
Analytical and numerical studies of fluid

reservoirs and fracture development in

heterogeneous rocks

Dissertation for the degree of Philosophiae Doctor (PhD)

Ingrid Fjeldskaar Løtveit

Department of Earth Science

University of Bergen

2009





Preface

This is my dissertation submitted as a partial fulfillment of the requirements for

the degree of Philosophiae Doctor in Geology at the Faculty of Mathematics and

Natural Sciences, University of Bergen. The majority of the work has been carried

out as a doctor student at the Department of Earth Science during November 2001

to August 2005, and more recently as an employee at International Research Insti-

tute of Stavanger (IRIS). Professor Agust Gudmundsson has been the supervisor

for this project, and the main funding has been provided by the Research Coun-

cil of Norway. The last part of the project has been supported by the Research

Council of Norway and StatoilHydro.





Outline

The thesis consists of two parts. The first part includes an introduction to the work,

with brief reviews of related topics and summaries of the papers. The second part

contains six research papers. Four of the papers are published in international

scientific journals, the last two are submitted or to be submitted.

The following research papers are included in the second part of the thesis:

Paper A: Propagation pathways and fluid transport of hydrofractures in
jointed and layered rocks in geothermal fields. Gudmundsson, A., Fjeld-

skaar, I. and Brenner, S. L., 2002. Journal of Volcanology and Geothermal
Research 116, 257-278.

Paper B: Fracture-generated permeability and groundwater yield in Nor-
way. Gudmundsson, A., Fjeldskaar, I. and Gjesdal, O., 2002. NGU Bulletin
439, 61-69.

Paper C: Effects of linking up of discontinuities on fracture growth and
groundwater transport. Gudmundsson, A., Gjesdal, O., Brenner, S. L.

and Fjeldskaar, I., 2003. Hydrogeology Journal 11, 84-99.

Paper D: Dyke emplacement in a layered and faulted rift zone. Gudmunds-

son, A. and Loetveit, I. F., 2005. Journal of Volcanology and Geothermal
Research Special Issue 144, 311-327.

Paper E: Propagation, deflection, arrest, and shape of hydrofractures in het-
erogeneous rocks. Løtveit, I. F., Gudmundsson, A. and Philipp S. L. To be
submitted.

Paper F: Effects of glacial erosion on the state of stress and fluid pressure
in petroleum reservoirs in the Barents Sea. Løtveit, I. F., Gudmunds-

son, A., Leknes, L., Riis, F. and Fjeldskaar, W. Submitted to Journal of the
Geological Society.



Parts of the results of this thesis were presented as the following talks and

posters:

Løtveit, I. F., Gudmundsson, A., Leknes, L., Riis F. and Fjeldskaar, W., 2009.

Abstract and oral presentation.
Effects of erosion on reservoir fluid pressure and fault reactivation in the

Barents Sea. EGU, Vienna, Austria, 19-24 April 2009.

Brenner, S.L., Gudmundsson, A. and Loetveit, I. F. 2004. Abstract and oral pre-
sentation.
Effects of mechanical layering on the emplacement of hydrofractures.

’Symposium Tektonik-Strukturgeologie-Kristallingeologie 10’, Aachen,

Germany, 31 March-2 April 2004.

Loetveit, I. F. and Gudmundsson, A., 2004: Abstract and poster.
Mechanical interaction between dykes and normal faults in volcanic rift

zones. EGU I, Nice, France, 25-30 April 2004.

Gudmundsson, A. and Loetveit, I. F., 2004. Abstract and poster.
Dyke emplacement, graben formation, and eruptions in composite volca-

noes. EGU I, Nice, France, 25-30 April 2004.

Gudmundsson, A. and Fjeldskaar, I., 2003. Abstract and invited lecture.
Effects of mechanical layering on dike emplacement, faulting, and surface

deformation in volcanic rift zones. AGU 2003 Fall Meeting, San Francisco,

8-12 December 2003.

Loetveit, I. F. and Gudmundsson, A., 2003. Abstract and poster.
Aperture variation and fault-dyke interaction during dyke propagation in

a layered rift zone. EGS-AGU-EUG Joint Assembly, Nice, France, 6-11

April 2003.

Fjeldskaar, I. and Gudmundsson, A., 2002. Abstract and oral presentation.
Propagation pathways and fluid transport in jointed and layered rocks. Eu-

ropean Geophysical Society, 27th General Assembly, Nice, France, 22-26

April 2002.



Acknowledgements

First, I would like to thank my supervisor, Agust Gudmundsson, for excellent

guidance along the way towards the submission of this thesis. He is a great source

of knowledge, and his enthusiatic and inspiring way of teaching have been of great

value to me.

The last part of this study was carried out at IRIS, supported by grants from

the Research Council of Norway and StatoilHydro, as a part of the project ’Ice

ages: subsidence, uplift and tilting of traps - the influence on petroleum systems’

(Petromaks project 169291; ’Glacipet’). I want to express my gratitude to the

Research Council of Norway and StatoilHydro for the support, and to IRIS for the

opportunity to finish up this thesis.

My thanks also go to former fellow students of Agust, my former colleagues

at Schlumberger Stavanger Research and my colleagues at IRIS for friendship and

support during each stage of the project.

Finally, I want to express my gratitude to family and friends for their patience

and support, especially my husband Arve, who has been a crucial support to me,

and my children Grethe and Sigurd, the sunshine(s) of my life.

Ingrid Fjeldskaar Løtveit

Sola, April 2009.





Contents

I Introduction and summary 1

1 General introduction 3
1.1 Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . 5

2 Rock fractures 7
2.1 Extension fractures . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Tension fractures . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Hydrofractures . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Shear fractures . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Fluid flow in fractures and faults 11
3.1 Fluid flow in a single fracture . . . . . . . . . . . . . . . . . . . . 12

3.2 Crack stress and opening displacement . . . . . . . . . . . . . . . 14

3.2.1 Mathematical crack model . . . . . . . . . . . . . . . . . 15

3.2.2 Elliptical hole model . . . . . . . . . . . . . . . . . . . . 18

4 Stress effects on fracture propagation 21
4.1 Local stress effects . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Regional stress regimes . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Stress regimes in Iceland . . . . . . . . . . . . . . . . . . 25

4.2.2 Stress regimes in Norway . . . . . . . . . . . . . . . . . 25

4.2.3 Stress effects of erosion . . . . . . . . . . . . . . . . . . 28

5 Numerical modelling 31
5.1 Elastic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Rock strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Summary of papers 37

7 Conclusions 49



II Papers 53

A Propagation pathways and fluid transport of hydrofractures in
jointed and layered rocks in geothermal fields 55

B Fracture-generated permeability and groundwater yield in Norway 79

C Effects of linking up of discontinuities on fracture growth and ground-
water transport 91

D Dyke emplacement in a layered and faulted rift zone 109

E Propagation, deflection, arrest, and shape of hydrofractures in het-
erogeneous rocks 129

F Effects of glacial erosion on the state of stress and fluid pressure in
petroleum reservoirs in the Barents Sea 153

References 175



Part I

Introduction and summary





Chapter 1

General introduction

The generation and maintenance of fracture-generated permeability depends on

two basic mechanisms; the formation of extension fractures and the formation of

shear fractures. Shear and extension fractures can be distinguished on the basis

of the relative displacement across the fracture plane. In a shear fracture the dis-

placement is parallel to the fracture plane, whereas in an extension fracture the

displacement is perpendicular to the fracture plane.

Shear fractures, or faults, commonly develop from smaller fractures, such

as sets of joints and extension fractures (Gudmundsson, 1992; Cartwright et al.,

1995; Acocella et al., 2000), and can be major conduits for crustal fluids (Bruhn

et al., 1994; Caine et al., 1996; Evans et al., 1997; Haneberg et al., 1999; Fay-

bishenko et al., 2000). Their influence on the permeability is controlled by the

present stress field. A change in the stress field may initiate and reactivate faults,

and thus increase the temporary average permeability of a site by several orders

of magnitude (Lee and Farmer, 1993; Gudmundsson, 2000b). In contrast, inactive

faults may have very low permeability (Braathen et al., 1999) and thus work as

barriers for the fluid flow in an area.

There are two types of extension fractures: tension fractures and hydrofrac-

tures. Tension fractures form when the minimum principal compressive stress is

negative and are thus mostly limited to shallow depths in areas undergoing active

extension, such as rift zones (Gudmundsson, 1992). Hydrofractures, however, can

form at any depth, and are thus of greater importance when it comes to permeabil-

ity than tension fractures. Hydrofractures are fractures generated by internal fluid

overpressure, that is, they are driven open by any kind of crustal fluid, such as

magma (dykes, sills and inclined sheets), geothermal water (mineral veins), oil,

gas, and groundwater (many joints). Results from analytical modelling show that

for a homogeneous host rock, the fluid overpressure in a hydrofracture generates

very high crack-tip tensile stresses that often exceed the tensile strength of the

host rock. It follows that hydrofractures are very important contributors to frac-
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ture network development, and hence to increase in the overall permeability. In

layered rocks, however, hydrofractures tend to be arrested, especially at contacts

between layers of contrasting mechanical properties. The conditions that favor

hydrofracture propagation, or arrest, are of vital importance for understanding the

development of fracture systems.

External horizontal crustal stresses are important contributors to fracture de-

velopment. Analytical models of unloading of the surface due to rapid erosion

and deglaciation, conditions likely to have been operative in Norway and adja-

cent areas during the Pliocene-Pleistocene, results in a surface-parallel compres-

sive stress that exceeds the vertical overburden stress. This compressive stress is

known to favour the development of exfoliation fractures parallel to maximum

principal stress, that is, parallel to the surface. Exfoliation fractures decrease

rapidly in frequency with depth, but will, if they become interconnected, con-

tribute significantly to bedrock permeability at shallow depths. In this thesis, the

possible propagation pathways of a hydrofracture are discussed, considering prop-

agation through homogeneous (Paper A-D) and layered (Paper A, B, D and E) host

rocks with vertical and horizontal discontinuities (Paper A-C), as well as faults

(Paper D).

The high compressive horizontal stresses associated with rapid glacial erosion

may also lead to the generation and reactivation of reverse faults, and contribute to

the linking up of fractures by faults. In the Norwegian part of the Barents Sea has

been regarded as a province of major petroleum potential. The general findings

are mainly gas reserves, the oil discoveries are mainly residual oil and therefore

not of commercial interest. It is believed that the Pliocene-Pleistocene erosion,

estimated at approximately 1-2 km (Berglund et al., 1986; Bjørlykke et al., 1989;

Wood et al., 1989; Vorren et al., 1991; Linjordet and Grung-Olsen, 1992; Nyland

et al., 1992; Riis and Fjeldskaar, 1992; Vågnes et al., 1992; Richardsen et al.,

1993; Rasmussen and Fjeldskaar, 1996; Cavanagh et al., 2006), has affected the

accumulation of hydrocarbons in the Barents Sea reservoirs (Nyland et al., 1992).

The stress effect of erosion on fluid reservoirs, with application to the Barents Sea,

is discussed in Paper F of this thesis.

The conditions for fracture development in relation to crustal fluid pressure

and transport have implications for many fields, such as petroleum (Paper F) and

geothermal (Paper A) exploration, volcanic risk assessment (Paper D) and ground-

water transport (Paper B and C). Because of this wide spectrum of implications, a

relatively detailed introduction follows in the first part of this thesis. The section

below provides the basic motivation and the corresponding objectives for the re-

search. Geologic and mechanical concepts related to propagation and fluid flow in

rock fractures are reviewed in Chapter 2-4, followed by a brief description of the

numerical methods used in Chapter 5. A summary of the main results and some

main conclusions are given in Chapter 6 and 7 of the first part of this thesis. Part
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II presents the scientific papers resulting from this study.

1.1 Motivation and objectives
The principal aim of this thesis is to contribute to improved understanding of the

effects of stresses on permeability, interconnection of fractures, and fluid flow in

fractured rocks, with application to fluid-filled reservoirs.

The results are important for many applied and academic fields, including:

• Petroleum exploration and production

• CO2 storage

• Groundwater supply

• Geothermal exploration

• Volcanic risk

• Nuclear waste disposal





Chapter 2

Rock fractures

The term ’rock fracture’ refers to any significant mechanical break in the rock that

is primarily of tectonic origin. Fractures are the most common structures in the

brittle part of the lithosphere. The term ’crack’ is commonly used in models of

rock; for example as regards the displacement of the fracture surface. Based on

the deformation mechanism, there are three modes of cracks (Fig. 2.1). Mode

I is the opening or tensile mode, where the crack surfaces move directly apart,

producing tensile or extension fractures that develop perpendicular to the direction

of minimum stress. Mode II represents the sliding or in-plane shear mode. The

crack surfaces slide past one another in a direction perpendicular to the leading

edge of the crack. Mode III is the tearing mode, where the crack surfaces move

relative to one another and parallel to the leading edge of the crack. Mode II and

Mode III represent shear fractures (Atkinson, 1987; Engelder, 1993; Hudson and

Harrison, 1997; Broberg, 1999).

2.1 Extension fractures

2.1.1 Tension fractures

One of the two main types of extension fractures is the tension fracture. A tension

fracture is generated when there is an absolute tension in the crust, that is, when

the minimum compressive stress is negative. Thus they are most common in areas

undergoing active extension, such as in rift zones and grabens at divergent plate

boundaries. A tension fracture can only form close to or at the surface; below a

certain crustal depth, a tension fracture must change into a shear fracture, that is,

a normal fault. Based on the Griffith failure criterion the maximum depth, dmax,

to which a tension fracture can propagate before it changes into a normal fault is

(Gudmundsson, 1992, 1999):
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Mode I Mode II Mode III

Figure 2.1: The three basic modes of cracks used based on the displacement mechanism.
Mode I is the opening or tensile mode, Mode II is the sliding or in-plane shear mode, and
Mode III represents the tearing mode (modified from Twiss and Moores, 1992).

dmax =
3T0

ρrg
(2.1)

where T0 is the tensile strength of the rock, ρr is the rock density and g is the

acceleration due to gravity.

The resulting normal fault may have a large opening at the surface, due to the

fact that its near-surface part may be subject to absolute tension. They may trans-

port large volumes of fluids, so they may be very important for the permeability

in areas of absolute tension. Equation 2.1 is applied to tension fractures in typical

Norwegian bedrock in Paper B, and to a tension fracture in a basaltic host rock in

Paper C.

2.1.2 Hydrofractures
Hydrofractures are fractures partly or entirely generated by internal fluid pressure

from crustal fluids such as gas, oil, magma, geothermal water or groundwater.

They include dykes, sills, inclined sheets, mineral veins and many joints, as well

as hydraulic fractures, which are fractures made with the purpose of increasing

reservoir permeability. In some hydrofractures, the fluid that formed the fracture

disappeared after formation. This is the case for many hydrofractures formed by

the fluid pressure from gas, oil and groundwater, and is presumably the process

behind the generation of many joints (Secor, 1965). In dykes, sills, inclined sheets

and mineral veins, however, the fracture-generating fluid solidified in the fracture

once it was formed.
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Most hydrofractures are Mode I cracks, that is, extension fractures (Gud-

mundsson et al., 2001) that propagate in a direction parallel to the maximum

compressive principal stress and perpendicular to the direction of minimum com-

pressive stress. They are normally initiated when the internal fluid excess pressure

(in excess of the minimum principal compressive stress) exceeds the tensile stress

of the rock.

The fluid pressure that drives a hydrofracture open is the internal fluid over-

pressure, P0, defined as:

P0 = Pt − σn (2.2)

Here, Pt is the total fluid pressure and σn is the normal stress on the hydrofracture.

Since most hydrofractures are extension fractures the normal stress is equal to the

minimum compressive principal stress, σ3. ’Overpressure’ is a well established

term (Heimpel and Olson, 1994; Bonafede and Rivalta, 1999a,b). However, it is

also referred to as driving pressure or driving stress (Pollard and Segall, 1987) or

as net pressure. Fluid overpressure, as used here, should not be mixed up with

abnormal pore formation pressure. In the latter case the the hydrostatic pressure

usually is regarded as normal, and pressures below and above this state are referred

to as subnormal and supernormal, respectively (Selley, 1998).

As long as the internal fluid overpressure exceeds the tensile strength of the

host rock, hydrofractures will keep propagating and form their pathways by link-

ing up discontinuities ahead of their tips. ’Discontinuities’ refers to any mechan-

ical breaks or fractures of low or zero tensile strength in the rock (Priest, 1993),

and include contacts, joints, faults and other zones of weakness. The hydrofrac-

ture pathway is therefore largely determined by the stress field ahead of its tip. A

discontinuity in a favourable orientation to the present stress field has commonly a

tendency to maintain a certain discontinuity-parallel permeability (Gudmundsson

et al., 2001).

2.2 Shear fractures

A fracture where the relative displacement is parallel to the fracture plane is called

a shear fracture, or a fault if the displacement is large. Faults strongly influence

the permeability of a host rock (Barton et al., 1995; Finkbeiner et al., 1997; Gud-

mundsson, 2000b; Gudmundsson et al., 2001) and are commonly major conduits

of water (Bruhn et al., 1994; Caine et al., 1996; Evans et al., 1997; Haneberg et

al., 1999; Faybishenko et al., 2000).

Faults may initiate at small-scale shear fractures, or more commonly develop

during the linking up of small fractures of various types. They normally grow by
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linking up of gradually larger segments. These segments may be offset joints, as

discussed in Papers B and C.

Hydrogeologically, large fault zones are made up of two units; the fault core

and the damage zone. The fault core mainly consists of breccia or gouge. The

damage zone normally consists of numerous fractures of various sizes (Bruhn et

al., 1994; Caine et al., 1996; Evans et al., 1997; Seront et al., 1998), where the

fluid transport occurs through the network of the fractures that are interconnected

(Caine et al., 1996; Sibson, 1996). The permeability of the fault core is normally

significantly less than that of the damage zone, which generally is the main con-

duit for fluid flow in a fault zone. This may be due to occurrence of gouge, a very

fine grained material that forms due to frictional sliding and pulverisation during

fault slip, or slickensides, glass surfaces that form due to grain melting during

fault slip, both of which reduce the permeability of the fault core, in particular

the permeability perpendicular to the fault plane. Slickensides may, however, also

increase the permeability parallel to the slip surface as a result of mismatch of the

smooth walls.

Fault slip most commonly occurs at the contact between the damage zone and

the fault gouge or breccia of the fault core. This is partly due to the minimum

sliding friction between two layers of very different mechanical properties (Nel-

son, 1985) and partly due to stress concentrations that occurs at contacts where

there is a sharp contrast in elastic properties. During slip the pores and small

fractures that meet with the fault plane interconnect, so that the overall fault, par-

ticularly the fault core, suddenly experience a significant increase in permeability

(Gudmundsson, 2000b).

The activity, and the permeability, of a fault zone are controlled by the current

stress field, and the angle that the fault makes to the principal stress directions.

The permeability of the damage zone may also be strongly affected by the stress

field as the majority of the fractures are extension fractures oriented subparallel to

the fault plane (Gudmundsson et al., 2001). Thus when the maximum principal

compressive stress is at a high angle to the fault plane, many fractures in the

damage zone tend to close and reduce the fluid transport. When, however, the

maximum principal compressive stress makes a small angle with, or is parallel to,

the fault plane, fractures in the damage zone tend to be open and increase the fluid

transport.



Chapter 3

Fluid flow in fractures and faults

Permeability is a measure of how easily fluid flows through the rock. In porous

media, the permeability is determined by the interconnection of pores. In solid

rock, however, the porosity is normally quite low, due to diagenesis processes

such as compaction and cementation, so that the fluid transport mainly takes place

through interconnected fractures (Nelson, 1985; Singhal and Gupta, 1999). This

chapter presents some physical principles related to fracture-generated permeabil-

ity, including analytical models on the volumetric flow rate of the fluid flow in

fractures, as well as analytical models on the crack tip stresses and aperture asso-

ciated with overpressured fractures.

All transportation of fluid in rocks originates from a primary fluid source, and

ends up as the fluid gets trapped underneath a low-permeable rock layer and ac-

cumulates in a reservoir, or as it reaches the surface. The source rock of hydrocar-

bons is most commonly organic rich sedimentary rock. The detailed mechanism

of the transport of hydrocarbons from the source rock is poorly understood, but it

is suggested that hydrofractures play an important role in migration hydrocarbon

(e.g. Iliffe et al., 1999; Nunn and Meulbroek, 2002). Groundwater and geother-

mal water originate from the precipitation at the Earth’s surface (Domenico and

Schwartz, 1998), and the source rock is the aquifer that transports water from the

catchment area to the reservoir. The primary source of magma is in the upper

part of the mantle, where partial melting takes place (Gudmundsson, 2000c; Sig-

urdsson et al., 2000). The term ’fluid source’ generally refers to a zone of fluid

accumulation.

Consider a fluid source, any kind of fluid reservoir, subject to a fluid excess

pressure pe, defined as the pressure in excess of the minimum compressive (max-

imum tensile) principal stress, σ3, in the roof of the reservoir. The roof of the

reservoir will rupture and initiate a hydrofracture when:

pl + pe ≥ σ3 + T0 (3.1)
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Figure 3.1: Models of a vertical fluid-filled fracture supplied from a fluid source. The
aperture, b, the width, W , the excess fluid pressure, pe, and the volumetric flow rate, Q,
are indicated. Model A refers to a rigid host rock, and B to an elastic host rock.

where pl is the lithostatic stress at the depth of the reservoir, and T0 is the in situ

tensile strength of the host rock at the roof of the reservoir.

Once a hydrofracture has been formed, and made its pathway by linking up of

discontinuities in the host rock, the volumetric rate of flow can be estimated.

3.1 Fluid flow in a single fracture

Flow along a single fracture can be modelled by using a special solution of the

Navier-Stokes equations for flow between parallel plates. In hydrogeology, it is

commonly referred to as the cubic law (Bear, 1993), because the volumetric flow

rate is assumed to be proportional to the cube of the fracture aperture.

During the propagation of a hydrofracture, the host rock can respond in two

ways; as rigid or as elastic (Fig. 3.1). In a rigid host rock, the fracture is entirely

selfsupporting and non-deforming. The assumption of a rigid host rock is com-

monly made when modelling groundwater flow in fracture systems in the upper-

most part of the crust (Bear, 1993; Taylor et al., 1999). At deeper levels, however,

the host rock is likely to deform in an elastic way in response to the changes in

fluid pressure.

The volumetric flow rate through a selfsupporting vertical fracture (denoted

by superscript s) in a rigid host rock, as shown in Figure 3.1 (Model A), is given
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by (Gudmundsson, 2001):

Qs
y =

b3W

12μ

[
(ρfg) − δpe

δy

]
(3.2)

where b is the fracture aperture, W the width of the fracture in a direction perpen-

dicular to the flow direction, μ the dynamic (absolute) fluid viscosity, ρf the fluid

density, g the acceleration due to gravity, and δρe/δy the gradient of the excess

pressure in the direction of flow.

For an elastic host rock, where the fracture walls are free to deform during

fluid transport, a buoyancy term must be added to Equation (3.2). This is because

the weight of the rock above the reservoir must be supported by its internal fluid

pressure, and because the different densities of the host rock, ρr and the fluid

ρf . The volumetric rate of fluid flow in a vertical elastic fracture (denoted by

superscript e) (Model B in Fig. 3.1) then becomes:

Qe
y =

b3W

12μ

[
(ρr − ρf )g − δpe

δy

]
(3.3)

For non-vertical fractures, such as shear fractures and faults, with a certain dip

angle α, Equation (3.2) and Equation (3.3) is modified by taken into account the

component of gravity in the dip direction, gsinα (Gudmundsson, 2001). Equation

(3.2), the volumetric flow rate of fluid flow in a non-vertical fracture in a rigid host

rock, then becomes:

Qs
L =

b3W

12μ

[
(ρfg sin α) − δpe

δL

]
(3.4)

where δL is the part of the dip dimension of the fracture along which the fluid

flows at a volumetric rate QL. For non-vertical fractures in an elastic host rock,

the volumetric flow rate of fluid flow is then:

Qe
L =

b3W

12μ

[
(ρr − ρf )g sin α − δpe

δL

]
(3.5)

In Equations 3.2 - 3.5, the fluid flow in a single fracture is calculated. This is

commonly a reasonable approximation for fluid flow in a cluster of interconnected

fractures, as it may act both mechanically and hydraulically as a single fracture.

For a fault zone, modelling fluid flow through a single fracture applies for the

whole fault zone during slip, whereas during interseismic periods this only applies

to the damage zone. The core may then be considered as a porous medium, so

that the fluid flow through this part of the fault can be modelled using Darcy’s

law on fluid transport in porous media (Caine et al., 1996). However, the previous

analytical solutions for fluid flow can easily be extended to equations for fracture
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Figure 3.2: In an elastic host rock, cracks are modelled having one of three basic shapes.
A and B are interior cracks, C is a through crack and D is a part-through crack (Gud-
mundsson, 2000a).

sets (Bear, 1993), which may apply to parallel set of fractures in near surface-

conditions and away from large fault zones (Singhal and Gupta, 1999).

Equations 3.5 and 3.3 have been applied in Paper A of this thesis, for esti-

mation of the dimension of a hydrofracture network, conceptualised as a single

hydrofracture, based on measured volumetric flow rates of a typical hot spring in

Iceland.

The aperture, b, in Equations 3.2 - 3.5 is assumed constant, whereas in an

elastic host rock it would normally depend on the fluid pressure of the fracture

and the state of stress in the host rock. The effect of fluid overpressure on the

fracture aperture is discussed in the following section.

3.2 Crack stress and opening displacement

Based on how they appear in the solid layer that hosts them, cracks can be put

into three main categories or types (Fig. 3.2). The first type includes cracks that

are located in the interior of an elastic layer, and do not propagate to any of the

surfaces of the layer. These are normally referred to as elliptical interior cracks or

’penny-shaped’ cracks. In the second type, the cracks extend partly into the thick-

ness of the hosting layer and are referred to as part-through or ’thumbnail’ cracks.

The third type is cracks that extend through the whole hosting layer. Cracks of this

type are called ’through-the-thickness’ cracks, through cracks or tunnel cracks.

For the growth of a fracture to be possible, the tensile stresses at its tip must

exceed the tensile strength of the rock. To calculate crack-tip stresses and aperture
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x

Figure 3.3: A three-dimensional mathematical crack located along the vertical y-axis,
where σ3 is the stress inside the crack tips, Δu is the aperture of the crack, and 2a is the
total length of the crack.

associated with a fracture subject to a certain internal fluid pressure, the fracture

can be modelled either as a flat elliptical hole, or as a mathematical crack of zero

aperture. In both models the fluid-filled fracture is regarded as an interior crack

in a homogeneous host rock. These models are the basic models for analysing

hydraulic fracturing in the petroleum industry (Valko and Economides, 1995),

and are also widely used in fracture models in general (Maugis, 2000; Jaeger et

al., 2007).

3.2.1 Mathematical crack model

First consider fluid-filled fracture modelled as a two-dimensional mathematical

crack located on the vertical y-axis and defined by x = 0,−a ≤ y ≤ a, as shown

in Figure 3.3. The fracture is subject to an internal fluid pressure given by the

even function p(y) = p(−y), so that the pressure is the same on the fracture walls

on either side of the x-axis.

The general solution procedure for the tip stresses and the opening displace-

ments of elastic cracks has been summarised by Sneddon and Lowengrub (1969),

Valko and Economides (1995) and Maugis (2000). Most authors provide the spe-

cific solutions for a constant fluid overpressure, but few have considered solutions

of a linear pressure gradient. In this thesis, both types are considered, though

the focus is on the stresses and displacements associated with linear overpressure
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gradients, as these may be expected in many propagating natural hydrofractures.

The general solution for normal displacement of the crack walls u = ux(y, 0)
in the x-direction is:

u =
4(1 − ν2)

πE

∫ a

y

tq(t)dt

(t2 − y2)1/2
(3.6)

where:

q(t) =
p(y)dy

(t2 − y2)1/2
, for 0 < t < a (3.7)

E is Young‘s modulus, describing the stiffness of the host rock, ν is Poisson’s

ratio and y is the coordinate along which the fracture is located.

Since most natural hydrofractures are pure extension fractures (Gudmundsson

et al., 2001), the normal stress on the hydrofracture is the minimum principal

compressive stress, σ3. Inside the crack σ3 = −p(y), for 0 ≤ y ≤ a, and outside

the crack tips, for y > a, the stress σ3(y, 0) is:

σ3 = −2y

π

∫ a

0

tq(t)dt

(y2 − t2)1/2
(3.8)

Consider the case of a constant overpressure where p(y) = P0, as is used

for the boundary-element models in Paper D. By substituting this in Equation

(3.7), we get q(t) = P0π/2. The normal displacement of the crack walls for a

hydrofracture subject to constant fluid overpressure then becomes:

u =
2(1 − ν2)P0

E
(a2 − y2)1/2 (3.9)

The opening or the aperture of the fracture, b = Δu, is twice the normal dis-

placement, so that Δu = 2u. The result of Equation (3.9) implies that a fracture

in a homogeneous, isotropic rock is elliptical in shape (Sneddon and Lowengrub,

1969; Gudmundsson, 2000b). The maximum tensile principal stress outside the

crack tips can be obtained from Equation (3.8) by substituting q(t) = P0π/2 from

Equation (3.7):

σ3 = −P0y

[
1

(a2 − y2)1/2
− 1

x

]
(3.10)

If y → a, when the tip of the hydrofracture is approached from outside the tip,

then σ3 → −∞, that is, the tensile stress becomes infinite.

A linear variation in fluid pressure, which is assumed common in hydrofrac-

tures, is used in the boundary-element models in Papers (A, B and C). There are

at least three factors that lead to a variation in the internal fluid pressure. First,

there is a difference in density between the fluid and the host rock. The host rock
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commonly behaves elastically and a buoyancy term has to be added to the over-

pressure. Secondly, there are changes in the stress acting normal to the fracture.

This stress depends on Young‘s modulus and Poisson‘s ratio, and it follows that in

a layered crust the stress can vary considerably. Thirdly, the overpressure depends

on the dip of the hydrofracture. Normally, the hydrofracture is propagating in a

direction that is normal to σ3, but it is also common that a hydrofracture follows

weaknesses in the rock that are oblique to σ3 so that the normal stress becomes

higher and the fluid overpressure lower.

Consider a line crack where the fluid overpressure p(y) varies from a maxi-

mum value P0 at the centre of the crack by a linear gradient p1y towards the tips:

p(y) = P0 + p1y (3.11)

By using this equation, the aperture b = Δu = 2u can be obtained from Equations

(3.6) and (3.7) as:

Δu =
4(1 − ν2)

E

[
P0m +

p1

π

(
am + y2ln

a + m

y

)]
(3.12)

where:

m = (a2 − y2)1/2 (3.13)

and a is half the fracture length. Equation (3.12), which represents the aperture

variation for a fracture subject to linearly varying fluid overpressure, is far more

complex than Equation (3.9) for constant overpressure. By plotting the aperture

as a function of y, the result shows a smooth curve variation not unlike an ellipse.

Both a constant overpressure and linearly varying overpressure for a hydrofracture

in a homogeneous, isotropic rock yield smoothly varying and similar opening

displacement profiles. Maximum principal tensile stress outside the crack tips is

derived from the Equations 3.7 and 3.8:

σ3 = −2p1

π

[
ya

(y2 − a2)1/2
− y arcsin

a

y

]
(3.14)

This illustrates that when y → a, the hydrofracture being approached from outside

the tip, the maximum tensile principal stress becomes infinite, σ3 → −∞. For the

mathematical models used here the tensile stresses will approach infinity or be

very high, whether the fluid overpressure is constant or varying linearly.

In Paper E the opening displacement profiles resulting from a constant, linear

as well as a polynomial varying fluid overpressure are presented. The results

indicate that all three types of overpressure variations within a hydrofracture yield

similar aperture shapes, but different aperture sizes.
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3.2.2 Elliptical hole model

The hydrofracture can also be modelled as an elliptical hole. The major axis is

2a and the minor axis 2u, so that 2u is the aperture. When the hydrofracture is

subject to a constant fluid overpressure P0, the minimum principal stress σ3 at the

tips is:

σ3 = −P0[
2a

u
− 1] (3.15)

If the crack tips are exposed and measurable in the field, the crack-tip tensile stress

can be calculated from the radius of curvature of the tip. If the radius of curvature

is rc = u2/a, the formula is given by:

σ3 = −P0[2(a/rc)
1/2 − 1] (3.16)

The crack stress calculations, whether they are based on the mathematical

crack model or the elliptical hole model, show that for a homogeneous host rock

the crack tip tensile stresses are very high, or reaches infinity. Infinite stress is,

however, never reached in the host rock, as plastic deformation and microcrack

opening at the hydrofracture tip will relief part of the stress.

In the models for fluid flow, aperture and crack stress, the fractures are ide-

alised, as having smooth shapes. By contrast, all natural fractures have irregular

opening profiles. Variations in fracture aperture are important factors for the fluid

transport in fractured reservoirs, this follows because the fluid flow tends to con-

centrate on those parts of a fracture where the aperture is largest, often referred to

as flow channelling (Tsang and Neretnieks, 1998).

In nature, both extension fractures and shear fractures may be filled with sec-

ondary minerals, such as quartz, zeolite or calcite, which affect their ability to

transport fluids. Fractures completely filled with minerals are normally imperme-

able and thus barriers to flow, whereas partly mineral-filled fractures (Fig. 3.4),

may contribute positively to the permeability. This is partly due to channels within

the mineralised fracture, and partly because the mineral infills increase the stiff-

ness of the fracture and thus its resistance to closure during normal compression.

In carbonate rocks, the fracture geometry of extension and shear fractures may

also be affected by dissolution, resulting in vuggy fractures (Aguilera, 1995). Due

to dissolution, normally by acid fluids, of the fracture walls, the shapes of vuggy

fractures are circular or elliptical in plan view (Fig. 3.5). In three dimensions they

normally have geometry of a sphere or an ellipsoid, which makes them highly

resistant to normal compression and subsequent closure. This means that their ap-

pearance highly increase the permeability of carbonate rocks. Thus, the subject of

dissolution is of crucial importance when dealing with permeability in carbonate

reservoirs.
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Fracture apertures, and fracture propagation, also depend greatly on the me-

chanical properties, as well as local and regional stress fields operating on the host

rock. These important factors are discussed in the following chapter.

Figure 3.4: Partly mineralised and crystallised fracture. View northwest.



20 Fluid flow in fractures and faults

Figure 3.5: An original extension fracture cutting through a succession of limestone and
shale has resulted in vuggy fractures after being subject to dissolution at Lavernock Point,
South Wales. The limestone layers are the ones most affected by dissolution. The length
or dip dimension of the extension fracture is approximately 50 cm.



Chapter 4

Stress effects on fracture
propagation

4.1 Local stress effects

Based on the analytical expressions on crack tip stresses provided in the previous

chapter (Eqs 3.8, 3.10, 3.14, 3.15 and 3.16), it is expected that all fractures sub-

ject to internal fluid overpressure will continue their propagation all the way to

the surface. Field studies, however, indicate that most hydrofractures never reach

the surface, but rather become arrested at various depths in the crust (e.g. Baer,

1991; Gudmundsson, 1999; Marinoni and Gudmundsson, 2000; Gillespie et al.,

2001; Gudmundsson et al., 2001). The propagation of fluid-filled fractures is de-

pendent on the homogeneity of the host rock, and thus the absence of conditions

favourable for arrest, that is, abrupt changes in mechanical properties, horizontal

discontinuities, and stress barriers.

One of the most important mechanical properties that affect the propagation of

a fluid-filled fracture is the stiffness of the host rock, that is, the Young’s modulus,

E (cf. Chapter 5.1). Layers with high Young’s modulus are often referred to as

stiff, whereas layers with low Young’s modulus are referred to as compliant or

soft.

The conditions favourable for arrest are very common in mechanically lay-

ered rock masses, where hydrofractures commonly become arrested at contacts

between stiff and soft layers. The stiff layers tend to magnify the crack tip tensile

stresses associated with the propagating hydrofracture, whereas soft layers tend

to suppress the tensile stresses (Gudmundsson et al., 2001). Thus, the soft layers

tend to favour hydrofracture arrest. Experiments on man-made hydraulic fractures

confirm that soft layers are commonly more effective in stopping fractures than

stiff layers (Charlez, 1997; Yew, 1997).
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Figure 4.1: Hydrofractures propagating through a mechanically layered sedimentary
rock of alternating stiff limestone and soft shale layers, near to Llantwit Major, South
Wales. Due to the low or zero tensile strength of the soft shale layer, the hydrofractures
must follow shear fractures to continue their propagation as they enter the shale.

In addition, contrasting mechanical properties greatly affect the aperture of a

hydrofracture. In soft layers, the aperture is normally larger than in stiff layers.

This follows because soft layers are likely to deform rather than sustain stress, due

to low tensile strength. The resulting aperture variation in mechanically layered

rocks lead to flow channelling (Tsang and Neretnieks, 1998), and may be de-

scribed analytically by an irregular fluid overpressure variation based on Fourier

series (Kusumoto and Gudmundsson, 2009).

Very soft layers commonly have very low, or no, tensile strength, and may to

some extent behave ductile. However, they normally have shear strength, and may

thus respond to stresses, such as those associated with a propagating hydrofrac-

ture, by shear failure. A propagating hydrofracture is therefore likely to change

its vertical direction and follow an inclined shear fracture, when entering a signif-

icantly soft rock layer (Fig. 4.1).

Horizontal discontinuities, such as weak contacts (referring to contacts with

low or no tensile strength), often occur in layered rocks. The opening up of weak

contacts, such as due to an approaching hydrofracture, is mainly due to downward

deflection of the lower wall, whereas the upper wall remains straight, a geometry

related to the Cook Gordon mechanism for stopping cracks (Cook and Gordon,
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Figure 4.2: A hydrofracture has joined with a weak horizontal contact resulting in a
T-shaped fracture. The steel tape has a length of 50 cm.

1964; Atkins and Mai, 1985). If a hydrofracture link up with such a contact,

it may open up to form a T-shaped fracture (Valko and Economides, 1995), as

shown in Figure 4.2 .

Stress barriers are rock bodies with local stress fields that are unfavourable to

the propagation of the considered type of fractures, whether they are shear frac-

tures or extension fractures (Gudmundsson, 2002). They are particularly com-

mon in mechanically layered rocks, where they determine whether hydrofractures

become restricted to single layers or not, and thus whether a vertically intercon-

nected fracture network develops. Hydrofractures are generally vertical, so that

the stress field working normal to the fracture walls are considered stress barriers.

When subject to horizontal extension, the stiff layers in the rock mass are likely to

favour the initiation and propagation of hydrofractures, whereas the soft layers are

likely to suppress the stress and favour arrest (Gudmundsson and Brenner, 2001).

For a layered rock mass subject to a horizontal compressive stresses, the stiff

layers tend take up most of the compressive stress, becomes highly stressed, and

are thus likely to suppress the crack tip tensile stress of a propagating hydrofrac-

ture (Gudmundsson, 1990; Gudmundsson and Brenner, 2001). The stiff layers

may then act as stress barriers and cause hydrofracture arrest. The mechanisms

for arrest and deflection of hydrofractures are discussed in Paper E of this thesis.

There are also mechanisms that may change the stress condition so as to
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become favourable for hydrofracture propagation. Gudmundsson and Brenner

(2001) have suggested that a homogenisation of the stress field favour further

propagation of hydrofractures.

For faults and shear fractures, stress fields unfavourable for slip are normally

the ones with low angle to the fault plane. Large fault zones, however, are likely to

experience a local rotation of the stress field within the damage zone. This follows

because the observed increase in fracture frequency with decreasing distance to

the fault core (Gudmundsson, 2004; Faulkner et al., 2006) lead to a gradual change

in the elastic properties of the damage zone (Heap and Faulkner, 2008). This

gradual change in elastic properties results in a gradual rotation of the stress field,

so that the local stress field close to the fault core may become more favourable

for fault slip than the regional stress field (Faulkner et al., 2006).

4.2 Regional stress regimes

The current stress field largely controls fluid flow in, and therefore the permeabil-

ity of, fractured reservoirs (Faybishenko et al., 2000; Gudmundsson, 2000a). This

follows because fractures are sensitive to changes in the stress field and deform

much more easily than circular pores, and because the stress field contributes to

the fluid overpressure (cf. Eq. 2.2 in Chapter 2.1.2).

Information on the present day stress field can be obtained by various different

stress indicators sampled in different depth intervals. The most widely used indi-

cators are earthquake focal mechanisms, well bore breakouts and drilling-induced

fractures, in-situ stress measurements and young geologic data, all of which are

collected and added to the World Stress Map project database (www.world-stress-

map.org).

Determining an earthquake focal mechanism solution includes the use of P-

wave first-motion polarities. When these are recorded at a number of seismograph

stations in a stereographic plot, the two nodal planes can be defined; one of them

is the fault plane and the other an auxiliary plane with no geological significance

(Shearer, 1999). A preferred orientation of earthquake faults can be can give

information on the orientation of the regional stress field in the seismogenic part

of the crust.

Well-bore breakouts develop in a direction parallel to the minimum horizontal

stress axis, σh, if the tangential stress at the borehole wall overcomes the compres-

sive (or shear) strength of the rock. From this, information on the orientation of

the maximum horizontal stress, σH , can be inferred (Zoback et al., 1985; Amadei

and Stephansson, 1997; Zoback, 2007). Normally, borehole breakouts can give

information on the in situ stress field at depths of 1-4 km, in some cases to greater

depths (Zoback et al., 1989). Drilling induced fractures occur at an angle of 90o
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to the well bore breakouts, and thus infer the orientation of maximum horizontal

stress, SH (e.g. Brudy and Kjørholt, 2001).

Hydraulic fracturing is a technique frequently used by the petroleum industry

to increase reservoir permeability and to determine the in-situ stress field. Dur-

ing the experiment, a depth interval of the wellbore is isolated by packers and

pressurised by injected fracturing fluids until an extension fracture develops in

the direction of maximum horizontal stress, σH . The shut-in pressure, that is, the

pressure required for keeping a fracture open, is assumed equal to the minimum

principal horizontal stress, σh, whereas the maximum horizontal principal stress,

σH , is found from the breakdown pressure, which is the fluid pressure at which

the fracture developed (Kim and Franklin, 1987).

Paleo-stress fields can be determined from hydrofractures and fault slip data

(slickensides) to support analyses of geological structures. Hydrofractures are

mostly pure extension fractures, that is, they generally form in a direction that

is perpendicular to the minimal principal stress and thus parallel to the other two

principal stresses. Slickenside lineations provide the direction and sense of motion

on individual fault planes (Angelier, 1984; McClay, 1987).

Earthquake focal mechanisms together with in-situ measurements are the

most important sources of information on trends and magnitudes of the principal

stresses. The in-situ stress field in an area is composed of plate-wide continental

stresses influenced by regional and local effects. In this thesis, the theoretical and

general study on fracture-generated permeability has been applied to Iceland and

Norway.

4.2.1 Stress regimes in Iceland

Iceland is situated on the Mid Atlantic Ridge, at the divergent plate boundary

between the North America plate and the Eurasian plate. Thus the regional stress

regime in Iceland is clearly extensional, resulting in active rift zones and transform

zones associated with massive volcanism and seismicity. Angelier et al. (2004)

reconstructed the regional stress regimes in Iceland based on stress inversions of

earthquake focal mechanisms from 126,588 earthquakes, recorded from July 1991

to July 1999 (Fig. 4.3).

4.2.2 Stress regimes in Norway

The in-situ stress field in Norway (Fig. 4.4) is affected by several regional stress

generating mechanisms, that is ridge push, post-glacial uplift, and erosional un-

loading and loading (Bungum et al., 1991; Byrkjeland et al., 2000; Fjeldskaar et

al., 2000; Hicks et al., 2000).
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Figure 4.3: Overview of the regional stress regimes in Iceland based on stress inversion
of earthquake focal mechanisms. From Angelier et al. (2004).

The ridge push is a combination of gravitational force and horizontal compres-

sive stress generated by dyke injections originating from the Mid-Atlantic spread-

ing ridge, and by definition it should be perpendicular to the spreading ridge.

Thus, the NW-SE/ WNW-ESE trending horizontal compressive stress, and the

observed tendency for reverse to strike-slip faulting, in offshore areas of Norway

is assumed related to ridge push, whereas the tendency to normal to strike-slip

in onshore areas must be explained by other mechanisms (Bungum et al., 1991;

Byrkjeland et al., 2000; Hicks et al., 2000).

The present post-glacial uplift of Fennoscandia is estimated to a maximum

value of 850 m (Mörner, 1980; Rohr-Torp, 1994), and is thus likely to have a

major effect on the regional stress field. The contours of the present rates of uplift

of Fennoscandia show a dome of an elliptical shape (Mörner, 1980; Fjeldskaar,

1997; Gudmundsson, 1999; Fjeldskaar et al., 2000). The result of modelling the

post-glacial uplift by using bending of a circular, elastic crustal plate shows that

the doming-generated stresses changes from being tensile in the central part to

being compressive in marginal parts, and in all parts of the plate the stresses are

large enough to initiate, or reactivate, fracture systems (Gudmundsson, 1999).

Thus, the post-glacial uplift may be an important factor in increasing the hydraulic

conductivity. It has been demonstrated that there is a linear relationship between

the water yield in wells and the present rate of the post-glacial doming (Rohr-Torp,

1994; Morland, 1997).
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Figure 4.4: Map showing the present stress fields in Scandinavia. The measurement
methods, their quality and the stress regimes are indicated. Red refers to normal faulting
(NF), green indicates strike-slip (SS), blue indicates thrust faulting (TF) and U refers to
an unknown tectonic regime. From Heidbach et al. (2008).
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The stress field in the Norwegian part of the Barents Sea is generally difficult

to establish. There are no earthquake focal mechanism solutions available, due

to low levels of seismic activity and large distances to any seismic stations, so

that the stress measurements in this area are solely based on borehole breakouts

(Hicks et al., 2000). The in-situ stress generally show a N-S direction (Hicks et

al., 2000), as well as a E-W direction in the west (note that in Figure 4.4 only

the high quality measurements are considered, which means that several of the

N-S oriented measurements Hicks et al. (2000) are referring to are excluded).

The area has been subject to massive glacial erosion during the last 3 Ma. The

glacial erosion in the norwegian part of the Barents Sea has been estimated by

several authors (Berglund et al., 1986; Bjørlykke et al., 1989; Wood et al., 1989;

Vorren et al., 1991; Linjordet and Grung-Olsen, 1992; Nyland et al., 1992; Riis

and Fjeldskaar, 1992; Vågnes et al., 1992; Richardsen et al., 1993; Rasmussen

and Fjeldskaar, 1996; Cavanagh et al., 2006) and is assumed to be in the range of

1000-2000m, increasing north. The stress field in the Barents Sea is very likely to

be affected by this amount of erosion.

4.2.3 Stress effects of erosion

The effects of erosion can be modelled as stress changes resulting from the re-

moval of sediments of a given thickness as shown in Figure 4.5. Before erosion,

the maximum principal stress is equal to the vertical stress, so that σ1 = σv, and

both vary as the overburden pressure, thus (Jaeger and Cook, 1979):

σv = σ1 = ρrgh (4.1)

where ρr is the rock density, h the rock thickness, and g is the acceleration due

to gravity. The assumption that the vertical stress is due to overburden pressure

is commonly made and generally supported by stress data worldwide (Zoback,

1992; Amadei and Stephansson, 1997; Zoback, 2007).

An initial state of lithostatic stress assumed, which is reasonable for an old

crust that has not been subject to major tectonic stresses for a long time (e.g.,

Jaeger and Cook, 1979; Amadei and Stephansson, 1997). Lithostatic state of stress

is defined as isotropic stress, so that all the principal stresses are equal (σ1 = σ2 =
σ3), where the stress increases proportionally with depth in the crust. Furthermore,

the rate of increase of stress is determined by the density of the crustal rocks, in

accordance with Equation (4.1).

For a confined rock body, that is, one that cannot expand laterally, and in the

absence of tectonic strain and stress, the intermediate and minimum compressive

principal stresses, σ2 and σ3, may be estimated crudely from the following formula
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Figure 4.5: During unloading from an initial surface to a new surface (marked as final
surface), all the principal stresses change. Modified from Turcotte and Schubert (2002).

(cf. Jaeger and Cook, 1979; Turcotte and Schubert, 2002):

σ2 = σ3 =
ν

(1 − ν)
σ1 =

ν

(1 − ν)
ρrgh (4.2)

After a sudden erosion to a depth h in the crust, it follows from Equation

(4.1) that since h = 0, the vertical principal stress, σ1, at that depth becomes zero

(assuming any fluid pressure on the surface to be negligible). Thus, from Equation

(4.1), the change in vertical stress is Δσ1 = −ρrgh. Before the glacial erosion,

the state of stress at crustal depth h was assumed lithostatic, so that the horizontal

principal stresses at that time were equal to the vertical stress, or σ1 = σ2 = σ3.

After the erosion the horizontal principal stresses at depth h become reduced;

not to zero, however, but rather to a value given by Equation (4.2). Thus, their

changes, Δσ2 and Δσ3, due to the erosion are:

Δσ2 = Δσ3 =
ν

(1 − ν)
Δσ1 (4.3)

It follows that the new values of σ2 and σ3, that is, their values at the surface

following the glacial erosion to the depth h become:

σ2new = σ3new = σ2 + Δσ2 = ρrgh − ν

(1 − ν)
ρrgh (4.4)
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Figure 4.6: Interconnected extension fractures in Øygarden, an island west of Bergen,
Norway.

The new principal stresses calculated from Equation (4.4) need no longer be

the intermediate and minimum principal compressive stresses; because of stress

rotation as a result of glacial erosion, one of them may actually be the maximum

compressive stress.

This means that for erosion, h, of 1000 m in a crustal bedrock in Norway

with density, ρr, of 2600 kgm−3, the erosion-related horizontal compressive stress

becomes 17 MPa. Thus this shows that erosion, or more generally, any removal of

overburden (such as deglaciation, excavation or weathering and erosion) leads to

surface parallel compressive stresses that can form or reactivate faults as reverse

faults.

Horizontal compressive stresses may also result in the formation exfoliation

fractures (Fig. 4.6), also called sheet joints, that is fractures developing parallel

to the surface, which often can be seen in granites. The frequency of exfoliation

fractures decrease rapidly with depth, but they will, if they become interconnected,

contribute to the permeability at shallow crustal depths.

Clearly, erosion, or unloading, affects the stress field, and may, for large

amounts of erosion, contribute positively to the permeability in an area.

The stress effect of erosion on petroleum reservoirs in the southwest Barents

Sea is discussed in Paper F of this thesis.



Chapter 5

Numerical modelling

Modelling of stress, strain and displacement caused by applied loads on a material

body with certain material properties are done by analytical or numerical calcu-

lations. Generally, analytical solutions can only be found in problems associated

with simple geometries and small strains, and the body is assumed homogeneous

and isotropic. When the problems become too complex to solve analytically, nu-

merical models are used.

There are two categories of numerical methods of stress analysis, differential

methods and integral methods (Brady and Brown, 1985). In differential methods,

the problem is divided into a set of volumetric elements (3D), or surface elements

(2D). The solution to the problem is obtained by using numerical approximations

of the differential equations in each of the elements. The approximations are

then combined into a solution of the entire material body. The finite element

method (FEM) represents the differential method. In FEM models the problem

domain is divided by a mesh of commonly triangular elements (Fig. 5.1). The

nodes, where the unknown values are calculated during the modelling, are placed

in the corners of each element. The commercial software COMSOL Multiphysics

(www.comsol.com), used for modelling in Paper F of this thesis, is based on the

FEM.

In the boundary element method (BEM), representing the integral method,

solving the problem only requires a discretisation of the surface (Brebbia and

Dominguez, 1992). The integration is performed over the boundary only, so the

elements need to cover only the surface area as shown in Figure 5.2, instead of

filling the volume as is necessary in FEM. Since the elements and nodes are placed

at the boundary, the geometry can be followed exactly. Also, the solution for

boundary problems (e.g. surface stresses) will be accurate using the BEM, while

this is extrapolated in FEM. The software BEASY (www.beasy.com) used for the

stress analysis in this thesis is based on the BEM.
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b

Figure 5.1: A finite element model meshed by triangles.’Chamber’ used here, refers to
any type of a cavity; empty or filled with a fluid. In b) a single element with the nodes a,
b and c is represented.

Figure 5.2: A boundary element model with tractions on the surface S is shown in (a).
An individual boundary element is represented by three nodes (b) subjected to load lines
qx and qy (c), qy is not shown. Modified from Brady and Brown (1985).
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5.1 Elastic properties
Most numerical software programs used for stress modelling in solid rocks are

based on linear elasticity theory. In linear elastic materials, there is a linear rela-

tionship between stress and strain, that is, they follow Hooke’s law:

σ = εE (5.1)

where σ is the stress, ε the strain, and E is Young’s modulus. Rocks normally

behave linear elastic up to 1-3% strain at low temperature and pressure (Paterson,

1978; Farmer, 1983).

Linear elastic materials need to be described in terms of elastic parameters.

For an isotropic material, whose response is independent of the orientation of the

applied stress, numerous elastic parameters can be defined. The most common

are Young’s modulus (E), Poisson’s ratio (ν), shear modulus (G), bulk modulus

(K), and Lamè’s constant (λ). However, only two of them are independent, so

that if two of them are known the others can be derived. In stress modelling,

the elastic parameters Young’s modulus and Poisson’s ratio are the ones normally

used (Hudson and Harrison, 1997). Young’s modulus is a measure of material

stiffness, that is, the resistance against being compressed by uniaxial stress (Eq.

5.1).

Laboratory measurements, such as the uniaxial compression test, are used

to determine the static Young’s modulus of a rock specimen. These laboratory

values tend to be higher than in-situ values (Goodman, 1989; Bell, 2000), due

to the appearance of faults and fractures that lower the effective stiffness of an

in-situ rock layer (Priest, 1993).

Rock types Young’s modulus, (GPa)

Unconsolidated sands 0.01 - 0.1

Sandstone 0.1 - 30

Clay 0.06 - 0.15

Shale 0.4 - 70

High Porosity Chalk 0.5 - 5

Low Porosity Chalk 5 - 30

Basalt 50 - 100

Granite 5 - 85

Marble 5 - 90

Ice 8

Table 5.1: Static laboratory Young’s modulus values for some common rocks types. From
Fjær et al. (2008).
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Dynamic Young’s modulus can be obtained from P and S-wave velocities (e.g.

from seismic), however, these are normally used for processes of velocities like

seismic waves (e.g. earthquakes). Because hydrofracture propagation is normally

much slower than this, the static Young’s modulus is the one commonly used.

Table 5.1 shows the typical range of static Young’s modulus of some common

rock types.

The methods used for determining Young’s modulus, also determine Poisson’s

ratio, which is a measure of lateral expansion in relation to longitudinal contrac-

tion.

ν = −εy

εx

(5.2)

where ν is the Poisson’s ratio εy and εx the lateral and longitudinal strain. Pois-

son’s ratio for rocks is typically 0.15-0.35 (Fig. 5.3). In extreme cases values

as high as 0.5 has been reported, these probably are related to highly anisotropic

rocks (Gercek, 2007). Thermal induced microcracking in granites may cause neg-

ative Poisson’s ratio in compression and tension (Homand-Etienne and Houpert,

1989). For the models presented in this thesis, the general value 0.25 is used for

all rock types.

5.2 Boundary conditions

Generally, before starting the modelling the problem must be simplified so as to

focus only on the details considered important. For example, many three dimen-

sional problems may be reduced to two dimensions, if one of the dimensions can

be regarded as infinite. A set up of a model includes defining the geometry, as-

signing elastic properties to the material under consideration, and specifying the

loading conditions.

The geometry of the problem is described by means of points and lines

(BEASY), or as a combination of pre-defined geometrical units (COMSOL). Hy-

drofractures with internal overpressures are normally modelled as mathematical

cracks with zero opening, or as elliptical holes, as described in Chapter 3.2.

Fluid-filled reservoirs come in various dimensions and shapes. However, the

shapes of petroleum reservoirs are commonly assumed to be crudely similar that

of an oblate ellipsoid or a flat disk (Geertsma, 1973a,b; Segall, 1989; Zoback,

2007; Fjær et al., 2008). Such a geometry is a good first approximation to the ac-

tual reservoir geometry of petroleum reservoirs (Zoback, 2007; Fjær et al., 2008),

as well as for magma chambers (Sneddon and Lowengrub, 1969). The latter may

also be modelled as empty circular holes (Gudmundsson, 1998).
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Figure 5.3: Typical range of values for Poisson’s ratio of some common rock types. From
Gercek (2007).

Conditions such as sliding surfaces and internal springs (the latter only avail-

able in BEASY) can be added to interfaces, to represent faults, fractures and other

discontinuities. Another possibility is to model these features as empty narrow

zones, or zones with low Young’s modulus representing fault zones with gouge or

breccia.

When realistic elastic properties (in accordance to Table 5.1) have been as-

signed to each department of the model, the load must be specified. The majority

of numerical models in this thesis involve fluid overpressure, that is, either hy-

drofractures or fluid reservoirs. Since the fluid overpressure is determined by the
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total fluid pressure minus the minimum compressive stress, it is crucial to exam-

ine the regional stress field in the area of consideration (cf. Chapter 4.2), so as to

obtain a realistic model.

Before the model is run, it must be fastened in the corners to prevent rotation

and translation.

5.3 Rock strength
The calculated stress in the resulting numerical model is based on the assumption

of a linearly elastic material. However, the elastic behaviour of rocks depends

on their rock strength, which is defined as the maximum applied compressive

or tensile stress that the rock can withstand before failure occurs. The tensile

strength of most solid rocks is in the range 0.5 to 6 MPa, most commonly 2-3MPa

(Haimson and Rummel, 1982; Amadei and Stephansson, 1997). This means that

crustal tensile stress exceeding these values is not very common, as it is likely

to result in tensile failure of the rock. For this thesis, the numerical models are

redrawn as to display a realistic maximum value of stress. Thus the tensile stress

is normally truncated at 10 MPa. The shear strength of rocks is twice the tensile

strength, as can be followed from the Griffith failure criterion (Jaeger et al., 2007),

so that in the models, shear stress is truncated at subsequently higher values.



Chapter 6

Summary of papers

This chapter gives an overview of research papers included in the second part of

this thesis. The following summaries present the main results as regards interpre-

tation of field data, and the analytical and numerical modelling.

Paper A:
Propagation pathways and fluid transport of hydrofractures in jointed and layered

rocks in geothermal fields.

Gudmundsson, A., Fjeldskaar, I. and Brenner, S. L., 2002.

Journal of Volcanology and Geothermal Research 116, 257-278.

Paper A focuses on the formation and propagation of hydrofractures in

geothermal fields. Field data on current and extinct geothermal fields, mainly

based on examination of networks of mineral veins in the Tertiary lava pile of

North Iceland, are summarized in the first part of the paper. The data indicate that

hydrofractures are common suppliers of fluids in these environments.

Next, we present boundary element models focusing on crack-tip tensile

stresses and opening displacements of hydrofractures. The only loading in the

models is the internal fluid overpressure of the hydrofracture, which varies lin-

early from 0 MPa at the tip to 10 MPa at its centre. In the majority of the pre-

sented models the host rock has a uniform stiffness (Young’s modulus 10 GPa

and Poisson’s ratio 0.25) with vertical and horizontal discontinuities, modelled as

internal springs of 6 MPa/m, representing columnar joints and contacts between

lava flows. The size and location of the discontinuities, and the location of the

hydrofracture tip, vary between the models. The results from the numerical mod-

elling show that the resulting crack-tip tensile stresses are high enough to open

and link up discontinuities in the layered and jointed rock masses ahead of the

propagating hydrofracture (Figure 6.1).
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Figure 6.1: Boundary-element models showing how the crack-tip tensile stresses asso-
ciated with a propagating hydrofracture open up both vertical and horizontal discontinu-
ities. The tensile stresses are given in MPa.

In the last part of the paper, we present analytical models on fluid flow along

vertical and inclined hydrofracture pathways, to estimate the dimensions of a hy-

drofracture network necessary to supply typical hot springs with the measured

volumetric rates. The analytical models indicate that a hot spring yielding 5 l/s

may be supplied by a hydrofracture of aperture 1.3 mm and trace length 0.5 m,

similar to those of the most common mineral veins in the studied palaogeother-

mal field. The primary driving force of hydrofractures in such fields appears to be

buoyancy.

Paper B:
Fracture-generated permeability and groundwater yield in Norway.

Gudmundsson, A., Fjeldskaar, I. and Gjesdal, O., 2002.

NGU Bulletin 439, 61-69.

In paper B, we have focused on the bedrock hydrogeology of Norway. In Nor-

way, there is observed a linear relationship between the current postglacial uplift

rates and groundwater yield. The groundwater transport in bedrock is largely

determined by the interconnection of fractures, thus the conditions that favour

fracture propagation and interconnection is of major importance when it comes to

understanding the permeability and ground water yield in Norway.
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Figure 6.2: Extension fractures linked up through transverse shear fractures in Øygar-
den. View is south-southwest; the length of the steel tape is 1.5 m.

First, we present some field examples of small scale fracture systems as indi-

cations of permeability development.The examples are from Øygarden, an island

west of Bergen in the western part of Norway. Next, we present boundary element

models, where the focus is on propagation of two types of fractures; extension

fractures (hydrofractures) and shear fractures. The first model shows two offset

fractures, modeled as internal springs of 6 MPa/m, in a homogeneous host rock

(Young’s modulus 10 GPa, and Poisson’s ratio 0.25) subject to horizontal tensile

stress of 6MPa. The result indicates that the offset fractures may link up by trans-

verse shear fractures to form an interconnected system of en echelon segments,
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as shown in Figure 6.2. The next boundary element models show the propagation

of a hydrofracture through linking up with vertical and horizontal discontinuities

ahead of its tip, similar to the models shown in Paper A. The last two models are

of a hydrofracture approaching a soft layer (Young’s modulus 5 GPa and Pois-

son’s ratio 0.25) with two vertical joints of stiffness 6 MPa/m and length 0.4 units

reaching the surface. The result shows that the crack-tip tensile stresses of the

propagating hydrofracture are high enough to open up the vertical joints all the

way to the surface.

The data and modeling results indicate that the rapid erosion and postglacial

uplift are likely to have generated stress fields suitable for the linking up and

growth of interconnected fracture systems in parts of Norway.

Paper C:
Effects of linking up of discontinuities on fracture growth and groundwater

transport.

Gudmundsson, A., Gjesdal, O., Brenner, S. L. and Fjeldskaar, I., 2003.

Hydrogeology Journal 11, 84-99.

Paper C deals with the effects of fracture growth on the generation and main-

tenance of permeability in solid rock. The emphasis is on groundwater reservoirs

(Fig. 6.3), where the permeability of the associated fracture networks largely con-

trols the groundwater flow; however, the results may also have implications for

permeability of other fluid reservoirs.

Field data, primarily collected from Iceland, England and Norway, on the two

types of tectonic fractures, that is, extension fractures (tension fractures and hy-

drofractures) and shear fractures (faults), is summarized and discussed in the first

part of the paper.

Next, we consider two mechanisms that may lead to interconnection of discon-

tinuities: external tensile stress and internal fluid overpressure (hydrofractures).

Several boundary element models are developed and presented in this paper. The

boundary element models on the propagation of hydrofractures through linking up

of discontinuities are similar to the ones presented in paper A. The next models

show en echelon systems of sets of extension-fracture segments in a host rock of

uniform stiffness (with Young’s modulus of 10 GPa and Poisson’s ratio of 0.25)

subject to an erosion-related horizontal tensile stress of 6 MPa. The distance be-

tween the extension fractures vary, both parallel to (underlapping) and perpendic-

ular to (offset) the main trend of the segmented fracture.

The results show that for a significant underlapping, interconnection of shear

fractures are favoured, whereas the collinear extension fractures favour tensile

stresses and the growth of extension fractures into a single, segmented fracture.
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Figure 6.3: A normal fault conducting groundwater in a pahoehoe lava flow in the Krafla
Fissure Swarm in North Iceland. View northeast. Field observations indicate an opening
of as much as 10 m, and a groundwater depth of tens of meters.

The last part of this paper presents a boundary element model of an aperture

variation of a hydrofracture subject to constant overpressure in a layered host rock,

and this is compared with analytical models on the elliptical aperture variation of

a hydrofracture in a homogeneous, isotropic host rock.
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Paper D:

Dyke emplacement in a layered and faulted rift zone.

Gudmundsson, A. and Loetveit, I. F., 2005.

Journal of Volcanology and Geothermal Research Special Issue 144, 311-327.

Paper D deals with the effects of crustal layering and existing normal faults on

the emplacement of dykes. In the first part of the paper we present field data on

dykes and faults in layered rift zones from Tenerife (Canary Islands) and Iceland.

Next, we present three sets of boundary element models. In the first set of

models, a vertical dyke with a constant magmatic overpressure of 10 MPa prop-

agates through a uniform crust with Young’s modulus of 10 GPa and Poisson’s

ratio of 0.25, and on its way towards the surface it approaches and passes the two

boundary faults of a buried graben. The results show that the dyke tip tensile

stresses tend to open up the faults as long as the magma front is below the lower

tips of the faults, but as soon as the magma front reaches the level of the lower

fault tips the faults close and then slip as reverse faults.

A

A

A

A

B

B

B

B
C

Surface

Normalfaults

Dyke

1.5

10.0

Figure 6.4: Boundary-element model of a propagating dyke in a layered and faulted rift
zone. The A layers are very stiff, the B layers are very soft and the C layer is moderately
stiff. The only loading in the model is the magmatic overpressure of 10 MPa inside the
dyke. The results shows that when the magmafront is at the same level as the lower tips of
the faults, the overpressure induce reverse slip on the faults. The dyke aperture is largest
in the soft B layers.
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In the second set of models, a dyke approaches and passes a buried graben in a

host rock composed of nine layers (Fig. 6.4). There are three types of mechanical

layers, varying in Young’s modulus between 100 GPa (stiff layers), 5 GPa (soft

layers) and 10 GPa (moderately soft layers). Poisson’s ratio is 0.25 for all the lay-

ers. The models show the same results as for the previous models (homogeneous

crust models), as regards the opening and reverse slip of the faults, but in addition

these models show effects of layer stiffness on the dyke aperture. The thickest

parts of the dyke tend to be in the soft layers.

In the last set of models, a dyke with linearly varying overpressure from 10

MPa at the bottom of the model to 0 Mpa at the magma front is arrested at 1

km below the surface. Above the magma front the crust consist of two layers of

thickness 0.4 km; the soft layer B (5 GPa) and a relatively stiff surface layer A (40

GPa). In the first model, both the layers are subject to a horizontal compression

that increases linearly from 0 MPa at the surface, to 20 MPa at 0.8 km depth. The

results show no stress effect at the surface. In the second model the B layer has

a high stiffness of 100 GPa, and a weak contact on the lower B layer boundary at

0.8 km is included. Although the dyke tip tensile stresses reaches 111 MPa, no

stress is transferred to the surface.

Paper E:

Propagation, deflection, arrest and shape of hydrofractures in heterogeneous

rocks.

Løtveit, I. F., Gudmundsson, A. and Philipp, S. L.

To be submitted.

In Paper E the focus is on the effects of mechanical layering on the propagation

and arrest of hydrofractures. In the first part of the paper we review and summarise

data on reservoirs and their main fracture types.

Next, we present some analytical models on the initiation, propagation, deflec-

tion and shape of hydrofractures. The presented analytical models on hydrofrac-

ture initiation and propagation indicate that for any significant fluid overpressure,

hydrofractures in a homogeneous, isotropic reservoir rarely should become de-

flected or arrested. By contrast, when a hydrofracture meets discontinuities such

as a contact or an existing fracture, the hydrofracture may either become arrested,

become deflected along the contact, or continue its propagation into the contact.

Here, three related factors are explored. They are (1) the induced tensile stress

ahead of the propagating hydrofracture tip, (2) the rotation of the principal stresses

at the discontinuity and (3) the elastic mismatch and the difference in material

toughness between the contact and the adjacent rock. The results suggest that
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Figure 6.5: Opening displacement profiles resulting from constant (u0), linearly(u0+1)
and polynomially (u0+1+2) varying fluid overpressure.

contacts where the hydrofracture propagates from a stiff layer to a soft layer have

little effects on the propagation pathway. By contrast, contacts where the hy-

drofracture propagates from a soft into a stiff layer encourage deflection and/or

arrest.

In the last part of the paper we present some analytical and numerical models

on the opening displacement of a hydrofracture. For a hydrofracture propagating

in a homogeneous host rock, the analytical solutions show that constant, linearly

and polynomially varying fluid overpressure all result in similar aperture shapes,

but the sizes are somewhat different (Fig. 6.5). However, when the host rock is

layered, the aperture tends to be larger in the soft layers. Large aperture variations

encourage flow channelling.

Paper F:
Effects of glacial erosion on the state of stress and fluid pressure in petroleum

reservoirs in the Barents Sea.

Løtveit, I. F., Gudmundsson, A., Leknes, L., Riis, F. and Fjeldskaar, W.

Submitted to Journal of Geological Society.

In Paper F we focus on the Late-Pliocene-Pleistocene glacial erosion in the

southwest part of the Barents Sea and the associated stress effects, particularly as

regards fluid pressure changes inside, and potential leakage of, petroleum reser-

voirs in this area. In the first part of the paper, we present basin modeling results
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Figure 6.6: Numerical model showing the von Mises shear stress (in mega-pascals)
around a small reservoir subject to fluid underpressure of 5 MPa and, simultaneously,
horizontal compressive stress of 10 MPa. The resulting shear stress is concentrating near
to the tips of the strike slip faults, indicating that the faults are likely to be reactivated.
Maximum stress shown is 40 MPa.

on the amount of erosion in the southwestern Barents Sea. The results suggest

a glacial erosion of 900 m for the Hammerfest Basin (Snøhvit), 1300m for the

Loppa High, and 1100 m for the Finnmark Platform.

The second part of the paper deals with the stress effects of erosion on the

reservoirs at Loppa High and Snøhvit. First, we present analytical models on

the changes in crustal stress due to the unloading of sediments. These analytical

models show that a rapid removal of 900m and 1300m of sediments result in a

horizontal compressive stresses of magnitude 11.5 MPa and 17 MPa, respectively.

The resulting erosion-related compressive stress is calculated at the new surface,

below the surface the compression is expected to be somewhat lower. The new

surface consists of sedimentary rocks that are unconsolidated, thus the Young’s

modulus is very low. It follows that the compressive stress tends to be suppressed

in the upper unconsolidated layer, whereas it will tend to concentrate in the stiff

layers below.

The Snøhvit reservoirs are situated in a Jurassic sand formation acting as an

unconfined salt water aquifer. The modelled reservoirs refer to the accumulation

of oil and gas in this aquifer. Normally, gas responds to compression by expand-

ing, but since it is trapped between the low permeable shale layer at the roof of

the reservoir and the oil at the lower part of the reservoir, the result is an overpres-

sured gas. Analytical tunnel-crack and elliptical plate-bending models show that

the erosion-related horizontal compression may have influenced the reservoir fluid

pressure by first lead to overpressure and expansion, then to fluid underpressure
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Figure 6.7: In a reservoir, the gas normally accumulate on top of the oil, due to its much
lower density. Reactivation and increased permeability of faults close to the lateral ends
of reservoir with a cross-section similar to an ellipse may offer paths for oil but unlikely
to offer paths for the gas.

as a consequence of the reservoir expansion.

In the last part of the paper we present several numerical models on the stress

effects of erosion on a fluid reservoir and its nearby faults. In all the models,

the reservoir is modeled as an ellipse in layered host rock, with faults extending

from its lateral ends to the surface. The first model is of a small fluid reservoir

subject to a fluid overpressure of 5 MPa with normal faults close to its lateral ends.

The result shows that the shear stress near to the ends of the faults exceeds 40

MPa, indicating that the normal faults are likely to be reactivated as reverse faults.

The shear stress also concentrates at the lateral ends of the reservoir, indicating

that the reservoir is likely to expand laterally. The expansion of the reservoir

will lead to an increase in volume, which in turn leads to lowering of the fluid

pressure giving rise to a possible underpressure. The next model is very similar,

except this time the reservoir is subject to a fluid underpressure and the faults

are now reverse faults. The result shows a slight subsidence of the block above

the reservoir, and high shear stresses near to the tip of the faults, indicating a

likely reactivating of the reverse faults. The same results is shown for the next

models, which show strike slip faults near to a reservoir subject to a horizontal

compression of 10MPa, and strike slip faults near to a reservoir subject to a fluid

underpressure of 5 MPa and a horizontal compression of 10 MPa, as shown in

Figure 6.6. All the numerical models suggest that any faults (normal, strike-slip,

and reverse) close to the lateral ends of the reservoirs are likely to have been

reactivated as a result of the glacial erosion in the Barents Sea. Figure 6.7 shows
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what we suggest may be, at least partly, the explanation for an overall abundance

of gas and the leakage of moveable oil in the southwestern Barents Sea reservoirs.

Currently, there are no proofs of oil leakage along the faults in the Snøhvit

area. However, this may be caused by the fact that major fault zones are avoided

during drilling. Also, seismic data shows no sign of reactivation of the large faults

from normal to reverse faults. The faults in this area are suggested to be signifi-

cantly older than the erosion. However, seismic data normally have a resolution

of 10-12 m, so that a fault displacements less than this are not seismically visi-

ble. Previous field observations in an area with similar magnitude of horizontal

crustal compression indicated a displacement of a few meters (Gudmundsson et

al., 2008). In the Barents Sea area this would imply that the normal faults would

experience a displacement that reverses the normal movement by a few meters.





Chapter 7

Conclusions

1. Fluid flow in solid rocks is commonly largely, or entirely, controlled by in-

terconnected fractures. There are two basic ways by which fractures become

interconnected. One is through the development of shear fractures, that is,

faulting. The other is through the propagation of overpressured, fluid-filled

fractures, referred to as hydrofractures.

2. Hydrofractures are among the most common brittle structures in the Earth’s

crust and include many dykes, sills, mineral-filled veins, man-made hy-

draulic fractures (used in petroleum engineering to increase reservoir per-

meability) and many joints. In addition, hydrofractures play a significant

role in seismogenic faulting and associated hydraulic changes. The impor-

tance of propagating hydrofractures on the development of interconnected

fracture pathways for fluids is emphasized and explained.

3. Many numerical models, using the boundary-element program BEASY and

the finite-element program COMSOL, were made to study the condition for

propagation of hydrofractures. Particular attention was given to the condi-

tions of hydrofracture arrest, as well as those for hydrofracture propagation

through the linking up of horizontal and vertical discontinuities in jointed

and layered rock masses. The results of the numerical models show that

for a homogeneous host rock the crack-tip tensile stresses associated with

propagating hydrofractures are large enough to open up discontinuities far

ahead of the fracture tip. This applies both to the vertical discontinuities as

well as to horizontal discontinuities. Tensile stress concentrations at the tips

of the opened-up discontinuities indicate that they would tend to propagate

and coalesce into an interconnected fracture pathway.

4. Numerical modelling on the effects of mechanical layering show that when

fluid pressure is the only loading, stiff layers tend to magnify the crack-tip
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tensile stresses associated with a propagating hydrofracture, and therefore

encourage hydrofracture propagation. By contrast, soft layers tend to sup-

press the crack-tip tensile stresses of the propagating hydrofracture, and

thereby encourage hydrofracture arrest. These results are supported by hy-

draulic fracture experiments in petroleum engineering (Valko and Econo-

mides, 1995; Yew, 1997).

5. The numerical models show that mechanical layering also affects the aper-

ture variations of hydrofractures. For a vertical hydrofracture, the aperture is

normally greater in soft layers than in stiff layers. Similar results have been

obtained in other numerical models (Gudmundsson and Brenner, 2001a,b).

Aperture variations may lead to flow channeling, that is, preferential flow in

layers with the mechanical properties most optimal for flow.

6. All the model results indicate that, for a layered rock mass, it is generally

easier for a hydrofracture to enter a stiff than a soft layer because the tensile

stresses associated with the hydrofracture tip are larger in a stiff than in a

soft layer. For vertical discontinuities such as joints ahead of the hydrofrac-

ture tip, however, the resulting apertures and dip dimensions (heights) be-

come smaller when they are hosted by a stiff than by a soft layer.

7. Numerical models indicate that there is an interaction between a propagat-

ing hydrofracture and fault slip in a layered host rock. Boundary-element

models of a hydrofracture propagating into a graben of two normal faults

show that crack tip tensile stresses associated with a hydrofracture prop-

agating towards the bottom parts of the graben tend to reduce the normal

stresses on the boundary faults. When the hydrofracture tip reach the same

level as the lowermost parts of the faults, however, its associated tensile

stress tend to close the faults, and encourage reverse slip as it propagates

further into the graben.

8. The numerical and theoretical models presented in this thesis indicate that

the propagation and pathway formation of hydrofractures is a complex pro-

cess. For hydrofractures emplaced in a layered and jointed rock mass, me-

chanical layering and discontinuities have strong effects on the probabil-

ity of hydrofracture propagation or, alternatively, hydrofracture arrest. In

particular, stress barriers, soft layers and horizontal discontinuities at layer

contacts tend to encourage hydrofracture arrest, whereas absence of stress

barriers, horizontal discontinuities and stiff layers tend to encourage hy-

drofracture propagation.

9. Modeling results indicate that rapid erosion and postglacial uplift are likely

to have generated stress fields suitable for the linking up and growth of in-
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terconnected fracture systems in parts of Norway. It is expected that during

the deglaciation and erosion the crust was subject to temporary tensile stress

fields, which may have significantly affected the permeability.

10. The western Barents Sea have experienced significant erosion over the last

3 million years. Analytical models indicate that erosion leads to crustal

compression. Removal of 900 m of sedimentary rock, as is suggested for

the Snøhvit area, with rock densities of 1950 kgm−3, results in a horizontal

compressive stress in the order of 17 MPa. Thus, erosion of this amount can

produce compressive stresses that are likely to generate or reactivate faults

as reverse faults.

11. Numerical models on fluid reservoirs (e.g. petroleum at Loppa High and

Snøhvit) subject to erosion-generated compression show that shear stress

tends to concentrate near to the ends of the reservoir. The shear stress in

this area generated by compression of 15 MPa exceeds 40 MPa, indicating

that faults near to the ends of the reservoirs are very likely to be generated

or reactivated.

12. All numerical models suggest that any faults close to lateral ends of a

petroleum reservoir in the southwest Barents Sea are likely to have been

reactivated as a result of the rapid glacial erosion the last 3 Ma. This may

at least partly explain the overall abundance of gas, and lack of commercial

oil in the southwest Barents Sea.

13. It is shown that there are several factors affecting the fracture-generated

permeability of rocks. The way hydrofractures and faults link up into net-

works, and their ability to be conduits for fluids, are largely determined by

mechanical layering and the current stress field.
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