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Introduction

The theory of partial differential equations (PDE) is a subject that has found its way into
all branches of science and engineering due to its wide range of applications. Numerical
calculation is commonplace today in fields where it was virtually unknown before 1950.
Some consider the celebrated 1928 paper of Courant, Friedrichs and Lewy as the birthdate
of the modern theory of numerical methods for partial differential equations. The alge-
braic solution of finite difference approximations is best accomplished by some iteration
procedure. Finite difference approximations for derivatives were already in use by Euler in
1768 and various schemes have been proposed to accelerate the convergence of the iteration.

Accurate modelling of the interaction between convective and diffusive processes is a chal-
lenging task in the numerical approximation of PDE. This is partly because of the problems
themselves, their great variety and widespread occurrence. Mathematical models that in-
volve a combination of convective and diffusive processes are among the area of prime
research interest and widespread in all of science, engineering and other fields where math-
ematical modelling is important. Very often the dimensionless parameter that measures the
relative strength of the diffusion is quite small, so one often meets with situations where
thin boundary and interior layers are present and singular perturbation problems arise.
There are many physical systems in which parabolic equations are coupled to hyperbolic
equations so that two (or more) transport phenomena must be calculated simultaneously.
Problems which incorporate ideal fluid motion and some other transport process, such as
heat transfer, have mathematical models which are coupled equations of mixed parabolic-
hyperbolic type. In all such circumstances difficulties will be experienced with standard
numerical approximations. Thus a very large literature has built up over the last few
decades on a variety of techniques for analysing and overcoming these difficulties.

Discontinuous solutions do not satisfy the partial differential equation in the classical sense
at all points, since the derivatives are not defined at discontinuities. We have to define
what we mean by a solution to a conservation law in this case.

Since the partial differential equation continues to hold except at discontinuities, we sup-
ply the differential equations by additional “jump condition” that must be satisfied across
discontinuities. We may derive additional conditions using the integral form of the conser-
vation law since the integral form continues to be valid even for discontinuous solutions.
Unfortunately integral forms are more difficult to work with than differential equations,
especially in terms of discretizations schemes. Another mathematical difficulty is possible
nonuniqueness of solutions . Often there is more than one solution to the conservation
law with the same initial data. This is a consequence due to the physical effects ignored
because equations are only simplified models of reality. To obtain unique and hopefully
physical correct solutions, we have to supply an additional condition. This so-called en-
tropy condition will help us to pick the correct so-called weak solution to the original
partial differential equations. In general it is not possible to derive exact solutions to these
equations, so we need to devise and study numerical methods for their approximate solu-



tion. The general theory of numerical methods for nonlinear PDEs applies in particular
to systems of conservation laws, but there are several reasons for studying this particular
class of equations. Many practical problems in science and engineering involve conserved
quantities and lead to PDEs of this class. As noted above, there are special difficulties
like shock formation associated with these time dependent systems of nonlinear partial
differential equations. When we attempt to calculate weak solutions numerically, we face
several problems. Most important, the discretization schemes for the PDE must be able
to handle discontinuities in the solution. Ideally we would like to have a simple numeri-
cal method producing sharp approximations to discontinuous solutions without excessive
smearing. However, simple methods like the first order upwind schemes typically produce
excessive numerical smearing.

Relaxation approximation to nonlinear partial differential equations have been introduced
on the basis of the replacement of the equations with a suitable semilinear hyperbolic sys-
tem with stiff relaxation terms. Relaxation schemes are a class of nonoscillatory numerical
schemes for systems of conservation laws proposed by Jin and Xin [22]|. They are moti-
vated by relaxation models for flow which are not in thermodynamic equilibrium, i.e. they
constitute more general and more accurate models of certain physical phenomena. The
main advantage of numerically solving the relaxation model over the original conservation
laws lies in the simple structure of the linear characteristic fields and the localised lower
order term. In particular, the semilinear nature of the relaxation system gives a new way
to develop numerical schemes that are simple, general and Riemann solver free. The Rie-
mann solver is more accurate, but the price to pay is that the numerical methods become
complicated to implement and time-consuming. The approach is inspired by relaxation
schemes where the nonlinearity inside the equation is replaced by a semilinearity. This
reduction is carried out in order to obtain numerical schemes that are easy to implement,
also for more general and complex problems.

In Chapter 1 we start out by looking at the Initial Value Problem for a one-dimensional
scalar nonlinear degenerate parabolic convection-diffusion equation. We introduce the
mixed parabolic-hyperbolic problem before moving to the numerical methods we will use
to approximate the Initial Value problem. The chapter includes also some basic definitions
and notations, assumptions on the data of the parabolic convection-diffusion equation. In
Chapter 2 we establish the existence of weak solutions. Chapter 3 presents the Relaxation
Schemes for both the pure hyperbolic case and the diffusion equation. In Chapter 4 we
derive L™ and L! estimates on the approximate solutions of the relaxation system and we
state the Entropy solutions. Then we develop the numerical schemes in Chapter 5, while a
convergence result is proved in Chapter 6. In Chapter 7 we present numerical experiments.
Finally, we summarise the conclusions and look at possible improvements and further work.



Chapter 1

Initial Value Problem

The aim of this work is to analyse from both a theoretical and computational point of view
the relaxation schemes to approximate the Initial Value problem for a one-dimensional
scalar nonlinear degenerate parabolic convection-diffusion equations of the type

{m+ﬂﬂﬂm%23wmn (z,t) e I, = R x (0,7T). Ly

u(z,0) = ug(x) xr € R.

The special aspect for this problem is the combination between the convective part and the
diffusion part B(u).,. The nonlinear convective flux function depends explicitly on spatial
location through the coefficient (z), that may be discontinuous. The diffusion function
B(u)., is allowed to be strongly degenerate, in the sense that B'(-) > 0.

When we list the assumptions for the problem in section (1.3), we will see that the closely
related hyperbolic conservation laws with a discontinuous coefficient will also be included.
The purely convective version of (1.1) is obtained when B’(u) = 0, which means that the
diffusion part degenerates, i.e. B’(u) may vanish for some values for u.

u+ f(7(2), u)e = 0. (1.2)

Parabolic Convection-Diffusion equations (1.1) are of great importance since they govern a
variety of physical phenomena. To name a few of the interesting problems of the type (1.1),
we mention fluid mechanics, flow in porous media, sedimentation-consolidation processes.
A physical model corresponding to the convective version of (1.1) is the model of car
traffic flow in a highway. The spatially varying coefficient v corresponds to changing road
conditions. We mention also applications modeling the displacement of oil in a reservoir by
water and polymer. Multiphase flow problems in porous materials give rise to somewhat
difficult systems of conservation laws. One important application area is secondary oil
recovery, in which water is pumped down one well in an effort to force more oil out of
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other wells, see [25]. The convection-diffusion equations also arise in front propagation and
financial modeling.

Computation of certain physical problems, for example a fluid flow, requires numerical
resolution of the small scales in order to track the underlying physical properties in great
detail. This is rather demanding and often cannot be done satisfactorily. Thus one would
be satisfied if critical properties are captured (at the macroscopic level). In such a case,
it is desirable to design underresolved numerical methods. We aim to develop schemes
that allow the use of underresolved discretization, At >> e. We will develop numerical
methods that are suitable for underresolved calculation, meaning that one can still capture
the macroscopic physical behaviour without numerically solving the small scale by using
mesh size and time step much larger than the small scale parameter. Such a solution is
referred to as the underresolved solution.

Using the same notations as Jin and Xin [22], we call the discretization of the Relaxation
systems Relaxing Schemes, which depends on € and the artificial variable v. We also derive
zero relaxation limit of these Relaxing Schemes and call the limiting schemes the Relaxed
Schemes, obtained in the limit ¢ — 0. By applying the Chapman-Enskog expansion to
the relaxing schemes (for fixed grids and ¢ — 0) we can also formally derive the relaxed
schemes that are the leading order approximation of the relaxing schemes in the small €
limit. These relaxed schemes are consistent and stable discretizations of the original con-
servation laws. Here by Relaxation Schemes we indicate both the relaxing Schemes and
the relaxed schemes. When e is very small the relaxing schemes and the relaxed schemes
produce essentially the same results.

We will propose a diffusive relaxation approximation for the nonlinear parabolic diffusive
equation, based on the same idea used on hyperbolic conservation laws. A splitting method
approach to the problem will also be considered. Several relaxation approximation to par-
tial differential equations have been recently proposed. We have seen earlier numerical
approaches that work for relaxation systems where both the relaxation term and the con-
vection term are stiff, schemes that work independently on e.

The idea in this work is to study how these diffusive relaxation schemes perform when we
use them on a mixed convection-diffusion problem where the flux function has a discontin-
uous coefficient and the diffusion part may degenerate, which then changes the problem to
a purely hyperbolic case. We will concentrate the study on the stiff regime for the system,
where € << 1, and the flux function is convex. We will also propose the relaxed schemes
for these numerical approximations and compare their ability to capture the parabolic be-
haviour.

In the hyperbolic case, we will study a different approach proving the convergence of
the approximate solution wu(x,t). We attempt to establish convergence of the relaxation
approximation (3.1) using the Singular Mapping approach. In the literatures analysing
numerical approximations and in some of the papers cited in this work, convergence of
numerical methods for conservation laws with discontinuous coefficients has been estab-
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lished by the singular mapping approach and compensated compactness method. Herein
we use instead the singular mapping to study the behaviour of the relaxed scheme since
the leading order behaviour of the relaxing schemes is governed by the relaxed schemes as
e — 0", We will show that the piecewise constant function constructed by the solution of
the relaxed scheme converges to the entropy solution of the problem.

1.1 Basic Definitions and Notation

In this section we define notations that will be used in the text and we introduce some
definitions.

supp f:  The support of a continuous function f(x) defined on R™ is the closure of the
set of points where f(x) is nonzero: supp f=x €R": f(x) # 0.

A set in R™ is bounded if it is contained in a ball Bgr(0) with R sufficiently large. The
closed bounded sets in R™ are the compact sets. If supp f is bounded, we say f has com-
pact support and denote such functions by Co(R™).

sup: The supremum norm: ||v||, = sup|v(x)|.

We have a domain 2 C R™:

L'(€) : A function f defined on a domain € is integrable if [, |f(x)|x is defined and finite.
We denote all such functions by L*(€2).

Li,.(©2): When we consider a larger space. Functions which are "locally" integrable: In-
tegrable on any compact subset of €2, but not necessarily integrable at the boundary of €2
or at infinity.

L°°(£2): measurable real valued functions which are bounded. C(€) and C*(Q2) : We
denote the continuous functions on © by C(£2), and those whose first order derivatives are
also continuous by C1(€2). Similarly C¥(£2) denotes the functions having all derivatives
up to the order k continuous on 2.

Lipschitz continuity : We use this property when we require a certain amount of smooth-
ness in the function. A function f(u,t) is Lipschitz continuous in u over some range of t
and u, if there exists some constant L.>0 so that

[f(u,t) = f(u", )] < Llu —u”|

for all u and u* .

This is slightly stronger than mere continuity, which only requires that

|f(u) = f(u)] =0 asu—wum

If f(u,t) is differentiable with respect to u and the derivative f, = 0f/0u is bounded then
we can take L = max|f,(u,t)|.

Lipschitz constant: The size of the Lipschitz constant is important when we intend to
solve the problem numerically since our numerical approximation will almost certainly pro-
duce a value u™ at time t, that is not exactly equal to the true value u(t,). Hence we are
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on a different curve than the true solution.
The Lipschitz constant gives an indication of whether solution curves that start close to-
gether can be expected to stay close together or to diverge rapidly.

Nonlinear Stability. When we attempt to solve nonlinear conservation laws numerically
we run into additional difficulties not seen in the linear equation. Moreover, the nonlin-
earity makes everything harder to analyse. For nonlinear problems the method might be
“nonlinearly unstable”; i.e., unstable on the nonlinear problem even though linearised ver-
sions appear to be stable. Often oscillations will trigger nonlinear instabilities. In order to
prove a convergence result we must define an appropriate notion of stability. Convergence
notions and discussions done by Lax and Wendroff suggest that we can hope to correctly
approximate discontinuous weak solutions to the conservation law by using a conservative
method. The theorem does not guarantee convergence, nontheless, this is a very powerful
and important theorem, for it says that we can have confidence in solutions we compute.

Theorem 1.1.1. (LAX-WENDROFF) Consider a sequence of grids indexed by = 1,2,...,
with mesh parameters k;, hy — 0 asl — oo. Let Uj(x,t) denote the numerical approzimation
computed with a consistent and conservative method on the lth grid. Suppose that U,
converges to a function u as | — oco. Then u(z,t) is a weak solution of the conservation
law.

The above theorem suggests that we can hope to correctly approximate discontinuous
weak solutions to the conservative law by using a conservative method. Lax and Wendroff
proved that this is true, at least in the sense that if we converge to some function u(x,t)
as the grid is refined, through some sequence k;, hy — 0, then this function will in fact be
a weak solution of the conservation law. But the Lax-Wendroff [10| theorem does not say
anything about whether the method converges, only that if a sequence of approximations
converges then the limit is a weak solution. To guarantee convergence, we need some form
of stability.

The Lax Equivalence Theorem can no longer be used to prove convergence since that ap-
proach relies heavily on linearity. For nonlinear problems the primary tools used to prove
convergence is compactness. We will define this concept and indicate its use for our goals
of defining stability and proving convergence.

In relation to our goals of defining stability and proving convergence, we will use the impor-
tant property that compactness guarantees the existence of convergent subsequences and
combine it with the Lax-Wendroff Theorem. To get convergence of the whole sequence
in question and not just the subsequence, we need to combine the suitable compactness
argument with a uniqueness result.

If K is a compact set in some normed space, then any infinite sequence of elements of
K {ki, k2, k3, ...} contains a subsequence which converges to an element of k. This means
that from the original sequence we can, by selecting certain elements from this sequence,
construct a new infinite sequence
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{ki, kio, Kiz,y ...} (i1 < iy < i3 < ...), which converges to some element k € K.

| kij —k||—0 when j — oo.

Total Variation Stability.

Let Uy denote the numerical approximation generated by a numerical method in conserva-
tive form. We measure the global error in our approximation by the distance from Uy (x, t)
to the set of all weak solutions

W — {ww(zx,t) is a weak solution to the conservation law}. To measure this distance we
need a norm, for example the 1-norm over the finite time interval [0,T]. The global error
is then defined by

dist(Ug, W) = infoew||Ux — w17

If Uy is generated by a numerical method in conservation form, consistent with the conser-
vation law, and if the method is, stable in some appropriate sense, then dist(Uy, W) — 0
as k — 0. In situations where there is a unique physically relevant weak solution satisfying
some entropy condition, we would show convergence to this particular weak solution.

In order to obtain a compact set in Ly, we put a bound on the total variation of the
functions.
The set

{ve L, TV(v) <R,and supp(v) C [-M,M]}

is a compact set, M,R > 0, and any sequence of functions with uniformly bounded total
variation and support must contain convergent subsequences.

TV denotes the Total Variation Function. Per definition,

N
TV (v) = sup Z|v(1’]) —v(xj_1)|
j=1
where the supremum is taken over all subdivisions of the real line —co =2y < z; < ... <
ry = o00. For the total variation to be finite v must approach constant values vy, as
T — Foo.

Since the numerical approximations Uy are functions of x and t, we need to bound the
Total Variation in both space and time. Defining the total variation over the time interval
[0, T] by

e—0

1 T 00
TVr(u) = limsup — / / u(x + €,t) — u(z, t)|dxdt+1in(1] sup — / / |u(z,t + €) — u(x,t)|dxdt.
N 0 —00
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The set K defined above can be shown to be a compact set in Lq ,

K=uelLir:TVr(u) <R and (u(-,t))C[-M,M] Vtel0,T]. (1.3)

We will say that a numerical method is total variation stable, TV-stable, if all the ap-
proximations Uy for k < k, lie in some fixed set of the form (1.3). If Uy is generated
by a numerical method in conservation form with a Lipschitz continuous numerical flux,
consistent with a conservation law, then the method is TV-stable if 7V (U™) is uniformly
bounded for all n, k with k < ko, nk <T.

Total Variation Stability guarantees convergence in the sense that dist(Uyg, W) — 0 as
k — 0. One way to ensure TV-stability is to require that the total variation be nonin-
creasing as time evolves, so that the total variation at any time is uniformly bounded by
the total variation of the initial data.

1.2 Assumptions on the data of the problem (1.1)

Let us detail the assumptions that we need to impose on the data of the the problem (1.1).
For the nonlinear degenerate parabolic convection-diffusion initial value problem we keep
time T > 0 fixed. u(x,t) is the scalar unknown function that is sought, and the flux
function f(~,u), the coefficient v(x), the diffusion function B and the initial function ug
are given functions to be detailed.

For the coefficient v, we assume that

v(z) € [7,7] Ve € R, for some constants 7,7, |y(x)| >0 a.eon R.

We assume that 7 belongs to the Bounded Variation of R, denoted BV (R), and also
allowed to be discontinuous. The convection part of (1.1) depends explicitly on the spatial
location through v(x) and this dependency may be discontinuous. The coefficient v(x)
varies in space and is assumed to be piecewise C! with finitely many jumps in v and v/,
located in (1 < (2 < ... < (M-

For the convective flux function f, we assume that

f:R—R; f(,0)=foe R ¥y, f(v,)=fE€R V. (1.4)

We look in the interval [0,1] and the purpose of this assumption is to guarantee that a
solution initially in the interval |0,1] remains in [0,1] for all subsequent times. Assume that
f is Lipschitz continuous in each variable:

|f(f77u) - f(’)/,’U)| < ||fu||‘U—U‘ V%Vu,v e U.

For a compact set U. The solution u is essentially bounded, providing us with

u(w,t) € UV(z,t) € Iy, f € Lz‘p(@ﬁ] % [0, 1]).
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With this assumption the partial derivatives f,, f,,, exist almost everywhere.
| fu(y,w)|| >0, ||fy(y,u)|| >0 for almost all w € [0, 1],

and || f, |l and || fu||eo are Lipschitz constants of £ w.r.t v and u. Let

fi (v, u) = maz(0, fu(y,w)),  fo(v,u) =min(0, fu(y,u)).

We require the technical assumption that f,, is Lipschitz continuous as a function of ~,
with Lipschitz constant Ly, .

It follows then that f] and f; are also Lipschitz continuous in v with the same Lipschitz
constant. Lipschitz constants measure how much flux functions change. We adopt the
assumptions from [14, 15].

Assume that for each vy € [,7], there exist a unique maximum u*(y) € [0, 1] such that
f(v,.) is strictly increasing for u < u*(y) and f(v,.) is strictly decreasing for u > u*(v).

We assume that the diffusion function B belongs to Lip([0,1]) with Lipschitz constant
IB]l.
The degenerate parabolicity condition holds:

B(-) € C?[0,1]; B(-) is nondecreasing with B(0) = 0.

This condition is why (1.1) is refered to as a mixed hyperbolic-parabolic problem. The
condition is general enough to include as a special case of (1.1) the hyperbolic conservation
law with discontinuous coefficient.

We make the following simplifying assumption.

Suppose B degenerates, is constant on a finite set of disjoint intervals:

K
B'(r)=0 ‘v’rEU[ai,ﬁi]:F where «a; < 3 1=1:K,K>1.
i=1

On these intervals, (1.1) acts as a pure hyperbolic equation.
B is non-degenerate off these intervals, which means that B is strictly increasing and (1.1)
behaves as a parabolic problem on

0,1]\. B'(r)>0 Vr¢ U[ai,ﬂi].

The maximum u*(7) is assumed to lie either in I, or lies in the closure of [0,1] \ T" V;
Max B'(r) > 0,r € [0, 1].
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Assume that the integrable bounded initial function ug satisfies

ug € L'(R) N BV(R),uo(x) € [0,1]Vx € R,
B(up) is absolutely continuous on R, (1.5)
B(uy), € BV(R).

B(up) being absolutely continuous demands that any jump in ug must be contained within
one of the intervals [y, ;] where B is constant.

Independently of the smoothness of v , if (1.1) is allowed to degenerate at certain points,
that is, B’(r) = 0 for some values of r, we cannot expect the solution to be smooth. We
must look at weak solutions. On the other hand, if B’(r) is zero on an interval [o4, £i],
weak solutions may be discontinuous and they are not uniquely determined by their initial
data. Consequently, an entropy condition must be imposed to single out the physically
correct solution. We will here assume that there exist at least one interval [a;, ;] on which
B’ is zero. Which means that equation (1.1) may possess discontinuous solutions.



Chapter 2

Existence of weak solutions

In this section we will present the main results that establish the existence of weak solutions
to the Cauchy problem for a one-dimensional scalar degenerate parabolic equation with a
flux function that depends explicitly on the spatial position trough a coefficient v(x) that
may be discontinuous. The proof can be found in [13] .

Independently of the smoothness of v(x), if (1.1) is allowed to degenerate (become zero) at
certain points, that is B/(r) = 0 for some values of r, solutions are not necessarily smooth
and we need to find weak solutions.

The basic idea is to multiply (1.1) by a smooth test function, integrate one or more times
over the domain, and then use integration by parts to move derivatives off the function u
and on to the smooth test function. The result is an equation involving fewer derivatives
on u, and hence requiring less smoothness.

A weak solution is defined as follows

Definition 2.0.1. A function u(z,t) € L'(Ily) () L>=(Il7) is a weak solution of the Initial
Value Problem (1.1) if it satisfies the following conditions:

i) B(u) is continuous and B(u), € L*>(Ilr).
i) For all test functions ¢ € D(llr) such that ¢l =0,

/ /H ) (u¢t+(f(v(x),u) —B(u)x)¢x>d$dt+ / uo(z)¢(x, 0) = 0. (2.1)

R

On the other hand, if B’(r) = 0 is zero on an interval [«, 3], weak solutions may be dis-
continuous and therefore not uniquely determined by their initial data. As a consequence,
an entropy condition must be imposed to single out the physically correct solution.

If v(x) is sufficiently smooth, a weak solution u(x, t) satisfies the entropy condition if, see
[14, 15], all convex C? entropy functions n(u), n : R — R, and corresponding entropy

fluxes q(v(x), u),

n(u)t+(Q(7(I)a u))x+r(u)xx+7,($) U’(U)fw(V(f’f%u) _Q'\/(’y(l’)a u) S 0€ D/(HT)> (2'2)

11
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where (7, q) is is the convex C? entropy-entropy flux pair and r : R — R is defined by
r'(u) =n'(u)B'(u).

For the hyperbolic part, the entropy condition is given by
n(we + q(v(2), w)e + 7' (@) (0 (w) fr(v(2), u) — ¢,(v(2),u)) <0 (2.3)
where  q,(y(2),u) = 7'(u) fu(y(2), ).

We can show this inequality.
In the first part of equation (2.3) we suppose that the entropy function n(u) satisfies a
conservation law of the form

() +q(v(2), w)e =0, (2.4)

for some entropy flux q.

Then we obtain from this, for smooth u,

1 (W + ¢y (y(x), u)y' (x)ue = 0. (2.5)
In the second part, we recall that the hyperbolic equation (1.2) can be written as

ue + fo(y(@), )y (2)us = 0. (2.6)
We multiply with 7' (u),

1 (wue +0'(u) f5(y(2), u)y' (@)ue =0, (2.7)
and compare with (2.5),

(@), u)y (@)ue = 1'(w) f5((2), w)y (2)ua,
= (@) (w)f(v(2), u) — ¢ (v(2), u)] < 0.

Here we find again the definition for q,
q:R—R,

Gu(y(2), u) = 1'(u) fuly(z), u),

and we recover the entropy condition for the hyperbolic part. By standard limiting argu-
ment, the former entropy condition implies the KruZkov-type entropy condition given in,
see e.g. [14].

lu —cli+ [sign(u—C)(f(v(x), u)—f(v(), C))LHB(U) — B(0)|watr/(x)sign(u—c) f(v(x),c) <0
(2.8)
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holds in D'(Ily), for all ¢ € R. The Sign function is defined by

-1 s<0,
Sign(s) =< 0 s=0,
1 s<0.

The entropy solution described above breaks down when 7(x) is discontinuous. We can use
a Kruzkov-type entropy inequality, see e.g. [15, 8| to find a definition for entropy solution
for the situation where (x) is discontinuous. This condition is often more convenient to
work with in the sense that it combines the definition of a weak solution with that of the
entropy condition. The spatially varying coefficient v(x) has finitely many jumps in v and
v, located at £ < & < ... < &vm. The following definition is suggested in [15].

Definition 2.0.2 (Entropy solution). A weak solution u of the IVP (1.1) is called an
entropy solution, if the following KruZkov-type entropy inequality holds for all c € R and
all test functions 0 < ¢ € D(Ir):

//H <|u — |y + sign(u — o) (f(y(z),u) — f(¥(z), )z + | B(u) — B(C)|¢m> dide
a sign({u — ¢ ), ¢) pdtdr

//HT\ﬁm,%_l ot (), €)= (2.9)
+/0 Z|f(7(§m+),c) — f(W(fm—)>C)|¢(€m,t)dt Z 0.

As was mentioned in the introduction for this section, we will only present the existence
results and the main theorems. The main reference for the existence proof of a weak solu-
tion of (1.1) is the recent paper by Karlsen, Risebro and Towers [13|. They prove also the
uniqueness of the constructed weak solution.

They aim at proving existence of a weak solution to (1.1) when v(x) may depend dis-
continuously on x. They derive their results using the assumption that f(v(x),u) is of
multiplicative form ~(x)f(u). This form will simplify slightly some of the formulas.
Existence of a weak solution is proved by passing to the limit as € | 0 in a suitable sequence
{te}eso of smooth approximations solving the problem above with the flux ~(x)f(:) re-
placed by ~.(x)f(-) and the diffusion function B(+) replaced by B.(-), where ~.() is smooth
and B.(-) > 0. In their paper the existence of a weak solution is proved by establishing
convergence of a suitable sequence of smooth functions solving regularised problems. Let
we € CF(R) be a nonnegative function satisfying

w(r)=w(—z), wl@)=0 for |z]> 1,/Rw(z)dz =1.

For € > 0, let we(z) = Lw(%) and introduce the “smoothed” coefficient

Ye = We * 7.
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Define the approximate initial function
Upe = We * Ug-

Observe that ug. € C*(R) and
uge — ug a.e in R and in LP(R) for any p € [1,00) as € | 0.
We then let u. be the unique classical solution of the uniformly parabolic problem

e + Op(ve() f(ue)) = 8§Bg(ue), (x,t) € Iy,
{ue(l’, 0) = upe(z),z € R, (2.10)

where B.(u) = B(u) + eu.

Roughly speaking, their main theorem can be stated as follows:

The sequence of {u,}.~o converges strongly in L' to a weak solution u of (1.1). Furthermore,
a subsequence of { B(u.) }eso converges uniformly on compact sets to a Hdolder continuous
function that coincides with B(u) a.e.

Since v(-) may be discontinuous, the total variation |u.|py cannot be bounded uniformly
with respect to € > 0. The lack of variation bound prevents an application of the standard
Bounded Variation (BV) compactness argument to {u}e~o. To circumvent this analytical
difficulty, they establish instead strong compactness of the diffusion function {Be(ue)}eso
as well as the “total flux” {v.(z)f(ue) — OrBe(ue)}eso. This strong compactness together
with some a priori estimates on the “total flux” will make it possible for them to use the
compensated compactness method to obtain the desired strong convergence. The first
lemma gives uniform L' and L estimates on ..

Lemma 2.0.1. There exists a constant C > 0, independent of €, such that ||uc(-,t)|L(wr),
HUE(',t)HLoo(R) < C, forallt € (0,T).

The next lemma provides us with a uniform L2(IIt) space and time translation estimate
on B(u,.), and hence strong L2 . compactness of {B(u.)}eso. This lemma will be used to

pass to the limit in the nonlinear diffusion term.

Lemma 2.0.2. There exists a constant C' > 0 which depends on T but not € such that
IB(uc(-+y, +7)) = Blue(, )llzmr ) < Clyl++v7),Vy € (R)  and V7 =0. (2.11)

In particular, we have that {B(uc)}eso is strongly compact in L2 (Tt).

Before we can state the fundamental theorem in the theory of Compensated Compactness,
we recapitulate the results they use from the compensated compactness method used to
prove the existence of weak solution. For a nice overview of applications of the compensated
compactness method to hyperbolic conservation laws we refer to Chen.

Let M(R™) denote the space of bounded Radon measure on R™ and

Co(R")={¥ e C(R"): lim Y(z)=0

|z|—o0
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If pe MMR"),

then
1.9) = [ W Y0 € Co(R?),
Recall that € M(R") if and only if (¢, V)| < C||¥||Lemn) V¥ € Co(R"). We define

el vaerny = sup{|(p, W)| : ¥ € Co(R"), [[¥|[Locmm) < 1}

The space (M(R"), | - ||mc@mn)) is a Banach space and it is isometrically isomorphic to
the dual space of (Co(R"), || - ||Lec(mm)), While we define the space of probability measures
Prob(R") as

Prob(R") = {n € M(R") : u is nonnegative and ||pt| pmn) = 1}
Then we can state the fundamental theorem in the theory of compensated compactness.

Theorem 2.0.1. Let K C R be a bounded open set and u. : Il — K. Then there exists a
family of probability measures {v(z4)(A) € Prob(R™)} e, (depending weak-+ measurably
on (z,t)) such that

Viwt) C K fora.e (z,t)€lly.
Furthermore, for any continuous function ® : K — R, we have along a subsequence
du) > ® in L*(TIp) as €0,

where (the exceptional set depends possibly on )

D(x,t) == (Yo, P) = /RCD()\) dven(N)  for a.e. (x,t) €llp.

In the literature, v(x ) is often referred to as a Young measure. Theorem 2.0.1 provides us
with a representation formula for weak limits in terms of nonlinear functions and Young
measures. A uniformly bounded sequence {u.}.~o converges to u a.e. on It if and only if
the corresponding Young measure vy reduces to a Dirac measure located at u(x,t), i.e.,
V(e,t) = Ou(z,r)- We have the following “reduction” result:

Lemma 2.0.3. Let K C R be a bounded open set and u. : Il — K. Suppose that
ue = u in L=(Ty). Suppose also that for any pair of (not necessarily convex) C? functions
N, 12 : R — R, we have for a subsequence

Y(@) a1 (u)na(ue) = i (ue)y(@)ge(ue) = y(@)qme —my(e)  in L®(IIp) as € |0,
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(2.13)
where ¢; : R — R is defined by g/(u) = ni(u)f'(u), i = 1,2. Then for a subsequence

(@) f(ue) = y(2)f(u) in L¥(IIr) as €] 0.

Furthermore, if v(x) # 0 for a.e. x € R and there is no interval on which f(-) is linear,
then a subsequence of {uc}eso converges to u a.e. on Ilp.

Remark. If y(-) = 0 on a set of non-zero measure, then it is not possible to conclude that
(‘a subsequence of) u, converges strongly to u nor that f(u.) = f(u) in L (IIy).

Theorem 2.0.2. Suppose that {uc}eso C L®(Ily) uniformly in €. Suppose also that for
any C? function n : R — R, the subsequence of distributions {9n(ue) + O (v(x)q(ue)) }eso
lies in a compact subset of Hy.L(ITt), where ¢ : R — R is defined by ¢'(u) = n'(u) f'(u).

loc
Then along a subsequence u. = u in L=(TIy) as € | 0, y(x)f(uc) = v(x)f(u) in Lo (TIy)
as € | 0. Furthermore, if v(x) # 0 for a.e. * € R and there is no interval on which f(-) is
linear, then a subsequence of {u.}eso converges to u a.e. on Ily.

From Lemma 2.0.1 we know that M := ||ue||peey) < 1 (uniformly in €). Let

K = max [BO| = B()

For any function ® € C([0, K]), we then have
1P (B(uc)llLemr) < C,
so that along a subsequence
®(B(u,)) = ® in L*(IIy),

and, from Theorem 2.0.1,

B, 1) = /R B(B(N) dvpn(N), V(w.t) € Iz \ No, (2.14)

For some exceptional set Ng that depends on ® and [Ng| = 0. One can choose a sequence
{®;}52, € C([0,K]) that is dense in C([0, K]) and set

N = Ng;.

i=1

Then |N| = 0 and (2.14) holds at any point (z,t) € IIp \ N for each & € C([0,K]).
From Lemmas 2.0.1 and 2.0.2, we have that B(u.) converges along a subsequence to some
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function B a.e. on II7. Let u denote the L>®(ITy) weak-x limit of {u}cso. We can assume
without loss of generality that

u(x,t) :/ A dygyn(A) V(z,t) e IIp \ N. (2.15)
For £ € [0, K], define the functions
1(§) =min{\ € [0,1] : B(A\) =&}, L(§) = max{\ € [0,1] : B(A\) =&} (2.16)

Furthermore,

(B(V) <
(B(A))

< L(B(X))for all\ € [0, 1],

A
A = L(B()\)) for a.e.\ € [0, 1].

We need also the measurable sets
H:={(z,t) € Ur \ N : [(B(u(x,1))) < L(B(u(z,1)))},
P :={(x,t) € lIr \ N : (B(u(x,t))) = L(B(u(x,t)))}.

The statement that B = B(u(z,t)) for all (z,t) € Iy \ N implies that {u,}o converges
to u a.e. on P. The proof of this claim is classical. Let K := P()[a,?b] for any a,b € R,
and note that u? = u? in L>°(K). Then we have

// (ue — u)?dtdr = // (u? — 2ueu +u®)dtde — 0 as €] 0, (2.17)
K K

for which the claim follows.
We sum up the compactness properties of the diffusion part of (2.10). A subsequence of
{B(u¢)}eso converges strongly to B(u) in L2 _(IIt), where u is the L>(IIt) weak-x limit

loc
of {uc)}eso. Furthermore, B(u) € L*°(IIt) N L?(0, T; H'(R)).

The next Lemma provides us with a series of priori estimates that imply strong compactness
of the “total flux” sequence {7V.(x)f(ue) — Or Be(te) }eso. These a priori estimates only hold
if the initial function wg satisfies, in addition to (1.5), the stronger regularity condition

[v(2) f(uo) — 9: B(ug)|pv(w) < o0 (2.18)
Lemma 2.0.4. Suppose that (2.18) holds and introduce the function

Ve(x,t) = Ye(x) f(ue) — O Be(ue).
There ezists a constant C>0, independent of €, such that for all t € (0,7T)

(@) ve(, B)[lLemy < C,

(1) Joe(, D)l Bvm) < C,

(i60) |oe(,t+7) —ve(-, ) law) < CVT, V1 >0.

In particular, we have that {v.}eso is strongly compact in Li,  (IIT).
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The main result is the following theorem.

Theorem 2.0.3. Suppose that the conditions imposed on the assumptions hold. Then
there exists a weak solution (in the sense of Definition 2.0.1) of the Cauchy problem (1.1).
Furthermore, u can be constructed as the strong limit of the sequence {u.}e=o, where u,
solves the regularised problem (2.10).

Let v be another weak solution constructed as the strong limit of the sequence {v,}e=o, where
ve solves the reqularised problem (2.10) corresponding to initial data vy. Then

/R\u(x,t)—v(x,t)\ dxg/R|u0(x)—v0(x)\ dx. (2.19)

Consequently, the constructed weak solution u of (1.1) is unique. Suppose that the initial
function uy satisfies the additional regularity condition stated in (2.18). Then the con-
structed weak solution u has the following reqularity properties:

@O](v(@)f(w) = 0 B(w) (-, )lpvw) < €, L e (0,T),
(@) [u(-,t +7) —u(, )rw < Cr, V7 20,

In the pure hyperbolic case, Theorem 2.0.3 (i) implies that the total variation of f(u) is
finite if uyp € BV(R), although the total variation of u need not be finite.

It is worthwhile mentioning that if B(-) is strictly increasing we do not need the compen-
sated compactness method to get strong convergence of {u}eso-



Chapter 3

Relaxation Schemes

3.1 Relaxation approximation for the hyperbolic case

The basic idea is based on replacing the nonlinear convection-diffusion equation with a
semilinear system, using a stiff relaxation term containing the discontinuous flux function
f(v(x),u). The schemes proposed in this work are based on the same idea at the basis
of the wellknown relaxation schemes for hyperbolic conservation laws by Jin and Xin [22].
They introduced a prototype model that bears many critical properties of more general
nonlinear hyperbolic systems with relaxation. Before introducing the framework of Re-
laxation Schemes for the parabolic equation, we will start with the hyperbolic case. As
mentioned in the assumptions, (1.1) behaves like a hyperbolic problem on intervals

K
B'(r)=0, V¥re|Jas]=T.
=1

In these intervals, (1.1) can be approximated by a 2x2 semilinear hyperbolic system with
a stiff relaxation term containing the discontinuous flux function f(y(x), u).

An additional variable v(x,t) and a positive parameter € are introduced and the following
relaxation system is obtained.

€ € __
u; + vy, =0,

i+ Nl = (£ (y(a), ) — o).

(3.1)

e ¢ >0 is the relaxation time.
e )\, a positiv constant, satisfies the subcharacteristic condition:

0 < Maz~ulfuly,u)] < A

19
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From the given data, the maximum is taken over the set

(v,u) € [7,7] X [u,].

We choose the initial condition for the system (3.1)

u(x,0) = uo(x), v(x,0) = fy(x), uo()). (3:2)

We can rearrange the second equation in system (3.1).

elvi + Nug] = [f(v(2), u) — o],

And as € — 0T we obtain

v = f(y(x), u). (3.3)

Substituting this expression in the first equation of the relaxation system (3.1), we recover
the hyperbolic conservation law.

u+ f(v(x), u)e = 0.

The state satisfying (3.3) is called the local equilibrium. In the limit ¢ — 0, solving the
Relaxation system is equivalent to solving the hyperbolic case of the problem.

The characteristic speeds of the local system must be interlaced with the characteristic
speeds of the relaxing system to ensure the stability of the limit. The same condition
is true for the 2 x 2 semilinear case to ensure that the local relaxation approximation is
dissipative. This condition is referred to as the subcharacteristic condition.

To understand better this approximation, we can present a Chapman-Enskog type expan-
sion |17, 18] for the relaxation system (3.1).

Roughly, the difference between this expansion and the classical Hilbert expansion (also
asymptotic expansion) lies in that the Hilbert expansion expands the solution, while the
CE-expansion expands the equation.

Let us do a Chapman-Enskog expansion for the relaxation system. We suppose for the
moment that u¢, v¢ and y(x) are smooth functions and make the ansatz

v = f(y(x), u) + et + o(€?),

for some 0¢. We can rewrite the second equation of the relaxation system (3.1) as

Which means that

ve = f(vy(x),u) + o(e). (3.4)
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From the first equation of (3.1), we have

ou v
5= oy (3.5)

Differentiating (3.4) with respect to time, 2.

. Of - 0u
v = L), uis,

vi = fu(y(2), u)ui + ofe),
then substituting, using (3.5) we obtain
vy = _fu(fy(x% u6>vx + 0(6)'

We find v, in the former expression using (3.4). We differentiate with respect to x.

0 = () ) 1) )+ o) (e,
0f = =22, ) 5 0) + G ()] ol

= —fuly(@),u) [ £ (3(@),u) (@) + fuly (@), w Y + 0(e)] + o(e),
v =~y (@), u) P = fuly(@),u) f (3 (@), ) (@) + ofe).

Inserted into the second equation of (3.1)
o = Flow)u) — el + Au,
0 = Fy(), w) — €| = [fur(@), w2t — Fuy(a), W) (3(2), w0y () + ofe)] + \ou .
o = fy(@),u) = €[ = (Fuly (@), u)) s = fuly(@),u) £ (3 (@), u) () + o(e)

3}
Plugging into the first equation of (3.1), we need 8_U6 ;
x

D = RO @)+ Fulr), s — €0 = (o), ),
el Fulr @), 1) £ (1), 4N (@)
D = ), ) = fulr (@), 1), () 0 @) — €N = (Fulr (), )P,

> i+ (@) = (@) u) £ (@) u) @) = (= (fulr @), u)hs))
(3.6)
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This is the first order correction to (1.1). The equation (3.6) governs the asymptotic behav-
iour of the relaxation system (3.1) either as time approaches infinity or as the relaxation
rate € tends to zero. The right hand side contains a second derivative of u and hence
represents a dissipation (viscous) term. The coefficient represents the coefficient of viscos-
ity, therefore, the relaxation system provides a vanishing viscosity model to the original
conservation law. We observe also that (3.6) contains an O(e) diffusion correction as well
as an O(e) convection correction. For the coefficient to be positive and to ensure that this
equation is parabolic, the following condition should be satisfied,

N> (fu(y(@),u)* & =X < (fuly(z),u) < X (3.7)

This is referred to as the the subcharacteristic condition. The constant A in the re-
laxation system (3.1) should be chosen in such a way that the Condition (3.7) is satisfied.
Chen, Levermore and Liu [5] show that if the Subcharacteristic Condition is always sat-
isfied, then solutions of the system tend to solutions of the equilibrium equation as the
relaxation time tends to zero. The fact that the first order correction to the original
system has a dissipative structure implies that the numerical solutions to the relaxation
system should also converge to the entropy solution of the original system.

3.2 Relaxation approximation to the nonlinear convection-
diffusion equation

We now extend the previous approach to nonlinear parabolic equation. We propose Diffu-
sive Relaxation Schemes for the numerical approximation of nonlinear parabolic equations.
The schemes proposed here are based on the same idea at the basis of the relaxation schemes
for the hyperbolic conservation laws. The relaxation system read

us + v, = 0,
-+ B, =~ (0~ Fo (). ). .
With initial data
(. 0) = ), (2. 0) = F3 () wo()) 39

The positive parameter ¢ has physical dimensions of time and represents the so-called
relaxation time for the system and the limit problem for e — 0 is called diffusive limit.
The relaxation term is stiff, which means that ¢ << 1. That is, the relaxation time is much
shorter than the time it takes, for example, for the hyperbolic wave to propagate over a
gradient length.The study is concentrated on the stiff regime. It is immediately recognisable
that system (3.8) has the form used to construct relaxation schemes for conservation laws
by Jin and Xin [22]. Theoretical justification for the passage from (3.1) to (1.2) was made
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in [5, 16|, while the numerical discretization for such problems was studied in [9]. In such
a problem only the source term is stiff, thus a proper splitting of an explicit convection
and an implicit source term suffices to give a scheme with a formal uniform accuracy in
€. The new formulation (3.8), due to its close relation with (3.1), allows us to use some of
the numerical techniques used to solve (3.1). However, we face additional difficulties here
because the convection step is also stiff, e.g.see [3, 2|.

In the small relaxation limit, ¢ — 0, the relaxation system (3.8) can be approximated to
leading order by

(3.10)

The state satisfying the first equation of (3.10) is called local equilibrium. The relaxation
system (3.8) has two characteristic variables

that travel with characteristic speeds

B'(v)

+

Since the equilibrium equation is of parabolic type, the main stability condition for the
relaxation system is, see [3],

[ (y(2), u)|* < @, (3.11)

which is the subcharacteristic condition, a necessary condition for convergence to equi-
librium. We expect to find condition (3.11) verified in the relaxation limit. As long as
the solutions for the limit equation are smooth, the stability in a suitable norm and the
convergence of the problem as the relaxation parameter € tends to zero can be completely
justified. Unfortunately, in the general case the solutions of the equilibrium equation (3.10)
may become discontinuous in a finite time. For the system B’(u) > 0, f'(v(x),u) is the
characteristic speed, such that (3.11) reeds

_7\/3/(“) < F'(v(z),u) < M

: ; (3.12)

Note that the local equilibrium approximation (3.10), which has the characteristic speed
f'(v(x),u), will exceed the characteristic speeds of the original system unless (3.12) is sat-
isfied.

The consistency of the approximation would be satisfied, if only to preserve the proper
causality. Hence (3.12) will be referred to as a Stability Criterion. By considering a
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Chapman-Enskog expansion for the relaxation system, we get a better understanding of

the argument.

Let (uﬁ(:v, t), ve(z, t)) be a family of solutions to

u; + v, =0,
€ 1 € 1 € €
v+ 5B = — (0 — [(3(@),4).

From the second equation of (3.13),

v + B(u), = —(v° — f(y(x),u)),
v = f(y(x),u) = —vf — B(u),,
ve = f(y(2),u) — vf — B(u),

vt = f(y(@),u) = B(u)s — €*f,

We start with the usual ansatz:

v = f(y(w),u) = B(u), + of€?),

differentiating with respect to time,

Uf = fue (V(x)v ’UJ; - Bwt(ug) + O(€2>‘

From the first equation of (3.13), we have
u; = —vg, then

vi = fur(y(@),u) (—v5) — Bur(u) + o(€?).

We find v5 from (3.15).

0 0

o0 = 5 F (@), u) = B(u)s +o(e”)],
i = L6, + 2L

Substituting into (3.16).

vp = fue (@), w)[f5 (v(@), u)y (@) + fue (v(@), u)ug —
Uf = — fue (V(x)v ue)f’y(fY(x)v ue)f)/(x) — fue (V(x)v ue)

Put into (3.14).

vt = f(y(@),u) = B(u)e + € fus (v(2), w) £ (9(2), u)y (2

(7(2), u)ug — Bea(u®) + o(€?).

N g o

(3.13)

(3.14)

(3.15)

(3.16)

+ € fue (7(2), u)?uf, — € fur (9(@), 0) Baa (u) + Bue(u®) + o(€?).
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We differentiate now with respect to space.

S = ), () o ()~ B € [ () 0 ()€ e ), )]

ox
)€ L () 1) () 0 (0)] B 465 )

xT

ag[fue( (@),0) B ()] + € (Ba(u)) + o(e?),

—8% [ Fue (V@) 1) Bya (u) | + 628%(19“@6)) +o(e?).

Using this in the first equation of (3.13), dropping higher order terms leads to the second
order correction O(€?) to the local equilibrium approximation in the form

0

w1 (7(@), 1) =€ fue (V(@), u) f (V(@), ) (2)] = 5= [B'(u) =€ f (y(w), u)Jug. (3.17)

The right hand side represent a dissipation. For the equation to be dissipative, following
condition should be satisfied:

|B'(u) = € f'(v(x),u)?] >0,
| (), u)* < fi (3.18)

This inequality is naturally verified in the limit € — 0. The equation (3.10) will always
possess the positive viscosity if the stability condition (3.18) is satisfied. Thus, in the regime
when €2 is small, the behaviour of the solution to (3.8), the diffusive relaxation system, is
governed by (3.10). We call this kinds of relaxation limits the diffusive relaxation limits and
we emphasise the fact that the equations of (3.10) provide a link between the relaxation
parameter € of the system and the physical viscosity of the limiting equilibrium equations.




Chapter 4

L and L! Estimates

4.1 L*®FEstimates

In this section we shall establish a uniform supremum norm bound for the solution (u¢, v¢)
of the Cauchy problem (3.8) — (3.9), we consider the following assumptions.

(A1) fis locally Lipschitz continuous function with f(0) = f/(0) = 0.
(A2) The functions (u¢,v¢) are uniformly bounded in L*>°(R?) by
Ny = max(sup | ug |loos sup || v |loo )
e>0 e>0

Moreover, the sequence (ug,vs) converges in L _(R)? to some (ug,7g) € L=(R?) as

loc
e — 0.

We will also use the following supplementary assumption on the initial data:
(A3) For any bounded closed interval K C R, it holds

Tim | 0§ — S (@), 1) |0 = 0.

We define for any N > 0,

F(N) = |S<1|1}3|f(0|’ (4.1)
B(N) = 2N + F(2N), (4.2)

and

M(N) = sup |f'(C)I-
CIBV)

we state the global existence and boundedness result for problem (3.8), similar to that in
[16].

26
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Lemma 4.1.1. Assume (A1) and (A2). For any Ny > 0, and € > 0, if

B'(u)

> M(Ny), (4.3)

then there exist a unique, globally bounded solution (uf,v®) to the relaxation system in

C([0,00); L, .(R?)) such that

loc

B'(u) B'(u)

|| £
€

U || oo (Rx (0,00)) < B(Ny). (4.4)

The subcharacteristic inequality

B'(uc)

: (4.5)

|[f'(y(z), u)| <

holds for all € > 0 and for almost every (x,t) € R(0, 00).

Some remarks based on the L a priori estimate. Consider uniformly bounded solutions
u® = (u,v) € L™ of the 2 x 2 system satisfying the entropy inequality. Assume that
the strict stability condition holds and the subcharacteristic speed is monotone almost
everywhere for the local variable u € R. The stability theory ensures the existence of
such a strictly convex entropy. Then u‘ strongly converges to (u,v) and the limit func-
tions(u(x,t),v(x,t)) are on the equilibrium curve for almost all (x,t), t > 0, where u(x,t)
is the solution of the Cauchy problem. The initial data may be far from equilibrium but
the convergence result indicates that the limit functions (u,v) come into local equilibrium
as soon as t>0. When we can show the compactness of the zero relaxation limit, we also
then have an indication that the sequence u® is compact no matter how oscillatory the
initial data are.

4.2 L'Estimates

We derive some a priori uniform stability estimates in L for the solutions of the relaxation

system (3.8). The main goal is to establish compactness properties of the approximating

sequences. Under the assumptions of Lemma 4.1.1, let 7”3;@6) > M(Np) and € > 0. Let
(u¢, v¢) be the solution of the Cauchy problem (3.8)-(3.9). The statements from [16, 19]
conclude that for any interval (a,b) C R and for any 7" > 0 there exists a continuous
nondecreasing function w € C([0,T]), not depending on € and with w(0) = 0, such that,
for every t € (0,7)

b
/ |u(z + h,t) — u(x, t)|+|v(z + h, t) — v(z,t)|de < w(|h]), for any|h| < hg. (ho>0).
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(4.6)

Under these assumptions, suppose further that the initial data (uf,v§) are locally of
bounded variation. Then there exist a constant c, not depending on ¢, such that for
any interval (a,b) C R and for every ¢ > 0

€ . € . < € € . .
[u (-, 8), v D) By apy < CHUO’U°||Bv<(a_@t,b+@t)> (4.7)

c is a generic constant and may change due to calculations. As a consequence, we have
that the sequence (u®, v) lies in a compact set of L} for all £ > 0. We can now state the

following. The proof for similar statement can be found in [16].

Theorem 4.2.1. Under the assumptions of Lemma 4.1.1, let 7”36@6) > M(Ny) and e > 0.
Let (u¢, v©) be the solution of the Cauchy problem (3.8)-(3.9). Then for any interval (a,b) C
R and for any T > 0 there ezists a continuous nondecreasing function w € C([0,T]), not
depending on € and with w(0) = 0, such that for every 0 <t <t+7 <T, (1 > 0) it holds
that

/ |u(z,t +7) —u(x,t)]  dew(r). (4.8)

It turns out that, as e — 0T, the sequence (u®) converges towards the entropy solution
u = u(x,t), in the sense of Natalini [19]. More precisely:

Theorem 4.2.2. Assume A1-A3 and (4.3). And let (uf,v%) be the global solution to prob-
lem (3.8). Then there exists a weak solution u to (1.1) and a subsequence, still denoted
(u(x,t),v(x,t)) such that

ut—u in C([O, 00); L}OC(R)>, as €¢— 07, (4.9)

v¢ — f(y(z),u) in C’([O, 00); L}OC(R)>, as €— 0T, (4.10)

4.3 Entropy solutions

We know that weak solutions to the Cauchy problem (1.1) are in general not unique and,
to select a reasonable solution, we have to restrict the class of admissible solutions giving
the so-called entropy condition.

In this section we shall show that the limit function obtained in section (4.2) when € — 07
is actually an entropy solution. Let us state some subtle details involved in the analysis of
the behaviour of entropy pairs of system (3.8). Similar but more complex analysis can be
found in |16, 19, 5].

We assume (A1) and (A2). Then there exists Ng > 0 such that the stability condition
(4.3) holds. We also assume one of the following hypotheses



4.3 Entropy solutions 29

(i) supyer [f(u)] < o0;

(ii) £ € C? and there is M > 0 such that if |u| > M then |f”(u)| > 0.

Then for every Ng > 0 the weak solution u of (3.8)-(3.9) given by Theorem 4.2.2 is an
entropy solution for the same problem. We observe that under these assumptions and due
to the uniqueness result for the entropy solutions, the whole sequence (u€, v¢) in Theorem
4.2.2 is actually converging. We aim to show in this section that limit solutions (u¢, v¢)
are entropy solutions to (3.13). We recall from previous section that (7, q) is the convex
C? entropy/entropy flux pair for the system (1.1).

For any given entropy pair (1,q) for (1.1), we construct an C? entropy/entropy flux pair
(x, W) for the system (3.13) on some open convex set 2, such that for all functions

X,V [ xQ— R,

(x(y(2), u, 0%), U(y(x), uf, v°))

satisfy the compatibility conditions

(v, u,0) = Nx (7, u,0),  Wol(y,u,0) = X7, u,0). (4.11)

In addition, on the equilibrium curve v = f(y(x), u), we require that the entropy-entropy
flux pair (x, ¥) reduces to entropy/entropy flux pair (7, q) for (1.1),

X(v,u, f(y,u)) =n(u) and  W(y,u, f(7,u) = q(y,u), Vue (4.12)

We can extend an arbitrary entropy/entropy-flux pair (n, q) for (1.1) to an entropy /entropy-
flux pair for (3.13) by viewing (7, q) as an “equilibrium”entropy /entropy-flux pair for (3.13).
The idea goes back to [5]. We let (1, q) be a strictly convex entropy pair for the local equi-
librium equation (3.10). Assume that the stability criterion (3.12)

/B

VI - )y < YU

€

holds on v = f(y(x), u), then there exists a strictly convex entropy pair (x, ¥) for the sys-
tem (3.13) over an open convex set €2 containing the local equilibrium curve v = f((x), u)
, along which it satisfies (4.12). Smooth solutions (u¢, v¢) of (3.13) satisfy

Oix (y(), us,v) + 0utp(y(2), uf, v) = ;—zlavx(v(fﬂ)a us, ) (v = fly(uuf)),  (4.13)

by Theorem 3.2 in [5].
If v(x) is smooth, a weak solution (u, v¢) of (3.13) is said to satisfy the entropy condition
if

x(y(@), u, v) + V(y(2), u v)s + (1) se — 7 (@) (Ly (v(2), u, 0)) <
1 (4.14)

EXU(’V("E% uE> ’Ue)(f(’y(:lf), uEa UE) - 'Ue) in D/a
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where

r'(u) = 1'(u)B'(u). (4.15)

As a consequence of these estimates and result, we can state the following result of relax-
ation, see [5, 16].

Assume B € C? B'(u) >0 Vu € R.

feC? flu)=0.

And the stability condition

B'(u) — € f'(y(z),u)* > 0. (4.16)

Assume the initial data (uf, v§) € L™ N L2 and verify (A2). Then there exists a constant
Ny > 0, such that if

||(u87U8)||L°° S NOv (417)

there exists a subsequence, denoted (u, v¢), of global weak solutions to the Cauchy problem
(3.8)-(3.9) that converges pointwise almost everywhere,

(u(z,t),v(z,t)) — (u(z,t),v(x,t)),as €— 0. (4.18)

The limit function u(x,t) satisfies

i) v(x,t) = f(u(x,t)) for almost all (z,t) € R x (0,00) and

ii) u is a weak entropy solution of Cauchy problem (1.1).

To sum up. In the stability theory, the convexity of entropy y is essential. The existence
of strictly convex entropy y implies the following:
-The local equilibrium system is hyperbolic with a strictly convex entropy pair (1, q) = (X, ¥)|v=f(y,u)-

-The characteristic speeds of the local system are interlaced with the characteristic speeds
of the original system (1.1).

-The first order correction is locally dissipative with nonnegative diffusion B(u).



Chapter 5

Numerical schemes

5.1 Discretization of the relaxation system

We consider in this section the discretization of the proposed relaxation system (3.8).
Using the same notations as Jin and Xin [22|, we call the discretization the Relaxing
Schemes. We will also derive the zero relaxation limit for the scheme. This limit should
be a consistent and stable discretization of the equation (1.1), the original conservation
laws. Since here, in addition to the stiff source term, the convection term is also stiff, it is
necessary to overcome the difficulty with the stiff source term. Special care must be taken
to ensure that the schemes possess the correct zero relaxation limit, in the sense that the
asymptotic limit that leads from system (3.8) to (3.10) should be preserved ( at a discrete
level). When we now concentrate on the stiff regime, ¢ << 1, we also face the type of
problems for underresolved numerical methods. They are well known to be stable, but
may result in spurious numerical solutions totally unphysical. To overcome the difficulty
with the diffusive limit we need numerical schemes with the correct diffusive limit. From
known numerical methods, when the convective part is kept explicit and the relaxation
part implicit, the Courant-Friedrichs-Levy(CFL) Condition is like At ~ eAx. Results
from [21, 3| state that this is too restrictive and unnecessary near the parabolic(diffusive)
regime where € < Ax. A cfl-condition of diffusive type At ~ (Ax)? is expected.

5.2 Upwind based discretizations.

The spatial domain R is discretized into cells I; = (x;_1/2,%j11/2), spatial grid points
l’j+1/2, with mesh width hj = ZL’j+1/2 — ZL'j_l/Q.

Similarly, the time interval (0,T):

The discrete time level t,,, spaced uniformly with space step At =t,,1 —t, forn =0,1,2,...
We will call U} the cell average and U;‘H/z the nodal (point) value of U at & = x41/2,t = t,.

31
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U}" is defined by:

1 Tjt1/2
U

Tj—1/2

In order to write a stable discretization to system (3.8) we can use implicit temporal
integrators on the stiff terms. The simplest way to do this is to use backward Euler
method for both the convection and the source term. In conservative form, the relaxing
scheme may take the semi-implicit form, see e.g. [4],

uitt Ul U — Uy 0
Un—l—l . 1 (uﬂ+1 _ ur}-l—l ) 1 ’
J J / j+1/2 =12/ _ n+1 n+1
Finding upwind relaxing fluxes. With the aim to expose the basic ideas more clearly,

we need to specify the scheme by relating the nodal flux values (numerical fluxes) ug‘Ill /25 v;‘Ll/Q

to the cell averaged values u;, v;, also in order to have an economical discretization proce-
dure.

To determine the nodal values for the system (5.1), we apply the first order upwind scheme
on the variables u and v at the generic time t*, see [21]. We obtain

Uisz = Uists Ujaayp = U5 Uj_1yp = Uiy, Vjyyn = Uj
The values u?_1/2> U;L_l/2 are obtained by translating j to j-1.
The upwind selection technique in [3| gives the nodal values for system (5.1).

n n n E n n
Ujyy/o = 5(“; +ujy) £ 5(%‘ — Vi),
1 (5.2)

n_

Vityyg = 5(%" +vly) %(Ug uly).

With these choices of relaxing fluxes, we then propose the following finite difference scheme

uttt e — o 1
J J J+1 j—1 n n n _
At + 2Ax T 2Ax (uj+1 - Quj + uj_l) =0,
ot — o B(u) B'(u) 1
J At J + 2€2A[L' (U;-L_i_l - U?_l) — m(ﬂ?_i_l — 21)_? + 'U;L_l) = —6—2(’U?+1 — f(’}/], U;-H_l)).

As € — 0, we obtain the equilibrium fluxes

o B, )
J 2Azx
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{ U;l-i-l = B,(u?+1)(u?+2 - u?)a

U;L—l = B/(U?_l)(uy - “?—2)-

We can verify that the use of (5.2) in the discrete equations, for small values of €, leads to
the scheme of leading order
n+1 n n n n n n n n n n
ul "t — uj B (u 1) (ujyy — uf) B B'(uf_y)(uj —uj_y)  (ufyy —2uf +uj_y)

i j _ -
At (2Ax)? (2Ax)? 2eAx 0 (5.4)

5.3 Modified Schemes

In this section we show how it is possible to modify the upwind schemes in order to have
the correct asymptotic behaviour and to capture the proper parabolic behaviour. The idea
from [3, 4], is to use the upwind selection to the system on the variable (u £ j)/2 instead
of the characteristic variables (u + €j)/2. This choice leads to the fluxes

Vjt1/2 = 5(%‘ + Uj:l:l) + 5(“; - uj:l:l)' (5.5)
Applying these fluxes, the equilibrium of the relaxation system (5.1) now reads

U;‘LH —uj  B'(uj ) (uf, —uf) B B'(uj_y)(u] —uj_y) _ (ufyy — 2u] +uj_y)

At (2Az)? (2Ax)? 2Ax

=0, (5.6)

which is a consistent approximation of the equilibrium equation with an accuracy of
O(Az/2). So, the discretization defined by (5.5) applies to the discrete equation (5.1)
and has the correct diffusion limit.

5.4 Reformulation of the problem

In the previous sections, we have studied the diffusive behaviour of upwind schemes. In
particular we saw how it is possible to construct upwind schemes which are also able to
capture the correct asymptotic behaviour. We proposed a possible solution to this problem
based on upwind fluxes. However, in practice, the implicit time integrator may present
several limitations like the gain of stability is partially offset by the loss of accuracy, typical
of implicit schemes in the context of wave propagation phenomena. On the contrary, the
use of explicit schemes leads to a Courant-Friedrichs-Levy (CFL) condition of the type
At ~ eAx which is to restrictive when the equilibrium equations are of the hyperbolic
type and unnecessary near the parabolic regime where we expect a stability condition like
At ~ (Ax)2. Since both the above options have advantages as well as drawbacks, it is
natural to look for a scheme with mixed character. We will in this section look for a re-
formulated problem and compare the results with the our proposed relaxing scheme (5.3).
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In particular, the special structure of the reformulated problem enables one to solve it
numerically without using either modified upwind schemes spatially or nonlinear systems
of algebraic equations solvers at each time step.

We will discuss further the additional problem due to the stiff convection term. The idea
is to reformulate the problem for the relaxation schemes to conservation laws by properly
combining the stiff component of the convection term into the relaxation term. We need
to overcome this difficulty with an adequate and economical discretization procedure. We
want the schemes also to have the correct diffusion limit. The strategy is based on splitting
the equations into a hyperbolic conservation law for convection and a possibly degenerate
parabolic equation for diffusion. We define a hyperbolic solver for the conservation law,
while the diffusion equation is solved implicitly. We need a splitting method that is un-
conditionally stable in the sense that the splitting time step At is not limited by the space
discretization Ax. And finally, we want our approach to handle the convection-diffusion
combination, including the purely hyperbolic case.

5.4.1 Operator splitting methods

First it is interesting to point out how earlier numerical approaches that work for relaxation
systems with stiff source terms apply to these problems. We demonstrate the popular
operator splitting method where we do a proper splitting of an explicit convection step
from an implicit source term.

I. The usual splitting applied to system (3.8). We split into convection part

us + v, =0,
1 ) (5.7)
U + gamB(U) = 0,
and the relaxation part
Uy = O,
(5.8)

1
v = 50— [(3(a),w).
In the zero relaxation (or diffusion) limit, ¢ — 0T, the system (3.8) is approximated to
leading order by
ou ov ou

o =05, =0= =0 (5.9)

U_f(fy(x%u):()v ot % -

We obtain the equilibrium equations

f('Y(I)a u)x =0,
ou (5.10)
o = 0.
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We can see that this splitting is inconsistent with (3.10). So this splitting will give poor
results near the parabolic region. The usual splitting do not suffice to give a scheme with
uniform accuracy in e.

II. We try to overcome this problem. As discussed in the introduction of this section, the
key idea is to write (3.8) in the form, see [3, 21, 1],

oyu + 0,v =0,

1 (5.11)
O + VamB(u> = _E_Q(U - f(fY(x)v u)),

A suitable parameter v is introduced, where v < 1/€? is a nonnegative parameter. The
parameter v allows to move the stiff terms without losing the hyperbolicity of the system.
[t is immediately recognisable that system (5.11) has the form known from usual hyperbolic
systems with stiff relaxation term. This new formulation allows us to try the numerical
techniques already developed for hyperbolic problems with stiff relaxation [22, 18, 9]. One
of the technique in those problems is to split the system into an explicit convection step
and an implicit source term. We treat the relaxation step implicitly for better numerical
stability.

We split our model (5.11) into two subproblems:

¢ (5.12)
ov 1
ot = —E—Q(U - f(V(x)au))
And
ou Ov
FR T (5.13)
v + VQB(U) =0 |
ot ox -

Now we have a pure nonstiff convection step (5.13) and a stiff source step (5.12), stiff
relaxation part.

But at this stage, it is not obvious that this splitting provides any simplification to the
challenging numerical solution of the problem (3.8).

The idea now is to solve (5.13) using upwind approximations and (5.12) with a numerical
method that possesses the proper diffusive limit.

We will use an explicit scheme for the convection step and solve the source term implic-
itly. As demonstrated in previous section, when ¢ — 0, the relaxation step (5.12) always
projects the solution to the correct local equilibrium, which is a sufficient condition to
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guarantee that the splitting preserves the asymptotic limit from the relaxation system to
the convection-diffusion equation.

A first order splitting scheme for the model problem (5.11) is defined by

utt —n
J A J O,
J Jj n+1 . n+1
= = — F (), )
And
A A AV Rk Y
At T A =5
vy T n VB(uj-l—l/z) - B(uj—1/2> —0
At Ax '
The first step here is fully implicit, so in the small relaxation limit, we get the correct

local equilibrium V}H_l = f(v(j), u}‘“), independent of v. We apply this equilibrium state
into the second step. Then it can be upwinded by using a shock-capturing scheme for the
computation of v\, , and B(ujy, ;) in (5.15). In order to satisfy the subcharacteristic

condition, we have to impose the stability criteria
vB'(u) > f'(v,u)*. (5.16)

To define the scheme we need to relate the equilibrium fluxes B(u;‘ L1 /2) to the nodal values
for u and v. First, due to the structure of problem (5.14) and in order to avoid solving
systems of algebraic equations in v, we seek for a second order accurate definition of these
fluxes independent of the nodal values for v. In fact, this permits one to evaluate the
relaxation step explicitly because u does not change in time in (5.14) .

So we propose to define the equilibrium fluxes B (u;‘ . /2) of centred form

B(ufi1/0) = TJ(“J‘H - uj), 517
B, 10
B(uj—1/2) = T(“g - Uj—1)~
To define the scheme, we can apply the computations
n 1 n n n n
Vjy1/2 = 5(%’ + i) + i(ug —ulyq),
1 (5.18)
Ve = 50 i) = (W) — i),

We select nodal values by centred schemes to avoid solving nonlinear systems of algebraic
equations. In (5.14), we can evaluate the relaxation step explicitly because u does not
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change in time, i.e. u}lﬂ = uj’ during the step. Previous numerical results also show that

a robust, economical discretization for the correct numerical behaviour near the parabolic
regime should be based on implicit centred schemes. The solution procedure is split into
the following two steps.

5.4.2 Convection step

We present the discretization of the convection step (5.15). Since this step is now nonstiff
and hyperbolic, a natural choice is to use explicit upwind schemes. We solve (5.15) for

u}‘“ and V;H_l. We now have
Uj+1 =Uu; — A—(Uj+1/2 - Uj—1/2)>
Xt (5.19)
U;'LH = v} — VE(B(U?-HM) - B(“?—lﬂ))’

We apply straightforward the upwind schemes (5.18) and the proposed centred fluxes
(5.17), the final upwind schemes in the convection step can be written as

T}—i—l _.n At

u; = Uy — E[(U?+l — v ) = (ufyy — 2uf +uf )],
TN (5.20)
v;‘“ =v] —v 5 J A—x[ugﬁrl —2uj +uj ]

The parameter v can be used as a weight function in the nonstiff regime and can be
chosen to depend on the discretization parameters. However, numerical experience, see
e.g. [3, 21, 2|, shows that in most practical situations the simple choice v = 1 for e < 1
suffices to give accurate and stable discretizations. With the simplest choice of v = 1, we
define p = %. The CFL number satisfying p < 1.

5.4.3 Relaxation step

Our goal is to develop a scheme where the source term is treated implicitly for better
numerical stability. We take into account that u does not change in time during this step.
We use a linear scheme in this step.

n+l

U;

_.n
_uj7

At (5.21)

o= = S = FG), )

Although we have an implicit relaxation term, the new values u™™!' and v®™' can be

updated explicitly since the values of u;l“ can be computed from the first equation in
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5.14) and the term in v®*! is linear. In addition, as e — 0 in (5.21), it projects over the
f J
correct local equilibrium

ot = F(y (), upth).

If we use an implicit diffusion solver, our operator splitting method is unconditionally
stable in the sense that the time step At is not limited by the space discretization Ax.

5.4.4 Splitting Procedure.

An underlying design principle for many successfull numerical methods for equations such
as (1.1), is viscous operator splitting. That is, one splits the time evolution into two partial
steps in order to separate the effects of convection and diffusion. The above strategy of
splitting the method into a relaxation step and convection step involves a splitting error
which makes the method first order accurate in time, irrespective of whatever higher order
discretization is used in time and space in both steps.

We shall describe the operator splitting. That is, we will obtain the solution of (1.1)
through a composition of solution operator for the convection step and for the degenerate
parabolic problem.

Before describing the splitting algorithms in more detail, we define the solution operators
for our two different equations. We call H(¢) the approximate solution operator for the
convection part, and S(t) denotes the solution operator for the relaxation step. The viscous
splitting method is then based on the following approximation

u(z, nAt) = [S(AYH(AL)] up(x).

We fix T>0 and At > 0, and let N be such that NAt = T. Let u™ denote the approx-
imate solution to (1.1) at fixed time ¢, = nAt(n = 0,..., N — 1),u® = uy. We construct
approximation v"*! from u,, by the product formula

Un+1 = [SAt o Hm]u”.

In applications, the exact solution operators H(t) and S(t) are replaced by numerical
methods to fully propose a discrete splitting method. Here the solution operator for the
convection part is replaced by a solution generated by the upwind schemes (5.20) and the
solution operator for the relaxation part is replaced by an implicit centred scheme.

We remark that in applications, Strang splitting technique is often used, e.g. see |22, 12,
9, 18, 21, 20]. In Strang splitting, the relaxation step is solved for a half time step (%),
followed by a convection step for full time step (At) and then again by a relaxation step
for a half time step(4t). Resulting in

At s

Uttt = S( 5 YH(AH)S( 5 Yur. (5.22)
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But Jin [9] demonstrated that even the Strang splitting degenerates to first order accuracy
in the limit € — 0. Even higher order Runge-Kutta methods in the convection step cannot
improve the result.

In order to improve the order of accuracy we describe a second order TVD Runge-Kutta
splitting scheme introduced by Jin [9] for the Euler scaling. We will apply the second
order extension directly for our convection-diffusion splitting approximation. This splitting
scheme takes two implicit stiff source steps and two explicit convection steps alternatively.
Various applications can be found in [20, 21, 18, 22, 3]. We then apply the second order
splitting scheme to the diffusive relaxation system. The second order result is as follows:

Given (u?,v?) , (u*!, 07*1) are computed by
u; = u;‘,
. VAN S N
v; =y E_Q(Uj - f('V(])an))a
1 _ * *
vj = v —vB'(u})AtD,u
=
* At %k . kk 2At * . * 5-23
o =l = S = F00) ) - S5 - FGG) ), (5:28)

n 1 n
ujJrl = §(uj +uf),
1
vyt 5(@?4—@ )

The convections terms are keeped explicit because, first, one does not need to solve systems
of linear algebraic equations that will arise if the convection terms are implicit. Secondly,
due to the special structure of the source term, one does not need to solve any systems
of nonlinear algebraic equations, in spite of the implicit nonlinear source terms. Since the
source terms are treated implicitly, this discretization is stable independent of €, so that
the choice of At is based only on the usual CFL-condition,

CFL := % < 1. We recall that we defined the initial state as the local equilibrium, namely
v(x,0) = f(7,u(x,0)), then Jin and Xin [22] show that the variables v and v{* in (5.23)
approximate the local equilibrium f (7, uj) and f(v, **) respectively when € — 0. Then
applying vi = f(v,u}) and v;* = f(v, u] ) in u and u respectively, a second order relaxed
scheme is obtalned

]1 ? AtD, U |v fOv(G)u})s

uj = uj = AtDyvj | o)), (5.24)

n 1
uitt = 2(u +u3).
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To define the schemes explicitly, we use the finite differences

* *
Dot — Yiv12 — Yj1y2
=

’ 'U* A_xv* (525)
D" = j+1/2 j—1/2.
i Ax

And the numerical fluxes in (5.25) are obtained by using an upwind scheme to the charac-

teristic variables v + 7”]?:(11),

(v+ y)ﬁm = (v+ Bel(u) )js
o o (5.26)
(v— )j+12 = (v = )it1-

To serve our purpose in the numerical computation, we may use that Jin and Xin [22]
and Jin [9] proved that the corresponding second order relaxed scheme to the splitting
algorithm is consistent and TVD provided that the subcharacteristic conditions and CFL-
condition are satisfied.

Consistency and TVD-property imply convergence, and converges to the limit function
u(x,t) which is the weak entropy solution of the convection-diffusion problem.

5.5 Pseudocode for the Diffusive Relaxation Scheme (5.3)

In The following pseudocode we propose the procedure to implement the diffusive relax-
ation scheme for convection-diffusion problems. The method can be solved explicitly since
the values of uj' can be updated and computed from the first equation and the source term
in v is linear.

program parabolic

initial ug, vo = f(uo)

integer parameter m, N

real parameter h, eps, k, cl, c¢2
h «— (2pi)/N

k « (h)?

cl—¢/(e+ k)

c2 — ek/(e+ k)

x = 0:h:2pi-h

differentiation matrices M1, M2
ML — [vj1 = vja]; [uj1 — uj]
M2 — [vj41 = 205 + vja; [uj41 — 2u; + v ]
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41

assigne initial condition Ul = u(x,0); V1 = f(u(x,0))
collecting values for U MM = zeros(N,m —1); MM(:,1) = U1
loop with time step

output U"*!

t=0

for nx— 2 to N do

t = t+k

U(n+1) =u™ — kM1(v") + (k/e) M2(u™)

V(n+1) =clv™ — B'e2M1(u™) + eB'c2M2(v") + 2f(U(n + 1))
update V and U

end for

collect U-values MM((:,nx) =U(n+ 1)



Chapter 6

Convergence

6.1 The reduced problem

As a motivation for the complex analysis of the parabolic problem, we will look closer to the
hyperbolic case incorporated in our convection-diffusion problem, and present some analyt-
ical results. We present the underresolved numerical schemes for hyperbolic conservation
laws with a discontinuous coefficient and the corresponding relaxed scheme.

In chapter 3, we presented a relaxation system for the hyperbolic case of the IVP, that is
without the diffusion term B(u) and the equation is of the form

ug + f(y(x),u), =0.

Now we consider the relaxing scheme for the reduced problem, a first order upwind ap-
proximation to the relaxation system (3.1) is given by

1 n n n n )\ n n n
E(“jﬂ —uj) + E(Uj—i-l — i) — m(u]’—l — 2uj +uj,) =0,
Kt(vj i Uj) + E(uﬂ-l - uj—l) - m(vj—l - 2%’ + 'Uj—i-l) = E(f(%’a Uj“) — Uy +1)-
(6.1)
We can start the iteration by
W= [ @yde, 0= / F((), o (x))da. (6.2)
A ’ T Ax g ’

The method is implicit but can be solved explicitly, since the values of uj' can be updated
and computed from the first equation and the source term in v®*! is linear. We do not
have to solve a system of equations in order to update u™ and v".

42
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The limiting schemes are called relaxed schemes. The computational results available
indicate that the relaxed scheme obtained in the limit ¢ — 0 provide a quite promising
class of new schemes. Since the leading order behaviour of the relaxing schemes is governed
by the the relaxed schemes as ¢ — 0, we study the behaviour of the relaxed scheme using
Singular Mapping.

The relaxed scheme for the reduced problem takes the form

U;‘L = f(7j>u?)>
) (6.3)

—(u;?_1 — 2u} + U;LH)-

n n H n "
uj+1 =u; — S (i, “j+1) — f (-1, “j—1)] + 9

2

This is the leading order equation as € — 07. For the relaxed scheme (6.3), we assume the
following CFL-condition:

At
A <1 wh = —. 4
pA < Lwhere == (6.4)
And the Subcharacteristic Condition:
0 < Max~y 4| fuly, w)] < A (6.5)

Our understanding of the zero relaxation limit of the relaxing scheme is that poor numerical
results may be generated if the numerical scheme does not have the correct asymptotic
limit.

A scheme for the relaxation system (3.1) is said to have the correct asymptotic limit if,
for fixed At and Ax as € — 0T, the limiting scheme is a good (consistent and stable)
discretization of the system (1.2).

6.2 Singular Mapping

In this section, we attempt to establish convergence of the relaxation approximation (3.1)
using the singular mapping approach.

We present the definition for the approximate solutions.
Let Az > 0 and At > 0 be the spatial and temporal discretization parameters. The spatial
domain R is discretized into cells

I; = [xj-1/2, Xj+1/2), where  x, = KAz, for k=0,£1/2,£1,£3/2....

Similarly, the time interval [0,T] is discretized via t, = nAt for n = 0,...,N. The integer N
is chosen such that NAt = T, resulting in the strips

In - [tn7 tn+1)-
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We define x;(x) and x™(t) to be the characteristic function for the intervals I; and I™
respectively.

Let xj'(x,t) = xj(x)x"(t) be the characteristic function for the rectangle R}' = Tj x I".
The difference solution uj generated by the scheme (6.3) is extended to all of []; by
defining

ub(z,t) = Y > X, tul, (x,t) € [ Where A= (Az,At). Zf=1,.,N. (6.6)
T

neZ;\L, JEZ

For the discontinuous coefficient -,

’VA(x) = Z Xj+1/2($)7j+1/2 r € R.

JjE€Z

A (x) is approximated at each cell boundary, resulting in a discretisized version of

o Y
Yi+1/2 = —/ y\T)ax.
Az J,,
This analytical problem is solved (hopefully) by using a transformed variable @2 = (72, u®).
The idea is to show that the relaxed scheme converges along a subsequence to a weak so-
lution of the IVP by constructing a singular mapping

Y (y,u) = (7,0)

such that strong compactness for the sequence of transformed functions

@A(x> t) = w(’yA(I)a UA(‘% t))

can be obtained. We are in intervals where B'(r) = 0,Vr € U, [os, 8i] = . S is the char-
acteristic function for w; € [oy, Gi].
The singular mapping is defined by

b, u) = / " Sl ) dr (6.7)

We know from [14] that the singular mapping is designed to be Lipschitz continuous and
strictly increasing as a function of u. 1 belongs to Lip([v,7] x [0,1]). Once the existence
of a subsequential limit ® has been established, the invertibility of ¢ then allows the
corresponding weak solution u to be recovered from the limit ®, with u® — u guaranteed
by the continuity of .

Assumptions: Assume the given data are satisfied, and the scheme (6.3) is applied with
the parameter p chosen so that the following CFL-condition is satisfied for each succeeding

time step,

pA <1

then the computed solution remain in the interval [0,1] and the scheme (6.3) is monotone.
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6.3 Monotonicity

A useful property of the entropy-satisfying weak solution is, if we take two sets of initial
data ug and vg, with

vo(x) > up(x) Ve,

then the respective entropy solutions u(x,t) and v(x,t) satisfy
v(x,t) > u(z,t) Vot

In numerical applications, if the analogous property
ViU Yj= VI > UM v

holds, then the numerical method U}‘“ = H(U";j) is called a monotone method.
To check that the relaxed scheme is monotone, it suffices to check that

0
8u§L

HU";j5) >0 forall 4,75 U".

This means that if we increase the value of any U;' then the value of UJT‘H cannot decrease
as a result.

The relaxation scheme defines U ;‘H as a function
Uit = H(UYj),

n+l n n n
Uj = Hj[“j+1aujauj_1v7j+17’7j—1]-

o i— j+1.
H(U §]) = T[f(%‘ﬂaujﬂ)] + 7(“j+1)>
ouU™r = 7[f (7j+1auj+1)] + 7
J
o i—j-1.
H(U";j) = 7[—f(%'—1>uj—1)] + 7(“3‘—1)’
U = 7[—f (%‘—17%‘—1)] + o
J



46 Convergence

o i—]
H(U™;j) = uj — g[f(%'ﬂ, ui) — f(vi-,uf)] + %(—%}‘),
8H /11 / n ! n
507 =1 =5 Gy af) = f (e, uf)] = oy

The CFL-condition (6.4) and the subcharacteristic condition (6.5) guarantee that

0

n
ou j

HU"™ j) >0 forall i,j.

The relaxed scheme (6.3) is a monotone scheme.

The major drawback with a monotone scheme is that it is at best only first order
accurate even in regions where the solution is smooth. In the case where 7y is constant,
monotonicity implies that the scheme is Total Variation Decreasing(TVD).

6.4 Compactness of approximate solutions u®

We assume that initial data and 7 satisfy given assumptions, with the CFL-condition
mentioned above.

We will use the Lj-contractive property in the subsequent analysis. Meaning that the
relaxed scheme is Li-contractive if the inequality

SOt —urtAe < Ve - Ur|Az (6.8)
J J

holds for a pair of approximate solutions uj* and v} generated by the scheme. Towers [23]
propose and proves the following inequality for the related problem:

Up, Vg € L'n L™,
Z [ul* — A < Z uj — uf|Ax. (6.9)
J J

Computed solutions u® (-, t") satisfy a uniform L*(R) bound for t™ € [0, T].

L!-contraction property:
If v® is another solution, we have that
A A
[u™Cot") = 02 () <t (0 =02 (0)

LY(R)= ||L1(R)'

A

Taking into account the jumps in © at cell-boundaries, due to jumps in u~ and jumps at

cell centres, due to jumps in v2.
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Total Variation of © is defined by

TV(©) = Y |A%6,] + 3 [A16, 1] (6.10)
j J

J

(. J/ S

Vv Vv
cell—boundaries jumps—at—centres

The second sum , due to jumps in v2, is bounded by TV (y), using

[V (u, 1) — ¥(u, v2)| < |7 — el

since Lipschitz continuity relationships in u and ~ follow directly from the definition of
and conditions imposed on the flux f.

For each value of 7 in [vy,7],

U(-,7):  [0,1] — [=7,7] is an increasing 1-1 mapping.

We recall that v is assumed to be bounded and strictly positive, 0 < v < y(z) < 7.

Let ©"(z) = ¢ (u?(x,t"),v>(x)). We then define the following

ALO; = Y(ujp1,Vj41/2) — V(U Viz12); ALO;j_1/0 = Y(uj, vj41/2) — (uj, vi-1/2). (6.11)

Summing over all the jumps:
D OALO;+ > AL i =, (6.12)
J J

D_1A16;1 =) (A16))4 = D (A46;)-., (6.13)

D (A10))s = D ALO,)- + DT ALO, 1 = (6.14)
D (A10,)s = ¢ = D (A6)). — Y (A16, 1), (6.15)

From Lipschitz identity above, jumps in 42 is bounded by TV (v), such that

Y ALO, 1 < TV(y), (6.16)

J

=Y (A1) <p— ) (A1O))- +TV(y). (6.17)

Now, applying the identities proven in [23|, modified for our purpose, we can estimate

- 35(AL0,)
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From (6.11)

=) (AY0;) = (uy visrye) — YU, Vi),

(6.18)
- Z(Ai@j)— = Z(¢(uj>%+1/2) — (Uji1, Vir1/2))+-

J

We include L'-contractiveness and f*, the single maximum at u* € (0,1), and from the
assumptions, we get,

u 1
—-> (Ate))- < WZW} — W+ TV (7). (6.19)
We need to bound 3~ |uj — uf],
> luj = ufl < 2471 f 1TV (uo) + uf TV (7). (6.20)

j
We substitute into (6.19), to get

~Y(arey). < ij 17TV (o) + 2TV (7). (6.21)

These statements in place we have essentially bounded TV (©™) uniformly for all n > 0,
and all A > 0. Establishing L' compactness of @4.
Application of propositions

R x[0,00) — [0,1] and 0<y<~y(z)<7

gives uniform bounds on ||@2(-,t)||s and [|@2(-,t)||y1 for any compact interval,
providing a uniform bound on TV (@2(-,t)).

By standard compactness arguments applied to the sequence ®4, there is a subsequence,
also denoted ©®#, which converges in Li [Ty to some function

© € Li,o([Ix) NL*([]y), 4 — ©.

Let u(z,t) = ¢~ 1 (y(z), O(z,1)).

Due to strict monotonicity of 9(+, ), the function u is well defined a.e., u € [0, 1] a.e.,
and u € L, (ITz) N L= (ITy):

We will now use the fact that u® = ¢~1(y2>,©2), to show that u* — u. An estimate of
lu — u®| is necessary, requiring a bound for [~ (y, ©2) — (2, 04)].

Due to the continuity of 1! as a function of its second argument, we can write the result
as

(v, u®) — (v, u)| < (v, u) — (v, u)| + [P(v>, u®) — (7, ),
< lehy|y =42 + |02 = ©.

Since v* — 7 a.e. and O* — O a.e. ¥(7,u?) — ¥(7y,u) a.e. in [[.
And since (7, -) is strictly increasing, it follows that u® — u boundedly.
The CFL-condition guarantees that the computed solutions u® remain within |0,1].

Convergence in L ([[1) follows, and u is a weak solution of the conservation law.
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6.5 Error Estimates

In this section we will present statements and results about convergence rates pointed out
in [6, 7, 19, 16| for the relaxation scheme (6.1) by looking at the accuracy of relaxation
scheme for solving the conservation law (1.2). This is done by studying the error of
approximation u — uf between the exact solution u and the numerical solution uy
measured in L' norm. The parameters ¢ and Ax determine the scale of approximation
and converge to zero as the scale becomes finer. They call the order of this error in these
parameters the convergence rate of the numerical solution generated by relaxation
scheme.

To make this point precise, we choose the initial data for (3.1) as

(I)ug = uo(x), vy = f(uo(x)) + K(x)w(e),

where K € L* NLY(R) NBV(R), w : [0, 00[— [0, o] is continuous, and w(0) = 0. Here
we allow for an initial error K(x)w(e) instead of v§ = f(7(x), ug) because we want to see
the contribution of this error to the global error. It is possible to consider perturbed data
in the u-component, then in the final result an initial error [[ug — ug||r1(r) would persist
in time and may prevent the convergence of u® to the entropy solution. However, the
initial error in the v-component persists only for a short time of order €, thereby it does
not prevent the convergence of u‘.

We initialise the relaxation scheme (6.1) by the cell averaging the initial data (u§, v§) in
the usual way

0 1

() = 3 [ (o), e o). (6.22)

xj(x) denotes the indicator function x;(x) := 1{x_jax|<ax/2}- We will apply the following
notations. The L'-norm is denoted by | - ||1, and The BV-norm is defined as

[ully = l[ully + TV (u).

For grid functions the total variation is defined by

TV(u") =Y [uff —uj'y,

i€z
and || - ||; denotes the discrete 1' — norm
lu"ly = Az Y fuf].
i€Z

Taking initial data (6.22), we summarise the main convergence rate result by stating the
following, see e.g.[6].
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Theorem 6.5.1. Take any T > 0 and let the relation T = NAt be satisfied for a
suitable N € N and time step At. Further, let u be the entropy solution of (1.2) with
initial data uginL>™(R) N BV (R), and let (uN,vN) be a piecewise constant
representation on R x [0, T] of the approximate solution(u}), vi)icz 0<n<n generated by
the relaxation scheme (6.1) with initial data satisfying (I1) and (6.22). Then for fizved
W= % satisfying the CFL condition u\ < 1, there exists a constant Cr, independent of

Ax, At, and €, such that
|u™ —u(-, T)|: < Crlve+ VAxz]. (6.23)

Theorem (6.5.1) suggests that the accumulation of errors comes from two sources: the
relaxation error and the discretization error. To explain the structure of the proof, it may
be helpful to consider that the relaxation scheme was designed through two steps, namely
the the relaxation step and the discretization step. The basic idea is to investigate the
error bound of the two steps separately and then the total convergence rate by combining
the relaxation error and the discretization error.

We split the error e}, = u(-,T) — ui (-, ty) into a relaxation error e with ||ef||; < Crv/e,
and a discretization error ex with |eallr < CrV/Az, i.e., we have the decomposition

ey = €e“ +ea.

e =u(-,T)—u(-,T),

ean =u (-, T) —ua(, ty).
We review some assumptions and preliminaries with the specific initial data (u§, v§),
which will be of use in the error analysis. We make the following assumptions
(Iz)  the flux function fis C* with f(0) = £’(0) = 0;
(I3) the initial data satisfy (ug,v§) € L'(R) N L> N BV (R) and there exist constants
po > 0, M > 0 not depending on € such that

po = maz ((sup o]l sup gl ). (u§. ) v := ugllmy + Ilegllmy < M,
€ €>

and for the flux function f as well as K given in (I;),

(z) = fy)
y

Lip(f) = sup| L < MK <M. O

Equipped with assumptions in (Iy) — (I3), it has been proved that, as € — 0", our main

result on the limit € | 0 is summarised in the following theorem.

Theorem 6.5.2. Consider the system (3.1), subject to L>°(R) N BV (R)-perturbed initial
data satisfying (I1) — (I3). Then the global solution (uf,v) converges to (u, f(y,u)) as
€ | 0 and the following error estimates hold:

[u (-, 8) —u(, B[l < Crv/e, (6.24)
[ (o) = FOrus ) < Crlew(e) +e(l—e*)], 0<t<T. (6.25)
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Thus, (6.25) reflects two sources of error which are the initial contribution of size w(e)
and the relaxation error of order e. However, we mention that the effect of the initial
contribution persists only for a short time of order €, and beyond this time the
nonequilibrium solution approaches a state close to equilibrium at an exponential rate.
The discrete initial data satisfy

maz(||uj oo vallos) < po,
TV (W) +TV(R) < M, (6.26)
lva = (v, un)lh < Mw(e).

The grid parameters Ax and At are assumed to satisfy % = constant. So, since

W= % is assumed constant, Ax — 0 implies At — 0 as well.

We know the usual projection error, of order Ax, see e.g. [11].

lua = uglls < AaTV (up),

6.27
0% = v§|ly < AzTV (). (6.27)

As was shown by Natalini and Aregba-Driollet,|19], for a large enough constant A\ a
uniform bound for the numerical approximations given by scheme (6.1) can be found.
More precisely, there exists a positive constant M (pg) such that if

A> M(po),
then the numerical solution satisfies

v _
(uf,v}) € K,y = {(u,v) € R* |u+ X| < B(po)}, (6.28)

where B(py) is a constant depending only on py. For the proofs of the error properties for
our schemes we refer to |7, 6, 16, 19]. We summarise:

Discretization error.

We already have (u€,v¢) as the weak slution of (3.1), the relaxation system, with initial
data (uf, v§), and let (u™,v") be a piecewise constant representation of the data (ul,v))
generated by (6.1) starting with (u,v%). Then, for any fixed T = NAT > 0, there is a
finite constant Cr independent of Ax, At and € such that

[0, T) = oIy + [Ju (-, T) — ™|y < CrvA. (6.29)

We remark here that they get an uniform error bound of order vAz in L' which is
independent of the relaxation parameter e.

Relaxation error. The global solution (u¢, v¢) converges to (u, f(v,u)) as € | 0 and the
following error estimate holds:

Ju (-, t) — ul- )]s < Crv/e. (6.30)

This estimate reflects a relaxation error of order .
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In the studies concerning relaxation schemes, some important properties for the
numerical scheme were obtained through investigating the reformulated scheme using the
Riemann Invariants and Maxwellian functions. We mention properties like the L
boundedness, the TVD property and the L! continuity in time. So, just for curiosity, we
present the alternative representation for our equations.

Ri =g =5y Ry= g+ %),
() = g~ ) gy = L 4 10,
Mi(u),z = 1,2

> Mi(u) = u; Z N M;i(w) = f(7, ).

i=1
We see that
u® = R} + RS, v = AR5 — RY).

Then we can rewrite the system (3.1) into a kinetic formulation
1 .
O RS + N0, R = —[M;(u®) — Rj] i=1,2.
€

This formulation can be used in the investigation of convergence rates for the relaxation
model (3.1) as well as for the corresponding relaxing scheme (6.1).

The Riemann Invariants take the form

n,€e

n,€ 1 n U%E . PNLE 1 n j
Ry = 5(% - ]T)aRz,j = 5(% + ]T)
And the Maxwellians
1 f(v(),ul) o Lo f(v(G),u})
Mi(uf) = S (uf = =—=—==); Ma(uf) = 5 (uf + ————).

It follows from the above equations that

n,e __ N,E n,e, MN,E n,€e n,€e

2,307
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6.6 Solution procedure for the hyperbolic problem

6.6.1 Pseudocode

A pseudocode to carry out the numerical process is given next. A solution procedure for
the hyperbolic problem (6.1) may be accomplished like in the following pseudocode. We
need to construct the first order differentiation matrix for the difference schemes. The
pseudocode for Newthons method is used to find the exact solution.

program Hyperbolic relaxation

integer parameter m,N

real parameter h, eps, k, cl, c2

h «— (2%pi)/N

k « (h)?

¢l — (eps/(eps+k))

c2 «— (eps*k)/(eps + k)

x — 0:h:2pi-h)

initial u(z,0) = ug, vo = f(uo)

differentiation matrices M1,M2

ML — [vj1 = il [uj1 — uj]

M2 — [vj—i = 205 + vinl; [uj1 = 205 + w1

loop with time step

output u(n+1)

for nx = 2 to N do

t = t+k

u(n+1) = u* — kM1v" + kAM2u™

v(nt1) = clo™ — epsc2 A2 M 1u" + epsc2AM20™ + 2 f (u(n + 1))

end for

procedure exact solution

function Newton method

o = 0

array (r;)1.n

for kk=1 to N do

To = o + h;
toll = 1e-10
err = toll +1;

while err > toll do
fx0—x(kk)-x0-tf(x0)
dfx0 — (£x0)’

xn= x0-fx0/dfx0
err = abs(xn-x0)
x0 = xn

end while
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output xi(kk)=
end for

6.6.2 Operator splitting for the First order relaxation scheme

We will in this section present another implementation for solving the relaxing scheme
(6.1) for the hyperbolic problem. A solution procedure using operator splitting is
possible. We split into two steps. For the convection step, we have the expressions for the
upwind schemes.

N . At 1 " A

UjH =uj — A:L’[Q( T~ V1) — 5(% 1 2uf + i), (6.31)
" At N n A

Uj+1 = — A—x[?(uﬁl +uj_1) — 2( T — 207 + vl Dl (6.32)

The source step is solved by an implicit method which avoids the time step being
dependent on e.

vt =0 - g(v”+1 = f(r(G), ). (6.33)

J J € J

The implementation of a first order relaxation algorithm to solve (3.1) is carried out
following the framework of |20, 22, 9, 18|, based on Runge-Kutta type splitting method.

Given (uf,v7),

(u*1, vi*!) are computed by
u; = uj, (6.34)
j =V = W = f((), 45), (6.35)
uj = uf — AtD,v; (6.36)
vj =} — AND u (6.37)
uitt = uj, (6.38)
ot = ! (6.39)

We define the following finite differences

Wiy~ Wy
) I
. A (6.40)
J+1/2 j—1/2
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We use a first order upwind scheme to the characteristic variables v + Au in order to
obtain the numerical fluxes in (6.40), by

(v + Au)jp12 = (v + Au)j, (6.41)
(v =Au)jr1/2 = (v = Au)jp. '
To obtain
1 1
Ujt1/2 = 5(% +uji1) — ﬁ(”gﬁrl — ),
(6.42)
Vjt+1/2 = 5(“3‘ + V1) — §(uj+1 — uj).

Using these schemes, neither algebraic equations nor nonlinear source terms can arise.
The first order schemes are stable independent of €, so the choice of At is based only on
the usual CFL-condition,

5 At

A N <1.
A splitting method that possesses the discrete analogue of the continuous asymptotic
limit is able to capture the correct physical behaviours even if the small relaxation time is
not numerically resolved.
We demonstrate that the discretizations above have the correct zero relaxation limit.
The initial data in local equilibrium, ¢ << 1, v(x,0) = (v, u(x,0)).
This is how we define the initial condition to avoid an initial layer where the solution
undergoes sharp change [24].

v — f(v(j),u") =0 at t=1t", (6.43)
v* — f(7(j),u") =0 at the intermediate step, (6.44)
V" — f(y(5), ") = O(At) at t ="t (6.45)

From (6.31) and (6.43), we have

v =0 = <A = ).,
S N (SORTO)] (6.46)
= —g(v* —")

v* =" =0. (6.47)
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Applying this result into (6.31) implies

vt = f(7(j),u") = 0.
We now apply (6.47) in (6.33) and (6.35),

V= F( (), w ) = 0t = f(y(5), u) + O(At). (6.48)
We have that v — u* = "™ — u™ = O(At), so

'Un+1 - f(’y(])’ un—i—l) =v" — f(’ya un) + f(’% un) - f(’% un-i—l) + O(At)’
V= F((G) u) = O(A).

This confirms (6.44) and (6.45).

(6.49)
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Numerical Applications

We present numerical examples calculated by the relaxation schemes presented here. We
will use MATLAB to implement the schemes, and we consider the relaxing schemes and
the corresponding relaxed schemes separately. In the applications, we will apply the
multiplicative form of the flux function, namely () f(u), instead of f(y(z),u),. In the
hyperbolic problems, we choose € = 107% and \ = 1 in all the computations, and we
simplify the discontinuous coefficient to be v(x) = 1. A comparison between the direct
and explicit solving of relaxing scheme (6.1) and the solution procedure using splitting
algorithm is presented. We will also perform some numerical tests with our proposed
scheme (5.3) to approximate convection-diffusion problems. We have also calculated the
L! errors between the exact solutions and the numerical solutions. We consider the error
for the relaxing schemes and the relaxed schemes. In our test, we use a very small
relaxation parameter € such that the contribution from the relaxation error e is assumed
minimal. Therefore, to calculate the error we apply

E=Az) |ue;) —un(ay)|.

Jj=1

7.1 Linear equation

In this section, we first perform accuracy tests on a linear problem. Numerical examples
calculated by the relaxation schemes for the hyperbolic case are presented. The relaxing
scheme (6.1) and the relaxed scheme (6.3). The first example is the advection equation.
We will compare our methods with the exact solution of the problem.

Example 1. Let us consider the scalar linear hyperbolic equation

U + AUy, = 0, (71)

o7
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with the initial condition u(x,0) — sin(x). The exact solution of the problem is given by
u(z,t) = sin(x — at). (7.2)

We use periodic boundary condition with varying number of grid points N. We set
Az = (2m)/N, the length of the space step, in the numerical tests. We computed the
numerical solutions at time t = 0.3, 0.5 and t = 2.

t=0.3, epsilon = 1078

T
— — —relaxing
exact

0.8

0.6

0.4

0.2

Figure 7.1: Advection equation, u; + au, = 0. Number of grid points N — 400. m — 200,
time steps. At = 0.0015, Az = 2 * pi/N. Comparing the relaxing scheme (6.1)
and the exact solution for a — 1. ¢ = 107%. Plot at t — 0.3.

We can see from the figures (7.1-7.6) that numerical solutions computed by the relaxing
scheme (6.1) and the relaxed scheme (6.3) approximate very well the exact solution of the
advection equation. These results demonstrate clearly the numerical convergence of the
relaxing schemes to the corresponding relaxed scheme as € — 0, and the fact that the
solutions of the relaxed scheme presented here converge to the exact solution of our test
problem.

Table 1 and 2 show the computed L'-error of the difference between the numerical and
the exact solution with final time t = 0.2, with varying number of grid points N. The
error decreases for both the schemes but we see that the expected ratio (about 1.15) is
not reached. We suspect that we do not reach the predicted ratio because of the
implementation chosen. Nevertheless, further experiments reveal that the method
converges nicely to the correct solution.
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t=0.5, epsilon = 1078

T
— — —relaxing
exact

Figure 7.2: Advection equation, u; + au, = 0. At = 0.0017, Ax = 2 % pi/N. N = 600, m
= 300. Comparing the relaxing scheme (6.1) and the exact solution. € = 1078,

A=1,a=1. Plot at t = 0.5.

t=2, epsilon = 1078

0.8

0.6

0.4

0.2

T
— — —relaxing
exact

Figure 7.3: Advection equation, u; + au, = 0. At = 0.004, Az = 2% pi/N. N = 1000, m =
500. cfl =0.6366. Comparing the relaxing scheme (6.1) and the exact solution.

e=10"% A=1,a—=1. Plot at t = 2.



60 Numerical Applications

T
— — — Relaxed
exact

0.8

0.6

041

0.2

Figure 7.4: Advection equation, u; + au, = 0. N = 400, m — 200. At = 0.0015, Ax =
2 % pi/N. Comparing the relaxed scheme (6.3) with the exact solution. a — 1,
plot at t= 0.3.

T
— — — Relaxed
exact

Figure 7.5: Advection equation, u; + au, = 0. At = 0.0017, Az = 2% pi/N. N = 600, m =
300. Comparing the relaxed scheme (6.3) and the exact solution. A =1, a =
1 and cfl — 0.6366. Plot at t — 0.5.
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t=2

T
— — — Relaxed
exact

0.8

0.6

0.4

0.2

Figure 7.6: Advection equation, u; + au, = 0. At = 0.004, Az = 2% pi/N. N = 1000, m =
500. Comparing the relaxed scheme (6.3) and the exact solution. A = 1, a =
1. Plot at t = 2.

N | L'-error | Ratio
16 0.1530
32 0.0778 | 1.9681
64 0.0391 | 1.9909
128 | 0.0196 | 1.9962
256 | 0.0098 | 1.9996
512 | 0.0049 | 2.0029

Table 1. Discretization error in L'-norms for the linear advection problem (7.1) at t=0.2
using relazing schemes (6.1).
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N | L'-error | Ratio
16 0.1530
32 0.0778 | 1.9681
64 0.0391 | 1.9909
128 | 0.0196 | 1.9962
256 | 0.0098 | 1.9996
512 | 0.0049 | 2.0029

Table 2. Discretization error in L'-norms for the linear advection problem (7.1) at t=0.2
using relazed schemes (6.3).

7.2 Inviscid Burgers equation

Now we will apply the relaxing scheme (6.1) and the relaxed scheme (6.3) to the inviscid
Burgers equation.

Example 2. In this example we approximate solutions to the inviscid Burgers equation,
2

U
up + (7)93 =0. (7.3)
We start with the smooth initial data
u(z,0) = 0.5+ sin(x), x € 0,2n]. (7.4)

and we use periodic boundary conditions. We recall that the unique entropy solution of
(7.3)-(7.4) is smooth up to the critical time ¢, = 1. We perform some numerical tests
with our relaxing schemes (6.1) and the corresponding relaxed scheme (6.3). We will also
present a comparison where we solve the same problem with the first order split method
(6.34). We apply Newton’s method to find the exact solution for the Burgers equation.

In figures (7.7-7.11), we present the approximate solutions at the pre-shock times when
the solution is still smooth. We choose € = 107, and plot at various times. As expected
all the schemes capture well the correct behaviour given by the inviscid Burgers equation
up to the critical time t — 1. To see how fast the numerical solution approximate the
exact when we increase the grid points, a small time step is used, At = 6 * 107°. The
L'-error behaviour is shown in Table 3 for the relaxation scheme (6.1) and in Table 5 for
the split relaxation method (6.34)-(6.39). Again we see that the error decreases but the
predicted ratio is only partially reached in the table. In any case, we point out that the
relaxed scheme proposed is capable of reaching the same accuracy as the relaxing scheme
for this problem, as we can see in Table 4. The L'-error is identical for the methods. We
see also that the error is reduced by increasing the number of grid points, thus reducing
the time step.

We present here a test with the first order splitting algorithm to see if the splitting
indicates a certain advantage compared to the investigated relaxing schemes. We observe
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t=0.2, epsilon = 108
1.5

T
— — —relaxing
exact

0.5p

Figure 7.7: Numerical solution of inviscid Burgers equation ut+(§)m = (0 using the relaxing
scheme (6.1), with N=400 space steps and number of timesteps m = 100,
Az =2xpi/N, At = 0.002. Plot at t = 0.2 with e = 1075,

t=0.5, epsilon = 1078
1.5 T T

T
— — —relaxing
exact

05F

Figure 7.8: Numerical solution of Burgers equation ut+(“72)m = ( using the relaxing scheme
(6.1), with N=800 grid points and m = 200 time steps. Ax = 2 x* pi/N,
At = 0.0025. Plot at t = 0.5 with e = 1078,
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t=1, epsilon = 1078
T T

T
— — —relaxing
exact

Figure 7.9: Numerical solution of Burgers equation ut+(“72)m = ( using the relaxing scheme
(6.1), with N=800 grid points and m = 200 time steps. Az = 2 * pi/N,
At = 0.005. Plot at t — 1 with e = 10~® and cfl= 0.6366.

t=0.5
15

T
— — —relaxed
exact

0.5F

Figure 7.10: Numerical solution of inviscid Burgers equation u; + (“;)x = 0 using the
relaxed scheme (6.3), with N=800 space steps and m=200 time steps. Ax =
2% pi/N, At = 0.0025, cfl= 0.3183. Plot at t = 0.5.
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L'-error | Ratio
0.4577
0.2971 | 1.5407
16 0.1578 | 1.8828
32 0.0795 | 1.9843
64 0.0398 | 1.9984

128 | 0.0199 | 1.9993

Table 3. Discretization error in L'-norms for the inviscid Burgers
equation (7.3) at t—0.2 using relazing schemes (6.1).

0.4577
0.2971 | 1.5407
16 | 0.1578 | 1.8828
32 | 0.0795 | 1.9843
64 | 0.0398 | 1.9984
128 | 0.0199 | 1.9993

N | L'-error | Ratio
4
8

Table 4. Discretization error in L'-norms for the inviscid Burgers
equation (7.3) at t—0.2 using relazed scheme (6.1).

L'-error | Ratio
0.4577
0.2971 | 1.5407
0.1578 | 1.8825
0.0796 | 1.9838
0.0398 | 1.9973

128 | 0.0199 | 1.9972

RS w ez

Table 5. Discretization error in L'-norms for the inviscid Burgers
equation (7.3) at t—0.2 using split method (6.54).
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that despite the splitting error, the method produces the same results as the relaxing
scheme for this problem. Our computational results suggest that the schemes converge
with appropriate rate even if some combinations in the implementation do not reach the
predicted error reduction in the tables. Other choices can be made in the discretizations
discussed to sharpen the results. Our idea is only to carry out the analysis and to
illustrate the basic ideas. We can remark that all the results with € = 107 can almost
be reproduced with about equal quality by using the relaxed schemes. Thus for strictly
hyperbolic systems and for the purpose of just solving the conservation laws, one can just
use the relaxed schemes, which are easier to implement with more efficiency and much
less memory. This concludes also that the relaxing schemes have the correct zero
relaxation limit mentioned in the analysis.

7.3 Convection-Diffusion Equation

In this section we consider a numerical example calculated by our proposed Relaxation
Schemes (5.3) when the diffusion term B(u) is incorporated, the convection-diffusion
problem.

Example 3. Now we test the relaxing schemes (5.3) for the convection-diffusion equation

splitl
exact

Figure 7.11: Numerical solution of inviscid Burgers equation wu; + (“;)z = 0 using the
first order split method (6.34), with 200 time steps and N = 800 grid points.
Az = 2% pi/N, At = 0.0025, ¢ = 10, Plot at t — 0.5 with cfl = 0.3183.
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on the viscid Burger equation
Uy + Uy = Algy, a > 0. (7.5)

It was first introduced by J.M.Burgers as the simplest model for the differential equations
of fluid flow. To find the explicit solution for a > 0, see e.g. the paper by Eberhard Hopf
(1950) on pure and applied mathematics, treating the partial differential equation. We
introduce a new dependent variable q(x,t) into Burgers equation that solves the heat
equation ¢ = aq.;.

For t > 0, a is positive and the function

¢ (z, 1)
q(z,1)

u(x,t) = —2a

solves the viscid Burger equation. More precisely stated: If u solves (7.5) in an open
rectangle R of the x,t-plane and if u, u,, u,, are continuous in R then there exists a
positive function q that solves the heat equation in R and for which ¢, q,, ¢, are
continuous in R.

In this test we apply the function ¢(z,t) = e 'sin(x) + 2 and a = 1, so that

u(x,t) = —2% is an exact solution. We choose the initial data to be

u(z,0) = ug(z) = 72225, We set y(z) = 1 and the flux function is f(u) = ju®. We use

the definition to initiate v(x,t), v(x,0) = v(x)f(uo(x)). We choose € = 0.1 The boundary
conditions are chosen to be periodic.

The numerical solutions computed by our proposed relaxation scheme for
convection-diffusion equation for different number of grid points are presented in figures
(7.12-7.15). These results demonstrate the performance of our scheme in the rarefied
regime where ¢ = 0.1, ¢ > Ax. The numerical solutions match the exact solution very well
and capture the parabolic behaviour when we use very fine spatial grids. Visually, there is
a good agreement in the figures, but we experienced at t = 1 that the numerical solution
computed by the scheme is sensitive to the choice of At and Ax when we keep ¢ = 0.1.
To see if this behaviour persists and to see how the error evaluates, we measure the L'
error between the exact solution and the approximated one at time t = 3 in Table 6.



68 Numerical Applications

t=0.1

15

T
— — — Diffusive Sc
exact

Figure 7.12: Numerical solution of viscid Burgers equation u; + (%z)x = Uy, using the
diffusive relaxing scheme (5.3), Az = 0.009. At = 0.0002. ¢ = 0.1. Plot at t
= 0.1.
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Figure 7.13:

0.8

T
— — — Diffusive Sc
exact

0.6

0.4

0.2

Numerical solution of viscid Burgers equation u; + ("72)90 = U, using the
diffusive relaxing scheme (5.3), Az = 0.003. At = 0.0001. ¢ = 0.1. Plot at t
= 0.3.
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t=0.5
0.8

— — — Diffusive Sc

exact

Figure 7.14: Numerical solution of viscid Burgers equation u; + (%z)x = Uy, using the

diffusive relaxing scheme (5.3), with Az = 0.003. At = 0.0001. ¢ = 0.1. Plot
at t — 0.5.

0.4

T
— — — Diffusive Sc
exact

0.3

0.2

0.1f

Figure 7.15: Numerical solution of viscid Burgers equation wu; + (“72)90 = U, using the
diffusive relaxing scheme (5.3), with Az = 0.006. At = 0.00025. ¢ = 0.1. Plot
at t = 1.
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N | L'-error | Ratio
40 0.1792
80 0.1375 1.30
160 0.0897 1.53
320 0.0534 1.68
640 0.0309 1.72
1280 | 0.0184 1.67

Table 6. The computed L' norms of the difference between the numerical and the ezact
solution of the viscid Burger equation at final time t = 3. We computed the numerical
solution with the diffusive relaxation scheme (5.3).



Chapter 8

Summary and Conclusion

In this thesis a class of numerical schemes based on local relaxation approximation for
hyperbolic and parabolic equations have been introduced and analysed. The main feature
of this class of schemes is its simplicity and generality. Both numerical experiments and
theoretical analysis indicate that the relaxation schemes proposed have great deal of
advantages.

For these methods, our aim have just been to concentrate on developing the basic
framework. We have analysed both from a theoretical and computational point of view
the relaxation schemes to approximate the nonlinear degenerate parabolic equations, and
we have incorporated the closely related hyperbolic conservation laws.

In the hyperbolic case, when there is no diffusion, we considered underresolved numerical
schemes with a discontinuous coefficient and the corresponding relaxed scheme. The first
order upwind approximation to the hyperbolic relaxation system was tested to illustrate
the accuracy and the good properties. Our conclusion is that the relaxation schemes
seem to give acceptable results for conservation laws even if we simplify the discontinuous
coefficient to a constant in the computations. Inspired from recent advances in
developing high order relaxed schemes, a theoretical convergence analysis for the relaxed
scheme is presented. The results indicate that the relaxed schemes obtained in the limit
€ — 0 provide a promising class of new schemes. We showed that for hyperbolic systems,
one can just use the relaxed schemes instead of the relaxing version.

In the parabolic case, we extended the approach to nonlinear parabolic equations, and we
have introduced a way of constructing numerical schemes for equations in the diffusive
regime. In our first approach, we concentrate on developing the basic ideas when we
propose a new form of the relaxation scheme based on the same idea used on hyperbolic
conservation laws since our approach has the same form. Since our goal is just to define
the concept, more experiments need to be done, and comparison with other methods
have to be made. By using suitable discratization in space and time, we were able to
produce some numerical results which indicate the potential of the schemes.

We face additional difficulties here due to the stiff convection part combined with a

72
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discontinuous coefficient in the source term. A reformulation of the problem is tried to
see if we can improve the results. The analysis for operator splitting is carried out to see
if a higher order of accuracy can be achieved. When applying the splitting procedure, we
want to point out a lack of accuracy in the v"*!-component in the convection step. So
one need to investigate further the choice of equilibrium fluxes to rectify the problem and
rigorous theoretical justification to analyse the behaviour in the diffusive regime. Other
ideas could also be incorporated to give more delicate results, such as a different choice of
the parameter v that depend on the discretization parameters, or adaptive mesh
refinement and shock tracking techniques.

Our conclusion is that it is not obvious that this splitting provides any simplification or
improvement to the numerical solution. However, based on experiments with other
splitting methods, we believe this basic framework can be competitive to other methods,
easier to implement and no Riemann solvers are necessary.

8.1 Further work

After finishing this thesis, there are still some open questions and room for many further
developments.

The prospects in the numerical experiments and theoretical analysis are very
encouraging. The relaxation formulation can be used as a platform for developing
schemes for hyperbolic conservation laws. They are simpler compared to the existing
approaches and are attractive for further research. One possible future research is to
design schemes that extends the relaxing schemes with a discontinuous coefficient to
higher order schemes and more complicated systems, to demonstrate that the accuracy of
relaxations schemes can be increased. An interesting aspect is to construct simple
alternative higher order relaxed schemes with applications to more general
hyperbolic-parabolic convection-diffusion equations.

When solving the parabolic problem, we focused on the stiff regime, e << 1. It is
desirable to develop a class of numerical schemes that can work with a uniform accuracy
for all range of €, an accurate and stable discratization for a possibly degenerate
convection-diffusion equation with the discontinuous coefficient and the corresponding
relaxed schemes.

We would like to investigate further the ability of the proposed splitting to capture
shocks with high resolution and avoiding solving nonlinear algebraic systems, but still
maintaining all the nice properties of those constructed earlier.
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