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DEFINITIONS 
In the study of transmission of pathogens, a number of different terms are needed to describe 

the pathogen itself, the infection status of the host and the ways of transmission. Some of the 

key terms used may need a definition, and this thesis define the terms as:  

 

Isolate: A nervous necrosis virus (NNV) isolate is a virus isolated from one particular source, 

usually a host like a fish species. I.e. virus originating from an Atlantic cod would be named a 

cod isolate. 

Strain: A number of NNV isolates forming a distinct subgroup sharing genetic characteristics 

within a clade or genotype that differentiates them from other strains. Strains may consist of 

isolates from different fish species. The strains are normally based on phylogenetic analyses. 

Genotype: NNVs are, at the moment, phylogenetically grouped into 4 distinct clades, and 

these define the genotypes. Each genotype may consist of several different strains and 

isolates, which all are closely phylogenetically related. 

Persistent infection: A long-lasting infection where the pathogen is not cleared and may 

replicate and cause clinical signs. This state may be subdivided into latent, chronic or slow 

infection. 

Latent infection: Presence of the pathogen in the host, but with little or no replication of the 

pathogen and no clinical signs of disease. Disease may develop at a later stage, if the rate of 

replication is increased. If the host is shedding the pathogen a carrier state appear. 

Chronic infection: An infection that last over a long period of time where there is small or 

slow changes in the development of pathology. Usually the pathogen displays a slow rate of 

replication and gradually more extensive pathological changes may appear. 

Carrier state: A persistent infection in which the pathogen is replicating and eventually shed 

by the host. If there are no clinical signs, this state could also be named a covert infection.  

Asymptomatic carrier: The pathogen is replicating without causing any clinical signs or 

development of disease in the host, and the host sheds the pathogen.  

Horizontal transmission: Transmission of a pathogen from an infected individual to a non-

infected individual, occurring as direct transmission and/or via a vector. 

Vertical transmission: Transmission of a pathogen from brood stock to larvae through 

contaminated reproductive fluids. In females this is occurring either as transovarian or 

transovum transmission (pathogen within the egg or on the surface).  
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1 INTRODUCTION 

During the last four decades, the Norwegian fish farming industry has grown into a high-tech 

and high-value export industry. Norway is primarily producing Atlantic salmon (Salmo salar), 

and the production reached 626 000 metric tons in 2006. This represents a value of 

approximately 2.5 billion USD (Directorate of Fisheries, Norway). Fish farming is a growing 

industry in Norway, and during recent years, the volumes of other fish species such as 

Atlantic halibut (Hippoglossus hippoglossus) and Atlantic cod (Gadus morhua) have 

increased. The 2006-production was 1185 metric tons of halibut and for 10384 tons of cod, 

which are fairly small numbers compared to salmon. However, commercial farming of these 

species is rather new and the growth potential is thought to be substantial. Estimated world 

production of gadoids in 2010 is 150 – 200 000 t, and the largest growth is predicted to take 

place in Norway (Kjesbu et al. 2006). In 2000, the Norwegian production of cod was only 169 

tons, which gives an increase by more than 60 times in six years. By comparison, the 

production of halibut only doubled in the same period, primarily due to the complexity and 

lack of survival in the hatcheries. Farming of marine fish species should still be regarded to be 

at an early stage in Norway.  

Fish farming has always involved a risk of disease and spreading of infectious 

pathogens. This could be exemplified by looking back at the Norwegian salmon-farming 

industry, where serious disease problems were faced in the mid-eighties and early nineties. 

Bacterial diseases such as vibriosis, cold water vibriosis, furunculosis and viral diseases such 

as infectious salmon anaemia (ISA), infectious pancreatic necrosis (IPN) and pancreas disease 

(PD) caused (and still cause) heavy losses, but also led to an increased awareness of the 

hazards involved in culturing fish. An industrial collapse was avoided by introduction of 

efficient bacterial vaccines and improved fish health management. This formed the basis for 

the rapid growth in salmon production that was seen during the nineties. However, disease 

problems in salmon-farming are not solved, as new pathogens and diseases are emerging 

regularly. In addition, viral vaccines have not been as efficacious as the bacterial ones, and 

viral disease problems are now predominant in salmon farming.    

Farming of fish requires adequate growth sites, and the increased volume of produced 

fish has led to an increase in the number of sites and the total on-site biomass. Introduction of 

new fish species have also increased the number of sites and the number of potential hosts for 

pathogens. Fish farms are separated by distance and kept as single-species sites to avoid 

disease problems. However, pathogens are on the move, and their transportation or 
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introduction into new areas, with potential new hosts, might be important in spreading 

diseases. Transmission of pathogens are either occurring horizontally (between hosts), 

vertically (intraovulary) or as a combination of both. In some cases pathogens are transported 

long distances in hosts showing no clinical signs of disease. Mortensen et al. (2006) define 

three rough levels of risk involved; 1) low risk, with no long-distance movement and 

autonomous supply of juveniles, 2) medium risk, with regional movement and regular 

monitoring of most fatal diseases, and 3) high risk, with free movement and low level of 

control and surveillance.  

With the introductions of new species in aquaculture, new pathogens and diseases 

have emerged. One of the pathogens causing problems in marine fish farming worldwide is 

nervous necrosis virus (NNV), which is also known as nodavirus, and this thesis addresses 

NNV as a pathogen in cold-water fish farming in Norway. The emphasis is on potential 

transmission of virus and possible consequences for farm operations, and the papers address 

host susceptibility, virus distribution in host tissue, cohabitant transmission and detection of 

nodavirus in the most important farmed fish species in the growing Norwegian aquaculture 

industry.  

1.1 Nervous necrosis virus/nodavirus 

There are some discrepancies regarding the naming of the virus. NNV belongs in the viral 

family Nodaviridae, but the literature refers to this virus using various names, and it names 

the disease in several ways as well.  

1.1.1 NNV nomenclature 

NNV or nodavirus is a small non-enveloped virus of 25-40 nm having a capsid of icosahedral 

shape (T=3) classified belonging to the Nodaviridae family. The name “noda” originates from 

the Japanese village of Nodamura, where virus particles were isolated from mosquitoes 

(Culex tritaeniorhynchus) in 1956 (Scherer and Hurlbut 1967). The new virus was named 

Nodamura virus (NoV), and it is regarded as the archetypal species in the family. Nodaviruses 

were initially only found in insects, but in 1992 Mori et al. isolated a virus from fish, in 

moribund and dead striped jack larvae (Pseudocaranx dentex), which was shown to belong to 

the Nodaviridae family. This particular virus was named striped jack nervous necrosis virus 

(SJNNV) after the fish host. As fish and insect nodaviruses revealed little sequence and 

protein similarity (Nishizawa et al. 1995), Nagai and Nishizawa (1999) suggested the 

existence of a distinct fish genus within the Nodaviridae family. These observations lead to 
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the division of the Nodaviridae in two separate genera; alphanodavirus that infect insects 

and betanodavirus infecting fish, with type species NoV and SJNNV respectively. The 

International Committee of Taxonomy of Viruses (ICTV) has accepted the subdivision in the 

Nodaviridae (http://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/fs_nodav.htm). Detection of 

nodaviruses seems not to be restricted to insects and fish, as viruses also have been reported in 

crustaceans (Jiménez et al. 2000, Qian et al. 2003, Bonami et al. 2005, Gomez et al. 2006, 

Gomez et al. 2008). 

Piscine nodaviruses (betanodaviruses) cause a serious disease, which has primarily 

been associated with juvenile stages in several marine fish species (Munday et al. 2002). 

Yoshikoshi and Inoue (1990) were among the first to report the disease. They detected it in 

hatchery-reared larvae and juveniles of Japanese parrotfish (Oplegnathus fasciatus), and due 

to the clinical signs, they suggested the name viral nervous necrosis (VNN). Office 

International des Epizooties (OIE) is now using both VNN and viral encephalopathy and 

retinopathy (VER) to name the disease caused by the virus 

(http://www.oie.int/fr/normes/fmanual/a_00024.htm). Other names for the disease have also 

been used, like “fish encephalitis” (Breuil et al. 1991) and “encephalomyelitis” (Bloch et al. 

1991) without being accepted as formal names. In the literature the terms VNN and VER are 

now both used, as both reflect a disease from infection of betanodavirus, and this is somewhat 

confusing. As both VER and VNN, and sometimes even the combination VER/VNN, are 

commonly used, the OIE adopted both names to avoid mistakes. In this thesis VNN is used 

when referring to the disease. 

Betanodavirus strains or genotypes are usually named after the fish species of origin, 

and the nomenclature applied is also not uniform. These viruses are often referred to as 

nervous necrosis virus (NNV), and consequently names such as BFNNV (barfin flounder 

nervous necrosis virus) and SJNNV (striped jack) have arisen. NNV is the term used by the 

ICTV to name piscine nodavirus. However, some papers in the literature abbreviate nodavirus 

as NV, and this has resulted in names such as AHNV (Atlantic halibut nodavirus) and TNV 

(turbot nodavirus). The term encephalitis virus (EV) has also been used, and is the source for 

abbreviations such as DIEV (Dicentrarchus labrax encephalitis virus) and LcEV (Lates 

calcarifer). These terms, other than NNV, name various isolates or strains of the virus. This 

thesis uses primarily NNV, but also nodavirus and betanodavirus, when referring to the virus. 

The phylogenetic relationship of NNV isolates, strains and genotypes is addressed in section 

1.1.3. 
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1.1.2 NNV – genome architecture 

The most extensively studied nodaviruses belong to the alpha genus and among these the 

Flock House Virus (FHV) and Black Beetle Virus (BBV) have been the systems of choice 

(Schneemann et al. 1998). Since both genera share the basic fundamental genetic architecture 

and as betanodaviruses have not been widely characterized, alphanodaviruses have often been 

used as models. However, there are significant structural differences, and these differences are 

the basis of the division into two separate genera (Nishizawa et al. 1995, Nagai and 

Nishizawa 1999). An increasing number of papers address the characterization of 

betanodaviruses, and the relationship between the alpha and beta groups is likely to be further 

investigated.     

The nodavirus genome is organized in a simple way, with a bisegmented positive-

sense single-stranded RNA, named RNA1 and RNA2, and these molecules are encapsidated 

in a single virion. A subgenomic segment, RNA3, is not encapsidated in the virion. It is only 

formed in infected cells. A summarized outline of the genetic architecture is presented in 

Figure 1.  

RNA1 is the largest segment (ca 3.1 kb) encoding the viral part of the RNA-dependent 

RNA polymerase (RdRp), named protein A. The viral RdRp is important for viral survival not 

only in the replication, but also in the act of making genome variability. RNA viruses usually 

have high rates of errors during RdRp-dependent genome replication, and this allows for rapid 

virus evolution under a selective pressure (Domingo 2000). In alphanodaviruses, both RNA1 

and RNA2 segments carry 5’ end cap structures, but they do not have poly (A) tails in their 3’ 

ends. Their lacks of poly (A) tails result in blocking of enzymatic and chemical modification 

(Dasgupta et al. 1984, Schneeman et al. 1998). In betanodavirus, Delsert et al. (1997a) 

reported that the 3’ end of RNA2 in DIEV is undergoing polyadenylation in vitro, suggesting 

there is a difference in the structure from the 3’ end compared to alphanodavirus. 

The RNA1 segment holds one major open reading frame (ORF) encoding protein A, 

with molecular weight of approximately 112 kDa (Kaesberg 1987). In striped jack nervous 

necrosis virus (SJNNV), the ORF is encoding 983 amino acids (aa) and located from 

nucleotide 65 to 3016. The total length of RNA1 of this virus was 3081 nucleotides (Nagai 

and Nishizawa 1999). In virus isolated from Atlantic halibut this ORF is located from 

nucleotide (nt) 79 to 3021, encoding a 981 aa polypeptide (Sommerset and Nerland, 2004). In 

alphanodaviruses, the ORF encodes a protein of 998 aa (Dasmahapatra et al. 1985, Ball 

1995). By comparing SJNNV and insect nodavirus (BBV and FHV), Nagai and Nishizawa 

(1999) found low nucleotide (28.3 %) and amino acid (27.6 %) identities. This resulted in the  
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Figure 1. Outline of replication and the NNV bisegmented genome organization of RNA1 and RNA2 

with encoding proteins. RNA1 (ca 3.1 kb) encodes protein A (RdRp) within one open reading frame 

(ORF) with untranslated conserved regions (UTR) at both 5’ and 3’ ends. In addition, RNA3 (ca 0.4 kb) 

is formed during replication as subgenomic RNA, encoding protein B2 in betanodavirus. RNA2 (ca 1.2 

kb) encodes protein a (capside protein), with one ORF and UTR at both 5’ and 3’ ends. See section 

1.3.4 for details on replication of NNV. Figure made by Bengt Stangvik.  

 

suggestion of a separate betanodavirus genus consisting of virus isolates from fish hosts only 

– piscinodavirus. This finding supported the conclusion of Nishizawa et al. (1995). Despite 

these low nucleotide identities between alpha- and betanodaviruses, they share conserved 

RdRp motifs in the C-terminal residues of the protein (Johnson et al. 2001). 

RNA2 of alphanodaviruses (ca 1.4 kb) encodes protein α (44 kDa), which is the 

precursor of viral coat proteins β and γ (Dasgupta and Sgro 1989, Friesen and Rueckert 1981). 

In alphanodavirus protein α is cleaved autocatalytically into protein β and γ (Gallagher and  

Rueckert 1988). In betanodaviruses there are little support for the existence of protein γ, and 
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this suggests that there is a different processing of capsid proteins than in alphanodaviruses 

(Delsert et al. 1997a, Lin et al. 2001). In betanodavirus, the number of amino acids in the coat 

protein ranges from 338-340, with a molecular weight of 39 kDa (Nishizawa et al. 1995, 

Grotmol et al. 2000, Tan et al. 2001, Guo et al. 2003a, Delsert et al. 1997a, Chi et al. 2001).  

The RNA2 segment contains one large ORF, with untranslated regions (UTR) in both 

5’ and 3’ ends. Such UTRs seem to have a function, and in FHV the 3’-end of RNA2 can be 

folded into a secondary structure containing two hairpin loops (Kaesberg et al. 1990). This 

folding pattern it thought to act as a recognition signal for protein A, and replication is 

initiated by binding to 3’UTR. Primary and secondary structures of 3’UTR of RNA2 in 

alphanodaviruses are conserved and might be important for both replication and template 

recognition by RdRp (Kaesberg et al. 1990).  

Marshall and Schneemann (2001) have studied properties of the coat protein, 

including the N-terminal residues of the coat protein of FHV and the effect on packaging of 

RNA2 into the virion. They demonstrated the importance of N-terminal residues 2-31 in FHV 

coat protein in formation and packaging of RNA2. Mutants lacking these residues had virions 

containing little RNA2 but with no effect on packaging of RNA1. In conclusion, these authors 

suggested the coat protein is containing important determinants for recognition and packaging 

of RNA2, that the encapsidation of the two genomic RNAs occurs independently and that the 

coat protein uses different regions for the recognition of RNA1 and RNA2. 

Protein α, the precursor of the coat protein, has also been suggested to act as an 

apotosis inducer (Guo et al. 2003b). These authors used greasy grouper (Epinephelus tauvina) 

nervous necrosis viruses (GGNNV) to study apoptotic activity in culture cells, and such 

activity was shown to be related to increased activity of caspase-8-like and caspase-3-like 

proteases in GGNNV infected cells. This study concluded that apotosis was induced, and that 

fish caspases are important elements in GGNNV-mediated apotosis. Guo et al. (2003a) have 

also reported existence of a nucleolus localization signal, aa sequence 23RRRANNRRR31, in 

the N-terminal region of the coat protein from GGNNV. By fusing protein α with a green 

fluorescent protein (GFP) from jellyfish, accumulation was observed in both nucleolus and 

cytoplasm of host SB cells infected with GGNNV. Interestingly, when the nucleolus 

localization signal was deleted, apotosis still occurred in transfected SB and Cos-7 cells 

indicating that the cytoplasm localization might be involved in inducing apotosis. Chi et al. 

(2001) have reported that the grouper nervous necrosis virus coat protein is a glycoprotein, 

and is undergoing post-translational gylcosylation. The significance of this protein property, 

particularly in virus-host immune interactions, has not been studied further. 
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Host specificity has been reported linked to RNA2 in betanodavirus by Iwamoto et al. 

(2004), and these authors studied this by using reverse-genetics. Sevenband grouper (SG) and 

striped jack (SJ) larvae were challenged with reassortant viruses. One reassortant contained 

SJNNV RNA1 and SGNNV RNA2, the other SGNNV RNA1 and SJNNV RNA2. The RNA2 

determined development of disease, as only reassortant with SJNNV RNA2 killed SJ and 

SGNNV RNA2 killed SG (Iwamoto et al. 2004). Existence of host specificity is addressed in 

section 1.3.1.    

 Partial sequences for betanodavirus RNA2, and corresponding coat protein sequences, 

have been determined for large numbers of viruses isolated from different fish hosts 

(Nishizawa et al. 1995, Delsert et al. 1997a, Aspehaug et al. 1999, Tan et al. 2001, Lin et al. 

2001, Grotmol et al. 2000, Nishizawa et al. 1997, Skliris et al. 2001, Dalla Valle et al. 2001, 

Hedge et al. 2002, Chi et al. 2003, Johansen et al. 2004b). RNA2 has been used as a target 

gene for phylogenetic analyses, and this is discussed in detail below. Nodaviruses have a 

conserved coat protein sequence close to the N-terminus (Thiéry et al. 2004). However, 

betanodavirus and alphanodavirus display low nucleotide identities between the RNA2 gene 

fragments (Nishizawa et al. 1995).  

 RNA3 is formed during replication, as a subgenomic RNA of approximately 400 nt, 

and is transcribed from the 3’end of RNA1 of black beetle virus (Friesen and Rueckert 1982, 

Guarino et al. 1984). In most alphanodaviruses the RNA3 segment contains two ORFs 

encoding protein B1 and B2 (Schneemann et al. 1998). In betanodavirus, Sommerset and 

Nerland (2004) reported that Atlantic halibut nodavirus (AHNV) subgenomic RNA3 only 

encode the B2 protein, which was shown to accumulate in large amounts soon after infection. 

These authors also made alignments of AHNV RNA3 and alphanodavirus RNA3, which 

showed only marginal nucleotide identities. A study of greasy grouper nervous necrosis virus 

(GGNNV) suggested existence of both B1 and B2 protein domains at RNA3 (Tan et al. 

2001). The functions of these proteins have been unknown, but a study of GGNNV by Fenner 

et al. (2006) suggested the B2 protein to antagonize RNA interference. The B2 protein 

accumulates in the nucleus of the host cell during the late stages of infection and facilitates 

intracellular viral RNA accumulation. This suppresses cellular RNA interference, which is 

known to be an antiviral infection defense mechanism (Cullen 2002). Such a function is also 

known for the B2 protein in Nodamura virus (NoV), which infects both insects and rodents 

(Johnson et al. 2004, Sullivan and Ganem 2005), and FHV (Li et al. 2002). Iwamoto et al. 

(2005) studied SJNNV RNA3 and protein B2, and showed that the B2 protein was present in 

the central nervous systems and retinas of infected larvae as well in the cytoplasm of infected 
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cultured E-11 cells. They also suggested that the RNA3 is synthesized via a premature 

termination model, and that the SJNNV protein B2 has a potent RNA silencing-suppression 

activity. In general, the protein B2 encoded by RNA3 seems to be involved in suppression of 

host cell defense mechanisms and to play a role in the viral infection cycle. The function of 

protein B1 is unknown, and even its existence might be questionable. However, roles in viral 

replication (Ball 1995, Harper 1994) or in determining the host range or cytopathology of 

infected cells (Schneemann et al. 1998) have been suggested. 

1.1.3 NNV phylogeny 

NNV have been characterized into several different groups (Figure 2) based on the 

phylogenetic relationship. Most of these phylogenetic analyses are based on the partial 

nucleotide sequences of the RNA2 segment. Initially, Nishizawa et al. (1997) suggested the 

existence of four clusters or genotypes, represented by striped jack nervous necrosis virus 

(SJNNV), tiger puffer nervous necrosis virus (TPNNV), barfin flounder nervous necrosis 

virus (BFNNV) and red-spotted grouper nervous necrosis virus (RGNNV). These four groups 

comprise all known betanodaviruses. Although this analysis was based primarily on Japanese 

virus isolates, the four main clusters have been consistent and supported by other studies 

(Skliris et al. 2001, Chi et al. 2003, Dalla Valle et al. 2001, Thiéry et al. 2004). 

Addressing the BFNNV clade, this group shows one particular characteristic; all virus 

isolates originate from cold-water fish hosts. As the BFNNV group is clustering as a sister 

group of RGNNV (Nishizawa et al. 1997), this may suggest a common ancestry. The BFNNV 

genotype is named after the barfin flounder (Verasper moseri), which is a large flatfish 

species living primarily in the cold sea basins of the east coast of Hokkaido, Japan (Ando et 

al. 1999). The barfin flounder is farmed commercially, and is regarded as an important 

aquaculture species in the Northern part of Japan (Mori et al. 2006). Several virus isolates 

from cold-water fish hosts have been reported to cluster within this group. Aspehaug et al. 

(1999) reported that a virus isolate from Atlantic halibut (Hippoglossus hippoglossus) showed 

high nucleotide identity at the RNA2 segment with barfin flounder NNV. Grotmol et al. 

(2000) have also confirmed this finding, and other studies have shown that cold-water NNV 

isolates from Atlantic cod, winter flounder (Pseudopleuronectes americanus) and haddock 

(Melanogrammus aeglefinus) cluster into the BFNNV clade (Johnson et al. 2002, Gagné et al. 

2004, Nylund et al. 2008). A new genotype, turbot nodavirus (TNV), has been suggested by 

Johansen et al. (2004b), who isolated a nodavirus from farmed turbot (Scophthalmus 
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Figure 2. Phylogenetic position of selected NNV isolates. Phylogram is based on 377 nucleotides from 

RNA2 segment and applied maximum-likelihood criteria in TREE-PUZZLE (quartet-puzzling steps) to 

calculate phylogenetic distances. Major clades are BFNNV = Barfin flounder NNV, RGNNV = Red-

spotted grouper NNV, TNNV = Turbot NNV, TPNNV = Tiger puffer NNV, SJNNV = Striped jack NNV. 

Sub-clades within BFNNV are AHNNV = Atlantic halibut NNV, GMNNV = Gadus morhua (Atlantic cod) 

nervous necrosis virus, ACNNV = Atlantic cod NNV. The scale bar shows the number of substitutions 

as a proportion of branch lengths. The numbers at the nodes are quarter-puzzle support values. 

Figure extracted from Nylund et al. (2008). 
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maximus) in Norway. However, the existence of this genotype has not been verified by other 

studies, and currently it consists of only one virus isolate.  

 The grouping of NNV into different genotypes has raised questions of possible host 

specificity or preference and if/how the virus is transmitted among populations of fish. This is 

vital information, which will have implications for the aquaculture industry and how 

introduction of the virus into new areas or hosts should be avoided or addressed. The virus-

host interactions, including host specificity and transmission pathways, are discussed in 

section 1.3, after a description of the disease caused by the virus. 

1.2 Viral nervous necrosis (VNN) 

1.2.1 Clinical signs and gross pathology 

Pathogenesis and clinical signs of VNN are related to the neuroinvasive nature of the virus 

and the subsequent effect on tissues such as brain and retina. In general, clinical signs of 

disease are erratic swimming patterns, like looping or spiral swimming, reduced co-ordination 

and changes in pigmentation. Other non-specific signs include anorexia, lethargy and 

anaemia. A number of studies have described signs and pathology in primary warm-water fish 

species, and Munday et al. (2002) have reviewed the literature. However, the clinical signs 

and pathology of cold-water fish species will be presented in more detail. 

 The first paper on VNN in halibut is Grotmol et al. (1995), who reported mass 

mortality of larval and juvenile hatchery-reared halibut (Hippoglossus hippoglossus) in 

Norway.  In this case the initial clinical signs consisted of reduced feeding activity, emptying 

of the gastro-intestinal tract and lighter skin pigmentation. Occasionally abnormal swimming 

pattern with belly-up was observed. Most of the mortality occured in the period of early 

metamorphosis, and mortality rates reached almost 100%. They concluded that the mortality 

was a result of infection with nodavirus. However, Bloch et al. (1991) was the first to report 

mortality (although not in a cold-water fish spices) in turbot (Scophthalmus maximus) in 

Norway, although they suggested this was caused by a picornavirus, the clinical signs and 

pathology are consistent with VNN. In the following years outbreak of VNN or clinical signs 

in halibut have been reported in individuals in different developmental stages from pelagic 

larvae to metamorphosed juvenile by Grotmol et al. (1997a) and adult and sexually mature 

Atlantic halibut by Aspehaug et al. (1999). Presence of NNV in adult fish had been reported 

previously (Fukunda et al. 1996, Arimoto et al. 1992, Mushiake et al. 1994, Nguyen et al. 

1997, Le Breton et al. 1997), but still the report by Aspehaug et al. is the only one of clinical 

signs of VNN in fish with mean weight of 5.4 kilos. VNN has also been reported in the UK, 
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in Atlantic cod and Dover sole (Solea solea), both species hatched from wild stocks (Starkey 

et al. 2000, 2001). The disease has also been reported in Atlantic cod juveniles, hatched from 

egg batches obtained from wild brood stock fish, in North America (Johnson et al. 2002) and 

in cultured white seabass (Atractoscion nobilis) juveniles (Curtis et al. 2001). Recently, the 

first outbreak of VNN in farmed Atlantic cod in Norway was reported by Paper IV (see 

section 1.2.4). 

In general, observation of pathology and clinical signs of VNN in cold-water fish 

species are restricted to farmed species only, and to fish in cultivation originating from eggs 

hatched from wild caught brood stock fish. There are no reports on disease outbreaks in wild 

fish species, but a number of papers have reported detection of NNV, which is described in 

section 1.2.3. Mortality seems to be related to size or developmental stages, as larvae and 

juveniles have higher rates of mortality than adult fish. Temperature may also contribute to 

disease outbreaks, and some of the described outbreaks of VNN occurred at temperatures 

above 12 °C. Only marine fish species have been reported to suffer from VNN, but there are 

some studies on distribution of nodavirus in wild populations (see below). Although there is 

no report on VNN in salmon (which is an important farmed species in Norway), one paper has 

described clinical signs and pathology similar to nodavirus infection. Scullion et al. (1996) 

reported encephalitis and mass mortality of farmed salmon smolt in Ireland. Although no 

causative agent was found, this observation and the finding of nodavirus-like agent in heart 

tissue of Atlantic salmon suffering from cardiac myopathy syndrome (CMS) (Grotmol et al. 

1997b, Nilsen and Nylund 1998) may indicate susceptibility in this species. Host specificity is 

addressed in section 1.3.1 and 4.3.2.   

1.2.2 Histopathology 

In general, histopathology of VNN includes cellular vacuolation and neuronal degeneration, 

usually in retina, brain, spinal cord and ganglia in the peripheral nervous system (Munday et 

al. 2002). Typical histopathology is exemplified in Figure 3. These pathological changes are 

linked to the clinical signs observed during a VNN outbreak, and the CNS is thought to 

dysfunction. The term “viral nervous necrosis” and “viral encephalopathy and retinopathy” is 

also related to observed histopathology of the disease.  

 Histopathology in Atlantic halibut larvae suffering from VNN has been described with 

vacuolation in cells in all areas of the brain and in all nuclear layers of the retina. The 

numbers of vacuolated cells may vary, where some individuals only show focal lesions or 

diffuse degeneration, when others may have widespread and massive vacuolation (Grotmol et 
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al. 1995, Johnson et al 2002). Johansen et al. (2002) have shown that persistently infected 

Atlantic halibut with no clinical signs of disease have focal cell aggregates of virus. These 

aggregates were seen in all regions of the brain and nuclear cell layers of the retina. The 

differences observed in various developmental stages, between different fish species and in 

acute and persistently infected fish demonstrate that further knowledge of the virus-host 

interactions is required. This has led to discussions of significance of genetic composition of 

the host, maturity of the host immune system (including the developmental stage) and 

virulence (Sommerset 2004). 

1.2.3 Cold-water species affected 

Several fish species from Northern-Europe, from the Atlantic coast of North America and 

from North Japan have been shown to be susceptible hosts for NNV from the cold-water clade 

BFNNV (Table 1). In Norway, a recent study detected NNV in wild Atlantic cod (Nylund et 

al. 2008). The detections of NNV in a number of wild fish species on the west coast of 

Norway are suggesting there is a marine reservoir of virus. However, further sampling has to 

be done to map the distribution of NNV in wild marine fish species along the Norwegian 

coast.  

Susceptibility has also been shown by experimental challenge with betanodavirus in 

spotted wolfish (Anarhichas minor) (Johansen et al. 2003, Sommer et al. 2004). A nodavirus-

like agent has also been reported in heart tissue of Atlantic salmon (Salmo salar) suffering 

from cardiac myopathy syndrome (CMS) (Grotmol et al. 1997b). Although viruses isolated 

from cold-water hosts have been restricted to the BFNNV group, Thiéry et al. (2004) reported 

that a virus isolate from this clade infected sea bass (Dicentrarchus labrax). This virus was 

isolated during an outbreak of VNN at low temperature, and low host specificity of the virus 

was suggested. The same conclusion was reached in a study of nodavirus infections in Israeli 

mariculture (Ucko et al. 2004). Other studies have shown susceptibility of fish in freshwater 

(Hedge et al. 2003) or fish reared in freshwater (Skliris and Richards 1999b, Athanassopoulou 

et al. 2003). 

1.2.4 VNN in Norway – a brief summary 

Bloch et al. (1991) were first to report nodavirus in Norway (picornavirus-like agent), in 

juveniles of turbot (Scophthalmus maximus) suffering from encephalomyelitis, later Grotmol 

et al. (1995) reported mortality of larva and juveniles of Atlantic halibut  



 

 

Table 1. Cold-water fish species host range for nervous necrosis viruses (NNV) from the BFNNV genotype clade. The table list fish species in which NNVs have 

been detected and/or sequenced.  Wild/farmed = whether NNV has been detected in wild or farmed fish. 

Order  Species Name Geographical location Reference Wild/farmed 

Norway Nylund et al. (2008) wild 

Norway Paper IV 
Nylund et al. (2008) farmed 

Canada Johnson et al. (2002) farmed 
Gadus morhua Atlantic cod 

UK Starkey et al. (2001) farmed 

Gadus macrocephalus Pacific cod Japan Nishizawa et al. (1997) unknown 

Melanogrammus aeglefinus Haddock Canada Gagné et al. (2004) 
Johnson et al. (2002) Farmed 

Pollachius virens Saith Norway Nylund et al. (2008) Wild 

Gadiformes 

Pollachius pollachius Pollock Norway Nylund et al. (2008) Wild 

Pleuronectes americanus Winter flounder USA Barker et al. (2002) Wild 

Solea solea Dover sole / common 
sole UK Starkey et al. (2001) Farmed 

Hippoglossus hippoglossus Atlantic halibut UK Starkey et al. (2000) Farmed 

Hippoglossus hippoglossus Atlantic halibut Norway Grotmol et al. (1995) 
Aspehaug et al. (1999) Farmed 

Pleuronectes platessa Plaice Norway Nylund et al. (2008) Wild 

Pleuronectiformes 

Verasper moseri Barfin flounder Japan Nishizawa et al. (1995) Farmed 

Perciformes Scomber scombrus Mackerel Norway Nylund et al. (2008)  wild 
 



 

 
 
Figure 3. Histological sections of Atlantic cod, Atlantic salmon and turbot immunolabeled (red colour) 

with NNV specific antibodies, targeting the viral capside protein. A) Strong immunolabeling (arrows) in 

a section of retina in experimentally i.p. challenged Atlantic cod. EP = external plexiform layer, EL = 

external nuclear layer, BS = basal layer of visual cells. B) Section of brain in experimentally i.p. 

challenged Atlantic salmon with immune positive cells (arrows) scattered in the parenchyma. C) 

Strong immunolabeling of a large area (indicated by arrows) in a section of brain from experimentally 

i.p. challenged turbot. In the immunolabeled area, vacuolation of cells are visible. D) Immune-labeling 

of a section of retina from experimentally i.p. challenged turbot. Vacuolated cells are visible within EL 

and EP layers. Scale bars = 20 μm. 

 

(Hippoglussus hippoglossus) associated with nodavirus-like particles in CNS and retina. 

However, mortality that most likely could be related to nodavirus infection was registered in 

turbot as early as 1987 (Nylund – unpublished data), based on TEM analysis of sections of 

brain, observations of clinical signs and absence of other known pathogens. During the time 

span from 1995 to 1998 several outbreaks of VNN were reported in farmed halibut, and a 

national surveillance program was established in 1999 in order to monitor the disease. This 

program relayed on sampling of juveniles from hatcheries producing halibut, turbot and from 

2000 Atlantic cod (Gadus morhua). The surveillance was running until 2004 when it was 

terminated due to implementation of EU Directive 91/67. During these years, NNV were 
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detected at four times; three times in halibut (Hellberg and Dannevig 2002, 2003) and once in 

turbot (Johansen et al. 2004b). From 2004 to mid 2006 there was no official detection of 

nodavirus, but this changed when VNN was diagnosed in a halibut hatchery in late summer 

2006, at a research facility that previously had suffered from the disease in the mid 1990’ties. 

This outbreak was followed by a new VNN diagnosis in a combined research and commercial 

growth site for Atlantic cod (Hellberg 2007, Paper IV). This site is also owned and operated 

by the same institute running the halibut hatchery, and was the first outbreak of VNN in 

farmed Atlantic cod in Norway. At the end of year 2006 NNV was detected and VNN 

diagnosed in several commercial cod farms at the west coast and northern part of Norway, 

suggesting presence of NNV in farmed cod, as well as in farmed turbot and halibut. As 

nodavirus is appearing in an increasing number of fish farms and in wild fish species (Nylund 

et al. 2008) further knowledge of the virus properties as a pathogen is required. In order to 

understand some of the nature of NNV infection aetiology, a closer look on the genetic 

properties, transmission and distribution of virus in farmed and wild fish are essential. First of 

all, investigation of such properties necessitates sensitive and specific detection tools. 

1.2.5 Diagnostic methods and detection 

Establishment of specific and sensitive methods for nodavirus detection are important, both as 

diagnostic tools and for scientific studies of the virus. In general, the most commonly used 

methods could be divided into molecular, immunological and cell culture. 

Initially there were few cell lines in which betanodavirus could be cultivated. Cell 

lines are important for propagating virus, characterizing and studying viral infectious 

mechanisms, and the first line reported to support betanodavirus replication were by Frerichs 

et al. (1996).  They successfully used a cell line (named SSN-1) derived from striped 

snakehead (Ophicephalus striatus) to isolate nodavirus from diseased sea bass juveniles. The 

SSN-1 cell line, and the cloned E-11 cell line derived from SSN-1 (Iwamoto et al. 2000), was 

subsequently been used in number of studies. A number of other cell lines have been reported 

as useful in propagating NNV, including Cos1 (simian) (Delsert et al. 1997b), GF-1 derived 

from grouper (Epinephelus coioides) (Chi et al. 1999), a tropical marine fish cell line (SF) 

from Asian sea bass (Lates calcarifer) (Chang et al. 2001) and TF-line from turbot 

(Scophthalmus maximus) (Aranguren et al. 2002b). A concern regarding the SNN-1 and 

derived cloned types has been reported, as these are persistently infected by retrovirus which 

might possibly interfere with NNV replication (Lee et al. 2002). Another effect on the SSN-1 

cell line which has been examined is temperature, suggesting that this cell line to be 
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suboptimal for proliferating NNV strains isolated from cold-water fish species (Ciulli et al. 

2004). In Norway, the SNN-1 cell line has been used to propagate cold-water NNV 

(Dannevig et al. 2000, Johansen et al. 2003), but the recent  published SAF-1 cell line derived 

from gilthead sea bream (Bandín et al. 2006) has been used successfully to proliferate 

nodavirus isolates from both wild and farmed cold-water fish species in Norway (Nylund et 

al. 2008). The SAF-1 cell line could consequently prove to be an alternative to the SSN-1 

type. However, the widespread distribution of NNV has led to development of several other 

susceptible cell lines that has proven effective to proliferate a number of different NNV 

strains (Lai et al. 2003, Chi et al. 2005, Hameed et al. 2006, Zhao and Lu 2006, Qin et al. 

2006). 

The unsuccessful attempts to cultivate NNVs in cell lines in the first half of the 90’ties 

led to a rapid development of alternative methods, including immunologically based assays. 

These assays could be subdivided into direct and indirect detection of virus particles, and 

included enzyme-linked immunosorbent assay (ELISA), indirect fluorescent antibody 

technique (IFAT) and later immunohistochemistry (IHC) and neutralization tests. The most 

widely used immunological methods for diagnosing VNN have been ELISA and IHC. 

 ELISA was one of the first immunological methods to be developed, and one of the 

first such assays was developed by Arimoto et al. (1992) to detect SJNNV. Later, Shieh and 

Chi (2005) suggested use of an antigen capture ELISA as a more specific and sensitive tool 

for VNN diagnosis. Several papers have used ELISA to detect virus in various fish species to 

monitor health status (Mushiake et al. 1992, Breuil and Romestand 1999, Watanabe et al. 

2000, Husgard et al. 2001, Huang et al. 2001, Breuil et al. 2002, Grove et al. 2003), but one 

major problem is the sensitivity, as this method requires an antibody response. In fish 

displaying persistency or latency, detection of virus by ELISA might prove to be difficult and 

more sensitive methods such as RT-PCR and real-time RT-PCR have become more 

commonly used.  

 Immunohistochemistry (IHC) provides detection of virus particles in histological 

sections, where both presence and possible pathological changes might be observed. IHC is 

based on antiserum raised against specific or similar antigens, making studies of possible 

cross-reactions necessary. Different NNV strains are shown to be serologically 

distinguishable (Skliris et al. 2001, Mori et al. 2003), suggesting there are differences in 

neutralizing epitopes. Consequently, antisera raised against one particular strain of 

betanodavirus might not detect other serologically distinguishable strains, or they may cross-

react with epitopes of non-nodavirus origin. The first detection of NNV from Atlantic halibut 
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with IHC was performed with an antiserum raised against a striped jack (SJNNV) strain 

(Grotmol et al. 1997a), and this serum was subsequently used by in a number of studies for 

NNV detection (Grotmol et al. 1997b, Grotmol et al. 1999, Grotmol et al. 2000, Dannevig et 

al. 2000). Later, antisera raised against a NNV isolated from Atlantic halibut (AHNor95) have 

been frequently used (Johansen et al. 2002, 2003, 2004a, Grove et al. 2003, Sommerset et al. 

2005).  

  Molecular methods for the detection of NNV could be divided into RT-PCR and real-

time RT-PCR assays. Molecular methods have played an even more important role in 

detecting and characterizing virus, and the first ones to develop an RT-PCR assay for 

betanodavirus were Nishizawa et al. (1994), which targeted the RNA2 segment of SJNNV. 

Subsequently a large number of papers have applied the method to detect various virus strains 

(i.e. Comps and Raymond 1996, Nguyen et al. 1997, Thiéry et al. 1999, Péducasse et al. 

1999, Dalla Valle et al. 2000, Iwamoto et al. 2001, Huang et al. 2001, Gomez et al. 2004, 

Gagné et al. 2004, Thiéry et al. 2004). In Norway RT-PCR and real-time RT-PCR have been 

used to detect nodaviruses isolated from Atlantic halibut (Grotmol et al. 1997a, Aspehaug et 

al. 1999, Grotmol et al. 2000, Johansen et al. 2004a), turbot (Johansen et al. 2004b) and 

Atlantic cod (Nylund et al. 2008). RT-PCR, followed by sequencing, has also formed the 

basis for phylogenetic analyses (see section 1.1.3), where strains are grouped according to 

genetic properties into five distinct clades. The RT-PCR technology has been further 

developed, and in 1996 the first commercial real-time PCR became available (Heid et al. 

1996). Real-time PCR is a continuous collection of fluorescent signal from one (or more) 

PCR over a range of cycles, and the advantages over standard PCR are increased sensitivity 

and the possibility to be quantitative. The development of real-time PCR has been reviewed 

by Mackay (2004), with focus on the use in the microbiology laboratory. Real-time RT-PCR 

methods for NNV detection and quantification have been developed to study the virus, and 

have vastly improved the sensitivity compared to conventional PCR and nested PCR 

methodologies (Starkey et al. 2004). This has made this method particularly useful to map the 

distribution of virus in persistently infected fish, where virus particles are present in small 

numbers. Recently, Starkey et al. (2004), Paper I, Grove et al. (2006) and Nerland et al. 

(2007) have published real-time RT-PCR assays used to detect NNV in the BFNNV clade. 

VNN is no longer listed in section 1.2.3 of the Aquatic Animal Health Code (2008) 

issued by OIE (http://www.oie.int/eng/normes/fcode/A_summry.htm). Diagnostic methods 

have been described by OIE, where fish suitable for virological examination include 

asymptomatic carriers and fish showing clinical signs as described above. The finding of 
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vacuolation of neural tissue is verified by: 1) cell culture propagation and subsequent virus 

identification by indirect fluorescent antibody technique (IFAT) and/or reverse-transcription 

polymerase chain reaction (RT-PCR) or 2) direct detection in fish tissue by IFAT, 

immunohistochemistry or RT-PCR (http://www.oie.int/eng/normes/fmanual/A_00024.htm).  

1.3 Virus-host interactions 

The worldwide distribution of NNV does raise some questions of how the virus is spread. 

Although the mechanisms of the viral infection, including transmission, is not fully 

understood, the central nervous system (CNS) seems to be the main target organ for 

replication in all affected fish species. A further examination of possible important virus-host 

interactions, which might play a role in the viral lifecycle, is necessary. Subsequently, host-

specificity, transmission of virus, entry into the host, viral replication and vaccination 

(immune response) as a possible prophylactic measure are addressed below.  

1.3.1 Host specificity 

The large number of susceptible NNV hosts, worldwide distribution (see review by Munday 

et al. 2002) and phylogenetic relationships (see section 1.1.3) have resulted in discussions of 

possible host specificity in strains of NNV. The suggestion of a cold-water genotype clade 

(BFNNV) has led to discussions on possible host specificity and temperature dependence in 

betanodavirus strains (Aspehaug et al. 1999, Chi et al. 1999).  

In order to investigate possible transfer to mammalian cells, Delsert et al. (1997b) 

tested a nodavirus (DIEV) in a mammalian cell line (simian Cos1). Replication was observed 

but virus yield was low. Banu and Nakai (2004) injected nodavirus (in the SJNNV and 

RGNNV clades) both intra peritoneally and intra muscularly in mice (BALB). The virus was 

spread to the kidney, but the number of virus particles decreased during the period 

investigated (72 h). Even more important, the virus strains did not show any neuroinvasive 

activity, and were not detected in the target organs known from piscine hosts (brain, spinal 

cord and eye). Consequently, the mouse was not regarded as susceptible to infection with 

NNV. 

The ability of NNV to infect host cells, replicate and infect other host cells are 

important and could possibly relate to host specificity. When NNV was injected in turbot 

muscle cells it did replicate, and this might suggest that the virus is able to replicate if forced 

or helped into host cells (Sommerset et al. 2005). There was, in this study, no spreading of 

virus from infected muscle cells to non-infected cells in close proximity, and this might 
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suggest that NNV has a high capacity to replicate when the virus has entered into the cell 

cytoplasm but not necessarily the capacity to enter/spread to a new host cell. Eventually the 

virus in this study entered into the bloodstream of the host, causing a viremia and a following 

infection of brain and eye. This study also demonstrates the susceptibility of cells in the 

central nerve system (CNS). The ability of NNV to be transported from one neuron to another 

by passing across synaptic clefts has been shown by Ikenaga et al. (2002).  This may suggest 

that virus could be transported from the peripheral nerve system or blood to CNS.   

Several studies have suggested existence of host specificity when studying 

susceptibility of various fish species to different NNV strains in challenge experiments 

(Arimoto et al. 1993, Totland et al. 1999, Tanaka et al. 2003, Iwamoto et al. 2004, Thiéry et 

al. 2004). Host specificity has been linked to the RNA2 segment (Iwamoto et al. 2004) with 

suggestion that the variable region (known as the T4 region) is involved in controlling the 

host specificity (Ito et al. 2008). Finding of a NNV isolate in the BFNNV capable to infect sea 

bass (Dicentrarchus labrax) may suggest that different genotypes could infect various fish 

species and subsequently have low host specificity (Thiéry et al. 2004). 

 In summary, there is support for existence of host specificity of nodavirus in the 

literature. However, one major concern is the lack of information of possible virulence of 

isolates and strains of nodavirus, which probably is playing a role in susceptibility and any 

host specificity. The susceptibility is reported primarily in fish juveniles, but some papers 

report this in adult fish as well (Aspehaug et al. 1999, Skliris and Richards 1999a). This might 

suggest differences in virulence of isolates used in challenge experiments. The existence of 

both vertical and horizontal transmission (see below) is suggesting that variation in virulence 

likely exists. Such variation in virulence of fish pathogenic viruses in cold-water fish farming 

was suggested by Breuil et al. (2001), which used two distinguishable nodavirus isolates to 

challenge sea bass. In this study there were differences in pathogenicity between the isolates 

when challenging fertilized eggs and subsequent examination of larvae post hatching. Both 

isolates were pathogenic to larvae challenged with virus. Variation in virulence has also been 

demonstrated in infectious pancreatic necrosis virus (IPNV) (Santi et al. 2004) and infectious 

salmon anemia virus (ISAV) (Cunningham et al. 2002, Nylund et al. 2003), which cause 

diseases in farming of Atlantic salmon (Salmo salar). These viruses show a distinct difference 

in host range (and host specificity), but share the property of variation of virulence due to 

existence of both vertical (Nylund et al. 2007) and horizontal transmission. Further studies of 

virulence in nodavirus isolates, strains and possibly genotypes should consequently be carried 

out.  
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1.3.2 Transmission of virus 

The first step to study possible transmission of a pathogen usually involves studies of 

susceptibility by experimental challenges, typically as intra peritoneal (i.p.) or intra muscular 

(i.m.) injections. Injection of nodavirus does not represent a natural way of transmitting the 

pathogen, but provide a controlled way of distributing the virus. If the virus does not replicate 

or spread within the host, susceptibility does not likely exist. On the other hand, if 

susceptibility is observed, further studies using cohabitation as a model are usually performed 

in order to examine if the host is susceptible to a water borne transmitted pathogen, known as  

horizontal transmission. The other principal way of transmitting a pathogen is by gametes, 

known as vertical transmission. Pathogens may have one or both ways of transmission, and 

this will have implications for how the pathogen is spread, both in wild populations of fish 

and in the aquaculture industry. The mechanisms of how NNV is transmitted are not fully 

understood, but several studies have addressed transmission of the virus between and within 

different fish species. Possible routes of transmissions of the virus are given in Figure 4.  

 

Horizontal transmission 

Existence of horizontal transmission of NNV has been shown in a number of experimental 

challenge studies in several susceptible hosts. Such transmission has been demonstrated in 

farmed fish species such as striped jack (Pseudocaranx dentex) (Arimoto et al. 1993), sea 

bass (Dicentrarchus labrax) (Le Breton et al. 1997, Castric et al. 2001, Péducasse et al. 1999, 

Skliris and Richards 1999a) and sea bream (Sparus aurata) (Castric et al. 2001, Aranguren et 

al. 2002a). One particular observation should be highlighted, that sea bream (Sparus aurata) 

appear to be a potential carrier of NNV, as juvenile sea bass (Dicentrarchus labrax) became 

infected when placed in a tank with experimentally infected sea bream (Castric et al. 2001). 

Existence of horizontal transmission has also been suggested when comparing different NNV 

isolates in Taiwan, where the study concluded that transmission had occurred as a result of 

transportation of infected fish, and that virus seemed to be transmitted within aquaculture 

facilities through use of contaminated equipment and recirculation of water (Castric et al. 

2003) 

 There are rather few studies on horizontal transmission in cold-water fish species. The 

studies have mostly addressed Atlantic halibut that has been i.p. injected or bath challenged 

with virus (Grotmol et al. 1999, Dannevig et al. 2000, Grove et al. 2003). NNV has also been 

detected in high concentrations in rearing units with Atlantic halibut larvae suffering from 
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VNN (Nerland et al. 2007), showing that virus may be dispersed via water from aquaculture 

facilities. 

A few studies have addressed the stability of the nodavirus particle, and the effect of 

chemical disinfectants on inactivation of NNV (Arimoto et al. 1996, Frerichs et al. 2000). In 

general, these two studies found that the virus isolates examined showed high resistance to 

environmental conditions. The ability to withstand degradation is possibly important in 

horizontal transmission (survival in the environment) and increases the likelihood for such a 

transmission pathway. One study by Liltved et al. (2006), reported that NNV has high 

resistance to ozone and suggested that fish farms should use considerably higher TRO (total 

residual oxidant) concentrations and C T value (the product of concentration and contact time) 

than previously applied for inactivation of virus.   

In summary, horizontal transmission of NNV has been documented in several fish 

species. The published studies may suggest that there is a difference in susceptibility and 

development of clinical disease, where juveniles are more likely to develop the disease. There 

are also indications that increased temperature and amount of virus used to challenge 

influences the development of disease. Horizontal transmission has been shown in adult 

individuals as well, and may suggest that the virus could possibly be transferred over a 

prolonged period or even the entire life span, but development of disease are to a lesser degree 

occurring as the fish is getting older. However, these studies have not addressed possible 

variation in virulence of nodavirus isolates or strains. Further, clinical disease could perhaps 

occur if virus in persistently infected adult fish increased amount through viral replication. 

 

Vertical transmission 

Several studies have suggested that NNV, or more specifically the particular strains which 

have been studied, to be vertically transmitted. In general, vertical transmission can occur as 

transovarian transmission where the pathogen is present inside the egg. The other way is if the 

pathogen only is present on the egg surface (transovum). The result is vertical transmission in 

both cases. But it is important in cultivation of fish to determine the type of transfer, as 

disinfection of eggs only would be effective when the pathogen is present on the surface. 

Vertical transmission of NNV has been suggested by a number of studies, in striped jack 

(Arimoto et al. 1992, Mushiake et al. 1994, Nguyen et al. 1997), barfin flounder (Verasper 

moseri)  (Watanabe et al. 2000) and sea bass (Breuil et al. 2002). These studies recognize 

vertical transmission as an important way of spreading the virus and suggest selection of 

virus-free sprawers by examination of brood fish. Several different methods have 
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Vertical transmission (1) 
 

 
WILD POPULATIONS - NNV ISOLATES 

 
Horizontal transmission (2) 

 
 
 

    Brood fish (6)                      ROUTES OF TRANSMISSION                        Horizontal (3) 
 
 
 

      Horizontal transmission (4) 
 

FARMED POPULATIONS - NNV ISOLATES 
 
 
 

Vertical transmission (5) 
 
 
 
Figure 4. Suggested transmission routes of nervous necrosis virus (NNV). Different entrances of the 

virus may be suggested; 1) vertical transmission in wild populations of fish, 2) horizontal transmission 

between wild fish, 3) horizontal transmission between wild and farmed fish, 4) horizontal transmission 

between farmed fish, 5) vertical transmission in farmed populations of fish and 6) through use of NNV 

infected fish utilized as brood fish in farmed fish or stock enhancement of wild populations of fish. The 

NNV-host interaction may be considered to be different in wild versus farmed populations of fish, as 

discussed in section 4.3.4. 

 

been applied to screen fish in these studies, including ELISA (Breuil and Romestrand 1999) 

and RT-PCR (Nishizawa et al. 1994), and application of new methods such as real-time PCR 

may also be important to identify infected brood fish.  

Considering cold-water fish species such as Atlantic cod and halibut, there are few 

conclusive reports on vertical transmission. However, the report of isolation of NNV from 

adult Atlantic halibut displaying clinical signs of VNN suggests vertical transmission likely 

could occur. A study of effect of disinfection with ozone on eggs from Atlantic halibut with 

increased rate of survival of halibut juveniles post hatching (Grotmol and Totland 2000), 
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suggests that use of disinfectants might be important to inactivate virus with transovum 

transmission. Existence of subclinically infected adult fish may also suggest that virus may be 

transmitted vertically, and in a study which followed a natural outbreak of VNN at a 

commercial Atlantic halibut farm in Norway such fish were detected after one year (Johansen 

et al. 2004a). During this study, fish were grouped as high- and low-growth groups, where the 

number of fish positive for virus by PCR and ELISA decreased gradually in the high growth 

group. However, virus was re-isolated in cell culture from subclinically infected fish 

suggesting that the virus was still infectious.  

  In summary, there is strong support for vertical transmission. Studies of striped jack, 

sea bass and barfin flounder detected NNV in adult individuals and spawners, eggs and larvae 

post-hatching, and that infected spawners produce offspring which may develop the disease. 

These studies recommend that selection of virus-free brood fish is essential for controlling the 

disease. In cold-water species, there is no conclusive study on vertical transfer, but 

considering the studies on other marine fish species it is likely that vertical transmission is 

occurring in these species as well. This could be exemplified with the report on adult halibut 

displaying clinical signs of the disease and subsequent isolation of virus. In addition, 

disinfection of eggs increased the survival of halibut larvae. The existence of persistently 

infected halibut after an outbreak of VNN suggests that such fish might become carriers, 

which could transfer the virus vertically if used as brood fish. In farming of cold-water 

species (including Atlantic cod), further studies should be carried out to verify existence of 

vertical transmission and if any such transfer includes transovarian transmission.  

1.3.3 Entry of virus into the host 

A virus infection involves attachment on the host cell surface, entry into the cytoplasm and 

replication. In general, viruses replicate either in the cytoplasm or in the nucleus, depending 

of the type of nucleic acid present in the genome. RNA viruses, in most cases, replicate in the 

cell’s cytoplasm, and carry or encode for their own polymerase. This eliminates the need for 

entry to the cell nucleus. However, RNA viruses that has a spliced genome or viruses with 

DNA as intermediate steps during replication, has to enter the cell nucleus. In general, viral 

mRNAs are synthesised either by viral enzymes or the cell transcriptional machinery. The 

viral mRNA has to be translated by the cell ribosomes in the cytoplasm, and subsequently the 

mRNA originating from virus has to be recognised by this system to be expressed as viral 

proteins.  
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 Mechanisms of how the NNVs enter the host are not known in detail. The literature 

suggests existence of at least three possible gateways; 1) through intestinal epithelium, 2) via 

axons and 3) via the bloodstream (viremia) to CNS. The two latter may be considered as 

pathways when the virus already has entered into the host.  

Transportation of betanodavirus in neurons has been studied by Ikenaga et al. (2002), 

who demonstrated that virus is able to move across synaptic clefts and be transported both 

directions. This study suggests that virus could be transported from the peripheral nerves 

(vagus) to the CNS. Grotmol et al. (1999) suggested the route of infections might be trough 

the intestinal epithelium, and that spreading to the CNS might be trough axonal transport to 

brain stem via cranial nerves such as the vagus nerves. Husgard et al. (2001) suggested, based 

on the results in challenge studies using SJNNV, that the virus could have entered the CNS by 

axonal transport through motor nerves after intramuscular inoculation.  

 Chi et al. (2003) have suggested the intestinal tract as a possible gateway, through 

feeding with contaminated biological food. Mori et al. (2005) have also suggested that the 

virus may enter into the host by digestion of contaminated food. Studies of horizontal 

transmission of virus (see above) may also suggest existence of other gateways, but in 

cohabitation and water borne transmission studies the virus may enter the host via the outer 

surfaces, including the intestinal tract. Nguyen et al. (1996) detected nodavirus in epithelium 

cells in skin of striped jack larvae in an acute infection, but the role of skin in transmission has 

not been investigated. The literature also suggests there is difference in susceptibility, and that 

age or developmental stage is influencing the likelihood of development of disease, where 

adult fish seems less likely to develop clinical disease. Detection of virus in a number of wild 

cold-water fish species may suggest that nodavirus infections are common in the marine 

environment. In addition, the existence of vertical transmission and persistently infected fish 

may demonstrate that development of clinical disease is dependent on the fate of the virus in 

the host rather than presence alone. In order to cause disease the virus has to evade the host 

immune system and replicate in sufficient numbers to cause clinical signs (usually 

malfunctioning of CNS). This ability, or virulence, may be influenced by the host 

immunological status (i.e. age/developmental stage) or possible variation in virus virulence. 

1.3.4 Viral replication 

NNV seem to have some host cell preference, which could be exemplified by the various cell 

lines used for propagation. Not all cell lines are suitable for cultivation of the virus (see 

section 1.2.5), suggesting the virus may need certain properties on the surface of the host cell. 
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Lu et al. (2003) demonstrated blocking of CPE in SSN-1 cell line inoculated with nodavirus 

and a recombinant virus-like particle (VLP). This study may suggest that VLP is occupying 

receptors on the cell surface and subsequent inhibition of entrance of virus into the host cell. 

When injecting virus into turbot muscle cells, Sommerset et al. (2005) observed replication in 

infected cells but no spreading to muscle cells in close proximity. Such studies may suggest 

that NNV is capable to replicate when forced into a cell but not necessarily to spread to other 

cells. This was also demonstrated by Banu and Nakai (2004), who infected mice with the 

virus. Although betanodavirus is regarded as neurotropic where CNS is the primary site for 

replication, the virus has also been detected in non-nervous tissues in fish species such as 

striped jack (Nguyen et al. 1996, Nguyen et al. 1997), halibut (Grotmol et al. 1999, Grove et 

al. 2003) and grouper Epinephelus sp. (Chi et al. 2001). However, detection of virus (or virus 

products) in non-nervous tissues not necessarily demonstrates replication, but could be a 

result of antigen trapping.  

 Replication has been most extensively studied in alphanodaviruses, where FHV has 

been used as a model for investigation of the viral life cycle. In general, all positive stranded 

RNA viruses replicate in association with intracellular membranes, usually endoplasmic 

reticulum, lysosomal, mitrochondiral, peroxisomal and other membranes (Ahlquist et al. 

2003). Mézeth et al. (2007) demonstrated that protein A (RdRp) in Atlantic halibut nodavirus 

strain (AHNV) was localized to cytoplasmic structures resembling mitochondria, and co-

localized with mitochondrial proteins. In FHV, protein A acts as a multifunctional RNA 

replication factor which is encoded by RNA1 (Figure 1 and section 1.1.2 provides an 

overview of the bipartite genome architecture of nodavirus). Both the RNA1 and RNA2 

segments are capped, nonpolyadenylated, and packed together into the capsid (Sommerset and 

Nerland 2004). The main proteins involved in NNV replication include protein A (encoded by 

RNA1), protein B1 and B2 (both encoded by RNA3) and coat protein α (encoded by RNA2).  

Three steps are involved in the production of positive-sense viral RNA. The first step 

is translation of parental RNA to provide an early (intermediate) replication protein, an active 

replicase enzyme. This enzyme is responsible for producing negative-sense strands, which 

then act as templates for synthesis of positive-sense RNA. These are eventually packed in the 

capsid. During the replication process, RNA1 and RNA2 are synthesized in approximately 

equal amounts, while the intermediate RNA3 only is present during the late replication stage 

(Friesen and Rueckert 1984, Ball 1992). The role of RNA3, which is synthesized during 

RNA1 replication, may be to prevent that protein A is replicating RNA2 until a minimum 

amount of RNA1 is present. Such a suppression mechanism of a segment in bipartite genomes 

- 25 - 



 

may function to co-ordinate and ensure a balanced replication, giving a sufficient amount of 

each segment (Zhong and Rueckert 1993, Eckerle and Ball 2002).  

Proteins A and B seem to be synthesized at a high rate early in the replication cycle 

and then slow down, whereas synthesis of protein α peaks late in the cycle (Friesen and 

Rueckert 1981). Sommerset and Nerland (2004) showed that a hypothetic protein B2 in 

Atlantic halibut nodavirus accumulate in large amounts soon after infection, and Fenner et al. 

(2006) has suggested that the B2 protein antagonize RNA interference and facilitates 

intracellular viral RNA accumulation. Iwamoto et al. (2005) have suggested that B2 has a 

potent RNA silencing suppression activity, and that it subsequently is involved in suppression 

of the host cell defense mechanism.  

The main product of the replication cycle is protein α, which also has been suggested 

to act as an apoptosis inducer (Guo et al. 2003b), and the synthesis pattern observed seems to 

follow the infection cycle of the virus. Protein α (in FHV) is assembled into a provirion and 

then cleaved autolytically (Gallagher and Rueckert 1988). Assembly of FHV particles is 

suggested to start with formation of specific nucleoprotein complex (Schneemann et al. 

1994), which then is propagated into spherically closed particles (Tihova et al. 2004). 

1.3.5 Vaccination 

The principal function of a vaccine is to stimulate both the innate (non-specific) and adaptive 

(specific) immune system in order to lower the risk of disease development in farmed fish. 

Generally, the fish is stimulated prior to any pathogen exposure, and vaccinated fish show 

higher capability to eliminate pathogens after infection than non-stimulated fish. 

Consequently vaccinated fish are less likely to develop disease if exposed to the pathogen. 

This capability is linked to a shorter response time to produce protective antibodies, and a 

stronger response as compared to non-vaccinated fish. Vaccines have been used successfully 

in Norwegian salmon farming since the beginning of the 90’ties. However, the vast majority 

of vaccines available are targeting bacterial pathogens, such as Aeromonas salmonicida subsp. 

salmonicida, Listonella (Vibrio) anguillarum and Vibrio salmonicida, which all have caused 

serious disease problems in salmonide farming. The introduction of vaccines dramatically 

improved the health of farmed salmonides, and these bacterial pathogens are no longer 

causing problems in this industry. Vaccines against viral pathogens have also been developed 

for salmonides, and in Norway there are currently commercially available vaccines against 

infectious pancreatic necrosis virus (IPNV) and salmonide alphavirus (SAV). However, these 
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viral vaccines generally provide lower protection (as relative percent survival in challenge 

experiments) than vaccines targeting the above mentioned bacteria.  

 Although vaccination has proven to be an efficient prophylactic measure to lower risk 

in fish farming, a vaccination strategy is depending on the classification of the pathogen 

(disease) in question. Fish diseases are classified as notifiable in List 1 (exotic), List 2 (non-

exotic) or List 3 (national listing) according to OIE and implemented in EU-directive 

88/2006. List 1 and 2 diseases are defined as serious within the European Union (EU), while 

List 3 diseases are defined as serious diseases specific to individual countries in the EU 

region. In general, a disease is considered as serious based on mortality observed, number of 

outbreaks and economic losses for the aquaculture industry. Traditionally, such diseases are 

subject to control measures as removal or stamping-out of diseased populations of fish. This is 

done in order to eradicate the disease and prevent the disease from being spread to other fish 

populations. This eradication strategy is the backbone of how disease prevention generally is 

organized for notifiable diseases, and rule out vaccination as a prophylaxis measure. On the 

other hand, if the disease is caused by a pathogen difficult or impossible to eradicate (i.e. 

commonly found in the marine environment); a vaccination strategy is more likely to be an 

option.  

 There is currently no commercial vaccine targeting NNV available for farmed cold-

water species such as Atlantic cod or halibut. However, several papers target development of 

possible vaccine against VNN. As the NNV genome is characterized (see section 1.1.2), this 

open the possibility to produce recombinant vaccines, i.e. express the capsid (coat) protein in 

bacterial vectors. Tanaka et al. (2001) demonstrated that immunization of young sevenband 

grouper (Epinephelus septemfasciatus) by intramuscular injection of recombinant coat protein 

produced neutralizing antibodies in high titres. They suggested there is a potential for 

vaccination against VNN in this fish species. Husgard et al. (2001) used a recombinant partial 

capsid protein from SJNNV to immunize (intraperitoneal injection) adult turbot 

(Scophthalmus maximus) and Atlantic halibut (Hippoglossus hippoglossus). In this study a 

specific humoral response was found in both species, and a challenge experiment with turbot 

demonstrated significant protection 10 weeks post vaccination. Yuasa et al. (2002) used 

recombinant coat protein from RGNNV, and detected virus-neutralizing antibodies in 

previously intramuscularly injected humpback grouper (Cromileptes altivelis). In this study, 

they also found that neutralizing antibodies induced by RGNNV recombinant coat protein 

were specific for the RGNNV genotype, suggesting that neutralizing epitopes in NNV are 

different between various genotypes. Thiéry et al. (2006) vaccinated sea bass (Dicentrarchus 
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labrax) intramuscularly, using virus-like particles (VPL) made from a single type of NNV 

coat protein spontaneously assembled in a baculovirus expression system. This study showed 

that VLPs elicited production of NNV specific antibodies, and that fish vaccinated were 

protected from challenge with live NNV. The immune response and the protective effect 

against viral challenge were both dose dependent. A DNA vaccination approach has also been 

suggested, and Sommerset et al. (2003) demonstrated that a DNA vaccine encoding the 

envelope glycoprotein of VHSV (rhabdo virus causing viral hemorrhagic septicaemia) 

induced protection against Atlantic halibut nodavirus (AHNV) in turbot (as model fish). They 

also tested a DNA vaccine carrying the gene encoding the coat protein of AHNV, but no 

protective properties were detected when challenging vaccinated turbot with this virus strain. 

Sommerset et al. (2005) tested a recombinant AHNV coat protein vaccine against the DNA 

vaccine, and concluded that only the recombinant vaccine produced protection against AHNV 

challenge in the turbot model fish. 

 In summary, the literature suggests the possibility to induce protection against VNN 

by vaccination, but further work should be done to maximize the immunization effect 

achieved in the fish species studied. The use of NNV coat protein as neutralizing epitope 

seems to be promising, but also the DNA vaccination approach should be studied further to 

develop an effective vaccine against VNN. However, there are at least some considerations 

regarding use of vaccination as prophylaxis against VNN. Stimulation of the immune system 

by vaccination require susceptibility to stimulation, but the main VNN problems (high 

mortality) have been described in the juvenile phase of the life cycle of most affected species 

when the immune system is not fully developed (section 1.2.1). Consequently, vaccination 

against VNN is only possible when the fish has reached a specific developmental stage or age.  
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2 AIMS OF STUDY 

The main objective of the present study was to investigate nervous necrosis virus (NNV) as a 

pathogen in Norwegian aquaculture industry, with emphasis on the fish species Atlantic 

salmon Salmo salar and Atlantic cod Gadus morhua. The specific aims could be summarized 

as follows:  

 

1. To investigate possible susceptibility to NNV of Atlantic salmon, the most important 

farmed fish species in Norwegian aquaculture. 

2. Study possible horizontal transfer of NNV to Atlantic salmon and Atlantic cod. 

3. Investigate NNV tissue tropism in Atlantic cod and identify organs possibly suited for 

non-lethal screening of brood fish. 

4. Identify possible consequences for the aquaculture industry, by means of suggestions 

for prophylactic measures and identification of risk involved in spreading the virus. 

 

The aims were approached in the papers, where Paper IV is addressing the first outbreak of 

the disease in farmed Atlantic cod in Norway. Paper I investigates NNV susceptibility of 

Atlantic salmon, Paper II addresses susceptibility and NNV tissue tropism in Atlantic cod 

with suggestions of possible non-lethal tissues for biopsy. And in Paper III, experimental 

cohabitant horizontal transmission of the virus to salmon and cod is examined. Finally, the 

synthesis discusses possible consequences for the aquaculture industry in Norway. By 

elucidating the results from the present study in the light of the available scientific literature, a 

possible strategy for how NNV could be managed to minimize the risk of spreading the virus 

(and subsequent development of clinical disease) is discussed.  
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3 SUMMARY OF PAPERS 
 

Paper I 

In this paper homogenate of tissue from juveniles of Atlantic halibut Hippoglossus 

hippoglossus suffering from viral encephalopathy and retinopathy (VER) was used to 

challenge smolt of Atlantic salmon Salmo salar with an initial average weight of 110 g. The 

nodavirus was administered in the form of an intra peritoneal injection, and the fish were kept 

for 134 days post challenge. Genotype characterisation of the nodavirus was performed by 

sequencing the RNA1 and RNA2 segments, and a quantitative real-time PCR (Q-PCR) assay 

was developed. Tissues from different organs were stained by immunohistochemistry (IHC). 

Samples were collected at random on days 7, 25, 45, 69, 125 and 134 after challenge. 

Mortality, clinical signs and pathology of VER were observed only in the challenged group. 

The Q-PCR detected positive fish only in the challenged group, all of which were positive on 

all days of sampling. An increase in relative virus concentrations was observed from day 7 to 

day 25 post challenge. The increased level of virus concentration was maintained in the 

medulla oblongata throughout the experiment, suggesting persistence or slow elimination of 

the virus over time. The IHC detected positive cells on three different sampling days; 34, 70 

and 74. These results suggest that the nodavirus is transported to the medulla oblongata from 

the intra peritoneal injection site and is able to replicate in salmon. This nodavirus isolate 

caused mortality and established a persistent infection in the challenged salmon throughout 

the experiment. This susceptibility suggests that co-location of salmon and marine species 

should be avoided until further studies have been carried out. 

 
Paper II 

In this paper Atlantic cod Gadus morhua, averaging 100 g, were experimentally challenged 

by i.p. injection of nervous necrosis virus (NNV) originating from Atlantic halibut. Cod 

tissues, including blood, gill, pectoral fin, barbel, ventricle, atrium, spleen, liver, lateral line 

(including muscle tissue), eye (retina) and brain, were sampled at Day 25 and 130 and 

investigated by real-time RT-PCR for presence of NNV. Relative quantifications at Day 130 

were calculated using the 2-ΔΔCt method. Immunosuppression by injection of prednisolone-

acetate was introduced for a 30 day period, and tissue sampled at Day 180 and relative 

quantification estimated. No mortality or clinical signs of disease were observed in the 

challenged group. The challenge resulted in detection of NNV in blood, spleen, kidney, liver, 

heart atrium, heart ventricle at Day 25, and by the end of the experiment, NNV showed a clear 
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increase in brain and retina, suggesting these to be the primary tissues for viral replication. 

There were no increase in relative amount of NNV in blood, atrium, ventricle, spleen, liver 

and kidney. Corticosteroid implants resulted in a weak increase in virus RNA in spleen, 

kidney, liver and brain. These findings suggest that Atlantic cod is susceptible to infection 

with NNV from halibut. The observed tissue tropism patterns suggest an initial viremic phase, 

followed by neurotrophy. Head-kidney is the best tissue identified for possible NNV detection 

by non-lethal biopsy, but detection was not possible in all injected fish. 

 
Paper III 

In this paper experimental horizontal transmission of nervous necrosis virus NNV originating 

from halibut Hippoglossus hippoglossus was studied through cohabitation of intra-

peritoneally (i.p) injected and healthy fish for 125 days. The experimental groups consisted of 

i.p. injected turbot Scophthalmus maximus or i.p. challenged Atlantic salmon Salmo salar 

with salmon or Atlantic cod Gadus morhua cohabitants. The initial weight were 10 g for cod, 

40 g for salmon and 3 g for turbot. NNV was detected in brain, eye and spleen by real-time 

RT-PCR in cod cohabitated with i.p. injected turbot after 90 and 125 days. The data are 

suggesting that NNV has been transferred horizontally from the turbot to cod. There was no 

detection of NNV in salmon in cohabitation with i.p. challenged turbot or salmon. This study 

shows that NNV strains from halibut may be transferred to cod via water. Hence there is a 

potential risk of horizontal transmission of the virus from halibut to cod farms. The lack of 

detection of NNV in cohabitant salmon suggests that this fish species is less susceptible to 

horizontal NNV transmission than cod. But this result might be influenced by the size of 

salmon, viral load in i.p. challenged cohabitants and duration time of the experiment. 

 
Paper IV 

This paper reports viral encephalopathy and retinopathy (VER) in 5 to 24 g sized farmed 

Atlantic cod Gadus morhua kept in sea cages at Parisvatn, Hordaland county, at the west 

coast of Norway. Moderate mortality (10-15 %) was observed along with anorexia and 

abnormal swimming behaviour, like looping or spiral swimming and reduced coordination. 

Nodavirus was detected by two different real-time RT-PCR assays, and this was later 

confirmed by immunohistochemistry. This paper describes the first outbreak of VER in 

farmed cod in Norway, and the first report that VER affect cod exceeding 5 g in size.  
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4 SYNOPTIC DISCUSSION 

In 2003, when this study was initiated, nervous necrosis viruses had only caused disease 

problems in farming of Atlantic halibut and turbot. VNN had caused high mortality in 

juvenile fish during the late 90ties, and was listed by Norwegian Food Safety Authority 

(Mattilsynet - FSA) as a notifiable disease. As VNN only was reported in farmed marine fish, 

and limited to a few outbreaks in an industry producing less than 2000 metric tons, little 

attention was paid to the disease. The halibut and turbot farmers were the only ones who 

worried as VNN was (and is listed as notifiable in Norway) with possible severe 

consequences upon detection of the virus, such as stamping-out of the fish population and 

fallowing of the farm site.  

 NNV as a fish pathogen can be viewed from three different points of view; scientific, 

fish farmer and FSA. All three should be regarded as stakeholders with different interests and 

responsibilities. From the scientific point of view the virus is an internationally well known 

pathogen, affecting numerous species and causing a disease with distinct features. There are 

numerous scientific papers describing the virus and disease characteristics, which form the 

basis for scientific advises to both the farming industry and FSA from national research 

institutions in Norway. From the farmer’s point of view, the virus represents a possible 

disease problem and consequently economic losses to the company, either because of 

mortality or as a result of stamping-out of the fish population due to detection of a notifiable 

disease. From FSAs point of view, the virus represents a potential national disease problem, 

and based on impact on farmed fish like number of outbreaks, mortality rates and spreading of 

the disease (geographic distribution of disease outbreaks) it has been listed as notifiable. 

Status in 2003 was consequently that VNN was a problem affecting halibut and turbot, and 

the disease was closely monitored by the FSA. However, compared to disease problems in the 

Atlantic salmon industry, VNN was regarded a marginal problem. 

 From the scientific point of view NNV was interesting, not only due to the disease 

problems observed in Norwegian halibut and turbot farming, but also due to the fact that a 

new promising farmed fish species was starting to increase in volume – the Atlantic cod. At 

the beginning of the millennium, a lot of research and effort was put into solving problems in 

the production of cod juveniles. As experienced with halibut, a lack of survival in production 

of juveniles restricted development of a farming industry around this species. However, in 

contrast to halibut, cod was regarded as a more promising fish species, principally due to a 

larger consumer market. Reduction in catches of wild cod and a predicted willingness in the 
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market to buy farmed cod boosted interest for farming. Consequently the number of cod 

farming licences increased dramatically during the first half of this decade. The optimistic 

prospects of cod farming could be exemplified by Kjesbu et al. (2006), who estimated the 

world production to reach 150-200 000 metric tons in 2015. Most of this was predicted to take 

place in Norway. In other words, cod was considered to become the new “salmon” in the 

Norwegian aquaculture industry. Establishment of a new farmed fish species led to discussion 

on possible disease problems, particularly bearing in mind the problems experienced in 

salmon farming, and one of the diseases in question was VNN. Although this disease was 

restricted to farmed halibut and turbot in Norway, there were reports on susceptibility in 

farmed Atlantic cod in the UK (Starkey et al. 2001) and Canada (Johnson et al. 2002). 

Another question raised was a possible impact on salmon, the most important farmed fish 

species in Norway. This was particularly pointed out in discussions on possible poly-culture 

or co-localization of salmonides and marine fish species. Outbreak of VNN has never been 

reported in salmon, other than reports of nodavirus-like particles in heart tissue in salmon 

suffering from cardiac myopathy syndrome (Grotmol et al. 1997b, Nilsen and Nylund 1998) 

and encephalitis in farmed smolt in Scotland (Scullion et al. 1996). When all these 

considerations were taken into account, a study of possible transmission of NNV to and 

between farmed Norwegian fish species was initiated. In order to evaluate possible 

consequences for the aquaculture industry, the study aimed to investigate possible 

susceptibility and horizontal transmission of NNV to salmon and cod. In addition, a study of 

virus tropism was performed on cod to investigate how the virus is affecting the host in terms 

of tissue distribution, and subsequent identification of possible organs suitable for non-lethal 

biopsy for screening purposes.  

4.1 Studying possible NNV susceptibility in Atlantic salmon  

One of the first tasks was to investigate if Atlantic salmon is a susceptible host to NNV. As 

there were few and non-conclusive reports on possible NNV infection in salmon, the 

hypothesis was that NNV would not replicate or cause disease in this species. When designing 

a challenge study, some choices had to be taken on how to test the hypothesis. The first 

decisions to make were the type of challenge suitable for studying susceptibility, size of fish 

and which NNV isolate or strain to apply. 

 In order to determine if Atlantic salmon could be a susceptible host for NNV, an 

experimental study should demonstrate that the virus is present in the host, is replicating in 

nervous tissues and increase in amount during an experimental period. Susceptibility is, in the 
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simplest form, typically linked to development of disease, where susceptible hosts are those 

which develop clinical disease and mortality. This is however over-simplifed, and without 

defining the term disease, it is important to recognise that fish might be susceptible to NNV 

infection without showing any signs of disease, i.e. as persistently infected or as 

asymptomatic carriers. The fate of the virus is important, as the pathogen should survive in 

the susceptible host and be able to multiply in numbers (replicate) to complete the viral 

lifecycle. In studying viral infections, increased amounts of virus could either result from 

replication or from accumulation of virus particles in a specific tissue, known as antigen 

trapping. Consequently, the study should also demonstrate that the viral increase is larger than 

the dose of virus that the host has been exposed to, and that virus is present in target organ or 

tissue, for NNVnervous tissues. This is particularly important when using an injection 

challenge model. Susceptibility is depending of the fate of the virus when entering into the 

host and various scenarios may be outlined. If the virus is not increasing in amount and 

eventually cleared, no state of susceptibility exists. This scenario was shown by Banu and 

Nakai (2004) when injecting NNV in mice (intra peritoneally and intra muscularly), where the 

virus amount decreased during the experimental period (72 h) and was not detected in central 

nervous tissues. On the other hand if the virus is replicating, and increasing in amount in 

central nervous tissues, a state of susceptibility likely exists. There is also a possibility that the 

virus is neither replicating nor cleared in the host. Then the virus may be maintained in the 

host for a prolonged period of time. The fate of the virus in the end may define the status, 

where susceptibility is dependent on replication and presence of virus in central nervous 

tissues eventually will take place. However, if the virus is cleared, there is likely no state of 

susceptibility. The most obvious observation of susceptibility is when clinical signs and 

mortality is present (followed by detection of NNV), but the state of susceptibility is not 

dependent on development of clinical disease. In summary, when determining if a host may 

be susceptible to NNV, an increasing amount of virus in central nervous tissue should be 

demonstrated.    

 When considering type of challenge there are in general three possible approaches, 

including cohabitation of healthy salmon with NNV diseased fish, bath challenge of salmon in 

a suspension of NNV or intra muscular- or intra peritoneal injection of NNV. All approaches 

have advantages and disadvantages. Cohabitation challenges require a diseased cohabitant 

fish, either naturally or experimentally infected, which then shed NNV to the healthy fish in 

the challenge experiment. Bath challenge requires an NNV strain which is propagated in a 

cell-line, and then re-suspended in water to expose the challenged fish. Injection of NNV 
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might be regarded as an artificial way of infecting fish, as important parts of the fish immune 

system (dermis and mucus) is bypassed, but could be regarded as a controlled way of 

distributing a known amount of virus. The isolate of NNV used for challenging is also 

influencing the method, i.e. bath challenge requires a cultureable strain to be used. In addition, 

the size of the fish used is also influencing the method, as juveniles are not suitable for 

injection due to the small size. When considering the proper challenge method to study NNV 

susceptibility in salmon, the size of fish was the first parameter discussed. 

 As NNV has primarily been associated with marine fish species (see Introduction), the 

hypothesis was that Atlantic salmon could be exposed to the virus in the marine environment, 

i.e. from wild fish species or farmed fish species such as halibut or cod. Atlantic salmon is 

hatched and raised in fresh water, and when transferred to marine growth sites the salmon has 

adapted to the marine environment through a smoltification process. This adaption process is 

influenced by the size of the fish and light conditions (photoperiod) prior to migration from 

fresh water to the sea. In commercial hatcheries this is controlled by growth (temperature) and 

light manipulation (day length) to produce a seawater-adapted smolt. The commercially 

produced smolts are categorized as 0+ or 1+ smolt, depending on the time spent in the 

hatcheries. A 0+ smolt is typically 40-60 grams and a 1+ smolt 80-100 grams when 

transferred to the marine growth site. Only salmon adapted to seawater were considered in 

order to study any NNV susceptibility. 

 The next consideration was which NNV isolate to apply. At the time when the study 

was initiated, only two isolates were available and both originated from Atlantic halibut. The 

AH95Nor isolate was isolated from juveniles of diseased halibut in a commercial farm that 

observed high mortality in the fish population. Grotmol et al. (1995, 1997a, 2000) 

characterized this isolate, and it has successfully been propagated in the cell line SSN-1 

(Dannevig et al. 2000). The other candidate was at the time newly isolated from a VNN 

outbreak with high mortality in a commercial halibut hatchery. This isolate was isolated from 

diseased juveniles received by the University of Bergen, and was given the identity code 

AAG01/03. When considering these two isolates, AAG01/03 was favoured as it was recently 

isolated from a natural VNN outbreak and thereby confirmed to be pathogenic to Atlantic 

halibut juveniles. The main problem was, however, that AAG01/03 was not propagating in 

the SSN-1 cell line which was the only cell line available at the time. AH95Nor was possible 

to propagate, but this isolate had been passed through several cell passages with possible 

changes of viral characteristics. By opting for the AAG01/03, due to the recent origin, this 

eliminated the possibility to produce large amounts of virus for any bath challenge. In order to 

- 35 - 



 

use the isolate, the solution was to prepare a homogenate from infected tissues (brain) of 

diseased juveniles and distribute the NNV challenge as an injection. This is not without 

problems, although bacteria are eliminated by sterile filtration (0.2 μm), any viral pathogen 

(and prions and viroids) could possibly be carried forward in the homogenate. It was 

consequently screened for known fish pathogenic viruses causing problems in salmon 

farming, i.e. IPNV, SAV and ISAV. The selection of the AAG01/03 isolate and homogenate 

approach left the susceptibility study with the choice of a cohabitant challenge or as direct 

injection of NNV in Atlantic salmon.  

 The use of AAG01/03 isolate from halibut also led to some discussions of relevance 

due to possible host specificity of NNV. Alternatively an isolate from cod could be used, due 

to the growing cod farming industry and discussions on possible duo-culture or co-

localization of salmon and cod. However, there existed no such isolate of NNV in Norway at 

the time. The first outbreak of VNN in cod in Norway is in fact described in Paper IV, and 

importing a foreign strain was not regarded as an option as VNN is regarded a notifiable 

disease in Norway. As outlined in section 1.3.1 on host specificity of NNV, the literature is 

not conclusive on this matter. Although host specificity has been suggested to be linked to 

nucleotide variations in the T4 regions of RNA2 (Ito et al. 2008), this has so far not been 

verified by other studies using different strains and genotypes of NNV. What might be an 

argument contradicting host specificity is the large variations observed, where NNV strains 

cluster heterogeneously (see section 1.1.3) into different genotypes and further into subgroups 

within the clusters. The possibility of host specificity and relevance to the aquaculture 

industry is discussed in section 4.3. But as a general consideration, a recent observation of an 

NNV isolate from farmed cod that is genetically similar to halibut isolates (Nylund, 

unpublished data) suggests there is no definitive host-NNV-isolate link. Although this is just a 

single observation, it suggests that the use of a halibut NNV may be relevant for studying 

susceptibility in salmon.  

 Next consideration was to determine a suitable type of challenge. The use of a 

homogenate for distributing NNV would anyway result in injection of virus in either an 

experimentally infected cohabitant fish or directly into the host itself. Use of cohabitation 

(horizontal transfer) to challenge the salmon would require use of a suitable NNV host, i.e. a 

experimentally infected halibut. The benefit of this is to mimic a natural transmission way of 

NNV, a pathway which has been described in several papers (see section 1.3.2). However, as 

the hypothesis was that salmon probably not was susceptible, an injection of NNV would 

reveal if the virus eventually would be cleared if forced into the host. This would simplify the 
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challenge experiment and eliminate the need for an NNV carrier fish (cohabitant) to observe 

any horizontal transfer of virus.  

4.1.1 Experimental intra peritoneal injection of NNV in Atlantic salmon 

The challenge of Atlantic salmon with NNV isolate AAG01/03 (Paper I) resulted in mortality 

in the i.p. challenged group. Also, the challenged fish gradually developed abnormal 

behaviour, such as hyper-activity and erratic swimming not seen in the control group. 

Eventually the diseased and moribund fish showed loss of co-ordination and became 

lethargic. The observation of clinical signs of disease and mortality was unexpected, but the 

real-time RT-PCR analysis of brain samples revealed presence of NNV. The first detection of 

NNV in samples was at day 7 post injection of virus, and the samples analysed were positive 

for the remaining time of the experiment, with samplings at Day 25, 45, 69 and 125. 

Interestingly, the NNV amount seemed to peak at Day 25, followed by a slow reduction of 

virus to Day 125. This might suggest that the virus eventually could be cleared, a possibility 

that could not be examined within the timeframe of the experiment. The detection of NNV in 

brain was supported by independent detection with immunohistochemistry (IHC). IHC 

detected specific NNV immunolabeling in histology sections of brain from challenged salmon 

34 days post challenge, confirming the real-time RT-PCR results. The immuno-labelled 

section revealed that NNV was scattered in the brain tissue, in contrast to observations in 

injected turbot which had focal aggregations in the brain (Paper III). Further examination of 

the injected salmon with electron microscopy of a brain section at Day 134 confirmed 

presence of virus particles resembling NNV in shape and size. Consequently, this 

demonstrates that NNV were transported from the injection site to brain. The state of 

replication of NNV is supported by the relative increase of virus from 103 to 104 from Day 7 

to 25 post injection of virus and the occurrence of clinical signs of disease, with observed 

histopathology in CNS. Hence, important observations from this study were presence of NNV 

in CNS, clinical signs of disease consistent with VNN and mortality. The observations in 

salmon suggest that a halibut-originating NNV is neuroinvasive, able to replicate and cause 

disease when distributed as an i.p. injection. These observations suggest susceptibility, but as 

injection is a by-pass of important immune defence mechanisms such as the physical barrier 

of mucus and epidermis, salmon with intact “barriers” may still be resistant to infection.  

- 37 - 



 

4.1.2 Experimental cohabitation challenge with NNV to Atlantic salmon 

As bath challenge with the AGG01/03 NNV isolate was not an option (see section 4.1), a 

cohabitation model with NNV-injected fish and healthy (non-injected) cohabitants was 

chosen.   

Turbot was selected as one of two fish species used as an i.p. challenged source for 

waterborne transmission of virus. Turbot has been shown to be a susceptible host to NNV, 

and has been used in a challenge model for SJNNV (Husgard et al. 2001). In addition, turbot 

has been used successfully in challenge experiments using a halibut isolate of NNV 

(unpublished data), suggesting this fish species would be suited for a cohabitation challenge 

study. The second virus carrier was salmon, and it was included to examine any possible 

transmission of virus from an experimental i.p. challenged salmon to a healthy cohabitant 

salmon. Adding further complexity to the study, both AAG01/03 and AH95Nor were 

included. The idea was to compare the two NNV isolates, and examine if there would be any 

differences in transmission from an i.p. challenged salmon to non-injected fish. Consequently, 

the experimental groups consisted of one with i.p. challenged NNV (AAG01/03) turbot and 

healthy non-injected cohabitant salmon, one with i.p. challenged salmon (AAG01/03) and 

healthy salmon, and one with i.p. challenged salmon (AH95Nor) and healthy cohabitant 

salmon. A negative control group with i.p. challenged salmon (L15 cell medium) and non-

injected salmon was also included. In addition to these experimental groups, two positive 

control groups with turbot were included to examine horizontal transmission of both NNV 

isolates. This was important, in order to demonstrate that the challenge model is working and 

virus is transmitted via water from i.p. challenged to non-injected turbot. Finally, a group with 

turbot and Atlantic cod and a negative control group with cod were added (see section 4.2). 

In order to keep the number of experimental animals to a minimum, 10 fish in each 

group were i.p. challenged and kept as cohabitants with 30 non-injected fish. Sampling and 

analysis protocols are described in Paper III. Duration of the experiment was set to 125 days, 

in order to provide sufficient time for the NNV to be established in the i.p. challenged fish and 

time to infect cohabitant fish. This was based on observations in i.p. challenged salmon (Paper 

I) and cod (Paper II). Tissues subject to investigation were CNS (brain and eye) and in 

addition spleen was included as representative for haematopoietic tissues. The spleen was 

chosen based on observation in i.p. challenged cod, where NNV was first detected in spleen, 

kidney and ventricle with subsequent entrance to CNS (Paper II).  

 NNV was detected in all i.p. challenged turbot and salmon used as source for 

waterborne transmission of virus, demonstrating that virus was present in all challenged 
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groups. In the positive control groups with turbot, the cohabitating non-injected turbot were 

also positive for NNV, demonstrating that both virus isolates could be horizontally transferred 

under the experimental conditions provided. However, NNV was not detected in any non-

injected salmon examined, suggesting there was no transmission or entrance of virus from the 

NNV i.p. challenged cohabitants. But, in contrast to salmon, NNV was detected in non-

injected Atlantic cod kept with NNV i.p. challenged cohabitant cod (see section 4.2.2), which 

may demonstrate differentiation in susceptibility between these two fish species.   

The apparent lack of transmission of NNV to salmon by cohabitation with i.p. 

challenged fish may relate to the host itself. Studies of transmission of NNV to sea bream 

(Sparus aurata) suggest that this fish species is an asymptomatic carrier of the virus (Castric 

et al. 2001). In challenge experiments with sea bream using i.p., intra muscular (i.m.) and bath 

exposure only i.m. produced NNV infection and mortality in fish of 2 grams (Aranguren et al. 

2002a). Although methods to detect NNV in this study were restricted to cell culture and 

immunoperoxidase assay with less sensitivity than PCR, it may demonstrate that results 

obtained by i.p. injection may not be reproduced with bath or waterborne transmission of 

virus. However, Arraguren et al. used sea bream with average weight of 2 grams, while 

Castric et al. used fish that was 15 grams in average. These two studies may demonstrate that 

sea bream is a susceptible host, although development of clinical signs and mortality may be 

influenced by size of fish and challenge model. The lack of transmission of NNV to 

cohabitant salmon may also be influenced by the fish size applied, potential little shedding of 

virus from i.p. infected fish or insufficient time for establishment of detectable levels of NNV 

in the non-injected cohabitants. 

4.1.3 Is Atlantic salmon an NNV susceptible host? 

Generally, a susceptible host could be regarded a host in which the virus is able to invade, 

survive in terms of not being cleared and replicate. The state of susceptibility is subsequently 

not relying on development of disease in the host, but rather the ability of the virus to 

proliferate in permissive cells and resist degradation or clearance. The degree of susceptibility 

may also be linked to virulence; the ability of the virus to invade, survive and proliferate in a 

susceptible host.    

Based on the data obtained from i.p. NNV challenge (Paper I) and cohabitation 

challenge (Paper III) studies, answering this question requires that some important issues must 

be addressed. Although these two studies seem to contradict each other, the general 

consideration should be to regard a seawater adapted smolt as a potential susceptible host to 
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NNV. If NNV enters the smolt, i.e. the blood, the virus seems to have the capacity to replicate 

in target cells and cause disease. However, salmon may have a natural high degree of 

protection against NNV infection, possibly through the first line of defence (skin and mucus) 

which appear to be the most important barrier against infection. As a practical approach in 

farming of salmon, we may regard NNV susceptibility in smolt as depending on various 

degrees of risks influencing the likelihood of virus infection. Consequently, there are several 

factors which may affect this risk that could be suggested, based on general considerations of 

the host immune system and viral characteristics. These comprise host habitat, size and 

immune system and virus properties. 

 First, salmon may be a naïve host in a natural habitat. Geographic separation of host 

and virus may protect wild salmon, which spawn in fresh water and migrate to the sea as 

smolt. Although there are reports on NNV in hosts in freshwater (see section 1.2.3) there are 

so far no reports of virus detection in natural habitats of salmon (lakes and rivers). While 

likely not exposed to the virus in the juvenile phase, this may occur after migration to the sea. 

NNV is detected in wild fish species (Table 1), but in order to get infected salmon would have 

to be in the same habitat as infected wild fish where exsposure to NNV could occur. In the 

natural life cycle of salmon, a host-pathogen interaction (in terms of co-evolution) may never 

have evolved, making a natural barrier against NNV infection. However, in farming of 

salmon exposure to NNV may occur when assembling large populations of salmon at a high 

number of marine growth sites. This would greatly increase the possibility for contact with 

virus originating from wild or farmed NNV susceptible fish species. 

Larvae and juveniles of salmon may show a higher degree of susceptibility. The size 

of smolt may provide some protection when transferred to a marine growth site, and as the 

fish grow larger the likelihood of NNV infection and disease development decreases. 

However, size alone may not be a protective mechanism, as NNV has been reported in adult 

brood fish of halibut (Aspehaug et al. 1999) and wild adult cod (Nylund et al. 2008, own 

observations).  

The apparent inability of the applied NNV isolate to invade healthy cohabitating smolt 

(Paper III) may also be linked to the host immune system. In particular this may relate to the 

innate immune system, and first and foremost the physical barrier of skin and mucus. It is 

possible that salmon is able to clear NNV in contact with the innate immune system, as part of 

general defence mechanisms against pathogens. This may also be dose dependent, where 

small amounts of NNV are unable to reach susceptible cells before being cleared. However, if 

the amount of virus is increased, the immune system suppressed (i.e. stress) or compromised 

- 40 - 



 

as a result of by-passing barriers, NNV may be able to invade and eventually reach 

susceptible cells in the host. 

The wide variety of NNV isolates and strains, worldwide distribution and existence of 

different genotypes (see section 1.1.3) may suggest variations in virus properties. The 

apparent infection-resistance of smolt challenged with NNV may be linked to the 

differentiations in virus isolates and the strains ability to invade a host, which again may 

result in viral host specificity or preference (see section 4.3.2 on host specificity). Several 

entry routes for NNV into the host have been suggested such as via the bloodstream, axons 

and intestinal epithelium (see section 1.3.3), and this may require cell recognition and binding 

to specific cell surface receptors by the virus. As NNV seems to have some host cell 

preference (see section 1.3.4), this suggests that the virus has limitations in type of cells 

susceptible to infection. Salmon may be naturally protected against horizontal transmission of 

NNV if the virus is unable to reach susceptible cells (i.e. cells of CNS). However, the i.p. 

challenge of smolt demonstrated that there are susceptible cells and that the virus was 

transported from the injection site and eventually become neuroinvasive.  

 In salmon farming, there are several ways of in which the risk of NNV infection may 

increase. If there is a high degree of protection in salmon against horizontal transmission of 

NNV, this might be compromised. In general this could occur when sub-optimal conditions 

for salmon arise during farming procedures, resulting in immunosuppression and increased 

risk of pathogen infections. Such conditions could be exemplified by fish handling (i.e. 

grading, feeding, high fish density) or changes in environmental conditions (i.e. increasing 

temperature, oxygen depletion). Entrance to the host may also be provided by parasites, i.e. by 

salmon lice (Lepeophtheirus salmonis) causing erosion and lesions of epidermis and 

consequently access for NNV directly to the host bloodstream. Skin erosion and possible 

development of wounds may also be the result of high fish densities (in sea-cages or during 

transportation), with subsequent risk of invasion of pathogens such as NNV. The observation 

of NNV in epithelium cells of striped jack (Nguyen et al. 1996) also suggests ectoparasites 

may play a role in transferring virus between hosts. The virus may enter the salmon as a 

secondary infection, where another pathogen may provide access for NNV through host 

immunesuppression and/or inducement of disease development. Finally, considering the wide 

genetic variety of NNV described (see section 1.1.3) possible existence of a strain or isolate 

(other than AAG01/03) with a better or high capability to invade Atlantic salmon cannot be 

ruled out. 
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 In summary, Atlantic salmon should be regarded as a potential susceptible host and in 

farming caution should be taken to avoid increasing any risks of NNV infection. Therefore, 

salmon farms should not be located in close proximity of farmed fish species known to be 

susceptible, such as Atlantic halibut or cod. 

4.2 Transmission of NNV in Atlantic cod 

In 2006 the opportunity to investigate a natural outbreak of VNN in farmed Atlantic cod in 

Norway arised. Although cod previously had been reported as a susceptible host to NNV (see 

section 1.2.3), the detection of the virus in this species demonstrated that NNV could be a 

problem in Norwegian cod farming as well. However, this was also anticipated back in 2003 

when this study was initiated, and cod was consequently included. The NNV problems 

experienced with halibut farming (see section 1.2.4) suggested that the virus could cause high 

mortality in rearing of juveniles. There was also a concern that NNV could spread from 

farmed halibut to farmed cod. Consequently, studying susceptibility in cod to virus 

originating from halibut was regarded as both relevant and important.  

The approach of examining susceptibility in cod to a halibut originating NNV faced 

the same decisions to be made regarding type of challenge and size of fish. As a starting point, 

this study followed in the same track as the salmon study and applied the AAG01/03 isolate. 

However, in contrast to salmon, the hypothesis was that cod was most likely susceptible. The 

focus was on examining the fate of NNV, in terms of tissue tropism, and monitoring any 

development of disease. Consequently the size of the cod utilised was important to determine. 

 The study opted for cod in the same size range as the salmon used, and there were a 

number of reasons for this choice. First, this would be representative for farmed cod that have 

been transferred from a pre-stocking facility to a sea-cage growth site. Second, the cod would 

be out of the typical size where VNN had been reported (see section 1.2.1). This was regarded 

as favourable, as the study aimed to examine the fate of NNV in a cod ready for transportation 

to an on-growth site and with a fully developed immune system. A link to farmed cod with 

mimicry of conditions the fish could face was also considered favourable, and consequently 

influenced the choice of size of both salmon and cod utilised in the study. In cod farming, 

juveniles are typically transported to a pre-stocking facility at the size of 3-5 gram and kept to 

a size suitable for transportation to sea-cages for on-growth to marked size of 4-5 kilogram.  

  As with the study of NNV susceptibility in salmon, i.p. injection of NNV was the 

chosen challenge model. Although this is not a natural way of transferring the virus to cod, 

this method provides a controlled way of distributing equal amount of virus to each individual 
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fish. Monitoring tropism of AAG01/03 in cod would target any susceptibility of cod to this 

halibut isolate and potential of disease development, but also provide information on possible 

tissues or organs for none-lethal biopsy useful in brood stock screening for presence of NNV.  

4.2.1 NNV tissue tropism in experimental i.p. challenged Atlantic cod 

In this experiment two groups of Atlantic cod with average initial weight of ca. 100 grams 

were used to examine NNV tissue tropism following i.p. challenge (Paper II). The study 

aimed to investigate tissue tropism and any effect of induced immunosuppression. This would 

mimic an effect of sexual maturation and spawning or sub-optimal rearing conditions in a cod 

farm. The hypothesis was that immunosuppression would induce increased replication of 

virus in tissues and possibly result in development of disease. The effect of this on virus in 

tissues examined would possibly reveal if any candidates for none-lethal biopsy could be 

suggested.  

 A total of 12 different tissues were sampled and real-time RT-PCR analysis of samples 

from Day 25 revealed that NNV was detected in heart, spleen, liver and kidney in 4 out of 5 

fish examined. In contrast tissues as gills, pectoral fin, barbell, lateral line and brain were 

positive in only 1 (not the same fish) out of 5. These results suggest that NNV was transported 

from the i.p. injection site and caused an experimental infection in challenged fish. Further, a 

large relative increase of NNV in brain and retina from Day 25 to 130 suggests the virus 

(isolated from halibut) is neuroinvasive and able to replicate in Atlantic cod. The tissue 

tropism observed at Day 25 may indicate a systemic infection, but the results do not support 

that replication was taking place in tissues examined, as presence of virus could be suggested 

to be a result of antigen trapping in these tissues. Between Day 25 and 130 there was no 

increase in relative quantification of virus in heart, spleen, liver and kidney tissues, but a large 

relative increase was observed in brain and retina (eye) with a 105 and 103 fold increase 

respectively. The latter suggests that virus replication was taking place in these tissues, and 

presence of NNV was verified by IHC. Strong immunolabelling was observed in both brain 

and in external plexiform layer and the basal segments of the visual cells in retina (see Figure 

3A or Paper II). Interestingly, no clinical signs or mortality were observed during the 

experimental period, suggesting that cod of this size (above 100 grams) is less likely to suffer 

from VNN (see section 1.3.2). Further studies should be carried out to determine if any 

development of disease will occur and subsequent viral load necessary to cause mortality in 

cod of this size.  
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 The use of EF1A as reference gene revealed differences in expression between tissues 

investigated (see Paper II). Ideally, the expression should be almost identical in all tissues in 

order to be able to compare samples. However, in the i.p. challenged fish the most stable 

expression of EF1A was found in gills, eye (retina) and brain. In contrast, atrium, ventricle 

and lateral line (including muscle) showed a 10-fold less expression when compared to the 

former, suggesting that comparison between diffenrt tissues in this case should be avoided. 

Calculation of relative amount of virus should only be done between the same tissue types, 

i.e. between brain samples at various sampling days when using cod EF1A as reference gene.  

In the real-time RT-PCR detection of NNV in tissues, there was no use of a Ct cut-off 

value. Any signal returned from the PCR which was defined to be above the threshold and not 

caused by background were included in the data set. This means that there exists a possibility 

for false positive signals, particularly when the signal was detected at the terminal cycles of 

the PCR. However, as the study aimed to provide a general overview of how NNV is 

distributed in the tissues examined, bias could be introduced if some signals were eliminated 

by a cut-off. Although there might be both false positive and negative detections, the general 

trend of how NNV is distributed was clear (see Table 1 in Paper II). In this study, each tissue 

types were analysed from 5 fish and these acted as 5 parallel samples. The Ct signals were 

divided into different groups, consisting of those above 35 and below 40, those between 25 

and 35 and finally those below 25. This way of grouping may seem artificial, but is a way of 

visualizing the results to evaluate the data set. Ct-values from 35 to 40 are at the terminal end 

of the cycles and generally have a lower reproducibility and are not suitable for sequencing 

and verification. Sequencing of NNV is usually only possible in tissues with Ct-values below 

35 (own observations). When performing relative quantification, the obtained Ct-values from 

NNV detections were normalized by deducting the corresponding Ct-value of EF1A 

expression to produce a ΔCt for all samples.  

Immunosuppression was induced by injecting prednisolone-acetate (Johnson and 

Albright 1992) to investigate the effect of this on NNV load and distribution in the i.p. 

challenged cod. The hypothesis was that such induction most likely would trigger increased 

virus production and increase the viral load. In vertical transmission, sexual maturation may 

result in increased viral replication in persistently infected fish or higher susceptibility to 

horizontal transmission due to suppression of immune defence mechanisms. The observed 

effect of the prednisolone-acetate implant was an apparent increased viral replication. 

Therefore, the effect of immunosuppression should be examined further, as vertical 

transmission is likely occurring (see section 1.3.2 and 4.3.1).  
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The detection of VNN in commercially farmed cod in 2006 (see Paper IV) provided 

an opportunity to compare tissue tropism in the experimentally and naturally infected cod. 

The examination of tissues in farmed cod suffering from VNN was also regarded as important 

to validate the experimental i.p. challenge approach. Interestingly, both fish groups showed a 

similar tissue tropism pattern (see Table 2 in Paper II), where NNV was detected in all tissues 

examined. This observation in diseased cod suggests that i.p. challenge is producing a similar 

distribution of NNV. Another interesting observation resulted from relative quantification of 

NNV in brain and eye (retina) tissues. The diseased cod had a 103-times the viral load of 

NNV seen in these tissues as the i.p. challenged fish at Day 130 (not shown in Paper II), 

which may explain development of clinical signs and pathology in the farmed fish. 

 Examination of NNV tissue tropism may also help in determining how to select virus 

free fish. To help establish NNV-free cod brood stock in farming, tissues suitable for non-

lethal biopsy sampling are needed. Since these must be accessible for sampling without any 

detrimental effects to the fish, organs such as spleen, heart, liver, brain and retina are 

inaccessible. Tissues examined here were blood, gill, pectoral fin, barbel and head-kidney. 

Using the relative amount of NNV in brain and retina samples as cross reference, organs 

suitable for biopsy should reflect these tissues. At Day 25 post injection, only kidney and 

blood samples showed detectable levels of NNV. Nevertheless, NNV is likely to enter into the 

bloodstream from the abdominal cavity after i.p. challenge, and upon transportation in blood 

would result in its establishment in other tissue types. At Day 130, only 1 out of 4 blood 

samples were positive for NNV compared to 4 out of 5 head-kidney tissues. Apparently, NNV 

is gradually cleared from the blood following challenge. The tissues from gills, pectoral fin, 

lateral line and barbel were better suited at this day, but this changed at Day 180 where kidney 

appeared to be the best tissue (see Table 1 in Paper II). Examination of the commercially 

farmed cod with VNN diagnosis revealed that almost all tissues examined were positive for 

NNV (see Table 2 in Paper II), suggesting that the apparent systemic infection observed 

following i.p. challenge model also occur during a natural VNN outbreak. Based on the 

observations in the study, head-kidney biopsy samples appear to be best suited for the 

detection of fish with persistent NNV infection (9 out of 10 detected). The head-kidney in cod 

is accessible for biopsy sampling, and by targeting the kidney this allows screening for other 

important viruses and bacteria such as IPNV and Fransicella piscicida, the latter a major 

bacterial problem in cod farming in Norway (Nylund et al., 2006, Olsen et al. 2006). The 

timing of biopsy sampling might also be optimized, since stress or sexual maturation appear 

to trigger NNV replication and hence may increase detection efficiency. Repeated biopsy 
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sampling supplemented by screening of reproductive fluids and offspring may eventually lead 

to NNV-free brood stocks of cod, which would be the best prophylaxis against VNN 

epizootics among juveniles. 

4.2.2 Experimental cohabitation challenge to Atlantic cod 

The results from the i.p. challenge of cod suggested that cohabitation challenge should be 

performed to investigate a more natural way of transmitting the virus. Consequently, both cod 

and salmon were included in the cohabitation challenge experiment to study horizontal 

transfer of NNV (Paper III).  

In this experiment cohabitant Atlantic cod and i.p. injected turbot were kept in the 

same tank (see details in Paper III). The NNV isolate applied was the same as used in i.p. 

challenge of cod (Paper II), originating from Atlantic halibut. Virus was in this experiment 

detected by real-time RT-PCR in cohabitant cod after 90 and 125 days (see Table 3 in Paper 

III), where 9 out of 10 cohabitant cod examined tested positive for NNV. These detections 

strongly suggest that the virus has been transferred horizontally from experimentally infected 

turbot to the cohabiting cod in the tank.  

Interestingly, the virus was detected in both brain and eye (retina) samples, suggesting 

that the virus originating from halibut is capable of entering the primary organ of replication 

(CNS). The examination of NNV in i.p. challenged cod has suggested that brain and eye are 

important for replication of virus in this fish species as well (Paper II). In addition, the 

detection of NNV in a cohabitant cod may suggest that cod is a susceptible host and is likely 

to be infected with waterborne NNV. However, although horizontal transmission of NNV has 

been demonstrated in the literature (see section 1.3.2), the key observation in this study was 

transmission of an NNV isolate originating from a different fish species. This supports the 

results in Paper II, where i.p. injection of virus eventually established infection in CNS and 

further was detectable in most tissues investigated.   

However, the cohabitation study did not demonstrate that replication of NNV had 

occurred in cod. The fate of the virus beyond termination of the experiment at Day 125 is 

unknown. Presence of the virus in some tissues investigated may be the result of antigen 

trapping, but since evidence was found for the entrance of the virus to the CNS, this suggests 

a possibility that replication may eventually occur. Also, according to Nylund et al. (2008) the 

NNV genotype detected by Starkey et al. (2001) in cod belong to tha halibut clade of NNV, as 

does an isolated from farmed cod in Norway (Nylund in Paper II). In both cases sequencing of 

the virus from host tissues suggests significant virus load and hence suggests NNV replication 
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had occurred. Triggering of replication could be hypothezied to occur during periods where a 

state of immunosuppression is present, exemplified with sexual maturation, spawning or 

stress. A cod with a persistent NNV infection may represent a risk of spreading virus if used 

as wild-caught brood fish or if cod is infected as farmed fish and carried forward as brood 

fish. Persistency in farmed cod may also represent a risk of horizontal transmission to 

cohabitants or wild fish in close proximity of a farming site. In addition, a horizontal 

transmission of an NNV isolate originating from halibut between two other unrelated fish 

species is an interesting observation, and raises questions of possible consequences. If NNV 

strains are capable of being transmitted horizontally across the species barrier, this suggests 

there is a higher risk of spreading the virus in both farmed and wild populations of fish than 

might anticipated. The close relationship between halibut and cod isolates of NNV (see 

section 1.1.3 and 4.3.2) may also suggest that fish species in the Gadiformes and 

Pleuronectiformes families may be susceptible hosts if exposed to NNV from the BFNNV 

clade. Further, the observation by Nguyen et al. (1996), who detected NNV in epithelium 

cells in skin of striped jack larvae, raises the question of possible transmission routes. The role 

that common ectoparasites, like Caligus elongatus with low host specificity (Øines and Heuch 

2007) may play in transferring NNV between marine fish species is yet to be determined, but 

could be suggested as being potential vectors in spreading the virus. 

4.2.3 VNN in farmed Atlantic cod 

In August 2006 there were reports from a combined research and commercial cod farming 

facility at Parisvatn (in the county of Hordaland) of increased mortality and clinical signs 

consistent with VNN (see section 1.2.4). This provided an opportunity to investigate a 

suspected outbreak of VNN in commercially farmed cod in Norway (Paper IV).  

 Moribund fish were sampled at the site in August and September, and as NNV was the 

primary suspect in this case brain samples were analysed with real-time RT-PCR. This 

resulted in a strong positive detection of NNV in the brain samples (low Ct-values), but 

bacterial sampling also resulted in detection of the fish pathogenic bacterium Listonella 

(Vibrio) anguillarum. At a later stage, immunohistochemistry was performed on brain and 

retina to confirm the presence of NNV with typical histopathology with vacuoles and focal 

necrosis (see Figure 3 in Paper IV). The samples were screened for other pathogens, but tested 

negative for IPNV and Francisella piscicida, both known to be pathogenic to cod. 

 As two known pathogens (NNV and L. anguillarum causing vibriosis) were present in 

the diseased fish, this raised question of which one caused the primary infection or was 
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responsible for the mortality. Since the sampling first took place when fish were suffering 

from disease, it proved difficult determining which pathogen causing the primary and 

secondary infection. But, it is also possible that a synergistic effect of the two pathogens may 

have existed, triggering development of disease. As a general observation; in later diagnosed 

outbreaks of VNN in commercial cod farms, other pathogens than NNV have frequently been 

detected in the diseased fish (own observations).  

In determining the role of NNV in the disease outbreak at Parisvatn, a closer look at 

the anamnesis could provide some useful information. The cod were transferred to sea-cages 

at the size of 2 grams in June 2006, and were prior to this vaccinated against vibriosis. The 

mortality rate was estimated to reach 15%, but this probably also included mortality due to 

cannibalism and other unknown causes, and this rate is lower than in other reports on 

juveniles suffering from VNN (see section 1.2.1). The conclusion that NNV was contributing 

to the mortality were eventually based on real-time RT-PCR detection with a 103-times 

increase of NNV in brain compared to experimentally infected cod (see Paper II). 

Immunohistochemistry verified the presence of NNV with histopathology consistent with 

VNN. Finally, clinical signs were also consistent with VNN disease. Investigation of NNV 

tissue tropism of fish from Parisvatn also demonstrated presence of virus in all tissues 

examined (see Table 2 in Paper II), suggesting a systemic infection in the fish.  

Important observations in Paper IV are the size of cod associated with VNN, which is 

larger than previously reported (see section 1.2.1) and that this outbreak occurred in 

commercially farmed cod in Norway. The first report raises the question of virulence of NNV 

and susceptibility in larger cod, and the latter may suggests that VNN could be expected to be 

a potential disease problem in farming of cod.    

4.3 NNV as a pathogen in farming of cold-water fish species  

From a fish farming point of view, understanding how NNV is transmitted is important in 

order to identify effective prophylactic measures to reduce the risk of spreading the virus or 

development of disease. This thesis aims to see the results from the experiments conducted in 

a broader context, and in the light of the scientific literature available make some suggestions 

of how the virus should be controlled in farming of cold-water fish. In order to identify 

potential risks involved with NNV in farming of salmon, cod and halibut, this involves 

discussing transmission of NNV, host specificity, wild and farmed fish interactions and 

examinination of some possible ecological aspects of NNV. First, determination of NNV 
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transmission modes should be addressed, as this is a cruisial step in indentifying risks of 

spreading the virus. 

4.3.1 Transmission modes of NNV 

In nature, dynamics and genetics of interactions between populations of NNV and their host 

are based on their survival strategies, determined through co-evolution of virus and the host. 

One crucial stage in the dynamics of interactions is mode of transmission, which could be 

looked upon as a survival strategy and determines the potential of spreading and persistence 

of the virus in a host population. In general, transmission is occurring horizontally or 

vertically and virus may utilize one or both modes. How NNV is transmitted has consequently 

been a result of the interactions between the virus and susceptible host in natural populations 

of hosts, or wild fish, and a result of the perpetual process of co-evolution. When wild fish is 

domesticated, the dynamics and genetics of the interactions are likely to be changed, if a shift 

in the evolutionary direction is introduced i.e. with dramatic changes of the environment or 

habitat.  However, a closer look at the NNV transmission modes is required to unveil the 

NNV survival strategy.  

The literature supports the existence of both vertical and horizontal transmission of 

NNV (see section 1.3.2), suggesting that there are several gateways for the virus to enter into 

a potential host (see section 1.3.3). The significance of these two transmission modes may be 

difficult to evaluate, particularly in wild populations of fish. But, transmission modes have 

generally been suggested to play a role in determining the virulence of a pathogen (see section 

5.2), where horizontal transmission tends to favor higher virulence than vertical transmission 

which tends to favor mechanisms for long-term persistence and more benign infections 

(Clayton and Tompkins 1994, Ewald 1994). The outcome of the viral infection may be 

viewed as a result of the balance between the two transmission processes. Without 

considering virulence, these modes of transmission represents different risks of spreading the 

virus in farming of fish, which is outlined in section 4.3.5.  

In summary, existence of both horizontal and vertical transmission of NNV should be 

considered as occurring, and this have consequently some implications in how the virus 

should be controlled in cold-water aquaculture. 

4.3.2 Host specificity in BFNNV? 

As viruses of the BFNNV clade have been detected in several different fish species (see Table 

1 in section 1.2.3), this raises the question of possible transmission of NNV between fish 
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species, known as intraspecies transmission. This is an important question to address, as it has 

implications for the multispecies aquaculture industry and the management and control of 

NNV.  

Since intraspecies transmission of virus require low or no host specificity, this 

question is equally important to address. This is particularly important in evaluating 

transmission risks, as any host specificity would have implications for how NNV should be 

managed in farming of fish. In this study, NNV originating from halibut have been used to 

investigate susceptibility and transmission to salmon and cod. The results do not seem to 

support host specificity, though the data could be regarded as insufficient to make a 

conclusion solely based on the experiments conducted. However, in the literature there is 

support for existence of host specificity (see section 1.3.1), but a closer look at the isolates in 

the BFNNV clade may support the findings in this thesis.   

 The grouping into the original 4 major phylogenetic clades (SJNNV, BFNNV, 

TPNNV and RGNNV) is apparently related to host specificity. This could be exemplified 

with the study of Iwamoto et al. (2004) and Ito et al. (2008) with genetically modified NNV, 

where the RNA2 segment was suggested to be involved in controlling host specificity in virus 

from SJNNV and RGNNV clades. The study performed by Totland et al. (1999) with halibut 

challenged with NNV from both SJNNV and BFNNV also suggested host specificity as the 

SJNNV isolate did not cause disease in halibut. However, the finding of Thiéry et al. (2004), 

who found an NNV isolate from BFNNV capable of infecting a warm-water fish species (sea 

bass), may suggest that host specificity is not solely linked to grouping in one of the major 

clades.  

 Further, although host specificity may be suggested between the major phylogenetic 

clades, this may not be the case within a single clade. NNV with a high phylogenetic 

relationship, i.e. those within the BFNNV clade may be more likely to infect cold-water hosts. 

Although some papers suggests subdivision of BFNNV into species-specific clades, like 

ACNNV (Gagné et al. 2004) or GMNNV (Nylund et al. 2008), some NNV isolates are not 

clustering and linking to the proposed host accordingly. This could be exemplified with the 

suggested ACNNV and AHNNV sub-clades with more than one host species present.   

 Another explanation of an apparent host specificity or preference may be related to 

geographic location rather than the host itself. Geographic clustering of NNV isolates may be 

the result of how the virus is spread within a susceptible host population. Vertical 

transmission of virus (see section 1.3.2) would result in an endemic distribution following the 

geographic borders of the host. Any horizontal transmission from this population would only 
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Table 2. GenBank accession numbers of NNV isolates included in Figure 5. All available Norwegian 

cold-water isolates of NNV have been included in the phylogenetic analysis. Table includes fish 

species in which virus isolate originates, geographic region of host, whether the host was wild or 

farmed and reference of sequence. Only a few isolates from SJNNV, RGNNV, TPNNV and the only 

one in TNNV were included to form a complete overview of the major genotypes suggested. GenBank 

= direct submission in GenBank.  

Acssession nos. Species Region Wild/farmed Reference 
EF617326 Atlantic cod Hordaland Farmed GenBank 
P10 Atlantic cod Hordaland Farmed unpublished 
P9 Atlantic cod Hordaland Farmed unpublished 
TK1 Atlantic cod Troms Farmed unpublished 
TK2 Atlantic cod Troms Farmed unpublished 
EF617327 Atlantic cod Hordaland Farmed GenBank 
EF433465 Atlantic cod Nordland Farmed Nylund et al. 2008 
EF577375 Atlantic cod Sogn og Fjordane Farmed Nylund et al. 2008 
EF617329 Atlantic cod Hordaland Farmed GenBank 
EF617328 Atlantic cod Hordaland Farmed GenBank 
AB31305707 Atlantic cod Møre og Romsdal Farmed unpublished 
M90 Atlantic cod Møre og Romsdal Wild unpublished 
AB31305682 Atlantic cod Møre og Romsdal Farmed unpublished 
V1 Atlantic cod Nordland Wild unpublished 
EF433469 Atlantic cod Møre og Romsdal Wild Nylund et al. 2008 
EF433468 Atlantic cod Møre og Romsdal Farmed Nylund et al. 2008 
AJ245641 Atlantic halibut Hordaland Farmed Grotmol et al. 2000 
AF160473 Atlantic halibut Møre og Romsdal Farmed Aspehaug et al. 1999 
K110707 Atlantic cod Hordaland Farmed unpublished 
AY962682 Atlantic halibut Southern Norway Farmed Paper I 
AJ698094 Sea bass France Farmed Thiéry et al. 2004 
EU826138 Barfin flounder Japan Farmed GenBank 
D38635 Barfin flounder Japan Farmed Nishizawa et al. 1995 
AF445800 Atlantic cod North America Farmed Johnson et al. 2002 
AF547548 Atlantic cod North America Farmed Gagné et al. 2004 
D38527 Japanese flounder Japan Farmed Nishizawa et al. 1995 
D38636 Red-spotted grouper Japan Farmed Nishizawa et al. 1995 
AB045980 Japanese flounder Japan Unknown GenBank 
AJ608266 Turbot Norway Farmed Johansen et al. 2004b 
D38637 Tiger puffer Japan Farmed Nishizawa et al. 1995 
D30814 Striped jack Japan Farmed Nishizawa et al. 1995 
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Figure 5. Phylogenetic position of selected NNV isolates, where all available Norwegian NNV isolates 

are included. Phylogram is based on 826 nucleotides from RNA2 segment and applied maximum-

likelihood criteria in TREE-PUZZLE (quartet-puzzling steps) to calculate phylogenetic distances. Major 

clades are BFNNV = Barfin flounder NNV, RGNNV = Red-spotted grouper NNV, TNNV = Turbot NNV, 

TPNNV = Tiger puffer NNV, SJNNV = Striped jack NNV. The scale bar shows the number of 

substitutions as a proportion of branch lengths. The numbers at the nodes are quarter-puzzle support 

values. 
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occur within the habitat (geographic region) where susceptible host species have contact. This 

may explain the distinct cold-water BFNNV clade. Long distance migration or introduction of 

infected hosts could alter the genetic variations of NNV isolates in host populations in a 

region, and may influence the host-virus interaction. A suggested theory of evolution and 

ecology of NNV is discussed in section 4.3.4. 

Finally, a closer look at the BFNNV clade may provide some more information on 

phylogenetic relationship useful for determination of possible host specificity. The analysis of 

Nylund et al. (2008) suggests existence of a species specific group consisting of NNV isolates 

from Atlantic cod. Based on the analysis performed by Nylund et al., all Norwegian isolates 

available have been added to Figure 5, in order to extend the analysis with even more isolates 

(Table 2). This new analysis utilised an 826 nt segment of RNA2 and genetic distance 

calculations and phylogenetic tree estimations under maximum likelihood (ML) criteria were 

made with Three-Puzzle 5.2 (available at http://www.tree-puzzel.de). As the majority of the 

NNV sequences included also were utilised by Nylund et al., the new analysis applied 

identical substitution model and rates; generalised time reversible (GTR + R) with the 

following nucleotide substitution rates: A-C (1,7523), A-G (3,7202), A-T (1,0720), C-G 

(0,8776), C-T (5,9839) and G-T (1,0000). The phylogram (Figure 5) was drawn using Tree 

View (Page 1996). NNV isolate acting as representatives for all the other major clades 

(SJNNV, RGNNV, TPNNV and the suggested TNV) are included in this analysis for 

comparison reasons. The phylogram is consistent with the finding of Nylund et al., with an 

exstended group of NNV isolates from both farmed and wild cod. Interestingly, in the group 

with NNV isolates from halibut, there is one single isolate from farmed cod present. 

Generally, the phylogram suggests there is genetic variation within the BFNNV genotype, and 

this will probably increase as new isolates of NNV are added in the future.  

 In conclusion, there is little if any support of host specificity in the BFNNV clade 

based on phylogenetic properties. The cold-water NNV isolates should be regarded as capable 

of infecting hosts of this clade, at least until other data provide opposite information. Without 

considering any differences in virulence (see section 5.2), low host specificity represents 

potential hazard of transmitting NNV horizontally between cold-water fish species known to 

be susceptible, including the farmed species cod and halibut. This also includes a potential of 

transmission of NNV between farmed and wild fish.  
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4.3.3 Interactions between wild and farmed fish? 

Interactions between farmed and wild fish (and vice versa) may be important in fish farming. 

In Norway, there are at least 3 concerns regarding the possibility for introduction, horizontal 

transfer and spreading of NNV: 1) Use of wild-caught Atlantic halibut and cod as brood fish, 

2) live storage and on-growth of wild-caught cod and 3) an increasing number of new on-

growth sites for farmed cod and halibut along the Norwegian coastline.  

There is no hard evidence for NNV transmission between wild and farmed cold-water 

fish. However, the observation of infected wild fish raises questions of possible interaction. 

Nylund et al. (2008) found NNV in wild Atlantic cod on the west coast of Norway, 

suggesting that brood fish originating from wild stocks might have been persistently infected 

when brought in and used as brood stock. Bearing in mind vertical transmission (see section 

1.3.2 and 4.3.1), they considered it likely that infected progeny have been spread in cod 

farming. As the prevalence of infected cod in some areas on the west coast ranged between 20 

to 50 % (Nylund - unpublished data), this demonstrates that it is possible to introduce the 

virus to farmed fish by using wild-caught brood cod. NNVs have also been detected in wild 

and farmed fish species in Canada and in farmed cod in the UK (see section 1.2.3 and Table 

1). In Norway, the finding of nodavirus-positive adult Atlantic halibut used as brood stock 

(Aspehaug et al. 1999) might suggest that there is a hazard in using wild-caught animals as 

brood fish in farming of this species as well.  

 There is an increased interest in catching live wild Atlantic cod and keeping the fish 

for a period to both increase the weight and sell the fish outside traditional fisheries seasons to 

obtain a better price. Usually the fish is caught during the spawning season, and kept for a few 

months in sea-cages at sites in close proximity to a processing plant. The benefit of doing this 

is an added value and improved quality of the fish, and some argue that this is the future for 

the traditional fisheries in Norway (Midling, personal communication 2007). In 2007 

approximately 580 tons of cod were live caught and stored in sea-cages, and in 2008 this is 

predicted to reach around 1500 t (source: Norsk Råfisklag, 2008). However, assembling large 

numbers of wild fish with an unknown health status at an on-growth site might represent a 

potential risk of spreading diseases to farmed and wild fish in the vicinity. Further knowledge 

should be obtained to determine the risks involved, including those created trough 

transportation of live fish over long distances. This is likely to increase the risk of spreading 

and introducing pathogens to new areas (Mortensen et al. 2006).  

  As farming of Atlantic cod has shown a steady increase in Norway during the last 

years (Directorate of Fisheries, Norway), this trend most likely will require establishment of 
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numerous new on-growth sites to harbor a continuous increased production. Most of the 

hatcheries producing cod larvae are at the moment situated along the west coast of Norway (in 

2008), and establishment of new on-growth sites involves increased transportation of 

juveniles into possible new areas suitable for farming. Further, establishment of new on-

growth sites in close proximity to existing fish farms and local wild fish populations might 

also cause horizontal transmission of virus.  

4.3.4 Interactions of NNV and host – ecological considerations 

With a bird’s eye perspective on NNV, a suggested ecology of the virus may provide some 

insight in dynamics and genetics of interactions of NNV and susceptible hosts. These 

suggested interactions should, however, be regarded as over-simplified with the sole intention 

to present a theoretical background in which further discussions on prophylaxis and control of 

virus in fish farming could be based. 

 NNV could be assumed to be common in wild populations of cold-water fish species 

(see Table 1), where numerous different isolates (see Figures 2 and 5) suggest that there are 

large genetic variations of the viruses and numerous susceptible hosts. Using Atlantic cod as 

an example, the numbers of isolates showing genetic variations are increasing and so far all 

these isolates cluster phylogenetically close and are suggested to form a distinct sub-clade 

within BFNNV. Simplified, genetic variations are usually the result of mutations (errors 

during replication) and genetic recombination, and an observed (suggested) large variation of 

cod-originating NNV may demonstrate that these viruses are spread and maintained within 

the cod population. This is best explained with vertical transmission as the primary way of 

transmitting the virus in cod. Such transmission would facilitate selection of virus isolates 

with low virulence and high prevalence (persistency) in the host population. If, in contrast, 

horizontal transmission would be the primary transmission mode, this would facilitate low 

genetic variation as the isolates showing the best spreading potential would dominate. In this 

case selection for virus isolates with increasingly higher virulence is the expected result. In 

cod, NNV could be suggested to be transmitted during maturation and spawning, where the 

host immune system is suppressed as a result of the physiology involved in the process of 

reproduction. This would likely trigger increased viral replication in persistently infected cod, 

as the interplay between virus and immune system is altered. During spawning, large numbers 

of cod are assembled at the spawning ground, where released NNV particles would have the 

opportunity to infect hosts with reduced immunological capacity and consequently could be 

regarded as more susceptible to infection. In this case any susceptible host in the area could be 

- 55 - 



 

infected due to horizontal transmission, suggesting that phylogenetically close NNV isolates 

could be established in new fish species occupying the same habitat as cod. Low host 

specificity would be facilitated and could explain the suggested geography-specific phylogeny 

of NNV viruses. The interaction of NNV-host could be regarded as a result of the trade-off 

(dynamics of selection process of virus isolates) between vertical and horizontal transmission, 

where low virulence and host specificity in NNV have been facilitated in natural populations 

of hosts. 

 In a farming situation this virus-host interaction is likely to be changed, as the 

evolutionary selection pressure would be influenced by increased density and number of 

hosts, environmental conditions (sub-optimal), physiological constraints in hosts (stress) and 

the farming process itself. If NNV is transmitted both vertically and horizontally in farmed 

fish, the cost of increasing virulence is reduced for NNV as there would be a continuing 

replacement of new farmed hosts susceptible to infection. Consequently it could be 

hypothesized that farming would, in the long run, facilitate selection of more virulent virus 

isolates and thereby possibly increase the significance of horizontal transmission.   

4.3.5 NNV in farmed fish - identification of potential risks involved 

This section aims to summarize the possible risks and hazards involved with NNV in farming 

of fish, and form the basis for the prophylaxis and control measures suggested in the next 

section. Suggested routes of transmission of the virus are summarized in Figure 4. 

 
Implications of vertical transmission of NNV 

There are at least two concerns regarding vertical transmission of NNV in farming of marine 

fish species; use of persistently infected brood fish and spreading of NNV in farmed 

populations through use of such fish. Although there is no hard evidence that vertical 

transmission is occurring in cold-water fish species, the literature is strongly supporting this in 

studies performed in warm-water fish species (see section 1.3.2). Existence of vertical 

transmission may also be supported by the suggested (theoretical) ecology of NNV as 

outlined in section 4.3.4. 

 Any persistently infected brood fish would have the potential to pass the virus on to 

the offspring. If the health status of brood fish candidates is unknown, in terms of persistency, 

this involves a risk of introducing the virus to a farmed population of fish. The origin of these 

candidates may either be from other farmed populations or from wild stocks of fish or a mix 

of both. Particularly use of wild-caught brood fish could be suggested to represent a high risk 

of introducing the virus. 
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 If persistently infected brood fish candidates are used, these would be a source of 

NNV to farmed fish. As long as these candidates are not removed from the brood fish 

population, the risk of spreading NNV would remain high with a possible continuous supply 

of infected juveniles.    

 

Implication of horizontal transmission of NNV 

Horizontal transmission of NNV represents a risk of waterborne spreading of the virus, either 

as cohabitation or via potential vectors. The existence of horizontal transmission is well 

documented in the literature and suggested to play a role in spreading of NNV (see section 

1.3.2). In Paper III this was shown when the virus was transferred from turbot to cod by 

cohabitation. The potential of spreading NNV in cold-water fish farming has also been 

suggested by Nerland et al. (2007), who detected high concentrations of NNV in rearing units 

with Atlantic halibut larvae suffering from VNN. This observation shows that the virus may 

be dispersed via water from aquaculture facilities. 

 Horizontal transmission may occur within a population of farmed fish or between 

farmed and wild fish. Existence of such transmission routes suggests that there are several 

ways the virus may enter and infect farmed fish (see Figure 4). Blocking these entrances 

would be important to reduce the risk of introducing and spreading NNV in farming of fish. 

 
Implications of low host-specificity 

Although the number of susceptible host species for viruses of the BFNNV clade is not 

known, there exists a risk of transferring the virus to new host species including farmed fish. 

In this study susceptibility in Atlantic salmon was examined, where the conclusion that 

salmon should be regarded as a potential host was reached. In addition, a halibut-originating 

NNV isolate were horizontally transmitted from turbot to cod, suggesting NNV could be 

transmitted from halibut to cod and most likely vice versa. These observations suggest that 

co-localization of farmed fish species should be avoided.  

 
Implications of NNV in wild fish species and genetic variations 

The presence of NNV in a number of wild fish species (Table 1) suggests the existence of a 

marine reservoir of virus. In farming of marine fish species, this reservoir could potentially be 

a source of virus, either in wild-caught brood fish or by horizontal transmission from wild to 

farmed populations. The genetic variations observed in isolates of NNV may also represent a 

risk in its own rights, as this variation also could reflect variation in virulence or the ability to 

invade, survive and replicate in new hosts. Interactions between wild and farmed fish could 
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consequently result in transmission of the isolates in the pool of NNV in wild fish which best 

adapt to farmed fish. 

 
Implications of transporting live farmed fish 

In general transportation of fish could be regarded as involved with risk of spreading the virus 

in farming of fish. There is at least one concern regarding transportation of fish and risk of 

spreading NNV. Movement of fish with known or unknown NNV infectious status 

(persistency) could result in introducing the virus to new areas and hosts with subsequent 

horizontal transmission. Consequently, any transportation of fish, and particularly fish with 

unknown health status over long distances, should be considered as potentially hazardous.  

4.3.6 Towards a strategy for controlling NNV in farming of fish 

The basis for controlling NNV in farming of fish is reducing the risk of introducing and 

spreading the virus in farmed populations of fish by blocking both vertical and horizontal 

transmission routes. Achieving this involves application of numerous coordinated preventive 

measures. Using the current knowledge of NNV, this thesis is suggesting a strategy of how 

such measures could be applied to minimize the risks suggested to be involved with NNV. 

The strategy involves screening of fish and eventual development of a vaccine.  

 
Screening of fish 

In general screening of fish would provide a survey of infection status in a given population 

subject to examination. Implementation of real-time PCR technology has vastly improved the 

sensitivity, and provided a tool to detect small amounts of virus and possibly reveal any 

persistency. However, as detection of pathogens often occurs at the detection limit of the 

assay (i.e. carrier state of fish) some care should be taken as there is currently no independent 

method available for verification of the result. Another consideration is how to interpret the 

Ct-values returned from an analysis, particularly at the very terminal cycles of the PCR, when 

sampling in a population of farmed fish at a site. The consequences of such detections may 

depend on a total evaluation of possible hazards based on experience and knowledge of the 

pathogen in question. The interpretation of the results should also be done according to the 

aim of the study, usually by balancing reproducibility against sensitivity. This could be 

exemplified with use of real-time PCR in diagnostics, where a cut-off Ct-value is applied to 

discriminate positive and negative samples. Defining the cut-off limit where multiple runs are 

identical is consequently important and may vary between labs and different real-time PCR 

assays. When using real-time PCR in mapping distribution of a pathogen in a given 

- 58 - 



 

population, sensitivity is more important than reproducibility in order to detect any positive 

sample. In this case the results should be evaluated against false negative (low 

reproducibility) and false positive (background, contamination) samples. This inherited 

problem with real-time PCR should therefore lead to caution in how to interpret the results, 

which is depending of the aim of the study. The results obtained are influenced by processing 

of samples, like sampling procedures, storage, temperature and time, and type of assay. When 

two independent laboratories are analysing identical samples, the analyses may suggest both 

positive and negative results for single samples and some interesting discussions may arise. 

However, real-time PCR is a useful tool which has enabled detection of small quantities of 

pathogens, and in the end it is how the method is applied which determines the power of this 

technology. 

 
Vaccination 

A vaccination strategy should be developed since there most likely is a large reservoir of 

NNV in wild populations of fish. In farming, this would consequently result in a possibility 

for exposure to infected wild fish in the vicinity of a farming site. The literature has suggested 

the possibility of inducing protection against NNV by vaccination (see section 1.3.5), and 

suggests this could be an important and most promising prophylactic measure for the future. 

However, there is a major limitation as fish have to reach a specific size or age in order to be 

vaccinated. This means that this strategy will not be applicable for juveniles, which might be 

regarded as most susceptible to NNV with following development of VNN. A vaccine would 

consequently not solve the problem solely, but could be important to provide some protection 

for adult fish, particularly when young fish are moved from the hatchery or pre-stocking 

facility to a marine growth site. Another application could be in brood fish, which may obtain 

higher protection prior to maturation and spawning due to boosting of the immune system. 

This would most likely increase the resistance to NNV (persistency) with subsequent reduced 

replication of virus. Although a vaccine would not singlehandedly solve the problems related 

to NNV, it should be considered as important when applied in concert with other prophylactic 

methods. 

 
Brood fish 

There are two major concerns regarding brood fish and NNV. The first is use of NNV 

infected brood fish with subsequent vertical (and horizontal) transmission of virus. The best 

prophylaxis against vertical transmission is NNV-free brood stocks, and this could be 

achieved by careful screening and monitoring of health status in order to identify infected 

- 59 - 



 

(carrier) fish. As brood fish most likely would be persistently infected (if infected), a 

screening should be performed when the likelihood of detecting the virus is increased. 

Consequently, this should be performed during sexual maturation and spawning. Methods for 

screening such fish could be through biopsy (like head-kidney in Atlantic cod) or reproductive 

fluids. When adding new brood fish to the stock population, the new candidates should be 

quarantined and screened to reduce the likelihood of introducing NNV. A screening program 

could be the basis for a selection of an NNV-free brood stock, and screening of the offspring 

could increase the likelihood of identifying possible infected animals. A screening strategy 

should consequently consist of both individual examination of the brood stock and multiple 

screening of offspring to reveal any transmission to egg and larvae.   

 The second concern is horizontal transmission of NNV to the brood fish stock. The 

benefit of a selection program for NNV-free brood fish could be jeopardized with exposure to 

the virus by waterborne transmission of virus. If the brood stock is kept in close proximity of 

other marine fish farms or wild stocks of known susceptible fish species, this could represent 

a risk of infecting the brood fish. As a single brood fish should be regarded as valuable, 

possibly originating from a breeding program and difficult to replace, it would be wise to 

keep the brood stock in a sheltered aquaculture system to prevent horizontal transmission of 

NNV.  

  
Larvae and juveniles 

In the hatchery, larvae and juveniles would be vulnerable to horizontal transmission of NNV. 

Their immune system is poorly stimulated with increased susceptibility compared to adult 

individuals. At this stage, protection against waterborne NNV should be provided by keeping 

the fish in a sheltered aquaculture system. The source of virus could be from within the 

aquaculture facility itself or by using untreated (or improperly disinfected) water. The fish 

should be kept in this closed system until reaching a size suitable for vaccination. A 

vaccinated fish would be ready for transportation to a marine growth site, where exposure to 

NNV could occur. 

 
Marine growth-sites 

A marine growth site, i.e. where fish are kept in cages at high density, should be regarded to 

have an increased risk of exposure to NNV. Sources of virus might be other farmed fish at the 

site (i.e. fish from several hatcheries) or wild stocks of fish in the vicinity. As this is an open 

system, the prophylactic measures applied should address immune status of the fish in order 

to avoid immunosuppression and subsequent increased likelihood of infections with 
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pathogens. Consequently, important general prophylactic measures include only one 

generation at the site at any time, distance to other farming sites, fallowing of site in-between 

generations, removal of moribund and dead fish, vaccination when possible and optimal 

environmental conditions in the cages at the site. Regarding NNV, there is no commercial 

vaccine available (at the time) and attention should be paid to avoid introduction of NNV 

(transportation of fish to the site), reduce spreading the virus within the farming site (removal 

of diseased fish) and reducing likelihood of virus replication in possibly infected fish (reduce 

stress). 

 

No co-localization of farmed fish species 

Co-localization of farmed fish species at a single site (poly culture) is generally involved with 

increased risk of intraspecies transmission of a number of pathogens. Consequently there are 

numerous arguments against such practise, and regarding NNV there are some considerations 

which should be addressed.  

 The suggested low host specificity of NNV (see section 4.3.2) represents a risk of 

transmission of virus between any susceptible hosts kept in a fish farm. This thesis has 

identified Atlantic salmon as a potential host for NNV, and consequently there should be no 

co-location of salmon and other known susceptible hosts such as Atlantic cod and halibut. In 

addition, an NNV isolate originating from halibut was successfully transferred from infected 

turbot to cod. This suggests that virus may be horizontally transmitted from infected halibut 

(the original species in which the virus was isolated) to cod, and most likely vice versa. In this 

case co-localization of cod and halibut is also not recommended.  

 

Finally, farmed fish could be infected with NNV through horizontal transmission in a number 

of possible different ways. Although there is little information available, it might be 

hypothesized that wild fish could be a source of NNV (see section 4.3.3). It could also be 

suggested that vectors like bivalves and crustaceans, which are commonly found at marine 

farming sites, could be a source of NNV as well. However, the role and importance of wild 

fish stocks and vectors in spreading the virus have yet to be determined. 
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5 EPILOGUE 

5.1 Main conclusions 
The main objective of this study was to investigate NNV as a pathogen in Norwegian 

aquaculture, with emphasis on Atlantic salmon Salmo salar and Atlantic cod Gadus morhua. 

The main conclusions could be summarized as follows: 

 

Susceptibility of Atlantic salmon to NNV 

Atlantic salmon should be regarded as a potential susceptible host, and caution should be 

taken to avoid increasing any risks of NNV infection in salmon farming. Salmon farms should 

not be located in close proximity of farmed fish species known to be susceptible, such as 

Atlantic halibut Hippoglossus hippoglossus or Atlantic cod. 

 

Horizontal transmission of NNV to Atlantic salmon and Atlantic cod 

An Atlantic halibut originating NNV isolate was capable to replicate in intraperitoneally (i.p.) 

injected Atlantic cod, and this isolate was also successfully transferred horizontally to cod. It 

is likely that NNV could be transported between halibut and cod (both farmed and wild) and 

most likely vice versa. Halibut and cod farms should not be located in close proximity of each 

other in order to reduce the risk of horizontal transmission of NNV.  

 

Screening of brood fish of Atlantic cod 

The results from i.p. challenged cod suggest that head-kidney is the best organ suited for non-

lethal biopsy. Screening of candidates should be performed in fish expected to be 

immunosuppressed by sexual maturation or sub-optimal rearing conditions (stress) to increase 

likelihood of detecting NNV.  

 

Prophylaxis and control of NNV 

This thesis suggests, based on the experiments conducted and scientific literature studied, that 

the following prophylactic measures should be considered in farming of marine fish species to 

control NNV, by reducing the risk of vertical and horizontal transmission of the virus: 

 

1. Fish should be screened prior to introduction as brood fish in order to reduce the 

likelihood of bringing the virus into aquaculture. This is particularly important when using 

wild-caught brood fish of marine fish species such as cod (and halibut).   
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2. Brood fish should be kept in a closed aquaculture system in order to avoid exposure to 

waterborne NNV (horizontal transmission). Screening of brood fish should be performed 

during sexual maturation or spawning (state of immunosuppression). This timing would 

maximize the likelihood of detection of virus.   

3. Juveniles should be placed in closed sheltered aquaculture systems, in order to reduce the 

risk of horizontal transmission of NNV, and kept until size is favourable for vaccination 

against NNV. Vaccinated fish could be transported to open systems such as cage-based 

marine farming sites.  

4. A vaccination strategy should be developed both for cod and halibut. Vaccination of 

brood fish should be done to reduce the likelihood of any viral replication during 

maturation and spawning. Young fish should be vaccinated prior to transportation from a 

sheltered aquaculture system to an open marine on-growth site where exposure to NNV 

and subsequent possibility of horizontal transmission may occur. 

 

5.2 Future research 
By addressing NNV as a pathogen in farming of fish, it has become clear that there is a lack 

of information in several areas related to the pathogen-host interaction. One question which 

tends to pop up when discussing the potential of spreading pathogens in farmed populations 

of fish is virulence, usually followed by discussions of the possible existence of virulence 

variation or inducement of increasingly higher virulence of the pathogen. One example of 

suggested variation of virulence in a fish pathogenic virus is infectious pancreatic necrosis 

virus (IPNV) (Birnaviridae), where virulence has experimentally been linked to a small motif 

at the VP2 encoding gene (Santi et al. 2004). In this study only 4 amino acid positions at the 

VP2 gene were associated with virulence of IPNV in experimentally challenged fish. The 

virus has a double-stranded RNA genome, with both horizontal and vertical transmission 

modes. Potential existence of variation of virulence in NNV may also be speculated, 

particularly as NNV has similar genetic properties (RNA genome) and transmission modes. 

However, there is little information on virulence or variations in virulence of NNV isolates, 

other than anecdotic observations mostly related to mortality rates and possible host 

specificity (see section 1.2.1 and 1.3.1). But, as any change in virulence would affect the 

dynamics of a viral infection, some considerations should be addressed and relevance to NNV 

discussed. 

 A key question would be if NNV has the ability to show variations in virulence, and in 

particular to shift (selection) towards higher virulence and consequently induce development 
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of disease and mortality. A theoretical approach to this would be to examine how evolution of 

virulence may occur. First, virulence may be defined as the pathogens ability to cause disease 

or pathogen induced host-mortality, and could i.e. be linked to the ability to invade, survive 

and replicate in the host. As viruses are depending on the host for replication (as an obligate 

parasite), there is a close interaction between the virus and the host. Traditionally the view of 

how the dynamics between the pathogen and host has emerged is as a result of evolutionary 

equilibria, with a theoretical approach to reach optimality (André and Hochberg 2005). Along 

this co-evolutionary trajectory it is assumed that there is a fine interplay between 

transmission, virulence and the cost of host resistance. However, this is probably an over-

simplified view, as this predicts that avirulence would be of best interest of both host and 

pathogen in the long run if virulence is unconnected and independent (May 1995). The 

interaction is intuitively more complex, and examination of possible roles of pathogen 

transmission and host resistance may be useful in order to predict the effect on virulence. In 

the case of NNV, this is unfortunately a bit abstract due to lack of information, but some 

general ideas could be suggested. 

 The effect of transmission mode could be exemplified with the hypothesized conflict 

in selective pressures between horizontal and vertical transmission (Ewald 1994). Generally, 

horizontal transmission relies on high numbers of pathogens to be released to infect new 

hosts, which tend to favour high virulence as the pathogen induce increased host exploration. 

This will increase transmissibility of the pathogen by higher rate of transmission. In contrast, 

vertical transmission requires a reproducing host with subsequent transfer of pathogen to the 

offspring. In this case high virulence would reduce the number of hosts (including offspring) 

by pathogen-induced mortality, and consequently reduce the numbers of both pathogens and 

hosts. Vertical transmission tends, in this scenario, to favour low virulence, but a too low 

virulence may result in lost opportunity to infect new hosts. Summarized, the virulence of a 

pathogen could be looked upon as a result of the pathogen-host interaction, with evolutionary 

trade-offs between horizontal and vertical transmission (Chen et al. 2006). However, this 

hypothesis of importance of transmission modes and evolution of virulence has been criticised 

to be based on verbal arguments and is difficult to evaluate (Day 2001).  

 The host’s ability to resist or recover from an infection may be viewed as an important 

part of the pathogen-host interaction, and is linked to the host immune system (Anderson and 

May 1982). This could consequently be regarded as influencing the virulence of a pathogen, 

where it could be predicted that virulence is increasing if the recovery rate of the host is 

increasing (van Baalen 1998). The argument is that the benefit of low virulence (persistency) 
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is reduced with increased risk of immune clearance. However, the clearance may also result 

from properties of the host immune system and pathogen itself (Restif and Koella 2003). This 

could be exemplified with the interpretation of Anderson and May (1982) on myxoma virus 

(affecting rabbits), where field isolates of the virus were tested for clearance in rabbit (Fenner 

and Ratcliffe 1965). There was variation of clearance between different field isolates with a 

negative correlation with virulence. The most virulent viruses, in this study, showed better 

resistance to immunity. Different isolates of a pathogen, i.e. NNV, could consequently have 

different fates in the host. Again it is difficult to evaluate such interactions, at least as a 

universal assumption of the interplay of pathogen and host immune system, since there could 

be great heterogenicity among both pathogens and hosts. Further, the host immune system is 

likely to show variations due to physiological constraints, i.e. stress response resulting in 

immunosuppression. This probably affects both susceptibility and immunity of the host and 

adds further complexity. In conclusion, determination of possible variation of virulence is 

consequently one interesting field of research of NNV. 

Understanding the apparent complex interplay between NNV and the host requires a 

lot of research, ranging from molecular to evolutionary approaches. Based on the results and 

conclusions in this thesis, there are at least some obvious fields of research which should be 

addressed in order to prevent the pathogen from becoming a problem in fish farming. These 

comprise a determination of the real distribution of NNV in wild populations of fish, possible 

NNV vectors, examining host and virus specific factors regulating transmission, determining 

vertical transmission of cold-water NNV isolates, identification of virulence factors in NNV 

and development of vaccines. Addressing these fields requires a multi-disciplinary approach. 

Several different scientific approaches may contribute to the understanding of NNV as a 

pathogen. 

Finally, it might be wise to remember the words of Theodosius Dobzhansky when 

aiming to understand the inner secrets of NNV: Nothing in biology makes sense except in the 

light of evolution. 
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