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ABSTRACT 

Recent studies on the ecological effects of cyanobacteria in lakes have focused on the harmful 

effects of blooms to other aquatic organisms including fish and zooplankton. Much of this 

work has been conducted on temperate and subtropical species whilst few studies have 

involved tropical species, despite the almost chronic occurrence of cyanobacteria blooms in 

eutrophic tropical lakes. The main purpose of this study was to fill some of this knowledge 

gap on the ecological effects of cyanobacteria on fish and zooplankton in tropical lakes and to 

discover in what ways tropical species may be better adapted to deal with cyanobacteria than 

temperate species. The study tested fish (Nile tilapia, Oreochromis niloticus L.) and 

zooplankton growth, survival, and behaviour in relation to different variants (toxic and non 

toxic) and species of cyanobacteria at varying quantities as well as environmental conditions. 

Field studies on the diet and presence of cyanobacteria toxins (microcystins) in the guts and 

tissues (muscle and liver) of Nile tilapia were carried out in two eutrophic tropical aquatic 

ecosystems (Lake Mburo and Murchison Bay, Lake Victoria) in Uganda, East Africa. The 

zooplankton behaviour of diel vertical migration (DVM) was investigated in the Murchison 

Bay in relation to environmental conditions. Laboratory studies investigated the effect of the 

cyanotoxins, microcystins, on Nile tilapia and zooplankton (Daphnia lumholtzi) growth, 

survival, and behaviour, using the toxic cyanobacterium Microcystis aeruginosa PCC 7806.   

Cyanobacteria are the most abundant phytoplankton group in the two study areas contributing 

to over 60% of the total phytoplankton biovolume. The most dominant cyanobacteria species 

is Microcystis sp. which makes up approximately 70% of the total cyanobacteria biovolume. 

Low water transparencies were well associated with high levels of chlorophyll a in the lakes, 

suggesting that the abundance of cyanobacteria in these lakes may have a significant effect on 

the light environment.  Water transparency is observed to have a close association with the 

DVM behaviour of at least one zooplankton group in the Murchison Bay. Phytoplankton 

especially of the cyanobacteria is an important diet item (> 30%) to the Nile tilapia in both 

lakes.  

Microcystins (RR, LR &YR) were detected in water samples from both study lakes  and in 

the Murchison bay the concentration of microcystins in water was well associated with the 

microcystins concentration in the gut of Nile tilapia (p<0.05). Although detected, we found no 
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evidence of microcystin accumulation in the liver or muscle tissue. The ingestion rates and 

growth rates of juvenile Nile tilapia were not significantly affected by the presence of 

microcystins in their diets. Likewise growth and survival rates of the tropical cladoceran 

Daphnia lumholtzi in laboratory experiments were not significantly affected by the presence 

of microcystins in their diets. The cyanobacteria M. aeruginosa PCC7806 was a poor source 

of nutrients for juvenile fish and zooplankton, since it did not seem to stimulate growth both 

in the wild type and mutant type form.  

Though microcystins were present throughout the study period, our findings do not show that 

they have a strong effect on the diets of Nile tilapia. Nile tilapia in these lakes probably ingest 

cyanotoxins mostly through the cell-bound fraction, since cyanobacteria (especially 

Microcystis sp.) are an important constituent of their diet. Adult fish may have the ability to 

efficiently get rid of ingested cyanotoxins, but this may not be so for juvenile tilapia and 

zooplankton. Small amounts of cyanobacteria may actually stimulate growth in juvenile 

tilapia and even zooplankton, yet when provided in high proportions or as the sole source of 

nutrients they hinder growth, survival, and reproduction. Juvenile fish and most especially 

zooplankton, are unlikely to graze on cyanobacteria either due to their frequent formation of 

large colonies or because juvenile fish and zooplankton may lower their ingestion rates in the 

presence of cyanotoxins. Findings in this study do not provide any evidence for tolerance of 

tropical juvenile fish and zooplankton towards cyanobacteria toxins, yet adult fish show both 

the ability to utilise cyanobacteria and cope with levels of microcystins registered in the lakes. 
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INTRODUCTION

Cyanobacteria are often the most important group of phytoplankton in eutrophic tropical lakes 

(Kling et al. 2001). Besides dominating the phytoplankton community composition, they also 

frequently build up dense populations. High phytoplankton abundance is normally perceived 

as a precursor to increases in zooplankton abundance, as is the case in several temperate lakes 

(Talling 2003), especially for the efficient filter feeders the cladocera. Yet high cyanobacteria 

crops are rarely grazed down (Gliwicz 1990b) and are instead associated with the 

disappearance or reduction in abundance of efficient grazers (Pattinson et al. 2003). The 

occurrence of high cyanobacteria abundance in temperate lakes is often seasonal, with a few 

exceptions of shallow eutrophic lakes where it could last for years (Berger 1989). In some 

eutrophic tropical lakes, cyanobacteria blooms often last all year round and despite 

contributing quite significantly to the diets of herbivorous fish (Getachew 1987, Balirwa 

1992), fish and zooplankton grazers in these lakes are often unable to graze down populations 

of cyanobacteria. This has been attributed to a number of factors, for example, formation of 

‘ungrazable’ filaments and colonies Gliwicz (1990b). Cyanobacteria tend to have a negative 

effect on grazer populations (Landsberg 2002). In this thesis I look at the effects 

cyanobacteria may have on both tropical fish and zooplankton grazers. In doing so I hope to 

generate new knowledge in the understanding of why cyanobacteria populations in tropical 

lakes are rarely grazed down and how tropical grazers may cope with the negative effects 

associated with cyanobacteria. 

The cyanobacteria  

Cyanobacteria are gram negative photosynthetic prokaryotes consisting of over 1000 species 

of unicellular and multicellular micro-organisms belonging to the class Cyanophyceae under 

the orders Chroococcales, Chamaesiphonales, Pleurocapsales, Nostocales (Oscillatoriaceae, 

Nostocaceae and Rivulariaceae) (Rippka et al. 1979). According to Rippka et al. (1979), 

cyanobacteria may exist in several forms that may either be unicellular (single or forming 

colonial aggregates) or filamentous (possessing or lacking heterocysts and akinetes) (Fig. 1). 

The dominance of cyanobacteria in eutrophic aquatic systems has also been attributed to a 

variety of factors typical to cyanobacteria including possession of phycobiliproteins (Glazer 

1977), production of gas vesicles (Walsby 1994), ability of some species to fix nitrogen (Fay 
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1992) and the ability to produce allelopathic chemicals that may inhibit growth of algae

(Gantar et al. 2008) and macrophytes (Pflugmacher 2002).  

Unlike the eukaryotic algae, cyanobacteria lack organelles, but instead have intracellular 

membranes (thylakoids), which incorporate the photosynthetic pigment (phycobilisomes- 

phycobiliproteins in a supramolecular structure) within cyanobacterial cells (Fay 1992). 

Probably the most interesting aspect about cyanobacteria is their ability to harvest light from a 

wide spectrum and use it to photosynthesise. All cyanobacteria possess the photosynthetic 

pigment chlorophyll a and the light harvesting phycobiliproteins; allcophyeocyanin B, 

allophycocyanin, and C-, or R-phycocyanin (others like phycoerythrin and C-phycoerythrin 

may also be present in some cyanobacteria groups - red algae) that allow them to use light 

energy outside the chlorophyll maxima in the fixation of carbon dioxide, converting it into 

organic carbon (Glazer 1977). Light energy may be trapped by using both chlorophyll a in 

photosystem I (PSI) and a series of phycobilosomes (λ 400 – λmax 671 nm) in photosystem II 

(PSII) and is used in the production of ATP and NADPH. Cyanobacteria can thus perform 

better than most algae under low light conditions. 

Several cyanobacterial species, especially those possessing heterocysts, are capable of fixing 

nitrogen using the enzyme nitrogenase (Fay 1992), thus compensating for any shortfalls in 

aquatic nitrogen that is essential for primary production. In filamentous cyanobacteria, 

nitrogenase which catalyses the reduction of dinitrogen to ammonia, may be contained in cells 

known as heterocysts which are formed particularly under conditions of nitrogen limitation, 

yet non-heterocyst forming cyanobacteria may also fix nitrogen (Fay 1992).  

Some cyanobacteria may also possess hollow gas-permeable and water-impermeable protein 

structures called gas vesicles that provide buoyancy (Walsby 1994). The gas vesicles, which 

vary in width in different species, regulate buoyancy allowing the cyanobacteria to occupy the 

most optimum position within the water column.  

Of current global interest, however, is the ability of some cyanobacteria to form blooms 

(Skulberg et al. 1984) and produce secondary metabolites (cyanotoxins) (Carmichael 1992) 

that can be harmful to other tissues, cells, or organisms. 
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Fig. 1 

A) 

B) 
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Harmful algal blooms 

Intense proliferation of cyanobacteria or the so-called cyanobacterial blooms are a major 

symptom of eutrophication. Cyanobacteria will tend to dominate in aquatic ecosystems that 

have high concentrations of total phosphorus (TP) (Downing et al. 2001, Schindler et al. 

2008) or as earlier suggested in environments with low TN (total nitrogen): TP ratios (Smith 

and Bennett 1999).  

In deep eutrophic temperate and subtropical lakes, the summer rise in water temperature, 

followed by depletion of dissolved inorganic nitrogen and carbon are characteristic of a 

progression from a clear water phase to cyanobacteria bloom formation which eventually 

disappears during the cold autumn and winter. In shallow lakes, however, cyanobacteria 

blooms may persist for years (Havens 2008). In temperate regions cyanobacteria blooms often 

occur in late summer (Havens et al. 2000, Pattinson et al. 2003), whereas the warmer 

temperatures, intense solar radiation, and year-round 12-hour days in the tropical regions, 

often promote all year round cyanobacteria blooms in eutrophic lakes (Ferrão-Filho et al. 

2000, Sarma et al. 2005).  

Cyanobacterial blooms may have far-reaching ecological effects on aquatic ecosystems 

(Landsberg 2002). Formation of cyanobacteria blooms typically leads to a reduction of light 

penetrating through the water column, causing a shading effect. This lowered transparency 

causes poor growing conditions for epiphytes, phytoplankton, and benthic algae (Scheffer et 

al. 1993). Increases in pH due to carbon dioxide depletion by cyanobacteria blooms and/or 

anoxia resulting from a collapsed bloom could lead to massive fish kills (Paerl and Ustach 

1982, Ochumba 1990, Vos and Roos 2005). Additionally, when these blooms die off they 

sink to the bottom, where they decompose causing a depletion of bottom water oxygen or 

hypoxic conditions (Hecky et al. 1994).  

In highly eutrophic lakes, cyanobacteria blooms could provide a rich and abundant source of 

nutrients for zooplankton and fish. For example, the success of several fish species including 

roach (Rutilus rutilus) (Kamujunke et al. 2002), silver carp (Hypophthalmichthys molitrix) 

(Chen et al. 2006), and Nile tilapia (Oreochromis niloticus) (Bwanika et al. 2006) in eutrophic 

lakes has been attributed to their ability to utilise cyanobacteria. This, however, is not always 

the case (Bednarska 2006), since blooms are often dominated by colonial and filamentous 
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forms, which, among the already mentioned undesirable traits, may cause mechanical 

interference for zooplankton grazers and clogging of gills in fish (Landsberg 2002). A few 

studies have also found some species of cyanobacteria to be nutritionally deficient to a 

number of zooplankton species (e.g. Tillmanns et al. 2008). For a number of zooplankton 

species and for juveniles of most fish species, under certain conditions, some cyanobacteria 

species can be a poor source of nutrition (Bury et al. 1995, Wilson et al. 2006). 

Cyanotoxins 

Cyanobacteria produce secondary metabolites the so called cyanotoxins; these may be 

cytotoxic or biotoxic (hepatotoxins and neurotoxins) (Carmichael 1992). Cyanotoxins may 

have allelopathic effects on dinoflagelletes (Sukenik et al. 2002) green algae, and other 

cyanobacteria (Singh et al. 2001, Gantar et al. 2008), affecting photosynthesis and growth. 

Cyanotoxins may also account for the disappearance of submerged macrophytes (Weiss et al. 

2000).  

The toxicity of cyanobacteria to zooplankton can be attributed not to one but to several toxic 

compounds including the non-ribosomal oligopeptides that may lower ingestion rates 

(Rohrlack et al. 1999b), disrupt moulting (Rohrlack et al. 2004b), and lower survival (Demott 

et al. 1991, Rohrlack et al. 2001). The most commonly assayed of these are the hepatotoxic 

microcystins (fig. 2) and the neurotoxic anatoxins (Wilson et al. 2006, Tillmanns et al. 2008). 

Studies examining the effects of these toxic compounds in cyanobacteria on the growth and 

survival of zooplankton, indicate that though they may have no effect on population growth 

they greatly affect survival (Wilson et al. 2006). 

Whereas fish have been considered quite tolerant to the toxicity of cyanobacteria (Kotak et al. 

1996),  there are some reports linking toxic cyanobacteria to massive fish kills (Rodger et al. 

1994). However, not enough evidence is available to implicate cyanobacteria toxins in 

occurrences of fish kills and related cyanobacteria blooms either in tropical or temperate 

regions (Ochumba 1990, Rodger et al. 1994). Fish kills may be a result of other cyanobacteria 

bloom related circumstances such as oxygen depletion (Hecky et al. 1994). Nonetheless, 

several laboratory and field experiments have demonstrated that the presence of aqueous and 

cell-bound cyanotoxins in the diet of the fish is not good for their physiology, morphology, 

and behaviour (Malbrouck and Kestemont 2006). 
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Fig. 2

Importance of cyanobacteria to tropical fish and zooplankton  

The importance of size, shape, toxicity, and nutritional value of cyanobacteria has been 

studied on several invertebrates (Burns 1968, Lampert 1987, Gliwicz 1990a, Demott et al. 

1991, Rohrlack et al. 2001, Chan et al. 2004, Gustafsson and Hansson 2004, Repka et al. 

2004) and fish (Lawton and Codd 1991, Lindholm et al. 1992, Tencalla et al. 1994, Bury et al. 

1995, Oberemm et al. 1999, Wiegand et al. 1999, Jacquet et al. 2004, Wang et al. 2005) in 

temperate regions. These studies leave the impression that cyanobacteria contribute very little 

to the food chain from primary producers to fish. They are more a hindrance to the 

development of the biodiversity of secondary producers and may have the ability to reduce 

being grazed upon; this, however, might be different in tropical waters. Blooms of 

cyanobacteria often persist for long periods in tropical lakes yet studies on tropical lakes are 

few and it is difficult to see exactly how the cyanobacteria affect the food web, but some 

studies (Beveridge et al. 1993, Keshavanath et al. 1994, Matveev et al. 1994, Perschbacher 

2003, Sarma et al. 2005) indicate that tropical fish and invertebrates might be better adapted 

to utilize cyanobacteria than their temperate relatives.  
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AIMS OF STUDY 

The main aim of this study was to investigate the effects of the Cyanobacteria Microcystis 

aeruginosa on the growth, behaviour, and survival of tropical fish and zooplankton. M 

aeruginosa is a cyanobacterium with the ability of forming blooms, producing toxins, and 

forming colonies: all these properties have an impact on the behaviour, growth, and survival 

of fish and zooplankton. The tropical fish Oreochromis niloticus (Nile tilapia) and the tropical 

zooplankton Daphnia lumholtzi were chosen as model species and were used in laboratory 

experiments. In the experiments we investigated the effects of the commonly assayed 

cyanotoxins microcystins MCYST-LR & (D-Asp3) MCYST-LR from the toxic M. aeruginosa

strain PCC7806 (wild type) and its microcystin deficient PCC 7806 variant (mutant type), 

which has been genetically engineered to knock out microcystin synthesis (Dittmann et al. 

1997).  

This study was achieved by fulfilling the following specific objectives. 

a. Investigating the diel vertical migration behaviour of zooplankton in a eutrophic bay 

of Lake Victoria. 

b. Investigating the diet composition, availability of food items, and factors affecting the 

diet of O. niloticus in two tropical eutrophic lakes where cyanotoxins are present, Lake 

Victoria and Lake Mburo, Uganda. 

c. Verifying the presence of microcystins in tissues of fish (Nile tilapia) obtained from 

fishermen’s catches in Murchison Bay, Lake Victoria and Lake Mburo.  

d. Investigating whether cell-bound microcystins have an effect on ingestion rates and 

growth of juvenile O. niloticus.  

e. Investigating the effects of cell-bound microcystins on life history variables of D. 

lumholtzi. 
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MATERIAL AND METHODS 

Field studies 

These were conducted in two eutrophic tropical lakes, Lake Mburo and Lake Victoria in 

Uganda (Fig. 3). These lakes were selected because they are both eutrophic and their 

phytoplankton communities are dominated by bloom-forming cyanobacteria (Kayiira 2007, 

Haande 2008).  

Lake Mburo is located between 00o30’ - 00o45’S, and longitude 45o00’ - 31o05’E in western 

Uganda, at an altitude of 1210 m. It is a shallow lake with an average depth of 2 m and a 

maximum depth of 4 m. It is located within a protected National Park that supports a large 

wildlife population including at least 1000 hippos that frequently utilise the lake (Wronski 

2002). Cyanobacteria are the most dominant phytoplankton group in this lake. Sample 

collection and physico-chemical measurements were conducted at three sites along a transect 

across the lake (IV).  

Murchison Bay is a shallow bay of Lake Victoria located between latitude 00o15’N-00o18’N 

and longitude 32o33’E-32o41’E, at an altitude of 1135 m with an average depth of 3.2 m.  The 

bay covers an area of about 200 km2 and is divided into two parts; the inner bay (18 km2) and 

the outer bay separated by a narrows. Studies on the phytoplankton community structure of 

Murchison Bay indicate that cyanobacteria of the genus Microcystis (31%) and the genus 

Anabaena (20%) make up over half the cyanobacteria in the inner Murchison Bay (Haande 

2008). Sample collection and physico-chemical measurements were conducted at three sites 

along a transect extending from the inner part of the bay to the outer part of the bay (IV).  
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Fig. 3 

Laboratory studies 

Laboratory experiments were conducted at the Department of Zoology, Makerere University, 

Uganda and at the Department of Biology, University of Bergen, Norway. In all our 

laboratory experiments we used the cyanobacteria M. aeruginosa strain PCC 7806 and its 

microcystin deficient mutant (III, V). In some of the experiments (III, V – experiment 2) the 

green algae Scenedesmus sp. was also used. The cyanobacteria stock cultures were obtained 

from the Norwegian Institute of Water Research (NIVA). The green algae Scenedesmus sp.

was obtained from stock cultures maintained at the Department of Biology, University of 

Bergen.  

The tropical zooplankton Daphnia lumholtzi was obtained from stock cultures maintained at 

the Department of Biology, University of Bergen as a single clone. This clone was originally 

obtained from Lake Victoria and maintained in culture since 2003. For the fish ingestion and 

growth rate experiments, Nile tilapia Oreochromis niloticus fry were obtained from the 
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Kajjansi fisheries research Institute, Uganda and the Department of Animal and Aquacultural 

Sciences, Norwegian University of Life Sciences, Ås, respectively.  

RESULTS AND DISCUSSION 

Cyanobacteria blooms  

Conditions in our study lakes were characterised by a high abundance of cyanobacteria and 

the absence of strong temperature and oxygen gradients (I, II, IV).  Surface temperatures 

were high (23 – 30oC), and in Murchison Bay, temperature was mostly uniform throughout 

the water column during the night and any stratification that had formed during the day was 

broken down during the evening and night time (I). Levels of dissolved oxygen were 

relatively high in surface waters often exceeding 60% saturation, however, during some of the 

sampling months, dissolved oxygen levels close to the bottom would drop below 20% 

saturation (I, II). A Wilcoxon rank sum test on seasonal differences in average dissolved 

oxygen (DO) concentration in Lake Mburo showed that DO was higher in dry seasons than 

wet seasons (IV). Water transparency in both study areas was often below 1 m (I, II, IV), 

probably because of the high turbidity due to high quantities of silt and phytoplankton (II).  

One major difference between lakes in tropics and lakes in temperate regions is the lack of 

strong seasonal patterns in tropical lakes. Whereas temperate lakes transit from a cold winter 

season (characterised by short days, low primary and secondary production), to a warm spring 

period (characterised by increased primary production followed by an increase in secondary 

production) followed by even warmer summers (characterised by long days, reduction in 

secondary production and an increase in cyanobacteria dominance), tropical lakes experience 

conditions of high temperatures and high light intensities all year round. Under such 

circumstances cyanobacteria blooms tend to persist all year, especially in shallow lakes 

(Havens 2008). Yet in tropical lakes, even in the presence of year-round blooms that may 

include toxin producers, several invertebrate and fish species continue to be abundant (I, II), 

with some fish like the Nile tilapia even utilising toxin producing cyanobacteria as a source of 

nutrition (II, IV). Whether or not this can be attributed to tolerance (Gustafsson and Hansson 

2004) or toxin avoidance (Keshavanath et al. 1994) is still debatable. 
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Phytoplankton community  

The phytoplankton community of Murchison Bay and Lake Mburo was dominated by 

cyanobacteria (II). Cyanobacteria accounted for > 90% of the phytoplankton in both lakes (I, 

II). Previous work on Murchison Bay (Schröder et al. 1998, Haande et al. 2007) and Lake 

Mburo (Byarujali 1995, Kayiira 2007) has shown that they are both eutrophic with high levels 

of TP and TN nutrient loading. High levels of phosphorus are a major driving factor for high 

cyanobacteria abundance (Schindler et al. 2008). 

The Lake Mburo catchment consists of a hilly terrain where agriculture and pastrolism are 

practised (D. Muwhezi pers comm.). Lake Mburo is eutrophic mainly as a result of high 

nutrient loading from surface runoff. Extra nutrient loading is assumed to come from the 

River Ruizi, which runs from an urban centre (Mbarara town) and partly drains into the 

wetlands surrounding Lake Mburo. Animal waste from the large population of hippos that 

live around the lake is also considered an important source of nutrient loading. High total 

nitrogen and total phosphorus coupled with high turbidity due to silt from surface runoff, 

provide conditions that favour the growth of cyanobacteria over other phytoplankton 

(Byarujali 1995). High nutrient conditions, in turn, favour the formation of algal blooms 

affecting water transparency levels, which were < 1 m (II).  

The eutrophication of Murchison Bay is part of a trend of eutrophication that has been 

documented in Lake Victoria over the last 50 years (Verschuren et al. 2002). This 

eutrophication has been attributed to several factors including climate change, explosion of 

the piscivorous Nile tilapia populations, and anthropogenic sources (Ogutuohwayo and Hecky 

1991, Verschuren et al. 2002).  

The phytoplankton strain responsible for observed microcystins in our study lakes has so far 

not been identified from isolated strains but it is highly likely that the microcystins come from 

one or more Microcystis aeruginosa strains (Haande et al. 2007). The strain composition of 

this cyanobacterium varies quite a lot within the lake (Haande et al. 2007). Microcystins were 

present in both study areas, sometimes exceeding 1.0 μg L-1 (IV), especially during wet 

seasons when temperatures were highest. Changes in microcystins concentrations could not 

be explained by measured environmental variables but may be related to changes in strain 

composition (Rohrlack et al. 2008).   
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Cyanobacteria and diet of Nile tilapia 

Cyanobacteria are often an important constituent, contributing as much as 50%, of the diet of 

Nile tilapia in eutrophic tropical lakes (Getachew 1987, Bwanika et al. 2006) and were found 

to contribute over 30% to the diets of O. niloticus in Lake Mburo and Murchison Bay (II). 

Colonial and filamentous cyanobacteria were the most abundant forms in the fish diets 

contributing up to 90%. Colonial and filamentous forms can be ingested more efficiently than 

single celled forms for filter feeding fish (Turker et al. 2003b). 

The Nile tilapia is a generalist filter feeder, with a long gut capable of efficiently ingesting 

and assimilating carbon from phytoplankton ( Moriarty 1973, Moriarty and Moriarty 1973a, 

1973b, Moriarty et al. 1973). Its filter feeding mechanism (Sanderson et al. 2001) will often 

favour the ingestion of the larger colonial and filamentous phytoplankton (Northcott et al. 

1991, Turker et al. 2003a), which in Lake Mburo and Murchison Bay were mostly colonies of 

Microcystis spp. (II). As a result, over 80% of ingested phytoplankton in diets of fish from 

both lakes was Microcystis spp. The Nile tilapia is also efficient at filtering small 

phytoplankton (Robinson et al. 1995), thus several other groups of phytoplankton were also 

found in its diet (II).  

Nile tilapia from our study lakes also ingested large amounts of detritus. Other items in their 

diets included zooplankton and insects. The contribution of insects to their diets was 

correlated with water transparency in Murchison Bay, but none of the other food items 

(phytoplankton, zooplankton, detritus) could be explained by any of the measured 

environmental variables (II). In our study (II), water transparency was negatively correlated 

with chlorophyll a. Low competition from halpochromines due to the piscivorous Nile perch 

is believed to be an important factor in allowing Nile tilapia to assume a more omnivorous 

diet (Bwanika et al. 2006), therefore with improved visibility conditions Nile tilapia may 

utilise active pursuit to include a variety of animal and plant material in their diet. Populations 

of Nile tilapia in the lakes studied may flourish largely due to their ability to utilise a broad 

spectrum of food resources (Bwanika et al. 2006). The Nile tilapia in our study ingested a 

wide range of food items (II). 
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Experimental studies on ingestion rates of  Nile tilapia have suggested that the presence of 

toxic cyanobacteria may have a negative effect on its ingestion rates (Keshavanath et al. 1994). 

We observed low ingestion rates when fish were fed a toxic cyanobacterium (IV), however, 

we did not observe any effect of the presence of microcystins on these ingestion rates. In the 

lakes studied, the contribution of cyanobacteria to fish diets also seem to be unaffected by the 

presence of microcystins in the lake. Since Microcystis spp. have been identified as the most 

likely source of measured microcystins in a number of East African lakes (Haande et al. 2007), 

the high contribution of these cyanobacteria to Nile tilapia diet (II) may explain the high 

amount of microcystins observed in its gut (> 300 μg kg-1 fw) and its positive correlation with 

the microcystin concentration in the lake (IV).   

Effects of cyanotoxins on fish  

Though the presence of toxins has been suggested as an important factor in reducing fish 

ingestion rates (Keshavanath et al. 1994), presence of microcystins alone in cyanobacteria 

does not significantly affect the ingestion rate of Nile tilapia (V). Ingestion rates of Nile 

tilapia on the toxic M. aeruginosa strain PCC 7806 were generally low in our study (V), 

which could be explained by the presence of other substances in the M. aeruginosa that were 

not investigated or it could be attributed to the use of single cell cultures in the ingestion 

experiments (Wilson et al. 2006). Nonetheless, this study has demonstrated that there can be 

inhibition effects of cyanobacteria on fish ingestion rates, which may be attributed to factors 

other than microcystins. Such factors could include extra-cellular properties of toxic 

cyanobacteria which act as a deterrent to fish ingestion, a so-called bad taste factor (Nizan et 

al. 1986). Several studies have suggested that the presence of toxic algae can induce stress in 

fish (Baganz et al. 2004) which in turn would lead to low grazing rates (Beveridge et al. 1993).  

In our study we conducted growth experiments on juvenile fish fed with diets containing both 

toxic cyanobacteria and green algae (V). The presence of high amounts of cyanobacteria 

(20%) in the diet significantly affected growth (p < 0.001) after a two week period, regardless 

of whether microcystins were present or not (p > 0.05). We did not observe a significant 

effect (p > 0.05) on fish growth when diets where supplemented with green algae instead (V). 

Our findings suggest that when toxic cyanobacteria are present in small amounts in proportion 

to other food sources, fish growth is not significantly affected. In fact, adding a small amount 

(2%) of cyanobacteria seems to result in a trend of substantial gains in growth (V), yet when 
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toxic cyanobacteria amounts are as high as 20% this is no longer beneficial (V). Wild 

populations of juvenile tilapia (1-5 g) seem not to rely on phytoplankton as much as adult fish 

(II), probably because they lack the necessary morphological structures to efficiently utilise 

phytoplankton (Northcott and Beveridge 1988), which could explain the low ingestion rates 

observed in our experiments (V). Despite our inability to carry out a full study documenting 

other behavioural responses of Nile tilapia to toxic cyanobacteria, evidence from a single fish 

pilot experiment utilising four treatments (formulated feed (30% protein), microcystin 

containing M. aeruginosa, microcystin lacking M. aeruginosa, green algae Scenedesmus sp.) 

suggests that fish in the cyanobacteria treatments exhibited less motility and an opercula beat 

frequency as seen in situations of stress (Baganz et al. 2004).  

Cyanotoxins in fish  

Several laboratory studies have shown that microcystins may accumulate in fish (Malbrouck 

and Kestemont 2006), yet only a few have shown this to be the case in the field (Magalhaes et 

al. 2003, Chen et al. 2006), even for Nile tilapia (Mohamed et al. 2003, Mohamed and 

Hussein 2006). Our study provides crucial evidence for the ingestion and uptake of 

microcystins by fish in eutrophic lakes (IV).  

The levels of microcystins ingested by the fish were closely associated with the level of 

microcystins in the water (IV) but not to any other measured environmental variables. None 

of the measured environmental variables had an association with the level of microcystins in 

fish muscle or liver. There is an almost one hundred fold difference between the levels of 

microcystins in fish gut and the levels in the muscles (IV) but we found no correlation 

between the level of microcystins in the fish gut, liver and muscle. While not all ingested 

microcystins may be assimilated, e.g. due to some cells going through the gut undigested 

(Lewin et al, 2003), the observed difference in microcystins levels between gut and muscle 

may be largely due to depuration processes (Sahin et al. 1996, Mohamed and Hussein, 2006). 

We did not observe any seasonal patterns of microcystin concentrations in fish (IV).  

The level of microcystins in fish gut may be closely associated with the proportion of 

cyanobacteria in their diet. Study II suggests that adult tilapia ingest higher amounts of the 

cyanobacteria that is believed to be the source of microcystins (Haande et al. 2007) than 

younger fish. However, we found no relationship between fish size and either the amount of 
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ingested microcystins or the amount of assimilated microcystins in fish tissue. This may be 

because our selection of fish for microcystin analysis (fishermen’s catch) did not allow us to 

get a substantial number of younger tilapia (IV). It is also likely that any microcystins taken 

in by the older fish may be physiologically eliminated (Sahin et al. 1996). The microcystin 

congeners RR, LR, and YR were observed in fish guts and muscle (IV) and although our 

laboratory findings, which were limited to juvenile fish, suggest that microcystins, especially 

LR, are detrimental to the welfare of fish (V), a number of studies have shown that fish 

(mostly adults) may have a high tolerance to the toxicity of  the commonly known cyanotoxin, 

microcystin-LR (Kotak et al. 1996).  

Cyanobacteria and zooplankton behaviour 

The presence of cyanobacteria, especially in temperate lakes, often coincides with a reduction 

in the abundance of zooplankton (Havens 2008), particularly of large filter feeding 

zooplankton (Pattinson et al. 2003). The efficient filter feeding cladocerans are sometimes 

unable to graze down high densities of filamentous algae even in the absence of predation 

(Gliwicz 1990b). Often there will be a shift in the zooplankton community to dominance by 

small zooplankton (Gliwicz and Lampert 1990). The zooplankton community in our study 

lake was dominated by juvenile copepods (I) which accounted for over 70% of the entire 

zooplankton abundance. Though this dominance of small plankton in Lake Victoria has been 

attributed to a number of factors, including the rise in predation pressure on large herbivores 

by the planktivorous cyprinid Rastrineobola argentae (Gophen et al. 1995) and food 

limitation due to eutrophication (Mwebaza ndawula 1994, Wanink et al. 2002), very little 

evidence exists to support these claims. Nonetheless, it is obvious that cyanobacteria 

dominance has a part to play in the present zooplankton composition and structure. Although 

cyanobacteria may dominate the phytoplankton community, preferred algal food sources are 

also abundant enough to provide adequate food resources for zooplankton at all depths in the 

water column (I, II). Zooplankton were often uniformly distributed throughout the water 

column due to the absence of temperature and resource (food) gradients (Lampert et al. 2003). 

The abundance of bloom-forming cyanobacteria may contribute to the observed low levels of 

water transparency. Diel vertical migration of zooplankton in lakes that lack temperature and 

food gradients may be associated with water transparency (Gliwicz and Pijanowska 1988), 

and a correlation between water transparency and amplitude of migration was observed for 

adult calanoid copepods in Murchison Bay (I). Owing to the generally poor water 
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transparency conditions and absence of better quality food in surface waters, most 

zooplankton in our study do not exhibit DVM, despite the high number of zooplankton 

predators in the lake (Mwebaza-Ndawula 1994, Wanink 1999). 

Cyanobacteria are considered poor food for zooplankton (Lampert 1987). Filamentous and 

colonial natures, production of protease inhibitors, lack of essential fatty acids, and extra-

cellular herbivore deterrents may all contribute to making cyanobacteria a poor source of 

nutrients for zooplankton growth and reproduction (Wilson et al. 2006), but these effects are, 

species and even strain specific (Tillmanns et al. 2008). Zooplankton that are continually 

exposed to cyanobacteria, as in eutrophic tropical lakes, may develop some degree of 

tolerance (Gustafsson and Hansson 2004) especially to the effects of cyanotoxins. However 

our results indicate that, compared to green algae, cyanobacteria are detrimental to the growth 

and reproduction of the tropical cladocera Daphnia lumholtzi (III). Yet this daphnia is 

considered to survive well even during cyanobacteria blooms (Pattinson et al. 2003).  

Effects of cyanotoxins on zooplankton  

Cyanobacteria produce a wide range of bioactive compounds that are toxic to zooplankton 

(Wiegand and Pflugmacher 2005). Although the commonly assayed cyanotoxins – 

microcystins – may not have an effect on population growth they have a negative effect on 

survival (Tillmanns et al. 2008). We observed low survival rates for D. lumholtzi when the 

proportion of cyanobacteria in their diet was more than 0.5 mg DW L-1 both in the presence 

and absence of microcystins (III). Below this value, it was possible to recognise the effects of 

microcystins on zooplankton survival (III), as small amounts of cyanobacteria may actually 

stimulate growth, but above a certain threshold they affect growth negatively (Lampert 1981). 

The effect of microcystins on survival is therefore also linked to the rate at which they may be 

ingested (Rohrlack et al. 1999a, Rohrlack et al. 2001). Several other compounds, such as the 

protease-inhibiting cyanopeptolins and microviridins (Jungmann 1995, Rohrlack et al. 2004a) 

as well as mucilage polysaccharides that cause mechanical hindrances (Rohrlack et al. 1999b), 

may also account for observed effects of toxic cyanobacteria on zooplankton survival (III). 

Toxins in cyanobacteria cells do not seem to have a defence function against zooplankton 

grazing (Rohrlack and Hyenstrand 2007), yet when ingested will most certainly have a fatal 

effect on the grazer (III). The presence of toxic cyanobacteria in an aquatic environment may 

cause a loss in biodiversity by reducing the number of non-tolerant strains. This may be the 
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reason why some populations of Daphnia such as D. lumholtzi (Pattinson et al. 2003) and D. 

carinata (Matveev et al. 1994) continue to thrive in lakes with cyanobacteria blooms. 

CONCLUSIONS 

This study has shown that: 

• Cyanobacteria especially of the genus Microcystis are an important diet component for 

adult Nile tilapia in the eutrophic Murchison Bay and Lake Mburo. In addition to 

phytoplankton, Nile tilapia of all sizes studied consume detritus, zooplankton, insects, 

and other items (including fish eggs). Juvenile tilapia consume a lower proportion of 

phytoplankton (cyanobacteria) than adult fish.  

• Nile tilapia exhibit generalist feeding habits but may also show a preference for 

colonies of cyanobacteria. Ingestion of cyanobacteria cells is probably the most 

important route for intake and accumulation of cyanotoxins in Nile tilapia and 

probably zooplankton. 

• Juvenile fish may not be as efficient at dealing with ingested cyanotoxins as adult fish, 

nonetheless, when provided in small amounts, cyanobacteria (with or without 

microcystins) may stimulate growth both in juvenile fish and zooplankton, but when 

provided as the sole source of nutrients it may hinder growth, survival, and 

reproduction.  

• It is likely that in eutrophic tropical lakes, juvenile fish and zooplankton continue to 

survive because they are unable to ingest the often too large colonies of toxic 

cyanobacteria, but feed predominantly on other items like insects and zooplankton 

(fish) or green algae ‘undergrowth’ (zooplankton) which may still be abundant. 

• The occurrence of microcystins both in the water and fish tissue may be well 

correlated but shows variation throughout the year that can not be explained by the 

seasons or measured environmental variables. 

• Conditions of water transparency that are likely related to phytoplankton abundance 

can have an effect on the range of vertical migration for zooplankton.  
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