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Abstract 

Abstract 
Influenza is a highly contagious respiratory disease which infects millions of people every 

year around the world. Influenza viruses undergo continuous antigen change and annual 

vaccination is an effective prophylactic measurer to combat the disease and to reduce 

morbidity and mortality. Recently, viruses of avian (and swine) origin have crossed the 

species barrier and caused infection in man, thus highlighting the need of vaccines that 

induce a strong and rapid immune response in a naïve population. Inactivated intranasally 

administered vaccines are not currently licensed, but would provide an attractive 

alternative to conventional intramuscular vaccination as they have the advantage of being 

non-invasive, easily administered and also induces a mucosal immune response.  

 
Studies have shown that vaccines containing avian subtypes are poorly immunogenic and 

have lead to a re-evaluation of the use of whole virus vaccines which are more 

immunogenic than standard subunit vaccines and can be dose sparing. In the current study 

we have investigated the immune response after one or two doses of intramuscular or 

intranasal inactivated influenza H5N1 vaccine in BALB/c mice using whole virus vaccine 

containing 7.5 µg HA. Serum samples were analyzed using ELISA and HI assay, whereas 

lymphocytes from spleens and bone marrows were used to measure the number of 

antibody secreting cells (ASC) using ELISPOT. Splenic lymphocytes were stimulated in 

vitro and cytokine profiles were measured by multiplex bead assay. Additionally, we also 

measured local IgA from nasal washings by ELISA. 

 

The intramuscular vaccine route induced a strong, long lasting humoral immune response 

and was characterized by a Th-1 cytokine profile after one vaccine dose, and a more mixed 

Th-1/Th-2 profile after two doses. In contrast, the intranasal vaccine route induced a strong 

local immune response after two vaccine doses and a good humoral immune response as 

well. This group showed a dominant a Th-2 profile, but also secreted cytokines associated 

with a Th-1 profile (IFN-γ and IL-2) and high levels of IL-17 (Th-17). Although both 

vaccine routes induced high levels of serum and HI antibody, the intranasally delivered 

vaccine also induced local IgA which provides the first line of defence against respiratory 

diseases. In addition, it would be suitable for use in developing countries as it is needle-

free and easy to administer. We therefore suggest that an intranasally administered whole 

virus vaccine would be a good candidate for further investigation of a pandemic H5N1 

candidate vaccine.  

IV 



Contents  

Contents 
 

1 INTRODUCTION ................................................................................................................................. 1 
1.1 THE INFLUENZA VIRUS .................................................................................................................... 1 

1.1.1 Taxonomy, structure and nomenclature .................................................................................... 1 
1.1.2 Replication cycle........................................................................................................................ 2 

1.2 EPIDEMIOLOGY ............................................................................................................................... 4 
1.2.1 Antigenic drift and antigenic shift ............................................................................................. 4 
1.2.2 Influenza A and ecology ............................................................................................................ 5 
1.2.3 Clinical features of influenza..................................................................................................... 6 
1.2.4 Human infection with H5N1 viruses.......................................................................................... 6 

1.3 PROPHYLAXIS AND THERAPY .......................................................................................................... 7 
1.3.1 Vaccines..................................................................................................................................... 7 
1.3.2 Propagation of virus for vaccine production............................................................................. 7 
1.3.3 Inactivated influenza vaccines................................................................................................... 8 
1.3.4 Immunological adjuvants .......................................................................................................... 9 
1.3.5 Antiviral drugs........................................................................................................................... 9 

1.4 THE IMMUNE RESPONSE TO INFLUENZA......................................................................................... 10 
1.4.1 Innate immunity ....................................................................................................................... 10 
1.4.2 Adaptive immunity ................................................................................................................... 11 

1.5 AIMS OF THE STUDY ...................................................................................................................... 16 
2 MATERIALS ....................................................................................................................................... 17 

2.1 MICE ............................................................................................................................................. 17 
2.2 VACCINES, VIRUSES AND ANAESTHETICS ...................................................................................... 17 
2.3 BLOOD .......................................................................................................................................... 17 
2.4 ANTIBODIES .................................................................................................................................. 18 
2.5 REAGENTS AND CHEMICALS.......................................................................................................... 18 
2.6 KITS .............................................................................................................................................. 19 
2.7 PLATES/EQUIPMENT ...................................................................................................................... 20 
2.8 INSTRUMENTS ............................................................................................................................... 20 
2.9 SOFTWARE .................................................................................................................................... 20 
2.10 SOLUTIONS, BUFFERS, MEDIUM ..................................................................................................... 21 
2.11 CONSUMABLES.............................................................................................................................. 22 

3 METHODS........................................................................................................................................... 24 
3.1 EXPERIMENTAL PROTOCOL ........................................................................................................... 24 

3.1.1 Mice ......................................................................................................................................... 24 
3.1.2 Vaccine .................................................................................................................................... 25 
3.1.3 Intramuscular and intranasal immunization of mice............................................................... 25 
3.1.4 Collection of peripheral blood................................................................................................. 25 
3.1.5 Collection of nasal wash samples............................................................................................ 26 
3.1.6 Collection of cardiac blood and tissue .................................................................................... 26 
3.1.7 Separation of sera.................................................................................................................... 26 

3.2 IMMUNOLOGICAL ASSAYS ............................................................................................................. 27 
3.2.1 Isolation of lymphocytes .......................................................................................................... 27 
3.2.2 Antibody ELISA ....................................................................................................................... 28 
3.2.3 Antibody ELISPOT .................................................................................................................. 29 
3.2.4 Haemagglutination Inhibition Assay (HI-assay) ..................................................................... 29 
3.2.5 In vitro activation of lymphocytes............................................................................................ 30 
3.2.6 Multiplex bead assay ............................................................................................................... 31 

3.3 STATISTICAL ANALYSIS................................................................................................................. 31 
4 RESULTS ............................................................................................................................................. 33 

4.1 THE HUMORAL IMMUNE RESPONSE INDUCED AFTER VACCINATION............................................... 33 
4.1.1 Two doses of whole inactivated virus vaccine induced high antibody titres ........................... 34 
4.1.2 Two doses of intramuscular vaccine induced high serum IgG levels ...................................... 35 

V 



Contents 

4.1.3 Analysis of the serum IgG subclass response after vaccination .............................................. 38 
4.1.4 The subclass distribution after vaccination ............................................................................. 40 
4.1.5 Two intranasal vaccinations induce high mucosal IgA levels in the nasal cavity ................... 41 
4.1.6 The influenza specific antibody secreting cell (ASC) response elicited in the spleen.............. 42 
4.1.7 The influenza specific antibody secreting cell (ASC) response elicited in the bone marrow... 45 

4.2 THE CYTOKINE RESPONSE FROM IN VITRO ACTIVATED SPLENOCYTES ............................................ 47 
5 DISCUSSION....................................................................................................................................... 51 

5.1 THE HUMORAL IMMUNE RESPONSE AFTER INTRAMUSCULAR OR INTRANASAL VACCINATION ....... 52 
5.1.1 Both intramuscular and intranasal vaccination effectively induced haemagglutination 
inhibition antibodies in serum................................................................................................................ 52 
5.1.2 Intramuscular vaccination induces high serum IgG antibody responses ................................ 54 
5.1.3 Antibody secreting cells in the spleen and bone marrow......................................................... 54 
5.1.4 Intranasal vaccination induces significantly higher serum IgA concentrations than 
intramuscular vaccination ..................................................................................................................... 55 
5.1.5 Intranasal vaccination induced a local IgA response after two vaccine doses ....................... 55 

5.2 CYTOKINE RESPONSES AND IGG SUBCLASSES ............................................................................... 57 
5.3 CONCLUSION................................................................................................................................. 59 
5.4 FURTHER STUDIES ......................................................................................................................... 60 

6 REFERENCES..................................................................................................................................... 61 
 

 

 

 

 

 

 VI



1. Introduction 

1 Introduction  
 

1.1 The influenza virus 

Influenza remains one of the most common respiratory diseases in humans causing almost 

annual outbreaks. The viruses originate and circulate in east and Southeast Asia, and 

spread to Oceania, North America and Europe and finally to South America1. Influenza 

epidemics have been recorded since the 16th century2, and it is still a phenomenon 

occurring during late autumn and winter in temperate climatic zones (e.g. Norway). 

Occasionally, at unpredictable intervals, pandemics occur and lead to high numbers of 

deaths round the world. The changing nature of influenza viruses and recently reported 

cases of viruses crossing the species barrier (e.g. H5N1, H7N7 and H1N1) has led to 

intensive research to develop new pandemic vaccines.   

 

1.1.1 Taxonomy, structure and nomenclature  
The influenza A virus is pleomorphic, either spherical or filamentous, ranging in diameter 

from 80-120 nm. It is an enveloped virus belonging to the family Orthomyxoviridae and is 

characterized by a negative-stranded RNA segmented genome. There are three known 

types of influenza viruses, Influenza A, B and C, which are characterized by antigenic 

differences in the two major structural proteins, the matrix protein (M) and the 

nucleoprotein (NP)3. Nucleoproteins encapsulate the genome’s eight segments forming a 

ribonucleoprotein structure (RNP). These segments each code for one or two proteins, 

including the two important surface glycoproteins, Haemagglutinin (HA) and 

Neuraminidase (NA), which protrude as spikes from the viral envelope (Fig. 1.1). The 

function of HA is binding to the host cell and then enable fusion between the host cell 

endosomal membrane and viral membrane allowing release of viral nucleocapsids into 

cytoplasm of the host cell. HA is the host’s main target antigen to which the protective 

antibody response is directed, and is the most abundant protein on the virus surface. The 

NA contributes to the release of newly produced virions by enzymatic cleavage of sialic 

acids. Additionally, NA has also been shown to play a key role in early infection probably 

by removal of decoy receptors which could inhibit virus binding to functional receptors4.  
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1. Introduction 

The different influenza A viruses can generally be separated by the subtype of the surface 

proteins, where 16 subtypes of HA and 9 subtypes NA have been identified. As for the 

influenza types B and C, humans are the main host, whereas influenza A virus is known to 

have several animal hosts, including pigs, horses and birds, in addition to humans.  

 

  

  
  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1.1. The structure of influenza virus. The illustration shows the virion with its two spike-like 

surface antigens HA (blue) and NA (red) and its segmented genome. The other viral proteins shown are; M1 

(matrix protein), M2 (ion channel protein), PB2, PB1 and PA (polymerase subunits), NP (nucleoprotein) and 

NS (non-structural protein). On the left; the ribonucleoprotein complex. The figure is kindly provided by 

Karl A. Brokstad. 

 

A standard nomenclature defined by the World Health Organization (WHO) is used to 

discriminate between the different types and strains of viruses. This naming for human 

isolates includes; type of virus, site of isolation, number of isolate and year of isolate, and 

for influenza A virus the subtype, e.g. A/Vietnam/1194/2004 (H5N1). If the virus is 

isolated from a species other than man, for instance a duck, this species will also be 

included (A/duck/Tuva/01/06 (H5N1)5.  

  

1.1.2 Replication cycle 
The haemagglutinin of the virion initiates infection by binding to sialic acid containing 

receptors on epithelial cells in the upper respiratory tract. The binding induces endocytosis 
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of the virus into endocytic vesicles and then endosomes. In the endosome, the low pH 

triggers a conformational change in the HA exposing a fusion peptide that results in fusion 

of the viral envelope with the endosomal membrane. The M2 protein modulates the pH by 

forming a proton channel in the viral envelope and pumps in H+ from the endosome into 

the virion. This results in uncoating and opening of a pore through which the viral RNPs 

are released into the cytoplasm and further transported to the nucleus. Unlike other (-) 

RNA viruses the influenza virus transcription and replication occurs in the nucleus of the 

host cell (Fig. 1.2).  

  
Figure 1.2. The replication cycle of influenza. 1) binding to host cell 2) uncoating and RNP release 3) 

transcription 4) translation on ribosomes 5) synthesis of new viral envelope proteins 6) assembly and budding 

of new progeny. See text for more details. The figure is modified from6. 
 

The mRNA is translated into new proteins in the cytoplasm and the gene segments 

produced in the nucleus associates with the nucleoproteins and are transported to the cell 

membrane. The HA and NA glycoproteins are modified in the endoplasmic reticulum (ER) 

and Golgi apparatus before transported to the cell surface. Finally, the proteins assemble, a 

new virus envelope is derived from the host cell membrane upon budding and new virions 

are released. An infection cycle lasts for approximately 8 hours.   
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1. Introduction 

1.2 Epidemiology 

1.2.1 Antigenic drift and antigenic shift  
The lack of proof-reading among RNA polymerases contributes to replication errors, 

mutations like substitutions, deletions and insertions. For that reason influenza viruses are 

continuously changing and they undergo two main antigenic variations, namely antigenic 

drift and shift. Antigenic drift is characterized by an accumulation of point mutations in the 

virion’s surface proteins HA and NA, and renders the host’s antibodies less effective in 

neutralizing the virus. This is the reason for recurrent epidemics and results in an annual 

update of the seasonal vaccines. Antigenic shift on the other hand, applies only to influenza 

A and occurs when the HA (and NA) segment is replaced with a novel HA segment to 

which man is immunological naïve. The segmented nature of the genome provides the 

influenza virus an opportunity to undergo antigenic reassortment. This phenomenon can 

lead to a new virus if a cell is doubly-infected by two different viruses and can give rise to 

a pandemic strain. 

 

Three pandemics occurred during the last century. The 1918-1919 “Spanish Flu” killed an 

estimated 20 to 50 million people worldwide, and was caused by a direct adaptation of a 

virus of avian origin (the H1N1 subtype) which transmitted efficiently in humans7. In 1957 

the H1N1 type was replaced by a new subtype H2N2, believed to have been created by an 

intermediate host (pig) infected with both avian and human influenza, and claimed 

approximately 1-2 million lives worldwide. The 1968 pandemic “Hong Kong Flu”, 

introduced a new shift to the H3N2 variant, which killed an estimated one million people 

worldwide. The WHO has now declared a new pandemic after a novel virus of the H1N1 

subtype, swine origin influenza A (H1N1) (“Swine Flu”) emerged in Mexico (March-April 

2009)8. This virus contain a combination of gene segments which that have not previously 

been found in any species (swine nor humans)9, and has up to date infected hundreds of 

thousands of people around the world.  

 

The first human infection with H5N1 subtype occurred in Japan in 199710, and this subtype 

has since then been considered a pandemic threat. Fortunately, only limited person-to-

person transmission has been seen11.  
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1.2.2 Influenza A and ecology 
Wild birds, particularly waterfowls and shorebirds are the main natural reservoir of all the 

influenza A viruses, and of the 16 subtypes of HA and 9 subtypes of NA known, all of 

them have been isolated from birds12. Only a few subtypes have established themselves in 

humans (HA [H1, H2 and H3] and NA [N1 and N2]), and other mammals such as pigs 

(HA [H1 and H3] and NA [N1 and N2]), horses (H3N8 and H7N7) and dogs (H3N8). 

However, there are in general strong barriers to interspecies transmission that prevent 

influenza virus adaptation to new hosts (reviewed in13). 

 

In wild birds influenza is not a respiratory virus, but a less harmful intestinal infection 

which usually doesn’t results in disease. Wild birds shed large quantities of virus in their 

faeces and if domesticated birds, including turkeys, ducks and chickens are infected, they 

may get seriously ill and die. Based on the severity of the disease they cause, the viruses 

infecting poultry can be divided in two groups. The most severe form is termed highly 

pathogenic avian influenza (HPAI), and has been recognized as a disease entity since 1878 

(then called fowl plaque)14. The two subtypes causing HPAI are H5 and H7. HPAI can be 

serious for farmers which suffer huge economical losses as the mortality rate often is close 

to 100 %, and the disease is extremely contagious. The other form, low pathogenic avian 

influenza (LPAI) is recognized by milder symptoms like ruffled feathers, mild respiratory 

disease and a drop in egg production (reviewed in 15). A big problem is that the virus can 

mutate from a LPAI form to a HPAI form, and thus cause serious outbreaks among 

poultry. These HPAI viruses can infect humans which are in close contact with infected 

poultry, for instance in countries like Indonesia, Vietnam and Egypt where the population 

lives in close proximity to their livestock.   

 

A major determinant of the molecular basis of virulence lies in the HA protein. During 

replication, the HA (HA0) is cleaved by the host’s proteases into HA1 and HA2 and this 

post-translational modification is essential for virus infectivity. LPAI only have one basic 

amino acid in the cleavage site16, and thus cleavage can only occur by definite hosts 

proteases found in the respiratory tract and intestine. In contrast, HPAI contains multiple 

basic amino acids which allow cleavage by a wide range of proteases in other tissues. In 

this way, replication of the virus can occur throughout the birds vital organs and tissues, 

and can lead to a rapid death (reviewed in 13,15).  
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1.2.3 Clinical features of influenza  
Annually, influenza causes a great number of deaths, 250 000 to 500 000 worldwide17 and 

approximately 1000 deaths in Norway18. All age groups are susceptible to infection. The 

disease has an average incubation time of 2 days (1-4 days), and is spread by aerosols 

produced upon sneezing and coughing. Symptoms are sudden onset of fever, runny nose, 

sore throat, headache, muscle pain (myalgia) and fatigue, and the illness lasts for 7-10 days 

with a normal recovery. A common complication is secondary bacterial pneumonia, which 

can be fatal for the elderly, immunodeficient and others with underlying chronic 

illnesses19.  

 

1.2.4 Human infection with H5N1 viruses 
The human influenza viruses have a tissue tropism for binding terminal sialic acid linked to 

galactose by α-2,6 linkages on host cell receptors. Avian viruses, on the other hand, 

preferentially recognize α-2,3 linkages20 which is common in avian gut tissue. These 

viruses were thought to have little affinity for human respiratory tissues21 and therefore 

replication was restricted22, however it has later been found that H5N1 viruses bind 

strongly to cells in the lower respiratory tract in humans23. Receptors for both avian and 

human influenza viruses are present in porcine epithelium and pigs have for that reason 

been considered a “mixing vessel” for reassortment of new viruses (reviewed in13). HPAI 

H5N1 virus transmission occurs directly from birds to humans, without an intermediate 

host.  

 

The incubation time after exposure to sick poultry seems to be longer than for seasonal 

influenza and up to 8 days have been reported (average 2-5 days). Common symptoms are 

fever, diarrhoea, cough and shortness of breath, and pneumonia that generally appears to 

be of primary viral origin (reviewed in 13, 24). This is usually complicated with acute 

respiratory distress syndrome, and in severe cases multiorgan failure. As in poultry, the 

virus may spread to tissues outside of the respiratory tract (e.g. lymph nodes and liver). 

Another feature is cytokine dysregulation, an intense inflammatory reaction to the high 

amounts of virus25. So far 436 persons have been infected and 262 persons died from 

H5N1 infection (July 2009)26  
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1.3 Prophylaxis and therapy 

1.3.1 Vaccines  
Vaccination is the most effective way of preventing influenza infection and to reduce 

morbidity and mortality. Every year nearly 300 million doses of influenza vaccine are 

produced intended for world wide immunization27. The vaccine is recommended for 

groups at high-risk of complications; individuals ≥ 65 years, small children, health care 

workers and persons with chronic medical conditions17. The disease has a large economic 

impact on society, due to hospitalization, visits to medical practisers and absenteeism. 

Vaccination is important for herd immunity as it hinders efficient spread of infection. The 

vaccine is 70-90 % effective in preventing illness amongst healthy adults, and reduces 

illness and complications by up to 60 % in elderly persons17. But most importantly, it 

reduces influenza associated deaths by 80 %17. 

Due to antigenic drift, immunity to seasonal influenza is not long lasting and the vaccines 

require annual updates. The seasonal influenza A H1N1 and H3N2 are the two subtypes 

currently circulating in the human population, and the trivalent seasonal vaccines therefore 

includes one strain from each of these two subtypes, in addition to influenza B. Both 

influenza A and B can give rise to epidemics, whereas type C only has a low pathogenicity 

in humans and is not included in the vaccine. The composition of the vaccine candidates is 

recommended by the WHO annually, based on scientific consensus. The WHO has a 

global influenza surveillance network where currently 128 national influenza centres are 

active 28, to allow for rapid vaccine strain selection. 

 

1.3.2 Propagation of virus for vaccine production  
Currently, the production of commercial vaccines occurs almost extensively in 

embryonated hens’ eggs. The majority of all influenza strains will to some extent replicate 

in eggs and the enclosed environment does not require any aseptic conditions29. However, 

there have been problems with growing the H5N1 virus because of its virulence resulting 

in killing the embryo. The use of reverse-genetics technology has overcome this problem 

by engineering the original HA (without the basic amino acids at the cleavage site) and NA 

onto a standard influenza A vaccine strain30. A strain called PR8 (A/Puerto Rico/8/34 

(H1N1)) has been used as a donor strain for the last decades to prepare “high-growth” 

influenza A reassortants for egg-based vaccine production3. In addition, vaccines produced 

by using mammalian cell lines (MDCK and Vero cells) have been licensed3, and also the 
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use of plant cells are being investigated31. This could alter the dependence on eggs, and 

allow for rapid large scale production in case of a pandemic. Furthermore, people with egg 

allergies would benefit from for instance cell culture-grown vaccines, as they are not 

recommended for immunization with egg-grown vaccines3. 

 

1.3.3 Inactivated influenza vaccines 
Inactivated influenza vaccines account for more than 90 % of the world’s vaccine market32. 

The vaccines are made from purified egg grown virus and there are three main 

formulations; whole virus, split virus (also called subviron) and subunit (SU) vaccines 

(Fig. 1.3). Influenza viruses are normally inoculated into the allantonic cavity of the egg, 

and the allantonic fluid containing viruses is harvested29. First, the virions are concentrated 

by centrifugation and inactivated by formalin or β-propiolactone. In the whole virus 

vaccine formulation the viral particle is kept intact including the surface proteins and RNA 

segments. The split virus vaccine is prepared by disrupting the viral lipid envelope with 

detergents (e.g. Triton-X or deoxycholate), and the formulation contains all parts of the 

virus, although some proteins are removed to some extent. The third formulation, the 

subunit vaccine, is further purified and contains only highly purified surface antigens, 

haemagglutinin and neuraminidase3.      

 

 
Figure 1.3. Influenza vaccine formulations. The figure depicts four different vaccine formulations; whole 

virus, sub unit subunit and live attenuated influenza vaccine (licensed for human use in the US and Russia, 

and are administered intranasally as a spray. The containing viruses are adapted to growth at low 

temperatures (25 ºC), and replicates poorly at higher temperatures (39 ºC)33). From reference 34.  

  

The whole virus vaccine is highly immunogenic and is still used in some countries, but 

most vaccines produced after the 1970’s have been split or subunit, because of increased 

reactogenicity observed using whole virus35. Split and SU vaccines are still immunogenic, 

and the dissolution of the viral envelope and removal of additional viral components are 
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associated with reduced reactogenicity3. Common local side reactions after vaccination are 

pain at the injection site, acute inflammatory reactions, erythema and induration. Systemic 

reactions such as fever, myalgia and headache may occur, but are much less frequent than 

local reactions, and have in recent trials not been commonly observed3. It is important that 

the vaccine induces minimal of side effects since the target groups often already have 

underlying medical conditions. Moreover, less side reactions makes vaccination more 

attractive.  

 

1.3.4 Immunological adjuvants 
Vaccines containing novel influenza subtypes have been shown to be weakly 

immunogenic36, and to obtain the best possible immune response after vaccination most 

candidate pandemic vaccines have required immuno-stimulating substances called 

adjuvants. Adjuvants are intended to enhance the immune response to the vaccine antigens 

by stimulating receptors of the innate immune system; pathogen associated molecular 

patterns (PAMPS) and toll-like receptors, or enhance the action of dendritic cells 

(described below)37.  

 

The aluminium salts and the MF-59 (oil-in-water microfluidized emulsion) adjuvants are 

frequently used to enhance the immune response of pandemic candidate vaccines 

administered parenterally38(reviewed in39). The use of adjuvants can be dose-sparing, as 

lower antigen doses are needed to elicit a satisfying result. Mucosal adjuvants like E.coli 

labile-toxin are used in many studies, but are not licensed for human use due to side 

effects40. However, other bacteria-derived promising mucosal adjuvants are currently 

tested out41, 42. 

 

1.3.5 Antiviral drugs 
There are two classes of antiviral drugs approved for human use, the adamantanes and the 

neuraminidase inhibitors. Only the latter is licensed in Norway. The adamantanes, 

Amantadine and Rimantadine are effective against for influenza A virus and their main 

target is the transmembrane domain of the M2 ion-channel protein. This treatment will 

prevent uncoating and release of RNPs. However, a widespread resistance to these drugs 

among influenza viruses is seen and they are currently not recommended in the US3. The 

main target of the NA inhibitors Zanamivir (Relenza) and Oseltamivir (Tamiflu) is the 
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active enzymatic site of neuraminidase. Treatment with NA inhibitors will cause 

aggregation of viruses at the cell surface and prevent effective release of new virus. The 

two drugs have activity against both influenza A and B3. Oseltamivir resistance is 

widespread among circulating seasonal influenza A (H1N1)43,44, and also some strains of 

H5N1 have shown resistance45.   

 

1.4 The immune response to influenza  

The immune system is a highly complex system of different cells and molecules that 

protects the body from invading pathogens. It can be differentiated into two arms, innate 

(natural) immunity and adaptive (specific/acquired) immunity, where a fundamental 

difference between the two is immunological memory upon re-encounter with a pathogen. 

Whereas the innate immune system deals with all intruders in the same way and lacks 

specific memory, the adaptive immune system can recognize and generate memory, and 

thus act rapidly upon re-encountering with the same pathogen. These two arms act closely 

together and innate immunity may keep the infection in check before adaptive immune 

responses are developed.  

 

1.4.1 Innate immunity 
The innate immune system provides the initial defence against a pathogen and consists of 

cellular and biochemical defence mechanisms. Its components include the skin, mucosal 

epithelia and antimicrobial chemicals such as defensins and cathelicidins. Since influenza 

is a respiratory virus and enters through the respiratory tract, mucosal immunity is 

important in preventing infection.  

 

The cells of the innate system, macrophages and neutrophils, phagocytize and kill 

microbes along with natural killer (NK) cells which induce lysis of virus infected cells. 

The two former cells, in addition to endothelial and dendritic cells (DCs), express pattern 

recognition receptors (PRRs) which are specific for structures shared by groups of 

microbes identified as PAMPs (pathogen-associated molecular patterns). Interaction with 

microbial products can transmit signals that lead to activation and transcription of cytokine 

genes. An example is toll-like receptor 7, which is activated by influenza ssRNA and 

participates in viral clearance by inducing secretion of type 1 interferons (IFNs) by 
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plasmacytoid DCs46. Fever is also a part of the innate systems defence, and is induced by 

Interleukin-1 (IL-1), IL-6 and tumour necrosis factor-α (TNF-α) secreted by macrophages. 

In addition, these cytokines also activates NK-cells (reviewed in 47). 

 

Communication between the innate and adaptive system is carried out by professional 

antigen presenting cells (APCs). Immature DCs which reside in most peripheral tissue are 

considered the most potent antigen presenting cells. Here, they capture foreign products 

and travel to lymph nodes where they present antigens to naïve T lymphocytes.   

 

1.4.2 Adaptive immunity 
The main components of the adaptive immune system are the lymphocytes and their 

secreted products; antibodies and cytokines. The adaptive immune system can be divided 

into a humoral arm which involves B-cells and antibody production and a cell-mediated 

arm where T-cells kill infected cells or stimulate other cells by production of cytokines 

(Fig. 1.4). 

 

1.4.2.1 Cell mediated immune responses 
Precursor T-cells migrate from the bone marrow to the thymus and mature in the absence 

of antigens. Thereafter, naïve T-cells continuously re-circulate to the lymph nodes, 

searching for antigens fitting their unique T-cell receptor (TCR). Cell mediated responses 

are performed by two types of T-cells, CD8+ and CD4+ cells. Antigens taken up by DCs 

(APCs) are processed and presented on the cell surface by MHC molecules. CD4+T-cells 

recognize peptides on MHC class II (described below), whereas CD8+T-cells recognize 

and bind to MHC class I molecules. Upon this binding the CD8+T-cells become activated 

leading to differentiation into cytotoxic T lymphocytes (CTL), clonal expansion and 

migration to the site of infection. CTLs are essential in the clearance of primary viral 

infection, and appears early in the immune response. Infected cells are destroyed by the 

release of cytolytic perforin and granzyme B from granules in CTL, or through Fas-FasL 

interactions leading to cell lysis and apoptosis (Fig. 1.4) (reviewed in47, 48). Furthermore, 

the CTL response to influenza A is broadly cross-reactive between virus strains because 

the NP and M proteins are conserved between strains and is important in the recovery from 

primary infections49, and influenza pneumonia50.  

 

 11



1. Introduction 

 
Figure 1.4. An illustration of the adaptive immune responses induced following an infection or 

vaccination. The three different T-helper subsets of CD4+ cells are shown (Th1/Th2 dichotomy and Th-

17). Details are described in the text. The abbreviations used: Ag: antigen, DC: dendritic cell MHC: major 

histocompatibility complex, CD: cytoplasmic domain, Tc: cytotoxic t-cell, TCR: t-cell receptor, IL: 

interleukin, IFN: interferon, TGF: transforming growth factor, CTL: cytotoxic t-lymphocyte, ADCC: 

antibody-dependent cell-mediated cytotoxicity, APC: antigen presenting cell, Th: t-helper, Thp: t-helper cell 

precursor, R: receptor, Ig: immunoglobulin. The figure is kindly provided by Abdullah Madhun. 

 

1.4.2.2 T-helper cells and cytokines  
Helper T-cells (CD4+) play a central role in the regulation of the different components of 

the immune response. Following contact with DCs the T-cells differentiate into 

functionally distinctive subsets of effector T-helper cells (Th). Particular cytokines 

secreted by the DC influences this decision, for instance IL-12 stimulates a Th-1 profile 

(Fig. 1.4). Th-1 cells mainly secrete IFN-γ, IL-2 and TNF-β. On the other hand, DC-

derived IL-4 promotes the development of the Th-2 subset which secrete IL-4, IL-5, IL-6, 

IL-10 and IL-1351. Some T-cells become regulatory T-cells, whose functions are 

maintaining peripheral self-tolerance and immune suppression (reviewed in52). The Th-

1/Th-2 dichotomy was described in 1986 by Mosmann and colleagues51. The two subsets 
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are mutually inhibitory; IFN-γ secreted by Th-1 cells suppresses Th-2 proliferation and IL-

4 secreted by Th-2 cells suppresses proliferation of Th-1 cells53, 54 (Fig. 1.4). In mice, a Th-

1 profile enhances a cytotoxic immune response and production of IgG2a antibodies, 

whereas to a Th-2 profile stimulates B-cells and production of antigen specific IgG1, IgA 

and IgM antibodies.  

Some years ago, a third subset of CD4+ T-cells producing IL-17 was described, termed T-

helper-17. Th-17 cells develop in response to IL-6 and TGF-β (in mice) and secrete IL-17, 

which stimulates neutrophils and phagocytosis of extracellular pathogens (Fig. 1.4). 

However, the Th-17 subset may also promote tissue inflammation and autoimmunity 55, 56.  

 

1.4.2.3 The humoral immune response  
B-cells are produced in the bone marrow (BM) and after maturation they circulate and 

reside mainly in secondary lymphoid tissues such as spleen, lymph nodes and mucosa-

associated lymphoid tissue (MALT). After encounter with an antigen, and additional help 

from Th-cells, they differentiate into effector B-cells which secrete antigen-specific 

antibodies (plasma cells), or memory B-cells. Some of these cells are long-lived plasma 

cells which after a viral infection migrate to the BM and secrete antibodies over long 

periods of time57. 

 

There are five classes of antibodies; IgM, IgD IgG, IgA, and IgE, which are small 

glycoproteins composed of two heavy chains and two smaller light chains, which exist as 

monomers, dimers and pentamers. This structure enables for instance IgM, which is a 

pentamer, to bind five antigens at the same time. Mature B-cells co-express membrane 

bound IgD and IgM on their surface, and IgM are the first to appear in a primary immune 

response to an infection (Fig. 1.5).  At later stage of the immune response, they undergo a 

process called affinity maturation, where the B-cell clones with the highest affinity for the 

antigen are selected and antibody class switching from IgM to IgG, IgA or IgE. Class 

switching by somatic hypermutation is controlled by cytokines secreted by Th-cells, and 

occurs in germinal centres (areas in e.g. spleen) (reviewed in58). IgG dominates in serum, 

whilst IgA is the dominant antibody class in mucosal epithelia (described below). IgE is an 

important mediator in hypersensitivity reactions such as allergy. The role of IgD is more 

unclear. Antibodies have three major functions; they neutralize antigen, coat microbes 

(opsonization) and target them for phagocytosis by macrophages and neutrophils. 
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Moreover, they activate complement proteins which also enhance phagocytosis. Antibody-

dependent cell-mediated cytotoxicity (ADCC) is also induced by antibodies (IgG2a in 

mice) (Fig. 1.4) where NK-cells are targeted to infected Ig-coated cells for lysis.  

 

In mice there are four subclasses of IgG; IgG1, IgG2a, IgG2b and IgG3. IgG1 can be used 

as a Th-2 marker, and is associated with a predominant humoral response. IgG2a, in 

contrast, can be used as a Th-1 marker and is associated with a cellular response (ADCC 

and CD8+ T-cell cytotoxicity). After vaccination the concentration of IgG2a correlates with 

clearance of virus and an increased protection against infection, whereas IgG1 more 

effectively neutralize virus59. Thus, both subclasses play an important role in combating an 

influenza infection.  

 

 

 
Figure 1.5. Primary and secondary 

immune responses after exposure 

to an antigen. The figure is from 

reference60. 

 

 

 

 

 

A second exposure to the same antigen induces a more rapid and vigorous secondary 

immune response (Fig. 1.5). The secondary response is very effective since memory cells 

quickly recognize the antigen. In addition, the response is long-lived and dominated by 

high-affinity serum antibodies, especially IgG. In influenza infection IgG transudes over 

the alveolar walls in the lungs, and may prevent illness and infection61. Therefore, an 

influenza vaccine should induce high levels of this antibody class.  

 

1.4.2.4 Mucosal immunity 
The first line of defence against influenza is the mucosa of the nasal cavity and the 

respiratory tract which is lined with ciliated epithelium and a layer of mucus. The nasal 

mucosa is particularly rich in dendritic cells. They receive exogenous antigens sampled at 
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the mucosal surface by specialized cells called microfold-cells (M-cells) (Fig. 1.6). In 

mice, the mucosal immune response is induced in the nasal-associated lymphoid tissue 

(NALT), which consists of paired lymphoid organs containing high numbers of T- and B-

cells62.  

 

 
Fig 1.6. Innate and adaptive mucosal defence mechanisms. The picture illustrates cells and molecules 

involved in the immune response after vaccination or infection. See text for details. The abbreviations used: 

IFN: interferon, Mф = macrophage, NK-cells: natural killer cells, DC: dendritic cell, S-IgA: secretory IgA, M 

cell: microfold cell. Details are described in the text. Adapted from Hasegawa et.al 2009 (reference63). 

 

Following activation of B-cells, IL-10 or TGF-β secreted by Th-cells induce them to 

become IgA secreting plasma cells (reviewed in 64). The secreted IgA reach the effector 

site by trans-epithelial transport. The dimeric IgA (D-IgA) binds to a polymeric IgA 

receptor localized on epithelial cells and is transported in a vesicle through the cell to the 

mucus lining the respiratory tract. At the surface the receptor is cleaved by specific 

proteases and IgA is released as secretory IgA (S-IgA) (reviewed in47,64). During this 

transport, the D-IgA can also bind and neutralize newly synthesized viral proteins in virus-

infected cells and thereby prevent spread of new progeny.  

 

S-IgA antibodies are highly effective in preventing infection in the upper respiratory tract. 

Here, S-IgA reduces viral shedding, effectively binds and neutralizes viruses, and also 
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protects against drifted influenza strains. Their action on the mucosal surface enables them 

to bind to and neutralize the virus even before it has infected an epithelial cell. As mucosal 

immunity plays such a major role in the defence against influenza infection, intranasal 

vaccines stimulating the immune system in the respiratory tract mucosa are an attractive 

candidate pandemic vaccine.  

 

1.5 Aims of the study 

 

The intramuscular or deep subcutaneous administration route is currently preferred for 

inactivated influenza vaccines3. In contrast, no inactivated intranasally administered 

vaccines are licensed, although this route is non-invasive and needle-free. Since 

conventional influenza vaccines are split and subunit vaccines, the use of whole inactivated 

virus vaccine (WIV) which is more immunogenic, is an interesting formulation for 

studying as a pandemic candidate vaccine.  

 

Influenza A H5N1 is considered a pandemic threat and many vaccine studies have been 

conducted to date. A recent study showed that WIV vaccine using a dose of 7.5 µg HA 

without adjuvant gave a satisfying immune response in man65. However, it was only tested 

parenterally.  

 

The aim of this thesis was thus to investigate the differences of the immunological profiles 

induced in mice after intramuscular and intranasal vaccination using the WIV vaccine 

formulation, an antigen dose of 7.5 µg HA and the pandemic influenza A H5N1 candidate 

vaccine.   
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2 Materials 
 

2.1 Mice  

 

Name          Supplier 

BALB/c – 6-8 weeks old, albino, female Taconic M&B A/S, 

Denmark 

 

2.2 Vaccines, viruses and anaesthetics 

 

NIBRG-14 Influenza whole virus H5N1 

(A/Vietnam/1194/2004) 1040150-0003. Beta-propiolactone 

inactivated virus concentrate (1078 µg HA/ml) (Coating 

antigen - ELISPOT, ELISA)  

  

Influenza H5 virosomal vaccine, NIBRG-14 

(Lymphocyte activation medium) 

               Archimedes Development 

Ltd. 

               Albert Einstein Centre,  

               United Kingdom 

 

               Crucell B.V. Holland 

 

Whole virus vaccine, 182.1 µg HA/mL 

(A/Vietnam/1194/2004), 

H5N1, NIBRG-14  (Vaccination, HI-assay) 

 

               Crucell B.V. Holland 

 

Anaesthetics:  
Rompun® Vet (Xylazine) (20 mg/ml)     Bayer, Germany 

Ketalar (Ketamine) (50 mg/ml)      Pfizer, USA  

Euthanasia:   
CO2-chamber         Scanbur A/S, Denmark 

 

2.3 Blood 

Turkey red blood cells (10 %) in PBS National Institute for Biological Standards 

and Control (NIBSC), United Kingdom 
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2.4 Antibodies  

Name     Catalogue number  Supplier 

 

Capture antibody (1 mg/mL):      SouthernBiotech, USA 

Goat anti-mouse IgA    1040-01 

Goat anti-mouse IgG    1030-01  

Goat anti-mouse IgG1    1070-01 

Goat anti-mouse IgG2a    1080-01 

Goat anti-mouse IgM    1020-01   

 

Immunoglobulin standards          

Mouse IgA (1 mg/mL)    M1421   Sigma, USA  

Mouse IgG (1 mg/mL)    15381   Sigma, USA 

Mouse IgG2a (1 mg/mL)   M9144   Sigma, USA 

Mouse IgG1 (0.5 mg/mL)   0102-14  SouthernBiotech, USA 

 

Biotinylated antibodies (Goat anti-mouse)       

SouthernBiotech, USA 

IgA (0.5mg/mL)      1040-08   

IgG (0.5mg/mL)     1030-08 

IgG1 (0.5 mg/mL)     1070-08 

IgG2a (0.5mg/mL)     1080-08 

IgM (0.5mg/mL)     1020-08  

 

2.5 Reagents and chemicals  

            

Name Cat. No Supplier 

 

AEC (9-amino 3-ethyl carbazole) (20 mg tablets)  

 

A-6926 

 

Sigma, USA 

Bovine Serum Albumin (BSA)   A-6793 Sigma, USA 

Citric acid monohydrate (C6H8O7·H2O) 1.00244 Merck, Germany 

Dimethylformamide (DMF) 10322  BHD AnalaR, England 

Di-sodium hydrogen phosphate anhydrous 

(Na2HPO4)  

1.06586 Merck, Germany  
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Extravidin Peroxidase (Extravidin PO) E-2886 Sigma, USA 

Counting beads: Negative Control (FBS) 

Compensation Particles Set 

552843 BD Biosciences, USA  

Foetal bovine serum (FBS) 14-701F BioWhittaker, Belgium  

Glacial acetic acid (C2H4O2)  1-06268 Merck, Germany 

Hepes buffer (1M) H0887  Sigma, USA 

Hydrogen peroxide, H2O2, 30 % H1009  Sigma USA 

Ionomycin 10634  Sigma, USA 

Lymphoprep ™   1114545 Axis-Shield PoC A/S, 

Norway  

Minimal Essential Medium (MEM) nonessential 

amino acids (100x) 

11140-035 GIBCO, UK  

Mercaptoetanol (2-ME) M-7522 Sigma, USA 

Newborn Calf Serum (NCS)  ECS0070L Euroclone, Italy  

Ortho-phenylediamine dihydrochloride (OPD, 10 

mg) 

P-8287 Sigma, USA 

Penicillin/Streptomycin/Fungizone (PSF) 17-745E BioWhittaker, Belgium 

Phorbol myristate acetate (PMA) P8139 Sigma, USA 

Potassium di-hydrogen phosphate (KH2PO4) 1.04847 Merck, Germany 

Receptor destroying enzyme (RDE) 340122 Denka Seiken CO, Japan 

RPMI (Roosewell Park Memorial Institute) 

medium 

21875-034 GIBCO, UK  

Sodium acetate trihydrate (CH3COONa) 1-06267 Merck, Germany 

Sodium chloride (NaCl) 1.06404 Merck, Germany 

Sodium pyruvate (100 mM) S8636  Sigma, USA 

Sulphuric acid 18.4 M (H2SO4) 112080 Merck, Germany 

Trypan blue stain (0.4 %) 17-942E BioWhittaker, Belgium 

Tween 20: Polyoxylene-Sorbitan monolaurate P-1379  Sigma, USA  

 

2.6 Kits 

Mouse Cytokine Grp I X-Plex Assay      Bio-Rad Laboratories, 

(Cytokine 6-plex - IL-2, IL-4, IL-5, IL-10, IL17, IFN-g)   USA 

Cat. No X6000006RJ     

Bio-plex Reagent Kit     (171-304000)    

Bio-plex Calibration Kit   (171-203060)    
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2.7 Plates/equipment 

Name 

Elisa plates, F-bottom    (655001)  Greiner, Germany 

Elispot - Multiscreen®, HA   (MAHA N45 50) Millipore, UK 

Multiplex - Multiscreen®, HTS™, BV  (MSBVN1250)  Millipore, UK 

HI – V96 MicroWell™ Plates   (249570)  Nunc Brand Products, DK  

Nunc Immuno™ Wash 12 Plate washer     Nunc Brand Products, DK 

Microvette® CB 300-  

System for capillary blood collection  (16.440.100)   Sarstedt, Germany  

            

2.8 Instruments 

Name                 Supplier     

Labsystems (Original) Multiscan MS Labsystems 

Immunoscan ™ Elispot reader C.T.L Europe GmbH, Germany 

Bio-Plex ™ 200 System Powered by Luminex XMAP ™ 

Technology 

Bio-Rad Laboratories, USA 

BD FACS Canto ™ Flow Cytometer (No.337175) BD Biosciences, USA 

Forma Scientific” bio-freezer Forma 8438 (-80°C) LabTrader 

Knf Lab Laboport vacuum pump Bio-Rad Laboratories, USA 

Heidolph Titramax 100 Vibrating platform shaker Heidolph Instruments, Germany 

 

Centrifuges: 

  

Heraeus Labofuge 400R – FunctionLine  Thermo Scientific 

Spectrafuge mini, 240V (no. C 1301) Labnet International, Inc. 

Eppendorf Centrifuge 5424, 230V (no. 0006928) Eppendorf International 

 

 

2.9 Software  

Ascent Software Version 2.6 (ELISA)     Labsystems 

Program BioPlex manager 5 (Multiplex)     Bio-Rad, USA 

ImmunoSpot 4.0 Academic and Immunoscan Professional (ELISPOT) C.T.L, Europe, 

Germany 
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2.10 Solutions, buffers, medium 

B-cell medium, 100 mL 

• 86 mL RPMI 1640 medium supplemented 

L-glutamine 

• 1 mL 0.1 mM nonessential aminoacids 

• 1 mL 10 mM Hepes pH 7.4 

• 1 mL 1mM sodium pyruvate 

• 1 mL PSF 

• 100 µL 5x10-5 M 2-ME 

• 10 mL heat-inactivated FBS 

 

10x Phosphate Buffered Saline (PBS) 1L 

• 85 g NaCl 

• 2.50 g KH2PO4 

• 6.85 g NaHPO4 

Add dH2O to a total volume of 1000 mL 

      pH should be 7.4 ± 0.2 

 

1x PBS/Tween 0.05% (5 L) 

• Dilute 0.5 L sterile 10x PBS in 4.5 L dH2O 

• Add 2.5 mL Tween 20 

 

PBS/NCS (20 %) 250 mL 

• 50 mL NCS (newborn calf serum) to 200 

mL sterile PBS 

 

PBS/FBS (5 %) 250 mL 

• 12.5 mL  FBS (foetal bovine serum) to 

237.5 mL sterile PBS 

 

 

PBS/BSA 0.14 % 

• 50 mL sterile PBS 

• 70 mg bovine serum albumin (BSA) 

Filter through a 0.2 µg filter 

Cell count mixture 

• 100 µL counting beads (concentration 

3.0x105/mL in 1 mL PBS/NCS/NaAcid)  

• 40 µL PBS/FBS 

• 10 µL Trypan blue  

• 50 µL cells from pre-dilution 

1M H2SO4 (1L) 

• 54.40 mL 18.4M sulphuric acid 

• 949.50 mL ddH2O 
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ELISA solutions 

 

Di-sodium hydrogen phosphate 0.2 M (1L) 

• 28.30 g di-sodium hydrogen phosphate 

(Na2HPO2) 0.2 M 

      Add ddH2O to 1000 mL 

 

Citric acid 0.1 M (1L) 

• 21.01 g citric acid monohydrate 

(C6H8O7H2O) 

      Add ddH2O to 1000 mL   

 

Phosphate citrate buffer (pH 5.0 – 1L) 

• 257 mL 0.2 M Na2HPO2 

• 243 mL 0.1 M C6H8O7·H2O 

 Add ddH2O to 1000 mL  

ELISPOT solutions 

 

Sodium acetate 0.2 M (1L) 

• 27.2 g sodium acetate trihydrate 

(CH3COONa) 

Add ddH2O to 1000 mL, autoclave at 121°C 

for 15 minutes 

 

Acetic acid 0.2 M (1L) 

• 11.55 mL glacial acetic acid (C2H4O2) 

Add ddH2O to 1000 mL, autoclave at 121°C 

for 15 minutes 

 

Acetate buffer 50 mM (pH 5.0) 1L 

• 176 mL CH3COONa 

• 74 mL C2H4O2 

• 750 mL ddH2O 

       Adjust pH to 5.0 ± 0.05  

OPD (Ortho-phenylediamine dihydrochloride)  

solution  

• Solve 10 mg OPD in 25 mL phosphate 

citrate buffer 

• Add 20 µL H2O2 immediately before 

adding to plate. Keep dark.  

AEC (9-amino 3-ethyl carbazole) solution 

• Solve 20 mg AEC in 2.5 mL DMF 

• Add 47.5 mL acetate buffer  

• Filter through a 0.45 µm filter and add 25 

µL 30 % H2O2 immediately before adding 

to plate. Keep dark. 

 

2.11 Consumables   

Needles, 23 G        BD Biosciences, USA 

Syringe (vaccination) Micro-Fine ™ 0.3 mL (320830)   BD Biosciences, USA 

Syringe 2 mL BD Plastipak 300186    Greiner Microlon, Germany 

Filter 0.45 µm       Millipore, DK 

Syringe Filter 0.20 µm      Whatman, UK 

Microtubes 0.5 mL      Sarstedt, Germany  

Microtubes 1.5 mL      Axygen Biosciences, USA  

Elisa dilution tubes 1.3 mL (102270)    Greiner Bio-One, Germay 
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Paper towels for Elisa and Elispot VWR International, Norway 

Acetate foil for microtest well plates (82.1586)    Sarstedt, Germany   

Pipettes        Thermo Labsystems 

Thermo Labsystems Finnpipette Novus, multichannel  Termo Scientific, USA 
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3 Methods 
 

3.1 Experimental protocol  

3.1.1 Mice  
Forty BALB/c mice (6-8 weeks old, female) were randomized and divided into two groups 

of 20 mice, named groups A and B. They were earmarked and randomly caged in groups 

of five animals. Both groups received one or two doses of an inactivated influenza H5N1 

whole virus vaccine, group A intramuscularly and group B intranasally. Immunization, 

sampling and sacrifice were carried out as illustrated in figure 3.1.   

All work with mice was carried out humanely according to The Norwegian Regulation on 

Animal Experimentation (“Forsøksdyrforskriften”) and approved by the Animal Research 

Committee. They were acclimatized for one week and housed in pathogen-free 

surroundings, with 12 hour light/dark cycles in a temperature of 21°C. The daily care of 

the animals was performed by the personnel at the Vivarium, University of Bergen.   

 

 

 

 

 

 

 

 

 

 
 

 
 
   1st Dose    2nd Dose 
    
│▬▬▬▬│▬▬▬▬│▬▬▬▬│▬▬▬▬│▬▬▬▬│▬▬▬▬│▬▬▬▬ │ 
 0           1                    2                     3                     1                     2                     3     12  
 
             Pb     Pb               S       S        Pb        Pb             S     S  
        Nw         Nw            Nw        Nw       Nw                  Nw           Nw     Nw 
               T         T               T         T 
              Cb        Cb              Cb                      Cb  
 
Weeks post vaccination 

→         

Figure 3.1. Immunization and sampling. Blood samples (Pb) and nasal wash samples (Nw) were collected 

once a week from groups of five mice. Three weeks after the first vaccination five mice from each group 

were euthanized, whereas the other mice got a second (booster) dose of vaccine. Mice were then sacrificed 

(s) four days and three weeks after the second immunization and cardiac blood (Cb) and tissue (T) (spleens 

and bone marrows) were collected. To see if the vaccine induced long lasting antibody responses, five mice 

from both groups were sacrificed twelve weeks after given the booster injection.  
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3.1.2 Vaccine  
The virus vaccine strain (NIBRG-14) used in this study is produced by reverse genetics 

and is recommended by the WHO. It contains the HA and NA genes of the influenza 

A/Vietnam/1194/2004 (H5N1) virus and the internal genes of the vaccine donor strain PR8 

(2:6 reassortant). The virus was propagated in embryonated hen’s eggs and a whole virus 

vaccine was prepared and inactivated using β-propiolactone.  

 

3.1.3 Intramuscular and intranasal immunization of mice 
For intramuscular vaccination the mice were restrained in a plastic tube, the hind leg was 

held steadily and 50 µL of whole virus vaccine containing 7.5 µg HA was injected into the 

quadriceps muscles of the leg. In the other group, the animals were anesthetized to lie still. 

A 100-150 µL combination of Rompun Vet (1 mg/mL) and Ketalar (10 mg/mL) in sterile 

PBS was administered subcutaneously into the neck region. After approximately 15 

minutes the mouse was checked for a suitable level of narcosis. The anaesthetized animals 

were laid on their back and the vaccine (40 µl, containing 7.5 µg HA) was administered by 

dripping 5 µl per nostril four times using a 20 µL pipette.    

 

 

3.1.4 Collection of peripheral blood  
Blood samples were obtained from the 

saphenous vein of the hind leg (Fig. 3.2). 

The animals were held steadily in a plastic 

tube with the hind leg strained.  An area of 

fur was shaved with a scalpel and the vein 

was punctured using a 23 gauge needle. 

Blood (50-100 µL) was collected using a 

microvette capillary collection device. (The 

separation of sera from clotted blood is 

described below).   
Figure 3.2. The vein used for sampling. 
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3.1.5 Collection of nasal wash samples 
For nasal wash samples, the mice were held by 

the scruff of the neck upside-down over a petri 

dish (Fig. 3.3). The animals were rinsed from 

their mouth through the nostrils by drop wise 

administration in a steady stream using a 1 mL 

syringe with 350 µL PBS/BSA and a feeding 

tube. The exhaled nasal washings were collected 

from the petri dish and then pipetted into an 

eppendorf tube. Samples were kept on ice 

before freezing at -80°C.  

 

Figure 3.3. The nasal wash procedure. 
            

3.1.6 Collection of cardiac blood and tissue 
The mice were euthanized by CO2-asphyxiation, and fastened with pins to a dissection 

plate. Immediately, the animals were exsanguinated by cardiac puncture and the blood was 

collected by using a 23 gauge needle and a 2 mL syringe. Next, animals were opened with 

sterile scissors from the abdomen to the throat and the skin were pulled aside and fixed. 

The spleen and one hind leg was aseptically removed and put into separate tubes 

containing sterile PBS.  

 

3.1.7 Separation of sera 
The blood samples were refrigerated at 4°C overnight, and serum separated from whole 

blood by centrifugation at 1000x g for 10 minutes. Cardiac blood samples were left at 

room temperature for 3-4 hours to clot before centrifugation for 10 minutes at 1000x g. 

Sera were transferred to microtubes and stored in the freezer at -80°C until testing. 
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3.2 Immunological assays 

3.2.1 Isolation of lymphocytes  
All work with lymphocytes was conducted aseptically in a laminar flow hood at room 

temperature.  

 

Spleen: The spleen was placed in 

a petri dish and punctured several 

times at multiple sites using a 23 

gauge needle and a 2 mL syringe 

with PBS/FBS gold (5 %) (Fig. 

3.4). The procedure was repeated 

until the spleen turned greyish 

and was empty of cells. A total 

volume of 6 mL was transferred 

to a centrifugation tube.  
Figure 3.4. Isolation of splenocytes.   

 

one marrow: Muscle tissue was removed from femur and tibia with sterile scissors and 

ensity gradient centrifugation with lymphoprep: The cell suspensions were carefully 

B

forceps. The two bones were separated in the knee joint and a small fraction from both 

ends of the bone was cut off. Each end of the bone was punctured and washed with 2 mL 

PBS/FBS, reversed and washed again three times. Lymphocytes (total volume of 6 mL) 

from both bones were transferred to a centrifugation tube.  

 

D

layered onto 3 mL of lymphoprep (in 15 mL tubes) using a Pasteur pipette. The tubes were 

centrifuged for 30 minutes at 800x g without brake at room temperature. Next, the white 

bands containing lymphocytes were removed and transferred into new tubes and cold PBS 

was added to a total volume of 8 mL. Tubes were centrifuged for 10 minutes at 250x g at 

4°C and the supernatant was removed. Cells were re-suspended and in 8 mL of cold PBS 

and centrifuged again as described above. Finally, the lymphocytes were then re-suspended 

in 1 mL (bone marrow) or 2 mL (spleen) B-cell medium. The numbers of live lymphocytes 

were counted by flow cytometry. A 1:10 pre-dilution of cell suspension and PBS/FBS and 

a count mixture (description section 2.10) were made, and the number of live cells/mL was 
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determined by trypan blue exclusion. The concentration of lymphocytes was adjusted to 

1.0x107 cells/mL by adding B-cell medium.   

 

3.2.2 Antibody ELISA 
The enzyme-linked immunosorbent assay (ELISA) is an immunological technique which is 

used to detect antibodies specific for influenza in both murine sera and nasal wash 

samples. This method is based on the interaction between antigen and antibody, and by 

using secondary biotinylated antibodies, enzyme linked avidin with specificity for biotin, 

and a colorimetric substrate one can measure spectrophotometrically the concentration of 

antibodies present in a sample.  

Elisa plates were coated with 100 µL/well of 2 µg/mL HA H5N1 whole virus influenza 

antigen or capture antibody (IgG, IgG1, IgG2a or IgA) diluted 1:1000 in PBS. After 

incubation at 4°C overnight, the plates were blocked with 200 µL PBS/NCS (20 %) for 

serum samples (150 µL for nasal wash samples) and incubated at room temperature for one 

hour. Next, 100 µL/well of each sample was added to the appropriate wells in 5-fold 

dilutions (serum, starting at 1:50, up to 1:781 250) or 2-fold dilutions (nasal wash, 1:5 up 

to 1:40) in duplicate. Furthermore, antibody standards from 50 to 0.781 ng/mL were 

diluted 2-fold and 100 µL added to each well in duplicate. Additional, two blanks 

containing 100 µL PBS/NCS were used to determine the background. The plates were 

incubated at room temperature for 1.5 hour for serum samples, and 2 hours for nasal wash 

samples. The plates were washed six times, three of them rapidly to avoid potential cross 

contamination and the last washes soaked the plates for a few minutes. Next, 100 µL/well 

of the appropriate goat-anti mouse specific-biotinylated antibodies (IgA, IgG and 

subclasses, 1:500) in PBS/NCS were added and incubated for one hour at room 

temperature. After six new washes, 100 µL/well of Extravidin Peroxidase in PBS/NCS 

(1:1000) were added and incubated at room temperature for one hour. Fresh OPD substrate 

(description section 2.10) was prepared and the plates were washed six times. H2O2 was 

added to the OPD-solution immediately before adding 100 µL/well to the plates. The 

reaction was stopped after 10 minutes incubation time with 100 µl/well of 1M H2SO4. The 

plates were read spectrophotometrically at 492 nm using the ELISA plate reader. Standard 

curves were obtained as log-log graphs in the Ascent program and the influenza specific 

antibody concentrations (ng/mL or µg/mL) after vaccination were calculated using 

standard curves and linear regression of the log transformed readings.    
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3.2.3 Antibody ELISPOT 
The enzyme-linked immunospot assay is a method for detection of antibody secreting cells 

(ASC). Each ASC specific for influenza produces a spot and allows enumeration of the 

number of specific spots.  

Ninety-six wells ELISPOT plates were coated aseptically with 100 µL/well of 2 µg/mL 

HA whole virus vaccine diluted in PBS, and incubated overnight at 4°C. The plates were 

emptied by flicking out the coating solution and blocked with 200 µL/well of PBS/FCS (5 

%) and incubated in 5 % CO2 at 37°C in a humidified incubator for one hour. The blocking 

buffer was removed and plates tapped carefully against some paper towels. One hundred 

µL of B-cell medium containing lymphocytes (100 000 to 500 000 cells/mL) from spleen 

or bone marrow was added to each well in duplicate and plates were placed in the CO2 

incubator at 37°C overnight. Plates were washed 6 times in PBS/Tween (0.05 %) with the 

Nunc Elisa washer, the first three washes were quick to avoid possible cross 

contamination, and the last three washes soaked the plates for a few minutes. To remove 

most of the washing solution the plates were tapped against paper towels between the 

washes. Next, 100 µL/well containing 2µg/mL goat anti-mouse biotinylated antibodies 

(IgA, IgM, IgG, or IgG subclasses), in PBS/T were added to the appropriate wells, and 

incubated two hours at room temperature. Following incubation, plates were washed six 

times as described above, before adding 100 µL to each well of Extravidin PO (1:1000) in 

PBS/T. After one hour incubation at room temperature the plates were washed six times 

before adding 100 µL/well of freshly made AEC substrate (description section 2.10) and 

the spots developed for 30 minutes at room temperature. The reaction was stopped by 

rinsing the plates under running tap water. Next, the plastic bottoms of the plates were 

removed and plates allowed to dry in the dark. The nitrocellulose membranes were 

removed and spots were counted using an Elispot reader and the Immunospot program. 

 

3.2.4 Haemagglutination Inhibition Assay (HI-assay) 
The influenza virus haemagglutinin agglutinates erythrocytes and by using a standardized 

amount of virus and red blood cells, the ability of serum antibodies in a sample to inhibit 

agglutination can be measured.  

Sera were diluted 1:4 in receptor destroying enzyme (RDE), and incubated at 37°C 

overnight and further incubated for 30 minutes at 56°C to remove non-specific inhibitors 

and heat-inactivate the remaining RDE. Sera were then allowed to cool at room 
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temperature. Turkey red blood cells (RBC) were washed in cold PBS and centrifuged at 

250x g for 10 minutes at 4°C. The procedure was repeated until the supernatant was clear 

(no haemolysed cells). Finally, a red blood cell suspension (0.7 %) was prepared by adding 

cold PBS.  

 

3.2.4.1 Haemagglutination assay  
In order to determine the virus titre, 50 µL PBS was added to each well of a V-shaped plate 

and 50 µL of virus suspension (whole virus) were added to the first row. The virus was 

double diluted by mixing and transferring 50 µL (to the next row). The final 50 µL was 

discarded. Red blood cells (0.7 %, 50 µL) was added to the well, mixed carefully, and 

incubated for 30 minutes at room temperature. The titre was read as the reciprocal of the 

virus dilution that gave 50 % agglutination, and adjusted to be 8 HA units (HAU)/50 µL.   

 

3.2.4.2 Haemagglutination inhibition assay 
V-shaped plates were added 50 µL PBS per well, in addition to 50 µL of the RDE treated 

sera in the first row. Starting with a 1:8 dilution duplicate, 2-fold dilutions were made and 

50 µL of standardized virus solution (8 HAU) was added per well and incubated 1 hour at 

room temperature. Next, 50 µL turkey RBC was added and incubated at room temperature 

for 30 minutes. Finally, the plates were tilted and the haemagglutination inhibition titre 

was read as the reciprocal of the serum dilution that gave 50 % inhibition of 

haemagglutinin. For calculation purposes, negative values were given an arbitrary value of 

4.       

 

3.2.5 In vitro activation of lymphocytes 
In order to determine the cytokine response from isolated splenic T-lymphocytes, the cells 

can be stimulated in vitro with the influenza antigen. This treatment activates the cells 

which instantly start to produce cytokines. After a longer period of incubation the 

supernatant can be analyzed and it is possible to distinguish between Th-1/Th-2 profiles.        

 

Influenza activation medium were made by diluting influenza H5 virosomal vaccine in 

lymphocyte medium (final concentration; 10 µg HA/mL) and 100 µL/well was added to a 

96-wells flat-bottom plate. Next, 100 µL/well of cell suspension containing 1.0x106 
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lymphocytes were added to the plate. A mitogen medium consisting of phorbol myristate 

acetate (PMA), ionomycin and lymphocyte medium was used as positive controls, whilst 

negative controls consisted of medium alone (100 µL/well). Samples were incubated for 72 

hours at 37°C in a humidified atmosphere of 5 % CO2. The 200 µL from each well were 

then transferred to a V-shaped plate and centrifuged for 10 minutes at 300x g. The 

supernatants were removed, transferred to a new plate and frozen at -70°C until testing.  

 

3.2.6 Multiplex bead assay 
The multiplex bead assay can be used to measure a number of analytes in the same sample 

for instance cytokines, antibodies and RNA. By using polystyrene beads covered with 

antibodies and with differing colour intensity (red and infrared dyes), an instrument with a 

laser and a number of detectors is able to recognize multiple fluorescent signals.  

 

The assay was used to determine the concentration of IL-2, IL-4, IL-5, IL-10, IL-17 and 

IFN-γ from the supernatants of in vitro activated splenic lymphocytes. The manufacturer’s 

protocol was used. Standards were diluted 4-fold according to the protocol and placed on 

ice for 30 minutes. A multiscreen plate was pre-wet with 100 µL Assay Buffer A. Next, 

120 µL stock beads were diluted in 2.88 mL Assay Buffer A, and 25 µL was added each 

well. The plate was washed with PBS/T (100 µL) twice by suction. Then, 50 µL from each 

standard, 25 µL of each sample diluted in 25 µL B-cell medium were added the 

appropriate wells and the plate was sealed and incubated in the dark at room temperature 

for 45 minutes on a platform shaker at 300 rpm. Detection Antibody (150 µL) was diluted 

in 2.85 mL Detection Antibody Dilutent, the plate was washed three times by suction and 

25 µL was added each well. The plate was incubation as described above for 30 minutes. 

After three washes, Streptavidin-PE (30 µL) diluted in 2.97 mL Assay Buffer A was added 

to the plate (25 µL/well) and incubated for 10 minutes. Before reading by the Luminex 

instrument, the plate was washed and Assay Buffer A added (100 µL/well). A standard 

curve (Bioplex manager 5) was obtained and cytokine concentration determined.   

 

3.3 Statistical analysis 

To compare the two groups of mice, statistical analyses were performed using SPSS 15.0 

for Windows and the results (ELISA, ELISPOT and multiplex assay) were analyzed by 
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using a two-sided Student’s t-test assuming equal variances. P-values ≤ 0.05 were 

considered significant. The HI results were analyzed using Prism 5.0 for Windows 

(GraphPad software) with a ± 95% confidence interval.  
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4 Results 
 
In this study we examined the local and systemic humoral immune response in BALB/c 

mice vaccinated with whole inactivated influenza A/Vietnam/1194/2004 (H5N1) virus 

vaccine. We also examined the T cellular responses by studying the cytokine profiles after 

the second vaccination. Two groups of 20 mice were intramuscularly or intranasally 

vaccinated with two doses of 7.5 µg HA (half of the normal human dose). Thus in this 

study we directly compared the immunological profiles induced by the two administration 

routes. The two groups will be referred to as the intramuscular (IM) group and intranasal 

(IN) group according to the route of vaccine administration. The study also included a 

control group of 10 animals, which only received PBS. 

  

Different immunological assays were used to assess the immune response in the serum, the 

nasal wash, spleen and bone marrow. The results presented in this section are from eight 

different sampling days of five mice in each group. The two vaccine doses were given 21 

days apart and serum samples and nasal washes were collected each week, including 4 

days post second vaccination. Spleens and bone marrow were removed after euthanasia. 

(An overview of the time points of vaccination and sampling can be found in the method 

section 3.1.1) 

 

4.1 The humoral immune response induced after vaccination  

The humoral immune response induced after intramuscular or intranasal vaccination was 

investigated using a range of immunological assays. The concentration of serum antibodies 

(IgG, IgG1, IgG2a and IgA) and nasal wash (IgA) was quantified using ELISA. Moreover, 

ELISPOT was used to detect the influenza specific (IS) antibody secreting cells (ASC) for 

the classes IgM, IgA and IgG, including the IgG1 and IgG2a subclasses. The 

Haemagglutination Inhibition (HI) assay was used to analyze the serum anti-HA response. 
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4.1.1 Two doses of whole inactivated virus vaccine induced high antibody titres  
The HI assay was conducted using turkey erythrocytes for measuring anti-HA antibodies. 

Serum samples from euthanized mice collected after the first dose (3 weeks) and after the 

second dose (four days, three weeks, and twelve weeks) were investigated. No HI 

antibodies (titres <8) were detected in the serum from the control mice (results not shown). 

For all other samples, an HI titre <8 was assigned an arbitrary value of 4 for calculation of 

geometric mean titres (GMT).   

 

Only low HI-titres were found in the IM group after one dose of vaccine, with only two of 

the five mice having detectable HI antibody in this group (titres of 32 and 48, respectively) 

(Fig. 4.1). No HI antibody was detected in the IN group, all mice had HI titres of <8. The 

second vaccination significantly boosted the response, and by day four all mice had 

detectable antibodies, ranging from a titre of 64 to 384 (IM group) and 48 to 256 (IN 

group). The highest titres were observed three weeks after the second dose with geometric 

mean HI titres of approximately 370 for the IM group, and 230 for the IN group, 

respectively. There were no significant differences in HI antibody response between the 

two administration routes. HI antibodies were still detectable in all mice in both groups by 

twelve weeks after the second dose, although the geometric mean titres for the groups had 

declined to mean titre 148 (IM) and 115 (IN).  
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Figure 4.1. The haemagglutination inhibition (HI) antibody response induced after intramuscular (IM) 

and intranasal immunization (IN) with influenza H5N1 virus. BALB/c mice were IM (black circles) or 

IN (red circles) vaccinated with one or two doses (3 weeks apart) of 7.5 µg HA influenza 

A/Vietnam/1194/2004 (H5N1) whole virus vaccine. The data are presented as the geometric mean titre 

(GMT) from five mice in each group on four different sampling days. Each circle represents titres from one 

mouse. The data are presented as the geometric mean titre ± 95% confidence interval. The point 4d on the x-

axis indicates four days after 2nd dose, W = weeks.   
 

4.1.2 Two doses of intramuscular vaccine induced high serum IgG levels  
No influenza specific antibodies were detected in the control mice at any time point 

(results not shown). Vaccination induced only very low concentrations of influenza IgG 

specific antibodies in the IN group after one week (0.3 µg/mL); whereas a significantly 

higher (p<0.05) response was observed in the IM group (6.2 µg/mL). The antibody 

concentration increased in both vaccine groups over the next two weeks with the IM group 

showing a 10-fold higher level than the IN group. After the second dose, the concentrations 

of IgG significantly increased in the IM group reaching a peak level of 2000 µg per mL 

three weeks after the second vaccine dose (Figure 4.2).  

  

Although the antibody concentration of the IN group also increased after the second dose, 

it was significantly lower (p<0.05) than the concentration in the IM group. Similarly to the 

IM group, the IgG response in the IN group also reached a peak three weeks after the 

second vaccination with a mean antibody concentration of 770 µg per mL. Twelve weeks 

after the second injection, the vaccine still elicited a high antibody response in the two 
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groups. The IgG concentration in the group vaccinated intramuscularly was approximately 

1100 µg per mL, thus a 50 % decline from the peak response. In contrast, in the mice 

receiving the intranasal vaccine the concentration had declined to 400 µg per mL, a 57 % 

decline from the peak response (Fig. 4.2).  
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Figure 4.2. The serum IgG response induced after intramuscular (IM) and intranasal (IN) 

immunization with H5N1 virus. BALB/c mice were IM or IN vaccinated with one or two doses of 7.5 µg 

HA influenza A/Vietnam/1194/2004 (H5N1) whole virus vaccine. The IgG serum concentrations are shown 

in the group of mice vaccinated intramuscularly (red bars) and the group vaccinated intranasally (blue bars). 

The point 4d on the x-axis indicates four days after 2nd dose. The columns represent the mean antibody 

concentration in microgram per millilitre (µg/mL) calculated from groups of five mice. The error bars 

represents the standard error of the mean (SEM). The IM group had statistically significant higher (p<0.05) 

concentrations of IgG than the IN group and are indicated by an asterisk (*). 

  

Two doses of whole inactivated virus vaccine induced high serum IgA levels in 

intranasally vaccinated mice 

No IgA antibody was detected in the control group (results not shown), or after the first 

intramuscular injection. However, by four days post second IM dose the antibody 

concentration increased to 330 ng/mL, and this concentration remained essentially stable 

until the end of the experiment (Fig. 4.3). Twelve weeks after the second dose, the highest 

concentration of IgA was found with 374 ng IgA per mL, thus a 12 % increase from day 

four. 
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Although no detectable antibodies were found one week post vaccination, the highest 

concentrations of IgA were observed in the group that received two doses of the intranasal 

vaccine. Over the next two weeks the concentration started to increase, and by three weeks 

after the second immunization there was a peak response of approximately 5400 ng per 

mL. This mirrors the serum IgG response described above where the peak response was 

also found three weeks post the second dose. Twelve weeks after the second immunization, 

serum IgA was still detected although concentration had fallen to nearly 3000 ng/mL (Fig. 

4.3), almost half of the concentration calculated at the peak response.  

 

A minor decrease in serum IgA concentrations was observed in both experimental groups 

two weeks after the second dose, which may have been due to differences in the groups of 

mice sampled. 
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Figure 4.3. The kinetics of the serum IgA response induced after intramuscular (IM) and intranasal 

(IN) immunization with influenza H5N1 virus. BALB/c mice were IM or IN vaccinated with one or two 

doses (3 weeks apart) of 7.5 µg HA influenza A/Vietnam/1194/2004 (H5N1) whole virus vaccine. The bar 

graph illustrates the serum IgA antibody response of the IM group (red bars) and the IN group (blue bars) at 

various time points after one or two doses of influenza vaccine. The mean antibody concentrations from 

groups of five mice are presented in nanogram per millilitre (ng/mL). Error bars are the standard error of the 

mean (SEM). The point 4d on the x-axis indicates four days after 2nd dose. The IN group had statistically 

significant higher concentrations of IgG than the IM throughout the experiment (p< 0.05) indicated by an 

asterisk (*). 
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To sum up, the two groups both elicited high HI titres after two vaccine doses and there 

were no significant differences between the vaccine routes. Moreover, after analyzing the 

serum antibody classes, we found that the IM group had significantly higher concentrations 

of IgG, whereas the IN group had significantly higher concentrations of IgA.  

 

 

4.1.3 Analysis of the serum IgG subclass response after vaccination 
The two IgG antibody subclasses IgG1 and IgG2a which can be used as markers for a Th-1 

(IgG2a) or a Th-2 (IgG1) response were examined. Very low concentrations (0.6 µg/mL) 

of serum IgG1 were detected the first week after immunization in the IM group, whereas 

no IgG1 was detected in the IN group (Fig. 4.4a). Over the next two weeks the 

concentrations remained low, however it was significantly higher (p<0.05) in the IM group 

(9.4 µg/mL) than in the IN group (1.8 µg/mL). Four days after the second dose of vaccine 

a significant increase (p<0.05) in IgG1 concentrations were observed for both vaccine 

groups. The IN group had a peak response with a concentration of 235 µg/mL one week 

after the second dose, whilst the response in the IM group peaked a week later with 

approximately 495 µg/mL.   
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Figure 4.4. The influenza-specific serum IgG1 and IgG2a subclasses after intramuscular (IM) and 

intranasal immunization (IN) with influenza H5N1 virus. BALB/c mice were IM or IN vaccinated with 

one or two doses of 7.5 µg HA influenza A/Vietnam/1194/2004 (H5N1) whole virus vaccine. The figures 

depict serum antibody concentrations of a) IgG1 and b) IgG2a. Green bars are the IM group, and yellow bars 

are the IN group. The columns represent the mean concentration from five mice measured in microgram per 

millilitre ±standard error of the mean (SEM) at different sampling points. The point 4d on the x-axis indicates 

four days after 2nd dose. The concentrations of IgG1 and IgG2a were significantly higher in the IM group 

than in the IN group throughout the study, except for IgG1 one week after second vaccine dose (p< 0.05), 

indicated by an asterisk (*).  

 

Twelve weeks post the second vaccine dose the IM group still had significantly higher 

(p<0.05) antibody concentrations of IgG1 (330 µg/mL) than the IN group (100 µg/mL) 

(Fig. 4.4a).   

 

We also investigated the induction of IgG2a after vaccination (Fig. 4.4b). IN immunization 

elicited a somewhat lower IgG2a antibody response than IgG1. No antibodies were 

detected during the first week after vaccination and the concentration of IgG2a remained 

low (≤0.5 µg/mL) over the next two weeks. Four days after the second immunization the 

concentration of IgG2a increased to 8.0 µg/mL. Subsequently the concentration increased 

considerably, and peaked three weeks after the second dose (approximately 112 µg/mL).  
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In the group vaccinated intramuscularly, IgG2a was detected one week after the first dose 

(2.0 µg/mL) and the concentration of IgG2a continued to increase up to three weeks (27 

µg/mL) (Fig. 4.4b). Here, the IM group showed significantly higher concentrations than 

the IN group. The second vaccination boosted the response by day four (approximately 130 

µg/mL) with a peak response observed three weeks after immunization (540 µg/mL). 

Twelve weeks after the second dose the concentrations had declined to 158 µg/mL in the 

IM group which was significantly higher than the IN group (27 µg/mL) (Fig. 4.4b).  

 

 

4.1.4 The subclass distribution after vaccination 
The distribution of IgG1 and IgG2a subclasses elicited after the two routes of vaccination 

was also compared. The IgG2a/IgG1 ratio is an indicator of the T-helper response, with a 

ratio over 1.0 indicating a T-helper 1 profile, and below 1.0, a T-helper 2 profile.  

After one dose of vaccine there was a dominant IgG2a response (Th-1 like) in the IM 

group (IgG2a/IgG1 ratio 3.7 – 2.9) (Fig. 4.5). After the second vaccination the profile 

shifted to a Th-2 response with a ratio of 0.8 four days after the second dose, and declined 

further to 0.5 during the next week. However, by three weeks post the second dose we 

found a balanced Th1/Th2 distribution (IgG2a/IgG1 ratio approximately 1.1), which at the 

end of the study and had fallen to 0.5 (Th-2-like).  

In contrast, the IN group had an overall dominant IgG1 subclass. The IgG subclasses were 

not detected until two weeks after immunization (IgG2a/IgG1 ratio 0.6). The concentration 

of IgG1 antibodies increased and throughout the remainder of the time period the ratio was 

stabile around 0.2-0.3, except for a slight increase three weeks after the second 

immunization (0.8).  
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Figure 4.5. Distribution of the IgG subclasses after intramuscular (IM) and intranasal (IN) 

immunization with influenza H5N1 whole virus. BALB/c mice were IM or IN vaccinated with one or two 

doses of 7.5 µg HA influenza A/Vietnam/1194/2004 (H5N1) whole virus vaccine. The values on the y-axis 

show the ratio between the two subclasses (serum IgG2a concentration divided by serum IgG1 

concentration). Green bars are the intramuscularly vaccinated mice (IM), whereas yellow bars represent the 

intranasally vaccinated mice (IN). The point 4d on the x-axis indicates four days after 2nd dose.  
 

The results generally show a dominant IgG2a serum antibody in the IM group, which is 

characterized by a Th-1 subclass distribution after one dose and a more mixed profile after 

the second vaccine dose. In contrast, the IN group was dominated by IgG1 serum antibody 

and a Th-2 distribution after both one and two doses.  

 
 

4.1.5 Two intranasal vaccinations induce high mucosal IgA levels in the nasal cavity 
We investigated the local immune response in the nasal cavity by collecting nasal washes 

at various time points after vaccination (Fig. 4.6). Only IgA antibody concentrations at or 

just above the detection limit (4 to12 ng/mL) were found in the nasal washes after one dose 

of vaccine in both groups. After the second dose, the concentration rose significantly in the 

IN group from 192 ng/mL after one week to a peak response of 554 ng/mL at two weeks 

post vaccination. The concentration rapidly declined by three weeks to 232 ng/mL, and 

after twelve weeks 120 ng/mL was measured. In contrast, the concentration of IgA in the 
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IM group remained just above the detection limit throughout the entire experiment 

(ranging from 6 to 12 ng/mL).   
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Figure 4.6. The mucosal IgA immune response after intramuscular (IM) and intranasal (IN) 

immunization with influenza H5N1 virus. BALB/c mice were vaccinated with one or two doses of 7.5 µg 

HA influenza A/Vietnam/1194/2004 (H5N1) whole virus vaccine IM or IN. The graphs show the mean 

concentration of IgA in nasal wash collected at eight time points. The green triangles are the intramuscularly 

vaccinated mice (IM), the blue circles represents the intranasally vaccinated mice (IN). The concentrations 

are presented as nanogram per millilitre (ng/mL) ±SEM. The last point in the IN group (12 weeks) is 

calculated from four mice. The concentrations of IgA in the IN group were significantly higher (p<0.05) than 

group IM after the second vaccination, indicated by an asterisk *. 

 
 

4.1.6 The influenza specific antibody secreting cell (ASC) response elicited in the 
spleen  

The ELISPOT assay was conducted to enumerate the number of influenza specific ASC 

three weeks after the first vaccination, four days, and three weeks after the second 

vaccination. In the control mice a number of IgM ASC was detected (mean 24 (range 19-

30) ASC per 500 000 lymphocytes) and was subtracted from the results of the two 

experimental groups. The results of IgM ASC from the control mice are not included in the 

graphs. No ASC from the other classes or IgG subclasses were found in the control mice. 
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After the first dose of vaccine, influenza specific IgM ASC dominated in the IM group 

(mean number 38), followed by IgG ASC (15) (Fig. 4.7). Only low numbers of IgG1 and 

IgG2a were detected, the latter subclass in somewhat higher numbers. In the IN group, 

there were low numbers of all antibody classes with the following distribution; IgM > IgA 

> IgG > IgG1 = IgG2a (Fig. 4.7a). In the IM group the numbers of IgM, IgG and IgG2a 

were significantly higher group than the IN group, whereas IgA were significantly higher 

in the IN group.  
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Figure 4.7. Influenza specific antibody secreting cells (ASC) in the spleen at various time points after 

immunization. BALB/c mice were intramuscularly (IM) or intranasally (IN) vaccinated with one or two 

doses of 7.5 µg HA influenza A/Vietnam/1194/2004 (H5N1) whole virus vaccine. The data are presented as 

the mean number of ASC per 500 000 lymphocytes ±SEM. IgG (black bars), IgA (green bars), IgG1 (grey 

bars), IgG2a (red bars) and IgM (open bars). a) ASC response three weeks after one dose of vaccine, b) ASC 

response four days after two doses of vaccine. IgG1 ASC in the IN group were counted from only one mouse 

due to difficulties in the spot counting program. In the IM group the IgG results were counted from four 

mice, and the IgG1 results from three mice. c) ASC response three weeks after two doses of vaccine. 

Significantly higher numbers (p<0.05) are indicated by asterisks: * = significantly higher than IN, ** = 

significantly higher than IM.    

 

 

After the booster dose the ASC numbers were significantly higher (p<0.05) (Fig. 4.7b). 

Four days after the second dose the highest numbers of influenza specific ASC were found 

in the IM group although the number of IgA ASC in the IN group was significantly higher 

than the IM group (IM; mean number 12 and IN 68). The numbers of IgG and IgG2a were 

significantly higher in the IM group, which had had the following distribution; IgM > IgG 

> IgG2a > IgG1 > IgA. The IN group in contrast showed; IgM > IgA > IgG > IgG2a > 

IgG1.  

 

Three weeks after the booster dose the numbers of influenza specific ASC had 

significantly decreased (p<0.05) (Fig. 4.7c). At this time point, the numbers were now 
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highest in the IN group, except for IgG2a which was slightly higher in the IM group. The 

IgA ASC and IgM were significantly higher in the IN group than in the IM group. The 

distribution of the classes and subclasses in the IM group was the same as observed at day 

four, however the IgG1 numbers were slightly higher than IgG2a numbers. The IN group 

now had the following distribution; IgM > IgG > IgA > IgG1 > IgG2a. 

 

 

4.1.7 The influenza specific antibody secreting cell (ASC) response elicited in the 
bone marrow  

The ASC in the bone marrow was analyzed at the same time points as in the spleen. The 

control mice had low numbers of IgM ASC, (mean 8 ASC per 500 000 lymphocytes) but 

not other classes or subclasses and this background was subtracted the specific response in 

the two groups.   

 

Three weeks after the first immunization only very low numbers of influenza specific ASC 

were detected in both groups (for all antibody classes; range 0-6 ASC per 500 000 

lymphocytes) (Fig. 4.8a).  
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Figure 4.8. The influenza specific antibody secreting cells (ASC) in the bone marrow at various time 

points after immunization. BALB/c mice were intramuscularly (IM) or intranasally (IN) vaccinated with 

one or two doses of 7.5 µg HA influenza A/Vietnam/1194/2004 (H5N1) whole virus vaccine. The data are 

presented as the mean number of ASC per 500 000 lymphocytes ± standard error of the mean (SEM) from 

five mice in each group at each time point. IgG (black bars), IgA (green bars), IgG1 (grey bars), IgG2a (red 

bars) and IgM (open bars). a) ASC response three weeks after one dose of vaccine. The IgA and IgM results 

are only calculated from four mice b) ASC response four days after two doses of vaccine. The ASC response 

in the IN group was only analyzed for IgG, IgM and IgA, and the IgG results are from four mice due to 

difficulties in the spot counting program. c) ASC response three weeks after two doses of vaccine. 
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Significantly higher numbers (p<0.05) are indicated by asterisks: * = significantly higher than IN, ** = 

significantly higher than IM.   

 

 

The second vaccination significantly boosted the response, by four days post second 

vaccination. The group vaccinated intramuscularly had higher numbers of IgG ASC than 

the group vaccinated intranasally, which had a higher number of IgA ASC (Fig. 4.8b). This 

mirrors the results of ASC detected in the spleen at the same time. The distribution of ASC 

in the IM group was as follows; IgG > IgG1 > IgG2a > IgA > IgM, and in the IN group; 

IgA > IgG > IgM. The IgG1 and IgG2a response was not analyzed at this point (Fig. 4.8b). 

  

Three weeks after the second vaccination, the numbers of influenza specific ASC 

decreased (Fig. 4.8c). All Ig classes were still detected in both experimental groups, except 

for IgM ASC in the IM group. The mean IgG ASC numbers in the two groups were almost 

the same (IM 12.8 and IN 12.4 ASC per 500 000 cells), and were somewhat lower than 

seen in the spleen. The intranasally vaccinated mice had significantly higher numbers of 

IgA ASC, similarly to the results from the spleen. The distribution of the antibody classes 

were; IgG > IgG2a >IgG1 > IgA in the IM group, and IgA > IgG > IgG1 > IgG2a > IgM in 

the IN group (Fig. 4.8c). This contrasts with the splenic response which was dominated by 

the IgM ASC in both groups.   

  

To summarize the ELISPOT results, the intranasally vaccinated mice in general displayed 

higher numbers of IgA ASC than the intramuscularly vaccinated mice in both the spleen 

and the bone marrow at all time points. The IM group, on the other hand, had higher 

numbers of IgG ASC, with the exception of the splenic response four days post second 

vaccination. 

 

4.2 The cytokine response from in vitro activated splenocytes  

The multiplex bead assay was used to investigate the splenic cytokine responses after 

vaccination. The test was conducted three weeks after the second vaccine dose to 

investigate the T helper profiles of the two groups. We measured the concentrations of IL-

2 and IFN-γ (Th-1 markers), IL-4, IL-5 and IL-10 (Th-2 markers) and IL-17 (Th-17 

marker) in the supernatants of in vitro stimulated splenocytes.  
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The cells were incubated for 72 hours with H5 vaccine diluted in medium and negative 

controls were incubated with medium alone. The concentration of cytokines in the 

supernatant of the negative controls was subtracted from the cytokine concentration of the 

stimulated cells.  
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Figure 4.9. The cytokine response from in vitro activated splenic lymphocytes three weeks after second 

vaccination. BALB/c mice were intramuscularly (IM) or intranasally (IN) vaccinated with one or two doses 

of 7.5 µg HA influenza A/Vietnam/1194/2004 (H5N1) whole virus vaccine. The bar graphs depict the mean 

cytokine concentration in picogram per millilitre (pg/mL) from five mice. Black bars represent intramuscular 

vaccinated mice (IM) and red bars intranasally vaccinated mice (IN). Error bars are the ±standard error of the 

mean (SEM). Isolated splenic lymphocytes were in vitro activated with Influenza H5N1 virosomal vaccine 

and the supernatants from one million cells/well were analyzed for secreted cytokines. a) IL-2 and IFN-γ, b) 

Il-4, IL-5 and IL-10, c) IL-17. Significantly higher concentrations (p>0.05) are indicated by an asterisk (*). 

 

 

Both vaccine groups secreted the Th-1 cytokines IFN-γ and IL-2, where IFN-γ was 

secreted in a much higher concentration than IL-2. There were no significant differences 

between the two groups (Fig. 4.9a). In the IM group, the concentrations of the Th-2 

cytokines IL-4 and IL-5 were significantly higher than in the IN group which only secreted 

low concentrations. The concentration of IL-10 was almost similar (IM; 1002 pg/mL and 

IN; 1173 pg/mL) in the two groups (Fig. 4.9b). We also measured the secretion of IL-17 

and found that the IN group secreted high concentrations this cytokine, but it was not 

secreted by the IM group (Fig. 4.9c).  

 

To sum up all results, the HI titres of both groups were high after two vaccine doses. The 

intramuscularly administered vaccine had high concentrations of serum IgG, whereas the 

intranasally administered vaccine had high concentrations of serum IgA and also local IgA 

after two vaccinations. The ASC numbers were higher in the spleen than in the bone 

marrow and generally, the IM group had higher numbers of IgG ASC and the IN group had 

higher numbers of IgA ASC. Furthermore, the IM group was dominated by IgG2a after 

one vaccine dose and more mixed IgG2a/IgG1 subclass distribution after two doses. This 
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group secreted significantly higher concentrations of IL-4 and IL-5 than the IN group and 

both groups secreted high concentrations of IL-10. The IN group secreted high 

concentrations of IL-17, but also IFN-γ.  
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5 Discussion 
 
Within the last decades a number of influenza A viruses of avian and swine origin (H5N1, 

H7N7, H9N2 and H1N1) have crossed the species barrier and caused infection in man. 

This has led to intensive research and strategic development of new vaccines around the 

world. Although less covered by the media after the appearance of the swine origin 

influenza A (H1N1), the H5N1 subtype with its high mortality rate ( ≥ 60 % )26 continues 

to cause sporadic human infection and still poses a pandemic threat. 

     

In a pandemic scenario, the ideal vaccine should be easy to administer (needle-free), be 

inexpensive and provide effective protection by inducing both systemic and mucosal 

immune responses. For this reason intranasally administered vaccines are an attractive 

approach, especially in developing countries where health services are already 

overburdened. A needle free administration would eliminate the risk of HIV transmission 

in poor countries and have a greater public acceptance, thus being suitable for a global 

mass vaccination program.  

  

Inactivated influenza vaccines are available in three formulations whole, split and subunit. 

Whole inactivated virus (WIV) vaccine is more immunogenic than split and subunit (SU) 

vaccines in unprimed individuals66-68 as well as in naïve mice69, 70. Unfortunately, it was 

associated with higher reactogenicity, especially in children67,71 and because of this most 

influenza vaccines used today are split or subunit vaccines. However, it has been suggested 

that the systemic reactions to seasonal whole virus vaccines may be due to egg-impurities 

in the influenza B strain formulated in the vaccine72. Two recent phase I clinical trials 

using current technology to produce a WIV vaccine (H5N1 and H2N2) demonstrated only 

mild reactogenicity and the vaccine was well tolerated by the participants65, 68.   

 

In man, vaccines containing novel avian subtypes have generally been poorly 

immunogenic36, 73-75, using up to 90 µg HA or adjuvant and two doses are needed to induce 

satisfying antibody levels. The pandemic threat has lead to a re-evaluation of the WIV 

formulation because of its superior immunogenicity. An H5N1 WIV vaccine was recently 

tested in a clinical trial with or without aluminium adjuvant and was found to induce 

higher antibody levels in the non-adjuvanted groups65.  
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Furthermore, a recent murine study concluded that the superior quality of the immune 

response after whole virus formulation could be explained by toll-like receptor signalling, 

especially stimulation of TLR-7, which resulted in a greater magnitude and a Th-1 skewed 

immune response. Efficient TLR-7 signalling seems to be lost in spilt and SU vaccines 

which contain much less viral ssRNA76 or lacking the spatial organization of whole virion 

structure70. 

 

Previous work carried out by our group demonstrated that mice immunized IM with one 

dos of seasonal WIV (H3N2) vaccine displayed high serum IgG2a antibody levels 

indicative of a Th-1 biased profile, but after the second dose a more mixed Th-1/Th-2 

profile was induced69. In contrast, further work with an avian WIV (H7N1) vaccine 

resulted in much lower levels of circulating antibodies, but similarly, a dominant Th-1 

profile after one dose and a mixed profile after the second dose77. Bearing in mind these 

results, it was interesting to compare the IN administration route which is more similar to 

natural route of infection, against the standard IM administration route using another avian 

subtype, H5N1. We measured the kinetics and the magnitude of the humoral immune 

response in mice immunized (IM or IN) with two doses of 7.5 µg WIV vaccine (H5N1). 

This dose has in a study been found to be immunogenic in a study in man65. We further 

analyzed the T-helper profiles and the cytokine profiles. We found that both IM and IN 

immunization induced high levels of circulating influenza specific antibodies, where two 

doses of IM vaccine resulted in a mixed Th-1/Th-2 profile and significant concentrations 

of Th-2 cytokines. In contrast, the IN vaccine had an overall Th-2 biased profile, high 

concentrations of IL-17 and Th-1 cytokines. In addition, this route also induced a local IgA 

response after two vaccine doses. 

 

5.1 The humoral immune response after intramuscular or intranasal 
vaccination 

 

5.1.1 Both intramuscular and intranasal vaccination effectively induced 
haemagglutination inhibition antibodies in serum  

Antibodies provide immediate protection and are the only mechanisms of the adaptive 

immune response that can block an infection78. Thus, eliciting high levels of serum 

antibody is one of the main goals of vaccination. The Committee for Medicinal Products 
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for Human Use (CHMP) has defined criteria that must be met annually for seasonal 

influenza vaccines to obtain a licence in Europe. One of these criteria is that HI titres 

should be ≥40 79, which indicate 50% protection levels of serum anti-HA against 

infection80. However, this criterion may not be appropriate for avian viruses with a 

pandemic potential, indicating the need for more research into correlates of protection.  

 

We found no or very low HI titres in both groups after one vaccination, compared to much 

higher titres previously reported with H3N2 WIV69 or split vaccines in mice81. A rapid 

increase in titres was observed after the second vaccine dose and both groups had high HI 

titres. Although the HI titres were lower than those observed with seasonal vaccine, we 

found similar kinetics and magnitude compared to other avian WIV vaccine studies77, 82. 

The HI titres were also much higher than aluminium adjuvanted split H7N1 virus vaccine 

using high amounts of antigen (20-24 µg HA), in both mice and man83, 84.  

 

We found no significant differences in the HI titres between the two administration routes, 

although the IM group had two mice with HI titres after the first dose, which may be due to 

individual differences between the mice. The secondary response in the two groups was 

rapid and importantly the levels of HI antibody had only slightly declined twelve weeks 

post vaccination, indicating that both routes induced long-term immunity. Two doses of 

vaccine elicited HI titres considered to be protective and confirmed other findings that 

pandemic candidate vaccines of avian origin need two doses to reach the HI levels 

associated with protection (reviewed in85). However, protective efficacy may not always be 

directly correlated with the level of circulating antibodies, as shown in challenge 

experiments in animal models. Despite inducing low HI titres after vaccination, a number 

of vaccines still induced a significant protection from disease and death in mice and 

ferrets38, 83, 86, 87. Thus, we need a better understanding of the correlates of protection to 

avian viruses to assess vaccine-induced immunity. It might also be valuable to study T-cell 

responses more thoroughly. Moreover, serological assays including HI, have suffered from 

variability between different laboratories, the lack of standardization and use of blood cells 

from different species, thus making comparisons between studies difficult88. At present, a 

human H5N1 plasma standard has been prepared by the National Institute for Biological 

Standards and Control (NIBSC) and the inclusion of this in assays will allow improved 

comparison between vaccine trials89.  

 

 53



5.Discussion 

5.1.2 Intramuscular vaccination induces high serum IgG antibody responses  
Parenteral injection typically induces primarily HA-specific IgG (reviewed in90), which 

dominated the response in the IM group in this study. Serum IgG antibody is highly 

specific and very effective in neutralizing homologous virus strains (reviewed in47). The 

kinetics of the serum antibody response of the two groups during this study was similar. 

After the first dose, the primary response for the IM vaccinated animals was more rapid 

and stronger than in the IN group. However, after two doses of vaccine both vaccine 

groups elicited high concentrations of IgG, although significantly higher levels were 

observed in the IM group throughout the whole study. The IgG levels remained high 12 

weeks after vaccination similarly to the HI titres, suggesting that both vaccine routes 

induced long lasting immunity. The induction of long lasting antibodies is interesting 

because previous pandemics appeared as waves of infection some time after the first 

outbreak91.  

 

 

Serum IgG is an important mediator in protection against influenza, and can transudate 

over the alveolar walls in the lungs61, although it can also leak to the mucosal surfaces in 

the upper respiratory tract. However, in studies in mice infected with seasonal influenza 

H1N1, serum IgG titres correlates with virus titres in lung washes, but not in the upper 

respiratory tract42, 92, thus indicating a more important role of immunity in the lower 

respiratory tract. Additionally, high IgG levels have been shown to limit viral shedding 

after infection of mice93. It has been reported by others that a concentration of 38 µg/mL 

serum IgG in aged mice resulted in undetectable viral titres of seasonal H1N1 in lung 

washes94 after challenge with live H1N1 virus. It is therefore essential that vaccination 

induces IgG which neutralize virus in the lower respiratory tract thus preventing more 

serious complications of infection like influenza pneumonia. Therefore, our results suggest 

that the both groups would have cleared an infection and that the mice would have been 

protected against illness and pneumonia. 

 

 

5.1.3 Antibody secreting cells in the spleen and bone marrow 
The initial humoral response occurs in the spleen, nasal associated lymphoid tissue 

(NALT) and lymph nodes, but at a later stage of the immune response about 2-3 weeks 

 54



5.Discussion 

after a viral infection long-lived antibody secreting cells (ASC) home to the bone marrow, 

where they secrete antibodies over a long period57. We generally observed differences in 

magnitude between the spleen and bone marrow in both groups, especially after the second 

dose. Similarly to the serum IgG concentrations, intramuscular vaccination induced 

significantly higher numbers of IgG ASC than the IN group in the spleen after one 

vaccination and by day four after the second vaccination. However, by three weeks after 

the second dose, the numbers were similar. High numbers of influenza specific IgM ASC 

were also detected in the IM group, and later in the IN group. The IgM ASC cells we 

detected in the control mice most likely belonged to the so-called B1 lineage cells which 

express natural non-specific antibodies95. In the bone marrow one dose of vaccine induced 

only low numbers of ASC in both groups, indicative of a poor primary B-cell stimulation. 

However, much higher numbers were detected directly (four days) and three weeks after 

the second dose, suggesting that an additional dose is needed for better priming.  

 

5.1.4 Intranasal vaccination induces significantly higher serum IgA concentrations 
than intramuscular vaccination 

In addition to IgG, vaccination also induced anti-HA IgA. Although IgA is associated with 

mucosal surfaces, it functions as a second line of defence in serum by eliminating 

pathogens that have breached through the mucosa96. IgA is not normally induced after IM 

vaccination42 and was not detected after one dose of IM vaccine. In the IN group, on the 

other hand, we detected serum IgA two weeks after the first vaccination. The secondary 

response in this group was more rapid and of a greater magnitude than the IM group. 

Serum IgA in the IM group was detected after the second vaccine dose, although it was 

only in low concentrations. Not surprisingly, the IN group had significantly higher 

numbers of IgA ASC in the spleen at all sampling points, indicative of a mucosal response 

and that the administration route is essential for IgA  production. Also in the bone marrow, 

IgA ASC were significantly higher in the IN group three weeks after the second 

vaccination.  

 

 

5.1.5 Intranasal vaccination induced a local IgA response after two vaccine doses 
Natural influenza virus infection induces secretory IgA (S-IgA) which is secreted over the 

mucosal surfaces in the respiratory tract by plasma cells within the lamina propria64, and 
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protects the epithelial surface which is the first target of influenza infection. We measured 

influenza-specific S-IgA from nasal washings (although we did not analyze for the 

secretory component), and found concentrations of S-IgA at or just above the detection 

limit after one dose of vaccine in both groups. After the second dose, there was a rapid 

increase in NW IgA in the IN group, which agrees with other studies of non-adjuvanted 

WIV vaccine70.  

 

In a murine study, it was found that a concentration higher than 15 ng/mL HA-specific IgA 

in nasal washes significantly correlated with reduced viral titres in nasal washes after 

influenza infection (H1N1)94. On the other hand, IgA in lung washes in the same study did 

not correlate with reduction in virus titres, confirming that S-IgA is secreted sparsely in the 

lower respiratory tract. However, these findings are dependent on the virus and if it 

produces a lower or an upper respiratory tract infection. If a concentration of 15 ng/mL can 

be applied to our results, the IN group would mainly have been protected from infection 

after two doses of vaccine. Nevertheless, a rapid decrease in IgA concentrations was 

observed after the peak magnitude of the response measured two weeks post second dose. 

Despite the fact that S-IgA was still measured at twelve weeks, the concentration had 

decreased by 6-fold, making it difficult to draw a conclusion as to how long the protection 

would have lasted. Furthermore, it might also be difficult to evaluate the protective effect 

of S-IgA alone against infection after vaccination because circulating immunity (serum 

IgG, IgA and IgM) is induced simultaneously and protection is multifaceted.  

 

Secretory IgA is remarkably stable and exhibits prolonged function in secretions, and in 

contrast to serum IgG, S-IgA has the unique property that it can recognize antigenically 

drifted strains and thereby induce heterosubtypic immunity (reviewed in47). It has been 

reported that in mice immunized intranasally with H3N2, 50% survived a H5N1 

challenge97. Therefore, the induction of S-IgA after vaccination is desirable. A noteworthy 

challenge with the H5N1 subtype is that the viruses have become phylogenetically 

different and are currently divided into 10 distinctive clades based on antigenic differences 

in the HA gene, and further into subclades98. Studies have shown that IN vaccines induce 

HI serum antibodies against both homologous and heterologous strains99, 100, findings that 

make intranasal vaccination very attractive.   
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Furthermore, most split and SU vaccines delivered intranasally are poorly immunogenic 

and requires an effective adjuvant (reviewed in 63). No mucosal adjuvants are currently 

approved for human use, the only inactivated IN vaccine formerly licensed was withdrawn 

from the market due to that the adjuvant E. coli heat-labile toxin was associated with cases 

of Bell’s Palsy (facial paralysis)40, 101. Thus there is a need for finding a safe and effective 

mucosal adjuvant and it has been reported that delivering the vaccine sublingually may 

reduce the risk of vaccine-induced paralysis102. However, in our study, we found that non-

adjuvanted WIV elicited a satisfactory mucosal response. Moreover, it would have been 

interesting to study the effect of lowering the antigen dose together with and without an 

effective adjuvant, given that dose sparing regimes are an important part of pandemic 

planning due to the limited capacity of the vaccine manufacturers.  

 

5.2 Cytokine responses and IgG subclasses 

There are no regulatory requirements for influenza vaccines to induce a cellular response, 

although cytotoxic T-lymphocytes are crucial in clearing viruses in the initial phase of 

infection (review in 48), and in the recovery of mice with influenza pneumonia50. 

Experimental infection results in a strong type 1 response (IgG2a and IFN-γ)93,103 and 

activation cytotoxic T-cells. In contrast, a type 2 response is associated with effective 

neutralization of virus59. In our study, intramuscular immunization elicited a strong IgG2a 

dominance (Th-1 profile) after one dose of vaccine, but we observed a more mixed 

Th1/Th-2 profile after the second dose. Similar results have been described in previous 

reports after WIV H7N1 and H5N1 vaccination77,76 and also after seasonal whole virus 

vaccines69, 70. The high level of IgG2a antibodies in the IM group suggest that 

intramuscular vaccination might be more potent in inducing antibody-dependent 

cytotoxicity (ADCC). 

Interestingly, despite being more similar to the route of natural infection, intranasal 

immunization elicited an IgG1 dominance (Th-2 profile) in both primary and secondary 

responses after vaccination. A Th-2 response is normally induced after subunit and split 

virus vaccine and can also be induced by adding aluminium adjuvant to the WIV vaccine, 

as reported by others76, 104, 105. Furthermore, a study conducted with intranasally 

administered WIV H1N1 resulted in a Th-1 response70. However, the latter used a different 

mouse model, and might not be comparable to our study. Moreover, we used a different 

HA subtype in our study.  
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The investigation of the cytokine profile was more complicated to interpret. As IL-4 and 

IL-5 are considered Th-2 markers, we would have expected that the IN group would have 

secreted higher amounts of these cytokines, as IL-4 is known to stimulate IgG1 production. 

Instead, we observed that the IM group secreted significantly higher levels of these 

cytokines. The IM group also secreted IL-10 and IFN-γ, confirming a mixed Th-1/Th-2 

profile as observed with the IgG subclass distribution, thus enhancing both cell mediated 

and humoral responses. Moreover, there was a higher production of IL-10 (which is 

considered a Th-2 cytokine) in the IN group. IL-10 has been found to induce class 

switching of antigen-specific B-cells to become IgA-committed plasma blasts (reviewed 

in64), thus enhancing the secretion of IgA and which was reflected by the high levels of 

serum and local IgA in this group. 

 

Although the IN group was characterized by a Th-2 profile according to the dominance of 

IgG1, we also found high concentrations of IFN-γ, indicating that there was potentially a 

cytotoxic response as well. Moreover, also the Th-1 cytokine IL-2 was secreted by this 

group. A major advantage of a cytotoxic response is that CTL are effective in clearing 

drifted viruses, their targets are not the surface proteins, but particularly the nucleoproteins 

and matrix proteins which are conserved between the influenza A strains106. Experimental 

H5N1 infection of mice also induced elevated levels of IFN-γ and IL-10107, and might 

suggest the response observed after IN vaccination is more similar to natural infection. 

IFN-γ has been shown to up-regulate the expression of the poly immunoglobulin receptor 

(pIgR) on epithelial cells108, thus enhancing secretion of locally produced S-IgA. 

Therefore, it would have been interesting to evaluate the cytokine response in the NALT or 

local lymph nodes after IN immunization, to assess if IFN-γ also was secreted at these 

immunological sites.   

 

It is noteworthy that a high concentration of IL-17 was secreted in the group vaccinated IN, 

whilst no IL-17 was detectable in the IM group. IL-17 is produced upon inflammation, and 

the high level can be explained by intranasal vaccination inducing a local inflammatory 

reaction. A Th-17 profile is advantageous because IL-17 stimulates recruitment of 

neutrophils which enhances phagocytosis of antigens. In addition, CD4+ cells secreting IL-

17 have been detected in the lung after influenza infection109, thus enhancing protection 

against influenza by the influx of neutrophils.  
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5.3 Conclusion 

In this study, we have demonstrated that there are the substantial differences in the 

immunological profiles after intramuscular and intranasal vaccination. An H5N1 

inactivated whole virus vaccine containing 7.5 µg HA induced a good systemic humoral 

immune response in both experimental groups after two doses, which would have fulfilled 

the CHMP criteria of an HI titre ≥40 for a seasonal vaccine in man. The IM group had a 

predominant Th-1 profile after one dose, but shifted to a more mixed Th-1/Th-2 profile 

after two doses, thus promoting a humoral response and potentially a cytotoxic response. 

On the other hand, the IN group displayed an overall Th-2 profile, but also secreted Th-1 

cytokines. In addition we measured high concentrations of IL-17 in this group, which 

stimulates phagocytosis by neutrophils. Finally, the IN group produced significant levels of 

S-IgA, which is crucial in preventing viral shedding in the upper respiratory tract.  

 

Both IgG and IgA antibodies are important in defence against influenza infection and we 

therefore suggest that the IN vaccine would be the best alternative for further research, as 

local IgA would provide the first line of defence and IgG would serve as a back-up if IgA 

should fail to prevent the infection. There is an urgent need to develop immunization 

strategies that will optimize protection in naive individuals, and a non-invasive vaccine 

would also be suitable in developing countries. Although, for a human application it might 

be easier to licence an intramuscular vaccine, since this is the conventional administration 

route. Regardless of this we suggest that the intranasal WIV vaccine should be further 

investigated as a pandemic candidate vaccine against influenza H5N1.  

 

Avian virus vaccines are poorly immunogenic, and here we have also demonstrated that 

the use of whole-virus vaccine can be dose-sparing, when comparing other studies using 90 

µg HA of split virus vaccine. Dose sparing is very important as the global vaccine supply 

will be limited in a pandemic110. Finally, all these vaccine studies conducted to date both in 

animal models and human clinical trials have allowed the world to be better prepared to 

effectively meet the current swine origin influenza A (H1N1) pandemic. 
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5.Discussion 

5.4 Further studies 

In our study we have evaluated the humoral and cytokine response to H5N1 WIV in a 

murine model. There are many further studies which could be conducted to evaluate this 

promising vaccine to evaluate in more detail the immune response. It would have been 

interesting to test the serum samples in an HI assay using different clades of viruses to see 

if the vaccine induced cross-reactive antibodies between strains, and also conduct a virus 

neutralising assay to homologous and heterologous strains.  

 

Furthermore, we could have tested the quality of the T cell response by studying 

multifunctional CD4+ T cells (secreting for example IFN-γ, IL-2 and TNF) from spleen, 

NALT and lymph nodes using flow cytometry. Vaccination induced Th-1 cytokines and 

therefore a CD8+ cytotoxicity assay could have been conducted to evaluate if there was a 

cytotoxic response.   

 

Dose sparing is an important part of pandemic planning and more work on testing different 

doses of haemagglutinin should be conducted, first of all lower doses. Also the use of good 

mucosal adjuvant could further have reduced the antigen dose for IN vaccination and 

enhanced the immune response. Next, the formulations should be evaluated in a lethal 

murine challenge model with homologous and heterologous strains to evaluate the 

protective efficacy at different doses. The vaccine should be further tested in other animal 

models, particularly the ferret, to confirm our findings in the murine model.  

 

We also suggest detailed evaluation of the immune response by evaluating the memory B 

and T-cell responses, as well as studying the long lasting local and systemic response after 

six and 12 months.  

  

The world is currently in the early stages of a pandemic and with our promising results 

using WIV, we would also suggest that evaluation of a pandemic H1N1 WIV vaccine is an 

important next step.    
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