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Introduction

Modelling of flow in porous media is an important topic of research within
applied mathematics. Understanding flow in porous media is vital not only
in the oil industry, but for instance also in ground water hydrology and in
geothermal energy extractions. The models are built upon two physical prin-
ciples; mass conservation and Darcy’s law, which relates the force on the fluid
and the fluid velocity. These two laws result in the time dependent parabolic
conservation equation and the time independent elliptic conservation equa-
tion, which are the governing equations for flow in porous media.

In general we have to utilize numerical methods to solve these equations.
We will study control volume methods, and in particular one MultiPoint Flux
Approximation (MPFA) method. Control volume methods are designed to
preserve the conservation property, and MPFA methods in particular han-
dle complex geological structures in the reservoir. The MPFA method was
derived independently and simultaneously by Aavatsmark et al. [4] and Ed-
wards and Rogers [14].

When we discretize an equation we want the discrete system to main-
tain the same properties as the continuous problem. A discretization may
not capture all structures of the equations, and we must emphasize on those
properties which seems to be significant for our system. Maximum princi-
ples are important properties of elliptic and parabolic differential equations.
Discretization methods which satisfy discrete analogues of these maximum
principles are called monotone. Control volume methods are in general not
monotone, and it is desirable to establish conditions under which discrete
maximum principles are satisfied.

In the recent years monotonicity of control volume methods for elliptic
equations has been studied. A discrete maximum principle is established
in Keilegavlen et al. [18], and a set of monotonicity conditions on general
quadrilateral grids has been derived in Nordbotten et al. [23]. Monotonicity
criteria for parabolic equations have not yet been studied. We will therefore
in this thesis extend the already existing monotonicity conditions for elliptic
equations to a set of conditions for parabolic equations. These conditions



2 Introduction

is derived under the assumption that the discrete maximum principle for
parabolic equations is the same as the principle for elliptic problem. It turns
out that these conditions are stricter than the elliptic conditions.

Since the maximum principle for the time discrete parabolic equation is
different from the principle for the elliptic equation, it may be necessary to
reformulate the discrete maximum principle. It is not obvious how this shall
be done. We will therefore discuss various formulations of a time discrete
maximum principle together with numerical examples.

In Chapter 1 we give an introduction to reservoir mechanics, and the
two model equations which we will use throughout this thesis. In Chapter
3 we give a detailed derivation of the two point flux approximation and
the MPFA method. The maximum principles and discrete analogous are
proposed in Chapter 4. In Chapter 5 we derive monotonicity criteria on
general quadrilateral grids. Then we especially study these for a specific and
simple case. Analytical and numeral results are illustrated in Chapter 6. Here
we also discuss alternative formulations of the discrete maximum principle
with together with numerical examples. Finally we summarize, conclude and
propose further work in Chapter 7.



Chapter 1

Reservoir Mechanics

In this chapter we will look at relevant theory of reservoir mechanics. The
presentation is mainly based upon the book of Pettersen [24] and the lecture
note of Aavatsmark [3]. We start by introducing some basic reservoir and
fluid properties. Next, we consider equations describing flow in porous me-
dia; the principle of mass conservation and Darcy’s law. Based upon these
equations we formulate two models for single phase flow, which we will use
throughout the thesis.

1.1 Porous Media

In reservoir mechanics we study the flow of fluids in porous media. A reservoir
is a porous geological structure with fluids, which can be either gas or liquid,
filling the void space. Most reservoir rocks and formations are composed of
compressed minerals. These rocks may be considered as solid, but in reality
consist of a fine structure of pores and grains. The void space in these rocks is
a complex structure of connected and isolated pores, as illustrated in Figure
1.1. We will refer to such materials as porous media.

The interconnected system of pores forms an irregular lattice of pore
bodies (junctions) and pore throats (connections). The radii of the pore
bodies and pore throats may vary over many length scales and is typically
in the range of 1 mm - 1x m. Hence, a model can be derived where the flow
in each of the pores is given by equations from fluid mechanics. However,
the complex structure and the fact that such a detailed knowledge about the
microscopic structure is unknown make this an almost impossible problem to
solve. So, when modelling flow in porous media we consider a macroscopic
model. By this we mean that the irregularities of the porous medium network
can be considered as random variations with a well defined average. Thus



4 Reservoir Mechanics

solid medium

connected pores
isolated pore

pores/void space

Figure 1.1: The structure of a porous media, it consists of solid medium and
void space. The void space is a complex structure of connected pores and
1solated pores.

we may define velocity, pressure and other quantities as averages over a
sufficiently large reference volume. In the literature, e.g. Bear [11], such a
reference volume is denoted a representative elementary volume (REV). By
introducing a REV the geometrical properties of different porous media are
characterised by their porosity and permeability.

1.1.1 Porosity

Porosity is a geometric property of the solid medium, and indicates the
amount of volume available for fluid flow. It is defined by the ratio

Qb o VPores

- 9
VTotal

where Vpores is the volume of connected pores and Vi, is the total or bulk
volume of the material, including the solid and void components. We only
consider the connected pore channels since these are the only part of the void
space which contributes to the flow.

1.1.2 Permeability

Permeability, K, is a measure of the ability of a material to transmit fluids,
and can be interpreted as the conductivity of the porous media. It is of great
importance when determining the flow of hydrocarbons in reservoirs, and of
groundwater in aquifers. The permeability is a property of the porous media
only, not the fluid. The unit for permeability is Darcy, and one Darcy is
approximately 0.987 - 10712 m?.

The porous media we consider are typically generated by sedimentation
processes. In such processes fine grain particles are oriented in ways that
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make the porous media anisotropic, i.e. the permeability is directional de-
pendent. To account for this we need to represent the permeability by a
second order tensor, K = {k;;}. It may be shown that K in general has
to be symmetric, K = K. If the permeability varies with spatial location,
K = K(x), we say that the medium is heterogeneous. In its simplest form
the medium is isotropic and homogeneous, and the permeability is constant.

1.2 Equations for Flow in Porous Media

In this section we will introduce the governing equations for flow and trans-
port of one single fluid through a porous media. A good understanding of
single phase flow is essential for handling multiphase flow. In general, more
than one fluid can co-exist within an REV, and they may be distinguished
at the pore scale by fluid-fluid interfaces. Despite the fact that single phase
models are rarely god enough to describe a typically reservoir problem, the
solution techniques for single phase flow are very important because they
act as building blocks for solving multiphase problems. We will not consider
multiphase flow in this thesis, and refer to e.g. Bear [11] for more information.

1.2.1 Conservation of Mass

Equations concerning flow in porous media are based on a conservation law.
Conservation of mass is a fundamental physical principle, and can be formu-
late by looking at an arbitrary fixed geometrical volume, €2, inside a reservoir
and require that the following equation is valid:

{accumulation} 4 {outflow} = {source/sink}.

Let ¢ be the porosity and v the volumetric flow velocity of the fluid
inside €2. The volumetric flow velocity is the rate of volume flow across a
unit area [m?/(s-m?) = m/s]. Then the fluid concentration is ¢p, and the
momentum of the fluid through a surface, which is a measure of the volume
flowing through a surface per time, is pv. The mass conservation equation
then takes the form

%/Q(qu)dt—f—/anv-ndaz/ﬂQdT, (L1.1)

where 0f) is the boundary to the volume €2, and mn is outer unit normal vector
to the boundary, as illustrated in Figure 1.2. The source term () represents
a production or injection well in the reservoir.
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o2

Figure 1.2: An arbitrary fived geometrical volume §2 with boundary 02 and
outer unit normal n.

Since the geometrical volume ) is said to be fixed, it is independent of
time. If v is continuously differentiable we can use Gauss theorem to get the
equation

/Q{%(qbp)%—v-pv—Q dr =0, (1.2)

When the volume ) is arbitrary we may write

0
5(9P) TV pv—Q=0.

This is the differential form of the continuity equation. The latter equation
is only valid if the terms involved are sufficiently smooth. If not, the two
integral forms of the continuity equation (1.2) and (1.1) are still valid.

1.2.2 Darcy’s law

In porous media, flow of fluids through pores is strongly affected by friction
between the fluid and the pore walls. A mathematical equation that relates
the viscous forces to applied potentials was first formulated by Henry Darcy
in the 19th century. Hence, the volumetric flow velocity v is referred to
as the Darcy velocity and is determined by Darcy’s law. Darcy conducted
experiments with flow of water vertically through different types of sand. He
concluded that the flow through the sand was proportional to the potential
difference between the top and bottom pressure.
In modern form, Darcy’s law may be expressed by:

1
v = —;K(Vp — pgk).

Here p is the pressure, p is the density, ¢g is the gravity constant and K
is the permeability. The viscosity, u, is a property of the fluid and is the
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internal resistance to flow in the fluid. As an example water has low viscosity
while syrup has high. The equation above states that the fluid will move
from regions of high pressure to regions of low pressure, and the velocity is
dependent on the medium and phase conductivity.

We define the conductivity K = %, which expresses the ease with which
a fluid is transported through a porous media, and depends on both the
solid and fluid properties, e.g. [11]. For single phase flow, the viscosity effect
on the conductivity will be insignificant with respect to flow characteristics.
The interesting feature for us is the effect of media anisotropy and hetero-
geneity in reservoirs, therefore the term permeability will be used instead of
conductivity.

1.2.3 Equations of state

We shall only study isothermal processes. An isothermal process is a thermo-
dynamic process in which the temperature of the system remains constant.
The heat transfer into or out of the system typically must happen at such a
slow rate that the thermal equilibrium is maintained. When this is fulfilled,
we have pressure and density as functions of each other

p=p(p). (1.3)

This relation is referred to as an equation of state. Viscosity and pressure
are also functions of each other, u = p(p).

Later it will turn out to be convenient with an equation that expresses the
density with respect to pressure. By using the compressibility we obtain such
an expression. Compressibility is a measure of the relative volume change
of a fluid or solid as a response to a pressure change. The compressibility is

defined by

1d 1d
c= W _1dp (1.4)
Vidp  pdp

Now the basic reservoir properties is discussed and the different equation are
set up, we can summarize the model and derive different formulations.

1.3 Models for Single Phase Flow

To summarize our model we have; the continuity equation

0
5(0P) TV pv—Q =0, (1.5)
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n component equations
v =—K(Vp - pgk), (1.6)

and one equation of state (1.3). These n+2 equations possess n+2 unknowns,
namely v, p and p, hence our system is closed.

1.3.1 Incompressible Fluids

For an incompressible fluid the density does not change with pressure, hence
p is constant and from equation (1.4) ¢ = 0. Assume further that the solid
medium is incompressible, ¢ is constant. Substituting for the Darcy velocity
(1.6) in equation (1.5) then gives

-V (K (Vp - pa) = <. (1.7

Here we can introduce the flow potential defined by
¥ =p—pgz, suchthat Vi = Vp— pgk.

The potential v is the pressure which exceeds the hydrostatic pressure. By
introducing the potential, equation (1.7) takes the form

—V - (KVY) = %. (1.8)

This is an elliptic differential equation with the potential i) as dependent
variable. The equation state that the flow over the boundary of a given
domain must be balanced by possible sources or since inside the domain,
hence the accumulation is zero.

1.3.2 Compressible Fluids

Further in our study, we will only consider solutions of our models in two
dimensions, e.g. horizontal flow. We will therefore neglect gravity and as-
sume that the solid medium is incompressible. From equation (1.4) it follows
that dp = cpdp, and if we use the property V - (uv) = uV - v + Vu - v we
get the conservation equation (1.5) included the Darcy velocity (1.6) without
the gravity term

0
0=dpess; — V- (bK'Vp) = Q
0
= gbpca—]; — pV - (KVp) — pcVp" KVp — Q. (1.9)

Equation (1.9) is a non-linear equation. It may be convenient to linearise the
equation, then we obtain an equation for weakly compressible fluids.
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Weakly Compressible Fluids

We assume that
cVp' KVp < |V - (KVp)|.

This can be a reasonable assumption for two reasons; if the changes in pres-
sure is small, it makes sense to assume that (Vp)? < V - Vp. In addi-
tion, if we assume that the compressibility is a small constant, ¢ < 1, then
c(Vp)? < V- Vp.

When this inequality is satisfied we may neglect the smallest term, and
equation (1.9) simplifies to

dp Q
qbcat V.- (KVp) = ’ (1.10)

This is a linear parabolic differential equation in the pressure p . Flow in
confined aquifers is described by an equation on this form. In Bear [12]
a confined aquifer is defined as “an aquifer bounded from above and from
below by impervious formations, formations which is incapable of transmit-
ting significant quantities under ordinary field conditions”. If gravity is not
neglected, the arguments above may still be used and an additional gravity
term will appear, but the flow characteristic in the reservoir will be the same.
The analysis and results throughout this thesis will therefore not collapse if
gravity is included.

Now that we have defined our model equations (1.10) and (1.8), we will
in the next chapter go through a discretization technique for solving these
equations.



10

Reservoir Mechanics



Chapter 2

Control Volume Methods

In this chapter we are going to consider control volume methods as discretiza-
tions of the parabolic equation (1.10). The discretization techniques both for
two point flux- and multipoint flux- approximation will be explained, and
the composition of the system matrix for the discrete system will be given.
Our presentation of the control volume method is mainly based on Aavats-
mark [2].

2.1 Discretization

Most equations describing physical phenomena can not be solved analytically.
When analytic results are not available, simplifications and numerical meth-
ods are needed. To be able to solve a mathematical problem numerically,
we need a discrete representation of the continuous problem. This process is
called discretization. To discretize a particular problem we need information
about the domain in which the equations are going to be solved, as well as
initial and boundary values. When this information is given, we can start
by defining a finite number of points on the domain where our solution shall
be given a discrete representation. This is solved by defining a grid on our
domain.

A grid is created by defining neighbourhoods between given points. For
each point in the grid, connection lines are drawn between the point and its
neighbouring points. The connection line dividing two cells will be termed
interface or edge. The neighbourhood between the points must be chosen
such that the edges between the points do not cross each other. Such a
grid is shown in Figure 2.1. Those subdomains which is separated by the
connection lines in the grid are called grid cells. We use the geometrical
midpoint, which is the average of the coordinates of the four vertices that

11
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grid cells

Figure 2.1: A cell-centred grid with nine cells and nine nodes located in the
centre of each cell..

define the cell, as a node point. Such a grid is called a cell-centred grid.
The grid in Figure 2.1 has nine quadrilateral cells with nine corresponding
nodes. Nodes may be located on cell interfaces or corners as well as inside
the domain. The location of the nodes is dependent on the grid type and the
variable which is discretized.

In each cell we assemble a linear set of equations for a finite number
of values for the dependent variables being approximated. To derive the
linear set of equations, we use the nodes to give a discrete representation of
a function defined on the whole grid. Let us denote the nodes in a grid z;,
where i = 1,--- ,n and let a function g(z) be defined on the grid. A discrete
representation of the function ¢ is then given by the vector

g =lg(x1), ,gza)]".

The grid cells can have different shape and size. We will only use uniform
grid in our numerical computations. A regular grid is a grid where all
the cells have the same shape, e.g. square, parallelogram or rectangle. A
uniform grid is a regular grid where all the cells have the same size.

A number of techniques are derived to discretize partial differential equa-
tions, each of them having advantages and disadvantages. We are going to
discretize a conservation equation, so it is favourable that the conservation
principle is preserved.

Definition 2.1. A discretization is said to be locally conservative if
i) the flow normal to an interface is the same on each side of the interface,

ii) the outflow of a cell equals the source in the cell subtracted the accu-
mulation in that cell.
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a (b) ()
Figure 2.2: (a) A polygon grid, (b) A polygon cell illustrating the flux f
through an interface, S, and (c¢) The vectors w and n for an edge S.

2.2 Control Volume Formulation

Control volume methods are based on the integral formulation of the differ-
ential equation which is to be discretized. These methods preform spatial
discretizations and therefore only the elliptic part of equation (1.10) will be
considered here, i.e. equation (1.8). We will come back to discretization of
the time dependent term in the following chapters.

The discretization is carried out by first defining a grid over the domain
of the equation and then make use of the integral formulation on each cell in
the grid. The integral formulation is initially conservative when Definition
2.1 is fulfilled. In addition, all control volume methods yields an explicit
expression for the flux, in contrast mixed finite element methods do not have
this property. This is valuable since it enables fully implicit multiphase flow
simulations [19]. Control volumes may also be referred to as finite volumes
in some literatures.

The cells are denoted control volumes since the principle of mass conser-
vation, which initially was set up for an arbitrary volume, is used on the grid
cells. Figure 2.2(a) illustrates an arbitrary polygon grid. Let us consider the
shaded cell, and denote this €2;. Equation (1.8) for this cell is

f-ndaz/ q dr, (2.1)
Q.

00 J

where f = —(KVp), ¢ = Q/p, and n is the outer unit normal to the
interface S as illustrated in Figure 2.2 (c). The permeability K is assumed
to be symmetric and positive definite. The flux, f, over the interface, S, is
defined through the following equation,

fz/f-ndaz—/nTKVpdo:—/vada, (2.2)
S S S

where the vector w is defined as w = n?’K. The flux over the over the
interface S is illustrated in Figure 2.2 (b).
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Figure 2.3: The directions w; and w;y1 connect Ti1/o with x; and x;qq,
respectively.

The control volume formulation for equation (2.1) can be stated as

Z f@'(j) = qj, (2.3)

The term g; is the source integrated over cell number j and fl-(j ) is the flux

from cell j through interface number 7. The flux terms fi(j ) are functions of
the variable p. For the elliptic case, i.e. incompressible flow, the variable
p is a potential (see Section 1.3.1). When we include the compressibility,
p denotes the pressure. For simplicity, we use the phrase pressure in both
cases.

If we assume that the source ¢ is evenly distributed within each cell, it is
trivial to compute the right-hand side in equation (2.1). Consequently, since
the pressure is the unknown, the challenge in the control volume formulation
is to calculate the flux over the edges.

We shall assume that the permeability K is constant in each cell, and
that the interfaces are straight lines. The vector w is then constant on each
interface in a cell. Then, n-w = n? Kn > 0, since K is positive definite, and
hence w points in the same cell as n. However, since K can have different
values in the two cells sharing the same edge, it is possible for the vector w
to have different direction on each side of an edge.

2.2.1 Two Point Flux Approximation (TPFA)

The flux (2.2) may be approximated by a two point flux approximation

fir172 = tiv12(Di — Piv1)- (2.4)

The coefficients t; resemble conductances and will be called the transmissi-
bilities. Here t;,1/, is the transmissibility of interface (i 4+ 1/2), and p; and
pi+1 are the pressure at the cell centres of the adjacent cells x; and x; ;. The
flux, fi41/2, over interface (i + 1/2) will for simplicity be denoted f.
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According to equation (2.2), the flux is expressed as the directional deriva-
tives of p in w-direction multiplied by the length of w integrated over the
edge, S. We shall assume that Vp is constant on each side of an interface.
The flux on each side of S can be approximated with a pressure difference
between two points if and only if the connection line between the two points
is parallel with w. Only in this case the pressure difference between the
points can give an approximation to the directional derivative along w.

Figure 2.3 illustrates two cells in a two dimensional grid. The cell centre
in each cell is z; and x;,;. Notice that it is the directions of w; and w;,
which are important. The directions must be such that the line connecting
Tiy1/2 With x; coincide with w;, and line connecting ;o with x;,; coincide
with w;,1, as illustrated in Figure 2.3. The flux from cell ¢z through interface
S can now be expressed by approximating the directional derivative of w;
with the pressure difference between x; and x;,

I wigie — zill2

(2.5)
iz K]l

Di — Dit1/2 = T

Here I';1; 5 is the length of the interface, and p; /2 is the value of p in at the
interface. The same procedure can be used to find the flux from cell (i + 1)
through interface S,

[ @i — zigayelle
iz [ Kiam|l2

Dit1/2 = Pit1 = T (2.6)
Since the flux is continuous, f is the same on each side of S. By adding
together the two equations (2.5) and (2.6), we get

f (||=’Ez'+1/2 — zil|2 N ||2i1 — 1‘z’+1/2||2)
Liti2 [ K im||2 |1 K ip1mlo '

A flux approximation like this is called a two point flux. To be able to derive
formula (2.7), it is necessary that x;11/ is connected with z; and x;4, with
lines that runs along w; and w; 1, respectively. A grid with this property is
called K-orthogonal. A grid is K-orthogonal if and only if the flux through
all the edges can be approximated in a consistent way with two point flux.
TPFA is only consistent for K-orthogonal grids. So if we do not have a
K-orthogonal grid the assumptions for the method are no loner valid. An
example of the how erroneous a TPFA might be for non-orthogonal grids can
be found in for instance Aavatsmark et al. [7] or Reme [26].

Pi — Pit1 = (2.7)

K-orthogonality

K-orthogonal grids are important, because the discretization on such grids
is simple and the resulting method is consistent. We will give a sufficient
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n,

Figure 2.4: The vectors ny and ny in a parallelogram cell.

criterion for a parallelogram grid to be K-orthogonal. Consider the paral-
lelogram grid in Figure 2.4. The permeability K is constant and the unit
normal for the interfaces is n; and mny. The grid is K-orthogonal if Kn; is
parallel with interface j, j # i, consequently if

nlKn, =0, (2.8)

for all cells.

It is often not possible to achieve K-orthogonal grids when dealing with
reservoir simulations. Therefore it is necessary to consider another flux ap-
proximation when K-orthogonality fails. For this we introduce the multi-
point flux approximation.

2.2.2 Multipoint Flux Approximation (MPFA)

MPFA methods are designed to manage non-orthogonal grids, a strong fea-
ture of the method is the ability to handle media inhomogeneity and anisotropy,
as well as irregular grid cells.

As the name suggests, the MPFA discretization is a control volume for-
mulation where more than two pressure values are used in the flux approxi-
mation. Hence, the flux will be approximated by a multipoint flux approxi-
mation expression

fim > tip; (2.9)

jeJ

Here the coefficient ¢; ; is the transmissibility coefficient, it is a conductance
term of interface ¢ and control volume j. We have that > ;¢ ; = 0, since
the flux must be zero when {p,} is a constant vector, Vp = 0. The quantity
p; is the pressure value at the centre of cell j. The set J depends on the
grid and will be discussed later. For the two-dimensional quadrilateral grid,
J consists of six cells.

MPFA methods can be arranged in different ways, and be applied on
triangle- , quadrilateral-, and general polygon grids, e.g. Aavatsmark et
al [6], [5]. We will now go through the MPFA O(0)-method on a quadrilateral
grid. The grid in Figure 2.1 shows an example of a quadrilateral grid.
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I |

Figure 2.5: A general quadrilateral Figure 2.6:  An enlargement of

grid with interaction regions. the four upper left cells in Figure
2.5 with a interaction region illus-
trated by the dotted lines.

Let us consider the four quadrilaterals with a common vertex as shown in
Figure 2.6. For each cell we denote the cell centre z; and the midpoint of the
cell interface z;. We introduce a dual grid by drawing lines connection the
cell centres with the midpoints of the cell surfaces. The cells of the dual grid
is termed interaction regions. A quadrilateral grid with interaction regions
is illustrated in Figure 2.5. The interaction region on the Figure 2.6 is the
polygon with vertices x1, Z1, x9, T4, x4, T2, x3, and T3. Each interaction
region divide the cell interfaces in two parts, and each part will be termed a
subinterface. One interaction region contains four subinterfaces.

The method is constructed such that the transmissibility coefficients for
all the subinterfaces inside an interaction region are determined by the local
interaction between the cells of the interaction region. These transmissibili-
ties determine the flux over the subinterface. When the flux is determined for
the four subinterfaces in a interaction region, we can repeat this for neigh-
bouring interaction regions until we have determined the flux for all the
subinterfaces in a grid. When the flux over two subinterfaces is known, we
can add up in order to get an expression for the flux over the entire interface.

Inside an interaction region we apply the same principles as for the TPFA:
continuity in flux over the sum of subinterfaces in the interaction region and
continuity of pressure on the midpoint of an interface. We assume that the
pressure is described by a linear function in each cell j in the interaction
region. Hence it can be written

p(x) =Vp- (x—x;) +pj, (2.10)

where p; is the value at the centre x; of cell j, p; = p(x;). The continuity
points &; and cell centre x; are shown in Figure 2.7.
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Each linear function is described by three coefficients, of which one of
them is determined beforehand by the pressure value at the cell centre. Sum-
ming up, we have eight unknown coefficients in the linear functions. These
are determined through the eight equations of the flux through the four
subinterfaces, two equations for each subinterface, one for each of the two
cells shearing the same subinterface. These equations are reduced to four
because of continuity of flux over the subinterfaces.

The permeability in each cell j is denoted by K. To evaluate the
expression for the flux

f9 = —nTKUVp,, (2.11)

through subinterface ¢ seen from cell j one need to compute the gradient
Vp;, and the normal vector n; with length equal to the area of the subinter-
face. The gradient is determined by the value of the pressure at each of the
continuity points, &;, of the interface 7 of cell j .

In the two dimensional case the gradient Vp has two components which
are constant in each cell. Let p;, = p(&;), i = 1,2 be the pressure at the
continuity points. From equation (2.10) we then have that

This system of equations can be written
XVp = {]fl_pf } ,
P2 — Dj
where

X:{(fﬂl—%);]‘

(T2 — x;)

8l

Figure 2.7: Cell centre xy, and continuity point x;. The continuity points and
the cell centre describe a triangle in a two dimensional cell
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We introduce the rotation matrix

Then for any pair of two dimensional vectors a and b, the expression a’ Rb
is the third component of the cross product between a and b. It follows that
a’Ra = 0. The determinant of X is

F=detX = (2, — z;)  R(zy — x;)".

F'is twice the area of the triangle spanned by the points x;, Z; and 2. To
express the inverse of X, we introduce the vectors v;, where ¢ = 1,2, given
by

v = R(xy —x;), and vy=—R(Z; —x;).

The vector v; is the inner normal vector to the triangle edge joining the
points x; and &;, having length equal to the length of this edge, see figure
(2.7). The inverse of the matrix X is given by

1 1

X = F[ 1, VQ]'
It follows that )
1 _
Vp = F;ui(pi—pj), (2.13)

and hence the flux through subinterface ¢ seen from cell j is
12
) _ j _ j -
£ = -nTKVVp, = ;le —nT KD, (p; — p;). (2.14)

The flux in the cell illustrated in Figure 2.8(b), is now expressed as
i nf | 0 LITind | o) [,0,0] | Pr—p;
== KOy = —— KU [V U ] P1 = D
[ (4) F2n2T p F anzT o2 P2 — Dj

__au [1?1 — b }
p2—p; |’

where I; is the length of subinterface 7. The matrix GV = {gfjk) Fie1,2:6=12 18

defined as . .
) T'n A N
GO — — | 11| gG) [V(a)ym} .
F |: ang 1 2
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4
P 3

(a) A interaction region defined %[1)) Normal vectors with local numbering
by the dotted lines. The fluzes i an interaction volume.

through the subinterfaces is also

shown.

Figure 2.8: The figures illustrates a interaction region with 2.8(a) fluxes and
2.8(b) normal vectors.

Now consider the interaction volume illustrated in Figure 2.8(b). The
matrix GV is defined through all the normal vectors in the figure, thus the
flux throug