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Chapter 1

Introduction

Quantum mechanics is the science governing the smallest building blocks in na-
ture [34]. The Schrödinger equation, time independent (1.1) and time dependent
(1.2), models the quantum mechanical systems [20].

EΨ = ĤΨ (1.1)

i~
dΨ

dt
= ĤΨ (1.2)

The Hamilton operator, Ĥ , describes the system, and consists of the potential and
kinetic energy operators. In computational quantum mechanics [2], the Schrödinger
equation is solved numerically, as the majority of quantum mechanical systems
cannot be solved analytically. But even numerically, we are not able to solve all
quantum mechanical systems. Far from it. To model a general one particle sys-
tem we need three dimensions. For n particles, we need 3n dimensions. E.g a
helium atom (He) would in general be modeled in nine dimensions, three for each
of the electrons, and three for the nucleus. Using the normal tensor product grid,
the typical equidistant grid in d dimensions, we need Nd grid points to solve a
d-dimensional problem, N being the number of points needed in the one dimen-
sional problem. The number of grid points grows exponentially with dimension.
This effect is known as The curse of dimensionality [5].

The physicists fight “the curse” by making approximations in their models,
which let them reduce the numbers of dimensions [33]. This is not allways
feasable, or enough to tame the curse. Another approach is to choose the grid
points smartly, using another grid than the typical tensor product grid. The lattice
grid is one such grid, using lattice rules to construct a grid, rather than the tensor
product [24, 32]. Optimal grids are not found for arbitary dimensions, as finding
optimal lattice rules in high dimensions is of a high computational cost [25].

In this thesis we will look at the sparse grid [6]. The sparse grid has numerous
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Chapter 1: Introduction 2

applications, e.g. data mining [10], image compression [28] and numerical inte-
gration [11]. In this thesis we will consider trigonometric interpolation on sparse
grids. Rather than use the general sparse grid theory, which is used e.g. to make
adaptive sparse grid [19], we choose to construct a set of definitions which lets us
apply the Fourier transform effectively. Included in these definitions we get the
classical sparse grid, where we can fight the curse of dimensionality, needing only
O
(
N (logN)d−1

)
grid points in d dimensions. It is important to note that the

classical sparse grid is suitable for only a certain family of problems. Opposed to
the lattice grid, the sparse grid approach easily generalize to any dimension.

The aim of this thesis is to propose an algorithm that computes the Fourier
transform effeciently on our grids. An algorithm is proposed in [16], using re-
cursion, built on excisting sparse grid software. The algorithm presented in this
thesis is constructed to invite to parallel computing. Testing have been done using
a Cray XT4 [1].

Using Strang-splitting [12], we are able to split the Schrödinger equation in
two parts. One with the kinetic energy and one with the potential energy. The
kinetic energy operator (1.3) is basically the Laplace operator (with some physical
constants bundled into a).

Ĥkinetic = a∇2 = a∆ =
d∑
i=1

∂2

∂x2
i

(1.3)

The potential energy operator varies from problem to problem, but is often non-
linear, but seldom contains any spatial derivatives. The computational effeorts
will, after splitting, usually come from computing the Laplacian of the function.
For this reason, we have chosen to work with the Poisson equation, as it represent
the same difficulty, while making it easier to estimate the accuracy of our solution.

The thesis starts with a mathematical preliminaries chapter. Here we will give
a short introduction to Hilbert spaces, discretization and spectral methods. Then
we go on by defining our notion of sparse grids in Chapter 3. In Chapter 4 we in-
troduce the hierarchical Fourier basis set, which is needed to compute the Fourier
transform effectively on the sparse grids. Chapter 5 discuss how to do the Fourier
transform on the sparse grids. In Chapter 6 our algorithm to do the transform is
presented. In Chapter 7 the classical sparse grid is constructed and analyzed. At
last, in Chapter 8, we present numerical results, comparing the classical sparse
grid to the tensor product grid.



Chapter 2

Mathematical preliminaries

2.1 Hilbert spaces

The notion of Hilbert spaces is important in many fields within applied mathe-
matics. In particular when solving differential equations. In the following, only
a short introduction is presented. For a more thorough introduction the reader
should turn to a textbook in functional analysis, like [9].

Definition 2.1.1 (Inner-product space). Let x, y, z ∈ X be elements in a vector
space. Then 〈x, y〉 define an inner product if it has the following properties.

• 〈x, y〉 ∈ C

• 〈x, y〉 = 〈y, x〉

• 〈αx, y〉 = α 〈x, y〉 , α ∈ C

• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

X is then an inner-product space with inner product 〈x, y〉.

Definition 2.1.2 (Hilbert space). H is a Hilbert space if it is a complete inner-
product space. E.g. the limits of all Cauchy sequences are in H .

Definition 2.1.3 (Induced norm on a Hilbert space). For x ∈ H , we can define
the norm ||x|| =

√
〈x, x〉.

3



Chapter 2: Mathematical preliminaries 4

2.1.1 Examples of Hilbert spaces

The following Hilbert spaces are the ones which will be considered in this thesis.

Example 2.1.4 (Euclidian space). Let x and y be in Rd. Then the Euclidean inner
product is the following

〈x,y〉 =
d∑
i=1

xiyi (2.1)

Example 2.1.5 (L2 space on Rd). Let f and g be scalar functions, Rd → C, such
that

∫
Rd |f(x)|2 <∞. Then the L2 inner product is the following

〈f, g〉 =

∫
Rd
f (x) g (x)dx (2.2)

The last two Hilbert spaces are the ones we will solve differential equations
on. The first is the space the actual problem is defined. The second is the subspace
where the discretized problem is defined.

Example 2.1.6 (L2 space on [0, 2π)d). Let f and g be scalar functions, [0, 2π)d →
C, such that

∫
[0,2π)d

|f(x)|2 <∞. Then the L2 inner product is

〈f, g〉 =

∫
[0,2π)d

f (x) g (x)dx (2.3)

Example 2.1.7 (L2 space on discretized [0, 2π)). Let f (x) and g (x) be defined for
x ∈ [0, 2π) /hZ. Then the inner product is the Euclidean inner product, summing
over all possible values of x

〈f, g〉 =
∑

x∈[0,2π)/hZ

f (x) g (x) (2.4)

2.1.2 Basis functions

Definition 2.1.8 (Basis set). {φi} ∈ H is a basis set spanning H if for all f ∈ H
there exists a sequence {ci} ∈ R such that∣∣∣∣∣

∣∣∣∣∣∑
i

ciφi − f

∣∣∣∣∣
∣∣∣∣∣ = 0 (2.5)

Definition 2.1.9 (Orthonormal basis set). {φi} ∈ H is a orthonormal basis it it is



5 2.2 Discretization

a basis spanning H and have the orthogonality property

〈Φi,Φj〉 = δij (2.6)

Theorem 2.1.10 (Representation in orthogonal basis). For an orthogonal basis
we can find the coefficients using the inner product

ci = 〈f, φi〉 (2.7)

f =
∑
i

〈f, φi〉φi (2.8)

2.2 Discretization

When solving differential equations numerically, we cannot work directly with
continuous data. The data must be defined on a discretized and bounded domain.
The unbounded equidistant discretization in one dimension is denoted by hZ, and
are all points xj = jh for j ∈ Z [35, p. 9]. This could be generalized to include a
shift, setting xj = jh+ a.

2.2.1 Equidistant grids

Unbounded grids can not be used directly when computing. If the problem is
defined on (−∞,∞), some kind of approximation must be done. The easiest
way to solve this problem, is by “approximating” infinity by a sufficiently large
number M , such that the truncation (−∞,∞) ≈ (−M,M) yields good results.
Discretizing a bounded domain, [a, b], is done by taking the intersection between
1hZ and the domain [21, p. 617]. For convenience x0 is usually set to a, and xN
to b. Giving the equidistant grid below.

xj = a+ jh (2.9)

h =
b− a
N

(2.10)

j ∈ 0, 1, ..., N (2.11)

The periodic grid, which will be a main focus in this thesis is defined sim-
ilarly, but since it is assumed that for all functions living on the grid have the
periodic property f (a) = f (b), the last point is omitted [35, p. 77]. Giving the
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discretization of [a, b) below.

xj = a+ jh (2.12)

h =
b− a
N

(2.13)

j ∈ 0, 1, ..., N − 1 (2.14)

2.2.2 Non-equidistant grids

Non-equidistant grid can also be made, by defining a strict monotonic function g,
such that g (x0) = a and g (xN) = b. Where xj is an element from an equidistant
grid. An example is the grid defined by the maxima of a Chebyshev polynomial
of degree N [35, p. 42].For a = −1 and b = 1, they are shown below.

xj = cos (jhπ) (2.15)

h =
1

N
(2.16)

j ∈ 0, 1, ..., N − 1 (2.17)

2.2.3 Tensor product grid

In higher dimensions, the possibilities for discretizing [a1, b1] × [a2, b2] × · · · ×
[ad, bd] are many. The most used discretization is the tensor product grid. The
tensor product grid in d dimensions can be represented by a set of d-dimensional
vectors, where each element of the vector can take the values from a one dimen-
sional grid [8, p. 98].

xj = (xj1 , xj2 , ..., xjd) (2.18)
xji = ai + jihi (2.19)

hi =
bi − ai
Ni

(2.20)

j ∈ 0, 1, ..., Ni (2.21)
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2.3 Spectral methods

In spectral methods [8], the idea is to represent functions as weighted sums (or
integrals) of a basis set.

f (x) =
∑
k

c(k)Φk (x) (2.22)

If {Φk} is a orthonormal basis set, then c (k) is simply found as the projection of
f onto each basis element.

c (k) = 〈f,Φk〉 (2.23)

2.3.1 The dual space

Given a Hilbert space H and a basis set {Φk (x)}, then the dual space D is the
Hilbert space where c(k) lives. There is a clear correspondence between the prop-
erties of H and D. If H is unbounded, then D is continuous, while a bounded H
gives a discrete D. Likewise the other way around. If H is continuous, then D is
unbounded, and if H is discrete, D is bounded [35, p. 18].

Primal Dual
Bounded ↔ Discrete

Continuous ↔ Unbounded
(2.24)

In numerics the bounded discrete version is of most interest, as that gives a finite
number of elements.

2.4 The Fourier basis

The focus of this thesis is spectral methods using the Fourier basis [35, 14]. The
Fourier basis is the trigonometric polynomials, in one dimension and d dimensions
respectively, they are

Φk (x) = eikx = cos (kx) + i sin (kx)

Φk (x) = eik
Tx =

∏d
j=1 (cos (kjxj) + i sin (kjxj))

(2.25)

As the trigonometric polynomials are smooth and periodic, spectral methods
based on the Fourier basis typically best approximate smooth and periodic func-
tions.
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2.4.1 The Laplacian in Fourier space

In Fourier space, applying the Laplace operator is simple and cheap. The Laplace
operator is defined as the sum of all the non-mixed double derivatives

∆ = ∇2 =
d∑
i=1

∂2

∂x2
i

(2.26)

The Laplacian of a one dimensional trigonometric function is shown below [14,
p. 223].

∆eikx =
d2

dx2
eikx = −k2eikx. (2.27)

For d-dimensions this becomes

∆eik
Tx =

d∑
i=1

∂2

∂x2
i

eik
Tx = −

d∑
i=1

k2
i e
ikTx = − ||k||22 e

ikTx (2.28)

2.5 Solving a PDE with a spectral method

The best way to show how spectral methods work, is to give an example. Consider
the Poisson equation (2.29), in d dimensions, on [0, 2π)d with periodic boundary
conditions.

∆u (x) = f (x) (2.29)
u (x + 2πei) = u (x) , i ≤ d (2.30)

Where ei is the ith unit vector. The equation is unique up to a constant.

Expand f and u in the Fourier basis,

u =
∑
k

cke
ikTx (2.31)

f =
∑
k

dke
ikTx, (2.32)

and substitute (2.29).
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∆
∑
k

cke
ikTx =

∑
k

dke
ikTx (2.33)∑

k

− ||k||22 cke
ikTx =

∑
k

dke
ikTx (2.34)

Due to the orthogonality of the basis, this equation holds if and only if is valid
term by term. Thus the coefficients can be found.

ck = − dk

||k||22
, k 6= 0 (2.35)

c0 can be chosen freely.
Provided that f is sampled on an equidistant grid, we can compute dk by a

DFT. ck is then found by (2.35). ũ, a sampled approximation of u, is found by
(2.31), using an inverse DFT.



Chapter 3

Introduction to sparse grids

When fighting the curse of dimensionality, it can not be fought for every problem
at the same time. In our problem, the core computation is that of computing the
Laplacian for the spectral approximation of a function. As always, for numerical
computation an infinite expansion needs to be truncated. The idea is to truncate
insignificant terms. In 1d the insignificant terms usually are |k| > N , for some
N . In higher dimensions, there are lots of choices. In the tensor product grid the
truncation is done by discarding ||k||∞ > N . The type of functions we consider
in this thesis, are functions with bounded α-norm (3.1) [27, p. 2],[17, p. 108]
(functions living in Korobov space, Kα).

||u||α =
∑
k∈Z

∣∣∣k̃1 · k̃2 · . . . · k̃d
∣∣∣2α |û (k)|2 (3.1)

k̃ = 1, if k = 0

k̃ = k, otherwise.

In this case it the insignificant terms usually are
∣∣∣k̃1 · k̃2 · . . . · k̃d

∣∣∣ > N , which is
the “d-ball” in the α-norm.

In Figures 3.1 and 3.2, the area defined by
∣∣∣k̃1 · k̃2 · . . . · k̃d

∣∣∣ > N is illustrated
for 2- and 3-dimensions. Compared to the corresponding areas defined by the 1-,2-
and max-norm Figure 3.3, we see that the alpha-norm area is hesitant to leave the
axes. The corresponding area covered is also smaller. This effect becomes even
more pronounced in higher dimensions. Thus, being able to exploit this structure
when working with this kind of functions should yield huge computational saves.

10
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Figure 3.1: Two dimensional alpha norm area

Figure 3.2: Three dimensional alpha norm area
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Figure 3.3: 1-,2- and max-norm area

In this and the next chapter, we have made a mathematical theory which
presents the family of sparse grids where we can compute the Fourier transform
effectively. In this chapter we construct a formal definition of the properties the
grids must have.

3.1 The sparse Fourier grid
In this thesis we present a notion of sparse Fourier grids. A set of primal (or
physical) grids and corresponding dual grids is proposed below. The grids have
properties which makes it possible to efficiently compute the Discrete Fourier
Transform (DFT) on them. This may be accomplished using the hierarchical basis
set, which will be presented in the next chapter. All grids considered will be
subsets of standard tensor product grids (full grid). The sparsity of the grids ranges
from the full grid, to grids with elements only on the axes.

Definition 3.1.1 (Fourier sparse primal grid). A Fourier sparse primal grid,S, is a
grid with the following properties:

• S is a subset of a full grid of size N1×N2× . . .×Nd, discretizing [0, 2π)d,
where Ni = 2ni , for some ni ∈ N0.

• Each primary axis of S have exactly Ni equidistant elements discretizing
[0, 2π) in the ith component.

• Every line in S parallel to the primary axis in dimension i have 2k equidis-
tant elements discretizing [0, 2π) in the ith component. k, ni ∈ N0 and
k ≤ ni.
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Definition 3.1.2 (Fourier sparse dual grid). A Fourier sparse dual grid, S ′ , is a
grid with the following properties:

• S ′ is a subset of a full grid of size N1 × N2 × . . . × Nd, discretizing[
−N1

2
+ 1, N1

2

]
×
[
−N2

2
+ 1, N2

2

]
×. . .×

[
−Nd

2
+ 1, Nd

2

]
equidistantly, where

Ni = 2ni , for some ni ∈ N0.

• Each primary axis of S ′ have exactlyNi elements discretizing
[
−Ni

2
+ 1, Ni

2

]
equidistantly in the ith component.

• Every line in S
′ parallel to the primary axis in dimension i have 2k ele-

ments discretizing
[
−2k

2
+ 1, 2k

2

]
equidistantly in the ith component. Where

k, ni ∈ N0 and k ≤ ni.

From this point on we will simply use the term sparse grid, rather than Fourier
sparse grid. This is done for simplicity, but it should be noted that in general the
term sparse grid contains many grids not covered by the definition above.

Notice that the fundamental difference between the primal and the dual sparse
grid lies in the third part of the definitions. The primal sparse grid discretize the
same area as the full primal grid would, but with a different spacing. The dual
sparse grid have the same spacing as the full dual grid, but does not discretize the
same area.

The choice of Ni = 2ni is not arbitrary, but necessary to be able to use hierar-
chical basis, which is presented in the next chapter. This choice is also convenient
computationally, as the Fast Fourier Transform algorithms usually works faster on
vectors of length of a power of two.

In practice we also need grids which are partial primal and partial dual, these
being used when doing a transform which takes a function from one grid to the
other. This is done by combining the two definitions, being primal in some di-
mensions and dual in the other.

3.1.1 Examples of sparse grid pairs in 2d
To give the reader a feeling for what the sparse grid pairs may look like, some
examples in two dimensions are presented. All the examples uses the same value
of N (= 16). The three first examples shows a succession of grid getting denser,
in Figures 3.4 to 3.6. The last example, Figure 3.7, shows the classical sparse grid,
which will be grid to fight the curse of dimensionality with. It will be introduced
in Chapter 7.
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Figure 3.4: A rather sparse sparse grid

Figure 3.5: A bit denser sparse grid

Figure 3.6: An even denser sparse grid
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Figure 3.7: The classical sparse grid



Chapter 4

The hierarchical basis

Working with full grids, the normal Fourier basis (2.25) (now referred to as the
“nodal basis”) is usually all we need to efficiently apply the Fourier transform. On
sparse grids though, life is not that easy. The hierarchical basis sets are needed as
well. To explain what a hierarchical basis is, a few definitions are needed.

4.1 Some definitions
The level set helps us construct the hierarchy [16, p. 3].

Definition 4.1.1 (Level set). Let In be the nth level set. Defined as

In :=

{
{0} , if n = 0

{2n−1, 2n−1 + 1, . . . , 2n − 1} , if n > 0
(4.1)

The zigzag function takes numbers from N0 to Z, and is used to get the dual
coordinate from the level set [16, p. 3].

Definition 4.1.2 (Zigzag function).

σ (q) :=


− q

2
, if q even

q+1
2
, if q odd

, q ∈ N0 (4.2)

The inverse zigzag is used e.g. when we go from a dual coordinate to a primal.

Definition 4.1.3 (Inverse zigzag).

σ−1 (q) :=


−2q, q ≤ 0

2q − 1, q > 0
, q ∈ Z (4.3)

16



17 4.1 Some definitions

The modified level set simplifies notation when constructing the dual space.

Definition 4.1.4 (Modified level set).

I
′

n = {q : q = σ (k) , k ∈ In} (4.4)

Definition 4.1.5 (Grid notation). Let G′n be the one dimensional dual grid.

G
′

n = ∪ni=0I
′

n (4.5)

And let Gn be the one dimensional spatial grid.

Gn =

{
x : x =

2πk

2n
, k ∈ G′n

}
(4.6)

=

(
∪ni=1 ∪q∈Ii

{
π

2q − 2i + 1

2i−1

})
∪ {0} (4.7)

These sets might equally well be constructed without using the level sets [16,
p. 3] (below).

Gn =
{
x : x = 2πq2−n, q ≤ 2n − 1, q ∈ N0

}
(4.8)

G
′

n =
{
k : 1− 2n−1 ≤ k ≤ 2n−1, k ∈ Z

}
(4.9)

G
′

0 = {0} (4.10)

But in our context it is preferable to use definitions (4.5) and (4.7), as they imply
a hierarchy of the sets, which makes it easier to look at the intersection between
two sets as well as a correspondence between a dual point and a primal point. This
will be exploited algorithmically.

As a useful exercise, the definition of the sparse grids can be expressed using
the grid notation. The third point in definition 3.1.1 could now be expressed as

• Every line in S parallel to the primary axis in dimension i has the elements
from Gk, where k, ni ∈ N0 and k ≤ ni.

and for definition 3.1.2

• Every line in S ′ parallel to the primary axis in dimension i has the elements
from G

′

k. Where k, ni ∈ N0 and k ≤ ni.

We need a function to determine from which level a spatial point x is from,
e.g. x ∈ Gn/Gn−1 says that x is generated in the nth level.
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Definition 4.1.6 (spatialFromLevel). Let x be on the form

x = π
2d+ 1

2n−1
, d, n ∈ N (4.11)

then x is generated from level set n. Denoted by

spatialFromLevel (x) = n, x 6= 0
spatialFromLevel (0) = 0

(4.12)

Likewise for k in G′n/G
′
n−1

Definition 4.1.7 (dualFromLevel). Let k ∈ I ′n, then

dualFromLevel (k) = n (4.13)

By looking at (4.1.5), a natural correspondence between each physical and
each dual point can be suggested. These functions are one to one from G

′
n to Gn

and from Gn to G′n respectively. Making Gn and G′n a primal-dual couple in one
dimension.

Lemma 4.1.8 (Conversion between dual and spatial grid). Let x be a point in Gn,
and k be the corresponding point in G

′
n.

x =
π(2σ−1(k)+1−2n)

2n−1 , n = dualFromLevel (k) , k 6= 0
x = 0, k = 0

(4.14)

k = σ

(
x2n−1

π
−1

2
+ 2n−1

)
, n = spatialFromLevel (x) , x 6= 0

k = 0, x = 0
(4.15)

The transformations are one to one. x ∈ Gn/Gn−1 if and only if k ∈ G′n/G
′
n−1.

Proof. For x = k = 0 the lemma holds trivially. We see from (4.7) thatGn/Gn−1 =

∪q∈In
{
π(2σ−1(k)+1−2n−1)

2n

}
, and that (4.14) takes elements from k ∈ I

′
n into this
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set. Doing some algebra, we show that (4.15) is (4.14), only solving for k.

x =
π (2σ−1 (k) + 1− 2n)

2n−1

2n−1x

π
= 2σ−1 (k) + 1− 2n

2σ−1 (k) =
2n−1x

π
− 1 + 2n

k = σ

(
2n−1x
π
− 1

2
+ 2n−1

)

In d-dimensions these formulae are used on each component independently.

4.2 The hierarchical basis in one dimension

In this thesis two different discrete Fourier bases will be considered. The nodal
has the property of orthogonality, as shown below.{

eikx : ∀k ∈ G′n
}

(4.16)〈
eikx, eilx

〉
= 0, k 6= l (4.17)

The other is the hierarchical basis. This basis should have properties which
are useful when working on sparse grids. Consider a function interpolated by the
hierarchical basis, χmk,

un(x) =
∑
k∈G′n

cmkχmk (x) , m = dualFromLevel (k) (4.18)

The introduction of m in the index is not strictly necessary, as m is uniquely
defined by k, but it simplifies notation when introducing the higher dimensional
basis, as it keeps track of what the corresponding level set is.

A hierarchical basis has the property that when expanding the basis to G′n+1,
the coefficients from G

′
n does not change, e.g.

un (x) =
∑

k=G
′
n+1

dmkχmk (x) , where dk = ck ∀k ∈ G
′

n. (4.19)
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This is achieved by demanding that the new basis functions disappears on Gn

χ(n+1)k (x) = 0 ∀k ∈ G′n+1/G
′

n ∀x ∈ Gn, , (4.20)

such that any inner product on Gn with χ(n+1)k (x) will be zero. This means that
the basis functions

{
χ(n+1)k for k ∈ I ′n+1

}
must span the part of the function space

which lives on Gn+1/Gn. This again demands that the hierarchical coefficients
does not change when expanding the grid, as proposed in definition 4.19.

To get this property, the hierarchical basis takes the form from the definition
below (the same, with another notation, as in [16, p. 4])

Definition 4.2.1 (Form of the hierarchical basis).

χnk (x) = eikx − ei(k− sign (k)2n−1)x, k ∈ G′n/G
′

n−1 (4.21)
χ00 (x) = 1 (4.22)

Theorem 4.2.2 (Hierarchical basis). A hierarchical basis function from level n,
(4.2.1), disappears on Gn−1 as proposed in (4.20).

Proof.

χnk (x) = eikx − ei(k− sign (k)2n−1) = eikx
(

1− ei sign (k)2n−1x
)

(4.23)

It must thus be shown that 1− ei sign (k)2n−1x = 0 for x ∈ Gn−1. This is equivalent
to showing

2n−1x ( mod 2π) = 0 (4.24)

We know that all x ∈ Gn−1 can be written on the form

x = π
2d+ 1

2m
, m, d ∈ N0,m < n (4.25)

giving together with (4.24)

2nπ
2d+ 1

2m
( mod 2π) = 0 (4.26)

which holds for m < n, and thus for x ∈ Gn−1.

Theorem 4.2.3 (Equivalent bases). The first k basis function of the nodal and the
hierarchical basis spans the same space.

Proof. It is enough to show that there exist an invertible linear transform from Cd

to Cd taking the hierarchical basis to the nodal basis. Then it follows from basic
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linear algebra that they span the same space [23, p. 274]. The hierarchical basis
is in fact defined a such a linear transformation (4.21).

In Figure 4.1 the first six nodal and hierarchical basis functions are plotted
(ordered hierarchically). Notice that the hierarchical basis functions have n zeroes
(both imaginary and real part equal to zero), and that they are located at Gn−1.

Figure 4.1: The six first nodal and hierarchical basis functions. Real part plotted
in solid, imaginary in dotted.
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4.3 The hierarchical basis in d dimensions
Generalizing the basis to higher dimensions is done by products of the one dimen-
sional ones [16, pp. 4-5].

eik·x =
d∏
l=1

e−iklxl (4.27)

χnk (x) =
d∏
l=1

χnlkl (xl) (4.28)

Where n and k are multiindecies. Again, n is not strictly necessary, but useful to
keep track of the level sets which are being used. A multiindex n defines uniquely
a set of k-multiindecies.

Definition 4.3.1 (k from n). Let K (n) define a set of multiindecies, such that

K (n) =
{
k ∈ Zd : ki ∈ I

′

ni

}
(4.29)

Definition 4.3.2 (Partial ordering of n). Let n and m be vectors with d elements.
Then n ≥m iff

ni ≥ mi ∀ i ≤ d (4.30)

Definition 4.3.3 (Children set). Let n be a multiindex. Then n’s children set
contains all multiindecies m where m ≤ n

Notice that the “mother” n is a part of its own children set.
With this definition of partial ordering, it is possible to show which basis sets

is usable with the sparse grid.

Definition 4.3.4 (Sparse multiindex set). mutliInd (S) is a sparse multiindex set
defining a sparse grid pair (S,S ′) if it contains multiindecies of the same dimen-
sion, and contains all the indecies’ children sets.

Stating it another way

Example 4.3.5 (Sparse multiindex set). If multiInd (S) is a sparse multiindex
set, and n ∈ multiInd (S). Then for any m such that m ≤ n, m ∈ multiInd (S).

Definition 4.3.6 (Cover of a sparse multiindex set). Let Cover (S) be the subset
of multiInd (S) where

Cover (S) = {n : n 6≤m ∀m ∈ multiInd (S)} (4.31)
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Definition 4.3.7 (Hierarcical basis set). Let multiInd (S) define a basis set Υ,
where

Υ =

χnk : k ∈
⋃

n∈multiInd(S)

K (n)

 (4.32)

Υ can also be defined using Cover (S), by first introducing a modified K (n).

Definition 4.3.8. Let K ′ (n) define a set of multiindecies, such that

K
′
(n) =

{
k ∈ Zd : ki ∈ I

′

ni
for i > 1.− 2n11−1 + 1 ≤ k1 ≤ 2n1−1

}
(4.33)

Definition 4.3.9 (Hierarcical basis set (using cover)). LetCover (S) define a basis
set Υ.

Υ =

χnk : k ∈
⋃

n∈Cover(S)

K
′
(n)

 (4.34)

The coordinates in dual space S ′ are now defined frommultiInd (S) orCover (S).

k ∈ S ′ ⇔ k ∈
⋃

n∈multiInd(S)

K (n)⇔ k ∈
⋃

n∈Cover(S)

K
′
(n) (4.35)

We can use the dual space S ′ and (4.14) to define the coordinates in primal space.

x ∈ S ⇔ xi =
π (2σ−1 (ki) + 1− 2n)

2n−1
,k ∈ S ′ (4.36)

Now the primal sparse grid, S and the dual sparse grid, S ′ , can be coupled using
the basis set Υ. Υ is a basis set for functions on S, expanded by coefficients in
S
′ . The computational and algorithmically details will be presented in the coming

chapters.



Chapter 5

Fourier transform on sparse grid

In the previous chapters two different Fourier bases have been introduced, as well
as a primal sparse grid and corresponding dual sparse grid. This chapter will
present the ideas and theory for a fast transform. The next will go into algorithmic
details.

The goal will be to represent a function in the nodal Fourier basis, or get from
a representation in the nodal basis to the primal representation.

5.1 Direct approach
The naïve first numerical scheme could be to use the inner product definition
directly to find the Fourier coefficients (i.e. the representation in the nodal Fourier
basis), by explicitly computing the sum (5.1) on the primal space, S, for each
point, k, in dual space, S ′ .

û (k) =
∑
x∈S

wxu (x) e−ik
Tx (5.1)

Where wx is the weight corresponding to x for the Gaussian quadrature [15, pp.
301-307]. The weight depends on the sparse grid.

The usual way of finding coefficients for a basis is by solving a linear system.
In the case of the Fourier transform, this will be a dense matrix. For the one dimen-
sional case, the normal way of setting up the matrix is by setting Fi,j = we−ikixj ,
then finding f̂ from the matrix vector product f̂ = F f . For a d-dimensional sys-
tem, a similar system with Fi,j = wje

−iki
Txj can be set up, given an ordering

of k and x. Finding the coefficients with these methods would be O
(
|S|2

)
, op-

erations, where |S| is the number of grid points. This should please no one, as
the existence of the Fast Fourier Transform (FFT) would make O (|S|log (|S|))
something to hope for.

24
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5.2 Computing the DFT by the FFT on the full grid
On a full grid, the single sum can be split into d sums [26]. In the two dimensional
case we get

f̂ (k) =

N1
2∑

i=−N1
2

+1

N2
2∑

j=−N2
2

+1

f (xi, yj) e
−i(k1xi+k2yj)

=

N1
2∑

i=−N1
2

+1

e−ik1xi
N2
2∑

i=−N2
2

+1

f (xi, yj) e
−ik2yj

=

N1
2∑

i=−N1
2

+1

e−ik1xi f̃ (xi, k2) ,

(5.2)

where f̃ (xi, k2) =

N2
2∑

i=−N2
2

+1

f (xi, yj) e
ik2yj is partially in spatial and dual space.

Each of the sums (DFTs) can be computed using the Fast Fourier Transform.
This recursively use of multiple 1d FFTs extends straight forward to higher di-
mensions.

On operator form, using the Kronecker product [31], the same operation can
be written as

f̂ =
(
⊗di=1Fi

)
f

Where Fi is the DFT applied along the ith dimension. The idea is to do these oper-
ations without making the matrices, but rather use FFT. This will costO

(
dNd log (N)

)
,

which beatsO
(
N2d

)
by a landslide. We thus expect that for the sparse grid to of-

fer any speed up, we must be able to use the FFT.

5.3 Hierarchical transform
As the nodal basis and the hierarchical basis spans the same space, there must
be a linear transform which maps one into the other. These transforms will be
presented in the next chapter, (alg. 3) and (alg. 4). They can be done separately
in each dimension. Let Fi be the Fourier transformation in the ith dimension, and
Hi be the linear transformation from nodal to hierarchical representation in the
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ith dimension. Then the d-dimensional hierarchical Fourier transformation can be
written on operator form as

ûhier = HdFdHd−1Fd−1 · · ·HiFi · · ·H1F1u. (5.3)

And the linear transformation from hierarchical basis to nodal basis, letDi = H−1
i

ûnodal = DdDd−1 · · ·Di · · ·D1ûhier. (5.4)

The hierarchical Fourier coefficients have the property that ûhier (k) takes the
same value independent of the sparse grid pair chosen, as long as k is in the sparse
dual space. For example, let SN ⊂ SM be two sparse grids. And let uN and uM
be interpolated on SN and SM respectively, and ûN and ûM be the corresponding
hierarchical coefficients, with coefficients from S

′
N and S ′M . Then

ûN (k) = ûM (k) , ∀k ∈ S ′N (5.5)



Chapter 6

Algorithm

The aim of the theory in the previous chapters is to give the mathematical structure
for an effective algorithm to take the Fourier transform on sparse grids, using the
Fast Fourier Transform (FFT) [7]. In [16], an algorithm based on recursion is
proposed. Some ideas from that paper are used in the following, but we propose
another algorithm. The idea is to get rid of the high level recursion, and make an
algorithm which is easier to parallelize.

6.1 Data structure
Before presenting the algorithm, we propose a data structure. The motivation
behind the data structure, is that it should not use unnecessarily much memory,
and it should have properties making it possible to do a fast Fourier transform on
a sparse grid.

It is in general not feasible to store a sparse grid in a N × N × . . . × N
grid. Only the function values/coefficients actually computed should be stored in
a compressed data structure. This means storing all the entries in a long vector,
together with some extra information enabling us to extract specific data elements
when needed.

6.1.1 Sparse matrices

Sparse matrices can split into two categories. Matrices with some kind of structure
and matrices with no apparent structure. In the second case, there is no other way
to construct the data structure than saving additional info about what the corre-
sponding indexes are to a specific data entry [29]. However, if the sparsity pattern
has a regular structure, one might be able to construct appropriate formulae/map-
pings from the stored format to the actual indecies of the data. The way we have

27



Chapter 6: Algorithm 28

chosen to do it, is to have a one dimensional array which saves the data. A func-
tion should then be made to go between location in the array, and coordinate in
the sparse grid (dual or primal).

The idea behind the data structure is to make it easy and fast to take the discrete
Fourier transform in one of the dimensions. And then rearrange the data to take
the transform in the other dimensions. We propose three properties for the data
structure below.

6.1.2 Sorted in vectors

When taking the one dimensional transformations, each transformation works on
single data vector. All the elements of such a vector should be stored consecutive.
Such that for each vector that is to be transformed, all the elements from a position
a to a position b is in the vector. If this is true for the data structure for the primal
sparse grid, it will also be true for the dual sparse grid.

6.1.3 Ordering within vector

Within each vector, it would be convenient to have a the data ordered the way
the FFT likes it. This means that the vectors should be ordered ascending in the
primal coordinates. Having the ordering in physical space, it can be reordered in
dual space, using (4.15).

6.1.4 Ordering of vectors

FFT codes like FFTW(Fastest Fourier Transform in the West) [3], can work even
faster if they are able to work on many transformations of the same length. For
this reason, it is a good idea to sort the segments in such a way that all the longest
vectors comes first, then all the second longest, and so on. This also puts all
the vectors with length 1 in the end of the array. Since all the transformations
breaks down to the identity transformation for vectors with one element, it is not
necessary to do anything to the tail of the array when transforming.

6.1.5 Data access

To work with this data structure, functions to go from coordinate in the sparse
(primal or dual) grid to the array address is needed. For a coordinate point x
and correspond array address pos, the functions pos2Point and point2Pos
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should uphold the following equalities

pos2Point (pos) = x (6.1)
point2Pos (x) = pos (6.2)

Another useful method for us is a function (or a table) to determine how many
vectors of each length is in the grid.

numVec (n) = number of vectors of length 2n (6.3)

For these functions, special care must be taken when not working with sparse
grids which are does not have a symmetric structure, where we can’t be certain
that if the point (a, b) exists, then (b, a) must exist. In these cases the program
must keep track on what way the grid is transposed. In the following it will be
assumed that the grid either have a symmetric structure, or that these functions are
changed according to transponation.

6.2 Short overview of the algorithm
Given this data structure, there are different approaches to taking the Fourier trans-
form, one could e.g. take the transform by using point2Pos to do jumps trough
the array to do the transform for each dimensions (using different jump lengths),
which is the normal way to do it when working on a full grid.

Our algorithm is based on transposing the data so that we can take the Fourier
transform only along the first component. Doing the Fourier transform in place,
and then transpose till the transform is done in all dimensions. On a single pro-
cessor, there is no reason to believe that this should be faster than the idea stated
above, but when parallelizing this approach is more convenient.

Let Ti be the operator which rearranges the data, such that dimension i be-
comes 1 and vice versa. E.g. T3f (x1, x2, x3, x4) = f (x3, x2, x1, x4). (5.3) and
(5.4) can be rewritten as

ûnodal = D1T2D1 · · ·TdD1H1F1Td · · ·T2H1F1u (6.4)

We notice that T−1
i = Ti and D−1

1 = H1, and let F−1
1 be the inverse Fourier

transform. Then we can take the inverse transform in the same manner

û = F1D1T2 · · ·TdF−1
1 D1H1TdH1 · · ·T2H1ûnodal (6.5)

The algorithms are the equations (6.4) and (6.5). Written in algorithm style,
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they become the algorithms on the next page, (alg. 6.2) and (alg. 2)

Algorithm 1 Sparse Fast Fourier Transform (SFFT)
Let f be a sampled function on a primal sparse grid
function SFFT(f)

for i = 1 to dim do
transpose(f, i)
manyFFT(f)
manyHira(f)

end for
for i = dim to 1 do
transpose(f, i)
manyDehi(f)

end for
end function

Algorithm 2 Sparse Inverse Fast Fourier Transform (SIFFT)
Let f be Fourier coefficients on a dual sparse grid
function SIFFT(f)

for i = 1 to dim do
transpose(f, i)
manyHira(f)

end for
for i = dim to 1 do
transpose(f, i)
manyDehi(f)
manyIFFT(f)

end for
end function

transpose(f, i) does as Ti, rearrange the data in f , such that e.g.

transpose (f (x1, x2, x3, x4) , 3) = f (x3, x2, x1, x4) .

Notice that transpose(f, i) always will switch the first component with the
ith. manyFFT(f) takes one-dimensional FFTs of different lengths along the first
component of f . manyIFFT likewise, though taking IFFTs. manyHira(f) and
manyDehi(f) does the same as H1 and D1, doing the linear transformation from
nodal Fourier coefficients to hierarchical Fourier coefficients.
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6.3 Transform between nodal and hierarchical coef-
ficients

By exploring the definition of the hierarchical Fourier basis (4.21), a simple algo-
rithm to go from nodal to hierarchical basis is found. For convenience we order
the data hierarchically, such that the coefficient for basis function k is at position
σ−1 (k) in the array.

n σ−1 (k) k eikx χnk (x)

0 0 0 1 1
1 1 1 eix eix − 1
2 2 −1 e−ix e−ix − eix

3 2 e2ix e2ix − 1
3 4 −2 e−2ix e−2ix − e2ix

5 3 e3ix e3ix − e−ix
6 −3 e−3ix e−3ix − eix
7 4 e4ix e4ix − 1

4 8 −4 e−4ix e−4ix − e4ix
9 5 e5ix e5ix − e−3ix

10 −5 e−5ix e−5ix − e3ix
11 6 e6ix e6ix − e−2ix

12 −6 e−6ix e−6ix − e2ix
13 7 e7ix e7ix − e−ix
14 −7 e−7ix e−7ix − eix
15 8 e8ix e8ix − 1

(6.6)

Table 6.6 shows the first 16 basis functions for the nodal and hierarchical Fourier
basis, exactly from the definition in (4.21). From this definition, and the proposed
ordering, the nodal to hierarchical (alg. 3) and hierarchical to nodal (alg. 4)
algorithms are constructed, exactly like in [16, p. 12].

The algorithms are quite similar. At first glance the only difference is a sign.
Note that to do the computation without temporary storage, the order of the outer
loop is essential for correct overwriting. The direction of the inner loop is not
important, as the operations does not depend on each other.

Both hira and dehi are both linear operators, and inverse of each other. The
matrix representation for n = 3 is shown bellow [16, p. 12].
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Algorithm 3 hira
Let A be coefficients represented in nodal basis, with 2n elements
function hira(A)

for i = 1 to n do
for j = 2i − 1 to 2i−1 do
A (2i − 1− j) = A (2i − 1− j) + A (j)

end for
end for

end function

Algorithm 4 dehi
Let A be coefficients represented in hierarchical basis, with 2n elements
function dehi(A)

for i = n to 1 do
for j = 2i−1 to 2i − 1 do
A (2i − 1− j) = A (2i − 1− j)− A (j)

end for
end for

end function

ĥira =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 1 0 0
1 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1


d̂ehi =



1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
−1 0 0 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0
−1 0 0 0 0 0 0 1


(6.7)

6.4 Taking consecutive transforms
Having the one dimensional transforms, a simple algorithm comes in to play to
do the transforms on the whole data array. Assuming that the data has the struc-
ture proposed, and that the numVec(n) function is implemented, the manyFFT,
manyHira and manyDehi have the same structure.

Here is the array notation from languages like Matlab used. Where A (a : b)
denotes the sub-array of A, starting at position a and ending on position b. Thus
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Algorithm 5 many1dTransform
Let A be an array containing several data vectors
function many1dTransform(A)

startPos =numSegments(0)
for i = n to 1 do

for j = 1 to numSegments(i) do
1dTransform(A (startPos : startPos+ 2i − 1))
startPos = startPos+ 2i

end for
end for

end function

having b− a+ 1 elements.

6.5 Transposing
Looking back on (alg. 6.2) and (alg. 2), only one function is left for it to be
operable, the transpose function. If not considering memory usage, this can be
done simply by making a new array, which is transposed. The idea behind the
algorithm (alg. 6) is straight forward. For each point, transpose the data, according
to their coordinates (i and 1 change places), using pos2Point and point2Pos.

Algorithm 6 transpose by copy
Let A be the array containing data on a sparse grid
Let B be an empty array of the same size as A
function transpose(A, transposeDim)

for i = 0 to length(A) do
point =pos2Point(i)
tmpCoor = point (1)
point (1) = point (transposeDim)
point (transposeDim) = tmpCoor
newPos =point2Pos(point)
B (newPos) = A (i)

end for
A = B

end function

It is not preferable to use a copying algorithm though. For the symmetric case,
it is simple to find an in place transpose algorithm (alg. 7). By noting that if the
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value at A (i) is to be moves to A (j), then the value at A (j) is moved to A (i).
The convention used is that if A (i) is to moved forward, A (i) and A (j) changes
place, otherwise nothing is done.

Algorithm 7 transpose in place, symmetric
Let A be the array containing data on a sparse grid
function transpose(A, transposeDim)

for i = 0 to length(A) do
point = pos2Point(i)
tmpCoor = point (1)
point (1) = point (transposeDim)
point (transposeDim) = tmpCoor
newPos = point2Pos(point)
if newPos > i then
tmpV alue = A (newPos)
A (newPos) = A (i)
A (i) = tmpV alue

end if
end for

end function

In the case of non-symmetric sparse grids different changes to the transpose
algorithm must be made to get an effective in place algorithm. As this depends on
the grids, such algorithms are not presented.

6.6 Parallelization
The sparse grid method is used to fight the curse of dimensionality. When fighting
a curse, it is useful to combine more weapons. By computing on a cluster, the size
of problems that can be solved gets higher, given a method which can be paralleled
effectively. With the algorithm presented here, this is quite doable. As has been
seen earlier, most of the work is done on one dimensional segments, independently
from each other. Thus, it matters little where the computation is done.

Two different schemes will be presented. One with a master node, using slave
nodes to compute the transformations, (alg. 8) and (alg. 9) on the next page. This
one keeps it easy to hold track of data, as all the data will be stored at the master
node, but the effectively of this scheme is not as good, as the master node must
send all data, and the transposing of the data must be done on that node as well.
The size of problems which can be solved is also limited by the memory capacity
of the master node. The second scheme (alg. 10) takes cares of these problems.
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There is no master node, all nodes are equals, and the data is spread out trough
all of them. In this scheme, though, the data exchange gets more complicated, but
more effective and parallelizable.

6.6.1 Master - slave approach
In this approach, the master node initialize the data, just as would be done in the
single processor method. The only difference is that when the transformations
is done, instead of doing them locally, they are sent to the slaves who do the
transformation and send the result back. How to best balance the work between
the slaves is an optimization problem, which is not solved here. An easy approach
is to send vectors of equal size to each node, and try to share the work fairly.

Algorithm 8 many1dTransform on master node
Let A be the array containing data on a sparse grid
function many1dTransformMother(A)

for i = 1 to nrOfSlaves do
Send segments of A to node i

end for
for i = 1 to nrOfSlaves do

Receive transformed segments of A from node i
end for
end function

Algorithm 9 many1dTransform on slave node
function many1dTransformChild()

Receive work segments from master node
Do many1dTransform on segments
Send transformed data back to master

end function

6.6.2 Distributed approach
In this parallelizing approach, there is no mother node to hold all the data. The
data is rather distributed among all the nodes. This makes it possible to solve much
larger systems, by just adding more computing nodes. Each node keeps the data
representing some coordinates in the sparse grid, always whole segments. The
one dimensional transforms are done on each node. Upon transponation, data is
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exchanged. This is done in a cycle, first sending data one step “to the right”, then
two steps, and so on [22, p. 98]. Figuring out what data is going to which node
is not trivial, and depends on how the data is distributed. One way is to distribute
the data according to the data structure. The first node works with the data in the
first vectors, the second continues where the first stops, and so on. Then the data
array is spread out on the nodes, where each node contains all elements between a
given position a and b in the data structure. These values can be saved in a table,
which then can be used to figure out where data should be sent.

Algorithm 10 Distributed transpose
thisNode = id number for this node
for i = 1 to nrOfNodes− 1 do

Find data to send using pos2Point and point2Pos
Send data to thisNode+ i mod nrOfNodes
Receive data from thisNode− i mod nrOfNodes

end for
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The classical sparse grid

Finally we are ready to fight the curse of dimensionality. We have the Hilbert
space we want to work in (the functions with finite α-norm). The sparse grid con-
struction have been suggested to approximate functions with specific structures
in the dual space, and we have an algorithm to do the transform there. Now the
sparse grid must be combined with the α-norm Hilbert space. We shall use the
name “the classical sparse grid” for this grid [16, p. 5].

7.1 From alpha-norm to the classical sparse grid

As presented in chapter 3, we have to do a cut off in the dual space, such that we
only work with coefficients where |k1 · k2 · . . . · kd| ≤ M . Assuming M = 2N

and α = 1
2
, we can rewrite this as a sum of logarithms

|k1k2 · · · kd| ≤ 2N (7.1)
log2 (k1) + log2 (k2) + · · ·+ log2 (kd) ≤ N (7.2)

Using this observation, we can construct a sparse grid with the wanted prop-
erties.

Definition 7.1.1 (The classical sparse grid). Let SdN be the classical sparse grid in
d dimensions, sub-grid of the

(
2N
)×d tensor product grid, defined by the multiin-

dex set multInd
(
SdN
)

multInd
(
SdN
)

=
{
n ∈ Nd

0 : ||n||1 ≤ N
}

(7.3)

Where the dual and primal coordinates in Sdn is defined as in (4.35) and (4.35)
respectively.

37
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The classical grid is made such that SdN is a sub-grid of SdN−1. This is illus-
trated in Figure 7.1.

Figure 7.1: Dual and primal classical sparse grid, built up hierarchical

As we see in Figure 7.2 on the next page, the classical sparse dual grid does not
fill its corresponding α-norm level set (|k1 · k2 · . . . · kd| ≤ M ). This is because
I
′
n+1 is not symmetric around 0. As −2n + 1 is the largest negative number and

2n as the largest positive.

7.2 Complexity analysis
For the complexity analysis, we can get nicer formulae using Cover

(
Sdn
)

rather
than multiInd

(
Sdn
)
. The cover is similar to definition 7.1.1, for multiInd

(
Sdn
)
,

except using “=” rather than “≥”.

Cover
(
SdN
)

=
{
n ∈ Nd

0 : ||n||1 = N
}

(7.4)
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Figure 7.2: The classical sparse dual grid Sd5 compared to the α-norm level curve
for N = 32

7.2.1 Number of grid points

The full grid will have 2dN grid points. For the classical sparse grid the expression
is more complex.

gridPoints
(
SdN
)

=
∑

n∈multiInd(SdN)
2

dP
i=1

max(ni−1,0)

= d
∑

n∈Cover(SdN)
2

dP
i=1

ni

(7.5)

Where we notice that 2max(n−1,0) is the number of elements in In, and 2n1 the
number of elements in Gn. (7.5) can be simplified for specific values of d [4],

gridPoints(S1
N) = 2N

gridPoints(S2
N) =

(
N
2

+ 1
)

2N

gridPoints(S3
N) =

(
N2+7N+8

8

)
2N

gridPoints(S4
N) =

(
N3

48
+ 5N2

16
+ 7N

6
+ 1
)

2N

(7.6)
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@
@

@N
d

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9
2 4 8 13 19 26 34 43 53
3 8 20 38 63 96 138 190 253
4 16 48 104 192 321 501 743 1059
5 32 112 272 552 1002 1683 2668 4043
6 64 256 688 1520 2972 5336 8989 14407
7 128 576 1696 4048 8472 16172 28814 48639

Table 7.1: Number of elements in SdN for the first 7 values of N and the 8 first
dimensions

The O
(
Nd−12N

)
complexity holds for d > 4 too, with exact formulae becoming

increasingly more complex. For fixed d, we get∣∣Sd1 ∣∣ = d+ 1∣∣Sd2 ∣∣ = d2+5d+2
2∣∣Sd3 ∣∣ = (d+5)3

6
− (d+5)2

2
− 8(d+5)

3
+ 6

(7.7)

The O
(
dN
)

complexity hold for N > 3 too, but with increasing complexity of
the formulae.

For practical problems, the “big O” notation might not be all that interesting.
There are considerable constants which dampens the effect of the higher order
terms. It might thus be more interesting to look at actual values for smaller values
of N and d, as in Table 7.1.

7.2.2 Function evaluations for FFT

A one dimensional FFT needs O (M log (M)) function evaluations, and a cor-
responding full d-dimensional FFT O

(
dMd log (M)

)
. In the special case of the

“radix 2 FFT” the number of operations needed is approximated to 5M log2 (M)−
3M = 5N2N − 3 · 2N in one dimension [13]. In the sparse grid case, the counting
becomes more difficult. We will give two formulae for the “radix 2 FFT”, one
using multiInd

(
SdN
)

and one using only the cover, Cover
(
SdN
)
. When deriv-

ing the full multiindex formula, we want to consider how much each hierarchical
sub-vector adds to the cost of the FFT. To do this, we need the following identity,
which represent the N2N cost as a sum over the hierarchical building blocks of a
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@
@

@N
d

1 2 3 4 5 6 7 8

1 4 11 18 25 32 39 46 53
2 28 76 141 223 322 438 571 721
3 96 300 636 1131 1812 2706 3840 5241
4 272 976 2328 4584 8037 13017 19891 29063
5 704 2864 7584 16344 31044 54051 88246 137071
6 1728 7872 22896 53520 109284 203172 352293 578619
7 4096 20672 65472 164816 359584 710004 1301308 2250323

Table 7.2: Cost of FFT on SdN for the first 7 values of N and the 8 first dimensions

vector.

N2N =
N−1∑
i=0

(i+ 2)2i, (7.8)

This then says that the cost of each hierarchical sub-vector (as defined by the
multiindecies) will be 5 (i+ 2) 2i − 3i. Using the cover, we traverse a set of
parallel vectors which define the sparse grid. The total cost is then the sum of the
cost on these times d (since we must take the transform in all directions).

fftCost
(
SdN
)

=
∑

n∈multiInd(SdN)

 d∑
i=1

5 · 2
dP

j=1,j 6=i
max(nj−1,0)

2ni (ni + 2)− 3 · 2
dP
i=1

max(ni−1,0)


= d

∑
n∈Cover(SdN)

2

dP
i=1

ni
(5n1 − 3)

(7.9)

The first cost values are found in Table 7.2.

7.2.3 Classical sparse grid compared to the tensor product grid

The differences between the number of grid points used in the full tensor product
grid and the classical sparse grid are huge when going to higher dimensions. In
Figure 7.3 a comparison between the classical sparse grid and the tensor product
grid is shown. It shows how many dimensions the classical sparse grid could have
computed with, using fewer grid points, than a corresponding M3 tensor product
grid. It says, i.e., that the classical sparse grid S16

6 (64 elements on the primary
axes, in 16 dimensions) uses fewer than the corresponding full tensor product grid



Chapter 7: The classical sparse grid 42

in 3 dimensions (64× 64× 64).

Figure 7.3: Shows the highest dimensional classical sparse grid SdN for different
values of N , where the number of elements in the sparse grid is fewer than the
corresponding full tensor product grid,

∣∣SdN ∣∣ < (2n)3

7.3 Data structure for the classical sparse grid

Recall from chapter 6.2 the three assumptions(6.2.2, 6.2.3 and 6.2.4) on the or-
dering of the data structure. For fixed indexes 2, ..., d data should be stored con-
secutive by their first index. The longest vectors should be saved first. One more
assumption must be made to have a unique ordering of the data array. The as-
sumption about how vectors of the same length should be ordered.

In the following we will use the cover. Each multiindex in the cover represents
a set of vectors along the first component. This structure is implied in (7.9), where
the cost of the FFT is calculated using the cover. n defines 2

Pd
i=2 ni vectors of

length 2n1 in primal space. Specifically the vectors below.
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Definition 7.3.1 (Vector set). Let vecSet (n) be ordered set of vectors

ω =
(
x(1),x(2), ...,x(2n1 )

)
(7.10)

x
(j)
1 = 2π

j − 1

2n1
(7.11)

x
(j)
i = 2π

ai − 1

2ni
(7.12)

ai ∈ I
′

ni
(7.13)

for all combinations of ai. Where the lexicographic ordering is used based on ai,
for i ≥ 2.

Now we have to order Cover
(
SdN
)
, and we will have a total ordering of the

classical sparse grid. We notice that the lexicographic ordering works well here
as well. This ascertains that the vectors are ordered descending in length. The
position for the dual space is found by converting k to the corresponding x, using
4.15. Table 7.3 shows the ordering for S3

3 .
The functions pos2Point and point2Pos must be implemented for the

data structure to be operatable. Proof of concept codes, including these functions,
where made during the work with this thesis. An algorithm for point2Pos is
presented in Appendix A. The c++ library (made for Cray XT4) can be found
online [30].
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adress k1 k2 k3
x1

π
x3

π
x3

π
n1 n2 n3

1 0 0 0 0 0 0 3 0 0
2 -2 0 0 0.25 0 0 3 0 0
3 -1 0 0 0.5 0 0 3 0 0
4 3 0 0 0.75 0 0 3 0 0
5 1 0 0 1 0 0 3 0 0
6 -3 0 0 1.25 0 0 3 0 0
7 2 0 0 1.5 0 0 3 0 0
8 4 0 0 1.75 0 0 3 0 0
9 0 0 1 0 0 1 2 0 1

10 -1 0 1 0.5 0 1 2 0 1
11 1 0 1 1 0 1 2 0 1
12 2 0 1 1.5 0 1 2 0 1
13 0 1 0 0 1 0 2 1 0
14 -1 1 0 0.5 1 0 2 1 0
15 1 1 0 1 1 0 2 1 0
16 2 1 0 1.5 1 0 2 1 0
17 0 0 -1 0 0 0.5 1 0 2
18 1 0 -1 1 0 0.5 1 0 2
19 0 0 2 0 0 1.5 1 0 2
20 1 0 2 1 0 1.5 1 0 2
21 0 1 1 0 1 1 1 1 1
22 1 1 1 1 1 1 1 1 1
23 0 -1 0 0 0.5 0 1 2 0
24 1 -1 0 1 0.5 0 1 2 0
25 0 2 0 0 1.5 0 1 2 0
26 1 2 0 1 1.5 0 1 2 0
27 0 0 -3 0 0 1.25 0 0 3
28 0 0 -2 0 0 0.25 0 0 3
29 0 0 3 0 0 0.75 0 0 3
30 0 0 4 0 0 1.75 0 0 3
31 0 1 -1 0 1 0.5 0 1 2
32 0 1 2 0 1 1.5 0 1 2
33 0 -1 1 0 0.5 1 0 2 1
34 0 2 1 0 1.5 1 0 2 1
35 0 -3 0 0 1.25 0 0 3 0
36 0 -2 0 0 0.25 0 0 3 0
37 0 3 0 0 0.75 0 0 3 0
38 0 4 0 0 1.75 0 0 3 0

Table 7.3: The data structure for S3
3
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Numerical results

The aim of the numerical tests is to use different test functions to show how well
the classical sparse grid works, compared to the tensor product grid.

8.1 Decay in dual space
When considering which functions will be approximated well on the classical
sparse grid, their behavior in dual space is of interest. All functions in L2 will
have Fourier coefficients converging to 0 as ||k|| goes to infinity [14, p. 77]. The
behavior of this decay depends on the function. We will consider functions which
decay as the level set of a given norm. That is to say, the Fourier coefficients û (k)
are close to constant along the level set given by the “ball” in the norm. The level
sets for the α-norm this are defined as the coefficients

{
k :

∏d
i=1 k̃i = a

}
. For

the 1 and 2 norm, the corresponding level sets are {k : ||k||i = a}, for i equal to
1 and 2 respectively.

8.2 Test functions
In the numerical experiments, three test functions will be considered. In the
trigonometric interpolation, they will be used directly. In the Poisson equation,
they will be the solution to the equation. The test functions are chosen such that
the Fourier coefficients decay as the 1-norm, 2-norm and α-norm respectively
[27].

45
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8.2.1 Test function 1

The first test function, u1, is 2π-periodic and infinitely many times differentiable
(u1 ∈ C∞). This makes it ideal for the Fourier spectral methods. But the decay in
dual space goes as the 1-norm, so we do not expect it to be an ideal candidate for
the classical sparse grid.

u1 (x) =
d∏
i=1

(
esin(xi) − 1

)
(8.1)

(a) 2d view (b) 3d view

Figure 8.1: Test function 1 in primal space

(a) 2d view (b) 3d view

Figure 8.2: Test function 1 in dual space
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8.2.2 Test function 2

The second test function, u2 is a Gaussian distribution. It is infinitely many times
differentiable (u2 ∈ C∞) , but is not periodic. It has a rapid decay to zero, so
by scaling the Gaussian it can be approximated well on a periodic domain. The
decay goes as the 2-norm, which still is not good for the classical sparse grid.
It is included as a test function because it is an interesting function in quantum
mechanics as the ground state solution to the harmonic potential [20, pp. 51-54].
It has also been used in related papers [16, 17, 27].

u2 (x) = e−
50
d

Pd
i=1(xi−π)2 (8.2)

(a) 2d view (b) 3d view

Figure 8.3: Test function 2 in primal space

(a) 2d view (b) 3d view

Figure 8.4: Test function 2 in dual space
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8.2.3 Test function 3

The third test function, u3, is a polynomial. It is 2π-periodic, but only two times
differentiable (u3 ∈ C2). In dual space it decays as the α-norm. This test function
seem like a good candidate for the classical sparse grid, and we expect to see
better result for this than the previous two when using the classical sparse grid.

u3 (x) =
d∏
i=1

(xi − 2π)2 x2
i (8.3)

(a) 2d view (b) 3d view

Figure 8.5: Test function 3 in primal space

(a) 2d view (b) 3d view

Figure 8.6: Test function 3 in dual space
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8.3 Trigonometric interpolation
The first numerical tests will be to look at how well the functions are interpolated
by the Fourier basis on the classical sparse grid. We will use the L2 norm as a
measure on how good the interpolation is. The L2-norm is evaluated using the
identity below [14, p. 221].

||un||2L2 =
∫

[0,2π]d
|un (x)|2 dx

=
∫

[0,2π]d

∑
k∈S′n

∣∣∣ûn(k)eix
Tk
∣∣∣2 dx

=
∑

k∈S′n
|ûn(k)|2

= ||ûn||22

(8.4)

The interpolation error is estimated taking the difference in calculated L2-
norm between the given grid and the finest grid used, similar to [16, p. 14].

error =

∣∣∣∣∣ ||ûN ||22 − ||ûmax||22||ûmax||22

∣∣∣∣∣ (8.5)

For test function 1 the numerical results, Figure 8.7, show that the full grid per-
forms much better than the classical sparse grid. The full grid typically needing
an order of magnitude fewer points to get the same accuracy. The same conclu-
sions are drawn for test function 2 in Figure 8.8. For test function 3, the sparse
grid performs better. In Figure 8.9 we see that the classical sparse grid gives and
accuracy of 10−13 using approximately 104 grid points, while the full grid needs
107 grid points to get the same accuracy. For low accuracy, the full grid needs
fewer grid points than the classical sparse grid. In Figure 8.10 we see that the full
grid beats the classical sparse grid on accuracy 3 · 10−3, they need equally many
points for accuracy for 3 · 10−5, and the classical sparse grid performs best when
the target accuracy is 3 · 10−7. This can be explained by noticing that test function
3 has highest magnitude of its Fourier coefficients near the origin, and that the “α-
norm” behavior is not as pronounced there. The full grid will thus cover the high
magnitude coefficients using fewer grid points than the classical sparse grid. But
getting further away from the origin, the α-norm behavior gets more pronounced,
and classical sparse grid comes to its right.



Chapter 8: Numerical results 50

Figure 8.7: Error when interpolating test function 1, in 3 and 5 dimensions. Num-
ber of grid points on the x-axis and L2 error on the y-axis. Full grid plotted in
solid, classical sparse grid in dashed. Tthe full grid performs best.

Figure 8.8: Error when interpolating test function 2, in 3 and 5 dimensions. Num-
ber of grid points on the x-axis and L2 error on the y-axis. Full grid plotted in
solid, classical sparse grid in dashed. The full grid performs best.
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Figure 8.9: Error when interpolating test function 3, in 3 and 5 dimensions. Num-
ber of grid points on the x-axis and L2 error on the y-axis. Full grid plotted in
solid, classical sparse grid in dashed. For high accuracy, the classical sparse grid
perform better than the full grid.

Figure 8.10: Number of grid points needed to achieve an error less than 3·10−3, 3·
10−5 and 3 · · · 10−7 respectively, for test function 3. The full grid is plotted in
solid and the classical sparse grid in dashed. Notice that the lines overlap in the
middle plot. For low accuracy, the full grid is better than the classical sparse grid,
independent of dimensions. For higher accuracy the classical sparse grid is best,
inependent of dimensions.
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8.4 The Poisson equation
The Poisson equation, as presented in (2.29), is a simple partial differential equa-
tion, which is ideal to see how the spectral Fourier method performs on the clas-
sical sparse grid. The right hand side of the equation, (8.6), is chosen so that the
solution are the test functions (8.1),(8.2) and (8.3) respectively. They are found
by calculating the Laplacian of the test functions.

f1 (x) =
∑d

i=1 (cos2 (xi)− sin (xi)) e
sin(x)

∏d
j=1,j 6=i

(
esin(xj) − 1

)
f2 (x) =

∑d
i=1

(
1002

d2
(xi − π)2 − 100

d

)
e−

50
d

Pd
j=1(xj−π)2

f3 (x) =
∑d

j=1

(
x2
j + 4xj (xj − 2π) + (xj − 2π)2)∏d

i=1 (xi − 2π)2 x2
i

(8.6)

We know the exact solution for the Poisson equation, by construction they are the
test functions. We calculate the relative error using the 2-norm of the difference
between the estimated solution and the exact solution on the grid points.

error =
||u− uest||2
||u||2

(8.7)

The numerical results are similar to that of the interpolating test. The classical
sparse grid is not suitable for the two first test functions, but for test function 3 it
shows great improvements over the full grid. In Figure 8.11 and Figure 8.14, and
Figure 8.12 and Figure 8.15 we see that the two first test functions needs more
than an order of magnitude more grid points to converge on the classical sparse
grid than the full grid. When going to higher dimensions we see that for fixed
number of grid points, the full grid gives a good approximation of test function
1, where the classical sparse grid is not even close to approximating the function.
For test function 3, the classical sparse grid is the best choice. In Figure 8.13 we
see that the convergence is much more rapid for the classical sparse grid than the
full grid. The full grid needs orders of magnitude more grid points for the same
accuracy, and the order of magnitude increases when needing higher accuracy. To
reach an accuracy of 10−1, we see in Figure 8.17 that the classical sparse grid can
achieve this in 7 dimensions using 106 grid points, while already in 5 dimensions,
the full grid needs over 107 grid points. Figure 8.16 shows that for fixed number
of grid points 5 · 104, the classical sparse grid achieves 4 orders of accuracy more
than the full grid for dimensions 3 to 7.



53 8.4 The Poisson equation

Figure 8.11: Error plots for the Poisson equation for test function 1, in 3 and 5
dimensions. Number of grid points on the x-axis and error on the y-axis. Full grid
plotted in solid, classical sparse grid in dashed. The full grid performs best.
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Figure 8.12: Error plots for the Poisson equation for test function 2, in 3 and 5
dimensions. Number of grid points on the x-axis and error on the y-axis. Full grid
plotted in solid, classical sparse grid in dashed. The full grid perform best.

Figure 8.13: Error plots for the Poisson equation for test function 3, in 3 and 5
dimensions. Number of grid points on the x-axis and error on the y-axis. Full grid
plotted in solid, classical sparse grid in dashed. The classical sparse grid performs
much better than the full grid.
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Figure 8.14: Plot of the error for the Poisson equation for fixed number of grid
points (≈ 5 · 105) for test function 1. Dimensions along the x-axis and error along
the y-axis.

Figure 8.15: Plot of the error for the Poisson equation for fixed number of grid
points (≈ 5 · 105) for test function 2. Dimensions along the x-axis and error along
the y-axis.
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Figure 8.16: Plot of the error for the Poisson equation for fixed number of grid
points (≈ 5 · 105) for test function 3. Dimensions along the x-axis and error along
the y-axis. The classical sparse grid have 4 order of magnitude more accuracy
than the full grid approach.

Figure 8.17: Points needed for a error ≈ ·10−1 for test function 3. Dimensions on
the x-axis, number of grid points on the y-axis. The classical sparse grid can solve
higher dimensional problems with far fewer grid points than the full grid.
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8.5 A problem with many dimensions
The last example is a problem where the tensor product grid is outperformed by
the classical sparse grid.

We have a function, f , which is represented as a sum of trigonometric func-
tions and is on the form

f (x) =
d∑

m=1

d∑
n=1

cmne
i(xi+xj) (8.8)

cnm = cmn ∀m,n (8.9)

We want to determine the coefficients cmn by sampling f on a grid. The degree of
the trigonometric polynomials are 2 at most, and none with negative exponents.
A 3 × 3 × . . . × 3 grid is sufficient to find the exact coefficients using the tensor
product grid. For the classical sparse grid approach, we must look at the mixed
trigonometric polynomials. At most two components are mixed, we thus need
N = 2 to cover all coefficients, so Sd2 is sufficient to find the exact coefficients
using the classical sparse grid. Looking back on (7.7) we find the number of grid
points for the classical sparse grid in this case. The grid points needed for the
tensor product grid and the classical sparse grid i respectively

|3× 3× · · · × 3| = 3d (8.10)∣∣Sd2 ∣∣ =
d2 + 5d+ 2

2
(8.11)

Here the tensor product grid has an exponential growth of grid points needed,
while the classical sparse grid have a quadratic (polynomial) growth. The number
of unknown coefficients is d2+d

2
, so in this case the classical sparse grid only use

2d + 1 more grid points than the lower bound. For the case d = 250, the sparse
grid needs 31876 grid points to find the exact coefficients. For the same problem,
the tensor product grid would need 10120 grid points. It is of course not feasible to
approach this high dimensional problem with the tensor product grid ( we would
need more than a googolbyte of memory to compute), while using the classical
sparse grid solves the problem easily (using some kilobytes of memory).

This problem is chosen, as it shows extreme differences between the classical
sparse grid and the tensor product grid. The moral is that one should choose a
method which fits the problem.



Chapter 9

Conclusion and further work

In this thesis we have presented a class of sparse grids, and an algorithm which
can compute the Discrete Fourier Transform effectively on it. We have considered
the special case of the classical sparse grid. In this case we have seen that huge
computational savings can be gained, if the functions we are working with have
the right type of behavior in Fourier space - the coefficients decay as the level sets
of the α-norm. For other functions we are better off with the tensor product grid.

Further work is needed to make an effective data structure, so that the method
can be used on the huge problems for which it is intended. An effort should also
be done, together with physicists, to identify what physical problems this method
would be of use. In [18], interesting sparse grids for working with particles in 3d
are presented. Further work could be done to implement the Fourier transform on
such grids, using the theories from this thesis.
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Appendix A

Implementation of point2Pos

In this appendix we will present an algorithm for the point2Pos method. It
should be noted that this algorithm is used for “proof of concept”, and that further
work should be done to find more effective algorithms.

To make good data access codes, we need to analyze the properties of the
data structure. In this section we will revisit and explore the definitions given in
Section 6.1 and Section 7.3. Specifically, we are most interested in how many
vectors with given properties there are in different parts of the data array. We will
consider the classical sparse grid Sdn, which is a sub-grid of the d-dimensional
tensor product grid [2n × 2n × . . .× 2n].

The data is structured such that vectors along the first dimension is saved con-
secutively. Where a vector along the first dimensions is defined as coordinates
where the last d − 1 components are fixed, and the first component varies. The
longest vectors are stored in the top of the array, then vectors with half the length,
and then vectors half of that length again, and so on till we have vectors of length
1 in the end of the array. Recall from Definition 4.3.8, that a multiindex n define
a set of coordinates K ′ (n).

We will let the multiindecies k ∈ K
′
(n) denote the coordinates in the dual

sparse grid. The primal coordinates can be found using (4.14).
We can now present some properties of K ′ (n). K ′ (n) contains vectors of

length 2n1 along the the first dimension, as each k ∈ K ′ (n) takes all values from
0 to 2n1 − 1 for each combination of {ki}di=2. K ′ (n) contains

∏d
i=2 2max(ni−1,0).

This because K ′ (n) have all combinations of {ki}di=2, where ki can take |Ini | =
2max(ni−1,0) different values.

We can now denote all coordinates in the classical sparse grid using K ′ .

k ∈ Sdn ⇔ k ∈
⋃

n∈Cover(Sdn)

K
′
(n) (A.1)
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In Section 6.1.5 we propose a function numVec(m) that tells us how many
vectors of length 2m there are. We find this for Sdn by finding all n ∈ Cover

(
Sdn
)

where n1 = m, and count how many vectors they contain.

numVecdn (m) =
∑

en∈Ad−1
n−m

d−1∏
i=1

2max(eni−1,0) (A.2)

{
ñ ∈ Adm :

d∑
i=1

ñi = m

}
(A.3)

The values of numVecdn (m) will in practice be precomputed to a look up table
for needed values of n,d and m. Noticing that in practice only n −m is used in
the computation, this becomes a two dimensional array.

The point2Pos (k) algorithm consists of two steps. First figure out where
in the array the first element of K ′ (n) is located (for k ∈ K

′
(n)). Then figure

out where in K ′ (n) k is located. The first part is done by finding the first el-
ement in Cover

(
Sdn
)

where the ith component is equal to ni, starting with the
first component, then find the first with first and second component is correct,
and so on until we find n. To find the first multiindex, we just figure out how
many vectors there are of length greater than 2n1 , and sum up the space they need
in the data array. After this, all vectors we will consider are of length 2n1 . The
next steps will now be done using numVec. Now get combinatorial problems
on the form, “how many ways can we add up to n − n1 − n2 − ... − ni−1 − k
with d − i integers?”, and how many vectors does this correspond to. Luckily
numVecd−in (n1 + n2 + ...+ ni−1 + k). This must be done for 0 ≤ k < ni. This
gives us the first part of the algorithm.
pos = 0
for l = n1 + 1 to n do
pos = pos+ 2lnumVecdn (l)

end for
for i = 2 to d do

for k = 0 to ni − 1 do
pos = pos+ 2n1numVecd−in (n1 + n2 + ...+ k)

end for
end for
In the second part of the algorithm we look at the vectors within K ′ (n). The

ideas are similar to the first part, only now we try to find where the vector con-
taining k begins within K

′
(n). Then we find k’s position in the vector. This

time we are working with the vectors where the i > 1 component can take the
values ki ∈ Ini . We introduce a new function, which keeps track of the order-
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ing within the level sets. We proposed in Chapter 7 that the ordering should
ascending for σ (ki). The ordering of e.g. I3 would be {6, 4, 5, 7}. Our new
function posInSortedLevelSet will give the position in the level set, given
the above ordering. E.g. posInSortedLevelSet(4) = 2. Now we can once
again find the correct vector by fixing first the second component of k, then the
second and so on. We do not have to solve the same combinatorial problem to
figure out how many vectors we traverse in each step. We know that the last i el-
ements of n tells us it represent

∏d
j=i 2

max(nj−1,0) vectors of length 2n1 elements.
We can thus find the start of the vector containing k in the second part of the
algorithm.

for i = 2 to d do
pos = pos+ 2ni (posInSortedLevelSet (ki)− 1)

∏d
j=i+1 2max(nj−1,0)

end for
The last part is to find k within the vector. In the first component the values are
ordered ascending in the primal coordinate. Let posInPrimal(k, n) give this
position. Then the last part of the algorithm becomes
pos = pos+ posInPrimal (k1, n1)

Giving the complete algorithm for point2Pos below.

Algorithm 11 point2Pos
function point2Pos (k)

pos = 0
for l = n1 + 1 to n do
pos = pos+ 2lnumVecdn (l)

end for
for i = 2 to d do

for k = 0 to ni − 1 do
pos = pos+ 2n1numVecd−in (n1 + n2 + ...+ k)

end for
end for
for i = 2 to d do
pos = pos+ 2n1 (posInSortedLevelSet (ki)− 1)

∏d
j=i+1 2max(nj−1,0)

end for
pos = pos+ posInPrimal (k1, n1)

end function

The pos2Point algorithm used is based on much the same ideas. But it is
more complex, using a bit of trial and error in finding the point at a given position.
The algorithmic details are omitted.

Both point2Pos and pos2Point uses O (dn) operations. In the “proof
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of concept” code [30], an early version of this algorithm is used, and is the main
bottleneck in the program, where the two codes takes approximately 99% of the
computing time.
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