the complexity of the transformation programs: fewer node types means

2.3. Program Representation 27

fewer patterns for the rules. A minimal structure sometimes conflicts with extensibil-
ity, however. It is often necessary to store intermediate computation results and relate
these to elements in the program code. A common way to handle this at the program
representation level is to store such information as annotations, see Figure 2.9.

Annotations

i

Unrestricted

Declared | | Free Form

Figure 2.9: Feature decomposition of annotations on the program representation.

Restricted

Annotations are (temporary) pieces of meta information that may result from
analyses such as type inferencing, variable scoping or source code metric calcula-
tions. Annotations are also used to retain comments and layout information, without
declaring these as part of the primary program code structure.

® Restricted — Only a limited, pre-defined number of annotations may be placed
on the program code in the runtime structure.

o Unrestricted — Annotations can be freely defined by the programmer. In the
case of free-form annotations, arbitrary meta information is allowed. This is
the case for ASF and Stratego. In the case of declared annotations, syntactical
(and optionally, semantical) restrictions are placed on the annotations. These
must be declared in advance.

Annotations are different from (tree or graph) attributes in several ways. Since
annotations are pieces of meta-information, they can be discarded at any time with-
out changing syntactic or semantic validity. Moreover, even declared annotations are
not part of the program code grammar, so one cannot expect that all transformations
will respect and update them.

Most transformation system support annotations in one way or another. It is
generally the case that strongly typed transformation languages necessitate declared,
as opposed to free-form, annotations.

Syntax

Developers reading and writing fragments of subject language program code do so in
the program code synzax. This syntax may be quite different from that of the subject
language, and is is often influenced by the choice of program representation.

28 Chapter 2. Programmable Software Transformation Systems

Figure 2.10: Features for supporting subject syntax in transformation programs.

® Kind — In source-to-source transformation systems such as TXL [CCHO5] and
ASF+SDF [vdBvDH?*01], subject program code fragments are often written in
the syntax of source language called the concrete syntax. The concrete syntax for
the program code is embedded in the transformation program. When concrete
syntax support is not present, program code must be written using the data
types of the transformation language, that is, in an abstract syntax. This is the
case for Tom and ANTLR, where tree nodes and trees are built like any Java
data structure, using object instantiation.

Stratego supports both concrete and abstract syntax, demonstrated in the func-
tionally identical rules shown next, where the concrete syntax fragment is en-
closed in “semantic” brackets:

EvalIf: |[if(true) ~e® else ~el]| — |[~e®]|
EvalIf: If(BooleanLiteral("true"),e0,el) — e0

® Presentation — For the systems mentioned above, the syntaxes were all rextual.
Another variation is to represent the program code using a graphical notation,
irrespective of whether the source language is visual or not. This is done in

AGG and PROGRESS which both offer abstract graphical syntax and presen-

tation.

The primary tradeoff between concrete and abstract syntax is readability versus
preciseness. Concrete syntax patterns are mostly easier to read and write for program-
mers. However, extra care must be taken to ensure that the pattern (and the meta
variables) match exactly the types of AST nodes intended. Consider the following
concrete syntax pattern:

| [boolean equals(Object ~n) { ~stm }]|
It does not match the following declaration, because of the visibility modifier public.
public boolean equals(Object o) { return false; }

The pattern, as written, specifies that only declarations without any visibility mod-
ifiers should be matched. Writing exact pattern matches in abstract syntax is often
easier, though significantly more verbose. On the other hand, code generation usually

2.3. Program Representation 29

benefits significantly from concrete syntax templates, since such templates are gener-
ally easier to write and maintain compared to equivalent templates in an abstract
syntax.

Subject Language

The possible choices for subject language clearly defines the applicability of a given
transformation system for a concrete problem.

Subject Language

Fixed | | Programmable

Figure 2.11: Feature decomposition for subject language.

o Fixed — The subject language is fixed to a particular language.
o Programmable — The subject language can be freely defined by the programmer.

Both JTransformer and FermaT are fixed to one subject language. This fixedness
gives the systems an advantage in providing a convenient and robust transforma-
tion library. However, FermaT’s subject language is WSL, a wide-spectrum language
designed to capture a large set of source languages. It contains a small kernel of con-
structs to specify (non-deterministic) choice and iteration. Various assembler dialects
have been transformed into it [War99]. Both C and COBOL code is in turn pro-
duced from WSL. The basic transformations in the FermaT library guarantee both
syntactic and semantic correctness. JTransformer also comes with a library of ba-
sic transformations for its subject language, Java. Many of these preserve the Java
semantics and syntax.

The choice of language may be programmable, as is the case for TXL [Cor04],
ASF+SDF [vdBvDH*01], Stratego/XT [BKVV06] Tom [MGRO5], DMS [BPM04],
and Elegant [Aug93]. In these systems, the developer must supply all syntactic and
semantics-preserving logic, using whatever support the transformation system pro-
vides for this. For realistic languages, this is a considerable undertaking. In many
cases, separate projects exist which specialise general systems for a particular language.
These aim to achieve the best of both worlds: a sound library of basic transformations
with full flexibility, e.g. CodeBoost [BKHV03] specialises Stratego for C++.

History

Support for history as part of the runtime representation provides a low-level way
of keeping track of changes to the program code. It complements execution traces,
discussed in Section 2.4.

30 Chapter 2. Programmable Software Transformation Systems

Origin || Checkpointing

Tracking

Figure 2.12: Features for history support.

o Origin tracking — A feature that retains tracking information with the program
code elements throughout a complete transformation. It is used to determine
how a code element in the final product relates to the code elements in the
source input, i.e. where a given code element in the result program came from

in the source program. Earlier prototypes of ASF had this feature [vDKT93].

® Checkpointing — Runtime representation support for transaction-like opera-
tions. With checkpointing, a snapshot can be taken of the program code so
that this state can be restored if a transformation sequence fails. Stratego of-
fers full checkpointing support due to the (local) backtracking feature of the
language, as does Tom when rewriting functional terms (Tom also supports
non-functional terms and graphs, where the backtracking is not available).

2.3.2 Storage Representation

Many transformation systems provide special support for storing intermediate forms
of the program code, see Figure 2.13. The code may be stored in a special, efficient
storage format, or as source code in the source or target language. The choice between
a special storage format versus language source code affects how auxiliary information
can be added.

Special storage of the internal data allows bundling of analysis results and con-
straints with the data. This may in turn be used to minimise costly analyses, such
as parsing and type checking, by caching results on disk between executions of the
system. Having a standardised internal storage facility opens up for interchange of
analysis results between components of the transformation system: fragments of code
can now easily be serialised and sent between separate processes, or over a network.

Aside from the size benefit offered by good storage formats, extra information
such as accumulated transformation history can be added in the form of origin track-
ing or execution traces. This is not possible (or at least rather difficult) when the
interchange format is fixed to the source code of the source (or target) language.

The storage representation feature from Figure 2.13 is decomposed into the following
features:

® Extensibility — Either the storage representation is fixed for the transformation
system, or it is programmable. This allows the programmer to extend it. Strat-

2.3. Program Representation 31

‘ Storage Representation ‘

Artifacts

Extensibility

i

‘ Programmable ‘ ‘ Syntax‘ ‘Annotations ‘ ‘ Invariants

Figure 2.13: Feature decomposition of storage representation.

ego/XT and ASF use a fixed format called ATerm. In the case of Stratego/XT,

additional formats may be added by the user. AGG has a fixed XML-based
format for its graphs.

o Artifacts — The choice of syntax is the most influential design choice of the
storage representation. When concrete syntax (of either the source or target
language) is used for storage, auxiliary information is considerably more diffi-
cult to encode. By using an extensible abstract syntax, a transformation system
provides the transformation programmers with more freedom.

In the case of an abstract syntax, custom invariants concerning the data may
accompany the program code. User-extensible invariants allows the transfor-
mation programmer to express additional invariants that must be respected by
other programs and components processing this program code.

Depending on the choice of syntax, the storage format may support storing an-
notations. There is usually a correspondence between how the runtime repre-
sentation language handles annotations and how these are stored: the runtime
typing and structural constrains must usually be respected.

History — The stored files may contain checkpointing information which may
allow backtracking across saved sessions. Such information allows mid-transaction
saves and rewind. Additionally, origin traces may be included in the saved file
This aids in origin tracking between sessions and between tools.

Storing of concrete syntax captures layout, even for visual languages, where the
graphical objects in saved visual programs retain their user-edited placements. The
GXL [HWS00] language encodes this information in special graph attributes in the
stored files. Storing additional, custom transformation invariants along with the pro-
gram is required if other transformation components are to know about these ad-
ditional constraints. A caveat is that the formats used to store such constrains, and
their meaning, must be known to all components. The AGG system preserves these
constraints by coding both the program model and the constraints into the same unit.

32 Chapter 2. Programmable Software Transformation Systems

2.4 'Transformation Language

The transformation language is the centrepiece of any programmable transformation
system. It is the main vehicle for expressing transformations, and should therefore
easily express the kinds of transformations desired by its user. As with any program-
ming language, the degree of expressiveness provided by the language is a double-
edged sword: Having many language features generally increases expressiveness, so
does avoiding usage restrictions on individual features. There is a tension between
expressiveness and how easy proofs of transformations can be done. Usage restrictions
on individual language features, and careful consideration of feature combinations are
required if good provability is desired. However, not all program transformation ap-
proaches are concerned with provability. This has allowed a rich set of transformation
language features to evolve.

‘ Transformation Language

- N

‘ Organization(2.15)» ‘ ‘Transformation Atoms(2.16)» ‘ ‘Typing(2.23)> ‘

Figure 2.14: Feature decomposition of transformation languages.

Given the rich literature and existing surveys on the details of particular feature sets,
such as [Fea87, PS83, Vis05a, vWV03], this section focuses on the broad lines and
the relationship between transformation languages and program models. The features
being considered are shown in Figure 2.14.

® Organisation — refers to the organisation of the rule and data declarations, see
the next section.

o Transformation Atoms — refers to the properties of the units of transformations,
i.e. the functions, rewrite rules, queries and strategies, see p. 36.

o Tjping — describes characteristic features of how typing is realised in transfor-
mation languages, see p. 47.

2.4.1 Organisation

Features for organising the language declarations are shown in Figure 2.15. This
organisation is necessary for managing the complexity of the transformation program
itself. As transformation programs grow in size, they are subjected to the same issues
of scale which are already seen in constructing other types of software applications.

® Grouping — The feature model suggests the hierarchical organisation of trans-
formation expressions or statements into applications of operations. Operations

2.4. Transformation Language 33

Organization

Namespaces

Separate
Domains

ComponentsHModules ‘Sections ‘Operations‘

Visibility Control

0 0
Hierarchical | | Global

Figure 2.15: Language features for organization of declarations.

correspond to transformation atoms. For textual transformation languages, op-
erations may be placed into sections inside their declaring file. Sections are in
turn grouped into named modules. A module may be a file, or multiple files
may make out one module. Modules may again be composed into components.

® Namespaces - The organisation of namespaces is related to grouping. Scoping
may be done in levels which follow a hierarchy, usually the one provided by the
grouping. Another alternative is no levelling at all. This gives one global name
space for all declarations. In either case, the different types of declarations
may be organised into separate domains, allowing both a rule and a type with
the same name to exist at the same time without causing confusion. A final
consideration is encapsulating names into their respective scope by restricting

visibility.

The basic organisation features are combined in a plethora of ways. The class-
based systems JastAdd and Tom group methods (operations) into named sections
(classes) which become one level in the namespace. The methods reside in a different
namespace domain than the variables and the types. It is possible to have both a type
and a method with the same name without confusion.

For PROGRES, hierarchical visibility is only available for global graph con-
straints, on a per-section basis. For Elegant, a component is either a scanner, trans-
former or code generator, i.e. a phase of a compiler. For APTS, all definitions are
maintained as entries in databases. You can load and store databases, composing
them by merging two databases, thus emulating the concept of components. For
Stratego, each file is a module, divided into sections. Rules and strategies are the only
two types of operations, and both live in the same, global namespace. There is no
visibility control, so rules and strategies with the same name may interfere.

One drawback of the numerous realisations of these basic features is that learning
transformation languages might be daunting. The nuances and novel combinations
serve to increase the learning curve for new developers. Another drawback is that
there are few, if any, standardised ways of organising transformation programs. The

N0 N —

34 Chapter 2. Programmable Software Transformation Systems

closest to a de facto standard, at least at the macro level, is perhaps those which mimic
compiler pipelines. This is (mostly) the case for JastAdd, Elegant and Stratego.

A number of noteworthy characteristic organisation features are discussed next.

Rule/Dependency Separation — Attribute grammar systems combine the depen-
dencies between nodes and the directed equations used to compute derived attributes
into one construct. In PROGRES, the rule for computation of the derived attribute
is kept separate from the dependence declaration.

Inheritance — In Tom and JastAdd, both of which are embedded domain-specific
languages for Java, inheritance is used to encode the grammar structure of the sub-
ject language in the type system of the host language. Consider the following the
grammar fragment:

literal| binexpr| . . . ;
literal ©:= string_literal| integer_literal| . . . ;

expr .

This translates into the following (Java) type declarations for JastAdd (the class ASTNode
is always the root of such type hierarchies in JastAdd):

abstract class Expr extends ASTNode { ... }
abstract class Literal extends Expr { ... }
class StringLiteral extends Literal { ... }

The situation is similar with Tom, but the programmer may choose the root class
freely.

In PROGRES, the graph grammar declaration uses subtyping to declare the types
(and attributes) of nodes in the graph, e.g.

node class Root; intrinsic a : = 1; end
node class Childl is a Root; redef b : = 2; end
node class Child2 is a Root; redef c : = 3; end

Transcripts — Transcripts are an organisational unit only found in APTS. A tran-
script implements either a rewrite or an inference rule for a relation. A transcript for a
relation contains one or more inference rules which are used to analyse the CST and
maintain a database of program properties. The rules inside the transcript are applied
non-deterministically until no relations in the program database can be changed, i.e.
until a fixpoint has been reached. Consider the following example, included to pro-
vide some flavour of the APTS language. The example defines the notion of free
variables in a SETL-like subject language [Pag93].

transcript freevar(Q);
rel freevar: [node, tree];
free: [tree];

prompt free: [1, ' is a free variable ’];

2.4. Transformation Language 35

external bvar: [node, tree];
op: [node, node];
key free: [1];
begin
freevar(root(), .x) -> free(.x);
match(¥ expr, .x ¥) | isavar(¥% expr, .x%)
-> freevar(¥ expr, .x% , % expr, .x%);
match(¥% lexpr, .x %) | isavar(®% lexpr, .x%)
-> freevar(% lexpr, .x% , % lexpr, .x%);
op(.x, .y) and freevar(.y, .z) and not bvar(.x, .z) -> freevar(.x, .z);
end;

This transcript, named freevar (), defines the relations freevar and free. It depends
on the external relations bvar and op (defined in other transcripts). The prompt def-
inition specifies how tuples of the relations in this transcript are displayed. The
inference rules of this transcript are specified between begin and end. The rules on
line 10-13 specify that any variable that is an expression on a left or right hand side
of an assignment, is a free variable. match and isavar are builtins of APTS. match
supports non-linear pattern matching (discussed later); here, .x is a pattern variable.
The main inference rule for free variables is given on line 14, and states that a free
variable .z of term .y is a free variable of term .x iff .x contains .y as an immediate
subterm (the op(.x, .y) part) and .z is not a bound variable of .x (the not bvar(.x,
.y) part). These rules are applied non-deterministically until none are applicable any
more. This completes the update of the program database.

Rewrite rule transcripts are similar to relation transcripts. They consist of one or
more rewrite rules, which rewrite the CST, as opposed to the program database.

Transcripts have some properties of modules. There is a simple kind of names-
pacing and visibility for transcripts: rules inside a transcript are not by default visible
outside the transcript. Rules from other transcripts can only be invoked indirectly,
by invoking their transcripts. Transcripts also enforce a special evaluation semantics.
All external relations must have been evaluated before a transcript can be evaluated.
Cyclic dependencies between relations are only allowed within transcripts. Multiple
transcripts may be defined in the same file.

Parametrisation

The different organisation units, such as types, rules, functions and strategies may
for practically all transformation languages always be parametrised with values. In
the transformation languages Elegant, Tom and JastAdd types may be parametrised
with types. Stratego and Elegant offer higher-order operations.

Higher-Order Operations — A catch-all feature for higher-order rules, strategies,
functions and queries. The known benefits from higher-order functions also apply to

1
2

36 Chapter 2. Programmable Software Transformation Systems

rules, strategies and queries: they aid in parametrisation and subsequent composition
of code, thereby allowing a very flexible, precise and familiar notation for expressing
operations. The following Stratego strategy definition defines a top-down (pre-order)
term (tree) traversal, where the strategy s is applied at every subterm (tree node) before
its children are visited:

topdown(s) = s; all(topdown(s))

Module Parametrisation — Parametrisation of modules, as offered by the ML-
family of languages, is seen in very few of the domain-specific languages provided by
any of the transformation languages. JastAdd and Tom (both based on Java, which
offers parametrised classes) are the only known exceptions. Also, no transformation
system currently offers parametrised components. The absence of parametrisation
at higher levels, and the absence of higher levels of organisation, may be taken as a
sign that issues common to programming in the large have not been addressed for
transformation systems yet.

2.4.2 Transformation Atoms

Transformation atoms are the fundamental building blocks of transformations, see
Figure 2.16. For rule-based languages, they are the rewrite rules. For functional
languages, they are the functions. For relational languages, they are the queries. In
style with modern science, transformation atoms are not indivisible: functions are
made from expressions, rewrite rules from patterns and conditions, and relational
queries from path expressions and statements.

‘ Transformation Atoms ‘

‘Functions ‘Rewrite Rules ‘ ‘ Strategies | | Queries

Figure 2.16: Feature decomposition of transformation atoms.

The following discussion will focus on characteristic properties of the rewrite
rules, as this is arguably one of the most characteristic features of transformation
languages. Functions and queries found in in transformation languages are familiar
from general purpose and relational query languages.

Relations — Multiple variants of the relation feature exist. In APTS, the program
database stores relations extracted from the CST using inference rules. In PROGRES,
relations between nodes and node types are declared using graph queries and path
expressions. In JTransformer, the Program Element Fact (PEF) database contains
relations extracted from the Java AST, e.g.:

importT (10000, 30001, 20003).
importT (10001, 30001, ’java.util’).

1
2
3

2.4. Transformation Language 37

The fact on line 1 represent a Java import statement. Each fact has a unique id. The
fact on line 1 has id 10000. It states that the class corresponding to fact id 20003
is imported by the compilation unit of id 30001. On line 2, another fact states that
the same compilation unit also imports java.util.*, i.e. all classes of the package
java.util.

In all systems, queries can be done on the relations; the relations often encode
“refined facts” that are extracted and analysed from the CST and AST, i.e. informa-
tion that is only implicit in the AST representation, such as the binding from a name
to the actual definition for that name.

Relation Functions — Elegant provides a kind of function with a special semantics,
called a relation. In contrast to functions, relations can have an arbitrary number
of input and output arguments. The arguments are updated by the body in any
order. The effect of a relation is to synchronise all the output domains with the input

domains, [JAM99].

relations

MakeFunctions (NIL : List(Func), out {}, {}) { }

MakeFunctions (funcs : List(Func) out signs, decls) {
MakeOneFunc (funcs.head out s : VOID, d : VOID)
MakeFunctions(funcs.tail out ss : VOID, ds : VOID)

local
signs : VOID = { s "\n" ss }
decls : VOID = { d "\n" ds }
}

The relation MakeFunctions is used to traverse a list (funcs) of functions, and for each
element, call the relation MakeOneFunc to compute its sighature and its complete decla-
ration. This results in two separate lists which are both returned from MakeFunctions,
one for the signatures, in signs, and one for the declarations, in decls. The ab-
straction MakeFunctions therefore returns two values, whereas a function would only
return one. It is possible for the return values to be declared as lazy values. In this
case, they will only be computed if they are used by the caller.

Congruences — Congruences are a language construct for defining data structure
specific traversals. They are described in Chapter 3 in the context of Stratego.

Queries — Queries are expressions for navigating, analysing or modifying the pro-
gram code. In the case of graph queries, the queries are usually only used for analysis.
Modification is done using graph rewrite rules. Queries on relational databases also
allow database updates, which amounts to program code modification. The following

PROGRES code illustrates a query, [Sch04].

query AllConsistentConfigurations(out CNameSet : string [0: n]) =
use LocalNameSet, ResultNameSet : string [0: n] do

ResultNameSet : = nil

o N O\ N

11
12
13
14
15
16
17

38 Chapter 2. Programmable Software Transformation Systems

& GetAllConfigurations(out LocalNameSet)
& for all LocalCName : = elem(LocalNameSet) do
choose
when ConfigurationWithMain(out LocalCName)
and not ConfigurationWithUselessVariant(LocalCName)
and for all LocalMName : = elem(LocalCName.-has->.=needs=>) do
ModuleInConfiguration(LocalCName, LocalMName)

end
then ResultNameSet : = ResultNameSet or LocalCName
end
end
& CNameSet : = ResultNameSet
end
end

This query computes all consistent configurations of a software package. It uses
another query, GetAllConfigurations, to obtain its starting point. This is looped
over. For each configuration, a few sanity checks are performed. The inner loop on
lines 9-11 checks all variants that are targets of has edges, and sees if all necessary
modules of these variants are part of the configuration currently selected by line 6
from the set iterated in line 5.

Closures — Closures are a common feature in functional programming languages,
such as Haskell, ML and Elegant. They combine well with data structure naviga-
tion features for writing tree transformations. Dynamic rules, discussed later, share
many properties of closures, but come with some unusual semantics for scoping and
visibility.

Editing Operations — The FermaT language does rewriting using editing opera-
tions such as cut, copy, paste and delete. There is a requirement placed on how these
operations are used. This allows FermaT to guarantee that any editing on the pro-
gram code will always result in a syntactically and semantically valid result, though
not behaviourally equivalent. A few examples of editing operations:

@Cut // delete the current item and store it in the cut buffer
@Paste_Over(I) // replaces the current item with I

@Rename (0ld, new) // renames a variable throughout the current tree
@elete // deletes the current item

@Splice_Over(L) // replaces the current with with the list L of items

Path Expressions — Path expressions are declarations that express paths through
the program code structure. In a sense, it provides a small declarative sublanguage for
navigation and matching. The feature is mostly found in program transformation
systems with graph representations. These are also found in some tree rewriting

languages, such as XSLT. The following PROGRES path expression defines a path

2.4. Transformation Language 39

(i.e. a relation) named needs from one or more ATOM nodes to one or more MODULE
nodes.

path needs : ATOM [®: n] -> MODULE [®: n] =

(instance of VARIANT & -v_uses->)
or (<-has- & instance of MODULE & -m_uses->)
end;

It states that there is a needs path from an ATOM @ to a MODULE 1 if 4 is a VARIANT (a
subclass of the ATOM node type), and there is a v_uses edge from m to a, or if there is
a has edge from 7 to 4, a is @ MODULE and there is also an m_uses edge from a to m.
Logic Predicates, Assertions and Retractions Predicates are used express queries on
the program element fact (PEF) base. A predicate consist of one or more patterns
which will be attempted matched against the facts database using unification. Logic
assertions are used to enter facts in the PEF base. The facts are terms, expressing
relations. Retractions are used in JTransformer to remove facts from the PEF base.

fullQualifiedName(20003, ?7Fqgn)
importT (10000, 30001, 20003).
retract (importT(10000, 30001, 20003)).

The predicate on line 1 instantiates the variable Fqn with the fully qualified name of
the declaration with unique id 20003, which may for example be a class. Line 2 is
an assertion of the relation importT between its three constant values. Its meaning in
JTransformer was discussed in earlier in this section. Line 3 removes the fact asserted
by line two from the PEF database.

A general tradeoff common to many of these features is that of expressiveness ver-
sus efficiency. For example, allowing existential quantification and universal quanti-
fiers in queries may quickly result in even small queries which become prohibitive to
compute on moderately sized graphs.

Rewrite Rules

A rewrite rules is a function r which takes a (fragment of a) program fj to another
(fragment of a) program f1, i.e: 71 fo = f1. fo is referred to as a lefi-hand side
pattern and fi a right-hand side pattern. Determining which fy a rule is applicable
to, and what kind of computational expressiveness is allowed in computing f;, are
fundamental considerations.

® Declaration — refers to properties of the rule declaration. A declaration of a
rewrite rule may keep the domains separate, i.e. the left and right hand side
may be visually separate in the example above. Alternatively, they may be
mixed together, as in the case for congruences. A rewrite rule normally has one
left-hand side and one right-hand side, i.e. two domains, see p. 42. In Elegant,

40 Chapter 2. Programmable Software Transformation Systems

Rewrite Rules

Declaration

Conditions(2.18)» || Domain

\ Domain(2.19)»

\ Ordering(2.20)» ‘ ‘ Strategy(2.21)> ‘ ‘ Evaluation(2.22)» ‘

Separation

Figure 2.17: Feature decomposition of rewrite rules.

a third variation exists where an arbitrary number of domains can be combined
into what is called a relation. Most transformation languages with rewrite rules
support conditions, see p. 40.

o Application— Describes how the application of rules are ordered, see p. 43 , and
also how the programmer can express strategies, see p. 44, for rule application
on top of the evaluation mechanics, see p. 45, provided by the language.

® History — refers to features where the execution #race can be recorded.

The rendition of rewrite rules also varies considerably. The previous sections have
illustrated examples from both APTS and Stratego. The following rewrite rule is from
JastAdd:

rewrite Use {
when(decl() instanceof TypeDecl)
to TypeUse new TypeUse(getName());

Transactions — Transactions provide concurrency and consistency guarantees to a
sequence of transformation operations. The concurrency guarantees allow multiple,
simultaneous accessors to the program code. The consistency guarantees that the
program code is consistent with respect to a set of invariants after the sequence of
operations inside the transaction have been applied. The PROGRES language offers
consistency. Concurrency is also supported by PROGRES at the runtime represen-
tation level but the language is not concurrent.

Dynamic Rules — Dynamic rules are described in Section 3.3.3 in Chapter 3.

Conditions Variation of application conditions for rules, see Figure 2.18, exist in
abundance. For purposes of discussion, the feature spaces is divided into four parts,
described next.

® Predicates — predicates are declarative questions evaluated against the structure
of the code, or against relations constructed from the code.

2.4. Transformation Language 41

Conditions

N
m 0]
Negative ||Restrictions
> S Application
Conditions

‘Structural ‘Relational ‘Boolean ‘Arbitrary

Figure 2.18: Feature decomposition of rule application conditions.

® Functions — functions are user-defined algorithms. They may return arbitrary
results and often allow a more flexible way of encoding predicates into several
computational steps.

o Negative application conditions — negative application conditions (NACs) are
worth mentioning in relation to graph rewriting. Positive graph patterns only
pose restrictions on which edges must be exist between nodes. Negative appli-
cation conditions are used to express which edges may nor exit. They may also
be considered as a variant of structural predicates.

® Restrictions — restrictions are a special kind of a pattern found in PROGRES.
Restrictions can be named and reused by rewrite rules. When evaluated, they
can in turn call out to functions (called queries in PROGRES parlance), which
can do arbitrary computations and graph traversals.

Functions and predicates are the primary variation points for conditions. These
general concepts take many shapes, such as the negative application conditions and
restrictions.

Unification — Unification is a generalisation of basic pattern matching. A query
with multiple concurrent patterns can contain reoccurring variables which must be
instantiated to the same value for each pattern, i.e. they must be unified. Unification
is equivalent to instantiation in logic. In logic languages such as Prolog, unification
is done against a set of terms, all stored in a facts database. Pattern matching with
non-linear patterns can be considered a restricted form of unification; the matching is
done against one term, using one pattern, but the recurring variable(s) in the pattern
must be instantiated to the same value in all places.

Node Folding — Node folding provides a unification-like capability to graph pat-
tern matching. It is found in graph rewriting systems where every pattern match is
attempted across all nodes of the graph. In some systems, it is by default required that
two different nodes, 717 and 71y, in the left-hand side pattern match different nodes in
the graph. Node folding allows specifying that 717 and 71; may match the same node.

Reference Attributes — Reference attributes allow placing cross-node links in an
abstract syntax tree, i.e. links which do not go directly to a parent or a child, turning

42 Chapter 2. Programmable Software Transformation Systems

it into a abstract syntax graph. In JastAdd, directed equations may be subsequently
be expressed on top of the abstract syntax graph, whereas other attribute grammar
systems such as Elegant only allows directed equations on the AST. The following
JastAdd fragment declares the synthesised (lazily evaluated) attribute booleanType()
on the Program node, which references the definition for the builtin type boolean.

syn lazy PrimitiveDecl Program.booleanType() =

(PrimitiveDecl) localLookup("boolean");

Overlays — Overlays are described in Chapter 3.

Domains Figure 2.19 describes the domains used for pattern matching in rewrite
rules.

Domain

Pattern

Syntax || Linearity

Figure 2.19: Feature decomposition of rule domains.

® Language — Specifies which subject language the pattern must be written in.

® [Pattern — The pattern of the domain is expressed using either abstract or con-
crete syntax, with either a graphical or textual presentation, as discussed in Sec-
tion 2.3.1. When the pattern variables instantiated non-linearly, the semantics
is the same as for unification.

The choice of language may be fixed by the transformation system, or it may be
user-definable. FermaT (fixed to WSL) and JTransformer (fixed to Java) are examples
of fixed systems. Tom, Stratego and Elegant are examples of systems supporing user-
definable subject languages.

List Comprehension — List comprehension is a language feature that improves syn-
tax for list matching, list iteration and list transformations. The list comprehension
syntax is very close to the mathematical syntax and semantics of list (or set) compre-
hension. This feature is also often found in functional programming languages.

Pattern Matching — Pattern matching offers structural matching on program code,
either using abstract or concrete syntax. The patterns may contain pattern variables
which will be bound during the matching process. Transformation programs using
pattern matching on the program model often become tied to the structural details of
that model. For example, rewrite rules in term rewriting systems often become closely

2.4. Transformation Language 43

tied to the signature they were written against. This makes it difficult to switch or
modify signatures, i.e. change or evolve the subject languages, while keeping the
rewrite rules.

Embedding Clauses — Embedding clauses specify how to rearrange the edges in a
graph during a rewrite step once a match has been found. The clauses declare how
edges will be changed in the transition from the left-hand side to the right hand side
in terms of copy, redirect and remove operations.

Ordering Features for ordering rules are shown in Figure 2.20.

‘ Non Deterministic

Layers || Transcripts

Figure 2.20: Feature decomposition of rule ordering

Declaration
Order

® Deterministic — The selection of rules is completely deterministic.

o Non-deterministic — The selection of rules is non-deterministic.

Deterministic languages mostly use the declaration order of rules to determine the
order, e.g. Elegant, JastAdd . Another alternative is to require explicit priority markers
on the rules, as for example in XSLT.

Directed Equations — Directed equations declare how a given attribute of a node
must be computed from attributes on other nodes in the graph or tree. They give
both a declaration of the attribute dependencies and the expression for computing
the derived attribute value. The following JastAdd fragment declares the attribute
isValue() to be a synthesised attribute of type boolean, and that its value is constantly
true.

syn boolean Exp.isValue(Q);
eq Exp.isValue() = true;

The equation may be any expression (which results in a compatible) type. For exam-
ple, the type of a varDecl may be computed from the type of the declaration of the
type of the current variable declaration node, or more succinctly:

eq VarDecl.type() = getType().decl() .type(Q);

Traversal Strategies — Traversal strategies are declarations for how to traverse trees,
and how rewrite rules should be applied to the tree during traversal, see [Vis05a].

44 Chapter 2. Programmable Software Transformation Systems

Backtracking — Backtracking provides the ability to unroll (a series of) changes
made to the runtime representation during transformation, thus reverting to a pre-
vious state. As such, backtracking relates to transactions, discussed later. Efficiency
of implementation rests on how much data needs to be duplicated for rollback to be
possible, whether rollback is local or global, and also the runtime complexity of the
rollback algorithms. The performance can be be improved by use of maximal sharing
techniques [vdBdJKOO00] and lazy evaluation.

Rule Set Layering — Rule set layering is a feature for imposing application ordering
on a set of rules. The rule set is divided into layers. Each layer will be evaluated with
a fixed evaluation strategy, such as fixpoint, until no more rules in that layer apply.
At this point, the next layer will be evaluated in the same fashion. Effectively, this
divides the application of a set of rules into phases. Layering retains the declarative
approach to expressing rewriting systems. It combines well with critical pairs analysis
to prove confluence: confluence must be proven on a per-layer basis.

Tree Cursor — The editing operations of FermaT always take place at the current
position in the tree, maintained by a tree cursor. The cursor can be moved around
with navigation commands such as up, down, left and right. For example, the func-
tion @Parent provides the parent of an item (node), and I"n will give the n-th child of
an item I.

Strategy The application strategy, Figure 2.21, determines how the rewrite rules
will be applied to the runtime representation. Application strategies are very much
related to ordering and scoping; they determine the location in the runtime repre-
sentation an atom is applied, in which order, and how application failures should be

handled.

Programmable

‘ Innermost ‘ Outermost‘ ‘ Fixpoint

Figure 2.21: Feature decomposition of rule application strategies.

® Programmable — The application is programmable by the transformation pro-
grammer. Even when strategies are programmable, a library of ready made
strategies may be available. This is the case with Stratego. Its library provides
over a substantial collection of different application strategies.

® Fixed — The application strategy is pre-programmed into the transformation
language and cannot be changed. Common alternatives are innermost, outer-

2.4. Transformation Language 45

most and fixpoint, but the variation is immense. Refer to [Vis05a] for a broader
catalogue of common evaluation strategies.

There is a tension between provability and flexibility. Having a fixed of a lim-
ited number of evaluation strategies makes analysis of the code possible, for example,
critical pairs analysis. Allowing programmers to freely define custom strategies comes
with Turing completeness. In general, this removes the ability for automatically prov-
ing or guaranteeing termination. It also removes automatic guarantees of confluence.
A substantial survey of strategies in rule-based program transformation systems is
given in [Vis05a].

Relation Calls — Embedded relations provide a limited relational-like functionality
in graph rewriting systems. An embedded relation is placed on a node type to tie it to
a set of other node types. Inferred links are encoded by path expressions which will
be evaluated every time the link is accessed, allowing the members of the relation to

change.
[}
Lazy ‘Recurring ‘Incremental
Figure 2.22: Feature decomposition of rule evaluation.
Evaluation

® Eager — expressions are computed in the order they are seen by the interpreter

® Lazy — expressions are not computed until their result is needed. Once evalu-
ated, the result is memoized and used for all future evaluations of this expres-
sion.

® Recurring — Similar to lazy expressions; the expression is reevaluated every time
the result is needed, taking updated values for all involved variables into ac-
count. Recurring evaluation is equivalent to lazy evaluation without memoiza-
tion.

® [ncremental — attaching a recurring evaluation to a variable gives incremental
evaluation: Whenever such a variable is read, the evaluator is run, potentially
recomputing all dependent variables which are also incremental.

Many transformation systems seem to be rather sensitive to how transformation
algorithms are formulated. As with many high-level languages, developers may in-
advertently write sound and clean transformation programs with prohibitive execu-
tion times. A number of optimisation features have been proposed for improving

46 Chapter 2. Programmable Software Transformation Systems

the efficiency of the recommended ways of formulating transformation problems.
It may therefore be no surprise that many of the characteristic features discussed in
this chapter come from the PROGRES language. PROGRES was designed to make
graph transformation practical. It offers a wide range of architectural and language
features that aid in writing general graph transformations efficiently.

Conditional Path Iteration — Conditional path iterations are user-definable itera-
tions over paths, similar to the mathematical notion of transitive closures on a set of
predicates. Conditional paths are found in graph languages, such as PROGRES. In-
stead of returning all visited nodes, they return all possible termination points. This
feature is also found in the tree rewriting language XSLT [Cla99]. An example of this
feature was shown in the needs() example, under path expressions in Section 2.4.2.

Memoization Markers — Memoization makers allow programmers to declare that
results of computations should be stored and reused whenever the same expression is
reevaluated. The feature is found in graph systems with paths and attribute grammar
systems, and is used to control recomputation of dependent values. When rules and
functions are marked with a memoization marker, it implies that they are referentially
transparent. The following JastAdd fragment declares the attribute x() of (node) class
A to be a lazy, synthesised attribute, i.e. that its value should be memoized.

syn lazy A.xQ);

Cycle Detection — In attribute grammar systems, detecting cycles in the dependen-
cies between attributes is necessary for correct evaluation. The job of cycle detection
is to determine whether a given equation directly or indirectly depends on its own
value.

Cycle Breaking — This feature is dependent on cycle detection. Once cycles are
detected, various schemes are possible for breaking them. The simplest is to disallow
the cycle altogether by refusing to compile grammar declarations with cycles. Another
alternative is to ask the user to manually insert lazy evaluation where appropriate. In
some systems, such as JastAdd, cycles are broken with a fixed, but automatic strategy.
The following JastAdd attribute declaration specifies that the value for an attribute
which turns out to be circular should be true.

syn lazy boolean ClassDecl.hasCycleOnSuperclassChain() circular [true];

Derived Attributes — Derived attributes are variables (attributes) inside nodes whose
values depend on the value of other attributes. Updating the value of a dependent
variable automatically recomputes the value of all its dependents. The dependencies
are practically always expressed using directed equations. A typical attribute gram-
mar system will define its attributes using equations, making all attributes derived
attributes (except the ones which are defined by constant expressions). Both synthe-
sised and inherited attributes are kinds of derived attributes.

2.4. Transformation Language 47

Finite Differencing — Finite differencing is a transformation for replacing costly,
repeating calculations with less expensive differential and semantically equivalent
counterparts. The transformation is independent of the subject language, and mostly
useful for algorithms with repeated calculations. A special case of finite differencing
is the strength reduction optimisation found in most compilers. A detailed example
is beyond the scope of this chapter, but refer to [PK82] for an explanation of finite
differencing support in APTS.

2.4.3 Typing

The structure of the program code must be captured by the transformation lan-
guage type system, see Figure 2.23. Transformation languages are primarily meant to
work on a restricted domain of data. This opens up the opportunity for custom, or
domain-specific, type systems. These may sometimes be simpler than ones found in
general-purpose languages.

User-Defined
Types

0
Grammar Ties

[T 7
Embedded || Separate

Structure

S
Subtyping

Figure 2.23: Feature decomposition of typing.

o User-defined types — The system allows the programmer to define new types.

o Checking — Refers to which features exist for checking type correctness.

— Time — Determines when the type checking takes place. For solely dy-
namic type checking, all type checks are performed at runtime, and this
may incurs a performance hit. For solely sztic type checking, the trans-
formation program is guaranteed at compile time to maintain type con-
sistency. Most languages fall in between.

— Degree — Describes the nature of the type checking. The type checking
may ensure structural validity of the program object model, type cor-
rectness or other semantic properties. Fermal, for example, ensures that

N N~

48 Chapter 2. Programmable Software Transformation Systems

every transformation results in a semantically valid, executable subject
program.

® Grammar ties — For many transformation systems, the data types for the sub-
ject code is derived directly from a grammar. In these cases, it is common
for the type declarations to be embedded in the grammar. For other systems,
the definition of the subject code structure is separate from the grammar, and
grammar-independent.

A characteristic trait of the advanced type systems for transformation languages
is that they offer flexible and powerful features for maintaining data structure consis-
tency. The grammar-dependence of the types for the subject code is a characteristic
feature of both tree- and graph-based systems. In Stratego, the term structure defi-
nition for subject-program terms is usually derived directly from the syntax declara-
tion of a subject language. Some systems completely separate the subject language
grammar from the type declaration of the internal program representation of subject
programs. It is the programmer’s responsibility to convert between the parser output
and the type declaration for the subject code. This is the case for JastAdd, where any
parser may be used, as long as it builds objects from the types declared in a separate,
user-defined JastAdd AST declaration file.

Transformation Invariants — Transformation invariants are invariants on the pro-
gram code which are guaranteed by the transformations. They are encoded as pre
and post conditions on the transformation atoms or transactions. Such invariants are
very useful for conducting proofs on the transformation program. Often, there is a
clear correspondence between the transformation invariants and the data structure
invariants discussed in Section 2.3. The PROGRES language can specify graph in-
variants in its graph grammar, such as the absence of cycles, which must be respected
during graph rewriting:
constraint ACyclicAggregation = not (self in self.-contains-> +)

Meta Attributes — Meta attributes are attributes on node types, offered by the
PROGRES language. They allow parametrisation of grammar declarations and are
similar to (type) parameters on types. Meta attributes confer the ability to compose
types at compile time, much like generic types. Consider the following container

node class, defined in PROGRES.

node class CONTAINER;
meta ElementType : type in ELEMENT;
intrinsic contains: ELEMENT [0: n];
constraint self.contains.type = self.type.ElementType;

end;

2.5. Discussion 49

A CONTAINER node holds a list of elements of a given type type. It may be instantiated
for a specific type, such as stmt in the following way:

node type StmtContainer : CONTAINER;
redef meta ElementType : = Stmt;

end;

node type Stmt : ELEMENT end;

This defined the container StmtContainer which may only contain elements of type
stmt. This constraint is ensured by line 4, above, and will be checked at runtime.

2.5 Discussion

This survey described and discussed numerous features characteristic to transforma-
tion system. Its main focus was on the program models and representations used in
transformation systems, and how these relate to the transformation language used to
manipulate the models.

The analysis undertaken behind this survey indicates that high-level program
models support language-independence well. They often achieve this by replacing
language-specific information present at the source code level — such as the difference
between for and while loops in the C-language family — with more general concepts
—e.g. bounded/unbounded loop. The abstracted model may often be easy to trans-
form, but translating the result of a high-level transformation back to the underlying
program is often difficult. As a consequence, if language-independence via abstract
program models is required, many classes of transformations may have to be given up
because required information is not present in the abstract model. Abstract models
are therefore best suited for capturing problem-specific views on software.

There is a second observation related to the use of abstract program representa-
tions. The problem of general graph matching (determining an isomorphism be-
tween two graphs) is in NP It is therefore common for program transformation
systems based on graph to extract smaller, more abstract models from a code base.
Additionally, general graph rewriting systems provide numerous optimisation fea-
tures and language constructs for making graph rewriting computationally tractable.
Some of these were discussed in Section 2.4.

A similar observation may be made for databases. The author has only found a
handful of transformation systems based on relational databases. On the other hand,
many analysis frameworks have been constructed by using databases to represent pro-
grams.

A remark on the use of meta information (annotations) might be in order. The
introduction of meta information often makes transformations easier to write. By
separating the logic for computing the meta information from the logic using this
information, it is sometimes possible to formulate transformation algorithms in a

50 Chapter 2. Programmable Software Transformation Systems

more language-independent way. Much of the logic for computing meta-information
remains language-specific. By standardising on a given meta information format,
large parts of the transformation algorithms may be reusable, however. The tradeoff
is that the meta-information may have to be refreshed or recomputed throughout a
transformation. Depending on the nature of the annotation, this may very expensive.
Many systems, especially those based on attribute grammars, employ lazy evaluation
to partly circumvent this problem.

2.6 Summary

This chapter presented a detailed survey of the state-of-the-art in software transfor-
mation systems and showed that this is a very feature-rich domain where many novel
language features have been invented. The survey contained feature models describ-
ing central parts of the design space for transformation system. The models were
supplemented with examples taken from about a dozen research systems.

The survey indicated that several features for abstracting over subject languages
exist, especially for systems with very high-level program representations. A problem
with these models is that transformations are difficult to translate back to concrete
programs. There is therefore a rather clear case for additional abstraction facilities
which provide good language abstraction facilities while simultaneously supporting
easy rewriting of programs. In particular, the program model and language constructs
for manipulating it are the central components that need good abstraction facilities
if one is to attain transformation reuse and language-independence.

— Is it easy for humans to write code using this syntax?
— It depends on how you define “human’.

— Magne Haveraaen asking Valentin David

Strategic Term Rewriting

This chapter recalls some basic elements of term rewriting theory and some support-
ing parts of universal algebra. It proceeds by discussing a programming paradigm
called strategic programming which supports the separation of data traversal con-
cerns from data processing logic — allowing each part to be implemented and reused
separately — and how strategic programming, in the form of strategic term rewriting,
helps expressing reusable term rewriting systems. The chapter describes a calculus for
strategic term rewriting called System S calculus. This calculus provides the basic ab-
stractions of tree transformations and term rewriting: matching and building terms,
term traversal, combining computations, and failure handling. The strategic term
rewriting language Stratego, that implements the System S calculus, is described.

3.1 Term Rewriting

The field of term rewriting studies methods for replacing subterms of terms with
other terms. Techniques from this field are attractive for program transformation
and analysis because every computer program can be represented as a term. The
(abstract) syntax tree of a program can be directly treated as a term. The mathematical
machinery of term rewriting may be brought to bear on analysis and transformation
problems.

Term rewriting theory [Ter03] makes use of basic notions known from universal
algebra [Coh81], a field of mathematics which seeks to describe any mathematical
object by its operations. Objects and operations are described formally using signa-
tures. In term rewriting, one talks of sorts and constructors in lieu of objects (types)
and operations.

3.1.1 Algebraic Signatures and Language Signatures

In both universal algebra and term writing, terms are defined over signatures. Signa-
tures may be considered analogous to the context-free grammars used to describe the
structure of text. Both context-free grammars and signatures describe properties of

51

1
2

52 Chapter 3. Strategic Term Rewriting

(potentially) recursively defined tree structures. A standard definition of an algebraic
signature is given below.

Definition 1 Algebraic Signature.
An algebraic signature X is a pair (S, Q) of sets, where S is a set of sorts and () a
set of operations. Each operation is a (k + 2)-tuple, k > 0, on the form
0:5,X...X8 =S
where S1,...,5,S € S, 0 is the operation name and 51 X ... X Sy — § its arity. The
sorts S1,...,Sk are argument sorts, and S the target sort. Whenk = 0, 0 1= sisa
constant symbol, or just constant.

The following example of an algebraic signature declares the four basic arithmetic
operations.

signature Arithmetic

sorts Int

ops
plus : Int X Int — Int
minus : Int X Int — Int
divide : Int X Int — Int
times : Int X Int — Int

In this dissertation, algebraic signatures will be used to describe abstract data types.
For example, the above signature partially describes the data type /n# and some of
its operations (plus, minus, divide and times). All operations (and terms involving
operations) will be written in 7za/ics in the main text.

In several traditions of program transformation based on term rewriting there is
second role for signatures: they may be used to declare the abstract syntax of program-
ming languages, akin to document type definitions commonly found for markup
languages like XML [BPSM*] and SGML [sgm86]. Signatures used in this capacity
are referred to as language signatures in this dissertation. They have some minor and
subtle differences compared with the algebraic signatures.

The language signatures described here follow the tradition introduced by the
Stratego rewriting language. Operations are referred to as constructors. In the main
text, constructors (and terms involving constructors) will be written in MixedCase.
Constructors must always start with an uppercase letter. A more important difference
between the two uses of signatures is that in signatures describing languages, the
argument sorts of constructors follow the abstract grammar of the subject language
they define. Consider the signature definition for a minimal language L that supports
variables, assignment and addition operations on floating point and integer numbers:

signature L
sorts Var Exp Stmt String

O 0 1 O\ N W

3.1. Term Rewriting 53

constructors
Var : String — Var
: Var — Exp
Int : String — Exp
Float : String — Exp
Plus : Exp X Exp — Exp
Assign : Var X Exp — Stmt

Line 4 declares that variable terms are of sort Var. Line 5 is an injection which declares
that every term of sort Var is also a term of sort Exp, i.e. Var is a subsort of Exp. The
Int and Float constructors describe literals of integers and floats, respectively. In the
abstract syntax, a Plus term is constructed from two terms of sort Exp. Assignments
are statements (of sort Stmt) which assign the result of expressions to variables.

3.1.2 Patterns and Terms

Universal algebra defines the notion of terms over signatures, a traditional definition
of which is given in Definition 3. These terms may contain variables.

Definition 2 (Variables).
Given a signature ©. = (S,Q)) with an associated family V- = (V)ses of disjoint
infinite sets, an element x € V5,5 € S is a variable x of sort s.

Algebraic terms may be recursively constructed from variables and the application
of operations to the result of operations or to variables.

Definition 3 (Algebraic Terms).
Given a signature . = (S, Q) and an associated set of variables X, the set of (alge-
braic) terms for Z, (T'x(x)s)ses are defined by simultaneous induction:

1 X, C T
2. ifo:—>s€Q), theno € Tyxys

3 ifoisiX...Xsp =5 €L, k> 0andift; € Tyxys, for 1 <1 <k, then
o(ty, ..., tx) € Trxys-

An element in Ty xys is called a X.(X)-term of sort s, or just a term. Var(t) denotes
all variables occurring in the X(X) term t. If Var(t) = 0, t is called a ground term.

Every valid algebraic term for a given signature must respect the sorts of the
signature, i.e. the arity of each operation. Algebraic terms may contain variables.
The terms for language signatures, and their nomenclature, behave slightly differently
from algebraic terms.

54 Chapter 3. Strategic Term Rewriting

pu= c(p,...,p) constructor application
| str string literal
| r real number
| i integer number
| x variable
c = identifier = constructor name
X = identifier variable name
| wildcard

Figure 3.1: Syntax definition for Stratego (language) patterns. The number of pat-
terns p in a constructor application must correspond to the numeric arity of the
constructor named c¢. Wildcards are “open holes” in patterns, akin to nameless vari-

ables.

The syntax for Stratego language terms is described in Figure 3.1. When language
terms, or just terms, are constructed, the language signature is assumed to be single-
sorted. Only the numeric arity must be respected, i.e. only the number of arguments,
irrespective of the sorts. This is done for practical convenience. Term rewriting ap-
proaches, including that of Stratego, use step-wise substitution of subterms when
going from one signature to another. It is useful to allow intermediate terms which
are not valid according to either the source or the target signature, without having to
explicitly declare a “super-signature” which defines all possible constructor combina-
tions.

Another difference between universal algebra and the nomenclature used in strate-
gic rewriting is the meaning of the word “term”. Language terms are always ground
terms. A language term containing variables will be referred to as a partern, often
written p. Variables in patterns always start with lower case letters, e.g. x. Consider
the example term and pattern:

Plus(Int("0"),Int("1")) Plus(x,y)
(term) (pattern)

The kind of term expression — pattern or ground term — is easily recognised from the
syntax since all constructors start with an uppercase letter and all variables start with
a lowercase letter.

A pattern p may be matched against a term . This matching is purely syntactical.
It succeeds if and only if there exists a valid variable substitution o(p) = t. The
variables Var(p) of p will be bound to their corresponding subterms in £, e.g:

(match Plus(x,y)) Plus(Int("0"),Int("1")) = 0 : [x > Int("0™), Y > Int("1™]

3.1. Term Rewriting 55

Conversely, a pattern p may be instantiated into a term £, by replacing all its variables
x with terms:

[x = Int("0™), y = Int("1"] : (build Plus(x,y)) = Plus(Int("0"),Int("1"))

Patterns are used in program transformations to check for structural (syntactic) prop-
erties and to construct new program fragments. By combining pattern matching and
pattern instantiation into one (potentially named) unit, the rewrite rule is obtained.

3.1.3 Rewrite Rules

Rewrite rules are the units of transformation — or the atomic building blocks, if you
will — in term rewriting systems. Each rewrite rule describes how one term can be
derived from another term in a single step.

Definition 4 (Rewrite Rule).

A rewrite rule R : p; — p,, with name R, left-hand side pattern py, right-hand side
pattern p,, and py, p, € Ty (x), reduces the term t to t' if there exists a0 : X — Ty such
that t = o(p;) (p1 matches t) and t' = o(p,) (p, instantiates to t'). The term t is called
the redex (reducible expression) and t' the reduct.

In the context of System S and Stratego, the term variables are variables in the
Stratego program, and the substitution o corresponds to a variable environment ¢.
This is clarified in the next section. A set of rewrite rules R is said to induce a one-step
rewrite relation on terms, written as follows:

t —g t

This says that t reduces to t’ with one of the rules in R. Composing these in sequence,
ie. fgp —r t1 —r ... gives a reduction sequence with —g, where R is repeatedly
applied to the root of a term.

Definition 5 (Conditional Rewrite Rule).

A conditional rewrite rule R : p; — p, where ¢, with ¢ being a logical expression in
some logic, specifies that R is only applicable if, for some o, p; matches t with 0 and o(c)
holds (evaluates to true).

3.1.4 Rewriting Strategies

The rewrite sequence, as defined above, repeatedly applies the rules of R to the root
of a term, i.e. to the top-level constructor and its subterms. The definition does not
describe how rules may be applied to subterms. Nor does it say anything about the

56 Chapter 3. Strategic Term Rewriting

order in which the rules in R of are applied for each step — it may be the case that
multiple rules are applicable.

Other definitions for rule application exist in term rewriting theory, but for pro-
gram transformation, a flexible and precise way of programming both the application
location (inside a term) and the order of (rule) application is necessary. In this disser-
tation, the System S calculus is used for this purpose.

3.2 System S — Strategic Term Rewriting

Strategic term rewriting extends basic term rewriting with additional constructs that
accurately control the application strategies for sets of rules. These constructs are
used to control the order of rule application, traversal over term structures, and how
to handle rule application failures.

The System S core calculus is a formalism for strategic term rewriting. It pro-
vides the basic abstractions of tree transformations and term rewriting: matching and
building terms, term traversal, combining computations and failure handling. It was
first introduced by Visser and Benaissa [VBT98, VB98]. The programming language
Stratego is directly based on this calculus.

This section contains a slightly modified formulation of the same core calculus
which is more in the style of [BvDOVO06]. The definitions given herein are only those
necessary for later chapters. Compared to the original description, non-deterministic
choice, sy + 51 and the test operator have been dropped. These are now replaced by
a guarded choice combinator. The some(s) traversal primitive has been eliminated.
A syntax of System S is shown in Figure 3.2. For the rest of this section, the word
“program” is taken to mean the transformation program. Terms are used to represent
subject programs.

In Chapter 5 and Chapter 7, the System S calculus and Stratego is extended with
additional constructs that improve the capacity for expressing language independent
transformation programs.

Basic Definitions

The operational semantics of System S is specified using the notation described be-
low. The semantics describes the behaviour of strategies. Rewrite rules are encoded
as strategies (shown later), but are provided with syntactic sugar to give them their
familiar notation.

The domain of strategy applications is the set of terms extended with a special
failure value 7. The notation ¢ is used to indicate terms from this extended domain;
the notation ¢ still refers to terms. Consider the following assertion:

[er(s)yt=>t'T",¢)

3.2. System S — Strategic Term Rewriting 57

su= id identify
| fail failure
| ?p match term
| p build term
| s;s sequential composition
| s<s+s guarded choice
| where(s) where
| {x,....x: 8} new variable scope
| one(s) | a11(s) generic traversal operators
| f(f,..., flp,...,p) strategy invocation
x = identifier variable names
f = identifier strategy names
¢ == identifier constructor names

Figure 3.2: Syntax for System S. The definition of term patterns p was given in
Figure 3.1. The semantics of strategy invocation is defined in [BvDOV06].

It states that the strategy s applied to term f in context of the system state I" (used to
model dynamic rules) and variable environment ¢ evaluates to the term #’ in a new
system state I and a new environment ¢€’. The variable environment takes on the
role of the o substition previously described for rewrite rules.

Strategies may fail. This is noted with the following assertion:

[eryt=17d7,¢)

Changes to state and variable bindings are preserved in the case of failure.

Variables A variable environment ¢ is a finite ordered map [x; — H,y e, Xy
t,] from variables to terms or failure. A variable x may occur multiple times in
€, in which case the first (leftmost) binding is applicable. The application of an
environment — a variable lookup — is defined as picking out the first binding for x (if

any):

— — toif xi=xAVj<i:x;#Ex
[letl""x”Ht”](x){Tl if Vi<n:xj#x

The variables in ¢ fulfil the role of algebraic term variables. The instantiation &(p) of
the pattern p yields a (language) term, i.e. a ground term, by replacing every variable
x in p with its bound term from ¢. This is identical to variable substitution with o
with the exception that the pattern variables are variables of the System S calculus
(i.e. variables in the Stratego language).

58 Chapter 3. Strategic Term Rewriting

Environments ¢ are used in the matching process of patterns p. It is convenient to
have a notation stating that the only difference between environments ¢ and ¢’ are the
bindings for the variables of p. The notation &” 3 ¢ declares that the environment &’
is a refinement of the environment €. This means thatife = [x1 — t, ..., X, - b,
then ¢ = [x; E, oo, Xy = t]and foreach i : 0 < i < n, e(x;) = €'(x;) or
€(x;) =T and &'(x;) = t for some term t. ¢’ J, ¢ declares that the environment ¢’ is
the smallest refinement of the environment € with respect to a term pattern p if ¢’ 3 ¢
and for all x not in p, €’(x) = &(x).

Algebraic Properties The notation e; = e; is used to describe algebraic properties
of the defined constructs and to define syntactical shorthands. These equations are
universally quantified unless otherwise stated.

3.2.1 Primitive Operators and Strategy Combinators

System S provides a handful of primitive operators on terms. The most basic of these
are identity (id) and failure (fail) operators. Applying the identity operator to a term
leaves the term unchanged; applying the failure operator signals a failure:

ek GGayt = (I, ¢) [er (fail)t =7 ([T, ¢€)

The operators, such as id and fail, are combined into expressions using strategy
combinators. The purpose of the combinators is to describe control flow. Strategy
expressions are built from primitive operators and combinators. The combinators
are used to express application — evaluation — strategies of transformations in terms
of how strategy application failures are handled. Any System S operator (except
identity) may fail. Strategy combinators are used to specify what should happen
when failures occur.

Sequential Composition The sequential application of two strategies s1 and sy is
expressed using the sequential composition combinator, s3; s».

er(spt=>t'A7,¢") TV, & F{sptf = F(F”, e
T, ek (sy;so)t = t/([7,€”)
[er (st =T (7, ¢)
[ek (syysopt =T (I7, €)
The assertions describe that strategy s; is first applied to the current term ¢. If it
succeeds, s is applied to its result; the result of the combination is the result of
Sp. If 51 fails, the combination fails. The following equations are consequences of the

definitions above. They show that the id operator is a unit for sequential composition
and that fail is a left zero.

3.2. System S — Strategic Term Rewriting 59

id;s=s s;id=s fail;s = fail

Not that in the general case, ds : s; fail # fail. This follows from the way the state
and the environment propagates over s: any environment ¢ before s will in general
be ¢’ after s, whereas fail preserves the environment. Because of this, fail is not a
right zero for sequential composition.

Guarded Choice The guarded choice (sometimes referred to as just the choice com-
binator) 51 < 5, + S3 resembles an if-then-else expression, e.g.:

id<Sy+5S3 =8 fail < Sy + 83 =853

First, s1 is applied. If 51 succeeds, sy is applied and the result of s; is the result of the
combined expression; if s, fails, the combination fails. Should s fail, s3 is applied
and the result of s3 is the result of the combination; if s3 fails, the combination fails.

Toer (st =T, ¢") T, e+ ()t = "7, ")
Ier (s;1<sy+s3)t = F(F”, e

Toek (st =7 (T, &) T'ek (sy)t = P, ¢”)
T,eb (51 <sy+s3)t = t/(I",¢e”)

An important feature of the guarded choice is that if s fails, both the effects due to
S1 on the term t are and to the environment (but not the state I') are undone. This
means that the choice combinator implements a notion of (local) backtracking.

Negation, Left and Right Choices For notational convenience, the operators 7oz,
left choice, and right choice may be defined using guarded choice:

left choice sy<+s1 = Sy < id + 51
right choice Sp+>$1 = 51 < id+ Sy
not not(S) = S < fail + id
try tryS = S<+id

3.2.2 Primitive Traversal Strategies

The combinators in the previous section addressed the first of the two concerns of
rule application: how rule application failure may be handled. The second concern —
where in a term rules should be applied — is addressed by primitive traversal strategies.
There are two primitive traversal strategies: one and all. They enable term traversal
by local navigation into subterms.

60 Chapter 3. Strategic Term Rewriting

topdown(s) = s; all(topdown(s)) top-down traversal
bottomup(s) = all(bottomup(s)) ; s bottom-up traversal
repeat(s) = try(s; repeat(s)) ﬂpply s until iz‘ﬁlils
oncetd(s) = s <+ all(oncetd(s)) ﬂpply S once, start at the top
oncebu(s) = all(oncebu(s)) <+ s apply s once, start at the bottom
innermost(s) = bottomup(try(s; innermost(s))) innermost traversal
outermost(s) = repeat(oncetd(s)) outermost traversal

Table 3.1: A selection of frequently used traversal and application strategies.

All Subterms The al1(s) strategy applies the strategy expression s to each subterm
of the current term, potentially rewriting each. all(s) succeeds if and only if s suc-
ceeds for all subterms.

l_‘0/ €k <S> b= ti(rlr 51) v l_‘n—lr Ep-1 F <S> th = t (rn/ en)

n

Lo, €0 + (a11(s)) c(ty, ..., tn) = c(t], ..., £) (L, €0)

Lo, e0 k() 1 = (T, €7) ... Tig, e k() =T (T, €)
Lo, €0 F (a11(s)) c(ty, ..., t,) =T ([, €)

The strategy all(s) behaves as follows with respect to failure, identity and constant
terms:

all(id) = id <all(s)>c() =c() <all(fail)>c(ty,...,t,) = fail (ifn > 0)

One Subterm The traversal strategy one(s) is similar to all, but applies s to exactly
one subterm. It fails if s does not succeed for any of the subterms.

Loer ()t =T T1) ... Tig, e bty =T (Timg) Tiog, e - ()t = £, €)
I etk (one(S))C(tl, ceey tn) = C(tl, e, ticg, tz,’ tivi, .-, tn)(FZ-, 81')

r/ € F <S>t1 :>T (rlr 51) s l_‘n—lr EFr <S>tn :>T (rn/ en)
[, e+ (one(s))c(ty, ..., ty) =T ([, €,)

The one(s) strategy backtracks (undoes) all modifications to the variable environment

made by failing applications of s, but changes to the system state are kept.

Generic Traversal Strategies

An important feature of System S (and Stratego) is its ability to define signature-
independent (and thereby language-independent) traversal strategies. This support is

3.2. System S — Strategic Term Rewriting 61

the result of mixing primitive traversal operators and strategy combinators. The mix
yields the notion of generic traversal strategies. Examples of generic traversal strategies
are given in Table 3.1.

Each generic traversal strategy s;(s) is parametrised with a strategy s that is applied
throughout a term according the traversal scheme specified by s;. The argument
strategy s is used to insert language-specific rewriting logic, thereby instantiating the
generic strategy for a specific subject language and signature.

3.2.3 Building and Matching Terms

System S supports two complementary operations for applying patterns to terms:
match and build. Patterns are matched against terms using the match operator (?).
Variables in the pattern are bound to their respective subterms. Terms are instantiated
from patterns using the build operator (!). Variables are replaced by the terms they
have previously been bound to.

Term Matching The assertions for term matching are given below:

de’ e’ Jyene(p) =t A’ (e Ty ene(p)=t)
FerPpyt=tTI,¢) Fer(p)y =TT ¢)

The semantics is compatible with the previously defined notion of match with vari-
able substitution 0, with one exception: variables in p may already be bound. These
variables are not rebound, but the corresponding subterms of t must match the terms
bound by the variables of p. For example, a match of the pattern Plus(x,y) against the
term Plus(Int("0"),Int("1")) (attempts to) bind the variable x to the term Int("0").
The match fails if the variable x is already bound to a term that is not Int("x").

Term Building Term building is, in a sense, the inverse of matching. The build
semantics is defined as:
ek {Ipt = elp)T,)

With the environment € = [x + Int("0"), y = Int("1")], the expression !Plus(x,y)
will result in the the term Plus(Int("0"),Int("1™)).

3.2.4 Variable Scoping

The static scoping of term variables x1,...,x, can be controlled using the scope
operator {x1,...,%, : s}. Given ¢y = [11 »T,...,y, =Tl and &1 = [y1 =
t, oo Yn o Byl

62 Chapter 3. Strategic Term Rewriting

T, epe b {[y1/x1, -, Yu/Xnls) t = F(I7, €1€")
ek ({xe, ..., x, 8}t = (7, €)

The operator introduces a new scope in which the strategy s is evaluated where the

(y1, ..., Yn fresh)

variables x1,...,x, have been replaced by fresh copies. This results in the usual
notion of variable scoping: After s finishes, any binding for x;, 1 < i < 7 introduced
by s is removed from the environment. The scope operator succeeds if s succeeds and
fails if s fails.

A useful syntactical abstraction over the scope operator is the where clause, later
used for defining conditional rewrite rules. A where(s)-clause temporarily saves the
current term, applies s to it, then restores the current term:

where(s) = {x :?x;s; Ix}

It follows from the previous definitions that all variable bindings due to s are kept if
s succeeds, and that where(s) fails iff s fails.

3.2.5 Rewrite Rules

The System S calculus can express rewrite rules with or without conditions, R, and
Ry, respectively:

Ru ‘P = Pr =E7P5 Py
R. : pi = p, where s = ?7p;; where(s); 'p,

The following is an example of a rewrite rule, named Simplify, defined in Stratego:

Simplify:
Add(Int(x), Int(y)) — Int(z)
where <addS> (x,y) = =z

The condition of this rule consists of the application of the strategy adds to the tuple
(x,y). (This tuple is the application of a nameless constructor with numeric arity
two.) The result is “assigned” to the variable z using another syntactic abstraction,
the = operator, defined as follows:

$;p=s=>p

3.2.6 Additional Constructs

This section defined the core constructs of the System S calculus which are neces-
sary for describing the language extensions proposed later in this dissertation. System

3.3. Stratego 63

Strategy Expression | Meaning — (basic constructs)
'p (build) Instantiate the term pattern p and make it the current term
4 (match) Match the term pattern p against the current term
Sp < 81 + 52 (left choice) Apply sy. If s¢ fails, apply s1. Else, roll back, then apply s;.
S0 ; S1 (composition) Apply so, then apply s1. Fail if either sg or s; fails
id, fail (identity, failure) Always succeeds/fails. Current term is not modified
one(S) Apply s to one direct subterm of the current term
all(s) Apply s to all direct subterms of the current subterm

Figure 3.3: Basic language constructs.

S has several additional language constructs. These are presented informally using
examples in the next section. Each of the explained constructs is used in some of
the examples containing Stratego code throughout the following chapters, but un-
derstanding their precise and detailed semantics is not required. For a complete in-
troduction to all of Stratego, refer to the Stratego/XT manual [BKVVO05]. Specific
caveats and considerations are noted along with the examples where pertinent.

3.3 Stratego

Stratego is a domain-specific language for writing program transformation libraries
and components. It is based on the System S rewriting calculus. The language
provides rewrite rules for expressing basic transformations, programmable rewriting
strategies for controlling the application of rules, concrete syntax for expressing the
patterns of rules in the syntax of the object language, and dynamic rewrite rules
for expressing context-sensitive transformations, thus supporting the development of
transformation components at a high level of abstraction. The program object model
used for representing subject programs are terms.

In the next sections, the parts of Stratego which are relevant for comprehend-
ing the remainder of this dissertation are explained in detail. A short description is
given in Figure 3.3 and Figure 3.4 of the core Stratego language constructs offered
to the programmer. The following sections informally describe additional features of
Stratego.

3.3.1 Signatures, Patterns and Terms

Stratego supports the declaration of signatures for describing the abstract (or con-
crete) syntax of subject languages. Stratego signatures are very close to the concept
of language (as opposed to algebraic) signatures described previously. Consider the
following example:

O CO0 NI O\ N bW N =

64

Chapter 3. Strategic Term Rewriting

Strategy Expression | Meaning — (syntacic sugar)
\p1 > pr\ Anonymous rewrite rule from term pattern pj to py
?x@p Equivalent to ?x ; ?p; bind current term to x then match p
<S> p Equivalent to !p ; s; build p then apply s
s =>p Equivalent to s ; ?p; match p on result of s

Figure 3.4: Syntactic sugar.

signature

sorts Exp Stmt

constructors

Var :

Int

String — Var
: Var — Exp
String — EXxp

Float : String — EXxp

Plus

: Exp X Exp — Exp

Assign : Var X Exp — Stmt

This example illustrates the following differences between Stratego and algebraic sig-
natures:

Stratego signatures are not named. A program written in Stratego may have
several signature declarations. The sorts and constructors from all of these
declarations will be combined into one implicit “super signature”.

Only the arity of constructors is guaranteed by the Stratego language, i.e. it
is a one-sorted system which allows synonym names for its sort. Given the
signature above, the constructor Plus may be applied to any two subterms.
Their sorts are never checked. Additionally, sorts need not be declared before
they are used in constructor definitions, e.g. lines 7-8 above, where the sort
var is undeclared. It is considered good form to declare all sorts, however. A
separate tool, called format-check, can be applied to a term to check if it is
valid with respect to a given signature.

Stratego has builtin (primitive) sorts and special term syntax for strings (String),
lists (List(x)), tuples (Tuple(x)), integer (Int) and real (Real) numbers. The
sort Term is used (by convention) to indicate an “any” sort. That is, any term
may be inserted where a Term is expected.

Nameless constructors of arity one are allowed, and these are called injections.
Injections declare the terms of the argument sort may be placed wherever the
target sort is allowed. In effect, injections declare their argument sort to be a
subsort of the target sort, and are used by the format-check tool.

3.3. Stratego 65

Strategy Meaning
rules(rdy ... rdy) define rules rdy, ..., rd,
{ry, ..., ry: sl} start new scope for rule names 7y, ..., 7,
S1 /T1,--+, 1\ S2 fork rule sets r1, ..., 7y, apply s1 then sy, intersect rule sets
VP AL apply s until rule sets 4, . .., 7, reach fixpoint
Rule definition (rd) Meaning
R : p1 — p2 wheres introduce rule R
R :+ p1 — pa2wheres | extend rule R with another left-hand side pq (and r.h.s. p2)
R:-p undefine rules R with left-hand side p

Table 3.2: Essential basics of dynamic rules.

3.3.2 Congruences

A feature of System S (but not unique to it) is the combination of term traversals and
rewriting into one compact construct, called congruences. Consider the following
constructor:

C:S81 X ... XSn —> S

A congruence for this constructor is defined as the following rewrite rule with higher-
order parameters Sy, . .., Sy:

c(sl,...,sy) s c(x1, ..., x5) = (Y1, ..., Yn) where (s1)x1 = Y1;...;{s)X = Yy

Given the above definition of a congruence and the previous definition of a rewrite
rule, the expression

Plus(s0®, sl)
syntactically expands to the following:

7Plus(x0,x1) ; where(<s®0> x0 => x0’ ; <sl> x1 => x1’) ; !Plus(x0’,x1’)
While congruences are syntactically succinct, they mix data traversal strategies and

term rewriting logic. This ties rewriting programs to very specific signatures and
impairs reuse across subject languages.

3.3.3 Scoped, Dynamic Rules

Stratego supports the notion of dynamic rewrite rules that may be introduced and
removed dynamically at runtime. These rules are used to capture and propagate
context through the rewriting strategies. Figure 3.2 gives a brief summary of the
dynamic rule basics.

66 Chapter 3. Strategic Term Rewriting

The expression rules(R: t -> r) creates a new rule in the rule set for R. The
scope operator {| R : S |} introduces a new scope for the rule set R around the
strategy 5. Dynamic rule scopes are dynamic — they follow the flow of the program.
Variable scopes, on the other hand, are static — they follow the grammatical structure
of the program text. Changes (additions, removals) to the rule set R done by the strat-
egy s are undone after s finishes (both in case of failure and success of 5). Sometimes,
multiple rules in a rule set R may match. For example, the rule extension rules(R :+
t -> r) may be used several times with overlapping left hand sides. To get the results
of all matching rules in R, one may use bagof-R. The additional operations relating
to dynamic rewrite rules will be explained in the context of constant propagation, in
Chapter 5.

The following example illustrates an application of dynamic rules to the prob-
lem of propagating variable constants. This example will be expanded upon in later
chapters. The rule PropConstAssign must be applied to terms representing variable
assignments in the subject language. If the right hand side of the assignment is a con-
stant, the dynamic rule PropConst is added. This dynamic rule maps a given subject
language variable to its known constant.

PropConstAssign:
Assign(Var(x), e) — Assign(Var(x), e’)
where
prop-const> e = e’
; 1f <is-value> e’ then rules(PropConst : Var(x) — e’)
else rules(PropConst :- Var(x)) end

If the constant is not known, i.e. the term e is not a value, any previous mappings for
this subject language variable is removed.

Concrete Syntax Patterns

Concrete syntax patterns supplement term patterns and may sometimes result in
more succinct transformation programs. Syntax patterns are by convention enclosed
in “semantic brackets” (| [11). They will be expanded in-place by the Stratego com-
piler to their equivalent AST term patterns.

?|[ed := el + e2]| = ?Assign(e®, Plus(e®), Plus(e2))

The grammar used to parse the concrete syntax must be specified to the compiler.
The grammar is defined using a parser from the XT collection of transformation
components described below.

3.3. Stratego 67

3.3.4 Overlays

Overlays may be thought of as “term macros” and are used to abstract pattern match-
ing over terms. Consider the following overlay declaration:

PlusOne(x) = Plus(x, Int("1"))
When compiling a program where this overlay is defined, the Stratego compiler will
substitute every occurrence of the term PlusOne(X) with the term Plus(xX,Int("1")),
for example:

overlay expansion

?PlusOne(Int("42")) ———— > 7?Plus(Int("42"),Int("1"))

The x in this case is 7ot a Stratego variable. Overlay substitution may be consid-
ered a “meta-rewriting” pre-processor step where all constant terms and patterns in a
given Stratego program are expanded. After this pre-processing is finished, “normal”
compilation resumes.

3.3.5 Modules

Stratego programs are organised into modules. Each module corresponds to a file,
and is divided into typed sections. A module may import any number of other
modules. A module import is (almost) equivalent to textual inclusion of the imported
module’. Circular dependencies are allowed. Each section type, e.g. strategies,
overlays and rules, specifies which declarations are allowed within that section. One
exception exists: both strategies and rules may be declared freely within both rules
and strategies sections.

3.3.6 Stratego/XT

A short note on the name “Stratego/XT” is necessary. The Stratego language was
designed to support the development of transformation components at a high level
of abstraction. It is distributed together with XT, a collection of flexible, reusable
transformation components and declarative languages for deriving new components.
Complete software transformation systems are composed from these components.
The composition of Stratego and XT is named Stratego/XT.

The traditional usage pattern of Stratego/XT is illustrated in Figure 3.5. The de-
veloper starts by constructing or reusing a syntax definition for the subject language
L. This definition is used to automatically derive a language infrastructure, such as
a parser, pretty printer and a signature declaration for the abstract syntax of L. The
developer may then write transformations using the derived infrastructure against
the language L. The robustness and quality of the infrastructure is to a large extent

"The module name and the import declarations are removed.

68 Chapter 3. Strategic Term Rewriting

syntax
definition

pretty-
printer
generator

parser signature
generator generator

pretty-
print
table

signature

trans-
oo NG 7 SN

pretty-
printer

output
program

Figure 3.5: Derivation of language infrastructures from syntax definitions (gram-
mars).

determined by the accuracy and quality of the grammar. For many mainstream lan-
y Y q & y

guages, constructing a solid grammar is highly non-trivial. Consequently, robust and

practical mechanisms for easily reusing existing language infrastructures is therefore

desirable.

3.4 Summary

This chapter discussed the strategic programming methodology, a programming ap-
proach where data traversal patterns are separated from the data processing logic. It
described (a subset of) the System S core calculus which applies the principles of
strategic programming to term rewriting. The result is a clear separation between
rewrite rules, which perform data processing, and generic traversals with combina-
tors, which are used to encode data traversals. In the context of program transfor-
mations, the separation enables independent reuse of language specific rewrite rules
and rule application strategies. This promotes language independence by allowing
generic strategies to be reused across language specific rule sets. Basic elements of
term rewriting theory were also introduced, together with their relation to universal

algebra.

Part 111

Abstractions for Language
Independence

69

Program Object Model Adapters

Software transformation systems provide powerful analysis and transformation frame-
works with concise languages for language processing, but instantiating them for
every subject language is an arduous task, often resulting in half-completed front-
ends. A lot of mature front-ends with robust parsers and type checkers exist, but
few of them expose good APIs to their internal program representations. Express-
ing language processing problems in general purpose languages without the benefit
of transformation libraries is usually tedious. Reusing these front-ends with existing
transformation systems is therefore attractive. However, for this reuse to be optimal,
the functional logic found in the front-end should be exposed to the transformation
system — simple data serialisation of the abstract syntax tree is not enough, as this fails
to expose important compiler functionality such as import graphs, symbol tables and
the type checker.

This chapter introduces a novel design for a program object model adapter that
enables program transformation systems to rewrite directly on compiler program ob-
ject models such as ASTs. The design is reusable across language front-ends and
also across program transformation systems based on the term rewriting paradigm.
It provides an efficient and serialisation-free interface between the language-general
software transformation system and the language-specific front-end infrastructure.

Chapter 10 illustrates the applicability of this design using a prototype framework
based on MetaStratego and the Eclipse Compiler for Java. The prototype allows
scripts written in Stratego to perform framework and library-specific analyses and
transformations.

Much of the content of this chapter has been presented in the paper “Fusing a
Transformation Language with an Open Compiler” written with Eelco Visser [KV07a].

4.1 Introduction

Software transformation systems are attractive candidates for implementing program
analyses and transformations because their high-level domain-specific languages and

71

72 Chapter 4. Program Object Model Adapters

their supporting infrastructure allow precise and concise formulations of transfor-
mation problems. Unfortunately, transformation systems rarely provide robust and
mature parsers and type analysers for a given subject language. Open compilers are
also attractive because they provide solid parsers and type analysers, but they are
mostly implemented in general-purpose languages. This means that the analyses and
transformations must also be implemented in a general-purpose language without the
benefit of the transformation features covered in Chapter 2. A consequence of this is
that even relatively simple transformation tasks may quickly become time-consuming
to implement.

The design introduced in this chapter aims to obtain the best of both worlds
by combining the expressive power provided by transformation languages with the
maturity and robustness of open compilers using a program object model (POM)
adapter. The POM adapter welds together the transformation system runtime and
the abstract syntax tree (AST) of the compiler by translating rewriting operations
on-the-fly to equivalent sequences of method calls on the AST API. This obviates
the need for data serialisation. The technique can be applied to most tree-like APIs
and is applicable to many term-based rewriting systems. Using this adapter, transfor-
mation languages become compiler scripting languages. Their powerful features for
analysis and transformation, such as pattern matching, rewrite rules, tree traversals,
and reusable libraries of generic transformation functions, are offered to developers.
By instantiating this design with a concrete transformation language and a concrete
compiler, as is shown in Chapter 10, a powerful platform for programming domain-
specific analyses and transformations is obtained. Depending on the transformation
language used, the combined system can be wielded by advanced developers and
framework providers because large and interesting classes of domain-specific analyses
and transformations may often be expressed by reusing the libraries provided with
the transformation system.

The contribution of this chapter is a general technique for fusing domain-specific
languages for language processing with open compilers without resorting to data se-
rialisation. When instantiated, this design brings the analysis and transformation
capabilities of modern compiler infrastructure into the hands of advanced developers
through convenient and feature-rich transformation languages. The technique can
help make transformation tools and techniques practical and reusable both by com-
piler designers and by framework developers since it directly integrates them with sta-
ble tools such as the Java compiler. Developers can write interesting classes of analyses
and transformations easily and compiler designers can experiment with prototypes of
analyses and transformations before committing to a final implementation. In Chap-
ter 10, the system’s applicability is validated through a series of examples taken from
mature and well-designed applications and frameworks.

The rest of this chapter is organised as follows: In Section 4.2, the design of the
POM adapter is explained. Section 4.3 discusses the implementation details of the

4.2. The Program Object Model Adapter 73

‘Transformation program ‘

‘ Transformation runtime ‘

POM adapter
POM (AsT API)

Compiler ‘

FFI library

Figure 4.1: Program object model adapter archicture.

design. Section 4.4 discusses related work. Section 4.5 discusses tradeoffs related to
the proposed technique. Section 4.6 summarises.

4.2 The Program Object Model Adapter

The program object model adapter fuses together a compiler and a software trans-
formation language. The term program object model is used in this dissertation for
referring to the object model representing a program inside the compiler. This is
typically an AST with symbol tables and other auxiliary data structures such as im-
port graphs. The POM adapter translates the primitive rewriting operations of the
rewriting engine to function calls of the POM API.

4.2.1 Architecture Overview

Consider Figure 4.1 which shows the principal components of the design. There are
three distinct layers in the figure, coded with different shades of grey. At the bottom,
the compiler provides an API for modifying and inspecting its internal program ob-
ject model. It may also provide additional functionality that should be exposed to
the transformation programs such as the ability to manipulate its include paths and
output directories. The language used to implement the compiler will be referred
to as the compiler language. (The source l