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3. Terms and abbreviations 

Terms:  

Alpha rhythm The dominant posterior EEG-rhythm with frequency 8–13 Hz that 

is blocked or attenuated by eye opening 

Background activity Any EEG activity representing the setting in which a given 

normal or abnormal pattern appears and from which such a 

pattern is distinguished 

Database A filing system organised to provide fast access to desired pieces 

of data 

Epilepsy A disorder characterized by spontaneous recurrent episodes of 

paroxysmal brain dysfunction due to a sudden, disorderly, and 

excessive neuronal discharge 

Focal epileptiform 

activity 

Epileptiform activity that is not generalised 

General background 

activity 

The background activity apart from the alpha rhythm 

Generalised 

epileptiform activity 

Epileptiform activity appearing in three or more out of five brain 

regions at both sides at the same time and with not more than 

moderate asymmetry  

Hyperventilation 

provocation 

A procedure implying intentional overbreathing for 3 minutes 

Hyperventilation 

sensitivity 

Epileptiform activity being more than doubled during 

hyperventilation provocation 

Photic stimulation A procedure implying intermittent light flashes in a predefined 

sequence of different frequencies 

Photoparoxysmal 

response 

Generalised epileptiform activity being more than doubled during 

photic stimulation 
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Abbreviations: 

aEEG amplitude-integrated EEG 

AM annotation module 

API application programming interface  

AR alpha rhythm 

ASTM American Society for Testing and Materials 

BA background activity 

BOLD blood-oxygen-level-dependent  

CBRDEE current brain-related disease except epilepsy 

COM component object model  

DM database module 

EAS EEG annotation system 

EEG electroencephalography 

EEGer electroencephalographer 

FEA focal epileptiform activity 

Fig Figure 

fMRI functional magnetic resonance imaging 

GBA general background activity 

GEA generalised epileptiform activity 

HVS hyperventilation sensitivity 

Hz Hertz 

ICD-9 International Classification of Diseases, Ninth Revision 

ICD-10 International Classification of Diseases, Tenth Revision 

IGE idiopathic generalised epilepsy 

JME Juvenile myoclonic epilepsy  

LTM Long term monitoring 

MEG Magnet encephalography 

MFPM multivariate fractional polynomial model 

MPM multivariate polynomial model 

MRI magnetic resonance imaging 

MS Microsoft 
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ODBC open database connectivity  

OR odds ratio 

p probability 

PET positron emission tomography 

PPR photoparoxysmal response 

PSPs postsynaptic potentials 

RBS regular bilateral synchronous 

RGM report generator module 

sec second 

SPECT single photon emission tomography  

SQL structured query language 

TMS transcranial magnetic stimulation 

μV micro-volt 
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4. Introduction 

4.1 EEG 

EEG represents the measurement of fluctuating electrical activity generated from the brain. 

This activity is usually obtained by recording from electrodes placed on the scalp, but can 

also be obtained from electrodes placed directly on the brain cortex or inside the brain 

cortex. The scalp EEG provides an inexpensive, non-invasive measurement of brain state 

fluctuations with high temporal resolution in the range of milliseconds, but, compared to 

modern imaging techniques, with rather low spatial resolution in the range of centimetres 

(Ritter and Villringer, 2006; Tao et al., 2007). 

4.1.1 EEG history 

Already in the late 19th century electrical currents from the surface of exposed brains of 

monkeys and rabbits were reported (Caton R, 1875). Hans Berger published in 1929 the first 

scalp EEG recording from humans (Berger, 1929). The first epileptiform spikes were 

published in 1935 (Kornmuller, 1935). In the 1980s and 1990s the digital computer 

technique was introduced for EEG recordings. This enabled user-selected montages, vertical 

and horizontal scaling, filter adjustments, a far better storage, and faster retrieval of EEGs 

(Burgess, 1993; Nuwer, 1997; Swartz, 1998; Quinonez, 1998; Blum, 1998; Epstein, 2006). 

Such technology also makes it possible to record multi-channel EEG and polygraphic data 

for ambulant patients. Digital video can be simultaneously recorded with EEG, known as 

video EEG telemetry. 

4.1.2 Physiological basis of EEG 

Convoluted dipole layers of pyramidal neurons in the cortical gray matter are the principal 

EEG generators of scalp EEG recordings (Schaul, 1998b). The recorded oscillations 

originate from postsynaptic potentials (PSPs) rather than action potentials. Although action 
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potentials are higher in amplitude, PSPs are longer in duration and involve a larger 

membrane surface allowing both temporal and spatial summation of excitatory and 

inhibitory PSPs. Using simultaneous scalp and intracranial recordings a recent study has 

demonstrated that 10-20 cm2 of gyral cortex is commonly required to generate scalp-

recognisable inter-ictal spikes. The phenomenon of temporal and spatial summation may 

explain the general relationship between frequency and amplitude. Oscillations with higher 

frequency are more liable to strict synchronisation between adjacent PSPs to produce high 

amplitudes recorded from a distant localisation leading to lower amplitudes compared to 

oscillations with lower frequencies (Singer, 1993; Schaul, 1998a; Pfurtscheller and da Silva, 

1999; Smit et al., 2006). The physiological basis for oscillatory EEG behaviour, for example 

the underlying time constants responsible for specific frequency ranges, is poorly understood 

although several mechanisms have been proposed (Pedley TA, Traub RD, 1990; Nunez et 

al., 2001). 

Epileptogenesis 

Hypersynchrony is probably a crucial factor of epileptogenesis and may involve either 

excitatory or recurrent inhibitory innervation (Binnie and Stefan, 1999c). Neither bursting 

nor synchrony depends, however, on synaptic transmission, as synchronous bursting can also 

be demonstrated in tissue slices after complete synaptic blockade, presumably on the basis of 

ephaptic transmission. In idiopathic generalised epilepsy (IGE) it is understood that the 

cortex is abnormally and unevenly hyperexitable and responds by spike-wave activity to 

essentially physiologic afferents from the thalamus and reticular-activating system, while the 

associated subcortical component becomes secondarily involved in the thalamocortical 

oscillations that maintain the discharge (Avoli and Kostopoulos, 1982; Koutroumanidis and 

Smith, 2005). Long-term potentiation by high frequency stimulation and the converse 

process for long-term depression  are the most studied models for memory formation in 

mammals (Cooke and Bliss, 2006). The long-term potentiation mechanism of memory is 

similar to the mechanism underlying focal epileptogenesis by kindling (Meador, 2007). 

Kindling involves repeated administration of brief, low-intensity trains of electrical stimuli 

that result in a permanent state of increased susceptibility and even spontaneous seizures. 

The hippocampus contributes both through its role in memory formation and its low seizure 

threshold. Transition from normal to epileptiform behaviour of neuronal networks is 

probably caused by greater spread and neuronal recruitment secondary to a combination of 
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enhanced connectivity, enhanced excitatory transmission, a failure of inhibitory 

mechanisms, and changes in intrinsic neuronal properties (Duncan et al., 2006). 

4.1.3 Basic elements of visually assessed EEGs 

Visual EEG assessment can be separated into several specific elements. Each element has its 

own significance, but usually all elements, together with clinical information, should be 

brought together to draw a conclusion. 

The EEG background activity (BA) is defined as any EEG activity representing the setting in 

which a given normal or abnormal pattern appears and from which such a pattern is 

distinguished (Chatrian et al., 1983). The alpha rhythm (AR) is a separate part of the BA. 

The AR is defined as the dominant posterior rhythm with frequency 8–13 Hz that is blocked 

or attenuated by eye opening. Alpha variant rhythm is defined as with AR characteristics but 

with frequency outside the 8–13 Hz alpha band (Chatrian et al., 1983). We defined the BA 

apart from the AR (or AR variant) as the general background activity (GBA). Low GBA 

frequency and high GBA amplitude are generally interpreted as EEG background slowing 

and is indicative of CNS pathology (Dustman et al., 1993; Babiloni et al., 2006). Most of the 

cerebral activity observed in the scalp EEG falls in the range of 1-20 Hz. EEG activity is 

separated into frequency bands; delta (< 4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (>13 

Hz, usually 13-40 Hz). 

EEG findings occur as normal or abnormal patterns appearing from, and distinguished from, 

the BA. The EEG findings can be separated into four groups: Epileptiform pathology, non-

epileptiform pathology, normal findings and variants, and extra cerebral activity. 

4.1.4 Factors affecting EEG activity 

EEG activity can be affected by numerous endogenous and exogenous factors. Age, and 

thereby the maturation of the brain, is crucial for the appearance of EEG activity. 

Knowledge about the normality at different ages is essential to separate pathology from 

normality. In general, there are slower frequencies and higher amplitudes found in EEGs 

from children compared to EEGs from adults. When it comes to pathology, a usual effect in 

adult EEGs is the reappearance of slow activities, appearing diffusely in general pathology 
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and localised in focal pathology. Consciousness, the degree of alertness, sleep-wake cycles, 

and drugs acting in the brain are furthermore critical for the appearance and assessment of 

the EEG. 

4.1.5 EEG techniques 

Long term monitoring (LTM) 

Some diagnostic problems cannot be adequately addressed by inter-ictal routine EEG 

recordings, but require monitoring over a long period of time lasting for hours to weeks. If 

the visual inspection of clinical events is presumed to be essential, EEG with synchronous 

digital video-monitoring is to prefer, otherwise ambulatory EEG with a portable recording 

and storage unit is suitable. The clinical applications of EEG monitoring are: 

• diagnosis of paroxysmal neurological attacks 

• differentiation between nocturnal epilepsy and parasomnias 

• diagnosis of psychogenic non-epileptic seizures 

• characterisation of seizure type 

• quantification of inter-ictal epileptiform discharges or seizure frequency 

• evaluation of candidates for epilepsy surgery (Smith, 2005). 

Amplitude-integrated EEG (aEEG) 

aEEG is a LTM technique where the EEG data recorded with a reduced number of 

electrodes is visualised as a time-compressed amplitude-integrated trend measure. aEEG has 

become increasingly acknowledged as a method for continuous evaluation of brain function 

in neonates (Hellstrom-Westas and Rosen, 2006). One reason for this was the finding that 

the very early background pattern is sensitive for predicting outcome in asphyxiated full-

term infants even during the first postnatal hours (Hellstrom-Westas et al., 1995; Eken et al., 

1995). aEEG has also proved to predict outcome after cardiac arrest and induced 

hypothermia in an adult population (Rundgren et al., 2006). 
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Intracranial EEG 

Intracranial EEG recordings are performed in the presurgical evaluation of patients with 

drug-resistant focal epilepsy where non-invasive techniques have not been able to locate the 

epileptogenic zone. Implanted subdural electrodes allow recording from large superficial 

cortical areas, but provide limited coverage of deep-seated structures, such as the 

hippocampus, as well as of the cortex within sulci (Cossu et al., 2005). Stereotactically 

inserted intracerebral electrodes have the advantage of excellent sampling from mesial 

structures and from intrasulcal cortex, but with the disadvantage of providing information 

from a limited volume of tissue. Such electrocortigography is used peroperatively to identify 

the location and borders of the epileptogenic area, to guide the extent of resection, and to 

secure its completeness (Kuruvilla and Flink, 2003). 

EEG source imaging 

EEG source imaging attempts to visualise the origin of scalp EEG recordings. This 

represents “the inverse problem”. EEG can only measure the electrical dipole current 

components perpendicular to the surface where it is measured. The EEG signal reflects the 

sum of the electrical dipoles from the recorded tissue. The dipoles located near the surface 

contribute more than the distant ones. Only synchronized electrical activities sum up, 

whereas non-phase locked sources may cancel each other out and contribute only as 

statistical fluctuations (i.e., imperfect cancellation) to the EEG (Ritter and Villringer, 2006). 

The exact relation between intracranially and extracranially recorded epileptiform activity, 

however, has been the subject of considerable debate (Lantz et al., 2003). Numerous models 

have been applied to solve the inverse problem, but by introducing reasonable a priori 

constraints EEG source imaging can be a useful tool (Michel et al., 2004). 

4.1.6 EEG applications 

Even though epilepsy is a clinical diagnosis, EEG plays a major role in evaluating epilepsy, 

the single most studied patient diagnosis in nearly all EEG laboratories, and the area in 

which EEG is of greatest clinical value (Binnie and Stefan, 1999b; Flink et al., 2002a). Such 

investigations serve three main purposes: to support the general diagnosis of epilepsy, to aid 

deciding if the seizure is generalized or focal, and to aid syndrome classification (Binnie and 
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Stefan, 1999a; Fowle and Binnie, 2000). Despite advances in neuro-imaging techniques over 

the past three decades that have helped identifying structural lesions of the central nervous 

system, EEG continues to provide valuable insight into brain function by demonstrating 

nonepileptiform focal or diffuse abnormalities and epileptiform abnormalities (Markand, 

2003). EEG facilitates differentiating between epileptic and non-epileptic seizures, seizure 

types, epilepsy syndromes, focal or generalised epilepsies, and symptomatic versus 

idiopathic epilepsies. Thereby EEG also facilitates the choice of antiepileptic medication and 

prediction of prognosis. EEG is furthermore useful in the evaluation of focal and diffuse 

encephalopathies, comatose conditions and cerebral disorders affecting neonates and infants 

(Markand, 2003). 

Quantitative EEG (qEEG) 

The most commonly used quantitative representation of EEG is the estimation of power 

density of selected EEG frequency bands Fast Fourier Transform (Barry et al., 2003). The 

EEG is usually first visually inspected, and a period with a minimum of artefacts is chosen. 

The frequency range has traditionally been transformed into delta (1.5-3.5 Hz), theta (3.5-7.5 

Hz), alpha (7.5-12.5 Hz), and beta (12.5-20 Hz). Results from each electrode can be 

represented as absolute power in each band (total μV2), relative power in each band 

(percentage of total power), coherence (a measure of synchronisation between activity in 

two channels), or symmetry (the ratio of power in each band between a symmetrical pair of 

electrodes) (Hughes and John, 1999). 

4.1.7 Functional neuroimaging 

MRI/fMRI 

MRI is the mainstay of brain imaging in elective clinical practice, and should be used in all 

patients who develop epilepsy as adults, in whom focal onset is suspected, or in whom 

seizures persist (Duncan et al., 2006). An increase of neuronal activity is accompanied by an 

increase of the metabolic rate of oxygen consumption and a much larger increase in the local 

blood flow. This result in a change in the proportion of oxygenated vs. deoxygenated 

haemoglobin and thereby a change of magnetic properties. These principles are exploited in 

the fMRI blood-oxygen-level-dependent (BOLD) contrast technique. Simultaneous fMRI 
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and EEG is being investigated for its possibilities of combining the high temporal 

millisecond resolution of EEG with the high spatial resolution of fMRI. When the temporal 

pattern from events such as epileptiform discharges is known, fMRI may provide an 

anatomical map of the corresponding physiologic activity with a spatial resolution of less 

than 5 mm3 (Stern, 2006; Benar et al., 2006). The most widely used technique for such 

integration is spike-triggered imaging. However, both theoretically and empirically there 

will be situations where fMRI signals occur without any EEG correlates and vice versa. The 

mismatch between electrophysiological and haemodynamic signals provide challenges for 

the integration of EEG and fMRI (Ritter and Villringer, 2006). 

Magnet encephalography (MEG) 

The MEG-technique measures oscillations of the magnetic fields arising arise from the same 

sources in the brain as in EEG (Sharon et al., 2007). The signals are recorded from sensors 

outside the scalp, and share the same high temporal millisecond resolution as in EEG. 

Magnetic fields are insensitive to tissue connectivity differences, resulting in simpler 

calculations of the reverse problem compared to EEG, which in turn increases localisation 

accuracy (Rampp and Stefan, 2007). Each electrical current will produce a magnetic field 

perpendicular to the electrical current. The EEG and MEG techniques are thus 

complementary, and the combination of the two could yield the most accurate localisation 

(Sharon et al., 2007). 

Cerebral blood flow tracers 

Positron emission tomography (PET) 

PET has been an important tool in the mapping of all aspects of brain function, not just 

neuronal activation, and depending on the agent used (Savoy, 2001). PET scanning utilizes 

an exogenously administered agent that is tagged with a positron emitter, usually with a very 

short half-life. An emitted positron will travel a short distance, and as it collides with an 

electron two high-energy gamma rays are emitted that travel in exactly opposite directions 

(Shin, 2000). The coincident detection of this pair of photons on opposite sides of the head, 

thus defining a line along which is the likely source of the gamma rays, forms the basic data 

for PET (Savoy, 2001). 
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Single photon emission tomography (SPECT) 

SPECT uses a principle similar to that of PET, but the radioactive isotope used in SPECT 

emits only a single photon, and so the localisation of the photon cannot be calculated as a 

pair as in PET scan. This results in a lower spatial resolution (Shin, 2000). The radioactive 

isotope used is, however, much easier available and has a longer half-life, making SPECT 

the only modality, except for EEG, practically suited for imaging brain activity changes 

during a spontaneously occurring seizure (Knowlton, 2006). Subtracting inter-ictal SPECT 

from ictal SPECT and co-registered with MRI has further improved the ability of localising 

the seizure focus in patients with partial epilepsy (O'Brien et al., 1998). 

Transcranial magnetic stimulation (TMS) 

Transcranial magnetic stimulation (TMS) is a method for activating the brain by modulating 

the voltage over the cell membrane of cortical neurons. This is performed by applying 

magnetic fields generated by short current pulses driven through a coil, which is placed 

against the subject's head (Barker and Jalinous, 1985). The transient magnetic fields induce 

corresponding electrical fields in the tissues of the head, thus stimulating cortical neurons. 

The main critical issue of the TMS technique has been the precise and reliable positioning of 

the applied magnetic field according to the cortical region of interest (Schonfeldt-Lecuona et 

al., 2005; Sparing et al., 2008). This problem is addressed through newly introduced 

stereotactic neuronavigational strategies according to the subject’s MRI, fMRI, or the use of 

functional neuroimaging data from the literature, a so-called “probabilistic approach”. 

Stimulation of different cortical areas evokes remote EEG activity. The recently combined 

use of TMS and EEG has provided means for the detailed study of the reactivity of any 

cortical region in the intact brain; also the reactivity of non-motor cortical areas related to 

higher-order functions (Komssi and Kahkonen, 2006). 

4.1.8 Future EEG applications 

The temporal millisecond resolution of EEG (and MEG) studying cerebral neuronal activity 

is unique and can never be achieved by the techniques based on indirect measurements such 

as altered cerebral metabolism, O2 consumption, or blood flow (Ebersole, 2000). Other 

imaging techniques, however, provide far better spatial resolution with millimetre accuracy. 



 21

Thus, future applications will probably to a greater extent combine EEG data with imaging 

techniques with higher spatial resolution. 

Independent component analysis (ICA) is a statistical method to extract independent signals 

from a linear mixture of sources (Comon, 1994). As long as the EEG can be considered a 

linear mixture of electric brain activities, ICA might be able to isolate those activities. A 

joint ICA model combining the high temporal resolution of EEG with the spatial resolution 

of haemodynamic activation has recently been proposed as a promising general framework 

of combining multiple modalities (Eichele et al., 2005; Moosmann et al., 2007; Eichele et 

al., 2007). 

Brain computer interface provides communication between neural activity and external 

devices. The most widely applied and advanced current use of brain computer interface is 

the cochlea implants, bringing the perception of sound to thousands of deaf individuals by 

means of electrodes implanted in the cochlea. Similar attempts are under way to provide 

images to the visual cortex and to allow the brains of paralyzed patients to control the 

external environment via recording electrodes (Mussa-Ivaldi and Miller, 2003). 

4.2 Epilepsy 

Epilepsy is a disorder characterized by spontaneous recurrent episodes of paroxysmal brain 

dysfunction due to a sudden, disorderly, and excessive neuronal discharge (Adams et al., 

1997). The incidence of epilepsy in developed countries is around 50 per 100 000 people per 

year, and is higher in infants and elderly people (MacDonald et al., 2000; Sander, 2003; 

Forsgren et al., 2005; Duncan et al., 2006). Epilepsy lifetime prevalence is 4-6 per 1000 

(MacDonald et al., 2000; Kelvin et al., 2007). 

4.2.1 Etiology 

Most commonly epilepsies probably represent complex traits with environmental effects 

acting on inherited susceptibility, mediated by common variation in particular genes 

(Duncan et al., 2006; Meador, 2007). Reported etiological factors for epilepsy are listed in 

Table 1 (from (Forsgren et al., 2005). 



 22

Table 1 

Estimated proportions (%) of presumed causes of epilepsy in population-based incidence studies. 

    

Range 

(%) 

Vascular 14-21 

 Ischemia 16-18 

 Haemorrhage 3-4 

Trauma 0-16 

Neoplasm 6-10 

Infection 0-2 

Degenerative 1-5 

Congenital 4-7 

Other 0-13 

Remote or progressive symptomatica 31-56 

Unknown 44-69 
aSummary of all etiologies mentioned above. 

 

4.2.2 Diagnosis and classification 

There are two dichotomies dividing the epilepsies and epileptic syndromes into main 

categories; generalised versus localisation-related, and idiopathic versus symptomatic 

(Commission on Classification and Terminology of the International League Against 

Epilepsy, 1989; Wolf, 2006). Generalised epilepsies comprise widespread morphological or 

functional pathology. Genetic factors causing, for example, channelopathies are presumed to 

have a major causative role in the development of seizures (Pitkanen et al., 2007). 

Localisation-related epilepsies and syndromes are epileptic disorders in which seizure 

semiology or findings at investigation disclose a localised origin of the seizures. The lesion 

can be genetically programmed cellular alterations like neuronal migration disorders in the 

cortex, or an acquired lesion like traumatic brain injury or stroke. Epilepsies are furthermore 

categorised into epileptic syndromes on the basis of age, type of seizures and EEG findings 

(Commission on Classification and Terminology of the International League Against 

Epilepsy, 1989). 



 23

Epilepsy is a clinical diagnosis, but EEG and brain imaging techniques play a major role in 

evaluating epilepsy (Flink et al., 2002b; Duncan et al., 2006). Persistent focal epileptiform 

activity suggests localisation-related epilepsy whereas generalised epileptiform activity 

suggests generalised epilepsy (Pillai and Sperling, 2006). Non-epileptiform pathology 

suggests symptomatic etiology whereas the idiopathic epilepsies usually have normal BA. 

The 3/sec spike-slow-wave activity is the hallmark of idiopathic epilepsy whereas similar 

activity with lower frequency is associated with symptomatic generalised epilepsies. 

Imaging techniques can visualise structural lesions underlying symptomatic epilepsies. Such 

investigations are especially important in individuals with refractory partial seizures who 

would be possible candidates for surgical treatment, and in those with progressive 

neurological or psychological deficits (Duncan et al., 2006; Commission on Neuroimaging 

of the International League Against Epilepsy, 2008). 

4.3 Databases 

A database is a filing system organised to provide fast access to desired pieces of data, the 

term being mostly used for computerised systems. The development of the computer 

industry has dramatically increased the possibilities of generating and collecting data, and 

likewise the need of appropriate data storage and retrieval. Modern databases address these 

challenges, and provide tools for personal needs, laboratory solutions, as well as for large 

scale multidisciplinary database applications. Storing data in a well organised database thus 

provides a powerful tool for clinical, educational and scientific purposes. 

Different areas within human science have exploited these new possibilities to a variable 

extent. The field of genomics has embraced information technology much more effectively 

than neuroscience (Koslow, 2000). The Human Genome Project is a successful example 

(Collins and McKusick VA, 2001). Geneticists agreed long ago on the value of storing 

reproducibly generated DNA sequences, but not images of their sequencing gels (Chicurel, 

2000). This illustrates the problem of complex data structures. Electrophysiological data 

comprises a wide variety of large and complex data sets, and there is no widely accepted 

standard way for the data to be stored or described (French and Pavlidis, 2007). Consensus 

on what should be including in databases is needed. In addition, the technical difficulty of 
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collating and relating such disparate types of information must be solved to be able to 

globally share the data (Chicurel, 2000).  

Progress in neuroscience might be faster if researchers shared their results in a network of 

databases (Chicurel, 2000; Koslow, 2000). The Human Brain Project, the neuroscience 

counterpart of the Human Genomic Project, has been a major principal funding source for 

such initiatives (Huerta et al., 1993; Shepherd et al., 1998; Van Horn JD et al., 2004). A 

number of scientific journals have now mandated that authors of accepted papers are willing 

to provide access for other scientists to the raw data upon which the paper was based (Van 

Horn JD et al., 2004; Gordon E and Konopka LM, 2005). 
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6. Aims of the study 

I. To develop a new computerised EEG annotation system and then to build a database 

of EEG findings. 

II. To study the age-related development of the EEG BA. 

III. To study the age-related topographical tendency of expressing epileptiform activity. 

IV. To study the age-related occurrence of specific generalised epileptiform activity 

(GEA) features and GEA subtypes, and to study the correlation between specific 

GEA features. 

V. To study the effect of epileptiform activity on the EEG BA. 

VI. To study the effect of specific features of GEA on the EEG BA. 
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7. Materials and methods 

7.1 Platform and software 

The digital EEG software Nervus® has 3 main components: the `study room', the recorder 

and the editor. This software was used for all EEG recordings. Using the ‘study room’, one 

can schedule and record EEG tests, review, mark and annotate them and review patients' 

records stored in individual folders. With this EEG software as a core I developed the EEG 

annotation system (EAS) including 3 main components; the database module (DM) for data 

storage, the annotation module (AM) for visual EEG analysis, and the report generator 

module (RGM). The DM was developed using Microsoft Access, the AM using Microsoft 

Visual Basic programming language, and the RGM using Visual Basic and Visual Basic for 

Applications. 

7.2 Inter-system communication 

Direct input to the EAS from the EEG editor was initially accomplished by Windows 

Application Programming Interface (API) calls. Output to the EEG editor was executed by 

sending keystrokes from the annotation module to the editor. In a later version, the Nervus® 

software provided a more comprehensive Component Object Model (COM) interface, 

permitting all communication between the Nervus software and the EAS to be replaced by 

this technology (Microsoft, 2008) (Fig. 1). The DM was also linked to the hospital's patient 

administrative system using an open database connectivity (ODBC) link to an ORACLE 

database. 
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Fig. 1. Overview of the EEG annotation software (EAS) and its communication with the Nervus® EEG system 

including Nervus EEG editor, Nervus StudyRoom Database (a database connected to the Nervus EEG editor), 

and the hospital’s patient administrative system. COM: Component Object Model, ODBC: Open Database 

Connectivity, MS: Microsoft®

7.3 Standards 

EEG waveforms and activities were in our work categorized according to the American 

Society for Testing and Materials; ASTM (1994) standard (Table 2). These categories were 

further divided into 4 groups: `epileptiform pathology', `nonepileptiform pathology', `normal 

variants', and `extra-cerebral activity' (Westmoreland and Klass, 1990). A single waveform 

category could be placed in more than one of the 4 groups; for example the category `sharp 
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waves' was simultaneously placed in the groups `epileptiform pathology', `non-epileptiform 

pathology', and `normal variants' because a sharp wave could comply with all these 

characteristics. Some of the ASTM categories were omitted because they could be replaced 

by another category combined with parameters for localization or pattern. A few new 

categories were added (Table 2). Epileptic seizures were categorized according to the 

`Proposal for Revised Clinical and Electroencephalographic Classification of Epileptic 

Seizures' (Commission on Classification and Terminology of the International League 

Against Epilepsy, 1981). International Classification of Diseases, Ninth Revision (ICD-9) 

was initially used for coding EEG related patient diagnoses, i.e. the reason for referral to 

EEG. This ICD-9 coding was, however, replaced by the International Classification of 

Diseases, Tenth Revision (ICD-10), which was used during the study period. 

Table 2 

Categorization of EEG waveforms/activity based on the ASTM ‘Standard specifications for transferring digital 

neurophysiological data between independent computer systems’ and with a few categories added (marked 

with an asterix). All categories are further divided into 4 groups: ‘epileptiform pathology’, ‘non-epileptiform 

pathology’, ‘normal variants’, and ‘extra-cerebral activity. 

Code Mother 

Code 

Description 

1  Epileptiform Pathology 
1.D 1 Sharp Appearing Activity Identifiers 

1.D.30 1.D Unspecific epileptiform discharges 

1.D.31 1.D Sharp transients 

1.D.41 1.D Sharp waves 

1.D.42 1.D Spikes 

1.D.43 1.D Polyspikes 

1.D.44 1.D Spike and wave complexes 

1.D.45 1.D Poly spike and wave complexes 

1.D.46 1.D Atypical spike and wave complexes 

1.D.47 1.D Sharp and slow wave complexes 

1.D.49 1.D Hypsarrhythmia 

1.F 1 Periodic/Rhythmic Cerebral Activity Identifiers 

1.F.11 1.F Beta activity 

1.F.12 1.F Alpha Activity 

1.F.14 1.F Theta activity 

1.F.16 1.F Delta activity 

1.G 1 Suppressions 

1.G.58 1.G Bursts with suppressions 

1.G.581 1.G Suppression/desynchronisation*

1.H 1 Eye-related Activity Identifiers 

1.H.68 1.H Photoparoxysmal activity 
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2  Nonepileptiform Pathology 
2.B 2 Background and Slow Wave Activity Identifiers 

2.B.11 2.B Beta activity 

2.B.12 2.B Alpha activity 

2.B.13 2.B Mu activity (continuous asymmetric) 

Code Mother 

Code 

Description 

2.B.14 2.B Theta activity 

2.B.16 2.B Delta activity 

2.B.19 2.B Slow fused transients 

2.B.191 2.B Hyperventilation response (pathological) *

2.B.1A 2.B Intermittent rhythmic delta activity (FIRDA etc) 

2.D 2 Sharp Appearing Identifiers 

2.D.31 2.D Sharp transients 

2.D.34 2.D Zeta waves 

2.D.35 2.D Triphasic waves 

2.D.41 2.D Sharp waves 

2.D.46 2.D Atypical spike and wave complexes 

2.G 2 Suppressions 

2.G.58 2.G Bursts with suppressions 

2.G.581 2.G Suppression/desynchronisation*

3  Normal variants 
3.A 3 Sleep and Wake Stage Identifiers 

3.A.01 3.A Unstageable activity 

3.A.02 3.A Stage W (wake) activity 

3.A.03 3.A REM sleep activity 

3.A.04 3.A REM-spindle activity 

3.A.05 3.A Stage I sleep activity 

3.A.06 3.A Stage II sleep activity 

3.A.07 3.A Stage III sleep activity 

3.A.08 3.A Stage IV sleep activity 

3.A.09 3.A Alpha-delta sleep activity 

3.A.091 3.A Drowsiness*

3.A.092 3.A Trace alternant*

3.B 3 Background and Slow wave Activity Identifiers 

3.B.11 3.B Beta activity 

3.B.12 3.B Alpha activity 

3.B.13 3.B Mu activity 

3.B.14 3.B Theta activity 

3.B.141 3.B Occipital slow waves of youth*

3.B.16 3.B Delta activity 

3.B.19 3.B Slow fused transients 

3.B.191 3.B Hyperventilation response (normal)*

3.B.1A 3.B Intermittent rhythmic delta activity 

3.C 3 Sleep Activity and Event Identifiers 

3.C.20 3.C Sleep activity 

3.C.21 3.C Sleep spindles 

3.C.22 3.C V waves (vertex sharp transients) 
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3.C.23 3.C F waves 

3.C.24 3.C K complexes 

3.C.25 3.C Positive occipital sharp transients (POSTS) 

3.C.26 3.C Saw tooth waves 

3.C.27 3.C Sleep stage shifts 

3.C.28 3.C Arousals 

3.C.29 3.C Awakenings 

3.D 3 Sharp Appearing Identifiers 

3.D.31 3.D Sharp transients 

3.D.32 3.D Wickets 

3.D.33 3.D Small sharp spikes 

3.D.34 3.D Zeta waves 

3.D.36 3.D Phantom spike and wave activity 

3.D.37 3.D 14 and 6 Hz positive bursts 

3.D.38    3.D Lambda waves 

Code Mother 

Code 

Description 

3.D.39 3.D Rhythmic theta of drowsiness 

3.D.3A 3.D Subclinical rhythmic electrographic discharge of adults 

3.D.41 3.D Sharp waves 

3.G 3 Suppressions 

3.G.581 3.G Suppression/desynchronisation*

3.H 3 Eye-related Activity Identifiers 

3.H.66 3.H Photic driving activity 

4  Extracerebral activity 
4.H 4 Eye-related Activity Identifiers 

4.H.60 4.H Unspecific eye movements 

4.H.61 4.H Eye blinks 

4.H.62 4.H Nystagmoid eye movements 

4.H.63 4.H Slow eye movements 

4.H.64 4.H Fast irregular eye movements 

4.H.65 4.H Rapid eye movements 

4.H.67 4.H Photomyogenic activity 

4.H.69 4.H Electroretinogram 

4.I 4 Myogenic Noncerebral Activity Identifiers 

4.I.70 4.I Unspecified myogenic activity 

4.I.72 4.I Myokymia 

4.I.73 4.I Facial synkinesis 

4.I.74 4.I Hemifacial spasms 

4.I.75 4.I Extraocular muscle activity 

4.I.76 4.I Tremor activity 

4.I.77 4.I Myoclonic activity 

4.I.78 4.I Periodic movements of sleep 

4.I.79 4.I Periodic movements of sleep with arousals 

4.J 4 Artefactual Activity Identifiers 

4.J.80 4.J Unspecified artefacts 

4.J.81 4.J Electrode/instrumental artefacts 

4.J.82 4.J Movements artefacts 
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4.J.83 4.J Sweat or galvanic skin artefacts 

4.J.84 4.J Pulse artefacts 

4.J.85 4.J EKG artefacts 

4.J.86 4.J Respiratory artefacts 

4.J.87 4.J Glossokinetic artefacts 

4.J.88 4.J Swallowing/chewing/sucking artefacts 

4.J.89 4.J External interference artefacts 

4.K 4 Special Respiratory and Cardiovascular Event Identifiers 

4.K.90 4.K Unspecified cardiorespiratory events 

4.K.91 4.K Apneas or hypopneas with ventilatory effort 

4.K.92 4.K Apneas or hypopneas with little or no ventilatory effort 

4.K.93 4.K Oxygen desaturations 

4.K.94 4.K Sinus dysrhythmias 

4.K.95 4.K Sypraventricular dysrhythmias 

4.K.96 4.K Ventricular dysrhythmias or asystoles 

4.K.961 4.K Normal one channel ECG*

4.K.97 4.K Systolic hypotensive episodes 

4.K.98 4.K Diastolic hypotensive episodes 

 

7.4 EEG recordings 

All routine EEGs recorded at Haukeland University Hospital from March 1st 2000 to 

December 31st 2005 were visually evaluated and described using the EAS. This included 

17 723 EEGs from 12 511 patients. Long-term registrations, EEGs during general 

anaesthesia, and during Wada tests and Tilt tests were not included in this study (Wada and 

Rasmussen, 1960; Low et al., 1983). 

Paper II included the first EEG from consecutive patients recorded from March 1st 2000 to 

March 1st 2002 comprising 4651 EEGs from 2228 females and 2423 males. 

Paper III included the first EEG containing focal epileptiform activity (FEA) from 

consecutive patients recorded from March 1st 2000 to December 31st 2005 comprising 1647 

EEGs from 852 females and 795 males. 

Paper IV recruited patients from patients recorded from March 1st 2000 to December 31st 

2005. Critically ill patients were excluded due to the lack of consensus regarding the 

assessment of rhythmic and periodic EEG patterns encountered in this group (Hirsch et al., 

2005). EEGs with suppression-burst complexes, triphasic waves and paroxysmal flattening 
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can in some cases appear as an epileptiform phenomenon but were excluded in this study 

due to the controversy about the nature and etiology of such activity (Raegrant et al., 1991; 

Husain et al., 1999). The first EEG containing GEA from each patient was selected for this 

study. EEGs marked in routine coding as having GEA were re-evaluated. 325 EEGs, 181 

from females and 144 from males, were found to have GEA. These 325 EEGs were scored 

for the following GEA features: Waveform, bilateral synchronicity, regularity, frequency, 

amplitude of the sharp component, photoparoxysmal response (PPR), and hyperventilation 

sensitivity (HVS). 

In paper III and IV a control group consisting of all first EEGs from drug-free outpatients 

with no EEG pathology from the study period were included (N = 3268). 

7.5 Statistics 

In paper II and III age-related amplitude and frequency variation were described using 

polynomial regression models with age as the independent variable. Multivariate polynomial 

models were applied where 3 or more variables were included in the model at the same time. 

For some of the tests, the number of individuals at high age was low. The polynomial 

models therefore became unstable. Individuals above the age of respectively 85 and 60 years 

in publication II and III were excluded from these polynomial regression analyses. The chi-

square test was used to test age dependency for the localisation of FEA in topographical 

regions as well as for FEA asymmetry and for association between the EEGers and 

asymmetry. S-Plus 6.0 and SPSS 13.0 were used for the analyses. 

In paper IV continuous and binomial dependent variables were described using multiple 

linear and logistic fractional polynomial regression models, respectively (Royston and 

Sauerbrei, 2005). Age-related changes in the occurrence of specific GEA-types were 

described using multinomial logistic regression analysis. Pairwise correlation analyses were 

calculated with Spearman’s correlation test. Stata 9.2 was used for the analyses. 
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8. Results 

8.1 Paper I 

8.1.1 EEG annotation 

Each EEG was analysed visually by the EEGer according to standard procedures. The 

current EEG test in the editor was automatically linked to the corresponding description in 

the description module. All patient demographic data and administrative test parameters 

were thereby set directly. Start and stop of events later to be described were manually 

marked in the EEG editor. From the referral, the interpreter set one or more relevant ICD-10 

diagnoses. The interpreter could simultaneously see a table with all previous hospital 

diagnoses for this patient. 

EEG background activity (BA) 

The alpha rhythm was evaluated for frequency, amplitude, asymmetry, and reactivity (Fig. 

2). The frequency and amplitude range were drawn graphically with the mouse and could 

thereby be determined in one operation. Numerical values were automatically denoted in 

separate boxes. If asymmetric, the amplitude could be set separately for the left and right 

side. Reactivity was marked by clicking `suppressed by eye opening'. 
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Fig. 2. Input interface for alpha rhythm (AR), frequency along the X-axis, amplitude along the Y-axis. 

The BA was described for frequency and amplitude and was marked graphically in the same 

way as the alpha rhythm (Fig. 3). As recommended in `Guidelines for writing EEG reports' 

(American Electroencephalographic Society, 1994), the frequency was given in Hertz and 

the amplitude in micro volts, both with the possibility of describing a range of values. 

Several different rhythms that together constituted the BA could be marked separately. If 

this activity was focal or asymmetric, it was marked as an EEG event rather than as BA. BA 

was defined as any activity representing the setting in which a given normal or abnormal 

pattern appears and from which such a pattern was distinguished (Chatrian et al., 1983). 

However, the alpha rhythm or alpha variant rhythm was described separately, as mentioned 

previously, because the impact of this specific rhythm differs from the rest of the BA. For 

instance a 7 Hz rhythm has a completely different meaning if it represents the alpha variant 

rhythm or if it is part of the non-alpha BA. 
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Fig. 3. Input interface for general background activity (GBA), frequency along the X-axis, amplitude along the 

Y-axis. 

EEG findings 

The description module automatically picked up EEG fragments already marked (see 

above). All such fragments were categorized by clicking the suitable category (Fig. 4). By 

clicking an event in the description module, the EEG editor automatically navigated to the 

corresponding part of the EEG. The waveform/activity categories were arranged in a 

hierarchical tree view with the 4 main groups: `epileptiform pathology', `non-epileptiform 

pathology', `normal variants', and `extra-cerebral activity' as the main branches. The 

interpreter could in addition grade the probability of epileptogenic origin as `definite', 

`probable', or `possible'. Activity branched as `non-epileptiform pathology' could still be 

characterized as `epileptogenic origin not excluded'. To provide data consistency, this 

grading of epileptogenic probabilities was restricted to categories that could possibly be 

epileptogenic. The localization of the EEG activity was determined by clicking the traces 

where the EEG event occurred. In the monopolar montage, the corresponding electrode was 
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directly marked, whereas in bipolar montages, the system automatically determined the 

electrodes engaged on the basis of the marked traces. Maximum localization could similarly 

be marked. According to the electrodes engaged, the system proposed `no asymmetry', `mild 

asymmetry', `moderate asymmetry', `marked asymmetry', or `left/right side only'. This 

grading could be overruled by the interpreter, with the exception of `left/right side only'. 

Each event could be quantitatively determined as `rare', `intermittent', `frequent', or 

`continuous'. The event pattern could be evaluated as `scattered', `paroxysmal', `rhythmical', 

or `periodical'. A free text annotation could be attached to any EEG event. 

Events marked from the EEG editor could also be defined as a seizure. Seizures were further 

classified according to the international classification system, presented in a tree-view 

structure like the EEG waveform/activity classification table (see above). Free text 

description could be attached to all seizure events. 

Fig. 4. Input interface for describing EEG events/findings. Waveform/activity categories are organized in a tree 

view (A). EEG findings are supplied with quantity- (B), pattern- (C), and asymmetry- (D) identifiers. Traces 

clicked by the interpreter are marked with a `V'. Electrodes engaged are automatically marked as red. 
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8.1.2 Report generator 

After completing the EEG description, the system generated a report from the information 

collected in the database (Fig. 5). The report was made as a MS Word document that could 

be edited directly and was automatically saved and linked to the EEG recording. The main 

conclusion was based on the EEG events described. A pathological EEG was defined as a 

test that contained events of either `epileptiform pathology' or `non-epileptiform pathology'. 

This proposal for a conclusion made by the system was not itself a part of the database, but 

produced as a syntax of the database information. The conclusion could be edited and 

corrected by the EEGer. Finally, the EEGer was supposed to manually fill in an overall 

assessment in light of the clinical question. During the recording session, the EEG nurse or 

technician filled in `test notes', `patient notes' and `medication' in the EEG recorder. This 

information was automatically transferred to the report. If the marked events occurred during 

a period of hyperventilation or photo-stimulation, this was automatically noted by the 

system. The localization of all pathological findings was visualized on a head model with 

different patterns for epileptogenic and non-epileptogenic pathology (Fig. 5). 
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Fig. 5. EEG report generated from the EEG database. This report was generated automatically except from the 

last sentence where the EEGer filled in relevant clinical comments. 
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8.1.3 Search engine 

A search engine was developed to provide easy access to all the relevant variables in the 

database. The user was guided through a stepwise procedure choosing; the parameters to be 

viewed, criteria, and sorting order. This resulted in a structured query language (SQL)-string 

that was sent to the database. The patient's previous hospital diagnoses as well as the EEG 

referral diagnoses could be included in the query. The result was presented in a tree-view, 

where the EEG-test or EEG activity of interest could be chosen and the actual EEG opened.
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8.2 Paper II 

8.2.1 AR 

Estimated mean AR frequency increased gradually until age 20 years and to a value of 10 Hz 

(Fig. 6A). The frequency remained stable until age 45 years and then declined. Higher AR 

frequencies were recorded for females (P < 0.001) (Fig. 6B). AR frequencies were 

significantly higher for EEGs without non-AR pathology (P < 0.001), being less pronounced 

in children (Fig. 6C). Medication reduced the AR frequency (P < 0.001), most pronounced 

for patients with non-AR pathology (P interaction = 0.029). 

 

Fig. 6. AR frequency as a function of age for (A) all patients with registered alpha rhythm, each dot 

representing one patient, (B) females and males, (C) EEGs without and with non-AR pathology and without 
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and with medication, and (D) 4 different EEGers. The estimated means are based on a polynomial regression 

model of 7th order. 

Estimated mean AR amplitude declined from 50 μV in the very young to 30 μV at 35–40 

years of age (Fig. 7A). It then remained stable, except for a small increase in the very old. 

Females had higher AR amplitudes than males (P < 0.001), but not in children (Fig. 7B). The 

difference increased with age (P < 0.001). 

 

Fig. 7. AR amplitude as a function of age for (A) all patients with registered alpha rhythm, each dot 

representing one patient, (B) females and males, (C) EEGs without and with non-AR pathology and without 

and with medication, and (D) 4 different EEGers. The estimated means are based on a polynomial regression 

model of 5th order. 

8.2.2 GBA 

Delta activity never occurred in EEGs evaluated as normal in individuals over age 26 years. 

At age 15–25 years such activity occurred only rarely and then together with low amplitude 
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(Fig 8). For the 4–7 Hz GBA activity, the 95th percentile was below 31 mV at ages over 20 

years, and for the 8–11 Hz activity it was below 25 mV. 

 

Fig. 8. Relationship between GBA frequency, amplitude, and patient age in all EEGs evaluated as normal. The 

boxes indicate the 25th and 75th percentiles, lines within the boxes mark the median. Whiskers indicate the 

10th and 90th percentiles, and red circles indicate the 5th and 95th percentiles. 

Estimated mean GBA frequency increased from 3 Hz under the age of 5 years to 5 Hz at age 

30 years and with only a small decrease afterwards (Fig. 9A). EEGs with non-GBA 

pathology had lower GBA frequencies than those without (P < 0.001) (Fig. 9C). Medication 

significantly reduced the GBA frequency (P < 0.001). 
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Fig. 9. GBA frequency as a function of age for (A) all patients with registered GBA, each dot representing one 

patient, (B) females and males, (C) EEGs without and with non-GBA pathology and without and with 

medication, (D) 4 different EEGers. The estimated means are based on a polynomial regression model of 5th 

order. 

The estimated mean GBA amplitudes declined from 40 μV at birth to 15 μV at age 30 years 

from where it remained stable with a small increase over 70 years (Fig. 10A). EEGs with 

non-GBA pathology had higher amplitudes than EEGs without such pathology (P < 0.001) 

(Fig. 10C). Medication significantly increased the GBA amplitude (P < 0.001). 
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Fig. 10. GBA amplitude as a function of age for (A) all patients with registered GBA, each dot representing 

one patient, (B) females and males, (C) EEGs without and with non-GBA pathology and without and with 

medication, and (D) 4 different EEGers. The estimated means are based on a polynomial regression model of 

7th order. 

8.2.3 Agreement between EEGers 

The agreement between the EEGers in AR and GBA assessment showed significant (P < 

0.001) minor to moderate differences in absolute values, but always with the same trends for 

all EEGers (Fig. 6C, Fig. 7C, Fig. 9C, Fig. 10C). 
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8.3 Paper III 

8.3.1 FEA topographical distribution 

Topographical distribution of FEA was age-dependent for all brain regions (p < 0.0005) 

except for the temporal (p = 0.17) (Fig. 11). 
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Fig. 11. Age-related topographical distribution of FEA in 1647 consecutive patients with EEGs containing 

FEA. FEA could be located in more than one region. 

8.3.2 FEA asymmetry 

FEA lateralised more often to the left side of the brain compared to the right; 565 (34%) vs. 

487 (30%) (p = 0.018). 595 EEGs (36%) had no side asymmetry. The left–right result did 

not vary significantly between the 6 EEGers (p = 0.18). There was still more left than right 

FEA asymmetry when only EEGs with completely unilateral FEA were included; 444 vs. 

381 (27% vs 23%) (p = 0.031). Left and right FEA asymmetry varied significantly between 

age groups (p = 0.013) (Fig. 12). 
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Fig. 12. Side asymmetry of FEA in 1647 consecutive patients with EEGs containing FEA. 

 

Also FEA asymmetry independent of left or right side varied between age groups (p < 

0.0005). The relative risk for asymmetric FEA was highest in patients over the age of 80 

years (94 asymmetric vs. 7 symmetric), and lowest at age 20–39 years (171 asymmetric vs. 

80 symmetric) (Fig. 13). 
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Fig. 13. Probability of more than moderate FEA asymmetry independent of left or right side in different age 

groups, as compared to the age group 0–4 years where the probability is defined as 1. The middle mark shows 

the odds ratio, while the upper and lower marks define the 95% confidence interval. 

8.3.3 FEA and AR 

The total group of patients with FEA had lower AR frequency (p < 0.0005) and higher 

amplitude (p < 0.0005) compared to the drug-free outpatient controls (Fig. 14a and b). The 

subgroup of drug-free outpatients with FEA had lower AR frequency (p = 0.0041) and 

higher amplitude (p = 0.0023) compared to the outpatient controls (Fig. 14c and d). 
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Fig. 14. AR frequency (a) and AR amplitude (b) from all patients with FEA and from drug-free outpatient 

controls. AR frequency (c) and AR amplitude (d) from drug-free outpatients with FEA and from drug-free 

outpatient controls. 

8.3.4 FEA and GBA 

The total group of patients with FEA had lower GBA frequency (p < 0.0005) and higher 

amplitude (p < 0.0005) compared to the drug-free outpatient controls (Fig. 15a and b). The 

subgroup of drug-free outpatients with FEA had higher amplitude (p < 0.0005) compared to 

the outpatient controls, while GBA frequency was the same (p = 0.96) (Fig. 15c and d). 
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Fig. 15. GBA frequency (a) and GBA amplitude (b) from all patients with FEA and from drug-free outpatient 

controls. GBA frequency (c) and GBA amplitude (d) from drug-free outpatients with FEA and from drug-free 

outpatient controls. 

8.4 Paper IV 

8.4.1 GEA and BA 

All EEG background parameters were clearly affected in EEGs with GEA compared to 

controls, as shown in Figure 16 and Table 2. The effects of other GEA-related variables are 
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also shown in Table 2. 
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Figure 16 Fitted values for alpha rhythm (AR) amplitude (a), AR frequency (b), general background activity 

(GBA) amplitude (c), and GBA frequency (d) by age in 325 patients with generalised epileptiform activity 

(GEA) and in 3268 drug-free outpatient controls. Shaded areas are fitted values ± 1.96 SE. 
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Table 2 Association between GEA-related variables and EEG BA, measured as AR -and GBA amplitudes and 

frequencies. 

Study groups Independent variable 

Effect variable 

for EEG 

background 

activity 

Significance

↑ AR amp p < 0.001 

↓ AR freq p < 0.001 

↑ GBA amp p < 0.001 
GEA present 

↓ GBA freq p = 0.038 

↓ AR freq p = 0.002 

GEA patients (N = 325) 

and controls (N = 2368) 

Male gender 
↓ GBA freq p = 0.002 

'Polyspike' ↑ AR amp p = 0.037 

↑ GBA amp p = 0.001 
'Hypsarrhythmia' 

↓ GBA freq p < 0.001 

↓ AR amp p = 0.040 

↑ AR freq p = 0.042 'Ictal' 

↓ GBA freq p = 0.004 

'Post-ictal' ↓ GBA freq p = 0.004 

↑ AR amp p = 0.003 
↑ GEA amp 

↑ GBA amp p = 0.006 

Male gender ↓ GBA freq p = 0.009 

↑ GBA amp p = 0.018 

GEA patients (N = 325) 

CBRDEE 
↓ GBA freq p = 0.004 

↓ GEA freq ↓ GBA freq p = 0.005 

'Post-ictal' ↓ AR freq p = 0.004 Patients with RBS GEA (N = 57) 

Male gender ↓ AR freq p = 0.033 

↑ = higher. ↓ = lower. Amp = amplitude. Freq = frequency. CBRDEE = current brain related 

disease except epilepsy 

 

AR amplitude, AR frequency, GBA amplitude, and GBA frequency were all pairwise 

correlated (p < 0.001) (Fig. 17). Lower AR frequency correlated with higher AR amplitude, 

higher GBA amplitude, and lower GBA frequency.
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 Figure 17 Pairwise correlation (Spearman’s) between AR amplitude, AR frequency, GBA amplitude, and GBA frequency in 325 consecutive GEA patients (red) and 

3268 controls (green). Each background activity variable is plotted against the other ones. Histograms show the number of EEGs with identified AR/GBA 

amplitude/frequency in EEGs with GEA and in controls. The black lines in the histograms indicate the normal distribution. 
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8.4.2 GEA –and GEA-related features 

GEA amplitude and GEA frequency were not correlated (p = 0.35), nor was the probability 

of HVS and PPR (p = 0.54). 

GEA amplitude 

GEA amplitude changed with age in GEA patients (p<0.001) (Fig. 18a), also if adjusted for 

other significant covariates (p < 0.001). ‘Ictal’ EEG and EEG with RBS GEA correlated 

with higher GEA amplitude (p < 0.001). GEA amplitude changed with age also in the RBS 

GEA subgroup (p < 0.001). In this subgroup EEGs with ‘polyspike slow wave’ correlated 

with higher GEA amplitude (p = 0.029). 
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Figure 18 Fitted values for GEA amplitude (a) and GEA frequency (b) by age in 325 patients with GEA. 

Shaded areas are fitted values ± 1.96 SE. 

GEA frequency 
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GEA frequency did not change with age (Fig. 18 b). This was true also when adjusted for 

significant covariates, and also in the RBS GEA subgroup. ‘Polyspike’ correlated with 

higher GEA frequency (p < 0.001), while ‘ictal’ correlated with lower GEA frequency (p = 

0.002). In the RBS GEA subgroup no other GEA-features correlated with GEA frequency. 

Hyperventilation sensitivity (HVS) 

The probability for HVS did not change with age, even if adjusted for other GEA features. 

RBS GEA increased the probability for HVS (OR = 12.7, p < 0.001). 

In the RBS GEA subgroup the probability for HVS did not change with age, neither if 

adjusted for other significant GEA features. Higher probability for HVS correlated with the 

GEA-type ‘spike/sharp slow wave’ compared to ‘polyspike slow wave’ (OR = 9.0, p = 

0.005). 

Photoparoxysmal response (PPR) 

The probability for PPR changed with age with a maximum probability at 11 years, but only 

after adjustments for other significant GEA features (p = 0.011) (Fig. 19). Higher probability 

for PPR correlated with ‘polyspike slow wave’ (OR = 4.9, p = 0.002), ‘poly-spike’ (OR = 

32, p < 0.001), female gender (OR = 3.8, p = 0.001), and no medication (OR = 3.0, p = 

0.003). 
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 Figure 19 Age-related predicted probability for PPR in 259 GEA patients who had been provoked with flicker 

stimulation. The predicted probabilities are adjusted for significant predictors such as ‘polyspike slow wave’, 

‘poly-spikes’ ‘gender’, and ‘medicated’. Shaded areas are predicted values ± 1.96 SE. 

Regular bilateral synchronous (RBS) GEA 

The probability for RBS GEA changed with age (p = 0.021) with maximum probability at 11 

years (Fig. 20). This age-related probability was also present when adjusted for other 

significant covariates (p = 0.002). Higher probability for RBS GEA correlated with higher 

GEA amplitude (p < 0.001). 
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Figure 20 Predicted probability for RBS GEA by age in 325 GEA patients. Shaded areas are predicted values 

± 1.96 SE. 

Focal epileptiform activity (FEA) 

The probability for FEA did not change with age. Lower probability for FEA correlated with 

‘polyspike slow wave’ compared to ‘spike slow wave’ (OR = 0.43, p = 0.026). 

 

GEA-types 

The occurrence of ‘irregular spike/sharp slow wave’ pattern increased with age (p = 0.003) 

compared to the reference-group ‘spike/sharp slow wave’ (Fig 21). ‘Hypsarrhythmia’ 

decreased with age (p = 0.016) and was not seen after age 1 year. The other GEA-types were 

not age-related compared to the reference-group ‘spike/sharp slow wave’. 
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Figure 21 Age-related probability of different GEA types in 325 consecutive GEA patients. 

Current brain-related disease except epilepsy (CBRDEE) 

The probability of having CBRDEE increased by age (p = 0.013) (Fig. 22), also if adjusted 

for other significant covariates (p < 0.001). Patients with ‘polyspike slow wave’ had lower 

probability of having CBRDEE compared to ‘spike slow wave’ (OR = 0.18, p = 0.006). 

Lower GBA frequency correlated with higher probability of having CBRDEE (p < 0.001). 
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Figure 22. Age-related probability of current brain-related disease except epilepsy (CBRDEE) in 325 

consecutive GEA patients. 
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9. Discussion 

9.1 Methodological considerations 

9.1.1 Inter-system communication 

At the start of the project, there was no standard way of communicating with the actual EEG 

Editor. Windows API calls were therefore used to get information from the editor, whereas 

commands to the editor were accomplished by sending keystrokes. An automation interface 

provided by the EEG software vendor was later applied to meet these needs (Fig. 23). This 

made the EAS more robust. 
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Fig. 23. Overview of the EEG annotation system (EAS) (red) and its communication with the Nervus® EEG 

system (blue) including Nervus EEG editor, Nervus StudyRoom Database (a database connected to the Nervus 

EEG editor), and the hospital patient administrative system (green). ODBC: Open Database Connectivity, MS: 

Microsoft® 

9.1.2 Definitions 

Assessment of the EEG BA is essential in EEG evaluation as slowing is indicative for brain 

pathology (Dustman et al., 1993; Babiloni et al., 2006). The term “EEG background 

activity” is, however, not uniformly used in international EEG literature. “Background 

activity” or “background rhythm” is sometimes used synonymously with AR (Adamis et al., 

2005; Rodriguez et al., 2007). This is, according to authoritative standards, explicitly not an 

encouraged terminology (Chatrian et al., 1983). AR is a separate part of the EEG BA. We 

accordingly defined the GBA as the BA apart from the AR. The GBA activity is a more 

complex entity to describe compared to the AR. GBA is not a stable rhythm or frequency, 
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but rather a combination of several frequencies and amplitudes. The evaluation of the GBA 

in visually assessed EEGs is in previous EEG literature based upon categorisation into 

categorical groups (Ueberall et al., 1997; Londos et al., 2003). Such categorical variables are 

dependent on relating the BA to what is “appropriate for age”, which has previously never 

been established in objective terms. We therefore chose to measure the GBA directly 

according to frequencies and amplitudes. The GBA amplitude and frequency had previously 

not been described in a large EEG material, and therefore no established consensus on how 

to measure these parameters was available. GBA amplitude and frequency was measured as 

one or more amplitude and frequency ranges. However, for use in the present scientific 

studies, the lowest GBA frequency and the mean of the lowest and highest value for the 

GEA amplitude were chosen. The lowest GBA frequency was chosen because this was 

assumed to be most relevant for assessing EEG pathology (Gloor et al., 1977). This choice, 

however, implied that higher GBA frequencies were highly under-reported. 

9.1.3 Data collection 

The data collection was accomplished through routine assessment of EEGs in a busy clinical 

practice. This study-design provided a very large dataset, but could at the same time result in 

less accuracy compared to a focused assessment of a limited numbers of EEGs. As shown in 

paper II, there were some systematic differences between the different EEGers, but always 

with the same trends. We have therefore no reason to suspect that systematic assessment bias 

has affected the results. 

The BA often varies considerably through a routine EEG registration, with the degree of 

alertness as a main factor determining this variation. The AR was therefore measured in a 

segment where it was most distinctly appearing, and the GBA was measured during the most 

alert part of the registration. If drowsy, the patients were activated by activation procedures. 

9.1.4 Control group 

There are no established age-adjusted normal values established for the AR and GBA 

amplitudes and frequencies. In paper III and IV we therefore used a control group 

established from EEGs from not medicated outpatients without EEG pathology. This was 
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thus a sample of normal EEGs based on EEG findings, and not on clinical criteria. We 

excluded inpatients and medicated patients from the control sample to minimize 

confounding influence from medical effects and from complicating medical disorders. 

9.1.5 Statistics 

In paper II and paper III we used a multivariate polynomial model (MPM) to analyse age-

related amplitude and frequency variation. The MPM appeared unstable at high patient age 

due to few registrations. Individuals above the age of respectively 85 and 60 years in 

publication II and III were therefore excluded from these analyses. This was thus a problem 

in paper III, but not to the same degree in paper II. To avoid excluding the older part of the 

population we applied another and more recent statistical model in paper IV; the multivariate 

fractional polynomial model (MFPM) (Royston and Sauerbrei, 2005). 

(Royston and Sauerbrei, 2005) describe a dichotomy between nonparametric local-influence 

models and parametric global-influence models. The fit at a given point in the nonparametric 

local-influence model is strongly influenced by the neighbour points, but hardly affects the 

fit at remote points. Such models are highly flexible, but are also prone to artefactual 

behaviour with small neighbourhood sizes. These models are, however, constricted for 

“smoothing function” and cannot be used for comparing individual selections. By contrast, 

parametric global-influence models may be less responsive locally to true variations of the 

response as well as to perturbations, but the fit at distant points can be affected, in some 

cases considerably affected. High-order polynomials are especially prone to this affection of 

remote parts of the fits, and this explains our experience of instability of the model used in 

papers II and III. Both MPM and MFPM are examples of parametric global-influence 

models. The MFPM also exhibits global influence, but is more flexible than the MPM, and 

may provide satisfactory fits where high-order MPM may fail (Royston and Altman, 1994). 

By using MFPM in paper IV, we avoided excluding the oldest part of our population even 

though the number of observations were lower than in paper III. The MFPM is in this thesis 

also applied on the data from paper III (Fig. 24 and Fig. 25) (unpublished data). However, all 

the conclusions were the same using this new statistical method, irrespective of the patients 

above the age of 60 years being excluded or not. The fitted curves were comparable, but 

with less local variations using the MFPM compared to MPM. This shows the superiority of 
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MFPM to MPM in describing our datasets, but in our case without affecting the conclusions. 

The MPM model had, on the other hand, an advantage compared to the MFPM in the way 

we used it by including the possibility for interaction between variables. This possibility has 

recently been included also in the MFPM model, but too late to be included in paper IV 

(Sauerbrei et al., 2007). 
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Fig. 24 AR frequency (a) and AR amplitude (b) from all patients with FEA and from drug-free outpatient 

controls. AR frequency (c) and AR amplitude (d) from drug-free outpatients with FEA and from drug-free 

outpatient controls. (Unpublished data) 
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Figure 25. GBA frequency (a) and GBA amplitude (b) from all patients with FEA and from drug-free 

outpatient controls. GBA frequency (c) and GBA amplitude (d) from drug-free outpatients with FEA and from 

drug-free outpatient controls. (Unpublished data) 

 

9.2 General discussion 

9.2.1 The EEG annotation system (EAS) 

The described EAS provided storage of EEG-findings in a structured and standardized way 

without significant extra time consumption for the EEGers. Description databases of 

categorized EEG findings had previously been established  (Webber et al., 1989; Chung and 

Clancy, 1991; Lesser et al., 1993). Subsequent EEG databases have also been reported 
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(Finnerup et al., 1999; Hunter et al., 2005; Loddenkemper et al., 2007). However, none of 

them had direct communication to the EEG software and thereby direct linkage of database-

stored categorized EEG epochs to the raw data (Penzel et al., 2002). Another new quality of 

the EAS is the method for data input and for automatic data retrieval. The same database 

could have been obtained without the inter-system communication described, but this would 

demand far more parameters to be manually determined, and thereby much more time used. 

The explicit numerical representation of the BA described by the frequencies and amplitudes 

was instrumental for papers II-IV. The dichotomy of the BA divided into the AR and the 

GBA was furthermore crucial to be able to assess the BA in papers II-IV. 

Good access to appropriate information is essential for quality and effectiveness in daily 

routine work for the EEGer. In a later version of the EAS I have also implemented an 

overview tool providing a resume of previous EEG findings for the actual patient. The 

previous recordings are presented in a hierarchical view with the patient as the root, the 

individual recordings as branches, and the findings from each recording as sub-branches 

(Fig. 26). Marking the patient at the root will provide a graphical overview with all findings 

of the actual patient superimposed on a head model. The graphical overview will change 

according to the marked element; marking a recording will provide an overview of all 

findings of that recording, whereas marking of a finding will provide a graphical 

presentation of that single finding. Using this tool the EEGer can get a quick but still 

comprehensive overview of the patient’s EEG history, and also retrieve appropriate EEGs 

and EEG reports for comparison. 
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Fig. 26. Overview tool from the EEG annotation system (EAS) showing the graphical resume on a head model 

of all the patient’s EEG recordings, dynamically changing as the patient or individual EEG recordings are 

selected (marked with a blue horizontal bar). Vertical lines indicate epileptiform pathology. Horizontal lines 

indicate non-epileptiform pathology. Yellow colour indicates normal findings and variants. Black circles 

indicate maximum electrodes. 

9.2.2 EEG background activity (BA) 

Evaluation of the BA, represented by AR and GBA, is an important part of visual EEG 

evaluation as BA slowing indicates CNS pathology (Guerrini, 2006; Pillai and Sperling, 

2006; Smit et al., 2006; Tedrus et al., 2006a). GBA, assessed as frequencies and amplitudes, 

was for the first time collected and analyzed from a large number of EEGs from infancy to 

old age in paper II. These variables proved to be different in drug-exposed and drug-free 

patients, and in patients with and without non-GBA pathology in their EEGs. 

EEG BA is often described as “appropriate for age” or not. Background slowing is often 

mentioned without any defined amplitude limits (Hughes and Cayaffa, 1977; Raymond et 
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al., 1995; Loddenkemper et al., 2007). No standards exist for appropriate GBA frequencies 

and amplitudes in visually assessed EEGs. As there was no available control group of 

documented healthy volunteers, no normal values in the strict sense could be established 

from our database. The age-related values from our not medicated patients without AR and 

GBA pathology, did, however, describe typical values at different ages. Furthermore, 

analysing the EEGs described as normal, maximal amplitudes at different ages could be 

suggested as the 95 percentile for each frequency band. According to these findings, the 

mean GBA amplitude in the theta frequency range should for example not exceed 30 µV in a 

normal EEG in subjects above the age of 20 years, and mean delta GBA amplitude should 

not exceed 60 µV in children aged 0-4 years (Fig. 8). The lowest GBA frequency was 

always chosen for this analysis, so higher GBA frequencies were grossly under-reported. 

The selection of the lowest frequency was, however, not necessary in this setting as the 

different frequency bands were described separately. In this thesis, I have therefore 

reanalysed the mean GBA amplitudes of all the frequency ranges from the control group 

from paper III and paper IV (N=2368) (Fig. 27) (unpublished data). These reanalyzed data 

gave a better representation of higher GBA frequencies. 
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Fig. 27. Relationship between GBA frequency bands (delta, theta, alpha, and beta), amplitude, and patient age 

in 3268 not medicated outpatients without EEG pathology. The boxes indicate the 25th and 75th percentiles, 

blue lines within the boxes mark the median. Whiskers indicate the 10th and 90th percentiles, and red dots 

indicate the 5th and 95th percentiles. 

Life span age-specific GBA frequency and amplitude have previously not been published. 

There has therefore until now not been any scientific basis for ‘GBA appropriate for age.’ 

Paper II and the modification in Fig. 27 indicate such values, and should be useful in the 

education of EEG interpreters. 

The physiological background for the life-span changes of the frequencies and amplitudes of 

the BA is not evident. Mechanisms such as changes in bone density and corresponding 

increase in electrical impedance of the intervening tissue have been proposed (Dustman et 
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al., 1999). A recent study demonstrated gray matter volume decrease in the frontal and 

parietal cortex, with the greatest change occurring in adolescence, and suggested that the 

corresponding elimination of active synapses was responsible for the observed reduction in 

EEG power (Whitford et al., 2007). (Boord et al., 2007) found in a lifespan study a 

correlation between decreased EEG power and decreased cerebral metabolic rate. This 

supports the view that the reduced EEG power by age is due to reduced synaptic activity. 

Paper III and IV showed BA slowing in patients with epileptiform activity compared to the 

control group. As a general principle, we first compared the total study group with the 

controls adjusted for age and gender only. Subsequently subgroups were compared to the 

same controls trying to identify confounding factors. Such confounding factors could be 

medication and complicating medical disorders. In paper III the subgroup of drug-free 

outpatients with FEA was therefore compared with the control group. This comparison still 

revealed BA slowing in the FEA group. The drug-free outpatients with FEA could, however, 

still have complicating medical disorders, and more or less so than the controls. To further 

investigate this possibility I have now also analysed the subset of drug-free outpatients and 

controls from the paper III study after all the individuals with brain-related ICD10-diagnoses 

other than epilepsy were excluded, retaining 146 drug-free outpatients with FEA and 1559 

controls (unpublished data). The patients with FEA still had higher GBA amplitude 

compared to controls (p < 0.001), while there was no difference in GBA frequency, AR 

frequency, and AR amplitude. Another weakness regarding the comparison between the 

FEA group and the control group was that presence of non-epileptiform pathology by 

definition lead to exclusion in the control group, but not in the FEA group. I have therefore 

now analysed the subset of drug-free outpatients and controls from the paper III study where 

all individuals with brain-related ICD10-diagnoses other than epilepsy were excluded, and 

also excluded all EEGs with non-epileptiform pathology, retaining 106 drug-free outpatients 

with FEA and 1559 controls (unpublished data). The patients with FEA still had higher GBA 

amplitude compared to controls (p < 0.014), while there was no difference in GBA 

frequency, AR frequency, and AR amplitude. This finding supports the association between 

FEA per se and EEG BA slowing and is consistent with quantitative EEG studies (Diaz et 

al., 1998; Tedrus et al., 2006b). It should, however, be emphasised that our study is EEG 

centred, and not a clinical study directly applicable to specific epilepsy types. 
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High GEA amplitude was found to correlate with GBA slowing. The amplitude of the GEA 

spikes has to the best of my knowledge not previously been studied. The amplitude of scalp 

recorded epileptiform spikes and ictal rhythms depends on multiple factors such as the size 

of the cortical area involved, localisation of this area, orientation of the electrical field, 

degree of synchrony, and the amplitude of the original cortical signals (Ebersole and Hawes-

Ebersole, 2007). The correlation between high GEA amplitude and GBA slowing could 

indicate larger cortical areas involved with high GEA amplitudes. 

Even though the group with GEA showed more EEG BA slowing compared to the control 

group, this could be due to confounding factors as mentioned above. Because of the limited 

number of EEGs with GEA compared to FEA, and limited statistical power, a similar 

subgroup of not medicated outpatients was not applied for the GEA EEGs. We are therefore 

not able to correlate GEA and EEG BA slowing as specifically as for FEA. The distinct 

GEA characteristics could, however, be studied within the whole group of patients with 

GEA to weight the individual components’ influence on the EEG BA. 

Even though quantitative EEG (qEEG) measures are used in most EEG studies, the visually 

assessed EEG is still most used in daily clinical practice. The next step for the functionality 

of the EAS should be to incorporate the use of qEEG in the same system, and thereby 

combine the use of visually assessed EEG with qEEG. The different methods could then be 

compared, and the gain of each modality could be evaluated. 

There is also a need for more accurate clinical information in the database. The referral 

diagnoses and the clinical ICD10 diagnoses set by the doctors treating the patients in the 

hospital are not always sufficiently sensitive and specific for exact disorders. Good clinical 

endpoints are necessary to correlate EEG findings to clinical settings. Standardised 

comprehensive and accurate clinical descriptions of normal individuals as well as of selected 

patient groups at different ages should therefore be included. 

9.2.3 Characteristics of epileptiform activity 

The age-related topographical distribution of FEA was described in paper III. Age-related 

epilepsies, such as occipital epilepsies and benign partial epilepsy in childhood explain some 

of the observed variation. Migration of epileptic foci could also contribute to such age-
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related change of distribution, although this phenomenon has been debated (Blume, 1990; 

Andermann and Oguni, 1990). The amplitude maximum of spikes recorded from scalp EEG 

does not necessarily correspond directly to the underlying focus in the cerebral cortex due to 

neuronal propagation from distant areas as well as to peculiarities in the brain coverings 

such as skull holes (Torre et al., 1999). This has to be taken into consideration when 

applying the topographical distribution of FEA in clinical practice. 

Paper IV demonstrated accurately the age-related occurrence of individual GEA-types.  

Higher GEA amplitude and lower GEA frequency correlated with slowing of the EEG BA, 

and slowing of the EEG BA correlated with CBRDEE. This was in accordance with the 

generally accepted theorem that low-frequency GEA indicates symptomatic epilepsy 

(Markand, 2003; Smith, 2005; Pillai and Sperling, 2006). The amplitude of scalp recorded 

epileptiform spikes and ictal rhythms depends on multiple factors such as the size of the 

cortical area involved, localisation of this area, orientation of the electrical field, degree of 

synchrony, and the amplitude of the original cortical signals (Ebersole and Hawes-Ebersole, 

2007). The electrical potentials decrease in inverse proportion to the square of the distance 

from the origin, and conduction through various tissues with different conduction rates 

attenuate the amplitudes (Hashiguchi et al., 2007). Our study showed that EEGs with RBS 

GEA and with ictal manifestations had higher GEA amplitudes. This could be a direct effect 

of a higher degree of synchrony or of a larger cortical area involved (Tao et al., 2007; 

Ebersole and Hawes-Ebersole, 2007). The decrease of GEA amplitude with age could in part 

be due to less synchrony related to a higher proportion of ‘irregular spike/sharp wave’. 

However, higher GEA amplitudes remained correlated with GBA slowing also after 

adjusting for these factors. This shows that high GEA amplitude is correlated to a general 

affection of cortical activity independent of age and other GEA-related features. This 

knowledge extends our understanding of GEA and helps the EEGer in weighing the various 

GEA components. 

The probability for PPR changed with age, while the probability of HVS did not. The 

probabilities for PPR and HVS were not correlated. This indicated that HVS and PPR were 

complimentary in increasing the yield of the EEG registration. A consequence of these 

findings is that there should be no upper age-limit for HVS. 
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10. Conclusions 

We have developed a comprehensive EAS providing storage of EEG-findings in a structured 

and standardized way. This system provided improved accessibility of EEG data for clinical, 

educational, and scientific use. 

The age-related development of the AR and GBA was described, and also the association 

with gender, medication, non-AR pathology, and non-GBA pathology. 

Topographical distribution of FEA was age-dependent for all brain regions except for the 

temporal region. Frontal FEA was more frequent in adults, whereas central, parietal, and 

occipital FEA were more frequent in children. 

GEA amplitude changed by age, whereas GEA frequency did not. Higher GEA amplitudes 

and lower GEA frequencies correlated with GBA slowing. GEA amplitudes and GEA 

frequencies did not correlate. 

The probability for PPR and for RBS GEA changed with age with a maximum at 11 years. 

The probability for HVS did not change with age, nor did the probability for FEA combined 

with GEA. The probability for HVS and PPR did not correlate. HVS and PPR are thus 

complimentary in increasing the yield of the EEG registration. There should be no upper 

age-limit for HVS. 

FEA was associated with slowing of the EEG BA. Slowing remained significant in the 

subgroup of not medicated outpatients, suggesting that the association was due to the FEA 

per se. Also GEA was associated with slowing of the EEG BA. Due to confounding factors 

such as medication and complicating medical disorders, the exact association between GEA 

per se and this slowing of the EEG BA could not be established. 

The age-related probability for specific GEA-types was established. 
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12. Errata 

1. Paper I, page 988: Code 3.A.95 should be corrected to 3.A.05 

2. Paper I, page 992: Age should be 46 (not 66) 

3. Paper II, page 666: The study period should be March 1, 2000 to March 1 2002 (not 

January 1, 2000 to March3, 2002) 




