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1Introdu
tionThe theory of partial di�erential equations (PDE) is a subje
t that has found its way intoall bran
hes of s
ien
e and engineering due to its wide range of appli
ations. Numeri
al
al
ulation is 
ommonpla
e today in �elds where it was virtually unknown before 1950.Some 
onsider the 
elebrated 1928 paper of Courant, Friedri
hs and Lewy as the birthdateof the modern theory of numeri
al methods for partial di�erential equations. The alge-brai
 solution of �nite di�eren
e approximations is best a

omplished by some iterationpro
edure. Finite di�eren
e approximations for derivatives were already in use by Euler in1768 and various s
hemes have been proposed to a

elerate the 
onvergen
e of the iteration.A

urate modelling of the intera
tion between 
onve
tive and di�usive pro
esses is a 
hal-lenging task in the numeri
al approximation of PDE. This is partly be
ause of the problemsthemselves, their great variety and widespread o

urren
e. Mathemati
al models that in-volve a 
ombination of 
onve
tive and di�usive pro
esses are among the area of primeresear
h interest and widespread in all of s
ien
e, engineering and other �elds where math-emati
al modelling is important. Very often the dimensionless parameter that measures therelative strength of the di�usion is quite small, so one often meets with situations wherethin boundary and interior layers are present and singular perturbation problems arise.There are many physi
al systems in whi
h paraboli
 equations are 
oupled to hyperboli
equations so that two (or more) transport phenomena must be 
al
ulated simultaneously.Problems whi
h in
orporate ideal �uid motion and some other transport pro
ess, su
h asheat transfer, have mathemati
al models whi
h are 
oupled equations of mixed paraboli
-hyperboli
 type. In all su
h 
ir
umstan
es di�
ulties will be experien
ed with standardnumeri
al approximations. Thus a very large literature has built up over the last fewde
ades on a variety of te
hniques for analysing and over
oming these di�
ulties.Dis
ontinuous solutions do not satisfy the partial di�erential equation in the 
lassi
al senseat all points, sin
e the derivatives are not de�ned at dis
ontinuities. We have to de�newhat we mean by a solution to a 
onservation law in this 
ase.Sin
e the partial di�erential equation 
ontinues to hold ex
ept at dis
ontinuities, we sup-ply the di�erential equations by additional �jump 
ondition� that must be satis�ed a
rossdis
ontinuities. We may derive additional 
onditions using the integral form of the 
onser-vation law sin
e the integral form 
ontinues to be valid even for dis
ontinuous solutions.Unfortunately integral forms are more di�
ult to work with than di�erential equations,espe
ially in terms of dis
retizations s
hemes. Another mathemati
al di�
ulty is possiblenonuniqueness of solutions . Often there is more than one solution to the 
onservationlaw with the same initial data. This is a 
onsequen
e due to the physi
al e�e
ts ignoredbe
ause equations are only simpli�ed models of reality. To obtain unique and hopefullyphysi
al 
orre
t solutions, we have to supply an additional 
ondition. This so-
alled en-tropy 
ondition will help us to pi
k the 
orre
t so-
alled weak solution to the originalpartial di�erential equations. In general it is not possible to derive exa
t solutions to theseequations, so we need to devise and study numeri
al methods for their approximate solu-



2tion. The general theory of numeri
al methods for nonlinear PDEs applies in parti
ularto systems of 
onservation laws, but there are several reasons for studying this parti
ular
lass of equations. Many pra
ti
al problems in s
ien
e and engineering involve 
onservedquantities and lead to PDEs of this 
lass. As noted above, there are spe
ial di�
ultieslike sho
k formation asso
iated with these time dependent systems of nonlinear partialdi�erential equations. When we attempt to 
al
ulate weak solutions numeri
ally, we fa
eseveral problems. Most important, the dis
retization s
hemes for the PDE must be ableto handle dis
ontinuities in the solution. Ideally we would like to have a simple numeri-
al method produ
ing sharp approximations to dis
ontinuous solutions without ex
essivesmearing. However, simple methods like the �rst order upwind s
hemes typi
ally produ
eex
essive numeri
al smearing.Relaxation approximation to nonlinear partial di�erential equations have been introdu
edon the basis of the repla
ement of the equations with a suitable semilinear hyperboli
 sys-tem with sti� relaxation terms. Relaxation s
hemes are a 
lass of nonos
illatory numeri
als
hemes for systems of 
onservation laws proposed by Jin and Xin [22℄. They are moti-vated by relaxation models for �ow whi
h are not in thermodynami
 equilibrium, i.e. they
onstitute more general and more a

urate models of 
ertain physi
al phenomena. Themain advantage of numeri
ally solving the relaxation model over the original 
onservationlaws lies in the simple stru
ture of the linear 
hara
teristi
 �elds and the lo
alised lowerorder term. In parti
ular, the semilinear nature of the relaxation system gives a new wayto develop numeri
al s
hemes that are simple, general and Riemann solver free. The Rie-mann solver is more a

urate, but the pri
e to pay is that the numeri
al methods be
ome
ompli
ated to implement and time-
onsuming. The approa
h is inspired by relaxations
hemes where the nonlinearity inside the equation is repla
ed by a semilinearity. Thisredu
tion is 
arried out in order to obtain numeri
al s
hemes that are easy to implement,also for more general and 
omplex problems.In Chapter 1 we start out by looking at the Initial Value Problem for a one-dimensionals
alar nonlinear degenerate paraboli
 
onve
tion-di�usion equation. We introdu
e themixed paraboli
-hyperboli
 problem before moving to the numeri
al methods we will useto approximate the Initial Value problem. The 
hapter in
ludes also some basi
 de�nitionsand notations, assumptions on the data of the paraboli
 
onve
tion-di�usion equation. InChapter 2 we establish the existen
e of weak solutions. Chapter 3 presents the RelaxationS
hemes for both the pure hyperboli
 
ase and the di�usion equation. In Chapter 4 wederive L∞ and L1 estimates on the approximate solutions of the relaxation system and westate the Entropy solutions. Then we develop the numeri
al s
hemes in Chapter 5, while a
onvergen
e result is proved in Chapter 6. In Chapter 7 we present numeri
al experiments.Finally, we summarise the 
on
lusions and look at possible improvements and further work.



Chapter 1Initial Value Problem
The aim of this work is to analyse from both a theoreti
al and 
omputational point of viewthe relaxation s
hemes to approximate the Initial Value problem for a one-dimensionals
alar nonlinear degenerate paraboli
 
onve
tion-di�usion equations of the type

{

ut + f(γ(x), u)x = B(u)xx, (x, t) ∈ Π
T

= R× (0,T).

u(x, 0) = u0(x) x ∈ R.
(1.1)The spe
ial aspe
t for this problem is the 
ombination between the 
onve
tive part and thedi�usion part B(u)xx. The nonlinear 
onve
tive �ux fun
tion depends expli
itly on spatiallo
ation through the 
oe�
ient γ(x), that may be dis
ontinuous. The di�usion fun
tion

B(u)xx is allowed to be strongly degenerate, in the sense that B′(·) ≥ 0.When we list the assumptions for the problem in se
tion (1.3), we will see that the 
loselyrelated hyperboli
 
onservation laws with a dis
ontinuous 
oe�
ient will also be in
luded.The purely 
onve
tive version of (1.1) is obtained when B′(u) ≡ 0, whi
h means that thedi�usion part degenerates, i.e. B'(u) may vanish for some values for u.
ut + f(γ(x), u)x = 0. (1.2)Paraboli
 Conve
tion-Di�usion equations (1.1) are of great importan
e sin
e they govern avariety of physi
al phenomena. To name a few of the interesting problems of the type (1.1),we mention �uid me
hani
s, �ow in porous media, sedimentation-
onsolidation pro
esses.A physi
al model 
orresponding to the 
onve
tive version of (1.1) is the model of 
artra�
 �ow in a highway. The spatially varying 
oe�
ient γ 
orresponds to 
hanging road
onditions. We mention also appli
ations modeling the displa
ement of oil in a reservoir bywater and polymer. Multiphase �ow problems in porous materials give rise to somewhatdi�
ult systems of 
onservation laws. One important appli
ation area is se
ondary oilre
overy, in whi
h water is pumped down one well in an e�ort to for
e more oil out of3



4 Initial Value Problemother wells, see [25℄. The 
onve
tion-di�usion equations also arise in front propagation and�nan
ial modeling.Computation of 
ertain physi
al problems, for example a �uid �ow, requires numeri
alresolution of the small s
ales in order to tra
k the underlying physi
al properties in greatdetail. This is rather demanding and often 
annot be done satisfa
torily. Thus one wouldbe satis�ed if 
riti
al properties are 
aptured (at the ma
ros
opi
 level). In su
h a 
ase,it is desirable to design underresolved numeri
al methods. We aim to develop s
hemesthat allow the use of underresolved dis
retization, ∆t >> ǫ. We will develop numeri
almethods that are suitable for underresolved 
al
ulation, meaning that one 
an still 
apturethe ma
ros
opi
 physi
al behaviour without numeri
ally solving the small s
ale by usingmesh size and time step mu
h larger than the small s
ale parameter. Su
h a solution isreferred to as the underresolved solution.Using the same notations as Jin and Xin [22℄, we 
all the dis
retization of the Relaxationsystems Relaxing S
hemes, whi
h depends on ǫ and the arti�
ial variable v. We also derivezero relaxation limit of these Relaxing S
hemes and 
all the limiting s
hemes the RelaxedS
hemes, obtained in the limit ǫ → 0. By applying the Chapman-Enskog expansion tothe relaxing s
hemes (for �xed grids and ǫ → 0) we 
an also formally derive the relaxeds
hemes that are the leading order approximation of the relaxing s
hemes in the small ǫlimit. These relaxed s
hemes are 
onsistent and stable dis
retizations of the original 
on-servation laws. Here by Relaxation S
hemes we indi
ate both the relaxing S
hemes andthe relaxed s
hemes. When ǫ is very small the relaxing s
hemes and the relaxed s
hemesprodu
e essentially the same results.We will propose a di�usive relaxation approximation for the nonlinear paraboli
 di�usiveequation, based on the same idea used on hyperboli
 
onservation laws. A splitting methodapproa
h to the problem will also be 
onsidered. Several relaxation approximation to par-tial di�erential equations have been re
ently proposed. We have seen earlier numeri
alapproa
hes that work for relaxation systems where both the relaxation term and the 
on-ve
tion term are sti�, s
hemes that work independently on ǫ.The idea in this work is to study how these di�usive relaxation s
hemes perform when weuse them on a mixed 
onve
tion-di�usion problem where the �ux fun
tion has a dis
ontin-uous 
oe�
ient and the di�usion part may degenerate, whi
h then 
hanges the problem toa purely hyperboli
 
ase. We will 
on
entrate the study on the sti� regime for the system,where ǫ << 1, and the �ux fun
tion is 
onvex. We will also propose the relaxed s
hemesfor these numeri
al approximations and 
ompare their ability to 
apture the paraboli
 be-haviour.In the hyperboli
 
ase, we will study a di�erent approa
h proving the 
onvergen
e ofthe approximate solution u(x,t). We attempt to establish 
onvergen
e of the relaxationapproximation (3.1) using the Singular Mapping approa
h. In the literatures analysingnumeri
al approximations and in some of the papers 
ited in this work, 
onvergen
e ofnumeri
al methods for 
onservation laws with dis
ontinuous 
oe�
ients has been estab-



1.1 Basi
 De�nitions and Notation 5lished by the singular mapping approa
h and 
ompensated 
ompa
tness method. Hereinwe use instead the singular mapping to study the behaviour of the relaxed s
heme sin
ethe leading order behaviour of the relaxing s
hemes is governed by the relaxed s
hemes as
ǫ→ 0+. We will show that the pie
ewise 
onstant fun
tion 
onstru
ted by the solution ofthe relaxed s
heme 
onverges to the entropy solution of the problem.1.1 Basi
 De�nitions and NotationIn this se
tion we de�ne notations that will be used in the text and we introdu
e somede�nitions.supp f: The support of a 
ontinuous fun
tion f(x) de�ned on Rn is the 
losure of theset of points where f(x) is nonzero: supp f = x ∈Rn : f(x) 6= 0.A set in Rn is bounded if it is 
ontained in a ball BR(0) with R su�
iently large. The
losed bounded sets in Rn are the 
ompa
t sets. If supp f is bounded, we say f has 
om-pa
t support and denote su
h fun
tions by C0(R

n).sup: The supremum norm: ‖v‖∞ = sup|v(x)|.We have a domain Ω ⊂ Rn:
L1(Ω) : A fun
tion f de�ned on a domain Ω is integrable if ∫

Ω
|f(x)|x is de�ned and �nite.We denote all su
h fun
tions by L1(Ω).

L1
loc(Ω): When we 
onsider a larger spa
e. Fun
tions whi
h are "lo
ally" integrable: In-tegrable on any 
ompa
t subset of Ω, but not ne
essarily integrable at the boundary of Ωor at in�nity.

L∞(Ω): measurable real valued fun
tions whi
h are bounded. C(Ω) and C1(Ω) : Wedenote the 
ontinuous fun
tions on Ω by C(Ω), and those whose �rst order derivatives arealso 
ontinuous by C1(Ω). Similarly Ck(Ω) denotes the fun
tions having all derivativesup to the order k 
ontinuous on Ω.Lips
hitz 
ontinuity : We use this property when we require a 
ertain amount of smooth-ness in the fun
tion. A fun
tion f(u, t) is Lips
hitz 
ontinuous in u over some range of tand u, if there exists some 
onstant L>0 so that
|f(u, t)− f(u∗, t)| ≤ L|u− u∗|for all u and u∗ .This is slightly stronger than mere 
ontinuity, whi
h only requires that

|f(u)− f(u∗)| → 0 as u→ u∗.If f(u,t) is di�erentiable with respe
t to u and the derivative fu = ∂f/∂u is bounded thenwe 
an take L = max|fu(u, t)|.Lips
hitz 
onstant: The size of the Lips
hitz 
onstant is important when we intend tosolve the problem numeri
ally sin
e our numeri
al approximation will almost 
ertainly pro-du
e a value un at time tn that is not exa
tly equal to the true value u(tn). Hen
e we are



6 Initial Value Problemon a di�erent 
urve than the true solution.The Lips
hitz 
onstant gives an indi
ation of whether solution 
urves that start 
lose to-gether 
an be expe
ted to stay 
lose together or to diverge rapidly.Nonlinear Stability.When we attempt to solve nonlinear 
onservation laws numeri
allywe run into additional di�
ulties not seen in the linear equation. Moreover, the nonlin-earity makes everything harder to analyse. For nonlinear problems the method might be�nonlinearly unstable�, i.e., unstable on the nonlinear problem even though linearised ver-sions appear to be stable. Often os
illations will trigger nonlinear instabilities. In order toprove a 
onvergen
e result we must de�ne an appropriate notion of stability. Convergen
enotions and dis
ussions done by Lax and Wendro� suggest that we 
an hope to 
orre
tlyapproximate dis
ontinuous weak solutions to the 
onservation law by using a 
onservativemethod. The theorem does not guarantee 
onvergen
e, nontheless, this is a very powerfuland important theorem, for it says that we 
an have 
on�den
e in solutions we 
ompute.Theorem 1.1.1. (LAX-WENDROFF) Consider a sequen
e of grids indexed by l= 1,2,...,with mesh parameters kl, hl → 0 as l →∞. Let Ul(x, t) denote the numeri
al approximation
omputed with a 
onsistent and 
onservative method on the lth grid. Suppose that Ul
onverges to a fun
tion u as l → ∞. Then u(x,t) is a weak solution of the 
onservationlaw.The above theorem suggests that we 
an hope to 
orre
tly approximate dis
ontinuousweak solutions to the 
onservative law by using a 
onservative method. Lax and Wendro�proved that this is true, at least in the sense that if we 
onverge to some fun
tion u(x,t)as the grid is re�ned, through some sequen
e kl,hl → 0, then this fun
tion will in fa
t bea weak solution of the 
onservation law. But the Lax-Wendro� [10℄ theorem does not sayanything about whether the method 
onverges, only that if a sequen
e of approximations
onverges then the limit is a weak solution. To guarantee 
onvergen
e, we need some formof stability.The Lax Equivalen
e Theorem 
an no longer be used to prove 
onvergen
e sin
e that ap-proa
h relies heavily on linearity. For nonlinear problems the primary tools used to prove
onvergen
e is 
ompa
tness. We will de�ne this 
on
ept and indi
ate its use for our goalsof de�ning stability and proving 
onvergen
e.In relation to our goals of de�ning stability and proving 
onvergen
e, we will use the impor-tant property that 
ompa
tness guarantees the existen
e of 
onvergent subsequen
es and
ombine it with the Lax-Wendro� Theorem. To get 
onvergen
e of the whole sequen
ein question and not just the subsequen
e, we need to 
ombine the suitable 
ompa
tnessargument with a uniqueness result.If K is a 
ompa
t set in some normed spa
e, then any in�nite sequen
e of elements of
K,{k1, k2, k3, . . .} 
ontains a subsequen
e whi
h 
onverges to an element of k. This meansthat from the original sequen
e we 
an, by sele
ting 
ertain elements from this sequen
e,
onstru
t a new in�nite sequen
e



1.1 Basi
 De�nitions and Notation 7
{ki1, ki2, ki3, . . .} (i1 < i2 < i3 < . . .), whi
h 
onverges to some element k ∈ K.

‖ kij − k ‖→ 0 when j →∞.Total Variation Stability.Let Uk denote the numeri
al approximation generated by a numeri
al method in 
onserva-tive form. We measure the global error in our approximation by the distan
e from Uk(x, t)to the set of all weak solutions
W = {ω:ω(x, t) is a weak solution to the 
onservation law}. To measure this distan
e weneed a norm, for example the 1-norm over the �nite time interval [0,T℄. The global erroris then de�ned by

dist(Uk,W) = infω∈W‖Uk − ω‖1,T .If Uk is generated by a numeri
al method in 
onservation form, 
onsistent with the 
onser-vation law, and if the method is, stable in some appropriate sense, then dist(Uk,W)→ 0as k → 0. In situations where there is a unique physi
ally relevant weak solution satisfyingsome entropy 
ondition, we would show 
onvergen
e to this parti
ular weak solution.In order to obtain a 
ompa
t set in L1, we put a bound on the total variation of thefun
tions.The set
{v ∈ L, TV (v) ≤ R, and supp(v) ⊂ [−M,M ]}is a 
ompa
t set, M,R > 0, and any sequen
e of fun
tions with uniformly bounded totalvariation and support must 
ontain 
onvergent subsequen
es.TV denotes the Total Variation Fun
tion. Per de�nition,
TV (v) = sup

N∑

j=1

|v(xj)− v(xj−1)|where the supremum is taken over all subdivisions of the real line −∞ = x0 < x1 < ... <
xN = ∞. For the total variation to be �nite v must approa
h 
onstant values v±∞ as
x→ ±∞.Sin
e the numeri
al approximations Uk are fun
tions of x and t, we need to bound theTotal Variation in both spa
e and time. De�ning the total variation over the time interval[0,T℄ by
TVT (u) = lim

ǫ→0
sup

1

ǫ

∫ T

0

∫ ∞

−∞
|u(x+ ǫ, t)− u(x, t)|dxdt+lim

ǫ→0
sup

1

ǫ

∫ T

0

∫ ∞

−∞
|u(x, t+ ǫ)− u(x, t)|dxdt.



8 Initial Value ProblemThe set K de�ned above 
an be shown to be a 
ompa
t set in L1,T,
K = u ∈ L1,T : TVT (u) ≤ R and (u(·, t)) ⊂ [−M,M ] ∀t ∈ [0, T ]. (1.3)We will say that a numeri
al method is total variation stable, TV-stable, if all the ap-proximations Uk for k < ko lie in some �xed set of the form (1.3). If Uk is generatedby a numeri
al method in 
onservation form with a Lips
hitz 
ontinuous numeri
al �ux,
onsistent with a 
onservation law, then the method is TV-stable if TV (Un) is uniformlybounded for all n, k with k < ko, nk ≤ T.Total Variation Stability guarantees 
onvergen
e in the sense that dist(Uk,W) → 0 as

k → 0. One way to ensure TV-stability is to require that the total variation be nonin-
reasing as time evolves, so that the total variation at any time is uniformly bounded bythe total variation of the initial data.1.2 Assumptions on the data of the problem (1.1)Let us detail the assumptions that we need to impose on the data of the the problem (1.1).For the nonlinear degenerate paraboli
 
onve
tion-di�usion initial value problem we keeptime T > 0 �xed. u(x, t) is the s
alar unknown fun
tion that is sought, and the �uxfun
tion f(γ,u), the 
oe�
ient γ(x), the di�usion fun
tion B and the initial fun
tion u0are given fun
tions to be detailed.For the 
oe�
ient γ, we assume that
γ(x) ∈ [γ, γ] ∀x ∈ R, for some 
onstants γ, γ, |γ(x)| > 0 a.e on R.We assume that γ belongs to the Bounded Variation of R, denoted BV(R), and alsoallowed to be dis
ontinuous. The 
onve
tion part of (1.1) depends expli
itly on the spatiallo
ation through γ(x) and this dependen
y may be dis
ontinuous. The 
oe�
ient γ(x)varies in spa
e and is assumed to be pie
ewise C1 with �nitely many jumps in γ and γ′,lo
ated in ζ1 < ζ2 < . . . < ζM.For the 
onve
tive �ux fun
tion f, we assume that
f : R→ R; f(γ, 0) = f0 ∈ R ∀γ, f(γ, 1) = f1 ∈ R ∀γ. (1.4)We look in the interval [0,1℄ and the purpose of this assumption is to guarantee that asolution initially in the interval [0,1℄ remains in [0,1℄ for all subsequent times. Assume thatf is Lips
hitz 
ontinuous in ea
h variable:
|f(γ, u)− f(γ, v)| ≤ ‖fu‖|u− v| ∀γ, ∀u, v ∈ U.For a 
ompa
t set U. The solution u is essentially bounded, providing us with
u(x, t) ∈ U, ∀(x, t) ∈ ΠT , f ∈ Lip

(

[γ, γ]× [0, 1]
)

.



1.2 Assumptions on the data of the problem (1.1) 9With this assumption the partial derivatives fγ, fu, exist almost everywhere.
‖fu(γ, u)‖ > 0, ‖fγ(γ, u)‖ > 0 for almost all u ∈ [0, 1],and ‖fγ‖∞ and ‖fu‖∞ are Lips
hitz 
onstants of f w.r.t γ and u. Let
f+

u (γ, u) = max(0, fu(γ, u)), f−
u (γ, u) = min(0, fu(γ, u)).We require the te
hni
al assumption that fu is Lips
hitz 
ontinuous as a fun
tion of γ,with Lips
hitz 
onstant Luγ .It follows then that f+

u and f−u are also Lips
hitz 
ontinuous in γ with the same Lips
hitz
onstant. Lips
hitz 
onstants measure how mu
h �ux fun
tions 
hange. We adopt theassumptions from [14, 15℄.Assume that for ea
h γ ∈ [γ, γ], there exist a unique maximum u∗(γ) ∈ [0, 1] su
h that
f(γ, .) is stri
tly in
reasing for u < u∗(γ) and f(γ, .) is stri
tly de
reasing for u > u∗(γ).We assume that the di�usion fun
tion B belongs to Lip([0, 1]) with Lips
hitz 
onstant
‖B′‖.The degenerate paraboli
ity 
ondition holds:

B(·) ∈ C2[0, 1]; B(·) is nonde
reasing with B(0) = 0.This 
ondition is why (1.1) is refered to as a mixed hyperboli
-paraboli
 problem. The
ondition is general enough to in
lude as a spe
ial 
ase of (1.1) the hyperboli
 
onservationlaw with dis
ontinuous 
oe�
ient.We make the following simplifying assumption.Suppose B degenerates, is 
onstant on a �nite set of disjoint intervals:
B′(r) = 0 ∀r ∈

K⋃

i=1

[αi, βi] = Γ where αi < βi i = 1 : K,K ≥ 1.On these intervals, (1.1) a
ts as a pure hyperboli
 equation.B is non-degenerate o� these intervals, whi
h means that B is stri
tly in
reasing and (1.1)behaves as a paraboli
 problem on
[0, 1] \ Γ. B′(r) > 0 ∀r /∈

M⋃

i=1

[αi, βi].The maximum u∗(γ) is assumed to lie either in Γ, or lies in the 
losure of [0, 1] \ Γ ∀γ;Max B′(r) > 0, r ∈ [0, 1].



10 Initial Value ProblemAssume that the integrable bounded initial fun
tion u0 satis�es
u0 ∈ L1(R) ∩BV (R), u0(x) ∈ [0, 1]∀x ∈ R,

B(u0) is absolutely 
ontinuous on R,

B(u0)x ∈ BV(R).







(1.5)
B(u0) being absolutely 
ontinuous demands that any jump in u0 must be 
ontained withinone of the intervals [αi, βi] where B is 
onstant.Independently of the smoothness of γ , if (1.1) is allowed to degenerate at 
ertain points,that is, B′(r) = 0 for some values of r, we 
annot expe
t the solution to be smooth. Wemust look at weak solutions. On the other hand, if B′(r) is zero on an interval [αi, βi],weak solutions may be dis
ontinuous and they are not uniquely determined by their initialdata. Consequently, an entropy 
ondition must be imposed to single out the physi
ally
orre
t solution. We will here assume that there exist at least one interval [αi, βi] on whi
h
B′ is zero. Whi
h means that equation (1.1) may possess dis
ontinuous solutions.



Chapter 2Existen
e of weak solutions
In this se
tion we will present the main results that establish the existen
e of weak solutionsto the Cau
hy problem for a one-dimensional s
alar degenerate paraboli
 equation with a�ux fun
tion that depends expli
itly on the spatial position trough a 
oe�
ient γ(x) thatmay be dis
ontinuous. The proof 
an be found in [13℄ .Independently of the smoothness of γ(x), if (1.1) is allowed to degenerate (be
ome zero) at
ertain points, that is B′(r) = 0 for some values of r, solutions are not ne
essarily smoothand we need to �nd weak solutions.The basi
 idea is to multiply (1.1) by a smooth test fun
tion, integrate one or more timesover the domain, and then use integration by parts to move derivatives o� the fun
tion uand on to the smooth test fun
tion. The result is an equation involving fewer derivativeson u, and hen
e requiring less smoothness.A weak solution is de�ned as followsDe�nition 2.0.1. A fun
tion u(x, t) ∈ L1(ΠT )

⋂
L∞(ΠT ) is a weak solution of the InitialValue Problem (1.1) if it satis�es the following 
onditions:i) B(u) is 
ontinuous and B(u)x ∈ L∞(ΠT ).ii) For all test fun
tions φ ∈ D(ΠT ) su
h that φ|t=T = 0,

∫∫

Q

T

(

uφt + (f(γ(x), u)−B(u)x)φx

)

dxdt+

∫

R

u0(x)φ(x, 0) = 0. (2.1)On the other hand, if B′(r) = 0 is zero on an interval [α, β], weak solutions may be dis-
ontinuous and therefore not uniquely determined by their initial data. As a 
onsequen
e,an entropy 
ondition must be imposed to single out the physi
ally 
orre
t solution.If γ(x) is su�
iently smooth, a weak solution u(x, t) satis�es the entropy 
ondition if, see[14, 15℄, all 
onvex C2 entropy fun
tions η(u), η : R → R, and 
orresponding entropy�uxes q(γ(x),u),
η(u)t+(q(γ(x), u))x+r(u)xx+γ′(x)

[

η′(u)fγ(γ(x), u)−qγ(γ(x), u)
]

≤ 0 ∈ D′(ΠT ), (2.2)11



12 Existen
e of weak solutionswhere (η, q) is is the 
onvex C2 entropy-entropy �ux pair and r : R → R is de�ned by
r′(u) = η′(u)B′(u).For the hyperboli
 part, the entropy 
ondition is given by

η(u)t + q(γ(x), u)x + γ′(x)(η′(u)fγ(γ(x), u)− qγ(γ(x), u)) ≤ 0 (2.3)where qu(γ(x), u) = η′(u)fu(γ(x), u).We 
an show this inequality.In the �rst part of equation (2.3) we suppose that the entropy fun
tion η(u) satis�es a
onservation law of the form
η(u)t + q(γ(x), u)x = 0, (2.4)for some entropy �ux q.Then we obtain from this, for smooth u,
η′(u)ut + qγ(γ(x), u)γ

′(x)ux = 0. (2.5)In the se
ond part, we re
all that the hyperboli
 equation (1.2) 
an be written as
ut + fγ(γ(x), u)γ

′(x)ux = 0. (2.6)We multiply with η′(u),
η′(u)ut + η′(u)fγ(γ(x), u)γ

′(x)ux = 0, (2.7)and 
ompare with (2.5),
qγ(γ(x), u)γ

′(x)ux = η′(u)fγ(γ(x), u)γ
′(x)ux,

⇒ γ′(x)[η′(u)fγ(γ(x), u)− qγ(γ(x), u)] ≤ 0.Here we �nd again the de�nition for q,
q : R→ R,

qu(γ(x), u) = η′(u)fu(γ(x), u),and we re
over the entropy 
ondition for the hyperboli
 part. By standard limiting argu-ment, the former entropy 
ondition implies the Kružkov-type entropy 
ondition given in,see e.g. [14℄.
|u− c|t+

[

sign(u−c)(f(γ(x), u)−f(γ(x), c))
]

x
+|B(u)− B(c)|xx+γ

′(x)sign(u−c)fγ(γ(x), c) ≤ 0(2.8)
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e of weak solutions 13holds in D′(ΠT ), for all c ∈ R. The Sign fun
tion is de�ned by
Sign(s) =







−1 s < 0,
0 s = 0,
1 s < 0.The entropy solution des
ribed above breaks down when γ(x) is dis
ontinuous. We 
an usea Kružkov-type entropy inequality, see e.g. [15, 8℄ to �nd a de�nition for entropy solutionfor the situation where γ(x) is dis
ontinuous. This 
ondition is often more 
onvenient towork with in the sense that it 
ombines the de�nition of a weak solution with that of theentropy 
ondition. The spatially varying 
oe�
ient γ(x) has �nitely many jumps in γ and

γ′, lo
ated at ξ1 < ξ2 < ... < ξM. The following de�nition is suggested in [15℄.De�nition 2.0.2 (Entropy solution). A weak solution u of the IVP (1.1) is 
alled anentropy solution, if the following Kružkov-type entropy inequality holds for all c ∈ R andall test fun
tions 0 ≤ φ ∈ D(ΠT ):
∫∫

Q

T

(

|u− c|φt + sign(u− c)(f(γ(x), u)− f(γ(x), c))φx + |B(u)−B(c)|φxx

)

dtdx

−
∫∫

Q

T \ξm
M
m=1

sign(u− c)f(γ(x), c)xφdtdx

+

∫ T

0

M∑

m=1

|f(γ(ξm+), c)− f(γ(ξm−), c)|φ(ξm, t)dt ≥ 0.

(2.9)
As was mentioned in the introdu
tion for this se
tion, we will only present the existen
eresults and the main theorems. The main referen
e for the existen
e proof of a weak solu-tion of (1.1) is the re
ent paper by Karlsen, Risebro and Towers [13℄. They prove also theuniqueness of the 
onstru
ted weak solution.They aim at proving existen
e of a weak solution to (1.1) when γ(x) may depend dis-
ontinuously on x. They derive their results using the assumption that f(γ(x),u) is ofmultipli
ative form γ(x)f(u). This form will simplify slightly some of the formulas.Existen
e of a weak solution is proved by passing to the limit as ǫ ↓ 0 in a suitable sequen
e
{uǫ}ǫ>0 of smooth approximations solving the problem above with the �ux γ(x)f(·) re-pla
ed by γǫ(x)f(·) and the di�usion fun
tion B(·) repla
ed by Bǫ(·), where γǫ(·) is smoothand B′

ǫ(·) > 0. In their paper the existen
e of a weak solution is proved by establishing
onvergen
e of a suitable sequen
e of smooth fun
tions solving regularised problems. Let
ωǫ ∈ C∞

0 (R) be a nonnegative fun
tion satisfying
ω(x) = ω(−x), ω(x) ≡ 0 for |z| ≥ 1,

∫

R
ω(z)dz = 1.For ǫ > 0, let ωǫ(x) = 1

ǫ
ω(x

ǫ
) and introdu
e the �smoothed� 
oe�
ient

γǫ = ωǫ ⋆ γ.



14 Existen
e of weak solutionsDe�ne the approximate initial fun
tion
u0ǫ = ωǫ ⋆ u0.Observe that u0ǫ ∈ C∞(R) and

u0ǫ → u0 a.e in R and in LP(R) for any p ∈ [1,∞) as ǫ ↓ 0.We then let uǫ be the unique 
lassi
al solution of the uniformly paraboli
 problem
{

∂tuǫ + ∂x(γǫ(x)f(uǫ)) = ∂2
xBǫ(uǫ), (x, t) ∈ ΠT ,

uǫ(x, 0) = u0ǫ(x), x ∈ R,
(2.10)where Bǫ(u) = B(u) + ǫu.Roughly speaking, their main theorem 
an be stated as follows:The sequen
e of {uǫ}ǫ>0 
onverges strongly in L1 to a weak solution u of (1.1). Furthermore,a subsequen
e of {Bǫ(uǫ)}ǫ>0 
onverges uniformly on 
ompa
t sets to a Hölder 
ontinuousfun
tion that 
oin
ides with B(u) a.e.Sin
e γ(·) may be dis
ontinuous, the total variation |uǫ|BV 
annot be bounded uniformlywith respe
t to ǫ > 0. The la
k of variation bound prevents an appli
ation of the standardBounded Variation (BV) 
ompa
tness argument to {uǫ}ǫ>0. To 
ir
umvent this analyti
aldi�
ulty, they establish instead strong 
ompa
tness of the di�usion fun
tion {Bǫ(uǫ)}ǫ>0as well as the �total �ux� {γǫ(x)f(uǫ) − ∂xBǫ(uǫ)}ǫ>0. This strong 
ompa
tness togetherwith some a priori estimates on the �total �ux� will make it possible for them to use the
ompensated 
ompa
tness method to obtain the desired strong 
onvergen
e. The �rstlemma gives uniform L1 and L∞ estimates on uǫ.Lemma 2.0.1. There exists a 
onstant C > 0, independent of ǫ, su
h that ‖uǫ(·, t)‖L1(R),

‖uǫ(·, t)‖L∞(R) ≤ C, for all t ∈ (0, T ).The next lemma provides us with a uniform L2(ΠT) spa
e and time translation estimateon B(uǫ), and hen
e strong L2
loc 
ompa
tness of {B(uǫ)}ǫ>0. This lemma will be used topass to the limit in the nonlinear di�usion term.Lemma 2.0.2. There exists a 
onstant C > 0 whi
h depends on T but not ǫ su
h that

‖B(uǫ(·+y, ·+τ))−B(uǫ(·, ·))‖L2(ΠT−τ ) ≤ C(|y|+
√
τ ), ∀y ∈ (R) and ∀τ ≥ 0. (2.11)In parti
ular, we have that {B(uǫ)}ǫ>0 is strongly 
ompa
t in L2

loc(ΠT).Before we 
an state the fundamental theorem in the theory of Compensated Compa
tness,we re
apitulate the results they use from the 
ompensated 
ompa
tness method used toprove the existen
e of weak solution. For a ni
e overview of appli
ations of the 
ompensated
ompa
tness method to hyperboli
 
onservation laws we refer to Chen.LetM(Rn) denote the spa
e of bounded Radon measure on Rn and
C0(R

n) = {Ψ ∈ C(Rn) : lim
|x|→∞

Ψ(x) = 0
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e of weak solutions 15}. If µ ∈M(Rn),then
〈µ,Ψ〉 =

∫

Rn

Ψdµ, ∀Ψ ∈ C0(R
n).Re
all that µ ∈M(Rn) if and only if |〈µ,Ψ〉| ≤ C‖Ψ‖L∞(Rn) ∀Ψ ∈ C0(R

n). We de�ne
‖µ‖M(Rn) = sup{|〈µ,Ψ〉| : Ψ ∈ C0(R

n), ‖Ψ‖L∞(Rn) ≤ 1}.The spa
e (M(Rn), ‖ · ‖M(Rn)) is a Bana
h spa
e and it is isometri
ally isomorphi
 tothe dual spa
e of (C0(R
n), ‖ · ‖L∞(Rn)), while we de�ne the spa
e of probability measuresProb(Rn) as

Prob(Rn) = {µ ∈M(Rn) : µ is nonnegative and ‖µ‖M(Rn) = 1}.Then we 
an state the fundamental theorem in the theory of 
ompensated 
ompa
tness.Theorem 2.0.1. Let K ⊂ R be a bounded open set and uǫ : ΠT → K. Then there exists afamily of probability measures {ν(x,t)(λ) ∈ Prob(Rn)}(x,t)∈ΠT
(depending weak-⋆ measurablyon (x,t)) su
h that

ν(x,t) ⊂ K for a.e. (x, t) ∈ ΠT .Furthermore, for any 
ontinuous fun
tion Φ : K→ R, we have along a subsequen
e
Φ(uǫ)

⋆
⇀ Φ in L∞(ΠT) as ǫ ↓ 0,where (the ex
eptional set depends possibly on Φ )

Φ(x, t) := 〈ν(x,t),Φ〉 =

∫

R

Φ(λ) dν(x,t)(λ) for a.e. (x, t) ∈ ΠT .In the literature, ν(x,t) is often referred to as a Young measure. Theorem 2.0.1 provides uswith a representation formula for weak limits in terms of nonlinear fun
tions and Youngmeasures. A uniformly bounded sequen
e {uǫ}ǫ>0 
onverges to u a.e. on ΠT if and only ifthe 
orresponding Young measure ν(x,t) redu
es to a Dira
 measure lo
ated at u(x, t), i.e.,
ν(x,t) = δu(x,t). We have the following �redu
tion� result:Lemma 2.0.3. Let K ⊂ R be a bounded open set and uǫ : ΠT → K. Suppose that
uǫ

⋆
⇀ u in L∞(ΠT). Suppose also that for any pair of (not ne
essarily 
onvex) C2 fun
tions

η1, η2 : R→ R, we have for a subsequen
e
γ(x)q1(uǫ)η2(uǫ)− η1(uǫ)γ(x)q2(uǫ)

⋆
⇀ γ(x)q1η2− η1γ(x)q2 in L∞(ΠT) as ǫ ↓ 0,
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e of weak solutions(2.13)where qi : R→ R is de�ned by q′i(u) = η′i(u)f
′(u), i = 1,2. Then for a subsequen
e

γ(x)f(uǫ)
⋆
⇀ γ(x)f(u) in L∞(ΠT) as ǫ ↓ 0.Furthermore, if γ(x) 6= 0 for a.e. x ∈ R and there is no interval on whi
h f(·) is linear,then a subsequen
e of {uǫ}ǫ>0 
onverges to u a.e. on ΠT .Remark. If γ(·) = 0 on a set of non-zero measure, then it is not possible to 
on
lude that( a subsequen
e of) uǫ 
onverges strongly to u nor that f(uǫ)

⋆
⇀ f(u) in L∞(ΠT).Theorem 2.0.2. Suppose that {uǫ}ǫ>0 ⊂ L∞(ΠT) uniformly in ǫ. Suppose also that forany C2 fun
tion η : R→ R, the subsequen
e of distributions {∂tη(uǫ) + ∂x(γ(x)q(uǫ))}ǫ>0lies in a 
ompa
t subset of H−1

loc(ΠT), where q : R → R is de�ned by q′(u) = η′(u)f ′(u).Then along a subsequen
e uǫ
⋆
⇀ u in L∞(ΠT) as ǫ ↓ 0, γ(x)f(uǫ)

⋆
⇀ γ(x)f(u) in L∞(ΠT)as ǫ ↓ 0. Furthermore, if γ(x) 6= 0 for a.e. x ∈ R and there is no interval on whi
h f(·) islinear, then a subsequen
e of {uǫ}ǫ>0 
onverges to u a.e. on ΠT .From Lemma 2.0.1 we know that M := ‖uǫ‖L∞(ΠT) ≤ 1 (uniformly in ǫ). Let

K = max
λ∈[0,1]

|B(λ)| = B(1).For any fun
tion Φ ∈ C([0, K]), we then have
‖Φ(B(uǫ))‖L∞(ΠT) ≤ C,so that along a subsequen
e
Φ(B(uǫ))

⋆
⇀ Φ in L∞(ΠT),and, from Theorem 2.0.1,

Φ(x, t) =

∫

R

Φ(B(λ)) dν(x,t)(λ), ∀(x, t) ∈ ΠT \NΦ, (2.14)For some ex
eptional set NΦ that depends on Φ and |NΦ| = 0. One 
an 
hoose a sequen
e
{Φj}∞j=1 ⊂ C([0,K]) that is dense in C([0,K]) and set

N =

∞⋃

j=1

NΦj.Then |N | = 0 and (2.14) holds at any point (x, t) ∈ ΠT \ N for ea
h Φ ∈ C([0,K]).From Lemmas 2.0.1 and 2.0.2, we have that B(uǫ) 
onverges along a subsequen
e to some
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tion B a.e. on ΠT . Let u denote the L∞(ΠT) weak-⋆ limit of {uǫ}ǫ>0. We 
an assumewithout loss of generality that
u(x, t) =

∫

R

λ dν(x,t)(λ) ∀(x, t) ∈ ΠT \N. (2.15)For ξ ∈ [0, K], de�ne the fun
tions
l(ξ) = min{λ ∈ [0, 1] : B(λ) = ξ}, L(ξ) = max{λ ∈ [0, 1] : B(λ) = ξ}. (2.16)Furthermore,
l(B(λ)) ≤ λ ≤ L(B(λ))for allλ ∈ [0, 1],

l(B(λ)) = λ = L(B(λ)) for a.e.λ ∈ [0, 1].We need also the measurable sets
H := {(x, t) ∈ ΠT \N : l(B(u(x, t))) < L(B(u(x, t)))},
P := {(x, t) ∈ ΠT \N : l(B(u(x, t))) = L(B(u(x, t)))}.The statement that B = B(u(x, t)) for all (x, t) ∈ ΠT \ N implies that {uǫ}ǫ>0 
onvergesto u a.e. on P. The proof of this 
laim is 
lassi
al. Let K := P

⋂
[a, b] for any a, b ∈ R,and note that u2

ǫ
⋆
⇀ u2 in L∞(K). Then we have

∫∫

K

(uǫ − u)2dtdx =

∫∫

K

(u2
ǫ − 2uǫu+ u2)dtdx→ 0 as ǫ ↓ 0, (2.17)for whi
h the 
laim follows.We sum up the 
ompa
tness properties of the di�usion part of (2.10). A subsequen
e of

{B(uǫ)}ǫ>0 
onverges strongly to B(u) in L2
loc(ΠT), where u is the L∞(ΠT) weak-⋆ limitof {uǫ)}ǫ>0. Furthermore, B(u) ∈ L∞(ΠT) ∩ L2(0,T;H1(R)).The next Lemma provides us with a series of priori estimates that imply strong 
ompa
tnessof the �total �ux� sequen
e {γǫ(x)f(uǫ)− ∂xBǫ(uǫ)}ǫ>0. These a priori estimates only holdif the initial fun
tion u0 satis�es, in addition to (1.5), the stronger regularity 
ondition

|γ(x)f(u0)− ∂xB(u0)|BV (R) <∞. (2.18)Lemma 2.0.4. Suppose that (2.18) holds and introdu
e the fun
tion
vǫ(x, t) = γǫ(x)f(uǫ)− ∂xBǫ(uǫ).There exists a 
onstant C>0, independent of ǫ, su
h that for all t ∈ (0, T )

(i) ‖vǫ(·, t)‖L∞(R) ≤ C,

(ii) |vǫ(·, t)|BV (R) ≤ C,

(iii) ‖vǫ(·, t+ τ)− vǫ(·, t)‖L1(R) ≤ C
√
τ , ∀τ ≥ 0.In parti
ular, we have that {vǫ}ǫ>0 is strongly 
ompa
t in L1

loc(ΠT).



18 Existen
e of weak solutionsThe main result is the following theorem.Theorem 2.0.3. Suppose that the 
onditions imposed on the assumptions hold. Thenthere exists a weak solution (in the sense of De�nition 2.0.1) of the Cau
hy problem (1.1).Furthermore, u 
an be 
onstru
ted as the strong limit of the sequen
e {uǫ}ǫ>0, where uǫsolves the regularised problem (2.10).Let v be another weak solution 
onstru
ted as the strong limit of the sequen
e {vǫ}ǫ>0, where
vǫ solves the regularised problem (2.10) 
orresponding to initial data v0. Then

∫

R

|u(x, t)− v(x, t)| dx ≤
∫

R

|u0(x)− v0(x)| dx. (2.19)Consequently, the 
onstru
ted weak solution u of (1.1) is unique. Suppose that the initialfun
tion u0 satis�es the additional regularity 
ondition stated in (2.18). Then the 
on-stru
ted weak solution u has the following regularity properties:
(i)|(γ(x)f(u)− ∂xB(u))(·, t)|BV (R) ≤ C, ∀t ∈ (0, T ),

(ii)‖u(·, t+ τ)− u(·, t)‖L1(R) ≤ Cτ, ∀τ ≥ 0.In the pure hyperboli
 
ase, Theorem 2.0.3 (i) implies that the total variation of f(u) is�nite if u0 ∈ BV(R), although the total variation of u need not be �nite.It is worthwhile mentioning that if B(·) is stri
tly in
reasing we do not need the 
ompen-sated 
ompa
tness method to get strong 
onvergen
e of {uǫ}ǫ>0.



Chapter 3Relaxation S
hemes
3.1 Relaxation approximation for the hyperboli
 
aseThe basi
 idea is based on repla
ing the nonlinear 
onve
tion-di�usion equation with asemilinear system, using a sti� relaxation term 
ontaining the dis
ontinuous �ux fun
tion
f(γ(x),u). The s
hemes proposed in this work are based on the same idea at the basisof the wellknown relaxation s
hemes for hyperboli
 
onservation laws by Jin and Xin [22℄.They introdu
ed a prototype model that bears many 
riti
al properties of more generalnonlinear hyperboli
 systems with relaxation. Before introdu
ing the framework of Re-laxation S
hemes for the paraboli
 equation, we will start with the hyperboli
 
ase. Asmentioned in the assumptions, (1.1) behaves like a hyperboli
 problem on intervals

B′(r) = 0, ∀r ∈
K⋃

i=1

[αi, βi] = Γ.In these intervals, (1.1) 
an be approximated by a 2x2 semilinear hyperboli
 system witha sti� relaxation term 
ontaining the dis
ontinuous �ux fun
tion f(γ(x),u).An additional variable v(x,t) and a positive parameter ǫ are introdu
ed and the followingrelaxation system is obtained.






uǫ
t + vǫ

x = 0,

vǫ
t + λ2uǫ

x =
1

ǫ
(f(γ(x), uǫ)− vǫ).

(3.1)� ǫ >0 is the relaxation time.� λ, a positiv 
onstant, satis�es the sub
hara
teristi
 
ondition:
0 < maxγ,u|fu(γ, u)| < λ. 19



20 Relaxation S
hemesFrom the given data, the maximum is taken over the set
(γ, u) ∈ [γ, γ]× [u, u].We 
hoose the initial 
ondition for the system (3.1)
uǫ(x, 0) = u0(x), vǫ(x, 0) = f(γ(x), u0(x)). (3.2)We 
an rearrange the se
ond equation in system (3.1).
ǫ[vǫ

t + λ2uǫ
x] = [f(γ(x), uǫ)− vǫ],And as ǫ→ 0+ we obtain

v = f(γ(x), u). (3.3)Substituting this expression in the �rst equation of the relaxation system (3.1), we re
overthe hyperboli
 
onservation law.
ut + f(γ(x), u)x = 0.The state satisfying (3.3) is 
alled the lo
al equilibrium. In the limit ǫ→ 0, solving theRelaxation system is equivalent to solving the hyperboli
 
ase of the problem.The 
hara
teristi
 speeds of the lo
al system must be interla
ed with the 
hara
teristi
speeds of the relaxing system to ensure the stability of the limit. The same 
onditionis true for the 2 × 2 semilinear 
ase to ensure that the lo
al relaxation approximation isdissipative. This 
ondition is referred to as the sub
hara
teristi
 
ondition.To understand better this approximation, we 
an present a Chapman-Enskog type expan-sion [17, 18℄ for the relaxation system (3.1).Roughly, the di�eren
e between this expansion and the 
lassi
al Hilbert expansion (alsoasymptoti
 expansion) lies in that the Hilbert expansion expands the solution, while theCE-expansion expands the equation.Let us do a Chapman-Enskog expansion for the relaxation system. We suppose for themoment that uǫ, vǫ and γ(x) are smooth fun
tions and make the ansatz
vǫ = f(γ(x), uǫ) + ǫṽǫ + o(ǫ2),for some ṽǫ. We 
an rewrite the se
ond equation of the relaxation system (3.1) as
vt + λ2ux =

1

ǫ
[f(γ(x), uǫ)− vǫ],

ǫvt + ǫλ2ux = f(γ(x), uǫ)− vǫ,

vǫ = f(γ(x), uǫ)− ǫ[vt + λ2ux]Whi
h means that
vǫ = f(γ(x), uǫ) + o(ǫ). (3.4)



3.1 Relaxation approximation for the hyperboli
 
ase 21From the �rst equation of (3.1), we have
∂u

∂t
= −∂v

∂x
. (3.5)Di�erentiating (3.4) with respe
t to time, ∂

∂t
.

vǫ
t =

∂f

∂u
[γ(x), uǫ]

∂u

∂t
,

vǫ
t = fu(γ(x), u

ǫ)uǫ
t + o(ǫ),then substituting, using (3.5) we obtain

vǫ
t = −fu(γ(x), u

ǫ)vx + o(ǫ).We �nd vx in the former expression using (3.4). We di�erentiate with respe
t to x.
vǫ

t = −fu(γ(x), u
ǫ) · ∂

∂x
[f(γ(x), uǫ) + o(ǫ)] + o(ǫ),

vǫ
t = −fu(γ(x), u

ǫ)
[∂f

∂γ
γ′(x) +

∂f

∂u
uǫ

x + o(ǫ)
]

+ o(ǫ),

= −fu(γ(x), u
ǫ)

[

fγ(γ(x), u
ǫ)γ′(x) + fu(γ(x), u

ǫ)uǫ
x + o(ǫ)

]

+ o(ǫ),

vǫ
t = −[fu(γ(x), u

ǫ)]2uǫ
x − fu(γ(x), u

ǫ)fγ(γ(x), u
ǫ)γ′(x) + o(ǫ).Inserted into the se
ond equation of (3.1)

vǫ = f(γ(x), uǫ)− ǫ[vǫ
t + λ2uǫ

x],

vǫ = f(γ(x), uǫ)− ǫ
[

− [fu(γ(x), u
ǫ)2)uǫ

x− fu(γ(x), u
ǫ)fγ(γ(x), u

ǫ)γ′(x) + o(ǫ)] +λ2uǫ
x

]

,

vǫ = f(γ(x), uǫ)− ǫ
[

λ2 − (fu(γ(x), u
ǫ))2uǫ

x − fu(γ(x), u
ǫ)fγ(γ(x), u

ǫ)γ′(x) + o(ǫ)
]

.Plugging into the �rst equation of (3.1), we need ∂

∂x
vǫ :

∂

∂x
vǫ = fγ(γ(x), u

ǫ)γ′(x) + fu(γ(x), u
ǫ)uǫ

x − ǫ[λ2 − (fu(γ(x), u
ǫ))2uǫ

xx

+ǫ[−fu(γ(x), u
ǫ)fγ(γ(x), u

ǫ)γ′(x)]x,

∂

∂x
vǫ = [f(γ(x), uǫ)− ǫfu(γ(x), u

ǫ)fγ(γ(x), u
ǫ)γ′(x)]x − ǫ[λ2 − (fu(γ(x), u

ǫ))2uǫ
x]x,

⇒ uǫ
t +

(

f(γ(x), uǫ− ǫfu(γ(x), u
ǫ)fγ(γ(x), u

ǫ)γ′(x)
)

x
= ǫ

(

(λ2− (fu(γ(x), u
ǫ))2uǫ

x)
)

x
.(3.6)



22 Relaxation S
hemesThis is the �rst order 
orre
tion to (1.1). The equation (3.6) governs the asymptoti
 behav-iour of the relaxation system (3.1) either as time approa
hes in�nity or as the relaxationrate ǫ tends to zero. The right hand side 
ontains a se
ond derivative of u and hen
erepresents a dissipation (vis
ous) term. The 
oe�
ient represents the 
oe�
ient of vis
os-ity, therefore, the relaxation system provides a vanishing vis
osity model to the original
onservation law. We observe also that (3.6) 
ontains an O(ǫ) di�usion 
orre
tion as wellas an O(ǫ) 
onve
tion 
orre
tion. For the 
oe�
ient to be positive and to ensure that thisequation is paraboli
, the following 
ondition should be satis�ed,
λ2 ≥ (fu(γ(x), u))

2 ⇔ −λ ≤ (fu(γ(x), u) ≤ λ. (3.7)This is referred to as the the sub
hara
teristi
 
ondition. The 
onstant λ in the re-laxation system (3.1) should be 
hosen in su
h a way that the Condition (3.7) is satis�ed.Chen, Levermore and Liu [5] show that if the Sub
hara
teristi
 Condition is always sat-is�ed, then solutions of the system tend to solutions of the equilibrium equation as therelaxation time tends to zero. The fa
t that the �rst order 
orre
tion to the originalsystem has a dissipative stru
ture implies that the numeri
al solutions to the relaxationsystem should also 
onverge to the entropy solution of the original system.3.2 Relaxation approximation to the nonlinear 
onve
tion-di�usion equationWe now extend the previous approa
h to nonlinear paraboli
 equation. We propose Di�u-sive Relaxation S
hemes for the numeri
al approximation of nonlinear paraboli
 equations.The s
hemes proposed here are based on the same idea at the basis of the relaxation s
hemesfor the hyperboli
 
onservation laws. The relaxation system read






ut + vx = 0,

vt +
1

ǫ2
B(u)x = − 1

ǫ2
(v − f(γ(x), u)).

(3.8)With initial data
uǫ(x, 0) = u0(x), vǫ(x, 0) = f(γ(x), u0(x)). (3.9)The positive parameter ǫ has physi
al dimensions of time and represents the so-
alledrelaxation time for the system and the limit problem for ǫ → 0 is 
alled di�usive limit.The relaxation term is sti�, whi
h means that ǫ << 1. That is, the relaxation time is mu
hshorter than the time it takes, for example, for the hyperboli
 wave to propagate over agradient length.The study is 
on
entrated on the sti� regime. It is immediately re
ognisablethat system (3.8) has the form used to 
onstru
t relaxation s
hemes for 
onservation lawsby Jin and Xin [22℄. Theoreti
al justi�
ation for the passage from (3.1) to (1.2) was made



3.2 Relaxation approximation to the nonlinear 
onve
tion-di�usion equation 23in [5, 16℄, while the numeri
al dis
retization for su
h problems was studied in [9℄. In su
ha problem only the sour
e term is sti�, thus a proper splitting of an expli
it 
onve
tionand an impli
it sour
e term su�
es to give a s
heme with a formal uniform a

ura
y in
ǫ. The new formulation (3.8), due to its 
lose relation with (3.1), allows us to use some ofthe numeri
al te
hniques used to solve (3.1). However, we fa
e additional di�
ulties herebe
ause the 
onve
tion step is also sti�, e.g.see [3, 2℄.In the small relaxation limit, ǫ → 0, the relaxation system (3.8) 
an be approximated toleading order by

{

v = f(γ(x), u)− B(u)x,

ut + f(γ(x), u)x = B(u)xx.
(3.10)The state satisfying the �rst equation of (3.10) is 
alled lo
al equilibrium. The relaxationsystem (3.8) has two 
hara
teristi
 variables

v +

√

B′(u)

ǫ
, v −

√

B′(u)

ǫ
,that travel with 
hara
teristi
 speeds

±
√

B′(u)

ǫ
.Sin
e the equilibrium equation is of paraboli
 type, the main stability 
ondition for therelaxation system is, see [3℄,

|f ′(γ(x), u)|2 ≤ B′(u)

ǫ2
, (3.11)whi
h is the sub
hara
teristi
 
ondition, a ne
essary 
ondition for 
onvergen
e to equi-librium. We expe
t to �nd 
ondition (3.11) veri�ed in the relaxation limit. As long asthe solutions for the limit equation are smooth, the stability in a suitable norm and the
onvergen
e of the problem as the relaxation parameter ǫ tends to zero 
an be 
ompletelyjusti�ed. Unfortunately, in the general 
ase the solutions of the equilibrium equation (3.10)may be
ome dis
ontinuous in a �nite time. For the system B′(u) > 0, f ′(γ(x), u) is the
hara
teristi
 speed, su
h that (3.11) reeds

−
√

B′(u)

ǫ
< f ′(γ(x), u) <

√

B′(u)

ǫ
. (3.12)Note that the lo
al equilibrium approximation (3.10), whi
h has the 
hara
teristi
 speed

f ′(γ(x),u), will ex
eed the 
hara
teristi
 speeds of the original system unless (3.12) is sat-is�ed.The 
onsisten
y of the approximation would be satis�ed, if only to preserve the proper
ausality. Hen
e (3.12) will be referred to as a Stability Criterion. By 
onsidering a



24 Relaxation S
hemesChapman-Enskog expansion for the relaxation system, we get a better understanding ofthe argument.Let (

uǫ(x, t), vǫ(x, t)
) be a family of solutions to







uǫ
t + vǫ

x = 0,

vǫ
t +

1

ǫ2
B(uǫ)x = − 1

ǫ2
(vǫ − f(γ(x), uǫ)).

(3.13)From the se
ond equation of (3.13),
ǫ2vǫ

t +B(uǫ)x = −(vǫ − f(γ(x), uǫ)),

vǫ − f(γ(x), uǫ) = −ǫ2vǫ
t − B(uǫ)x,

vǫ = f(γ(x), uǫ)− ǫ2vǫ
t − B(uǫ)x,

vǫ = f(γ(x), uǫ)− B(uǫ)x − ǫ2vǫ
t , (3.14)We start with the usual ansatz:

vǫ = f(γ(x), uǫ)− B(uǫ)x + o(ǫ2), (3.15)di�erentiating with respe
t to time,
vǫ

t = fuǫ(γ(x), uǫ
t − Bxt(u

ǫ) + o(ǫ2).From the �rst equation of (3.13), we have
uǫ

t = −vǫ
x, then

vǫ
t = fuǫ(γ(x), uǫ)(−vǫ

x)− Bxt(u
ǫ) + o(ǫ2). (3.16)We �nd vǫ

x from (3.15).
∂

∂x
vǫ =

∂

∂x
[f(γ(x), uǫ)−B(uǫ)x + o(ǫ2)],

vǫ
x =

∂f

∂γ
(γ(x), uǫ)γ′(x) +

∂f

∂uǫ
(γ(x), uǫ)uǫ

x − Bxx(u
ǫ) + o(ǫ2).Substituting into (3.16).

vǫ
t = fuǫ(γ(x), uǫ)[fγ(γ(x), u

ǫ)γ′(x) + fuǫ(γ(x), uǫ)uǫ
x − Bxx(u

ǫ) + o(ǫ2)]− Bxt(u
ǫ) + o(ǫ2),

vǫ
t = −fuǫ(γ(x), uǫ)fγ(γ(x), u

ǫ)γ′(x)− fuǫ(γ(x), uǫ)2uǫ
x + fuǫ(γ(x), uǫ)Bxx(u

ǫ)−Bxt(u
ǫ) + o(ǫ2),Put into (3.14).

vǫ = f(γ(x), uǫ)− B(uǫ)x + ǫ2fuǫ(γ(x), uǫ)fγ(γ(x), u
ǫ)γ′(x)

+ ǫ2fuǫ(γ(x), uǫ)2uǫ
x − ǫ2fuǫ(γ(x), uǫ)Bxx(u

ǫ) +Bxt(u
ǫ) + o(ǫ2).



3.2 Relaxation approximation to the nonlinear 
onve
tion-di�usion equation 25We di�erentiate now with respe
t to spa
e.
∂

∂x
vǫ = fγ(γ(x), u

ǫ)γ′(x)+fuǫ(γ(x), uǫ)uǫ
x−Bxx(u

ǫ)+ǫ2
∂

∂x
[fuǫ(γ(x), uǫ)γ′(x)]+ǫ2

∂

∂x
[fuǫ(γ(x), uǫ)2uǫ

x]

−ǫ2 ∂
∂x

[fuǫ(γ(x), uǫ)Bxx(u
ǫ)] + ǫ2

∂

∂x
(Bxt(u

ǫ)) + o(ǫ2),

∂

∂x
vǫ =

[

f(γ(x), uǫ)−ǫ2fuǫ(γ(x), uǫ)fγ(γ(x), u
ǫ)γ′(x)

]

x
−Bxx(u

ǫ)+ǫ2
∂

∂x

[

fuǫ(γ(x), uǫ)2uǫ
x

]

−ǫ2 ∂
∂x

[

fuǫ(γ(x), uǫ)Bxx(u
ǫ)

]

+ ǫ2
∂

∂x
(Bxt(u

ǫ)) + o(ǫ2).Using this in the �rst equation of (3.13), dropping higher order terms leads to the se
ondorder 
orre
tion O(ǫ2) to the lo
al equilibrium approximation in the form
uǫ

t+[f(γ(x), uǫ)−ǫ2fuǫ(γ(x), uǫ)fγ(γ(x), u
ǫ)γ′(x)] =

∂

∂x
[B′(uǫ)−ǫ2f ′(γ(x), uǫ)2]uǫ

x. (3.17)The right hand side represent a dissipation. For the equation to be dissipative, following
ondition should be satis�ed:
|B′(uǫ)− ǫ2f ′(γ(x), uǫ)2| ≥ 0,

|f ′(γ(x), uǫ)|2 ≤ B′(uǫ)

ǫ2
. (3.18)This inequality is naturally veri�ed in the limit ǫ → 0. The equation (3.10) will alwayspossess the positive vis
osity if the stability 
ondition (3.18) is satis�ed. Thus, in the regimewhen ǫ2 is small, the behaviour of the solution to (3.8), the di�usive relaxation system, isgoverned by (3.10). We 
all this kinds of relaxation limits the di�usive relaxation limits andwe emphasise the fa
t that the equations of (3.10) provide a link between the relaxationparameter ǫ of the system and the physi
al vis
osity of the limiting equilibrium equations.



Chapter 4
L∞ and L1 Estimates
4.1 L∞EstimatesIn this se
tion we shall establish a uniform supremum norm bound for the solution (uǫ,vǫ)of the Cau
hy problem (3.8)− (3.9), we 
onsider the following assumptions.(A1) f is lo
ally Lips
hitz 
ontinuous fun
tion with f(0) = f ′(0) = 0.(A2) The fun
tions (uǫ, vǫ) are uniformly bounded in L∞(R2) by

N0 = max
(

sup
ǫ>0
‖ uǫ

0 ‖∞, sup
ǫ>0
‖ vǫ

0 ‖∞
)

.Moreover, the sequen
e (uǫ
0, v

ǫ
0) 
onverges in L1

loc(R)2 to some (u0, v0) ∈ L∞(R2) as
ǫ→ 0+.We will also use the following supplementary assumption on the initial data:(A3) For any bounded 
losed interval K ⊆ R, it holds

lim
ǫ→0+

‖ vǫ
0 − f(γ(x), uǫ

0) ‖L1(K)= 0.We de�ne for any N > 0,
F (N) := sup

|ζ|N
|f(ζ)|, (4.1)

B(N) := 2N + F (2N), (4.2)and
M(N) = sup

|ζ|B(N)

|f ′(ζ)|.we state the global existen
e and boundedness result for problem (3.8), similar to that in[16℄. 26



4.2 L1Estimates 27Lemma 4.1.1. Assume (A1) and (A2). For any N0 > 0, and ǫ > 0, if
√

B′(u)

ǫ
> M(N0), (4.3)then there exist a unique, globally bounded solution (uǫ, vǫ) to the relaxation system in

C([0,∞);L1
loc(R

2)) su
h that
‖vǫ ±

√

B′(uǫ)

ǫ
uǫ‖L∞(R×(0,∞)) ≤

√

B′(uǫ)

ǫ
B(N0). (4.4)The sub
hara
teristi
 inequality

|f ′(γ(x), uǫ)| ≤
√

B′(uǫ)

ǫ
(4.5)holds for all ǫ > 0 and for almost every (x, t) ∈ R(0,∞).Some remarks based on the L∞ a priori estimate. Consider uniformly bounded solutions

uǫ = (uǫ,vǫ) ∈ L∞ of the 2 × 2 system satisfying the entropy inequality. Assume thatthe stri
t stability 
ondition holds and the sub
hara
teristi
 speed is monotone almosteverywhere for the lo
al variable u ∈ R. The stability theory ensures the existen
e ofsu
h a stri
tly 
onvex entropy. Then uǫ strongly 
onverges to (u,v) and the limit fun
-tions(u(x,t),v(x,t)) are on the equilibrium 
urve for almost all (x,t), t > 0, where u(x,t)is the solution of the Cau
hy problem. The initial data may be far from equilibrium butthe 
onvergen
e result indi
ates that the limit fun
tions (u,v) 
ome into lo
al equilibriumas soon as t>0. When we 
an show the 
ompa
tness of the zero relaxation limit, we alsothen have an indi
ation that the sequen
e uǫ is 
ompa
t no matter how os
illatory theinitial data are.4.2 L1EstimatesWe derive some a priori uniform stability estimates in L1
loc for the solutions of the relaxationsystem (3.8). The main goal is to establish 
ompa
tness properties of the approximatingsequen
es. Under the assumptions of Lemma 4.1.1, let √B′(uǫ)

ǫ
> M(N0) and ǫ > 0. Let

(uǫ,vǫ) be the solution of the Cau
hy problem (3.8)-(3.9). The statements from [16, 19℄
on
lude that for any interval (a, b) ⊆ R and for any T > 0 there exists a 
ontinuousnonde
reasing fun
tion w ∈ C([0,T]), not depending on ǫ and with w(0) = 0, su
h that,for every t ∈ (0, T )

∫ b

a

|uǫ(x+ h, t)− uǫ(x, t)|+|vǫ(x+ h, t)− vǫ(x, t)|dx ≤ w(|h|), for any|h| ≤ h0. (h0 > 0).



28 L∞ and L1 Estimates(4.6)Under these assumptions, suppose further that the initial data (uǫ
0,v

ǫ
0) are lo
ally ofbounded variation. Then there exist a 
onstant 
, not depending on ǫ, su
h that forany interval (a,b) ⊆ R and for every t ≥ 0

‖uǫ(·, t), vǫ(·, t)‖BV ((a,b)) ≤ c‖uǫ
0, v

ǫ
0‖

BV

(

(a−
√

B′(u)
ǫ

t,b+

√
B′(u)

ǫ
t)

). (4.7)
 is a generi
 
onstant and may 
hange due to 
al
ulations. As a 
onsequen
e, we havethat the sequen
e (uǫ,vǫ) lies in a 
ompa
t set of L
1
loc for all t ≥ 0. We 
an now state thefollowing. The proof for similar statement 
an be found in [16℄.Theorem 4.2.1. Under the assumptions of Lemma 4.1.1, let √B′(uǫ)

ǫ
> M(N0) and ǫ > 0.Let (uǫ,vǫ) be the solution of the Cau
hy problem (3.8)-(3.9). Then for any interval (a, b) ⊆

R and for any T > 0 there exists a 
ontinuous nonde
reasing fun
tion w̃ ∈ C([0,T]), notdepending on ǫ and with w̃(0) = 0, su
h that for every 0 ≤ t ≤ t+ τ ≤ T , (τ > 0) it holdsthat
∫ b

a

|uǫ(x, t+ τ)− uǫ(x, t)| dxw̃(τ). (4.8)It turns out that, as ǫ→ 0+, the sequen
e (uǫ) 
onverges towards the entropy solution
u = u(x, t), in the sense of Natalini [19℄. More pre
isely:Theorem 4.2.2. Assume A1-A3 and (4.3). And let (uǫ, vǫ) be the global solution to prob-lem (3.8). Then there exists a weak solution u to (1.1) and a subsequen
e, still denoted
(uǫ(x, t), vǫ(x, t)) su
h that

uǫ → u in C
(

[0,∞);L1
loc(R)

)

, as ǫ→ 0+, (4.9)
vǫ → f(γ(x), u) in C

(

[0,∞);L1
loc(R)

)

, as ǫ→ 0+. (4.10)4.3 Entropy solutionsWe know that weak solutions to the Cau
hy problem (1.1) are in general not unique and,to sele
t a reasonable solution, we have to restri
t the 
lass of admissible solutions givingthe so-
alled entropy 
ondition.In this se
tion we shall show that the limit fun
tion obtained in se
tion (4.2) when ǫ→ 0+is a
tually an entropy solution. Let us state some subtle details involved in the analysis ofthe behaviour of entropy pairs of system (3.8). Similar but more 
omplex analysis 
an befound in [16, 19, 5℄.We assume (A1) and (A2). Then there exists N0 > 0 su
h that the stability 
ondition(4.3) holds. We also assume one of the following hypotheses



4.3 Entropy solutions 29(i) supu∈R |f ′(u)| <∞;(ii) f ∈ C2 and there is M > 0 su
h that if |u| ≥M then |f ′′(u)| > 0.Then for every N0 > 0 the weak solution u of (3.8)-(3.9) given by Theorem 4.2.2 is anentropy solution for the same problem. We observe that under these assumptions and dueto the uniqueness result for the entropy solutions, the whole sequen
e (uǫ,vǫ) in Theorem4.2.2 is a
tually 
onverging. We aim to show in this se
tion that limit solutions (uǫ,vǫ)are entropy solutions to (3.13). We re
all from previous se
tion that (η,q) is the 
onvex
C2 entropy/entropy �ux pair for the system (1.1).For any given entropy pair (η,q) for (1.1), we 
onstru
t an C2 entropy/entropy �ux pair
(χ,Ψ) for the system (3.13) on some open 
onvex set Ω, su
h that for all fun
tions

χ,Ψ : [γ, γ]× Ω→ R,

(χ(γ(x), uǫ, vǫ),Ψ(γ(x), uǫ, vǫ))satisfy the 
ompatibility 
onditions
Ψu(γ, u, v) = λ2χv(γ, u, v), Ψv(γ, u, v) = χu(γ, u, v). (4.11)In addition, on the equilibrium 
urve v = f(γ(x),u), we require that the entropy-entropy�ux pair (χ,Ψ) redu
es to entropy/entropy �ux pair (η,q) for (1.1),
χ(γ, u, f(γ, u)) = η(u) and Ψ(γ, u, f(γ, u)) = q(γ, u), ∀u ∈ Ω. (4.12)We 
an extend an arbitrary entropy/entropy-�ux pair (η,q) for (1.1) to an entropy/entropy-�ux pair for (3.13) by viewing (η,q) as an �equilibrium�entropy/entropy-�ux pair for (3.13).The idea goes ba
k to [5℄. We let (η,q) be a stri
tly 
onvex entropy pair for the lo
al equi-librium equation (3.10). Assume that the stability 
riterion (3.12)
−

√

B′(u)

ǫ
< f ′(γ(x), u) <

√

B′(u)

ǫholds on v = f(γ(x),u), then there exists a stri
tly 
onvex entropy pair (χ,Ψ) for the sys-tem (3.13) over an open 
onvex set Ω 
ontaining the lo
al equilibrium 
urve v = f(γ(x),u), along whi
h it satis�es (4.12). Smooth solutions (uǫ,vǫ) of (3.13) satisfy
∂tχ(γ(x), uǫ, vǫ) + ∂xψ(γ(x), uǫ, vǫ) =

−1

ǫ2
∂vχ(γ(x), uǫ, vǫ)(vǫ − f(γ(uǫ, uǫ)), (4.13)by Theorem 3.2 in [5℄.If γ(x) is smooth, a weak solution (uǫ,vǫ) of (3.13) is said to satisfy the entropy 
onditionif

χ(γ(x), uǫ, vǫ)t + ψ(γ(x), uǫ, vǫ)x + r(u)xx − γ′(x)(ψγ(γ(x), u
ǫ, vǫ)) ≤

1

ǫ
χv(γ(x), u

ǫ, vǫ)(f(γ(x), uǫ, vǫ)− vǫ) in D′,
(4.14)



30 L∞ and L1 Estimateswhere
r′(u) = η′(u)B′(u). (4.15)As a 
onsequen
e of these estimates and result, we 
an state the following result of relax-ation, see [5, 16℄.Assume B ∈ C2, B′(u) > 0 ∀u ∈ R.

f ∈ C2, f(u) = 0.And the stability 
ondition
B′(u)− ǫ2f ′(γ(x), u)2 ≥ 0. (4.16)Assume the initial data (uǫ

0,v
ǫ
0) ∈ L∞ ∩ L2 and verify (A2). Then there exists a 
onstant

N0 > 0, su
h that if
‖(uǫ

0, v
ǫ
0)‖L∞ ≤ N0, (4.17)there exists a subsequen
e, denoted (uǫ,vǫ), of global weak solutions to the Cau
hy problem(3.8)-(3.9) that 
onverges pointwise almost everywhere,

(uǫ(x, t), vǫ(x, t))→ (u(x, t), v(x, t)), as ǫ→ 0+. (4.18)The limit fun
tion u(x,t) satis�esi) v(x,t) = f(u(x,t)) for almost all (x, t) ∈ R× (0,∞) andii) u is a weak entropy solution of Cau
hy problem (1.1).To sum up. In the stability theory, the 
onvexity of entropy χ is essential. The existen
eof stri
tly 
onvex entropy χ implies the following:-The lo
al equilibrium system is hyperboli
 with a stri
tly 
onvex entropy pair (η,q) = (χ,Ψ)|v=f(γ,u).-The 
hara
teristi
 speeds of the lo
al system are interla
ed with the 
hara
teristi
 speedsof the original system (1.1).-The �rst order 
orre
tion is lo
ally dissipative with nonnegative di�usion B(u).



Chapter 5Numeri
al s
hemes
5.1 Dis
retization of the relaxation systemWe 
onsider in this se
tion the dis
retization of the proposed relaxation system (3.8).Using the same notations as Jin and Xin [22℄, we 
all the dis
retization the RelaxingS
hemes. We will also derive the zero relaxation limit for the s
heme. This limit shouldbe a 
onsistent and stable dis
retization of the equation (1.1), the original 
onservationlaws. Sin
e here, in addition to the sti� sour
e term, the 
onve
tion term is also sti�, it isne
essary to over
ome the di�
ulty with the sti� sour
e term. Spe
ial 
are must be takento ensure that the s
hemes possess the 
orre
t zero relaxation limit, in the sense that theasymptoti
 limit that leads from system (3.8) to (3.10) should be preserved ( at a dis
retelevel). When we now 
on
entrate on the sti� regime, ǫ << 1, we also fa
e the type ofproblems for underresolved numeri
al methods. They are well known to be stable, butmay result in spurious numeri
al solutions totally unphysi
al. To over
ome the di�
ultywith the di�usive limit we need numeri
al s
hemes with the 
orre
t di�usive limit. Fromknown numeri
al methods, when the 
onve
tive part is kept expli
it and the relaxationpart impli
it, the Courant-Friedri
hs-Levy(CFL) Condition is like ∆t ≈ ǫ∆x. Resultsfrom [21, 3℄ state that this is too restri
tive and unne
essary near the paraboli
(di�usive)regime where ǫ < ∆x. A 
�-
ondition of di�usive type ∆t ∼ (∆x)2 is expe
ted.5.2 Upwind based dis
retizations.The spatial domain R is dis
retized into 
ells Ij = (xj−1/2, xj+1/2), spatial grid points
xj+1/2, with mesh width hj = xj+1/2 − xj−1/2.Similarly, the time interval (0,T):The dis
rete time level tn, spa
ed uniformly with spa
e step ∆t = tn+1− tn for n = 0,1,2,...We will 
all Un

j the 
ell average and Un
j+1/2 the nodal (point) value of U at x = xj+1/2, t = tn.31
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al s
hemes
Un

j is de�ned by:
Un

j =
1

∆x

∫ xj+1/2

xj−1/2

U(x, tn)dx.In order to write a stable dis
retization to system (3.8) we 
an use impli
it temporalintegrators on the sti� terms. The simplest way to do this is to use ba
kward Eulermethod for both the 
onve
tion and the sour
e term. In 
onservative form, the relaxings
heme may take the semi-impli
it form, see e.g. [4℄,






un+1
j − un

j

∆t
+
vn

j+1/2 − vn
j−1/2

∆x
= 0,

vn+1
j − vn

j

∆t
+

1

ǫ2
B′(u)ux

(un+1
j+1/2 − un+1

j−1/2)

∆x
= − 1

ǫ2
(vn+1

j − f(γj, u
n+1
j )).

(5.1)Finding upwind relaxing �uxes. With the aim to expose the basi
 ideas more 
learly,we need to spe
ify the s
heme by relating the nodal �ux values (numeri
al �uxes) un+1
j±1/2, v

n+1
j±1/2to the 
ell averaged values uj, vj, also in order to have an e
onomi
al dis
retization pro
e-dure.To determine the nodal values for the system (5.1), we apply the �rst order upwind s
hemeon the variables u and v at the generi
 time tn, see [21℄. We obtain

vn
j+1/2 = vn

j+1, un
j+1/2 = un

j , u
n
j−1/2 = un

j−1, v
n
j−1/2 = vn

j .The values un
j−1/2, v

n
j−1/2 are obtained by translating j to j-1.The upwind sele
tion te
hnique in [3℄ gives the nodal values for system (5.1).

un
j±1/2 =

1

2
(un

j + un
j±1)±

ǫ

2
(vn

j − vn
j±1),

vn
j±1/2 =

1

2
(vn

j + vn
j±1)±

1

2ǫ
(un

j − un
j±1).

(5.2)With these 
hoi
es of relaxing �uxes, we then propose the following �nite di�eren
e s
heme






un+1
j − un

j

∆t
+
vn

j+1 − vn
j−1

2∆x
− 1

2ǫ∆x
(un

j+1 − 2un
j + un

j−1) = 0,

vn+1
j − vn

j

∆t
+
B′(u)

2ǫ2∆x
(un

j+1 − un
j−1)−

B′(u)

2ǫ∆x
(vn

j+1 − 2vn
j + vn

j−1) = − 1

ǫ2
(vn+1

j − f(γj, u
n+1
j )).(5.3)As ǫ→ 0, we obtain the equilibrium �uxes

vn
j =

B′(u)(un
j+1 − un

j−1)

2∆x
.
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{

vn
j+1 = B′(un

j+1)(u
n
j+2 − un

j ),

vn
j−1 = B′(un

j−1)(u
n
j − un

j−2).We 
an verify that the use of (5.2) in the dis
rete equations, for small values of ǫ, leads tothe s
heme of leading order
un+1

j − un
j

∆t
+
B′(un

j+1)(u
n
j+2 − un

j )

(2∆x)2
−
B′(un

j−1)(u
n
j − un

j−2)

(2∆x)2
−

(un
j+1 − 2un

j + un
j−1)

2ǫ∆x
= 0. (5.4)5.3 Modi�ed S
hemesIn this se
tion we show how it is possible to modify the upwind s
hemes in order to havethe 
orre
t asymptoti
 behaviour and to 
apture the proper paraboli
 behaviour. The ideafrom [3, 4], is to use the upwind sele
tion to the system on the variable (u± j)/2 insteadof the 
hara
teristi
 variables (u± ǫj)/2. This 
hoi
e leads to the �uxes

vn
j±1/2 =

1

2
(vn

j + vn
j±1)±

1

2
(un

j − un
j±1). (5.5)Applying these �uxes, the equilibrium of the relaxation system (5.1) now reads

un+1
j − un

j

∆t
+
B′(un

j+1)(u
n
j+2 − un

j )

(2∆x)2
−
B′(un

j−1)(u
n
j − un

j−2)

(2∆x)2
−

(un
j+1 − 2un

j + un
j−1)

2∆x
= 0, (5.6)whi
h is a 
onsistent approximation of the equilibrium equation with an a

ura
y of

O(∆x/2). So, the dis
retization de�ned by (5.5) applies to the dis
rete equation (5.1)and has the 
orre
t di�usion limit.5.4 Reformulation of the problemIn the previous se
tions, we have studied the di�usive behaviour of upwind s
hemes. Inparti
ular we saw how it is possible to 
onstru
t upwind s
hemes whi
h are also able to
apture the 
orre
t asymptoti
 behaviour. We proposed a possible solution to this problembased on upwind �uxes. However, in pra
ti
e, the impli
it time integrator may presentseveral limitations like the gain of stability is partially o�set by the loss of a

ura
y, typi
alof impli
it s
hemes in the 
ontext of wave propagation phenomena. On the 
ontrary, theuse of expli
it s
hemes leads to a Courant-Friedri
hs-Levy (CFL) 
ondition of the type
∆t ∼ ǫ∆x whi
h is to restri
tive when the equilibrium equations are of the hyperboli
type and unne
essary near the paraboli
 regime where we expe
t a stability 
ondition like
∆t ∼ (∆x)2. Sin
e both the above options have advantages as well as drawba
ks, it isnatural to look for a s
heme with mixed 
hara
ter. We will in this se
tion look for a re-formulated problem and 
ompare the results with the our proposed relaxing s
heme (5.3).
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al s
hemesIn parti
ular, the spe
ial stru
ture of the reformulated problem enables one to solve itnumeri
ally without using either modi�ed upwind s
hemes spatially or nonlinear systemsof algebrai
 equations solvers at ea
h time step.We will dis
uss further the additional problem due to the sti� 
onve
tion term. The ideais to reformulate the problem for the relaxation s
hemes to 
onservation laws by properly
ombining the sti� 
omponent of the 
onve
tion term into the relaxation term. We needto over
ome this di�
ulty with an adequate and e
onomi
al dis
retization pro
edure. Wewant the s
hemes also to have the 
orre
t di�usion limit. The strategy is based on splittingthe equations into a hyperboli
 
onservation law for 
onve
tion and a possibly degenerateparaboli
 equation for di�usion. We de�ne a hyperboli
 solver for the 
onservation law,while the di�usion equation is solved impli
itly. We need a splitting method that is un-
onditionally stable in the sense that the splitting time step ∆t is not limited by the spa
edis
retization ∆x. And �nally, we want our approa
h to handle the 
onve
tion-di�usion
ombination, in
luding the purely hyperboli
 
ase.5.4.1 Operator splitting methodsFirst it is interesting to point out how earlier numeri
al approa
hes that work for relaxationsystems with sti� sour
e terms apply to these problems. We demonstrate the popularoperator splitting method where we do a proper splitting of an expli
it 
onve
tion stepfrom an impli
it sour
e term.I. The usual splitting applied to system (3.8). We split into 
onve
tion part






ut + vx = 0,

vt +
1

ǫ2
∂xB(u) = 0,

, (5.7)and the relaxation part






ut = 0,

vt = − 1

ǫ2
(v − f(γ(x), u)).

(5.8)In the zero relaxation (or di�usion) limit, ǫ → 0+, the system (3.8) is approximated toleading order by
v − f(γ(x), u) = 0,

∂u

∂t
= 0,

∂v

∂t
= 0⇒ ∂u

∂x
= 0. (5.9)We obtain the equilibrium equations







f(γ(x), u)x = 0,

∂u

∂x
= 0.

(5.10)
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an see that this splitting is in
onsistent with (3.10). So this splitting will give poorresults near the paraboli
 region. The usual splitting do not su�
e to give a s
heme withuniform a

ura
y in ǫ.II. We try to over
ome this problem. As dis
ussed in the introdu
tion of this se
tion, thekey idea is to write (3.8) in the form, see [3, 21, 1℄,






∂tu+ ∂xv = 0,

∂tv + ν∂xB(u) = − 1

ǫ2
(v − f(γ(x), u)),

(5.11)A suitable parameter ν is introdu
ed, where ν ≤ 1/ǫ2 is a nonnegative parameter. Theparameter ν allows to move the sti� terms without losing the hyperboli
ity of the system.It is immediately re
ognisable that system (5.11) has the form known from usual hyperboli
systems with sti� relaxation term. This new formulation allows us to try the numeri
alte
hniques already developed for hyperboli
 problems with sti� relaxation [22, 18, 9℄. Oneof the te
hnique in those problems is to split the system into an expli
it 
onve
tion stepand an impli
it sour
e term. We treat the relaxation step impli
itly for better numeri
alstability.We split our model (5.11) into two subproblems:






∂u

∂t
= 0,

∂v

∂t
= − 1

ǫ2
(v − f(γ(x), u)).

(5.12)And






∂u

∂t
+
∂v

∂x
= 0,

∂v

∂t
+ ν

∂

∂x
B(u) = 0.

(5.13)Now we have a pure nonsti� 
onve
tion step (5.13) and a sti� sour
e step (5.12), sti�relaxation part.But at this stage, it is not obvious that this splitting provides any simpli�
ation to the
hallenging numeri
al solution of the problem (3.8).The idea now is to solve (5.13) using upwind approximations and (5.12) with a numeri
almethod that possesses the proper di�usive limit.We will use an expli
it s
heme for the 
onve
tion step and solve the sour
e term impli
-itly. As demonstrated in previous se
tion, when ǫ→ 0, the relaxation step (5.12) alwaysproje
ts the solution to the 
orre
t lo
al equilibrium, whi
h is a su�
ient 
ondition to
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al s
hemesguarantee that the splitting preserves the asymptoti
 limit from the relaxation system tothe 
onve
tion-di�usion equation.A �rst order splitting s
heme for the model problem (5.11) is de�ned by






un+1
j − un

j

∆t
= 0,

vn+1
j − vn

j

∆t
= − 1

ǫ2
(vn+1

j − f(γ(j), un+1
j )).

(5.14)And






un+1
j − un

j

∆t
+
vn

j+1/2 − vn
j−1/2

∆x
= 0,

vn+1
j − vn

j

∆t
+ ν

B(un
j+1/2)−B(un

j−1/2)

∆x
= 0.

(5.15)The �rst step here is fully impli
it, so in the small relaxation limit, we get the 
orre
tlo
al equilibrium vn+1
j = f(γ(j),un+1

j ), independent of ν. We apply this equilibrium stateinto the se
ond step. Then it 
an be upwinded by using a sho
k-
apturing s
heme for the
omputation of vn
j±1/2 and B(un

j±1/2) in (5.15). In order to satisfy the sub
hara
teristi

ondition, we have to impose the stability 
riteria
νB′(u) ≥ f ′(γ, u)2. (5.16)To de�ne the s
heme we need to relate the equilibrium �uxes B(un

j±1/2) to the nodal valuesfor u and v. First, due to the stru
ture of problem (5.14) and in order to avoid solvingsystems of algebrai
 equations in v, we seek for a se
ond order a

urate de�nition of these�uxes independent of the nodal values for v. In fa
t, this permits one to evaluate therelaxation step expli
itly be
ause u does not 
hange in time in (5.14) .So we propose to de�ne the equilibrium �uxes B(un
j±1/2) of 
entred form







B(un
j+1/2) =

B′(un
j )

2
(un

j+1 − un
j ),

B(un
j−1/2) =

B′(un
j )

2
(un

j − un
j−1).

(5.17)To de�ne the s
heme, we 
an apply the 
omputations






vn
j+1/2 =

1

2
(vn

j + vn
j+1) +

1

2
(un

j − un
j+1),

vn
j−1/2 =

1

2
(vn

j + vn
j−1)−

1

2
(un

j − un
j−1).

(5.18)We sele
t nodal values by 
entred s
hemes to avoid solving nonlinear systems of algebrai
equations. In (5.14), we 
an evaluate the relaxation step expli
itly be
ause u does not
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hange in time, i.e. un+1
j = un

j during the step. Previous numeri
al results also show thata robust, e
onomi
al dis
retization for the 
orre
t numeri
al behaviour near the paraboli
regime should be based on impli
it 
entred s
hemes. The solution pro
edure is split intothe following two steps.5.4.2 Conve
tion stepWe present the dis
retization of the 
onve
tion step (5.15). Sin
e this step is now nonsti�and hyperboli
, a natural 
hoi
e is to use expli
it upwind s
hemes. We solve (5.15) for
un+1

j and vn+1
j . We now have

un+1
j = un

j −
∆t

∆x
(vn

j+1/2 − vn
j−1/2),

vn+1
j = vn

j − ν
∆t

∆x
(B(un

j+1/2)− B(un
j−1/2)).

(5.19)We apply straightforward the upwind s
hemes (5.18) and the proposed 
entred �uxes(5.17), the �nal upwind s
hemes in the 
onve
tion step 
an be written as
un+1

j = un
j −

∆t

2∆x
[(vn

j+1 − vn
j−1)− (un

j+1 − 2un
j + un

j−1)],

vn+1
j = vn

j − ν
B′(un

j )

2

∆t

∆x
[un

j+1 − 2un
j + un

j−1].

(5.20)The parameter ν 
an be used as a weight fun
tion in the nonsti� regime and 
an be
hosen to depend on the dis
retization parameters. However, numeri
al experien
e, seee.g. [3, 21, 2℄, shows that in most pra
ti
al situations the simple 
hoi
e ν = 1 for ǫ ≤ 1su�
es to give a

urate and stable dis
retizations. With the simplest 
hoi
e of ν = 1, wede�ne µ = ∆t
∆x
. The CFL number satisfying µ ≤ 1.5.4.3 Relaxation stepOur goal is to develop a s
heme where the sour
e term is treated impli
itly for betternumeri
al stability. We take into a

ount that u does not 
hange in time during this step.We use a linear s
heme in this step.

un+1
j = un

j ,

vn+1
j = vn

j −
∆t

ǫ2
(vn+1

j − f(γ(j), un+1
j )).

(5.21)Although we have an impli
it relaxation term, the new values un+1 and vn+1 
an beupdated expli
itly sin
e the values of un+1
j 
an be 
omputed from the �rst equation in
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al s
hemes(5.14) and the term in vn+1
j is linear. In addition, as ǫ→ 0 in (5.21), it proje
ts over the
orre
t lo
al equilibrium

vn+1
j = f(γ(j), un+1

j ).If we use an impli
it di�usion solver, our operator splitting method is un
onditionallystable in the sense that the time step ∆t is not limited by the spa
e dis
retization ∆x.5.4.4 Splitting Pro
edure.An underlying design prin
iple for many su

essfull numeri
al methods for equations su
has (1.1), is vis
ous operator splitting. That is, one splits the time evolution into two partialsteps in order to separate the e�e
ts of 
onve
tion and di�usion. The above strategy ofsplitting the method into a relaxation step and 
onve
tion step involves a splitting errorwhi
h makes the method �rst order a

urate in time, irrespe
tive of whatever higher orderdis
retization is used in time and spa
e in both steps.We shall des
ribe the operator splitting. That is, we will obtain the solution of (1.1)through a 
omposition of solution operator for the 
onve
tion step and for the degenerateparaboli
 problem.Before des
ribing the splitting algorithms in more detail, we de�ne the solution operatorsfor our two di�erent equations. We 
all H(t) the approximate solution operator for the
onve
tion part, and S(t) denotes the solution operator for the relaxation step. The vis
oussplitting method is then based on the following approximation
u(x, n∆t) ≈ [S(∆t)H(∆t)]nu0(x).We �x T>0 and ∆t > 0, and let N be su
h that N∆t = T. Let un denote the approx-imate solution to (1.1) at �xed time tn = n∆t(n = 0, ..., N − 1), u0 = u0. We 
onstru
tapproximation un+1 from un by the produ
t formula
un+1 = [S∆t ◦ H∆t]u

n.In appli
ations, the exa
t solution operators H(t) and S(t) are repla
ed by numeri
almethods to fully propose a dis
rete splitting method. Here the solution operator for the
onve
tion part is repla
ed by a solution generated by the upwind s
hemes (5.20) and thesolution operator for the relaxation part is repla
ed by an impli
it 
entred s
heme.We remark that in appli
ations, Strang splitting te
hnique is often used, e.g. see [22, 12,9, 18, 21, 20℄. In Strang splitting, the relaxation step is solved for a half time step (∆t
2

),followed by a 
onve
tion step for full time step (∆t) and then again by a relaxation stepfor a half time step(∆t
2

). Resulting in
Un+1 = S(

∆t

2
)H(∆t)S(

∆t

2
)Un. (5.22)



5.4 Reformulation of the problem 39But Jin [9℄ demonstrated that even the Strang splitting degenerates to �rst order a

ura
yin the limit ǫ→ 0. Even higher order Runge-Kutta methods in the 
onve
tion step 
annotimprove the result.In order to improve the order of a

ura
y we des
ribe a se
ond order TVD Runge-Kuttasplitting s
heme introdu
ed by Jin [9℄ for the Euler s
aling. We will apply the se
ondorder extension dire
tly for our 
onve
tion-di�usion splitting approximation. This splittings
heme takes two impli
it sti� sour
e steps and two expli
it 
onve
tion steps alternatively.Various appli
ations 
an be found in [20, 21, 18, 22, 3℄. We then apply the se
ond ordersplitting s
heme to the di�usive relaxation system. The se
ond order result is as follows:Given (un
j , v

n
j ) , (un+1

j , vn+1
j ) are 
omputed by

u∗j = un
j ,

v∗j = vn
j +

∆t

ǫ2
(v∗j − f(γ(j), u∗j)),

u1
j = u∗j −∆tDxv

∗
j ,

v1
j = v∗j − νB′(un

j )∆tDxu
∗
j ,

u∗∗j = u1
j ;

v∗∗j = v1
j −

∆t

ǫ2
(v∗∗j − f(γ(j), u∗∗j ))− 2∆t

ǫ2
(v∗j − f(γ(j), u∗j)),

u2
j = u∗∗j −∆tDxv

∗∗
j ,

v2
j = v∗∗j − νB′(un

j )∆tDxu
∗∗
j ,

un+1
j =

1

2
(un

j + u2
j),

vn+1
j =

1

2
(vn

j + v2
j ).

(5.23)
The 
onve
tions terms are keeped expli
it be
ause, �rst, one does not need to solve systemsof linear algebrai
 equations that will arise if the 
onve
tion terms are impli
it. Se
ondly,due to the spe
ial stru
ture of the sour
e term, one does not need to solve any systemsof nonlinear algebrai
 equations, in spite of the impli
it nonlinear sour
e terms. Sin
e thesour
e terms are treated impli
itly, this dis
retization is stable independent of ǫ, so thatthe 
hoi
e of ∆t is based only on the usual CFL-
ondition,
CFL := ∆t

∆x
≤ 1.We re
all that we de�ned the initial state as the lo
al equilibrium, namely

v(x, 0) = f(γ,u(x, 0)), then Jin and Xin [22℄ show that the variables v∗
j and v∗∗

j in (5.23)approximate the lo
al equilibrium f(γ,u∗
j ) and f(γ,u∗∗

j ) respe
tively when ǫ→ 0. Thenapplying v∗
j = f(γ,u∗

j ) and v∗∗
j = f(γ,u∗∗

j ) in u1
j and u2

j respe
tively, a se
ond order relaxeds
heme is obtained
u1

j = un
j −∆tDxv

n
j |vn

j =f(γ(j),un
j ),

u2
j = u1

j −∆tDxv
1
j |v1

j =f(γ(j),u1
j ),

un+1
j =

1

2
(un

j + u2
j).

(5.24)



40 Numeri
al s
hemesTo de�ne the s
hemes expli
itly, we use the �nite di�eren
es
Dxu

∗
j =

u∗j+1/2 − u∗j−1/2

∆x
,

Dxv
∗
j =

v∗j+1/2 − v∗j−1/2

∆x
.

(5.25)And the numeri
al �uxes in (5.25) are obtained by using an upwind s
heme to the 
hara
-teristi
 variables v ±
√

B′(u)

ǫ
,







(v +

√

B′(u)

ǫ
)j+1/2 = (v +

√

B′(u)

ǫ
)j,

(v −
√

B′(u)

ǫ
)j+1/2 = (v −

√

B′(u)

ǫ
)j+1.

(5.26)To serve our purpose in the numeri
al 
omputation, we may use that Jin and Xin [22℄and Jin [9℄ proved that the 
orresponding se
ond order relaxed s
heme to the splittingalgorithm is 
onsistent and TVD provided that the sub
hara
teristi
 
onditions and CFL-
ondition are satis�ed.Consisten
y and TVD-property imply 
onvergen
e, and 
onverges to the limit fun
tionu(x,t) whi
h is the weak entropy solution of the 
onve
tion-di�usion problem.5.5 Pseudo
ode for the Di�usive Relaxation S
heme (5.3)In The following pseudo
ode we propose the pro
edure to implement the di�usive relax-ation s
heme for 
onve
tion-di�usion problems. The method 
an be solved expli
itly sin
ethe values of un
j 
an be updated and 
omputed from the �rst equation and the sour
e termin vn+1 is linear.program paraboli
initial u0, v0 = f(u0)integer parameter m, Nreal parameter h, eps, k, 
1, 
2h ← (2pi)/Nk ← (h)2

c1← ǫ/(ǫ+ k)
2 ← ǫk/(ǫ+ k)x = 0:h:2pi-hdi�erentiation matri
es M1, M2M1 ← [vj+1 − vj−1]; [uj+1 − uj−1]M2 ← [vj+1 − 2vj + vj−1]; [uj+1 − 2uj + uj−1]



5.5 Pseudo
ode for the Di�usive Relaxation S
heme (5.3) 41assigne initial 
ondition U1 = u(x, 0);V 1 = f(u(x, 0))
olle
ting values for U MM = zeros(N,m− 1);MM(:, 1) = U1loop with time stepoutput Un+1t=0for nx= 2 to N dot = t+kU(n+1) =un − kM1(vn) + (k/ǫ)M2(un)V(n+1) =c1vn −B′c2M1(un) + ǫB′c2M2(vn) + c2f(U(n+ 1))update V and Uend for
olle
t U-values MM(:, nx) = U(n + 1)



Chapter 6Convergen
e
6.1 The redu
ed problemAs a motivation for the 
omplex analysis of the paraboli
 problem, we will look 
loser to thehyperboli
 
ase in
orporated in our 
onve
tion-di�usion problem, and present some analyt-i
al results. We present the underresolved numeri
al s
hemes for hyperboli
 
onservationlaws with a dis
ontinuous 
oe�
ient and the 
orresponding relaxed s
heme.In 
hapter 3, we presented a relaxation system for the hyperboli
 
ase of the IVP, that iswithout the di�usion term B(u) and the equation is of the form

ut + f(γ(x), u)x = 0.Now we 
onsider the relaxing s
heme for the redu
ed problem, a �rst order upwind ap-proximation to the relaxation system (3.1) is given by






1

∆t
(un+1

j − un
j ) +

1

2∆x
(vn

j+1 − vn
j−1)−

λ

2∆x
(un

j−1 − 2un
j + un

j+1) = 0,

1

∆t
(vn+1

j − vn
j ) +

λ2

2∆x
(un

j+1 − un
j−1)−

λ

2∆x
(vn

j−1 − 2vn
j + vn

j+1) =
1

ǫ
(f(γj, u

n+1
j )− vn+1

j ).(6.1)We 
an start the iteration by
u0

j =
1

∆x

∫

Ij

u0(x)dx, v0
j =

1

∆x

∫

Ij

f(γ(x), u0(x))dx. (6.2)The method is impli
it but 
an be solved expli
itly, sin
e the values of un
j 
an be updatedand 
omputed from the �rst equation and the sour
e term in vn+1 is linear. We do nothave to solve a system of equations in order to update un and vn.42



6.2 Singular Mapping 43The limiting s
hemes are 
alled relaxed s
hemes. The 
omputational results availableindi
ate that the relaxed s
heme obtained in the limit ǫ→ 0 provide a quite promising
lass of new s
hemes. Sin
e the leading order behaviour of the relaxing s
hemes is governedby the the relaxed s
hemes as ǫ→ 0+, we study the behaviour of the relaxed s
heme usingSingular Mapping.The relaxed s
heme for the redu
ed problem takes the form






vn
j = f(γj, u

n
j ),

un+1
j = un

j −
µ

2
[f(γj+1, u

n
j+1)− f(γj−1, u

n
j−1)] +

µλ

2
(un

j−1 − 2un
j + un

j+1).
(6.3)This is the leading order equation as ǫ→ 0+. For the relaxed s
heme (6.3), we assume thefollowing CFL-
ondition:

µλ ≤ 1,where µ =
∆t

∆x
. (6.4)And the Sub
hara
teristi
 Condition:

0 < maxγ,u|fu(γ, u)| < λ. (6.5)Our understanding of the zero relaxation limit of the relaxing s
heme is that poor numeri
alresults may be generated if the numeri
al s
heme does not have the 
orre
t asymptoti
limit.A s
heme for the relaxation system (3.1) is said to have the 
orre
t asymptoti
 limit if,for �xed ∆t and ∆x as ǫ→ 0+, the limiting s
heme is a good (
onsistent and stable)dis
retization of the system (1.2).6.2 Singular MappingIn this se
tion, we attempt to establish 
onvergen
e of the relaxation approximation (3.1)using the singular mapping approa
h.We present the de�nition for the approximate solutions.Let ∆x > 0 and ∆t > 0 be the spatial and temporal dis
retization parameters. The spatialdomain R is dis
retized into 
ells
Ij = [xj−1/2,xj+1/2),where xk = k∆x, for k = 0,±1/2,±1,±3/2....Similarly, the time interval [0,T℄ is dis
retized via tn = n∆t for n = 0,...,N. The integer Nis 
hosen su
h that N∆t = T , resulting in the strips
In = [tn, tn+1).



44 Convergen
eWe de�ne χj(x) and χn(t) to be the 
hara
teristi
 fun
tion for the intervals Ij and Inrespe
tively.Let χn
j (x, t) = χj(x)χn(t) be the 
hara
teristi
 fun
tion for the re
tangle Rn

j = Ij × In.The di�eren
e solution un
j generated by the s
heme (6.3) is extended to all of ∏

T byde�ning
u∆(x, t) =

∑

n∈Z+
N

∑

j∈Z

χn
j (x, t)un

j , (x, t) ∈
∏

T

.Where ∆ = (∆x,∆t). Z+
N = 1, .., N. (6.6)For the dis
ontinuous 
oe�
ient γ,

γ∆(x) =
∑

j∈Z

χj+1/2(x)γj+1/2 x ∈ R.

γ∆(x) is approximated at ea
h 
ell boundary, resulting in a dis
retisized version of γ
γj+1/2 =

1

∆x

∫ xj+1

xj

γ(x)dx.This analyti
al problem is solved (hopefully) by using a transformed variableΘ∆ = ψ(γ∆,u∆).The idea is to show that the relaxed s
heme 
onverges along a subsequen
e to a weak so-lution of the IVP by 
onstru
ting a singular mapping
ψ : (γ, u)→ (γ,Θ)su
h that strong 
ompa
tness for the sequen
e of transformed fun
tions
Θ∆(x, t) = ψ(γ∆(x), u∆(x, t))
an be obtained. We are in intervals where B′(r) = 0, ∀r ∈

⋃k

i=1[αi, βi] = Γ. S is the 
har-a
teristi
 fun
tion for ui ∈ [αi, βi].The singular mapping is de�ned by
ψ(γ, u) =

∫ u

0

S(r)|fu(γ, r)|dr. (6.7)We know from [14℄ that the singular mapping is designed to be Lips
hitz 
ontinuous andstri
tly in
reasing as a fun
tion of u. ψ belongs to Lip([γ, γ]× [0, 1]). On
e the existen
eof a subsequential limit Θ has been established, the invertibility of ψ then allows the
orresponding weak solution u to be re
overed from the limit Θ, with u∆ → u guaranteedby the 
ontinuity of ψ.Assumptions: Assume the given data are satis�ed, and the s
heme (6.3) is applied withthe parameter µ 
hosen so that the following CFL-
ondition is satis�ed for ea
h su

eedingtime step,
µλ ≤ 1then the 
omputed solution remain in the interval [0,1℄ and the s
heme (6.3) is monotone.



6.3 Monotoni
ity 456.3 Monotoni
ityA useful property of the entropy-satisfying weak solution is, if we take two sets of initialdata u0 and v0, with
v0(x) ≥ u0(x) ∀x,then the respe
tive entropy solutions u(x,t) and v(x,t) satisfy
v(x, t) ≥ u(x, t) ∀x, t.In numeri
al appli
ations, if the analogous property
V n

j ≥ Un
j ∀j ⇒ V n+1

j ≥ Un+1
j ∀jholds, then the numeri
al method Un+1

j = H(Un; j) is 
alled a monotone method.To 
he
k that the relaxed s
heme is monotone, it su�
es to 
he
k that
∂

∂un
j

H(Un; j) ≥ 0 for all i, j, Un.This means that if we in
rease the value of any Un
j then the value of Un+1

j 
annot de
reaseas a result.The relaxation s
heme de�nes Un+1
j as a fun
tion

Un+1
j = H(Un; j),

Un+1
j = Hj[u

n
j+1, u

n
j , u

n
j−1, γj+1, γj−1].� i= j+1.

H(Un; j) =
−µ
2

[f(γj+1, u
n
j+1)] +

µγ

2
(un

j+1),

∂H

∂Un
j

=
−µ
2

[f ′(γj+1, u
n
j+1)] +

µγ

2
.� i = j - 1.

H(Un; j) =
−µ
2

[−f(γj−1, u
n
j−1)] +

µγ

2
(un

j−1),

∂H

∂Un
j

=
−µ
2

[−f ′(γj−1, u
n
j−1)] +

µγ

2
.



46 Convergen
e� i = j.
H(Un; j) = un

j −
µ

2
[f(γj+1, u

n
j )− f(γj−1, u

n
j )] +

µγ

2
(−2un

j ),

∂H

∂Un
j

= 1− µ

2
[f ′(γj+1, u

n
j )− f ′(γj−1, u

n
j )]− µγ.The CFL-
ondition (6.4) and the sub
hara
teristi
 
ondition (6.5) guarantee that

∂

∂un
j

H(Un; j) ≥ 0 for all i, j.The relaxed s
heme (6.3) is a monotone s
heme.The major drawba
k with a monotone s
heme is that it is at best only �rst ordera

urate even in regions where the solution is smooth. In the 
ase where γ is 
onstant,monotoni
ity implies that the s
heme is Total Variation De
reasing(TVD).6.4 Compa
tness of approximate solutions u∆We assume that initial data and γ satisfy given assumptions, with the CFL-
onditionmentioned above.We will use the L1-
ontra
tive property in the subsequent analysis. Meaning that therelaxed s
heme is L1-
ontra
tive if the inequality
∑

j

|V n+1
j − Un+1

j |∆x ≤
∑

j

|V n
j − Un

j |∆x (6.8)holds for a pair of approximate solutions un
j and vn

j generated by the s
heme. Towers [23℄propose and proves the following inequality for the related problem:
u0, v0 ∈ L1 ∩ L∞,
∑

j

|un+1
j − un

j |∆x ≤
∑

j

|u1
j − u0

j |∆x. (6.9)Computed solutions u∆(·, tn) satisfy a uniform L1(R) bound for tn ∈ [0,T].
L1-
ontra
tion property:If v∆ is another solution, we have that

‖u∆(·, tn)− v∆(·, tn)‖
L1(R)≤‖u∆(·,0)−v∆(·,0)‖

L1(R)
.Taking into a

ount the jumps in Θ at 
ell-boundaries, due to jumps in u∆ and jumps at
ell 
entres, due to jumps in γ∆.



6.4 Compa
tness of approximate solutions u∆ 47Total Variation of Θ is de�ned by
TV(Θ) =

∑

j

|∆u
+Θj|

︸ ︷︷ ︸

cell−boundaries

+
∑

j

|∆γ
+Θj−1/2|

︸ ︷︷ ︸

jumps−at−centres

. (6.10)The se
ond sum , due to jumps in γ∆, is bounded by TV(γ), using
|ψ(u, γ1)− ψ(u, γ2)| ≤ |γ1 − γ2|,sin
e Lips
hitz 
ontinuity relationships in u and γ follow dire
tly from the de�nition of ψand 
onditions imposed on the �ux f.For ea
h value of γ in [γ, γ],

ψ(·, γ) : [0, 1]→ [−γ, γ] is an in
reasing 1-1 mapping.We re
all that γ is assumed to be bounded and stri
tly positive, 0 < γ ≤ γ(x) ≤ γ.Let Θn(x) = ψ(u∆(x, tn), γ∆(x)). We then de�ne the following
∆u

+Θj = ψ(uj+1, γj+1/2)− ψ(uj, γj+1/2); ∆γ
+Θj−1/2 = ψ(uj, γj+1/2)− ψ(uj, γj−1/2). (6.11)Summing over all the jumps:

∑

j

∆u
+Θj +

∑

j

∆γ
+Θj−1/2 = ϕ, (6.12)

∑

j

|∆u
+Θj | =

∑

j

(∆u
+Θj)+ −

∑

j

(∆u
+Θj)−, (6.13)

∑

j

(∆u
+Θj)+ −

∑

j

(∆u
+Θj)− +

∑

j

∆γ
+Θj−1/2 = ϕ, (6.14)

∑

j

(∆u
+Θj)+ = ϕ−

∑

j

(∆u
+Θj)− −

∑

j

(∆γ
+Θj−1/2). (6.15)From Lips
hitz identity above, jumps in γ∆ is bounded by TV (γ), su
h that

∑

j

∆γ
+Θj−1/2 ≤ TV (γ), (6.16)

⇒
∑

j

(∆u
+Θj)+ ≤ ϕ−

∑

j

(∆u
+Θj)− + TV (γ). (6.17)Now, applying the identities proven in [23℄, modi�ed for our purpose, we 
an estimate

−
∑

j(∆
u
+Θj)−.



48 Convergen
eFrom (6.11)
−

∑

(∆u
+Θj) =

∑

j

ψ(uj, γj+1/2)− ψ(uj+1, γj+1/2),

−
∑

(∆u
+Θj)− =

∑

j

(ψ(uj, γj+1/2)− ψ(uj+1, γj+1/2))+.
(6.18)We in
lude L1-
ontra
tiveness and f∗, the single maximum at u∗ ∈ (0, 1), and from theassumptions, we get

−
∑

(∆u
+Θj)− ≤

1

µf ∗

∑

|u1
j − u0

j |+ TV (γ). (6.19)We need to bound ∑

j |u1
j − u0

j |,
∑

j

|u1
j − u0

j | ≤ 2µγ‖f ′‖∞TV (u0) + µf ∗TV (γ). (6.20)We substitute into (6.19), to get
−

∑

(∆u
+Θj)− ≤

2γ

f ∗ ‖f
′‖∞TV (u0) + 2TV (γ). (6.21)These statements in pla
e we have essentially bounded TV(Θn) uniformly for all n ≥ 0,and all ∆ > 0. Establishing L1 
ompa
tness of Θ∆.Appli
ation of propositions

R× [0,∞)→ [0, 1] and 0 < γ ≤ γ(x) ≤ γgives uniform bounds on ‖Θ∆(·, t)‖∞ and ‖Θ∆(·, t)‖L1 for any 
ompa
t interval,providing a uniform bound on TV(Θ∆(·, t)).By standard 
ompa
tness arguments applied to the sequen
e Θ∆, there is a subsequen
e,also denoted Θ∆, whi
h 
onverges in L1
loc

∏

T to some fun
tion
Θ ∈ L1

loc(
∏

T)
⋂

L∞(
∏

T), Θ∆ → Θ.Let u(x, t) = ψ−1(γ(x),Θ(x, t)).Due to stri
t monotoni
ity of ψ(·, γ), the fun
tion u is well de�ned a.e., u ∈ [0, 1] a.e.,and u ∈ L1
loc(

∏

T
)
⋂

L∞(
∏

T
).We will now use the fa
t that u∆ = ψ−1(γ∆,Θ∆), to show that u∆ → u. An estimate of

|u− u∆| is ne
essary, requiring a bound for |ψ−1(γ,Θ∆)− ψ−1(γ∆,Θ∆)|.Due to the 
ontinuity of ψ−1 as a fun
tion of its se
ond argument, we 
an write the resultas
|ψ(γ, u∆)− ψ(γ, u)| ≤ |ψ(γ, u∆)− ψ(γ∆, u∆)|+ |ψ(γ∆, u∆)− ψ(γ, u)|,

≤ ‖ψγ |γ − γ∆|+ |Θ∆ −Θ|.Sin
e γ∆ → γ a.e. and Θ∆ → Θ a.e. ψ(γ,u∆)→ ψ(γ,u) a.e. in ∏

T.And sin
e ψ(γ, ·) is stri
tly in
reasing, it follows that u∆ → u boundedly.The CFL-
ondition guarantees that the 
omputed solutions u∆ remain within [0,1℄.Convergen
e in L1
loc(

∏

T) follows, and u is a weak solution of the 
onservation law.



6.5 Error Estimates 496.5 Error EstimatesIn this se
tion we will present statements and results about 
onvergen
e rates pointed outin [6, 7, 19, 16℄ for the relaxation s
heme (6.1) by looking at the a

ura
y of relaxations
heme for solving the 
onservation law (1.2). This is done by studying the error ofapproximation u− uǫ
∆ between the exa
t solution u and the numeri
al solution uǫ

∆measured in L1 norm. The parameters ǫ and ∆x determine the s
ale of approximationand 
onverge to zero as the s
ale be
omes �ner. They 
all the order of this error in theseparameters the 
onvergen
e rate of the numeri
al solution generated by relaxations
heme.To make this point pre
ise, we 
hoose the initial data for (3.1) as
(I1)u

ǫ
0 := u0(x), v

ǫ
0 = f(u0(x)) +K(x)ω(ǫ),where K ∈ L∞ ∩ L1(R) ∩BV(R), ω : [0,∞[→ [0,∞[ is 
ontinuous, and ω(0) = 0. Herewe allow for an initial error K(x)ω(ǫ) instead of vǫ

0 = f(γ(x),u0) be
ause we want to seethe 
ontribution of this error to the global error. It is possible to 
onsider perturbed datain the u-
omponent, then in the �nal result an initial error ‖uǫ
0 − u0‖L1(R) would persistin time and may prevent the 
onvergen
e of uǫ to the entropy solution. However, theinitial error in the v-
omponent persists only for a short time of order ǫ, thereby it doesnot prevent the 
onvergen
e of uǫ.We initialise the relaxation s
heme (6.1) by the 
ell averaging the initial data (uǫ

0,v
ǫ
0) inthe usual way

(u0
j , v

0
j ) =

1

∆x

∫

(uǫ
0(x), v

ǫ
0(x))χj(x)dx. (6.22)

χj(x) denotes the indi
ator fun
tion χj(x) := 1{|x−j∆x|≤∆x/2}. We will apply the followingnotations. The L1-norm is denoted by | · ‖1, and The BV-norm is de�ned as
‖u‖BV = ‖u‖1 + TV (u).For grid fun
tions the total variation is de�ned by
TV (un) =

∑

i∈Z

|un
i − un

i−1|,and ‖ · ‖1 denotes the dis
rete l1 − norm

‖un‖1 = ∆x
∑

i∈Z

|un
1 |.Taking initial data (6.22), we summarise the main 
onvergen
e rate result by stating thefollowing, see e.g.[6℄.



50 Convergen
eTheorem 6.5.1. Take any T > 0 and let the relation T = N∆t be satis�ed for asuitable N ∈ N and time step ∆t. Further, let u be the entropy solution of (1.2) withinitial data u0inL∞(R) ∩BV(R), and let (uN,vN) be a pie
ewise 
onstantrepresentation on R× [0,T] of the approximate solution(un
i ),vn

i )i∈Z,0≤n≤N generated bythe relaxation s
heme (6.1) with initial data satisfying (I1) and (6.22). Then for �xed
µ = ∆t

∆x
satisfying the CFL 
ondition µλ < 1, there exists a 
onstant CT , independent of

∆x,∆t, and ǫ, su
h that
‖uN − u(·, T )‖1 ≤ CT [

√
ǫ+
√

∆x]. (6.23)Theorem (6.5.1) suggests that the a

umulation of errors 
omes from two sour
es: therelaxation error and the dis
retization error. To explain the stru
ture of the proof, it maybe helpful to 
onsider that the relaxation s
heme was designed through two steps, namelythe the relaxation step and the dis
retization step. The basi
 idea is to investigate theerror bound of the two steps separately and then the total 
onvergen
e rate by 
ombiningthe relaxation error and the dis
retization error.We split the error eǫ
∆ = u(·, T )− uǫ

∆(·, tN) into a relaxation error eǫ with ‖eǫ‖1 ≤ CT

√
ǫ,and a dis
retization error e∆ with ‖e∆‖1 ≤ CT

√
∆x, i.e., we have the de
omposition

eǫ
∆ = eǫ + e∆.

eǫ = u(·, T )− uǫ(·, T ),

e∆ = uǫ(·, T )− u∆(·, tN).We review some assumptions and preliminaries with the spe
i�
 initial data (uǫ
0,v

ǫ
0),whi
h will be of use in the error analysis. We make the following assumptions

(I2) the �ux fun
tion f is C1 with f(0) = f'(0) = 0;
(I3) the initial data satisfy (uǫ

0, v
ǫ
0) ∈ L1(R) ∩ L∞ ∩ BV (R) and there exist 
onstants

ρ0 > 0,M > 0 not depending on ǫ su
h that
ρ0 = max

(

sup
ǫ>0
‖vǫ

0‖∞, sup
ǫ>0
‖uǫ

0‖∞
)

, ‖(uǫ
0, v

ǫ
0)‖BV := ‖uǫ

0‖BV + ‖vǫ
0‖BV ≤ M,and for the �ux fun
tion f as well as K given in (I1),

Lip(f) := sup
x 6=y
|f(x)− f(y)

− y | ≤M, ‖K‖1 ≤M. �Equipped with assumptions in (I1)− (I3), it has been proved that, as ǫ→ 0+, our mainresult on the limit ǫ ↓ 0 is summarised in the following theorem.Theorem 6.5.2. Consider the system (3.1), subje
t to L∞(R) ∩BV (R)-perturbed initialdata satisfying (I1)− (I3). Then the global solution (uǫ, vǫ) 
onverges to (u, f(γ, u)) as
ǫ ↓ 0 and the following error estimates hold:

‖uǫ(·, t)− u(·, t)‖1 ≤ CT

√
ǫ, (6.24)

‖vǫ(·, t)− f(γ, uǫ(·, t))‖1 ≤ CT [e
−t
ǫ ω(ǫ) + ǫ(1− e−t

ǫ )], 0 ≤ t ≤ T. (6.25)



6.5 Error Estimates 51Thus, (6.25) re�e
ts two sour
es of error whi
h are the initial 
ontribution of size ω(ǫ)and the relaxation error of order ǫ. However, we mention that the e�e
t of the initial
ontribution persists only for a short time of order ǫ, and beyond this time thenonequilibrium solution approa
hes a state 
lose to equilibrium at an exponential rate.The dis
rete initial data satisfy
max(‖u0

∆‖∞, v0
∆‖∞) ≤ ρ0,

TV (u0
∆) + TV (v0

∆) ≤M,

‖v0
∆ − f(γ, u0

∆)‖1 ≤Mω(ǫ).

(6.26)The grid parameters ∆x and ∆t are assumed to satisfy ∆t
∆x

= 
onstant. So, sin
e
µ = ∆t

∆x
is assumed 
onstant, ∆x→ 0 implies ∆t→ 0 as well.We know the usual proje
tion error, of order ∆x, see e.g. [11℄.
‖u0

∆ − uǫ
0‖1 ≤ ∆xTV (uǫ

0),

‖v0
∆ − vǫ

0‖1 ≤ ∆xTV (vǫ
0).

(6.27)As was shown by Natalini and Aregba-Driollet,[19℄, for a large enough 
onstant λ auniform bound for the numeri
al approximations given by s
heme (6.1) 
an be found.More pre
isely, there exists a positive 
onstant M(ρ0) su
h that if
λ > M(ρ0),then the numeri
al solution satis�es
(un

j , v
n
j ) ∈ Kρ0 := {(u, v) ∈ R2, |u± v

λ
| ≤ B(ρ0)}, (6.28)where B(ρ0) is a 
onstant depending only on ρ0. For the proofs of the error properties forour s
hemes we refer to [7, 6, 16, 19℄. We summarise:Dis
retization error.We already have (uǫ, vǫ) as the weak slution of (3.1), the relaxation system, with initialdata (uǫ

0, v
ǫ
0), and let (uN , vN) be a pie
ewise 
onstant representation of the data (uN

j , v
N
j )generated by (6.1) starting with (u0

∆, v
0
∆). Then, for any �xed T = N∆T ≥ 0, there is a�nite 
onstant CT independent of ∆x,∆t and ǫ su
h that

‖vǫ(·, T )− vN‖1 + ‖uǫ(·, T )− uN‖1 ≤ CT

√
∆x. (6.29)We remark here that they get an uniform error bound of order √∆x in L1 whi
h isindependent of the relaxation parameter ǫ.Relaxation error. The global solution (uǫ, vǫ) 
onverges to (u, f(γ, u)) as ǫ ↓ 0 and thefollowing error estimate holds:

‖uǫ(·, t)− u(·, t)‖1 ≤ CT

√
ǫ. (6.30)This estimate re�e
ts a relaxation error of order ǫ.



52 Convergen
eIn the studies 
on
erning relaxation s
hemes, some important properties for thenumeri
al s
heme were obtained through investigating the reformulated s
heme using theRiemann Invariants and Maxwellian fun
tions. We mention properties like the L∞boundedness, the TVD property and the L1 
ontinuity in time. So, just for 
uriosity, wepresent the alternative representation for our equations.
Rǫ

1 =
1

2
(uǫ − vǫ

λ
); Rǫ

2 =
1

2
(uǫ +

vǫ

λ
).

M1(u
ǫ) =

1

2
(uǫ − f(γ, uǫ)

λ
); M2(u

ǫ) =
1

2
(uǫ +

f(γ, uǫ)

λ
).

Mi(u), i = 1, 2.

2∑

i=1

Mi(u) = u;
2∑

i=1

λiMi(u) = f(γ, u).We see that
uǫ = Rǫ

1 +Rǫ
2, v

ǫ = λ(Rǫ
2 −Rǫ

1).Then we 
an rewrite the system (3.1) into a kineti
 formulation
∂tR

ǫ
i + λi∂xR

ǫ
i =

1

ǫ
[Mi(u

ǫ)−Rǫ
i ] i = 1, 2.This formulation 
an be used in the investigation of 
onvergen
e rates for the relaxationmodel (3.1) as well as for the 
orresponding relaxing s
heme (6.1).The Riemann Invariants take the form

Rn,ǫ
1,j =

1

2
(un

j −
vn,ǫ

j

λ
);Rn,ǫ

2,j =
1

2
(un

j +
vn,ǫ

j

λ
).And the Maxwellians

M1(u
n
j ) =

1

2
(un

j −
f(γ(j), un

j )

λ
);M2(u

n
j ) =

1

2
(un

j +
f(γ(j), un

j )

λ
).It follows from the above equations that

un,ǫ
j = Rn,ǫ

1,j +Rn,ǫ
2,j ; v

n,ǫ
j = λ(Rn,ǫ

2,j − Rn,ǫ
1,j ).



6.6 Solution pro
edure for the hyperboli
 problem 536.6 Solution pro
edure for the hyperboli
 problem6.6.1 Pseudo
odeA pseudo
ode to 
arry out the numeri
al pro
ess is given next. A solution pro
edure forthe hyperboli
 problem (6.1) may be a

omplished like in the following pseudo
ode. Weneed to 
onstru
t the �rst order di�erentiation matrix for the di�eren
e s
hemes. Thepseudo
ode for Newthons method is used to �nd the exa
t solution.program Hyperboli
 relaxationinteger parameter m,Nreal parameter h, eps, k, 
1, 
2h ← (2*pi)/Nk ← (h)2
1 ← (eps/(eps+k))
2 ← (eps*k)/(eps + k)x = 0:h:2pi-h)initial u(x, 0) = u0, v0 = f(u0)di�erentiation matri
es M1,M2M1 ← [vj+1 − vj−1]; [uj+1 − uj−1]M2 ← [vj−i − 2vj + vj+1]; [uj−1 − 2uj + uj+1]loop with time stepoutput u(n+1)for nx = 2 to N dot = t+ku(n+1) = uu − kM1vn + kλM2unv(n+1) = c1vn − epsc2λ2M1un + epsc2λM2vn + c2f(u(n+ 1))end forpro
edure exa
t solutionfun
tion Newton method
x0 = 0array (xi)1:Nfor kk= 1 to N do
x0 = x0 + h;toll = 1e-10err = toll +1;while err > toll dofx0=x(kk)-x0-tf(x0)dfx0 = (fx0)'xn= x0-fx0/dfx0err = abs(xn-x0)x0 = xnend while
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eoutput xi(kk)= xnend for6.6.2 Operator splitting for the First order relaxation s
hemeWe will in this se
tion present another implementation for solving the relaxing s
heme(6.1) for the hyperboli
 problem. A solution pro
edure using operator splitting ispossible. We split into two steps. For the 
onve
tion step, we have the expressions for theupwind s
hemes.
un+1

j = un
j −

∆t

∆x
[
1

2
(vn

j+1 − vn
j−1)−

λ

2
(un

j−1 − 2un
j + un

j+1)], (6.31)
vn+1

j = vn
j −

∆t

∆x
[
λ2

2
(un

j+1 + un
j−1)−

λ

2
(vn

j+1 − 2vn
j + vn

j−1)]. (6.32)The sour
e step is solved by an impli
it method whi
h avoids the time step beingdependent on ǫ.
vn+1

j = vn
j −

∆t

ǫ
(vn+1

j − f(γ(j), un+1
j )). (6.33)The implementation of a �rst order relaxation algorithm to solve (3.1) is 
arried outfollowing the framework of [20, 22, 9, 18℄, based on Runge-Kutta type splitting method.Given (un

j , v
n
j ),

(un+1
j , vn+1

j ) are 
omputed by
u∗j = un

j , (6.34)
v∗j = vn

j −
∆t

ǫ
(v∗j − f(γ(j), u∗j)), (6.35)

u1
j = u∗j −∆tDxv

∗
j , (6.36)

v1
j = v∗j −∆tλ2Dxu

∗
j , (6.37)

un+1
j = u1

j , (6.38)
vn+1

j = v1
j . (6.39)We de�ne the following �nite di�eren
es

Dxu
∗
j =

u∗j+1/2 − u∗j−1/2

∆x
,

Dxv
∗
j =

v∗j+1/2 − v∗j−1/2

∆x
.

(6.40)



6.6 Solution pro
edure for the hyperboli
 problem 55We use a �rst order upwind s
heme to the 
hara
teristi
 variables v ± λu in order toobtain the numeri
al �uxes in (6.40), by
{

(v + λu)j+1/2 = (v + λu)j,

(v − λu)j+1/2 = (v − λu)j+1.
(6.41)To obtain







uj+1/2 =
1

2
(uj + uj+1)−

1

2λ
(vj+1 − vj),

vj+1/2 =
1

2
(vj + vj+1)−

λ

2
(uj+1 − uj).

(6.42)Using these s
hemes, neither algebrai
 equations nor nonlinear sour
e terms 
an arise.The �rst order s
hemes are stable independent of ǫ, so the 
hoi
e of ∆t is based only onthe usual CFL-
ondition,
λ2 ∆t

∆x
≤ 1.A splitting method that possesses the dis
rete analogue of the 
ontinuous asymptoti
limit is able to 
apture the 
orre
t physi
al behaviours even if the small relaxation time isnot numeri
ally resolved.We demonstrate that the dis
retizations above have the 
orre
t zero relaxation limit.The initial data in lo
al equilibrium, ǫ << 1, v(x, 0) = f(γ,u(x, 0)).This is how we de�ne the initial 
ondition to avoid an initial layer where the solutionundergoes sharp 
hange [24].

vn − f(γ(j), un) = 0 at t = tn, (6.43)
v∗ − f(γ(j), u∗) = 0 at the intermediate step, (6.44)
vn+1 − f(γ(j), un+1) = O(∆t) at t = tn+1. (6.45)From (6.31) and (6.43), we have
v∗ − vn = −∆t

ǫ
(v∗ − vn + vn − f(γ(j), u∗)),

= −∆t

ǫ
(v∗ − vn + vn − f(γ(j), un)),

= −∆t

ǫ
(v∗ − vn).

(6.46)Thus
v∗ − vn = 0. (6.47)



56 Convergen
eApplying this result into (6.31) implies
v∗ − f(γ(j), u∗) = 0.We now apply (6.47) in (6.33) and (6.35),
vn+1 − f(γ(j), un+1) = v∗ − f(γ(j), un+1) +O(∆t). (6.48)We have that un+1 − u∗ = un+1 − un = O(∆t), so
vn+1 − f(γ(j), un+1) = v∗ − f(γ, un) + f(γ, un)− f(γ, un+1) +O(∆t),

vn+1 − f(γ(j), un+1) = O(∆t).
(6.49)This 
on�rms (6.44) and (6.45).



Chapter 7Numeri
al Appli
ations
We present numeri
al examples 
al
ulated by the relaxation s
hemes presented here. Wewill use MATLAB to implement the s
hemes, and we 
onsider the relaxing s
hemes andthe 
orresponding relaxed s
hemes separately. In the appli
ations, we will apply themultipli
ative form of the �ux fun
tion, namely γ(x)f(u)x instead of f(γ(x), u)x. In thehyperboli
 problems, we 
hoose ǫ = 10−08 and λ = 1 in all the 
omputations, and wesimplify the dis
ontinuous 
oe�
ient to be γ(x) = 1. A 
omparison between the dire
tand expli
it solving of relaxing s
heme (6.1) and the solution pro
edure using splittingalgorithm is presented. We will also perform some numeri
al tests with our proposeds
heme (5.3) to approximate 
onve
tion-di�usion problems. We have also 
al
ulated the
L1 errors between the exa
t solutions and the numeri
al solutions. We 
onsider the errorfor the relaxing s
hemes and the relaxed s
hemes. In our test, we use a very smallrelaxation parameter ǫ su
h that the 
ontribution from the relaxation error eǫ is assumedminimal. Therefore, to 
al
ulate the error we apply

E = ∆x
N∑

j=1

|u(xj)− uN(xj)|.

7.1 Linear equationIn this se
tion, we �rst perform a

ura
y tests on a linear problem. Numeri
al examples
al
ulated by the relaxation s
hemes for the hyperboli
 
ase are presented. The relaxings
heme (6.1) and the relaxed s
heme (6.3). The �rst example is the adve
tion equation.We will 
ompare our methods with the exa
t solution of the problem.Example 1. Let us 
onsider the s
alar linear hyperboli
 equation
ut + aux = 0, (7.1)57



58 Numeri
al Appli
ationswith the initial 
ondition u(x,0) = sin(x). The exa
t solution of the problem is given by
u(x, t) = sin(x− at). (7.2)We use periodi
 boundary 
ondition with varying number of grid points N. We set

∆x = (2π)/N , the length of the spa
e step, in the numeri
al tests. We 
omputed thenumeri
al solutions at time t = 0.3, 0.5 and t = 2.
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Figure 7.1: Adve
tion equation, ut + aux = 0. Number of grid points N = 400. m = 200,time steps. ∆t = 0.0015,∆x = 2 ∗ pi/N. Comparing the relaxing s
heme (6.1)and the exa
t solution for a = 1. ǫ = 10−8. Plot at t = 0.3.We 
an see from the �gures (7.1-7.6) that numeri
al solutions 
omputed by the relaxings
heme (6.1) and the relaxed s
heme (6.3) approximate very well the exa
t solution of theadve
tion equation. These results demonstrate 
learly the numeri
al 
onvergen
e of therelaxing s
hemes to the 
orresponding relaxed s
heme as ǫ→ 0, and the fa
t that thesolutions of the relaxed s
heme presented here 
onverge to the exa
t solution of our testproblem.Table 1 and 2 show the 
omputed L1-error of the di�eren
e between the numeri
al andthe exa
t solution with �nal time t = 0.2, with varying number of grid points N. Theerror de
reases for both the s
hemes but we see that the expe
ted ratio (about 1.15) isnot rea
hed. We suspe
t that we do not rea
h the predi
ted ratio be
ause of theimplementation 
hosen. Nevertheless, further experiments reveal that the method
onverges ni
ely to the 
orre
t solution.
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Figure 7.2: Adve
tion equation, ut + aux = 0. ∆t = 0.0017,∆x = 2 ∗ pi/N. N = 600, m= 300. Comparing the relaxing s
heme (6.1) and the exa
t solution. ǫ = 10−8,
λ = 1, a = 1. Plot at t = 0.5.
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Figure 7.3: Adve
tion equation, ut + aux = 0. ∆t = 0.004,∆x = 2 ∗ pi/N. N = 1000, m =500. 
� = 0.6366. Comparing the relaxing s
heme (6.1) and the exa
t solution.
ǫ = 10−8, λ = 1, a = 1. Plot at t = 2.
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Figure 7.4: Adve
tion equation, ut + aux = 0. N = 400, m = 200. ∆t = 0.0015,∆x =
2 ∗ pi/N. Comparing the relaxed s
heme (6.3) with the exa
t solution. a = 1,plot at t= 0.3.
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Figure 7.5: Adve
tion equation, ut + aux = 0. ∆t = 0.0017,∆x = 2 ∗ pi/N. N = 600, m =300. Comparing the relaxed s
heme (6.3) and the exa
t solution. λ = 1, a =1 and 
� = 0.6366. Plot at t = 0.5.
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Figure 7.6: Adve
tion equation, ut + aux = 0. ∆t = 0.004,∆x = 2 ∗ pi/N. N = 1000, m =500. Comparing the relaxed s
heme (6.3) and the exa
t solution. λ = 1, a =1. Plot at t = 2.
N L1-error Ratio
16 0.1530
32 0.0778 1.9681
64 0.0391 1.9909
128 0.0196 1.9962
256 0.0098 1.9996
512 0.0049 2.0029Table 1. Dis
retization error in L1-norms for the linear adve
tion problem (7.1) at t=0.2using relaxing s
hemes (6.1).
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N L1-error Ratio
16 0.1530
32 0.0778 1.9681
64 0.0391 1.9909
128 0.0196 1.9962
256 0.0098 1.9996
512 0.0049 2.0029Table 2. Dis
retization error in L1-norms for the linear adve
tion problem (7.1) at t=0.2using relaxed s
hemes (6.3).7.2 Invis
id Burgers equationNow we will apply the relaxing s
heme (6.1) and the relaxed s
heme (6.3) to the invis
idBurgers equation.Example 2. In this example we approximate solutions to the invis
id Burgers equation,

ut + (
u2

2
)x = 0. (7.3)We start with the smooth initial data

u(x, 0) = 0.5 + sin(x), x ∈ [0, 2π]. (7.4)and we use periodi
 boundary 
onditions. We re
all that the unique entropy solution of(7.3)-(7.4) is smooth up to the 
riti
al time tc = 1. We perform some numeri
al testswith our relaxing s
hemes (6.1) and the 
orresponding relaxed s
heme (6.3). We will alsopresent a 
omparison where we solve the same problem with the �rst order split method(6.34). We apply Newton's method to �nd the exa
t solution for the Burgers equation.In �gures (7.7-7.11), we present the approximate solutions at the pre-sho
k times whenthe solution is still smooth. We 
hoose ǫ = 10−08, and plot at various times. As expe
tedall the s
hemes 
apture well the 
orre
t behaviour given by the invis
id Burgers equationup to the 
riti
al time t = 1. To see how fast the numeri
al solution approximate theexa
t when we in
rease the grid points, a small time step is used, ∆t = 6 ∗ 10−5. The
L1-error behaviour is shown in Table 3 for the relaxation s
heme (6.1) and in Table 5 forthe split relaxation method (6.34)-(6.39). Again we see that the error de
reases but thepredi
ted ratio is only partially rea
hed in the table. In any 
ase, we point out that therelaxed s
heme proposed is 
apable of rea
hing the same a

ura
y as the relaxing s
hemefor this problem, as we 
an see in Table 4. The L1-error is identi
al for the methods. Wesee also that the error is redu
ed by in
reasing the number of grid points, thus redu
ingthe time step.We present here a test with the �rst order splitting algorithm to see if the splittingindi
ates a 
ertain advantage 
ompared to the investigated relaxing s
hemes. We observe
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Figure 7.7: Numeri
al solution of invis
id Burgers equation ut+(u2

2
)x = 0 using the relaxings
heme (6.1), with N=400 spa
e steps and number of timesteps m = 100,

∆x = 2 ∗ pi/N , ∆t = 0.002. Plot at t = 0.2 with ǫ = 10−8.
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Figure 7.8: Numeri
al solution of Burgers equation ut+(u2

2
)x = 0 using the relaxing s
heme(6.1), with N=800 grid points and m = 200 time steps. ∆x = 2 ∗ pi/N ,

∆t = 0.0025. Plot at t = 0.5 with ǫ = 10−8.
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Figure 7.9: Numeri
al solution of Burgers equation ut+(u2

2
)x = 0 using the relaxing s
heme(6.1), with N=800 grid points and m = 200 time steps. ∆x = 2 ∗ pi/N ,

∆t = 0.005. Plot at t = 1 with ǫ = 10−8 and 
�= 0.6366.
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Figure 7.10: Numeri
al solution of invis
id Burgers equation ut + (u2

2
)x = 0 using therelaxed s
heme (6.3), with N=800 spa
e steps and m=200 time steps. ∆x =

2 ∗ pi/N , ∆t = 0.0025, 
�= 0.3183. Plot at t = 0.5.
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N L1-error Ratio
4 0.4577
8 0.2971 1.5407
16 0.1578 1.8828
32 0.0795 1.9843
64 0.0398 1.9984
128 0.0199 1.9993Table 3. Dis
retization error in L1-norms for the invis
id Burgersequation (7.3) at t=0.2 using relaxing s
hemes (6.1).
N L1-error Ratio
4 0.4577
8 0.2971 1.5407
16 0.1578 1.8828
32 0.0795 1.9843
64 0.0398 1.9984
128 0.0199 1.9993Table 4. Dis
retization error in L1-norms for the invis
id Burgersequation (7.3) at t=0.2 using relaxed s
heme (6.1).
N L1-error Ratio
4 0.4577
8 0.2971 1.5407
16 0.1578 1.8825
32 0.0796 1.9838
64 0.0398 1.9973
128 0.0199 1.9972Table 5. Dis
retization error in L1-norms for the invis
id Burgersequation (7.3) at t=0.2 using split method (6.34).



66 Numeri
al Appli
ationsthat despite the splitting error, the method produ
es the same results as the relaxings
heme for this problem. Our 
omputational results suggest that the s
hemes 
onvergewith appropriate rate even if some 
ombinations in the implementation do not rea
h thepredi
ted error redu
tion in the tables. Other 
hoi
es 
an be made in the dis
retizationsdis
ussed to sharpen the results. Our idea is only to 
arry out the analysis and toillustrate the basi
 ideas. We 
an remark that all the results with ǫ = 10−08 
an almostbe reprodu
ed with about equal quality by using the relaxed s
hemes. Thus for stri
tlyhyperboli
 systems and for the purpose of just solving the 
onservation laws, one 
an justuse the relaxed s
hemes, whi
h are easier to implement with more e�
ien
y and mu
hless memory. This 
on
ludes also that the relaxing s
hemes have the 
orre
t zerorelaxation limit mentioned in the analysis.7.3 Conve
tion-Di�usion EquationIn this se
tion we 
onsider a numeri
al example 
al
ulated by our proposed RelaxationS
hemes (5.3) when the di�usion term B(u) is in
orporated, the 
onve
tion-di�usionproblem.Example 3. Now we test the relaxing s
hemes (5.3) for the 
onve
tion-di�usion equation
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Figure 7.11: Numeri
al solution of invis
id Burgers equation ut + (u2

2
)x = 0 using the�rst order split method (6.34), with 200 time steps and N = 800 grid points.

∆x = 2 ∗ pi/N , ∆t = 0.0025, ǫ = 10−08. Plot at t = 0.5 with 
� = 0.3183.



7.3 Conve
tion-Di�usion Equation 67on the vis
id Burger equation
ut + uux = auxx, a > 0. (7.5)It was �rst introdu
ed by J.M.Burgers as the simplest model for the di�erential equationsof �uid �ow. To �nd the expli
it solution for a > 0, see e.g. the paper by Eberhard Hopf(1950) on pure and applied mathemati
s, treating the partial di�erential equation. Weintrodu
e a new dependent variable q(x,t) into Burgers equation that solves the heatequation qt = aqxx.For t > 0, a is positive and the fun
tion
u(x, t) = −2a

qx(x, t)

q(x, t)solves the vis
id Burger equation. More pre
isely stated: If u solves (7.5) in an openre
tangle R of the x,t-plane and if u, ux, uxx are 
ontinuous in R then there exists apositive fun
tion q that solves the heat equation in R and for whi
h q, qx, qxx are
ontinuous in R.In this test we apply the fun
tion q(x, t) = e−tsin(x) + 2 and a = 1, so that
u(x, t) = −2 e−tcos(x)

e−tsin(x)+2
is an exa
t solution. We 
hoose the initial data to be

u(x, 0) = u0(x) = cosx
sinx+2

. We set γ(x) = 1 and the �ux fun
tion is f(u) = 1
2
u2. We usethe de�nition to initiate v(x,t), v(x,0) = γ(x)f(u0(x)). We 
hoose ǫ = 0.1 The boundary
onditions are 
hosen to be periodi
.The numeri
al solutions 
omputed by our proposed relaxation s
heme for
onve
tion-di�usion equation for di�erent number of grid points are presented in �gures(7.12-7.15). These results demonstrate the performan
e of our s
heme in the rare�edregime where ǫ = 0.1, ǫ > ∆x. The numeri
al solutions mat
h the exa
t solution very welland 
apture the paraboli
 behaviour when we use very �ne spatial grids. Visually, there isa good agreement in the �gures, but we experien
ed at t = 1 that the numeri
al solution
omputed by the s
heme is sensitive to the 
hoi
e of ∆t and ∆x when we keep ǫ = 0.1.To see if this behaviour persists and to see how the error evaluates, we measure the L1error between the exa
t solution and the approximated one at time t = 3 in Table 6.
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Figure 7.12: Numeri
al solution of vis
id Burgers equation ut + (u2

2
)x = uxx using thedi�usive relaxing s
heme (5.3), ∆x = 0.009. ∆t = 0.0002. ǫ = 0.1. Plot at t= 0.1.



7.3 Conve
tion-Di�usion Equation 69

0 1 2 3 4 5 6 7
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
t = 0.3

 

 
Diffusive Sc
exact

Figure 7.13: Numeri
al solution of vis
id Burgers equation ut + (u2

2
)x = uxx using thedi�usive relaxing s
heme (5.3), ∆x = 0.003. ∆t = 0.0001. ǫ = 0.1. Plot at t= 0.3.
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Figure 7.14: Numeri
al solution of vis
id Burgers equation ut + (u2

2
)x = uxx using thedi�usive relaxing s
heme (5.3), with ∆x = 0.003. ∆t = 0.0001. ǫ = 0.1. Plotat t = 0.5.
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Figure 7.15: Numeri
al solution of vis
id Burgers equation ut + (u2

2
)x = uxx using thedi�usive relaxing s
heme (5.3), with ∆x = 0.006. ∆t = 0.00025. ǫ = 0.1. Plotat t = 1.
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N L1-error Ratio
40 0.1792
80 0.1375 1.30
160 0.0897 1.53
320 0.0534 1.68
640 0.0309 1.72
1280 0.0184 1.67Table 6. The 
omputed L1 norms of the di�eren
e between the numeri
al and the exa
tsolution of the vis
id Burger equation at �nal time t = 3. We 
omputed the numeri
alsolution with the di�usive relaxation s
heme (5.3).



Chapter 8Summary and Con
lusion
In this thesis a 
lass of numeri
al s
hemes based on lo
al relaxation approximation forhyperboli
 and paraboli
 equations have been introdu
ed and analysed. The main featureof this 
lass of s
hemes is its simpli
ity and generality. Both numeri
al experiments andtheoreti
al analysis indi
ate that the relaxation s
hemes proposed have great deal ofadvantages.For these methods, our aim have just been to 
on
entrate on developing the basi
framework. We have analysed both from a theoreti
al and 
omputational point of viewthe relaxation s
hemes to approximate the nonlinear degenerate paraboli
 equations, andwe have in
orporated the 
losely related hyperboli
 
onservation laws.In the hyperboli
 
ase, when there is no di�usion, we 
onsidered underresolved numeri
als
hemes with a dis
ontinuous 
oe�
ient and the 
orresponding relaxed s
heme. The �rstorder upwind approximation to the hyperboli
 relaxation system was tested to illustratethe a

ura
y and the good properties. Our 
on
lusion is that the relaxation s
hemesseem to give a

eptable results for 
onservation laws even if we simplify the dis
ontinuous
oe�
ient to a 
onstant in the 
omputations. Inspired from re
ent advan
es indeveloping high order relaxed s
hemes, a theoreti
al 
onvergen
e analysis for the relaxeds
heme is presented. The results indi
ate that the relaxed s
hemes obtained in the limit
ǫ→ 0 provide a promising 
lass of new s
hemes. We showed that for hyperboli
 systems,one 
an just use the relaxed s
hemes instead of the relaxing version.In the paraboli
 
ase, we extended the approa
h to nonlinear paraboli
 equations, and wehave introdu
ed a way of 
onstru
ting numeri
al s
hemes for equations in the di�usiveregime. In our �rst approa
h, we 
on
entrate on developing the basi
 ideas when wepropose a new form of the relaxation s
heme based on the same idea used on hyperboli

onservation laws sin
e our approa
h has the same form. Sin
e our goal is just to de�nethe 
on
ept, more experiments need to be done, and 
omparison with other methodshave to be made. By using suitable dis
ratization in spa
e and time, we were able toprodu
e some numeri
al results whi
h indi
ate the potential of the s
hemes.We fa
e additional di�
ulties here due to the sti� 
onve
tion part 
ombined with a72



8.1 Further work 73dis
ontinuous 
oe�
ient in the sour
e term. A reformulation of the problem is tried tosee if we 
an improve the results. The analysis for operator splitting is 
arried out to seeif a higher order of a

ura
y 
an be a
hieved. When applying the splitting pro
edure, wewant to point out a la
k of a

ura
y in the vn+1-
omponent in the 
onve
tion step. Soone need to investigate further the 
hoi
e of equilibrium �uxes to re
tify the problem andrigorous theoreti
al justi�
ation to analyse the behaviour in the di�usive regime. Otherideas 
ould also be in
orporated to give more deli
ate results, su
h as a di�erent 
hoi
e ofthe parameter ν that depend on the dis
retization parameters, or adaptive meshre�nement and sho
k tra
king te
hniques.Our 
on
lusion is that it is not obvious that this splitting provides any simpli�
ation orimprovement to the numeri
al solution. However, based on experiments with othersplitting methods, we believe this basi
 framework 
an be 
ompetitive to other methods,easier to implement and no Riemann solvers are ne
essary.8.1 Further workAfter �nishing this thesis, there are still some open questions and room for many furtherdevelopments.The prospe
ts in the numeri
al experiments and theoreti
al analysis are veryen
ouraging. The relaxation formulation 
an be used as a platform for developings
hemes for hyperboli
 
onservation laws. They are simpler 
ompared to the existingapproa
hes and are attra
tive for further resear
h. One possible future resear
h is todesign s
hemes that extends the relaxing s
hemes with a dis
ontinuous 
oe�
ient tohigher order s
hemes and more 
ompli
ated systems, to demonstrate that the a

ura
y ofrelaxations s
hemes 
an be in
reased. An interesting aspe
t is to 
onstru
t simplealternative higher order relaxed s
hemes with appli
ations to more generalhyperboli
-paraboli
 
onve
tion-di�usion equations.When solving the paraboli
 problem, we fo
used on the sti� regime, ǫ << 1. It isdesirable to develop a 
lass of numeri
al s
hemes that 
an work with a uniform a

ura
yfor all range of ǫ, an a

urate and stable dis
ratization for a possibly degenerate
onve
tion-di�usion equation with the dis
ontinuous 
oe�
ient and the 
orrespondingrelaxed s
hemes.We would like to investigate further the ability of the proposed splitting to 
apturesho
ks with high resolution and avoiding solving nonlinear algebrai
 systems, but stillmaintaining all the ni
e properties of those 
onstru
ted earlier.
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