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Abstract 
 
One of the major threats to Lake Victoria is eutrophication and an increasing proliferation of 
cyanobacteria. Many cyanobacterial species have the ability to produce toxic compounds 
(cyanotoxins), which can cause considerable hazards for animal and human health. Thus, 
blooms of toxin-producing cyanobacteria receive increased attention when developing in 
drinking water supplies and inland waters used for recreational activities. Murchison Bay is a 
30 km long embayment in the north western part of Lake Victoria, and is divided in a semi-
enclosed inner part and a wider outer part by narrows about 5 km out in the bay. The capital 
city of Uganda, Kampala, is situated close to Murchison Bay, which serves as the drinking 
water supply for the population of the city and the surrounding areas. The bay is influenced by 
local pressures like urban pollution, erosion, flooding, and wetland degradation and is the 
recipient of both industrial and municipal wastes, sewage effluents and surface runoff from 
the city.  
 

The aims of this study have been to promote the knowledge on the eutrophication and 
proliferation of cyanobacteria in Lake Victoria, to assess the possible cyanotoxin 
(microcystin) production and to describe the morphological, genetic and chemical diversity of 
cyanobacteria from Lake Victoria and other East-African water bodies. The sampling of 
Murchison Bay was carried out from November 2000 to March 2004. The study showed that 
there was a heavy loading of nutrients to Murchison Bay and there were high concentrations 
of total phosphorous (>90µg/L) and total nitrogen (>1100µg/L) in the inner part of the bay. 
There was a rapid decrease in conductivity and nutrient concentrations from the innermost 
part of the bay to the outer part of the bay. We found that surface seiches caused considerable 
water exchange with the main lake and thereby mediated the eutrophication in the Inner 
Murchison Bay. The bay is a more dynamic system than first recognized and the rapid 
transport of nutrients to the open lake indicates that Murchison Bay contributes to the 
eutrophication process of Lake Victoria. The phytoplankton community was dominated by a 
variety of cyanobacterial species and diatoms. The proportion of N-fixing species like 
Anabaena sp. was higher in the outer part of the bay whereas Microcystis sp. was more 
abundant in the inner part of the bay. There were microcystins (MC-RR, -LR, -YR) present in 
Murchison Bay, on average 1.1 µg L-1 in the inner part of the bay and 0.6 µg L-1 in the outer 
part of the bay. Based on probability analysis, Microcystis aeruginosa was identified as the 
main microcystin producer. Several cyanobacterial strains of M. aeruginosa and 
Cylindrospermopsis raciborskii were isolated from Murchison Bay and other lakes in the East 
African region and these strains were morphologically, genetically and chemically 
characterized. Phylogenetic analyses showed that the East-African strains of M. aeruginosa 
were closely related to other strains of M. aeruginosa of different geographical regions, 
whereas the phylogenetic analyses comparing C. raciborskii strains from Uganda and 
Germany to strains from other continents, revealed that strains from the same continent were 
more closely related to each other than the strains originating from different continents. Some 
of the strains of M. aeruginosa were microcystin producing, and none of the C. raciborskii 
strains were producing cylindrospermopsin.  
 
Two water works are situated at the shores of the Inner Murchison Bay. Water from different 
steps in the purification process were analysed, and microcystins were not detected. There is, 
however, a risk for exposure to microcystins for those using the lake water directly as 
drinking water and increased awareness of cyanobacterial blooms in Murchison Bay is 
needed.  
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1 Introduction 

Cyanobacteria have long been recognized as an important component of the phytoplankton 

community in Lake Victoria (East Africa) and blooms of cyanobacteria have been reported 

from Lake Victoria ever since the beginning of the last century (Ostenfeld, 1908). Over the 

last five decades, Lake Victoria has experienced severe eutrophication, and mass occurrence 

of cyanobacteria has become a common phenomenon (e.g. Ochumba and Kibaara, 1989; 

Hecky and Bugenyi, 1992; Gophen et al., 1995; Lung’ayia et al., 2000; Kling et al., 2001; 

Krienitz et al., 2002). Many cyanobacterial species have the ability to produce toxic 

compounds (cyanotoxins), which can cause hazards for animal and human health (Krienitz et 

al., 2003; Bell and Codd, 1994; Kuiper-Goodman et al., 1999; Codd et al., 2005a). Thus, 

cyanotoxins especially pose a health risk when they appear in drinking water supplies and 

inland waters used for recreational activities. A recent UNESCO survey concludes that the 

overall knowledge on the occurrence of cyanobacteria and cyanobacterial blooms in large 

parts of Africa is poor (Codd et al., 2005b). Till now, only a few investigations on the 

presence of cyanotoxins have been conducted in Lake Victoria (Krienitz et al., 2002; 

Sekandende et al., 2005). The close proximity between society and nature in the Lake Victoria 

region (Fig. 1) lead to the recognition that more knowledge on toxic cyanobacterial blooms is 

of major importance.  
 

 
Figure 1 Gaba landing site at the shores of Murchison Bay, Lake Victoria 



The intention of this thesis has therefore been to promote the knowledge on the eutrophication 

and proliferation of cyanobacteria in Lake Victoria, to assess the possible cyanotoxin 

(microcystin) production and to describe the morphological, genetical and chemical diversity 

of cyanobacteria from Lake Victoria and other East-African water bodies. Our study has 

mainly been conducted in Murchsion Bay, a shallow embayment in the north-western part of 

Lake Victoria, close to the capital city of Uganda, Kampala. The bay serves as a drinking 

water supply for Kampala, but is also as a recipient of both industrial and municipal wastes, 

sewage effluents and surface runoff from the city and is shown to be strongly eutrophicated.  

 

1.1 Cyanobacteria 

Cyanobacteria, also known as blue-green algae, blue-green bacteria, cyanoprokaryots and 

cyanophytes, are photosynthetic prokaryotes comprising a single phylogenetic group within 

the domain Bacteria (Castenholz, 2001). They have photosystems I and II and use water as an 

electron donor during photosynthesis, leading to the production of oxygen. Several 

cyanobacteria can also perform anoxygenic photosynthesis using only photosystem I if 

electron donors such as hydrogen sulphide are present (Madigan et al., 2003). Cyanobacteria 

have a long evolutionary history and documented fossil records date back to about 3500 

million years ago (Schopf, 2000). However, the earliest DNA-biomarker evidence suggests 

that cyanobacteria appeared more recently, about 2600 million years ago (Hedges et al., 

2001). It is widely accepted that ancient cyanobacteria evolved oxygenic photosynthesis and 

played a major role in the transformation from an anoxic to an oxic atmosphere (Schopf, 

2000). Cyanobacteria are found in almost every conceivable habitat. They are most abundant 

in aquatic habitats as part of the plankton, and some can be found tightly or loosely attached 

to surfaces of plants, rocks and sediments. Cyanobacteria are also important in many 

terrestrial environments and they can live in soils or on rocks and form symbiotic associations 

with plants, fungi and animals (Whitton and Potts, 2000). Under favorable environmental 

conditions, mass occurrences of planktonic cyanobacteria can evolve. Cyanobacteria have 

developed a wide ecological tolerance to temperature, light, salinity, alkalinity, and possess 

many characteristics and adaptations that explain their world wide distribution and success. 

Cyanobacteria show considerable morphological diversity. They may be unicellular or have 

cells arranged in colonies and some form filaments in single trichomes or filaments with false 

or true branching. Some cyanobacteria have the ability to produce two types of specialized 

cells: (1) heterocysts, which provide the site for N2 fixation and thereby counteract nitrogen 

demand under conditions of nitrogen deficiency, and (2) akinetes, which are resting cells that 
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allow the species to survive unfavourable growth conditions. Many species of cyanobacteria 

possess gas vesicles, enabling them to regulate their buoyancy and to maintain a certain 

vertical position in the water column in response to physical and chemical factors (Reynolds, 

1987; Walsby, 1994). A number of chemical, physical and biological factors and their 

interactions influence the cyanobacterial abundance and success in a water body (Hyenstrand 

et al., 1998). Generally, cyanobacterial mass occurrences are known to develop in eutrophic 

and hypertrophic water bodies (Paerl, 1996). Cyanobacteria have high nutrient affinity and it 

is widely accepted that the availability of nitrogen and phosphorous are important factors in 

enhancing cyanobacterial growth (Mur et al., 1999). Other chemical factors such as 

micronutrients, and dissolved organic carbon concentrations may also have effects on 

cyanobacterial growth (Paerl et al., 2001). The most important physical factors influencing the 

growth of cyanobacteria include light, temperature, water turbulence, and lake stratification 

and mixing (Mur et al., 1999). Lake morphometry and water residence time also indirectly 

influence cyanobacterial growth. Grazing, competition, parasitism, and other microbial 

interactions are biological factors either causing loss of biomass or influence the growth of 

cyanobacteria. In temperate regions of the world, most cyanobacterial blooms develop during 

summer when the light intensity is high and the temperatures are favourable. In tropical areas, 

where the annual solar radiation and temperatures are relatively constant, cyanobacteria can 

grow at any time of the year (Oliver and Ganf, 2000). 

 

1.2 Cyanobacterial toxins  

Cyanobacteria are known for their ability to produce a wide range of potent toxins (for a 

review see Sivonen and Jones, 1999), which can cause considerable hazards for aquatic 

ecosystems, domestic as well as wild animals, and human health (Christoffersen, 1996; 

Krienitz et al., 2003; Bell and Codd, 1994; Kuiper-Goodman et al., 1999). Cyanobacterial 

toxins are associated with blooms and scums of planktonic species or mats and biofilms of 

benthic and littoral species. Cyanobacterial strains of the same species are found to be either 

producing or non-producing with regard to a specific cyanobacterial toxin (Sivonen and 

Jones, 1999). The cyanotoxins are to a large extent cell bound, but can also occur in the water 

phase after extracellular release (Lawton et al., 1994). Cyanobacterial toxins are currently 

grouped into classes according to their toxicological properties (Sivonen and Jones, 1999; 

Codd et al., 2005a).  
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1.2.1 Hepatotoxins  

The best known cyanotoxins are the cyclic heptapeptides microcystins. These compounds 

were first isolated from Microcystis aeruginosa and thus named microcystins (Carmichael et 

al., 1988). Microcystins share the common structure cyclo-(D-alanine-L-X-D-erythro-β-

methylaspartic acid -L-Z-Adda-D-glutamate-N-methyldehydroalanine) in which X and Z are 

variable L amino acids (Fig. 2). Structural variance can occur in all seven positions, with 

positions 2(X) and 4(Z) as the most variable, and till now, more than 80 different microcystins 

have been identified (Welker and von Döhren, 2006). The known microcystin producing 

species belong to the planktonic and benthic cyanobacterial genera Microcystis, Anabaena, 

Planktothrix, Anabaenopsis, Nostoc and Phormidium and the terrestrial genus Hapalosiphon 

(for reviews see Sivonen and Jones, 1999; Codd et al., 2005a). The biosynthesis gene clusters 

for microcystin have been sequenced for the genera Microcystis (Tillet et al., 2000), 

Planktothrix (Christiansen et al., 2003) and Anabaena (Rouhiainen et al., 2004).  

 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
Figure 2 General structure of microcystin (Tillett et al., 2000), the variable L-amino acid residues at 
positions 2 and 4 are indicated by X and Z, respectively.  
 

The other group of hepatotoxins comprises the cyclic pentapeptides nodularins (Rinehart et 

al., 1988) with six known structural variants (Codd et al., 2005a). They have only been 

characterized from Nodularia (Sivonen and Jones, 1999) and the biosynthesis gene clusters 

for nodularin have recently been sequenced (Mofitt and Neilan, 2004).  

 

The microcystins and nodularins inhibit the eukaryotic serine- and threonine-specific protein 

phosphatase 1 and 2A that are important for cellular metabolism (Honkanen et al., 1990; 

MacKintosh et al., 1990; Yoshizawa et al., 1990). Microcystins and nodularins can act as 

tumour promoters (Carmichael, 1997), and the nodularins are also carcinogenic (Ohta et al., 

 4

(X) 

(Z) 

(X) 

(Z) 



1994). The microcystins and nodularins can cause major liver damage due to the ability to 

enter into hepatocytes and cause lethal intrahepatic haemorrhage, liver necrocis and 

destruction of parenchymal cells of the liver (Carmichael, 1992; 1994). Different microcystin 

variants exhibit different hepatotoxicities. In general, the microcystins have LD50 values 

(intraperitoneal mouse) that can vary from 25 to ~1000 µg kg-1 body weight (Carmichael, 

1997; Sivonen and Jones, 1999; Codd et al., 2005a). The WHO has provided a provisional 

guideline value for the maximum allowable concentration of microcystin (MC-LR) of 1µg L-1 

in drinking water and 10 µg L-1 in bathing water (WHO, 1998).  

 

1.2.2 Neurotoxins  

The neurotoxins include anatoxin-a, and homoanatoxin-a, anatoxin-a(s) and saxitoxins 

(Sivonen and Jones, 1999; Codd et al., 2005a). The anatoxin-a, and homoanatoxin-a, are 

alkaloids and are postsynaptic, cholinergic neuromuscular blocking agents. Anatoxin-a(s) is a 

guanidine methyl phosphate ester and inhibits acetylcholinesterase. The saxitoxins are 

alkaloids which block sodium channels, and about 20 structural variants are known in 

cyanobacteria (Codd et al., 2005a). Anatoxin-a has been found in blooms of Anabaena, 

Oscillatoria, Aphanizomenon, Cylindrospermum, Planktothrix and Raphidiopsis (Sivonen, 

1996; Codd et al., 1999; Sivonen and Jones, 1999; Namikoshi et al., 2003; Gugger et al., 

2005a), and homoanatoxin-a has been found in blooms of Planktothrix (Skulberg et al., 1992). 

Anatoxin-a(s) has been found in Anabaena (Matsunaga et al., 1989; Henriksen et al., 1997; 

Onodera et al., 1997) and saxitoxins have been found in Anabaena, Aphanizomenon, 

Planktothrix, Cylindrospermopsis and Lyngbya (Sivonen and Jones, 1999; Codd et al., 

2005a).  

 

1.2.3 Cytotoxins  

The cyclic alkaloid cylindrospermopsin is an inhibitor of protein synthesis causing injury of 

kidneys, heart, thymus, spleen, and intestine in mammals (Hawkins et al., 1997; Falconer et 

al., 1998). It is also a potent hepatotoxin (Hawkins et al., 1985), it can cause DNA double-

strand break and chromosome loss (Humpage et al., 2000; Shen et al., 2002) and it is 

carcinogenic (Falconer and Humpage, 2001). Till now, three variants of cylindrospermopsin 

are known; cylindrospermopsin, deoxy-cylindrospermopsin and 7-epi-cylindrospermopsin 

(Ohtani et al., 1992; Banker et al., 2000; Li et al., 2001a). Humpage and Falconer (2003) have 

proposed a guideline value of 1 µg L-1 cylindrospermopsin in drinking water. The known 

cylindrospermopsin producing species belong to the cyanobacterial genera 
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Cylindrospermopsis, Aphanizomenon, Anabaena, Raphidiopsis and Umezakia (Hawkins et 

al., 1985; Harada et al., 1994; Banker et al., 1997; Li et al., 2001a; Preussel et al., 2006; Spoof 

et al., 2006).  

 

1.2.4 Skin irritants and gastrointestinal toxins 

Aplysiatoxin, debromoaplysiatoxin, and lyngbyatoxin are produced by marine cyanobacteria 

(Lyngbya, Schizothrix, Oscillatoria) and cause skin irritation and are tumour promoters (Codd 

et al., 2000). Lipopolysaccharide endotoxins are widely produced by cyanobacteria as an 

important constituent of the cell wall and may contribute to inflammatory and gastrointestinal 

incidents (Codd et al., 2000).  

 

1.2.5 Other cyanobacterial bioactive peptides 

Cyanobacteria can produce a diverse range of secondary metabolites, both non-toxic and toxic 

compounds (Namikoshi and Rinehart, 1996), and over 600 peptides and peptidic metabolites 

have been described from various taxa (for a review see Welker and von Döhren, 2006). A 

major part of the known secondary metabolites are oligopeptides and they are synthesized 

nonribosomally by large enzyme complexes known as NRPS or NRPS/PKS using the thio-

template mechanism (Marahiel et al., 1997; Dittmann et al., 2001). Welker and van Döhren 

(2006) grouped the cyanobacterial peptides according to molecular structure into seven 

classes, the aeruginosins, microginins, anabaenopeptins, cyanopeptolins, microviridins and 

cyclamides and the previously described microcystins/nodularins. Concerning a specific 

oligopeptide, both producing and non-producing individuals of the same cyanobacterial 

species co-exist in nature (Vezie et al., 1998; Kurmayer et al., 2004).  

 

1.2.6 Toxicity and harmful effects of cyanobacterial toxins 

Mass developments of toxin producing cyanobacteria can have severe impact on the food web 

of lakes (Christoffersen, 1996). Laboratory experiments have shown that cyanotoxins have 

inhibited or reduced growth of different phytoplankton groups (Kirpenko, 1986; Bagchi et al., 

1990; Babica et al., 2006) and macrophytes (Pflugmacher et al., 1998; Babica et al., 2006) and 

caused behavioural changes and higher mortality of zooplankton organisms such as 

cladocerans and copepods (Riehmann and Christoffersen, 1993; DeMott et al., 1991; DeMott 

and Moxter, 1991; Rohrlack et al., 1999). Acute effects of cyanotoxins are also found in fish, 

including liver damage, disturbed ionic regulation, behavioural changes and mortality 

(Tencalla et al., 1994; Bury et al., 1995; Mohamed et al., 2003). Mass mortalities of wild and 
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domestic birds have been related to cyanobacterial blooms and scums (Yoo et al., 1995; 

Matsunaga et al., 1999; Henriksen et al., 1997; Krienitz et al., 2003). Cyanobacterial toxins 

have also caused several incidents of wild and domestic animal poisoning, often lethal (for a 

review see Kuiper-Goodman et al., 1999). Cyanobacterial toxins present health hazards to 

humans through contaminated drinking water and food, in addition to recreational exposure to 

cyanobacteria (Bell and Codd, 1994; Codd et al., 1999; Kuiper-Goodman et al., 1999; 

Ibelings and Chorus, 2007). Thus, cyanobacterial toxins may pose a health risk particularly 

when they appear in raw water sources of poorly equipped drinking water plants, and there 

are reports on incidents where dissolved microcystins in surface waters have passed through 

conventional water treatment plants (Jochimsen et al., 1998; Lahti et al., 2001). 

Cyanobacterial toxins are linked to incidents of different human illnesses, including skin and 

eye irritation, allergy-like symptoms, gastro-enteritis and hepatoenteritis caused by acute 

exposure to toxins (Carmichael and Falconer, 1993; Kuiper-Goodman et al., 1999). A severe 

outbreak of hepato-enteritis among an aboriginal population in Palm Island, Queensland 

(Australia) was associated with drinking water contaminated with Cylindrospermopsis 

raciborskii and 148 persons were hospitalized (Byth, 1980; Hawkins et al., 1997). In Brazil, at 

least 55 patients died after receiving a microcystin-containing dialysis medium in a 

haemodialysis centre (Jochimsen et al., 1998). Chronic exposure to microcystins through 

drinking water may increase incidents of human liver cancer (Codd et al., 1999; Kuiper-

Goodman et al., 1999). In China, higher incidents of liver cancer were observed among the 

people drinking pond and ditch water than among people using deep well water, and the 

higher incidences of cancer were thought to be linked to cyanobacterial toxins in the ponds 

and ditches (Yu, 1995). There is also a risk for exposure to cyanotoxins to humans by 

consumption of freshwater “seafood” like fish, crayfish, prawns and mussels from water 

bodies with cyanobacterial blooms (for a review see Ibelings and Chorus, 2007). In addition, 

field observations of cyanotoxin bioaccumulation in zooplankton (Watanabe et al., 1992; 

Kotak et al., 1996), macroinvertebrates (Zurawell et al., 1999), and mussels (Falconer et al., 

1992; Duy et al., 2000) indicate that cyanobacterial toxins may be transferred in aquatic food 

webs and thus have effects on higher trophic levels, including exposure to humans.  

 

1.2.7 The possible ecological role of cyanobacterial metabolites 

The ecological role of cyanobacterial toxins and oligopeptides remains unclear despite the 

numerous studies regarding the physiological and ecological effects of the production of the 

cyanotoxins and other cyanobacterial bioactive oligopeptides. The fact that cyanobacterial 
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populations comprise both non-producing and producing strains with respect to 

cyanobacterial toxins and oligopeptides complicates the understanding of the ecological role 

of these compounds. The toxin production is likely to be related to the physical, chemical, and 

biotic environment and the competition with other organisms (Paerl and Millie, 1996) and 

most of the proposed theories regarding the function of the toxin production are related to 

either grazing protection or to allelopathy (Babica et al., 2006). There is evidence that 

cyanobacterial toxins have an effect on growth and survival of zooplankton (DeMott and 

Moxter, 1991; Rohrlack et al., 1999; Rohrlack et al., 2001). Cyanobacterial cells are generally 

a poor food source for zooplankton and are often selectively avoided (DeMott et al., 1991). 

Daphnia populations are known to decline during cyanobacterial blooms, when alternative 

food sources for zooplankton have been exhausted (DeMott et al., 1991). Laboratory 

experiments have shown that intoxication of Daphnia upon ingestion of cyanobacterial cells 

largely is dependent on the microcystin content of the cells (Rohrlack et al., 1999). There is, 

however, no clear evidence that cyanobacterial toxins have evolved as a response to grazing 

pressure by zooplankton. The microcystin synthetase genes are found to be ancient and 

probably predate the metazoan lineage (Rantala et al., 2004). Therefore, the primary role of 

microcystins may not be a defense mechanism against grazing. As previously mentioned, the 

toxicity of microcystins to eukaryotic cells is caused by the inhibition of protein phosphatases 

1 and 2A, which are important enzymes in intercellular regulatory mechanisms (Honkanen et 

al., 1990; Dawson, 1998). Also for a number of cyanopeptolins, aeruginosins and 

microviridins, a protease inhibitory activity has been reported, however, little is known about 

the function, ecological effects and impact of these bioactive oligopeptides on aquatic biota, 

animals and humans (Welker and van Döhren, 2006).  

 

The role of cyanobacterial toxins and other cyanobacterial bioactive oligopeptides in 

allelopathic interactions is unclear, but the discussion regarding allelopathic effects of 

cyanobacterial metabolites mostly concerns the reduction of photosynthetic activity and 

growth rates of other planktonic autotrophs and macrophytes (Pflugmacher, 2002; Gross, 

2003; Legrand et al., 2003). A recent review by Babica et al. (2006) showed that only a 

limited number of studies describe effects of microcystins at concentrations that are usually 

found in the environment and concluded that the ability of microcystins to act as general 

allelopathic compounds seems unlikely. Microcystins are also thought to have 

ecophysiological functions, including a role in basic cyanobacterial metabolism, as metal ion 

chelators (Utkilen and Gjølme, 1995), in signaling and gene regulation (Dittmann et al., 2001; 
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Rantala et al., 2004), as an infochemical in intraspecific communication (Schatz et al., 2007), 

in light adaptation processes (Hesse et al., 2001), as an internal storage for N during N 

deficiency (Kotak at al., 2000), in inhibition of the carbon-concentration enzyme RuBisCo 

(Jähichen et al., 2001) or as mediators in colony formation (Kehr et al., 2006).  

 

1.3 Cyanobacterial taxonomy  

 

1.3.1 Classification of cyanobacteria 

The taxonomic classification of cyanobacteria is quite complex. There are presently two main 

classification systems available: the botanical classification system (Komárek and 

Anagnostidis, 1989; 1999; 2005; Anagnostidis and Komárek, 1991) and the bacteriological 

classification system (Castenholz, 2001). Cyanobacteria were traditionally classified on the 

basis of their morphology only, according to the International Code of Botanical 

Nomenclature, ICBN (Greuter et al., 2000). Despite the fact that the cyanobacterial 

morphology is complex compared to most other prokaryotic microbes, the taxonomy based on 

morphological characteristics alone does not necessarily result in a phylogenetically reliable 

taxonomy (Giovanni et al., 1988; Wilmotte, 1994). Moreover, morphological features are also 

problematic as they may vary considerable in response to different environmental conditions 

(Wilmotte and Golubic, 1991). The cyanobacteria are also classified according to the 

International Code of Nomenclature of Prokaryots, ICNP (Oren and Tindall, 2005). The 

bacteriological classification is today widely based on phenotypic, chemotypic and genotypic 

characteristics, the so called polyphasic approach, of pure cultures of cyanobacteria. It is a 

challenge to combine the traditional morphological classification and the classification based 

on molecular methods, however, effort is made to unify these two systems (Hoffmann, 2005; 

Oren and Tindall, 2005). In the current botanical classification system, Komárek and 

Anagnostidis (1989; 1999; 2005) and Anagnostidis and Komárek (1991) have revised the 

taxonomy of cyanobacteria and also applied phenotypic and genotypic data in this work. The 

botanical approach distinguishes four orders of cyanobacteria (Komárek and Anagnostidis, 

1989; 1999; 2005; Anagnostidis and Komárek, 1991). The bacteriological taxonomic system 

created for cyanobacteria is divided in five subsections (Rippka et al., 1979; Castenholz, 

2001) and they are to a large extent in agreement with the orders in the botanical system (see 

Table 1). Ideally, taxonomy reflects evolutionary relationships of the classified organisms, 

and the taxa are monophyletic groups of organisms (e.g. Wilmotte and Golubic, 1991; 

Wilmotte, 1994). DNA sequences make it possible to infer phylogenies of organisms (e.g. 
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Moritz and Hillis, 1996) and DNA is not affected by environmental factors in the same 

manner as many morphological traits are. The 16S rDNA gene is universally present in 

bacteria and cyanobacteria and is rather conserved. Woese et al. (e.g. Woese et al, 1976; 

Woese, 1987) established the modern bacterial phylogenetic classification mainly based on 

the 16S rDNA gene sequence.  

 
Table 1 The different orders of the botanical classification of cyanobacteria and their correspondence 
to the subsections of the bacterial classification and a short description of main morphological features 
and the occurrence in the environment.  
 
Botanical 
classification 

Bacteriological  
classification 

Main morphological features, occurrence in the environment and 
typical species 

Subsection I Unicellular cyanobacteria that reproduce by binary cell division or 
budding, either single cells or in colonies held together by mucilage or 
laminated sheaths. Many species are planktonic and contain gas vesicles. 
They occur in freshwaters as well as marine environments. Typical genera 
are Synechocystis and Microcystis 

Order 
Chroococcales 

Subsection II Some species can sometimes or always reproduce by small spherical cells 
(baeocytes) which are produced by multiple divisions of the mother cells. 
They generally grow in aquatic environments attached to substrata. A 
typical genus is Pleurocapsa. 

Order 
Oscillatoriales 

Subsection III Filamentous, mostly uniseriate, cyanobacteria without special cells. The 
trichomes usually have sheath and many species have gas vesicles. The 
group is ecologically diverse and they occur in plankton, benthic and 
periphytic environments in freshwater and in marine environments. Typical 
genera are Oscillatoria, Planktothrix and Spirulina. 

Order 
Nostocales 

Subsection IV Filamentous, mostly uniseriate, cyanobacteria that may form specialized 
cells (heterocysts and akinetes), some may form hormogonia (formation of 
motile trichomes that give rise to young filaments). Some species have gas 
vesicles. They occur in plankton, benthic and periphytic habitats in 
freshwater and marine environments and can also be found in terrestrial 
environments. Typical genera are Anabaena, Aphanizomenon and 
Nodularia. 

Order 
Stigonematales 

Subsection V Filamentous, usually branched (false or true) multiseriate cyanobacteria 
that may form specialized cells (heterocysts and akinetes) and some form 
hormogonia. They occur in aquatic and terrestrial environments but usually 
not in the plankton. Typical genus is Fischerella.  

 
 

1.3.2 Molecular methods used for inference of cyanobacterial phylogeny 

Several molecular methods are used for phylogenetic and taxonomic studies of cyanobacteria 

(Wilmotte, 1994) including DNA-DNA hybridization (Stam, 1980), fingerprinting based upon 

PCR with primers from short and long tandemly repeated elements (Rasmussen and 

Svenning, 1998), classification of clone cultures based upon 16S rDNA sequences (Neilan et 

al., 1994), and sequencing of other coding and non-coding regions of DNA (Nelissen et al., 

1994; Neilan et al., 1995). The widely used 16S rDNA region has been useful in several 

phylogenetic analyses of cyanobacteria (e.g. Wilmotte and Golubic, 1991; Ben-Porath and 

Zehr, 1994; Nelissen et al., 1996; Fergusson and Saint, 2000). Phylogenetic investigations 
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using this region have shown that many unicellular and filamentous non-heterocysteous 

cyanobacterial genera are probably polyphyletic and do not form natural taxa, whereas 

heterocysteous strains form a monophyletic group (Giovannoni et al., 1988; Wilmotte, 1994; 

Castenholz et al., 2001; Rippka et al., 2001; Wilmotte and Herdman, 2001). However, the 

number of variable positions is low in the 16S rDNA and the gene is unsuitable for studying 

the relationship at or below the species level (e.g. Neilan et al., 1997a; Rudi et al., 1997).  

 

A number of other coding and non-coding regions of DNA are also used to infer the 

phylogeny of cyanobacteria. The ITS1 between the 16S and 23S rDNA genes is more variable 

than the 16S rDNA gene sequence and has been used as a marker for studies of inter- and 

intraspecific variability in cyanobacteria (Nelissen et al., 1994; Wilmotte, 1994; Neilan et al., 

1997b; Otsuka et al., 1999). The ITS1 region of bacteria is variable both in length and the 

nucleotide sequence (Gürtler and Stanisich, 1996) and multiple copies of the ITS1 may be 

found within one genome and then usually varies in length and sequence (Iteman et al., 2000). 

Although the ITS1 region itself is non-coding, it may carry one or two tRNA genes (Iteman et 

al., 2000). The ITS1 has been investigated in a number of studies focussing on phylogeny and 

genetic diversity of cyanobacteria (e.g. Nelissen et al., 1994; Neilan et al., 1997b; Iteman et 

al., 2000; 2002; Laamanen et al., 2001). Phycocyanin (PC) is a phycobiliprotein that is found 

in cyanobacteria, cryptophytes, and rhodophytes (e.g. Glazer, 1989) and the genes encoding 

phycocyanin are good targets for studying cyanobacerial inter- and intraspecific variations in 

cyanobacteria (Neilan et al., 1995). The entire PC operon contains genes coding for two bilin 

subunits (cpcB and cpcA) and three linker polypeptides (Belknap and Hazelkorn, 1987), and 

the intergenic spacer (IGS) between the two bilin subunit genes, designated PC-IGS, which is 

a potentially highly variable region of DNA. The PC-IGS has been used in a number of 

studies of phylogenetic relationships and genetic diversity in cyanobacteria (e.g. Neilan et al., 

1995; Bolch et al., 1996; Laamanen et al., 2001; Dyble et al., 2002; Rohrlack et al., 2008). 

Other genetic markers that are commonly used in studies of cyanobacterial phylogeny and 

genetic diversity are the DNA-dependent RNA polymerase gene rpoC1 (Fergusson and Saint, 

2000; Wilson et al., 2000), the nitrogenase genes nifH (Ben-Porath and Zehr, 1994) and the 

IGS between two adjacent copies of the gene encoding the major structural gas vesicle protein 

gvpA (Barker et al., 1999). Many cyanobacterial species have a world wide distribution 

(Sivonen and Jones, 1999; Codd et al., 2005a), and the use of genetic tools can lead to a better 

understanding of the geographical distribution of cyanobacteria.  
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1.4 Cyanobacteria in Lake Victoria 

 

1.4.1 The Lake Victoria basin  

The equatorial Lake Victoria is the second largest freshwater lake in the world by area (68 

800 km2) and the largest tropical lake in the world. It is situated at high altitude (1134 m) on 

an elevated plateau between the western and eastern part of the African Great rift valley (Fig. 

3). The East African Great Lakes are unique natural resources and form a freshwater eco-

region with a unique biodiversity (Sturmbauer and Meyer, 1992; Bootsma and Hecky, 2003). 

Lake Malawi and Lake Tanganyika in the western rift valley are two of the deepest and oldest 

lakes in the world, whereas Lake Victoria is comparably younger and relatively shallow for its 

size (max. depth 84). The catchment area of 194 000 km2 includes large parts of the three 

riparian countries Kenya, Tanzania and Uganda, and the neighbouring states of Rwanda and 

Burundi, and has a high and rapidly growing population whose activities influence the lake 

intensively (Verschuren et al., 2002).  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Map of the Lake Victoria region with important cities. Other lakes in the region from where 
we have isolated cyanobacterial strains (see Table 3): KC=Kazinga Channel, LM=Lake Mburo, 
MB=Murchison Bay, LB=Lake Baringo, NP=Nakuru final sewage pond, PP=Pilsner Pond, LN=Lake 
Naivasha, KS=Kenyatta University sewage pond 
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The Lake Victoria ecosystem has undergone substantial changes over the last five decades, 

including introduction of exotic species, assumed over-exploitation of fish, severe 

eutrophication and climate change (Hecky, 1993; Verschuren et al., 2002). The lake originally 

had an extremely rich fish fauna (Witte and van Oijen, 1990) and the best known ecological 

change is probably the introduction and successful establishment of Nile perch (Lates 

niloticus) which dramatically altered the indigenous fauna in Lake Victoria (for a review see 

Goudswaard et al., 2008). The lake supports one of the largest commercial freshwater 

fisheries in the world (Simonit and Perrings, 2005), but the fisheries are currently considered 

overexploited largely due to failures in controlling the fishing effort (Simonit and Perrings, 

2005). Another introduced species to the Lake Victoria ecosystem is the water hyacinth 

(Eichhornia crassipes), which has caused large scale infiltration of the lake with major 

negative ecological and economic impacts to the Lake Victoria region (Twongo, 1991; 

Albright et al., 2004). A considerable pressure to Lake Victoria is eutrophication (Hecky, 

1993). Over the last 50 years, substantial increase in agriculture, deforestation, domestic, 

municipal and industrial effluents, and human encroachment on the shoreline leading to 

wetland degradation have caused historically high nutrient loadings into the lake (Hecky, 

1993; Verschuren et al., 2002). The overall phytoplankton biomass has increased (e.g. 

Ochumba and Kibaara, 1989; Ochumba, 1990; Mugidde, 1993; Lung’aiya et al., 2000), with a 

notable decrease in water transparency (Mugidde, 1993). Whereas rates of primary production 

have accelerated near the lake surface, the rates of decomposition have depleted dissolved 

oxygen concentrations in the deepest one-third of the water column (Hecky et al., 1994). In 

near shore areas, episodes of massive fish kills have been reported as a result of oxygen 

depletion (Ochumba, 1990). A disproportionate increase in phosphorous loading relative to 

nitrogen and silica loadings to the lake (Lehman and Branstrator 1994; Hecky, 1993; 

Lindenschmidt et al., 1998) has led to a pronounced shift in the phytoplankton composition, 

from a historical phytoplankton community dominated by green algae and large diatoms (e.g. 

Evans, 1962; Talling, 1966) to a present dominance of cyanobacteria (Ochumba and Kibaara, 

1989; Lung’ayia, 2000; Kling et al., 2001). The dramatic ecosystem alterations have to a large 

extent been explained by the large food-web changes caused by “top-down” predation by the 

introduced Nile perch and the assumed overfishing (Goudswaard et al., 2008). Accordingly, 

the reduction in indigenous phytoplanktivorous fish has partly been blamed for the increase in 

algal biomass (Witte et al., 1992). On the other hand, the increased nutrient loading to the lake 

evidently gives a “bottom-up” effect and influences the phytoplankton productivity (Mugidde, 

1993) meaning that the eutrophication also is a serious threat to the Lake Victoria ecosystem.  
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1.4.2 Phytoplankton community and cyanobacterial abundance  in Lake Victoria 

Phytoplankton investigations in Lake Victoria have been conducted ever since the late 19th 

century and the first reported phytoplankton investigation in the lake was accomplished by 

Schmidle (1902). After that, more than twenty studies on phytoplankton in the lake were 

published (review by Talling, 1987). Over the last two decades, the taxonomic and floristic 

observations have mainly appeared incidentally in relation to ecological studies. There are, 

however, some more recent studies on cyanobacterial population in Lake Victoria (Komàrek 

and Kling, 1991). Based on all of these investigations, Cocquyt et al. (1993) made a list of a 

total of 601 taxa of algae (mainly phytoplankton), belonging to 117 genera for the whole of 

Lake Victoria. Komárek and Kling (1991) emphasize that the extreme variation of 

populations and taxa complicates the identification of the genera and delimitation of different 

taxa, and further that Lake Victoria comprises several extremely variable species which are 

impossible to identify using the available keys and associated literature based on morphology. 

The phytoplankton community of Lake Victoria before severe antropogenic eutrophication 

(1960’s) was dominated by diatoms, cyanobacteria and chlorophytes (Talling, 1987). The 

present composition of the phytoplankton community has to a large extent changed and there 

is proportionally more dominance of cyanobacteria and the diatom Nitzschia (Kling et al., 

2001). Lake Victoria is differentiated in two main types of environments (Worthington, 

1930): the shallow semi-enclosed gulfs and bays that are not deep enough to be persistently 

stratified, and the open lake waters with stratification and clear seasonality. Consequently, the 

phytoplankton communities in the inshore and offshore areas are differentiated (Talling, 

1987). Cyanobacteria are increasingly predominant in the whole of Lake Victoria, and the 

diatoms are more abundant in offshore than inshore waters (Hecky, 1993; Lung’ayia et al., 

2000; Kling et al., 2001). The offshore waters show seasonality with periods of stratification 

and periods of full mixing and changes in the mixed layer depth (Talling, 1987; Hecky et al. 

1994; Spiegel and Coulter, 1996). Accordingly, diatoms develop during periods of vertical 

mixing, whereas cyanobacteria generally are more dominant in periods of stratification 

(Talling, 1987). In inshore shallow waters where cyanobacteria are dominating, the number of 

cyanobacterial species is found to be more diverse during dry season than in the rainy season 

(Lung’ayia et al., 2000).  

 

The occurrence of cyanobacterial blooms in Lake Victoria was evident at the beginning of the 

20th century (Ostenfeld, 1908) and currently mass populations of cyanobacteria near the 

shores of Lake Victoria are becoming an increasingly common phenomenon (Ochumba and 
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Kibaara, 1989; Hecky and Bugenyi, 1992; Hecky, 1993; Gophen et al., 1995; Lung’ayia et al., 

2000; Kling et al., 2001; Krienitz et al., 2002). The most commonly reported cyanobacteria 

are Anabaena spp., Microcystis spp., Planktolyngbia spp., Anabaenopsis spp., and 

Merismopedia spp.  (e.g. Talling, 1987; Ochumba and Kibaara, 1989; Lung’ayia et al., 2000; 

Kling et al., 2001; Krienitz et al., 2002). In Lake Victoria, changing nutrient conditions, 

silicon depletion and nitrogen limitation, light limitation, influence of dry and wet season, and 

food-web changes have been proposed as main factors regulation the phytoplankton 

populations (Mugidde, 1993; Lung’ayia et al., 2000; Kling et al., 2001; Gikuma-Njuru, 2005; 

Silsbe et al., 2006).  

 

1.4.3 Cyanobacterial toxins  in Lake Victoria and other East African lakes  

Despite the large number of taxonomic and ecological studies in Lake Victoria, there is little 

knowledge on cyanobacterial toxins. Krienitz et al. (2002) reported an incident of 

microcystins (<1 µg L-1) during a heavy bloom of Anabaena flos-aquae and Anabaena 

discoidea in a near shore area of Nyanza Gulf (Kenya). Sekadende et al. (2005) performed 

sampling over a four months period in Mwanza Gulf (Tanzania) and found microcystins 

(about 1 µg L-1) in one sample dominated by the cyanobacterial species Aphanocapsa sp., 

Anabaena sp., Planktolyngbya spp. and Microcystis sp.  

 

As for Lake Victoria, most of the research on cyanobacteria in other water bodies in the East 

African region has been related to taxonomic and ecological studies. The region comprises the 

large, deep freshwater lakes of the Western Rift Valley, a number of alkaline lakes and hot 

springs mainly in the Eastern Rift Valley, in addition to a number of smaller and middle sized 

freshwater lakes. In recent years, a series of studies of cyanobacteria and cyanobacterial 

toxins have been conducted in lakes in the Eastern Rift Valley in Kenya (Ballot et al., 2003; 

2004; 2005; Krienitz et al., 2003; Mussagy et al., 2006) and Tanzania (Lugomela et al., 2006).  
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2 Aims of the study 

 

The overall aim of this study was to improve the knowledge of the eutrophication level and 

the proliferation of toxin-producing cyanobacteria in Murchison Bay, Lake Victoria 

(Uganda). 

 

This has been accomplished by addressing the following sub-goals:  

 

• Assess the level of eutrophication in Murchison Bay and determine possible 

mechanisms affecting the eutrophication in the bay  

 

• Investigate the diversity of the phytoplankton community in Murchison Bay, in 

particular the cyanobacterial population, and assess the influence of environmental 

factors  

 

• Identify and quantify microcystins in Murchison Bay, identify the microcystin 

producing species and assess the influence of environmental factors on the microcystin 

production 

 

• Characterise the morphological, genetical and chemical diversity of strains of 

Microcystis aeruginosa isolated from Murchison Bay and other water bodies in the 

East African region and infer phylogenetic relationships to strains from other 

geographic regions.  

 

• Characterise the morphological, genetical and chemical variation of strains of 

Cylindrospermopsis raciborskii isolated from Uganda and Germany and infer 

phylogenetic relationships to strains from other geographic regions, and assess the 

distribution patterns of this species 
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3 Material and methods 

 

3.1 Study area 

The field studies were carried out in Murchison Bay in the north western part of Lake Victoria 

(Fig. 4). The bay is located between 00o04’N, 32o37‘E and 00o18’N, 32o38‘E and is an 

extension of Lake Victoria to the north towards Kampala, the capital of Uganda. The shallow 

embayment is 30 km long and the bottom has a gentle slope from the outlet of the Nakivubo 

channel to about 11 m depth at the Gaba narrows and to about 12 m at the outer part of the 

bay. The bay is divided in a semi-enclosed inner part and a wider outer part by narrows about 

5 km from the inner shores. Murchison Bay serves as drinking water supply for Kampala and 

two water works, Gaba I and II, are situated just inside the narrows about 4 km out in the bay.  

 

 
 
 
Figure 4 Map of Murchison Bay with the four sampling stations. The map also shows the cities of 
Kampala and Entebbe, the location of the water works and the Nakivubo Channel. The upper left map 
shows the African continent and the lower left map shows Lake Victoria and the position of 
Murchison Bay. 



The Inner Murchison Bay (Fig. 5; mean depth 3.2 m) covers an area of about 18 km2 and has 

a catchment area of 282 km2, comprising large parts of the urban areas and settlement of 

Kampala (>1 million inhabitants), in addition to small scale farmlands and grasslands, and the 

shoreline is surrounded by large papyrus swamps (Schröder et al., 1998). As a consequence of 

urban development and expansion, the wetlands in most parts of the city have been drained 

and turned into agricultural areas or developed for commercial, industrial or residential 

purposes (Kansiime et al., 2005). The most significant drainage of the catchment area is the 

Nakivubo channel which runs through Kampala and the wetland areas surrounding the bay, 

entering the inner part of the bay from the north (Kansiime et al., 2005). Nakivubo channel 

was constructed some fifty years ago and was designed to carry storm water as fast as 

possible from the city of Kampala into Murchison Bay. The drainage channels in Kampala 

were developed to terminate in the Nakivubo channel and sewage was routed through a high 

level and low level system to Bugolobi sewage treatment works. Kampala is now expanding 

fast both in population and infrastructure, and unfortunately the sewage systems and the 

wastewater treatment have not expanded accordingly. In addition, due to old age and blockage 

of some sewers, part of the raw sewage leaks directly into the Nakivubo channel. 

Consequently the Nakivubo channel is now receiving a considerable portion of partially 

treated and untreated wastewater, both of industrial and domestic origin (Schröder et al., 

1998).  
 

 
 
Figure 5 Murchison Bay at Gaba. The arrow indicates the intake of water to the Gaba II water works. 
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In the past, the Nakivubo channel ended in the outer part of the wetland areas, allowing the 

water to be drained in the papyrus swamps before entering the bay. After heavy rain, the flow 

in the Nakivobo channel increases very fast, and consequently the runoff water flushes into 

the bay (Schröder et al., 1998; Kansiime et al., 2005). In 2001-2003, however, the channel 

was enlarged in order to remove storm water more efficiently from the urban areas. It was 

widened to about 20 m and stretched through the wetland ending only a couple of hundred 

meters before Murchison Bay. The water in the channel is a mixture of secondary effluents 

from the Bugolobi sewage treatment works and heavily polluted untreated wastewater from 

the city. Today, however, the predominant papyrus wetland has been converted to cocoyam 

fields, and the retention of nutrients and other pollutants is moderate to absent, increasing the 

concerns for the water quality in the bay (Kansiime et al., 2005).  

 

The Lake Victoria region has an equatorial climate with small seasonal variations in solar 

radiation. Measurements of global photosynthetic active radiation (PAR) at Makerere 

University in Kampala, over a 5 year period (2003-2007), show that there is an annual 

average light intensity of 1500-2500 µmol m-2 s-1 in the area of Murchison Bay (NUFU 

project 03/22). The mean annual temperatures in areas close to Murchison Bay range between 

21.5 and 22.5 °C. As a rule, there are two rainy seasons, the long rains from March to May 

with a peak in April and the shorter rains from November to October. There are, however, 

geographical and annual variations.  

 

3.2 Sampling and cultures 

We established four stations in a longitudinal transect from the inner to the outer bay (Fig 4; 

Table 2). The sampling of Murchison Bay was carried out from November 2000 to March 

2004. The sampling frequency was generally every month in the period from November 2000 

to March 2003 and every second week in the period from April 2003 to March 2004. All 

material and methods used in the studies are described in detail in the respective papers I-V.  

 

Table 2 Geographical position, names and maximum depth of the stations in Murchison Bay 
 
Station nr.  Depth (m) Name Geographical position 

St. 1 1.5 Mouth of Nakivubo Channel 00o17.076’N, 32o 38.496‘E 
St. 2 5 South of Namalusu Island 00o15.727’N, 32o 38.749‘E 
St. 3 11 Gaba Narrows 00o14.480’N, 32o 38.589‘E 
St. 4 12 South of Makusu Island 00o08.715’N, 32o 37.580‘E 
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We have isolated a number of cyanobacterial strains from different water bodies in East 

Africa in addition to Murchison Bay. An overview over the strains and their geographical 

origin is given in Table 3. The strains were used in the studies IV and V. The geographical 

locations of the other lakes where strains were isolated from are shown on the map in Fig. 3. 

 

Table 3 Cyanobacterial strains used in this study and their geographical origin. The year of isolation 
and the person responsible for strains isolation is also given (SH=Sigrid Haande, RS=Randi Skulberg, 
AB=Andreas Ballot, MB=Martin Beck)  
 

Strain Geographic origin       Isolation 
year 

Isolated by 

 

Microcystis aeruginosa 

  

NIVA-CYA 431 Murchison Bay, Uganda 2000 RS 
NIVA-CYA 432 Murchison Bay, Uganda 2000 RS 
NIVA-CYA 433 Murchison Bay, Uganda 2000 RS 
NIVA-CYA 463 Murchison Bay, Uganda 2003 SH 
NIVA-CYA 464 Murchison Bay, Uganda 2003 SH 
NIVA-CYA 465 Murchison Bay, Uganda 2003 SH 
NIVA-CYA 475 Murchison Bay, Uganda 2003 SH 
NIVA-CYA 476 Murchison Bay, Uganda 2004 SH 
NIVA-CYA 477 Murchison Bay, Uganda 2003 SH 
NIVA-CYA 478 Murchison Bay, Uganda 2003 SH 
NIVA-CYA 482 Lake Mburo, Uganda  2004 RS 
NIVA-CYA 495 Kazinga Channel, Uganda 2004 RS 
NIVA-CYA 496 Kazinga Channel, Uganda 2004 RS 
NIVA-CYA 497 Kazinga Channel, Uganda 2004 RS 
NIVA-CYA 502 Murchison Bay, Uganda 2004 SH 
NIVA-CYA 503 Murchison Bay, Uganda  2004 SH 
NIVA-CYA 522 Murchison Bay, Uganda 2004 SH 
AB2002/21 Nakuru final sewage pond, Kenya 2002 AB 
AB2002/22 Kenyatta University sewage pond, Kenya          2002 AB 
AB2002/23 Lake Baringo, Kenya 2002 AB 
AB2002/24 Pilsner Pond, Kenya 2002 AB 
AB2002/40 Lake Naivasha, Kenya 2002 AB 
AB2002/52 Lake Baringo, Kenya 2002 AB 
AB2002/55 Kenyatta University sewage pond, Kenya 2002 AB 

 

Cylindrospermopsis raciborskii 

NIVA-CYA 506 Kazinga Channel, Uganda  2004 RS 
NIVA-CYA 507 Kazinga Channel, Uganda 2004 RS 
NIVA-CYA 508 Kazinga Channel, Uganda 2004 RS 
NIVA-CYA 509 Kazinga Channel, Uganda 2004 RS 
NIVA-CYA 510 Kazinga Channel, Uganda 2004 RS 
NIVA-CYA 511 Lake Victoria, Uganda 2004 RS 
ZIE05CR Zierker See, Germany 2005 MB 
ZIE11CR Zierker See, Germany 2005 MB 
ZIE13CR Zierker See, Germany 2005 MB 
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4 Results and discussion 

 

4.1 Eutrophication in Murchison Bay 

During the period of our study from 2000-2004, the Inner Murchison Bay had high average 

concentrations of total phosphorous (>90 µg L-1), total nitrogen (>1100 µg L-1) and Chl-a (> 

30 mg L-1) and the phytoplankton community was dominated by a variety of cyanobacterial 

species (I, II, III). These results correspond to the general view of an ongoing eutrophication 

in Lake Victoria and several studies from other inshore bays and gulfs like Napoleon Gulf, 

Pilkington Bay, Nyanza Gulf and Mwanza Gulf of Lake Victoria have reported similar trends 

of nutrient enrichment (Hecky, 1993; Calamari, 1995; Mugidde, 1993; Lung’ayia et al., 2001; 

Gikuma-Njuru and Hecky, 2005; Sekandende et al., 2005). One of the most severe problems 

related to eutrophication in freshwater ecosystems worldwide is the occurrence of 

cyanobacterial blooms. We found that the concentration of total microcystin in the bay at 

times exceeded the WHO guide line value of 1 µg L-1 MC for drinking water (III), and this 

may present a health risk for the users of the lake water.  

 

Two surveys in the inner part of the Murchison Bay conducted in the 1990s concluded that 

there had been a major increase in nutrient loading to the bay since the 1960’s (Källqvist et 

al., 1996; Schröder et al., 1998, and references therein). Källqvist et al. (1996) measured 

concentrations of TP <50 µg L-1, TN <500 µg L-1 and Chl-a about 20 mg L-1 in a surface 

sample (0-2 m) at a site close to the Gaba water works (close to our St. 2). In a seven months 

long monitoring survey in 1997, Schröder et al. (1998) found increased concentration of 

nutrients and Chl-a in surface samples at the same location; 82 µg L-1 TP, 782 µg L-1 TN and 

54 mg L-1 Chl-a, however, emphasizing that the study period was characterized by unusually 

heavy rainfalls, thus causing unusually high runoff to the bay. Our data showed even higher 

values of TP and TN, but the Chl-a values were lower than found in 1997. In general, there 

has been an increase in the nutrient loading of Murchison Bay over the last decade (I, II, III), 

indicating an expanding eutrophication of the bay.  

 

Kampala is the largest city in the Lake Victoria region, and most of the urban settlement lies 

within the catchment area of Murchison Bay. Most of the waste water from the city is 

discharged through the enlarged Nakivubo channel, ending in the swamps close to the Inner 

Murchison Bay. The main pollution sources to Murchison Bay are domestic and industrial 

waste water, sewage effluents and surface runoff mainly from the urban areas of Kampala 
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(Schröder et al., 1998; Kansiime et al., 2005). It has been estimated that about 80 % of the 

nutrients from the Nakivubo channel come from domestic (non-industrial) sources (Schröder 

et al., 1998). It is likely that the enlargement of Nakivubo channel can lead to even higher 

nutrient loadings in Murchsion Bay. Our data showed a marked increase in the nutrient 

concentration in Murchison Bay after September 2003 (II, III), and this may be an effect of 

construction work of the Nakivubo channel in the wetland areas close to the bay around this 

time (Kansiime, pers. com.). Data from sampling in 2005 indicate that there has been a 

continued increase in the nutrient concentration in Murchison Bay (Ronald Semyalo, 

unpublished data), however, long term monitoring must be performed to investigate the 

possible effects of the enlarged channel and thereby also give an even better understanding of 

the eutrophication process in the bay.  

 

4.2 Surface seiches mediated eutrophication in Murchison Bay 

The nutrient enrichment in the Inner Murchison Bay was evident (I, II, III), but the data also 

show that there was a rapid decrease in conductivity and nutrient concentrations from the 

innermost part of the bay (St. 1) towards St. 4 in the outer part of the bay (I). Schröder et al. 

(1998) found a similar gradient of decreasing nutrient concentrations with increasing distance 

from the Nakivubo Swamp. Figure 6 is based on the data collected in the period from April 

2003- March 2004 and illustrates the gradient of TP and TN from St. 1 to St. 4. At St. 1, the 

levels of TP and TN were varying from 70-600 µg L-1 and 500-5000 µg L-1, respectively, 

reflecting a highly variable input to the bay. At the other stations in the bay, the nutrient levels 

were less variable.  
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Figure 6 Average concentration and standard deviation (n=25) of a) total phosphorous (TP) and b) 
total nitrogen at the four stations in Murchison Bay in April 2003-March 2004 
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Despite the excessive amounts of nutrients entering the bay, the nutrient concentration 

decreased rapidly (I) and the phytoplankton biomass (II, III) was not as high as expected with 

respect to the nutrient input. Murchison Bay is an open system and is therefore also 

influenced by water exchange with the main lake. Likely, biotic uptake of nutrients causes 

some reduction of the nutrient concentrations in the bay, however, Kansiime and Nalubega 

(1999) pointed out that water exchange between the inner and outer parts of the bay may 

additionally be responsible for the dilution of pollutants from the Inner Murchison Bay. The 

water quality and the biological processes in a bay will be influenced both by the water from 

the watershed and the water exchange with the main lake.  

 

Seiches in great lakes are recognised to play a similar role to that of tides in marine 

environments in organizing the structure and function of estuaries, embayments and coastal 

ecosystems (Bedford, 1992; Keough, et al., 1999; Trebitz, 2006). Seiches are standing waves 

that move water up and down (Ji and Jin, 2006), and in coastal areas, seiche driven water 

level fluctuations can cause water exchange in shallow embayments (Trebitz, 2006). Seiches 

are mainly caused by wind and air pressure variation over the lake, but in addition there is a 

small component of astronomic tide that will modify the seiches (Trebitz, 2006). In the Great 

Lakes in North America, short-term water level fluctuations have a typical variation from a 

couple of cm to about 50 cm (Trebitz, 2006) and Mortimer (2004) stated that the Great Lakes 

are large enough to have substantial and persistent surface seiches. We therefore hypothesized 

that surface seiches in Lake Victoria might be a main factor in the water exchange in 

Murchison Bay, and thereby strongly affect the dilution process and water quality in the bay 

(I). Measurements of hourly water level at Entebbe showed a daily variation in water levels 

between 1.9 and 18.8 cm. Generally, there was one main maximum and one main minimum in 

water level each day, with additional 4-7 smaller maxima and minima. These water level 

variations seemed to be both a daily rhythm and more frequent oscillations appearing in 3-5 

hour cycles. On average, the total daily water level amplitude was 6.4 cm. We expected these 

fairly regular water level fluctuations to mainly be caused by surface seiches and thus the 

seiches caused water transport in and out of the bay. The daily water level fluctuations in 

Murchison Bay were in the same order of magnitude as found in other large lakes like Lake 

Okeechobee in Florida (Ji and Jin, 2006), and in the lower end of what has been recorded in 

the Great Lakes in North America (Trebitz, 2006). 
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In Murchison Bay, the incoming water from the catchment area had higher conductivity and 

nutrient concentrations than the water in the bay, and we could therefore calculate an 

estimated dilution of these parameters in the bay (I). Based on the measured water level 

fluctuation data, we performed simple calculations describing a seiche driven water exchange 

in Murchison Bay in order to investigate the dilution process in the bay (I). The calculations 

and equations used are described in detail in the materials and methods part of Paper I. 

Briefly, the volume of the daily water exchange between the bay and the lake was calculated 

as the average daily difference in water volume at maximum and minimum water level. Based 

on the volume of water in the bay (Schröder et al., 1998), the volume of water exchanged with 

the main lake (estimated on basis of water level fluctuation data, I) and the volume of water 

coming from the watershed (Schröder et al., 1998), we found a dilution factor of the incoming 

water of 9.6. The expected conductivity or nutrient concentration after mixing in the bay was 

calculated for each sampling date on the basis of the concentrations at St. 1 and at St. 4 and 

the estimated dilution ratio (9.6). A non-linear least square regression model was used to 

describe the reduction of the various components throughout the bay. The estimated values 

for each station were compared to the actually measured values of a given parameter at the 

same stations, and a good agreement between estimated and measured values would indicate 

that the water exchange was driven by seiches. The results showed a good agreement between 

estimated and measured conductivity in the bay (I). Conductivity is regarded to be 

biologically neutral, and therefore the accordance in measured and estimated conductivity 

supported our theory that seiches dominated the water exchange in the bay. The 

corresponding estimated and measured values of conductivity likely excludes a significant 

impact of other factors affecting water exchange, like currents driven by local wind or 

currents caused by inflowing water from the catchment area. TP and particularly PO4-P 

tended to be more reduced in the inner part of the bay when compared to the estimated values, 

and this is most likely due to biological uptake by phytoplankton and water hyacinths, and 

also sedimentation processes. The measured values of TN did not decrease accordingly to the 

estimated values, and this might be due to N-fixation. Murchison Bay is dominated by N-

fixing cyanobacteria, mostly of the genera Anabaena (II, III), and we found that the 

phytoplankton community is likely to be N-limited (II). N-fixing species of cyanobacteria are 

abundant both in inshore and offshore areas of Lake Victoria (Kling et al., 2001). Mugidde 

(2003) found that N-fixation in Napoleon Gulf, an inshore area in the northern part of Lake 

Victoria, significantly contributed to the overall N budget of this gulf.  
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The semi-enclosed Inner Murchison Bay has so far been regarded to have quite limited water 

exchange with the main lake (Schröder et al., 1998), but our results contradicted this view, 

and showed that there is a significant daily transport of water in and out of the bay (I). The 

water exchange in the bay caused a dilution of nutrients in Murchison Bay and thus mediated 

the eutrophication process in the bay. There was a rapid transport of nutrients to the open lake 

and this emphasizes the significance of Murchison Bay as a major contributor to the 

eutrophication process of Lake Victoria. However, water from the main lake will also be 

transported into the bay and thereby influence the bay ecosystem. Gikuma-Njuru and Hecky 

(2005) found similar values of TP, TN and Chl-a in Nyanza Gulf in the Kenyan part of the 

lake as we found in Murchison Bay. However, they found the TP concentrations to be higher 

in the open lake, than in the gulf, and they claimed that the gulf was a sink for P rather than 

contributing to the P values in the open lake. Our study has revealed that Murchison Bay has 

considerable water exchange with the main lake and is probably a more dynamic system than 

first recognized (I).  

 

4.3 Phytoplankton community and cyanobacterial dominance in Murchison Bay 

The phytoplankton community in Murchison Bay was studied in the period from April 2003-

March 2004 (II, III). We selected St. 2 as the representative site for the Inner Murchison Bay 

and St. 4 as a representative for the outer part of the bay (II, III). Our studies show that the 

phytoplankton community was dominated by cyanobacteria and diatoms. The cyanobacteria 

were equally dominant in both parts of the bay, whereas the diatoms were more abundant in 

the outer part of the bay. Species of Chlorophyceae and Cryptophyceae and different types of 

picoplankton (cell diameter < 2 µm) were present throughout the year, whereas species of 

Chrysophyceae, Dinophyceae and Euglenophyceae only were found at some occasions. The 

average total phytoplankton biovolume was 1.7 ± 1.0 mm3 L-1 (mean value SD, n=24) at St. 2 

and 2.6 ± 1.0 mm3 L-1 at St. 4 (II, III). The composition of phytoplankton in Murchison Bay 

is in accordance to other studies on phytoplankton in other inshore and coastal areas of Lake 

Victoria (Ochumba and Kibaara, 1989; Hecky and Bugenyi, 1992; Hecky, 1993; Gophen et 

al., 1995; Lung’ayia et al., 2000; Kling et al., 2001; Krienitz et al., 2002; Sekandende et al., 

2005).  

 

Despite the clear dominance of cyanobacteria in the phytoplankton community, the diatom 

Nitzschia acicularis was the single most abundant species in Murchison Bay and comprised 

about 28 % of the total biomass at St. 4 (II). At St. 2, this species was less dominant, but here 
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the diatom Aulacoseira granulata was the single most abundant species and constituted about 

15 % of the total biomass (II). This species was nearly absent at St. 4 (II). Other studies from 

inshore and coastal areas of Lake Victoria found a similar distribution pattern of these diatom 

species (Lung’ayia et al., 2000; Kling et al., 2001). In Murchison Bay, the silicon (Si) 

concentration was higher in the inner part of the bay and decreased to lower concentrations at 

St. 4 in the outer part of the bay (II), and this can explain the different distribution of the two 

diatom species. The increased nutrient input to Lake Victoria since the 1960s caused an 

overall increase in the diatom biomass and as a consequence, the concentration of dissolved Si 

has been depleted in the lake (Kilham et al., 1986; Hecky, 1993). Aulacoseira was earlier the 

most abundant diatom in the offshore areas of Lake Victoria, but is now excluded by the 

continuously low Si concentrations (Hecky, 1993; Kling et al., 2001) and can only be 

abundant in near-shore areas where there is input of Si from the catchment area. The smaller 

Nitzschia acicularis is less Si dependent (Kilham et al., 1986) and is now the most dominant 

diatom species in the offshore waters of Lake Victoria (Hecky, 1993; Kling et al., 2001). The 

total biomass was highest in the outer part of the bay, whereas the Chl-a concentration was 

higher in the inner part of the bay, and this is most likely due to the different composition of 

the phytoplankton community in the different parts of the bay with a very high proportion of 

the diatom Nitzschia acicularis in the outer part of the bay.  

 

More than 20 species of cyanobacteria were found in Murchison Bay (II, III). Species of the 

genus Anabaena (mainly Anabaena flos-aquae) were dominating at both stations in the bay, 

and constituted about 12 % (St. 2) and 25 % (St. 4) of the total phytoplankton biomass. Other 

abundant cyanobacterial species at St. 2 were (% of total biomass); Microcystis wesenbergii 

(11.6 %), Gomphosphaeria aponina (8.6 %), Microcystis aeruginosa (8.5 %), and 

Planktolyngbya circumcreta (6.2 %), and at St. 4; P. circumcreta (6.7 %), M. wesenbergii 

(5.8 %), and G. aponina (5.5 %) (II, III). The average total biomass of cyanobacteria was 1.0 

± 0.7 mm3 L-1 (mean value SD, n=24) at St. 2 and 1.6 ± 0.7 mm3 L-1 at St. 4 (II, III). Our data 

confirm the general view that Anabaena spp. are the most abundant cyanobacterial species in 

inshore and offshore waters in Lake Victoria (Talling, 1987; Ochumba and Kibaara, 1989; 

Lung’ayia et al., 2000; Kling et al., 2001). Other commonly reported cyanobacterial species in 

inshore areas are Microcystis sp., Planktolyngbya sp., and Aphanocapsa sp. (Talling, 1987; 

Lung’ayia et al., 2000; Kling et al., 2001; Sekandende et al., 2005).  
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Murchison Bay is situated at the equator where rainy and dry seasons create seasonal 

variations. The measured water temperatures were high over the whole year (23.3 - 27.8 °C; 

II, III), generally higher during the rainy seasons, but all in all comprising a good 

environment for phytoplankton growth. We did not observe higher biomass of phytoplankton 

during the rainy seasons (II), as found in other studies in inshore areas of Lake Victoria 

(Lung’ayia et al., 2000). However, the relative proportion of cyanobacteria and diatoms 

changed from rainy to dry seasons at both stations, with a higher proportion of cyanobacteria 

in the periods of dry season and a higher proportion of diatoms in the periods of rainy seasons 

(II). Earlier investigations also found a higher proportion of diatoms during rainy seasons in 

Lake Victoria (Talling, 1987; Lung’ayia et al., 2000; Kling et al., 2001). Cyanobacterial 

dominance is generally associated with high nutrient concentrations and eutrophication (e.g. 

Dokulil and Teubner, 2000). As already described, there was a substantial nutrient loading to 

the Inner Murchison Bay (I, II, III), and in general, the phytoplankton biovolume was 

comparably low over the whole study period (0.7-4.7 mm3 L-1 at St. 2 and 0.9-5.3 mm3 L-1 at 

St. 4) (II, III). In addition, the nutrient concentrations in Murchison Bay clearly increased in 

September 2003-March 2004 without any corresponding change of the phytoplankton 

biovolume (II, III). The average phytoplankton biomasses we found in our investigations (II, 

III) did not differ significantly from what was found by Källqvist et al. (1996) in the Inner 

Murchison Bay, whereas the nutrient loading has increased over the last decade. Taken 

together, it is likely that there is a limitation of the phytoplankton growth or that loss factors 

control the phytoplankton biovolume in Murchison Bay. Several factors have been proposed 

for regulating phytoplankton populations in Lake Victoria: N-limitation which favours N-

fixing cyanobacteria (Kling et al., 2001), self shading by high-chlorophyll standing crops 

(Mugidde, 1993), deep mixing depth in the open lake imposing light limitation (Mugidde, 

1993; Kling et al., 2001), light-limitation in inshore areas (Gikuma-Njuru and Hecky, 2005; 

Silsbe et al., 2006) the influence of dry or wet season (Lung’ayia et al., 2000), and depletion 

of silica (Verschuren et al., 2002). We estimated the euphotic depth to be 4 m in the outer part 

of the bay (depth, 12 m) and 3 m in the shallower inner part of the bay (depth 5 m) (II, III). 

The regular vertical mixing of the water column in Murchison Bay causes a frequent 

movement of the phytoplankton well below the euphotic zone, thus leading to possible light 

limitation in periods of the day, especially in the outer part of the bay. This regular mixing, 

however, may also counteract the effect of self-shading proposed by Mugidde (1993). Most 

cyanobacterial species can have maximal growth when PO4-P concentrations are >10 µg L-1, 

and in addition, most cyanobacterial species have a capacity to store P (Isvánovics et al., 
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2000). The concentrations of free PO4-P in Murchison Bay were >10 µg L-1 at both stations in 

the whole study period, and it is therefore likely that the phytoplankton growth was not 

limited by P. Lehman and Branstrator (1994) also concluded that the Lake Victoria 

phytoplankton rarely, if ever experienced P limitation. N-limitation can be suspected, since 

there were detected low NO3-N values (< 10 µg L-1) at both stations at most times of the study 

period. There was, however, a period of higher detected NO3-N concentrations at St. 2 in 

June-July without any detectable effect in the phytoplankton biomass. The composition of the 

cyanobacterial population was clearly different in the two parts of the bay, with a higher 

proportion of heterocystous N-fixing species like Anabaena sp. in the outer part of the bay, 

and a higher proportion of non-heterocystous species like Microcystis sp. in the inner part of 

the bay, thus indicating an effect of nitrogen on the cyanobacterial composition.  

 

Murchison Bay is a dynamic system with horizontal and vertical water movements causing 

continuous water turbulence (I, II, III), and this may strongly affect the development of 

phytoplankton in Murchison Bay. The continuous mixing of the water column may reduce the 

capability of buoyancy by cyanobacterial species with gas-vacuoles. In addition, the 

significant water exchange with the main lake is also likely to cause transport of 

phytoplankton in the bay. Regular fishing in Murchison Bay revealed an abundance of the 

phytoplankivorous Nile Tilapia, Oreochromis niloticus (Ronald Semyalo, unpublished 

results). Cyanobacteria account for a significant part of the diet of adult Nile Tilapia 

(McDonald, 1987) and studies have shown that this species may cause reduction of 

cyanobacteria in eutrophic water bodies (Miura, 1990; Datta and Jana, 1998). Therefore, 

grazing by phytoplanktivorous fish may also affect the phytoplankton community in 

Murchison Bay, but this was not investigated closer in our study. 

 

4.4 Microcystin production in Murchison Bay 

Several studies in Lake Victoria, ever since the beginning of the last century, have reported 

episodes of cyanobacterial blooms (for a review see Talling, 1987), and more recent records 

have reported increased mass populations of cyanobacteria, especially in near shore areas of 

the lake (eg. Ochumba and Kibaara, 1989; Hecky and Bugenyi, 1992; Hecky, 1993; Gophen 

et al., 1995; Lung’ayia et al., 2000; Kling et al., 2001; Krienitz et al., 2002; Sekandende et al., 

2005; papers II, III). There are comparably few reports on the occurrence of cyanotoxins, and 

to our knowledge, only two studies have investigated the presence of cyanotoxins 

(microcystins) in Lake Victoria (Krinietz et al., 2002; Sekadende et al., 2005). We therefore 
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aimed to study the occurrence of microcystins in Murchison Bay by analysing samples 

collected in the period from April 2003 to March 2004 at St. 2 and St. 4 (III). We detected 

microcystins in all samples at both stations, and there were times when the microcystin 

concentration exceeded the WHO guide line value of 1 µg L-1 MC for drinking water (III). 

We analysed for three different types of microcystins (MC-YR, MC-RR, MC-LR) and found 

all types at both stations throughout the studied year. Microcystin-RR was the most abundant 

type of microcystin, followed by MC-YR and –LR.  

 

We found species of Microcystis, Anabaena and Anabaenopsis in the diverse cyanobacterial 

population in Murchison Bay (II, III), and these genera are known to contain microcystin 

producing species (Sivonen and Jones, 1999; Codd et al., 2005a). Based on probability 

analysis (for details, see Paper III), M. aeruginosa and Anabaena sp. were identified as the 

possible microcystin producers in Murchison Bay. The t-values, however (III), were higher 

for M. aeruginosa than for Anabaena sp., indicating that most of the variation in microcystin 

concentration can be explained by the abundance of M. aeruginosa. M. aeruginosa is the most 

commonly reported bloom-forming species in lakes and reservoirs worldwide (e.g. 

Carmichael, 1996; Sivonen and Jones, 1999) and can produce microcystin in a variety of 

forms and with varying toxicity (Carmichael et al., 1988; Lee et al., 2000; Sivonen and Jones, 

1999). Lanaras and Cook (1994) have reported microcystin in bloom material dominated by 

Anabaenopsis millerii from Lake Porto Lagos, Greece, suggesting that members of the genus 

Anabaenopsis may produce microcystins. Species of Anabaena are also known microcystin 

producers (Sivonen and Jones, 1999; Codd et al., 2005a), but our analyses did not identify 

Anabaena sp. to contribute to the microcystin-production in Murchison Bay. We therefore 

concluded that M. aeruginosa most likely was the main microcystin producer among the 

species found in Murchison Bay (III). Krienitz et al. (2002) studied a dense cyanobacterial 

bloom dominated by Anabaena flos-aquae, Anabaena discoidea and Microcystis aeruginosa 

in Nyanza Gulf (Kenya) and found detectable values (< 1µg/L) of microcystin-RR, -LR, -LA 

and LF. The microcystin concentration was, however, comparably low relative to the biomass 

of potentially microcystin producing species. Sekadende et al. (2005) performed sampling 

over a four months period in Mwanza Gulf (Tanzania) and found microcystins (about 1 µg/L) 

in one sample dominated by the cyanobacterial species Aphanocapsa sp., Anabaena sp., 

Planktolyngbya spp. and Microcystis sp.  
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In paper II we studied the possible effect of environmental factors on the phytoplankton 

community in Murchison Bay, and in paper III we made an attempt to investigate the possible 

effects of environmental factors on the microcystin production in the bay. Several 

environmental factors, however, affect both the growth and composition of the cyanobacterial 

population as well as the production and composition of microcystins (e.g. Kotak, 2000; Oh et 

al., 2001), hence highlighting the invariable complexity in the relationship between 

cyanobacteria, microcystin concentration and environmental factors.  

 

We used correlation analyses and found that the most influencing environmental parameters 

on the microcystin concentration were TP, PO4-P, TN, Si and euphotic depth (III). The 

influence of light is important for cyanobacterial growth and microcystin production (Utkilen 

and Gjølme, 1992; Havens et al., 1998; Kaebernick et al., 2000; White et al., 2003; Kurmayer 

et al., 2003; Wiedner et al., 2003). We found that the phytoplankton in Murchison Bay may be 

influenced by light limitation (II), thus the microcystin production may also be influenced by 

the light climate in the bay (III). Nutrient dynamics can influence the cyanobacterial biomass 

as well as the microcystin concentration (Kotak et al., 2000; Oh et al., 2001). In this study, TP 

and TN were positively correlated with microcystin concentration (III) which is in 

accordance to other field studies (e.g Graham et al., 2004; Albay et al., 2005). In Murchison 

Bay, the highest microcystin concentration was detected at the same time as the highest 

detected biomass of M. aeruginosa and coincided with the highest detected concentrations of 

TP (140 µg L-1) and the third highest detected concentration of TN (1400 µg L-1)  in the 

studied period. An increase in the microcystin concentration after September 2003 (III) 

coincided with the increase in nutrient concentration in Murchison Bay in September 2003-

March 2004 (II, III). Graham et al. (2004) found highest microcystin production with 

increasing TP concentrations (maximum at 100-600 µg L-1) and increasing TN concentrations 

(maximum at 1500-4000 µg L-1). It is therefore most likely that the increase in N availability 

in Murchison Bay affected the microcystin production. We found that the phytoplankton 

community in Murchison Bay could be N limited (II), and it is therefore likely that an 

increase in N may influence the microcystin production (III).  

  

There was no good correlation between microcystin production and the total biomass of 

cyanobacteria (III), and this probably reflects the diverse cyanobacterial community in 

Murchison Bay consisting of both microcystin producing and non-producing strains. Studies 

have shown that a potential microcystin producing species like M. aeruginosa can consist of 
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both producing and non-producing strains (e.g. Shirai et al., 1991; Kurmayer et al., 2004; 

Paper IV). Further, the cellular microcystin concentration is strain dependant and can vary by 

several orders of magnitude between strains (Chorus, 2001). The microcystin production is 

therefore dependent on the strain composition and the regulation of microcystin biosynthesis 

in specific strains under certain environmental conditions. Individual strains also have 

different environmental optima for growth and microcystin production, and respond 

differently to changing environmental conditions (Sivonen, 1990; Véize et al., 2002). Taken 

together, nutrient availability and light climate seemed to be the most probable influencing 

environmental parameters on the microcystin production in Murchison Bay, however, the 

microcystin concentrations could not be predicted by a given environmental factor alone, by 

the biovolume of cyanobacteria or of certain cyanobacterial species (III).  

 

4.5 Phylogeny and characterisation of cyanobacterial strains from Murchison Bay and 

other East-African water bodies  

We isolated strains of Microcystis aeruginosa and Cylindrospermopsis raciborskii from 

Murchison Bay and other water bodies in the East African region and strains of C. raciborskii 

from Europe (see Table 2 and 3). The strains were morphologically, genetically and 

chemically characterized in order to obtain knowledge on the diversity and toxicity of these 

cyanobacterial species from this region (IV, V). We also analysed the phylogenetic 

relationship between strains of the same genus from different geographical origins, and 

assessed the overall genetic variation and distribution patterns of these species (IV, V).  

 

4.5.1 Microcystis aeruginosa 

M. aeruginosa has a cosmopolitan distribution (Komárek and Anagnostidis, 1999) and is one 

of the most studied species among cyanobacteria. The knowledge on its taxonomy, toxicity 

and diversity is increasing, however, few studies have included strains from the African 

continent. We isolated 24 strains of M. aeruginosa and found a large degree of morphological, 

genetical, and chemical diversity (IV).  

 

Traditionally, the assessment of diversity within M. aeruginosa has focused on morphological 

variation, such as cell size and colony shape (Watanabe, 1996). However, M. aeruginosa is 

known to comprise large morphological variability, and thus the differentiation within this 

species is difficult and several morphotypes can occur within the same population (Otsuka et 

al., 2000). Additionally, the morphology can change in response to environmental factors, 
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causing problems in the application of morphological criteria in the classification of M. 

aeruginosa (Dor and Hornoff, 1985). Strains of M. aeruginosa also tend to change their 

morphological characteristics when isolated and subjected to different culture conditions (e.g. 

Krüger et al., 1981; Komárek, 1991; Otsuka et al., 2000). Despite the possible changes of 

morphological features of isolates during culturing, we distinguished four morphotypes of M. 

aeruginosa among the isolated strains (IV). We sequenced the PC-IGS gene region and the 

ITS1 rDNA region of the isolated strains and found some correspondence between 

morphotypes and genotypes (IV). Several studies with these genetic markers have shown 

contradictory results; both various genotypes with uniform morphological characteristics 

(Kato et al., 1991; Nishihara et al., 1997; Otsuka et al., 1999; Bittencourt-Oliveira et al., 2001) 

and genotypes with poor consistence to morphology (Otsuka et al., 1999; 2000; Tillett et al., 

2001; Janse et al., 2004; Yoshida et al., 2005). Consequently, the concordance between 

morphological variation and genetic variation is often not clear in M. aeruginosa populations.  

 

The two genetic markers showed congruent phylogenies and discriminated 10 genotypes 

among the strains from East Africa (IV). We found four different genotypes among the 

thirteen strains isolated from Murchison Bay, and this is in accordance to previous studies that 

have found two to six genotypes in a single water body (Kato et al., 1991; Bolch et al., 1997; 

Bittencourt-Oliveira et al., 2001). It is, however, likely that the genetic diversity in the bay 

itself is higher due to the possibility that some clones of M. aeruginosa have low survival 

rates when isolated (Wilson et al., 2005). The phylogenetic analyses with the PC-IGS 

sequences of the East African M. aeruginosa strains and sequences from Microcystis spp. 

strains from different geographical regions showed a separation in three clusters (IV). Cluster 

I included most of the strains from Uganda and Kenya, in addition to strains of M. aeruginosa 

from (sub)-tropical regions like Australia and Brazil, with exception of a strain of M. flos-

aquae from USA. Cluster II comprised one strain from Uganda and one strain from Kenya, in 

addition to strains of M. aeruginosa and M. flos-aquae from all parts of the world. On the 

basis of the sequences included in this study, there seems to be one group (Cluster II) which 

includes the “cosmopolitan species” suggested for some temperate cyanobacterial species by 

Komàrek (1985). However, as noted by Bittencourt-Oliveira et al. (2001), the Microcystis sp. 

genotypes most likely represent a series of related populations sharing a common 

phylogenetic history.  
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Cyanobacterial populations typically comprise a number of coexisting oligopeptide 

chemotypes suitable for characterisation of intra-species diversity (Fastner er al., 2001; 

Welker et al., 2004; Rohrlack et al., 2008). MALDI-TOF-MS analysis of the M. aeruginosa 

strains detected different types of microcystins and an aeruginosin called microcin SF 608, in 

addition to some unknown aeruginosins and cyanopeptolins (IV). Based on oligopeptid 

composition, the strains in this study could be divided into ten chemotypes, and seven of them 

were found in Murchison Bay (IV). The oligopeptide diversity found among the strains in this 

study is in good agreement to findings from European lakes (Fastner er al., 2001; Welker et 

al., 2004, Rohrlack et al., 2008). Two strains from Uganda (Kazinga Channel) and two strains 

from Kenya (Pilsner Pond; Lake Naivasha) were microcystin producing, but they synthesized 

different types of microcystins (IV). Microcystin desmethyl-YR was produced by all four 

strains and microcystin-YR by three strains, whereas microcystin-LR only was produced by 

one strain. M. aeruginosa was identified to be the main microcystin producer among the 

species found in Murchison Bay (III), but none of the M. aeruginosa strains from Murchison 

Bay were microcystin producing (IV). Hence, the diversity of this species is probably higher 

in Murchison Bay than detected in this study. The M. aeruginosa strains possessed different 

level of diversity depending on whether genetic, chemical, or morphological methods were 

used for their characterisation, emphasising the importance of using a polyphasic approach 

when studying diversity within a cyanobacterial species.  

 

4.5.2 Cylindrospermopsis raciborskii 

C. raciborskii was originally described as a tropical cyanobacterium (Geitler and Ruttner, 

1936), but it is now increasingly expanding in temperate latitudes, becoming prevalent in 

temperate freshwater lakes world wide (Krienitz and Hegewald, 1996; Chapman and 

Schelske, 1997; Padisàk, 1997; Rücker et al., 1997; Druart and Briand, 2002; Wood and 

Stirling, 2003; Hamilton et al., 2005). Phylogenetic studies concerning C. raciborskii have 

revealed a geographic discrimination of strains (Dyble et al., 2002; Neilan et al., 2003; 

Gugger et al., 2005b); however, relatively few strains and often many of the same strains have 

been used in these studies. In our study, we isolated nine new strains of C. raciborskii from 

Uganda and Germany (V). The six Ugandan strains were isolated from Murchison Bay and 

Kazinga channel between Lake Edward and Lake George, a region considered by Padisák 

(1997) to be the possible origin of the species C. raciborskii. The three strains from Germany 

were isolated from Lake Zierkersee, one of the northernmost lakes where C. raciborskii has 
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been detected in Germany (Stüken et al., 2006). These strains therefore represent the invasive 

population of C. raciborskii found to be spreading in this region of north-eastern Germany.  

 

The strains from the two geographical regions possessed two different morphotypes. The 

African strains had flexuous trichomes, terminal heterocysts and lacked akinetes (V), whereas 

the European strains had straight trichomes, terminal heterocysts and produced akinetes (V). 

Straight, curved and flexuous morphotypes have been found in most parts of the world 

(Chapman and Schelske, 1997; Saker et al., 1999; Berger et al., 2006), though only straight 

morphotypes have been observed in Europe (e.g. Padisák, 1997; Couté et al., 1997; Stüken et 

al., 2006). In general, akinetes are rarely observed among C. raciborskii in tropical areas 

where the strains can persist in its vegetative form throughout the year (Saker et al., 2003). 

Strains growing in temperate areas, on the other hand, are more likely to develop akinetes as 

an adaptation to lower growth temperatures and ability to survive during winter periods.  

 

We analysed the strains chemically (by LC-MS/MS) for cylindrospermopsin production and 

genetically for the presence of cylindrospermiosin synthetase gene fragments (PKS and PS), 

but none of the strains were cylindrospermopsin producers (V). Cylindrospermopsin 

production is not found in any other strains of C. raciborskii from European water bodies 

(Fastner et al., 2003; Valério et al., 2005). Cylindrospermopsin has not been detected in 

strains from African water bodies (Berger et al., 2006), but Mohamed (2007) showed 

hepatotoxic effects in mouse bioassays. Cylindrospermopsin producing strains of C. 

raciborskii have been found in Australia and Asia (Li et al., 2001b; Hawkins et al., 1997; 

Saker et al., 1999), Brazilian strains of C. raciborskii have been reported to produce paralytic 

shellfish poisoning (PSP) toxin (Lagos et al., 1999) whereas many of the European strains are 

found to be hepatotoxic in the mouse bioassay (Bernard et al., 2003; Saker et al., 2003; 

Fastner et al., 2003).  

 

The strains of C. raciborskii were genetically characterised with respect to ITS1-L, PC-IGS, 

nifH and rpoC1 DNA regions and compared to corresponding sequences of C. raciborskii 

from other geographical regions (V). The phylogenetic analyses revealed a clustering of the 

strains due to geographic origin. The ITS1-L and nifH markers separated into American, 

European and Australian-African groups (V), thus congruent to earlier findings with nifH, 

ITS1-L and 16S rDNA markers (Dyble et al., 2002; Neilan et al., 2003 and Gugger et al., 

2005b). The PC-IGS and rpoC1 markers separated into American and 
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European/Australian/African groups (V), and this is in accordance to earlier findings with PG-

IGS (Dyble et al., 2002) and rpoC1 (Gugger et al., 2005b) markers. An analysis of 

concatenated data (ITS1-L+nifH+PC-IGS) supported the division into American, European 

and African/Australian groups, and even indicated a subdivision into an African and an 

Australian group (V). C. raciborskii showed a surprisingly low degree of diversity in 

comparison to other groups of cyanobacteria. Studies on M. aeruginosa (e.g. Bittencourt-

Oliveira et al., 2001; Wilson et al., 2005; Paper IV) and Planktothrix sp. (e.g. Mbedi et al., 

2005; Kurmayer and Gumpenberger, 2006) have revealed that even the genetic variation 

within a population in a single water body is considerable.  

 

Different existing theories have been proposed to explain the phylogeography of C. 

raciborskii; radiation to the other continents from a primary evolutionary centre in Africa 

(Padisàk, 1997), a more recent radiation to the other continents from a secondary evolutionary 

centre in Australia (Padisàk, 1997), or a present colonization across the continents from warm 

refugee areas within the respective continents (Gugger et al., 2005b). The results from our 

study do not permit any resolution concerning the origin of C. raciborskii. The genetic 

similarity between the sequences from Africa, Australia and Europe was high for all genetic 

markers used, whereas the American sequences were more diverse both within the strains 

from this continent and in comparison to the sequences from the other continents (V). There 

are, however, geographical differences within the species C. raciborskii and perhaps different 

mechanisms favour the expansion in temperate regions. In tropical areas, like East African 

water bodies, C. raciborskii can grow all year round (Padisàk, 1997). We found C. raciborskii 

in Murchison Bay throughout the year (II, III). The species has high temperature optima (> 

25 °C) (Padisàk, 1997), and therefore the proliferation in temperate regions has been proposed 

to be linked to increased water temperatures due to climatic change (Briand et al., 2004; 

Wiedner et al., 2007). Others have proposed that adapted ecotypes with a wide physiological 

tolerance may spread in temperate regions (Chonudomkul et al., 2004). Most likely, a 

combination of coexisting mechanisms enables C. raciborskii to proliferate into temperate 

areas. The spreading of cyanobacteria within and between continents is most likely a dynamic 

process enabling a continuous changing of the genotype composition of a population. 
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5 Human health aspects 

 

 

 

 

 

 

 

 

 

7th March 2008, New Vision (Ugandan national newspaper) (http://www.newvision.co.ug/PA/9/183/615463) 
 
Lake Victoria Bay turns green 
 
…”A thick layer of algae is floating on Lake Victoria near Gaba Water Works, the source of 
Kampalas piped water”… 
 
…”The problem is municipal waste and sewerage that flows untreated into the Nakivubo Channel 
and then into the lake”… 
 
…”People are exposed to health risks since many of them depend on raw water from the lake for 
cooking, drinking and other domestic uses”… 

 

Murchison Bay serves as a drinking water supply for Kampala and the two water works are 

situated at the shores of the Inner Murchison Bay (Fig. 3). The microcystin concentrations in 

Murchison Bay were at times higher than the WHO recommended limit of 1 µg L-1 for 

drinking water (III), possessing a health risk for lake water users. The water works use 

standard water treatment methods in the purification process. Sand filtration and standard 

coagulation and sedimentation methods will remove many cyanobacterial cells and 

chlorination can be effective in removing dissolved microcystin if used in sufficient 

concentrations and contact times (Hitzfield et al., 2000). Water from different steps in the 

purification process at the water works were analysed, and microcystins were not detected 

(data not presented). There is however a risk for exposure to microcystins for those using the 

lake water directly as drinking water. A local household survey in the parishes surrounding 

the Inner Murchison Bay revealed that 5-50 % of the local people used lake water for drinking 

water for animals and humans and for other domestic uses (Waiswa Dauda, pers. com.). To 

minimize harmful effects by using the lake water it is important to filter the water before use, 

for instance with bank filtration or by using a cloth (dense woven fabric).  

 

There is a need for urgent action in the water management in Murchison Bay in order to 

protect the unique water resources in this region and to obtain a secure sustainable water 

resources development. The most important actions are to 1) plan and sustainably manage the 

land use and the human activities in the wetland areas surrounding Murchison Bay; 2) 

improve the management of waste disposal; and 3) perform awareness raising among the local 

population.  
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6 Conclusions  

 

This study showed that:  

• Murchison Bay was strongly eutrophicated with average concentrations of total 

phosphorous > 90 µg L-1 and total nitrogen > 1100 µg L-1 in the inner part of the bay 

(I, II, III). 

• There was a rapid decrease in conductivity and nutrient concentrations from the 

innermost part of the bay to the outer part of the bay, and we found that surface 

seiches caused water exchange with the main lake and thereby mediated the 

eutrophication in the Inner Murchison Bay (I).  

• Murchison Bay is a more dynamic system than first recognized, and the rapid 

transport of nutrients to the open lake indicates that Murchison Bay contributes to the 

eutrophication process of Lake Victoria (I). 

• The phytoplankton community was dominated by a variety of cyanobacterial species 

and diatoms. The phytoplankton community, especially in the outer part of the bay, 

may be influenced by light limitation, and low NO3-N concentrations in the bay may 

also indicate a possible N-limitation, thus favouring growth of N-fixing cyanobacteria. 

The proportion of N-fixing species like Anabaena sp. was higher in the outer part of 

the bay whereas species like Microcystis sp. were more abundant in the inner part of 

the bay (II, III). 

• There were microcystins (MC-RR, -LR, -YR) in Murchison Bay, on average 1.1 µg L-

1 in the inner part of the bay and 0.6 µg L-1 in the outer part of the bay. Based on 

probability analysis, Microcystis aeruginosa was identified as the main microcystin 

producer, and the maximum total microcystin concentration of 2.98 µg L-1 was 

detected in the inner part of the bay and coincided with the highest detected biomass 

of M. aeruginosa. Nutrient availability and light climate seemed to be the most 

probable influencing environmental parameters on the microcystin production in 

Murchison Bay, but the microcystin concentrations could not be predicted by a given 

environmental factor alone, by the biovolume of cyanobacteria or of certain 

cyanobacterial species (III).  

• 24 strains of M. aerugionsa isolated from Murchison Bay and other lakes in the East-

African region possessed different levels of diversity depending on characterisation 

method. Four morphotypes were identified based on the traditional morphological 
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approach, 10 genotypes by DNA sequence comparison of the PC-IGS and ITS1 rDNA 

regions, and 10 chemotypes based on MALDI-TOF-MS oligopeptide analysis. The 

phylogenetic analyses showed that the East-African strains of M. aeruginosa were 

closely related to other strains of M. aeruginosa of different geographical regions. 

Only four of the 24 isolated strains from East Africa were found to produce 

microcystins, while oligopeptides belonging to the aeruginosin and cyanopeptolin 

class were detected in most strains (IV). 

• The phylogenetic analyses of nine strains of Cylindrospermopsis raciborskii isolated 

from Murchison Bay, Kazinga Channel (Uganda) and Zierker See (Germany) 

compared to other strains of C. raciborskii of different continents revealed a clustering 

of the strains due to geographic origin. The strains from Africa and Europe exhibited 

two different morphotypes and none of the strains produced cylindrospermopsin. C. 

raciborskii is increasingly spreading in temperate freshwater habitats world wide, and 

most likely, a combination of coexisting mechanisms enables C. raciborskii to 

proliferate into temperate areas.  

•  The Inner Murchison Bay serves as a drinking water supply for Kampala, the capital 

of Uganda, and the concentration of total microcystin in the bay was at times 

exceeding the WHO guide line value of 1 µg L-1 MC for drinking water. There is a 

risk for exposure to microcystins for those using the lake water directly as drinking 

water. 

 

This study has gained more knowledge regarding blooms of cyanobacteria in Lake Victoria 

and can be used as a basis for more research and management in Lake Victoria and other 

lakes in the region.  
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