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Outline

Modeling of �ow in porous media is an important scienti�c research area, and has
been so for decades. It is also one of the major topics within applied mathematics.
Models for �ow in porous media are for example important in the oil industry, in
groundwater hydrology and in geothermal energy extraction. In this thesis we are
building both a mathematical and a numerical geothermal model. To understand
the processes that happens in geothermal reservoirs far below the earth's surface,
good models are needed. The long term reservoir behavior is important when the
economical feasibility of a geothermal project is determined. Good models are
needed to determine the long term behavior.

To model �ow in porous media, there are several steps that needs to be done.
The �rst step is to obtain and understand the background knowledge, such as
theory from reservoir mechanics, that is needed to build a model. Some of this
knowledge is common for all the di�erent topics that use �ow in porous media
models. Other parts of the theory are more speci�c and connected to an applica-
tion. When su�cient knowledge has been obtained, the next step is to use it to
create a mathematical model for �ow in porous media. When this has been done, it
is time to implement a numerical model that is based on the mathematical model.

To obtain a numerical model, it is common to discretize the continuous model
expressions in the mathematical model. We try to retain the essential properties
of the continuous model expressions when we discretize them. Discretizing model
expressions often leads to a linear system that can be solved by numerical equation
solvers. The main focus in this thesis is the discretization of the equation terms,
both spatial and in time. We will use a �nite element method to spatially discretize
the di�usion term in our model equations. A �nite di�erence method will be used
to discretize the advection term in space. An equation term can be solved with
either explicit or implicit time discretization. When a term is solved explicitly it
is solved at the start of each time step, using the the previous equation values.
Solving the term implicitly, the term is calculated at the end of each time step.
We will try to create an adaptive strategy that decides which terms that should
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2 CONTENTS

be solved with explicit time discretization.
The thesis is split into 6 chapters. Chapter 1 will work as a background for the

rest of the thesis, and is dedicated to geothermal energy extraction. As we build a
model for geothermal energy extraction, it is important to have some knowledge of
how a geothermal reservoir works. In Chapter 2 we will go through the theory from
reservoir mechanics that is relevant for this thesis. We will explain the terms porous
media, porosity, representative elementary volume, permeability, homogeneity, and
isotropy. We will also explain Darcy's law and the general conservation law. At
the end of the chapter we will look at the similarities and di�erences between the
physical properties enthalpy and temperature.

The mathematical model is built on a local and a reservoir scale conservation
law for enthalpy, and we create this model in Chapter 3. We see our reservoir as
blocks of rock, with fractures that are �lled with water between them. The local
conservation law will model the heat transfer in one block and the fractures near
it. To do this we will split the block up into layers, and there will be an enthalpy
�ux between them. The reservoir scale conservation law models enthalpy transfer
in the entire reservoir, between the di�erent blocks and fractures.

The �ux term in the reservoir scale conservation law consists of three di�erent
�uxes, the di�usive �ux, the advective �ux and the heat exchange �ux. The
di�usive �ux is di�usion driven and transfers enthalpy between the di�erent blocks
and between the di�erent fractures. The heat exchange �ux transfers enthalpy
inside each block of porous media, and this reservoir scale �ux is based on the
local �ux inside each block. The heat exchange �ux is also a di�usive �ux, but it
only transfers enthalpy between the block layers, not between the di�erent blocks
as the di�usive �ux does. The advective �ux, the result of water �owing in the
fractures, transfers enthalpy between the di�erent fractures in the reservoir.

In Chapter 3 we establish expressions for these �uxes, and combine them into
model equations. We also establish initial and boundary conditions for our model.
In Chapter 4 our numerical model is created. Here we discretize our model equa-
tions from Chapter 3. When we have discretized the equations, we implement
them in our numerical model. We then explain how we solve the di�erent terms
of the equations numerically. The solvers discretize the equation terms either with
explicit or implicit time discretization.

In Chapter 5 we go through the simulation results. First we will go through
the methods we use to compare the results, then we do a comparison. We create
an adaptive strategy, that decides which terms that should be solved with explicit
time discretization. We then show why using explicit time discretization in some of
the terms in the modeling equations make sense. In Chapter 6 we summarize what
we have done in our research, go through possible improvements to our model, and
come to a conclusion of the research we have done.



Chapter 1

Geothermal energy extraction

This chapter, dedicated to di�erent aspects of geothermal energy extraction, will
work as a background for the rest of the thesis. There will be a short explanation
of what geothermal energy is and how it is used. Next, there will be a short look
at the bene�ts of geothermal energy and an explanation of what a Hydrothermal
System and an Enhanced Geothermal System is.

1.1 Geothermal energy

The word geothermal is derived from the two Greek words geo (earth) and therme
(heat), and subsequently geothermal energy means energy from the earth's inner
heat. Since before the beginning of recorded history people have used natural
geothermal �uids for cooking and bathing. Geothermal resources has been used to
extract heat and power for centuries. In the 14th century the �rst district heating
system started up in France and it is still running [1]. Early on in the 20th century
electric power production from geothermal energy began, and geothermal energy
was used for industrial purposes. In 1904 geothermal steam produced electricity
for the �rst time in Lardello, Italy.

Today there is extended use of geothermal energy. It is used for direct heating
and to produce electricity worldwide. In many cases the geothermal energy is
used in a power plant to produce electricity and then used for direct heating. In
2005, when the World Geothermal Congress (WGC2005) were held in Turkey, 68
countries submitted papers about their use of geothermal resources. There were 72
countries that reported use of geothermal energy for either direct use (for heating),
for electricity production, or both, between WGC2000 and WGC2005 [2], [3], [4].
The combined �gures from the papers submitted to WGC2005 are reported in table
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4 CHAPTER 1. GEOTHERMAL ENERGY EXTRACTION

1.1 below. The table is reproduced from [1]. The World Geothermal Congress is
arranged every �fth year, so the next will be held next year, in 2010.

Use Installed power Annual energy Capacity factor Countries
(MW) Use (MW yr) reporting

Electric power 8,933 6,482 0.73 24
Direct use 28,268 8,669 0.31 72

Table 1.1: The worlds total geothermal use in 2005, table from [1].

27 countries have produced electric power from geothermal energy using power
plants. Greece, Taiwan and Argentina have closed down their power plants driven
by geothermal energy for environmental and economic reasons [1].

1.1.1 Environmental advantages

Geothermal energy is one of the renewable and green energy resources. There
are only minor emissions when producing geothermal energy, substantially less
than the emissions from fossil fuels. Geothermal energy extraction causes some
noise pollution (mostly from fans). These are at such a low level that they not
are regarded as a problem. In addition there is some usage of water and land,
but this is at a smaller scale than when fossil fuels are used. The environment
damages are much less when using geothermal energy instead of oil, gas and coal
as the energy source. In addition there are small impacts on natural phenomena,
wildlife and vegetation [5]. In table 1.2 there is a comparison of the emissions
from a geothermal plant and a coal plant. Looking at the table we see that the
emissions from a geothermal plant are very low. The only emission that is higher
from a geothermal plant than from a coal plant is hydrogen sulphide. It is routine
at geothermal power plants to treat hydrogen sul�de and convert it to elemental
sulfur.

CO2 SO2 NOx H2S Particulate

(kg/MW h) (kg/MW h) (kg/MW h) (kg/MW h) matter(kg/MW h)

Coal

plant 994 4.71 1.95 0 1.01
Geothermal

plant 40 0.16 0 0.08 0

Table 1.2: Emission of carbon dioxide, sulfur dioxide, nitrogen oxides, hydrogen
sul�de and particulate matter from a coal plant compared to a geothermal plant
in kilograms per MW h produced. Data collected from [1].
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1.2 Heat sources

Geothermal energy is unique, because of the source and transport mechanisms
behind it. The average heat �ow through the earth crust is 59 mW/m2. The two
primary processes which causes heat �ow through the crust of the Earth are [7]:

• Heat from the Earths mantle and core, through upward convection and con-
duction.

•• Radioactive elements in the crust causing heat, particularly isotopes of ura-
nium, thorium and potassium.

Regional geologic and tectonic phenomena can cause higher heat �ow locally.
For example tectonic plate boundaries and volcanic events are associated with
higher heat �ow. In Iceland, the heat �ow is much higher than the average heat
�ow. The reason behind the high heat �ow is that Iceland lies on a tectonic plate
boundary. A consequence of lying on such a boundary is often recent volcanic
events. Such events create an ideal environment for geothermal energy extraction.
This may be the background for geothermal energy extraction to be associated
only with areas where the heat �ow is high because of such conditions. However,
recently Enhanced Geothermal Systems (EGS) have made it possible to extract
geothermal energy from areas that were unsuitable for Hydrothermal Systems
(HS).

1.3 Hydrothermal systems

A hydrothermal system (HS) is a system where there is a natural fractured reservoir
ready to be used to extract geothermal energy from. A HS consists of a drill
hole into the groundwater and a pump, which is pumping up the hot water before
injecting it into the ground again. When targeting a new geothermal reservoir, the
ideal reservoir consists of rock that is hot, tectonically stressed and fractured with
groundwater in the fractures. Most areas where a HS is economical sustainable,
are today used.

1.3.1 Enhanced geothermal systems

After some time the fractures in the ground seal, due to secondary mineralization
processes. This results in low permeability and little or no �uids present. When
this is the case other methods such as hydraulic, thermal and chemical processes
must be used to extract energy. With such processes an enhanced geothermal
system (EGS) is created. The methods stimulate the reservoir. This causes the
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fractures to open, extend and interconnect and results in the creation of a conduc-
tive fracture network [6].

An EGS can extend the margins of an existing hydrothermal system (HS) or
create new ones where it is not possible to create a HS for di�erent reasons, like low
heat �ow, low permeability, below ground water levels, etc. The U.S. Department
of Energy has earlier de�ned an EGS �as engineered reservoirs that have been
created to extract economical amounts of heat �ow from low permeability and/or
porosity geothermal resources� [7].

In the assessment done in the MIT report The Future of Geothermal Energy

[7], where they evaluate geothermal energy as a major supplier of energy in the
United States, they have chosen to adapt this de�nition to include �all geothermal
resources that are currently not in commercial production and require stimulation
or enhancement�. This de�nition excludes high-grade hydrothermal reservoirs, but
it includes the conduction dominated, low permeability resources in sedimentary
and basement formations.

Deep geothermal systems are a kind of EGS. To create a deep geothermal
system, drilling far below the groundwater is needed. Because the amount of
inherent ground water is limited, water has to be injected to create su�cient heat
�ow. Therefore there will be a start up time (injection time) where there is no
production. In �gure 1.1 we see an EGS with a injection and a production well.
Here follows the di�erent steps in an EGS [6]:

� The �rst step in an EGS is to drill an injection well into hot basement rock
that has limited permeability and/or �uid contents. This drilling continues
considerably below water levels.

� The second step is to inject water at su�cient pressure to ensure that the
reservoir is fractured or to open existing fractures, similar to what is com-
monly done in the oil industry.

� The continued pumping of water ensures extended fractures and reopening
of old fractures at some distance from the injection well.

� The next step is to drill a production well with an intent to intersect the
fracture system. This creates a circulation of water in the basement rock
due to improved porosity. To extract heat from large volumes it may be
suitable to drill additional production wells. This is very much an economical
question.
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Figure 1.1: Here we see an EGS with an injection and a production well. The
water �ows from the injection well to the production well. The picture is taken
from [8].

Bene�ts With EGS

There are many bene�ts with an EGS, here follows some of them, described in the
article [6]. In an EGS there will be more fractures and higher heat �ow than in a
HS, and therefore the productivity will increase. EGSes can be established in areas
where it is too low heat �ow and/or too few fractures to establish HSes. The size
of the geothermal system becomes more �exible. There are economic advantages,
as more energy can be produced. Because of the economic advantages a system
can have an extended lifetime. With extended lifetime there follows environmental
advantages. This is because there can be extracted more energy from the same
site/area without using energy to establish new sites. If energy from EGS is used
instead of energy from fossil fuels, the environmental advantages becomes huge.

EGS reservoir simulation

To understand hydraulic, thermal, mechanical, and chemical processes in geother-
mal reservoirs, good simulations are needed. An EGS is characterized by low



8 CHAPTER 1. GEOTHERMAL ENERGY EXTRACTION

permeable rocks and a system of hydraulically stimulated fractures. While the
energy transfer is dominated by the �uid �ow in the fractures, the long-term heat
extraction rate is determined by the small scale energy transfer in the blocks. A
challenge in EGS reservoir simulation is therefore to capture both the large scale
�uid �ow in the fractures, and to capture the small scale energy transfer in the
blocks with rock. In the following chapters we will create a model that capture
both the large and small scale energy transfer.



Chapter 2

Reservoir mechanics

In this chapter, we will look into the theory of reservoir mechanics relevant to
this master thesis. The focus will be on single phase �ow as we only consider
single phase �ow later in the thesis. The main concepts used for �uid �ow in
porous media, such as the terms porosity, permeability, homogeneity and isotropy
will be explained. We will also describe some of the equations used for �uid �ow,
Darcy's law and the general conservation law. The term representative elementary
volume will be explained. At the end of the chapter we will look into the relation
between temperature and enthalpy. The presentation is mainly based on the books
of Pettersen [9] and Bear [10].

2.1 Porous media

A porous media is a media of �rm substance with channels of void space where
�uids can �ow. Almost every substance in nature is a porous media. It is usually
di�cult to describe the geometry of the internal solid surfaces that constrict the
�ow inside a porous medium in an exact way. In the same way it is impossible to
precisely describe the �uid that is �owing. Therefore a statistical approach is more
suitable, where we can determine the average values of successive measurements.
The void space is called the pores of the porous media. In a �ow perspective the
pores are the most important part of the media. This is where there can �ow
�uids, such as water, oil and gas. To measure how much pores and �rm substance
there are in a porous media, the term porosity is needed.

9



10 CHAPTER 2. RESERVOIR MECHANICS

2.1.1 Porosity

The volume of the �rm substance VFS and of the pores VP together composes the
total volume, such that

VB = VFS + VP , (2.1)

where VB stands for the bulk (total) volume. The porosity of the media is

φ =
VP
VB

(2.2)

and will always be between 0 and 1. The higher porosity a porous media has, the
more pores that liquid can �ow through. Some of the pores can be isolated, and
there will be no �ow from these pores to the rest of the pore network. Other pores
are dead ends, where the �ow is very restricted. In �gure 2.1 we see connected,
isolated and dead end pores. As a consequence of isolated and dead end pores the
term e�ective porosity is de�ned as

φE =
VP − VDE − VI

VB
, (2.3)

where φE is the e�ective porosity, VDE is the volume of the dead end pores and VI
is the volume of the isolated pores. In reservoir mechanics it is mainly φE which is
interesting, as it tells how much of the pores the �uid can �ow through. Although
φ should be used in some contexts, for example when determining the speci�c heat
capacity, we will only use φE. We have chosen to neglect the di�erence between φ
and φE, as this is not the priority in the thesis.

The pore diameter and especially the pore throat diameter are important pa-
rameters when modeling how much liquid that can �ow through a pore. We see
the pore diameter and a pore throat in the �gure 2.1. The pore throat is where
the pore is at its thinnest. The pore throat diameter will together with other
parameters decide how much �uid that can �ow trough the pore.

2.1.2 Representative elementary volume

When setting up mathematical models for a continuous dynamic system, it is usual
to study the variables in a representative elementary volume, from now on referred
to as a REV. A REV is a volume that is large enough to have the properties of a
porous media. An in�nitesimal volume, dV is the smallest possible volume that
can be de�ned. When Vref is a typical volume for a whole model, and we want
to create a di�erential equation or a system of di�erential equations describing
the properties of Vref , it should be divided into dV s. If we use dV s to describe
the properties of a porous media, it will create di�culties if we use a continuum
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Figure 2.1: A porous media with a pore throat and connected, isolated and dead
end pores.

approach to porous media. The volume is to small to have a well de�ned middle
value for the porosity. This has to do with the pore throat diameter. If the pore
diameter is larger than dV , the porosity in dV will be either 1 or 0, dependent on
dV being inside a pore or outside a pore. REVcrit is the critical value for the size of
the volume, the limit for the volume to have porous media properties. REVcrit is
the smallest possible volume, where a middle value for the porosity can be de�ned.
It is therefore usual to use a REV that ful�lls the inequality

dV << REVcrit < REV << Vref ,

in models describing porous media.

2.1.3 Darcy's law

The French engineer Henry Darcy's researched �ow through sand �lters, in con-
nection with the dams in Dijon, France. All of his experiments were with vertical
�ow. Darcy concluded that the rate of �ow (u) is proportional to the constant
cross sectional area (A), to the di�erence in height of the water (∆h), and in-
versely proportional to the length (L). We then end up with the famous Darcy
formula:

u = αA
(∆h)

L
, (2.4)

The constant α varies with the type of sand, and is negative. The two heights (h1

and h2) are measured with a piezometer. A piezometer measure the piezometric
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head h, which describes the sum of pressure and potential energies of the �uid per
unit weight. Therefore h1−h2 is the di�erence in piezometric head across the sand

�lter of length L, and
(
h1−h2

L

)
is the hydraulic gradient. The "Darcy velocity" u

is not the actual velocity the water have in the pores, but can be seen as a kind of
�ux and is therefore also called the Darcy �ux. This �ux is the volume that goes
through an area per time, and therefore the entity is m/s. The entity is the reason
why the Darcy �ux often is referred to as a velocity. The Darcy �ux is related to
the porosity of the porous medium, by

u =
v

φ
, (2.5)

where u is the Darcy �ux, v is the average velocity in the pores and φ is the porosity.
With the constant α being negative, the �ow direction is from the position with
high potential energy to the position with low potential energy. Darcy did not
try other �uids than water in his experiment, and therefore he did not �nd any
variations with di�erent �uids.

The di�erential form of Darcy's law

After Darcy's experiments �uid �ow through a porous media has been subject of
many experiments with di�erent �uids and di�erent �ow directions. For �ow in
all directions, there has been established a di�erential form of Darcy's law,

u = −K
µ

[ ∂p
∂x1

+ θ1ρg,
∂p

∂x2

+ θ2ρg,
∂p

∂x3

+ θ3ρg
]
, (2.6)

whereK is the permeability, µ is the viscosity, p is the pressure, and ρ is the density
of the �uid. The gravity acceleration (g) works in the horizontal direction, and θ1,
θ2, θ3 is the angle between the x, y, z-directions in the coordinate system and the
horizontal direction. An important part of the Darcy �ux, is the permeability.

2.1.4 Permeability

The permeability is a portion of the conductivity, which is a measure of how well a
�uid �ow through a porous media. While the conductivity is dependent on both the
�uid that �ows and the rock it �ows through, the permeability is only dependent
on the rock. Permeability is measured in Darcy, which is approximately 10−12 m2.
The permeability can be seen as inverse proportional with the resistance from the
rock for the liquid �owing through it. In general the permeability is expressed as

K =

 K11 K12 K13

K21 K22 K23

K31 K32 K33

.

 ,
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Homogeneity

If the permeability is constant in a media, it is homogenous. If K = K(x), where
the permeability varies with its position in the media, we say that it is inhomoge-
neous or heterogeneous. The permeability can be di�erent in di�erent directions,
but still be homogenous. If the permeability is constant in each direction in some
coordinate system, it is homogenous. If it is independent of x1, x2 and x3 in some
coordinate system, and we have K = (Kx1 , Kx2 , Kx3) in that speci�c coordinate
system, it is homogenous.

Isotropy

If the permeability is equal in all directions, where Kx1 = Kx2 = Kx3 in one
speci�c coordinate system, then it is isotropic. If it is di�erent in all directions,
independent of coordinate system, then it is anisotropic. For a system to have
positive entropy, the tensor K must be positive de�nite. As the entropy has to be
positive, we can assume that K is positive de�nite. The tensor K is symmetric,
and there exists a orthogonal transformation, such that K can be transformed into
the diagonal tensor

K∗ =

 K∗
11 0 0

0 K∗
22 0

0 0 K∗
33.

 .

With other words, the permeability can be represented by �ow directions.

2.2 Conservation laws

A law that describes a conservation of a particular measurable property in a iso-
lated physical system is called a conservation law. A conservation law is central in
almost every model of a dynamic system. There are conservation laws for conserva-
tion of mass, energy, linear momentum, electric charge and many other measurable
properties. The general conservation law is:

d

dt

∫
Ω

Γdx+

∫
∂Ω

n· Jdx =

∫
Ω

qdx , (2.7)

where Γ is the conserved quantity within the volume Ω, the �ux of Γ through the
boundaries of Ω is n· J and q is either a source or a sink inside Ω. If a conservation
law holds for each REV, it is also possible to create a conservation law that holds
for a arbitrary sized volume that is greater than a REV. Later in this thesis we will
use conservation laws for enthalpy to create a mathematical model for geothermal
heat extraction.
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2.3 Temperature and enthalpy

To measure heat �ow in a reservoir, one natural choice would be to use temperature
with Kelvin as the entity. It is also possible to look at the internal energy in the
reservoir, or more precisely the change in the internal energy over some time. En-
thalpy is a thermodynamic potential, that describe the state of a thermodynamic
system [21].

When the pressure is constant enthalpy is de�ned as

H = U + pV ,

whereH is the enthalpy, U is the internal energy, p is the pressure of the system and
V is the volume. We have the following relation between enthalpy and temperature

dH = d(U + pV ) = TdS + V dp ,

where dS is the change of entropy in the system. With constant pressure we have

Cp = (
∂H

∂T
)p , (2.8)

where Cp is a constant. As we model the pressure in other parts of the equations
than the enthalpy, the pressure will be constant in the enthalpy terms. Due to
water �ow there is a energy �ux in geothermal reservoirs. The reason that we do
use enthalpy instead of internal energy is that while the inner energy represents
the energy that is present, enthalpy represents the part of the energy �ux in the
reservoir that is a consequence of water �ow. We model energy �uxes later in the
thesis, and therefore we have chosen to use enthalpy as the conserved quantity.

As the enthalpy is a energy quantity, it has joules as its entity. When the
temperature of the water is below its boiling point, the enthalpy and the tem-
perature will be proportional entities. (If the pressure is constant.) When the
waters temperature is near the boiling point, this is not true. In the plot in �gure
2.2, the temperature is plotted versus enthalpy. Before the liquid is boiling, the
temperature is proportional to the enthalpy. When the liquid starts to boil, the
temperature will not rise, but the enthalpy will. The rise in the enthalpy is a
consequence of the pressure of the water increasing when its boiling. In this thesis
we are only looking into the �rst part of the curve, where the water is not boiling.
In our model we have

T ∝ h, T < boiling point ,

and the temperature and the enthalpy will be proportional. Note that in a reser-
voir far below the ground, the pressure will ensure that the water has to be much
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Figure 2.2: The temperature plotted versus enthalpy, with one non linear area.

warmer than at ground level to boil. Water and rock have di�erent entropy. As
we in this thesis mainly focus on the discretization aspects of the models we use,
we have chosen to neglect these di�erences. Therefore we use the same propor-
tionality constant between temperature and enthalpy in both water and rock. A
consequence of this is that joules no longer are the entity of enthalpy. We will still
use the term enthalpy for this quantity, despite the fact that the proportionality
constants are inaccurate.
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Chapter 3

Mathematical model

In this chapter, we exploit the theory from the reservoir chapter to make a model
for geothermal energy extraction. The model will be based on the conservation
law for enthalpy. To de�ne a local (�ne-scale) conservation law, we look into the
composition of a reservoir. There are two scenarios that we will like to use our
model for. The �rst scenario is that the reservoir consists of blocks with dry rock
and fractures between the blocks, where the fractures are �lled with �owing water.
The other scenario is that the blocks consist of porous media, with small fractures,
but that there is no �ow of water inside the blocks. As in the �rst scenario, the
water �ows in the fractures between the blocks. The model is inspired by the
articles [18] and [16].

In both scenarios the global �ow of water will only take place in the fractures,
but there is an enthalpy �ux in both the blocks and in the fractures between
the blocks. Parameters like the thermal conductivity, speci�c heat conduction and
density inside each block will be averages. In the second scenario, the parameters in
the blocks are averages where both the �rm substance's and the water's parameters
are part of the average. We split the blocks into layers. There will be a enthalpy
transfer from one layer to the two neighboring layers. In the utmost layer there
will be an enthalpy transfer to the water phase in the fractures between the blocks.

The local conservation law will be valid inside each block, and the �ux term
in the conservation law will transfer enthalpy between the layers. In this chapter
we explain why we divide the blocks into layers and how the local conservation
law models an enthalpy �ux between the layers. We then see how a reservoir scale
conservation law for enthalpy leads to three di�erent �ux expressions, one for the
di�usive �ux, one for the advective �ux and one for the heat exchange �ux. The
heat exchange �ux is based on the local conservation law. We will go through how

17
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the expressions for these �uxes are, and how they transfer enthalpy. We will also
discuss the initial and boundary conditions that will be used. The model created
in this chapter will make the foundations for the numerical experiments in the
next chapter, where we see the e�ect of di�erent numerical choices.

3.1 Fine-scale model

As mentioned, the model consists of blocks and water �lled fractures between the
blocks. In the �ne-scale model we will model one block and the fractures near it.
Enthalpy is exchanged between the block layers and between the water and the
utmost block layer. The blocks in our model are incompressible, homogenous and
isotropic.

3.1.1 Blocks and fractures

The blocks can be of di�erent sizes and structures. If a block is small, all of it
will be near a fracture, and the model will reach equilibrium fast through a large
enthalpy transfer. In a larger block the enthalpy will have to go through rock for
some distance before it reaches the water phase. To model this we divide each
block into di�erent layers, as illustrated in �gure 3.1. Each layer interacts with
the two closest layers, there is a enthalpy transfer between them, and each layer is
de�ned as the domain Ωi.

The �rst block layer will interact with the water phase and the block layer
inside itself. The last layer will only interact with the layer outside itself. This
idea is inspired by the articles [19] and [20]. The longer the distance between a
block layer and the water are, the further the enthalpy has to be transferred to
reach the water phase. This will give a more realistic model than if we only had
one layer in each block. If we only use one layer, all of the block would interact
with the water independently of how far it is away from it. We see the reservoir
as �lled with hexagon shaped blocks, like the block in �gure 3.1. In our model
we choose to have all the blocks shaped as hexagons. This is mainly done for
simplicity, but it also has some root in nature. There are some fracture systems
that create hexagons in nature, for example in the Death Valley in California,
USA, as seen in �gure 3.2.
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Figure 3.1: A hexagon shaped block, its block layers and the distances between
the layers, ri and ri+1.

Figure 3.2: The picture is taken from [17], and shows how some fracture systems
in nature are hexagon shaped. The picture is from Death Valley, USA.
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3.1.2 Local conservation law

Recall from section 2.3 in the reservoir mechanics chapter that we use the same
proportionality constant in both water and in the blocks, when enthalpy as a
concept is de�ned in our thesis. To model the enthalpy transfer in the �ne-scale
model, we need to establish a local conservation law. Such a law for the enthalpy
in a block and the fractures near it is de�ned as:

1

V
[
d

dt

∫
Ωi

h dx+

∫
∂Ωi−1

n· JdS +

∫
∂Ωi

n· JdS] = q , (3.1)

where Ωi is the volume of layer i, ∂Ωi is the surface between layer i and i + 1, n
is the normal vector at the boundary in the direction of the �ux, V is the volume
that we model, J is the �ux vector, and q is the sink/sources inside V .

To establish a local conservation law in the �ne-scale model, we need to �nd
approximations to the integrands in equation (3.1). To approximate the integrand
in the surface integrals (the enthalpy �ux), an approximation to the enthalpy
gradient over the surface is needed. The distance between two block layers, ri is
the distance between layer i and i+ 1, de�ned as in �gure 3.1. If ri is the same in
all layers we will have

ri ∝
1

k
, (3.2)

where k is the number of layers we have. How thick the layers are and how many
layers there are, together decides the distance the enthalpy has to be transferred
to reach the water.

We approximate the enthalpy gradient between two layers with

n·Oh|Ωi ≈
hi+1 − hi

ri
, (3.3)

where Oh is the gradient of the enthalpy, Ωi is the surface between layer i and
i + 1, hi is the enthalpy of layer i, and n is the normal vector of the enthalpy
transportation over the surface Ωi.

The integrand in the surface integral is therefore approximated with

n· J
∣∣
∂Ωi

= n (−κOh) |∂Ωi ≈ κhm
hi+1 − hi

ri
, (3.4)

where κhm is the weighted harmonic mean of the thermal conductivity in the layers
i and i+ 1. Therefore the last surface integral in equation (3.1) becomes∫

∂Ωi

n· JdS ≈ −κhm
hi+1 − hi

ri
· |∂Ωi| , (3.5)
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where |∂Ωi| is the area of the surface ∂Ω. The �rst integral in (3.1) becomes

1

V

d

dt

∫
Ωi

h dx =
1

|Ωi|
Ωi
dhi
dt

=
dhi
dt

, (3.6)

where hi is the average of the enthalpy in layer i, |Ωi| is the volume of block layer
Ωi, the volume that is modeled is V = Σi|Ωi|, and φi is the volume density of layer
i.

Each block layer will have a di�erent thermal conductivity, κi, which is de�ned
as the mean of the thermal conductivity in the layer. We are using the harmonic
mean of the thermal conductivities κi and κi+1 in the equations (3.4) and (3.5).
The weighted harmonic mean of the thermal conductivities are de�ned as

κhm =
ri + ri+1

ri
κi

+
ri+1

κi+1

. (3.7)

In equation (3.5), the area of the surface between block layer i and i+1 is used.
If the surface between two layers, |∂Ωi|, is large, there will be a large enthalpy
interaction between them. In equation (3.6) we use the term |Ωi| for the volume
of block layer Ωi.

Later in the thesis we will use the terms volume density or macro porosity, that
means that each block layer covers a fraction of the volume of the entire block.
This fraction is

ϕi =
|Ωi|

Σj=N
j=0 |Ωj|

. (3.8)

With k layers we will have
Σi=k
i=1ϕi = ϕpm , (3.9)

where ϕpm is the volume of the entire block. The water phase has volume density
ϕ0, and we therefore have

Σi=k
i=0ϕi = 1 . (3.10)

We now have simple expressions for the the integrals in the local conservation
law (3.1), that can be used to model the enthalpy transfer locally. The next step
is to establish a model for the reservoir scale.
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3.2 Reservoir scale model

A reservoir scale model, is a global model for the whole reservoir. The reservoir is
divided into REVs. We make a model that is valid from the REV size and up.

3.2.1 Reservoir scale conservation law

In model a reservoir scale conservation law for enthalpy,

d

dt

∫
Ω

h dx+

∫
∂Ω

n· J dS = q . (3.11)

The di�erence from the local conservation law is that the enthalpy now is conserved
for each REV. In the reservoir scale we model the �ux between the di�erent blocks,
but there will in addition be a �ux between the di�erent layers in the blocks. The
reservoir scale �ux between the layers, which we call the heat exchange �ux, will
be modeled much in the same way as in the �ne scale model. The �ux between the
di�erent blocks will consist of two di�erent �uxes, a di�usive �ux and a advective
�ux. The �ux J consist of the three �uxes,

J = Jdiff + Jadv + Jexch , (3.12)

where Jdiff is the di�usive �ux, Jadv is the advective �ux, and Jexch is the heat
exchange �ux.

The di�usive �ux takes place in both the �uid and the blocks. The advective
�ux takes place only in the water which is �owing in the fractured parts of the
reservoir. There will also be a �ux locally inside each block and locally in the
water phase, that is similar to the di�usive �ux between the blocks. Expressions
for the three di�erent �uxes are needed to model it.

3.2.2 Flux expressions

The expressions for the global enthalpy �uxes are based upon the theory from the
reservoir mechanics chapter.

The di�usive �ux

In both the blocks and in the water there will be a di�usive �ux given by heat
conduction. From reservoir mechanics theory we know that the heat conduction
depends on the thermal conductivity and the gradient of the temperature. There-
fore the di�usive �ux will be

Jdiff = −O(κT (h)) ,
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where κ is the thermal conductivity, T is the temperature and h is the enthalpy
as before. Since we in our model sees enthalpy and temperature as proportional
quantities, with the same proportionally constant for all materials, the di�usive
�ux can also be written

Jdiff = −O(κph) = −O(κmodh) ,

where p is the proportional constant between enthalpy and temperature. This
constant is part of κmod. Later in this thesis we will for simplicity use κ instead of
κmod.

In the special case where the di�usive �ux is the only term that is transferring
enthalpy in the reservoir, this leads us to the heat equation,

φi
∂hi
∂t
− O· (κOhi) = 0 . (3.13)

The larger κ is, the larger the enthalpy transfer driven by the di�usive �ux will
be.

The heat equation is an important Partial Di�erential Equation (PDE). It has
been and is object for intensive research and modeling in many di�erent areas.
The heat equation describes the density of some quantity such as heat, chemical
concentration, etc, and how this density evolves in time [14]. In a geothermal
perspective the heat equation spreads heat out from warm regions to colder regions
in the reservoir. If the heat equation is the only equation that is transferring the
enthalpy in the model, with no enthalpy added or subtracted, equilibrium will
eventually be established. The di�usive term will model the di�usive �ux between
the di�erent blocks in our model, and similar between the di�erent fractures with
water. It will transfer enthalpy from one layer in one block to the corresponding
layer in other blocks.

The advective �ux

The water phase is moving through the fractures between the blocks. This creates
an advective enthalpy �ux, that is of the form

Jadv = (vh) ,

where v is the �ow �eld. The �ow �eld specify the direction and speed of the water
movement in the reservoir. In the special case where there only is an advective
�ux, this leads to a transport equation

φ0
∂h0

∂t
+ O· (vh0) = 0 . (3.14)
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The blocks will in general not move, and if they do our reference system moves
with it. We have chosen the blocks to be incompressible. Therefore the advection
term only contributes in the modeling equation for the water. The higher value of
v, the faster the water will move, and as a consequence also the enthalpy.

A transport equation as (3.14) is fundamentally di�erent from the heat equa-
tion. The enthalpy is simply carried along, or advected, with the water �ow [15],
while the heat equation is driven by molecular di�usion.

The �ow �eld is normally determined by a pressure equation, based on Darcy's
law (2.6) and mass conservation. As we do not focus on that here, we have instead
used an analytical �ow �eld. As we later will have a production well in the middle
of the reservoir, we have chosen a radial �ow �eld, ensuring water �ow to the well.
Water will be taken out in the production well, the pressure will sink near the well
and water will �ow to it.

The heat exchange �ux

The heat exchange �ux that works globally, transfers enthalpy from one block
layer to another. We have called it the heat exchange �ux as it is heat that is
transferred, but we model it with a enthalpy �ux. In the �ne-scale model, each
block is modeled separately. A REV potentially contains many blocks, and we
model all these blocks as one in the reservoir scale model. A block layer in the
REV, covers the same layer in all of these blocks.

In the special case where the heat exchange �ux is the only �ux in the reservoir,
our model equation will be of the form

φi
∂hi
∂t

= ci−1(hi−1 − hi) + ci(hi+1 − hi) , (3.15)

where i is the index for the layer, ci is the heat exchange coe�cient for the heat
exchange between block layer i and i + 1, c0 is the heat exchange coe�cient for
the exchange between the water phase and the utmost block layer, and h0 is the
enthalpy of the water phase. Calculating the heat exchange coe�cients is done
with basis upon the �ne-scale model. The local heat exchange �ux only has to be
modi�ed slightly to express a global heat exchange �ux. From the equations (3.5)
and (3.15) we get the coe�cients

ci = − 1

V
kκhm|∂Ωi| , (3.16)

where k is the sum of the number of blocks inside |Ωi| and |Ωi+1|, |∂Ωi| is the
surface between layer i and i+ 1 and V is the volume we model. If there are small
sand grains in the reservoir, k will be larger and the heat exchange will be larger
than if there are large blocks.
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The heat exchange �ux has many similarities with the di�usive �ux. When
there are many block layers in the model, this term will be of the same form as
the di�usive �ux term, with a derivative on the right hand side of equation (3.15).
The di�erence from the di�usive �ux term is that instead of transferring enthalpy
between the di�erent blocks, it will transfer heat inside each block.

3.2.3 Combining the �ux terms to model equations

To obtain a model for the enthalpy in a reservoir, the �ux terms have to be
combined to model equations. All the �uxes mentioned work in the water phase.
To model the �ux of the enthalpy in the water we combine the �ux terms into one
model equation,

φ0
∂h0

∂t
− O· (κ0Oh0) + O· (vh0) = c0(h1 − h0)− q , (3.17)

where q is the sinks and sources in the reservoir. Note on the right hand side of
equation (3.17), that the enthalpy of the water, h0, only will interact with the
enthalpy of the utmost block layer, h1, as mentioned earlier.

As the blocks stays in the same location, there will be no transport term in the
combined equations for the block layers. We therefore have the following equation
modeling the enthalpy in the block layers,

φi
∂hi
∂t
− O· (κiOhi) = ci−1(hi−1 − hi) + ci(hi+1 − hi)− q , (3.18)

where i ≥ 1.

Sinks and sources

In our model we only have sinks and sources at the boundaries, a sink in the
production wells and sources on the surrounding boundary. The same amount of
enthalpy is taken out at the production wells for the whole production time. How
we model this sink is described in Chapter 4.

3.3 Initial and boundary conditions

When there are water and blocks in a reservoir it can be assumed that the temper-
ature will reach equilibrium after some time. The temperature will be the same in
the blocks and in the water. As a consequence the enthalpy (in the way we have
de�ned enthalpy) will also be the same in the entire reservoir at the start of our
modeling. Then the enthalpy is

h = C ,
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where C is a set constant.
Our model reservoir has two boundaries, one surrounding the reservoir, and one

in the production wells. In the production wells water, and subsequently enthalpy,
is taken out. When water and enthalpy is subtracted in the wells, there will be
a transfer of heat and enthalpy from the rest of the reservoir to the wells, due to
temperature and pressure di�erences.

In real life there is no boundary surrounding the reservoir, as the model reser-
voir will be a part of a much larger reservoir. In fact the whole of the earth's
crust is a geothermal reservoir. Therefore there will be transferred enthalpy into
the reservoir that is modeled. To model this e�ect we need boundary conditions.
There are several to choose from, and some examples are Dirichlet, Neumann or
mixed boundary conditions.

Dirichlet, Neumann, Mixed and Robin boundary conditions

With Dirichlet boundary conditions, the value of enthalpy at the boundary is kept
constant. Using this condition on our boundary surrounding the reservoir yields

hsb = C , (3.19)

where C is a given constant. No matter how much enthalpy the wells are producing,
the enthalpy value on the boundary stays the same. If enthalpy is taken out in the
wells, the temperature on the boundary will stay the same no matter how much
enthalpy that is taken out.

If the model reservoir is part of a much larger reservoir, this makes physical
sense. When this is the case there will be so much heat surrounding the reservoir,
that the �boundary� almost would be constant also in real life.

The assumption that the enthalpy at the boundary will stay constant is not
entirely true, it will get colder. Anyhow, this is a good assumption to make as it
would stay almost constant, when there is a large reservoir surrounding the model
reservoir.

With a Neumann boundary condition, the normal derivative of the enthalpy is
kept constant at the boundary,

∂

∂n
hsb(x) = C , (3.20)

where ∂
∂n

is the normal derivative and C is a set constant. As a consequence of
this boundary condition, the boundary values are dependent on the rest of the
reservoir.

Mixed boundary conditions means using the Dirichlet boundary condition on
one boundary and Neumann boundary conditions on another boundary. This gives
advantages when the boundaries have di�erent properties.
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The Robin boundary condition is seen as a compromise between the Dirichlet
and the Neumann boundary conditions. The Robin boundary condition will have
the form

−κ ∂
∂x
h(x) + vx(x)h(x) = C , (3.21)

where κ is the di�usion constant, and v is the advection velocity. With Robin
boundary condition, boundary conditions on both the di�usion term and the ad-
vection term have to be implemented.

We have chosen Dirichlet boundary conditions for the boundary surrounding
the model reservoir, as they are simple to implement and make physical sense in
the setup we have chosen. The surrounding boundary will have the same enthalpy
as the reservoir had initially, for as long as the model runs.

The wells also need boundary conditions. There is a sink/source in each well.
How we choose to model this is described in the next chapter.
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Chapter 4

Numerical model

In this chapter, we will use our mathematical model from the previous chapter to
create a corresponding numerical model. First we will explain why we have chosen
a two dimensional representation, then we will describe the grid that we use in
our model. We discretize the �ux terms separately, with both explicit and implicit
time discretizing for each term. To discretize the di�usion term we use a �nite
element method (FEM). A �nite di�erence method (FDM) is used to resolve the
transport term in our model equations. Therefore the mentioned methods will be
described brie�y in this chapter. A description of how we implement the boundary
conditions we established in Chapter 3 will also be given.

We have created one solver that solves all equation terms with implicit time
discretization, and three that solve one term with implicit discretization. First we
will describe how the model equations in the di�erent solvers will be.

A term in a solver can either have implicit or explicit time discretization. That
is, the term can be calculated either at the start or at the end of a time step.
All the terms that are solved at the end of the time step, must be solved in the
same system. We use a matrix system to solve the implicit terms. The terms that
are solved explicitly are solved at the start of the time step, using the previous
values when they are calculated. Therefore they can be solved one at a time, in
less complex systems. When only one term is transferring enthalpy in the model,
the equations turn into either a heat equation, a heat transport equation or a heat
exchange equation.

There is a CFL condition for each term that is solved explicitly. This condition
gives a upper limit for the time step used in the explicit solvers, and we will state
the conditions for the di�erent solvers we have developed. Other numerical choices
we have made, such as using no di�usion term in the inner block layers and using
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a divergence free velocity �eld, will also be mentioned.

4.1 Two dimensional representation

We are modeling a three dimensional (3D) reservoir, but for simplicity we have
chosen to model the reservoir using a two dimensional (2D) representation. We
assume that the fractures are vertical, and therefore it makes sense to see the
reservoir from above. In our model we use the averages of the variables in the
vertical direction. The results from our 2D representation can be extended to a
3D representation after it is calculated. For a reservoir that is homogenous and
isotropic, a 2D representation that we later extend to a 3D representation will give
the same results as if we choose to have a 3D representation to begin with. If the
reservoir is inhomogeneous and anisotropic, using such a 2D representation will
give an approximate solution, but it can still be a good estimation. Using a 2D
representation also give us many advantages numerically. There will be less grid
points, thus reducing the size of our numerical problem, and the computations will
go much faster.

4.2 Grid

In our model we use a uniform triangular grid, with no local re�nements. When
our grid has dimension N , we have N internal grid points plus two on the boundary
in the x-direction and the same in the y-direction, as in �gure 4.1. Therefore there
will be (N + 2)2 grid points. If we had used a 3D representation there would have
been (N + 2)3 grid points, and the computational cost would have been much
higher. When N = 97 is used in a grid, the grid will have almost 10,000 grid
points.

Using a triangular grid makes it easier to use a �nite element method for spatial
discretization. We will use a �nite element method for spatial discretization in the
di�usion term in the model equations. A triangular grid will also make it easier
to develop a irregular grid, than with square grid cells. An irregular grid will in
most cases give a better accuracy than a regular grid, as there can be more grid
points in certain areas where it is needed, but the back draw is that it is harder
to implement.

4.3 Numerical implementation of the block layers

As we have seen in Chapter 3, we have divided the blocks of rock into block layers,
and chosen the blocks to be shaped like hexagonal cylinders. We can model all the
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Figure 4.1: A triangular grid with dimension N=1 and N=3.

blocks inside each REV with one grid point, but there can also be more than one
grid point inside each REV. We will establish a numerical model that can model
a whole REV with only one grid point.

In �gure 4.2 we see a REV with four blocks from above. The rest of the REV
will be calculated from the values in the grid points. We need a grid point in each
layer, and the grid points in each layer will have the same x and y location in our
model.

4.4 Finite element methods

To discretize the di�usion term in our model equations in space, we use a �nite el-
ement method (FEM). A FEM approximates PDEs, using a linear approximation.
This description of FEM's is based upon [11] and [12].

Boundary value problem in the variational formulation

A standard problem to be solved by a FEM is a boundary value problem. Such a
problem has a given value on the boundary ∂Ω, and then solves a function de�ned
on the rest of the domain Ω. A FEM discretizes in space using nodes or grid
points where the solution of the equation is calculated, and then the solution on
the triangles or squares between the nodes are calculated from these node values.
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Figure 4.2: A REV with blocks of rock seen from above, with a grid point in the
middle.

Figure 4.3: A block seen from the side, with grid points in the di�erent block
layers and in the water.
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For a one dimensional problem, it will be phrased like this: Let V be the space
of all functions v on [a, b] that have piecewise continuous �rst derivative. We have
the inner product

(u, v) =

∫ b

a

u(x)v(x)dx

and norm

||u||V = (u, u)
1
2 =

(∫ b

a

u(x)2dx

) 1
2

.

The variational formulation of the problem is then posed. Find

u ∈ V

such that

a(u, v) = L(v) ∀ v ∈ V,

where L(v) is linear to v and a(u, v) is linear both to u and v

A general problem solved by a FEM

The typical FEM problem is solved in this sequence:

1. Find u ∈ V such that a(u, v) = L(v) ∀ v ∈ V .

2. Pick Vh such that it is a �nite dimensional subspace of V .

3. De�ne a discrete problem, that is �nd uh ∈ Vh such that a(uh, V ) =
L(v) ∀ v in Vh.

When de�ning a discrete problem, a grid has to be de�ned. The h-index indicates
that the problem is discretized with length h between each grid point, such that
uh is discrete function with distance h between each value. In this thesis we are
working on a regular triangular grid, as mentioned earlier in this chapter. The
number of nodes inside each grid cell has to be de�ned. We have chosen to have
three nodes at each triangle, one in each corner. A FEM is built around basis
functions, and we need to de�ne one basis function for each node. The basis
functions, φi

3
i=1, de�ne a basis for Vh.



34 CHAPTER 4. NUMERICAL MODEL

Basis functions

Instead of creating separate basis functions for every triangle it is possible to trans-
form it to a elementary triangle, with nodes in (0,0), (1,0) and (0,1). This simpli�es
the calculations of the contribution from every triangle. The basis functions in this
elementary triangle are

φ1 = 1− x− y
φ2 = x

φ3 = y .

The value of the basis functions will be φi = 1, when we are in the ith corner,
and φi = 0 when we are in one of the other corners. We then transform it back
to the original triangle in the grid. We use these to de�ne a(u, v) and L(v). Let
uh = ΣN

i=1ζiφi and vh = ΣN
j=1ηjφj, where ζi and ηj are weight functions. We get

a(uh, vh) = a(Σiζiφi,Σjηjφj) = ΣiΣjζia(φj, φi)ηj = xTKy ,

where ΣiΣja(φj, φi) = K, uh = x, and vh = y. K will be a n·n matrix, while the
vectors x and y will have n elements. We also get

L(vh) = L(Σjηj) = ΣjηjL(φj) = bTy ,

where L(vh) = bTy. The vectors y and bT will also have n elements. Then we will
have

a(u, v) = L(v)⇔ xTKy = bTy ⇔ Kx = b ,

and we have the possibility to solve the discrete problem as a linear system. The
linear system is solved by a numerical equation solver.

4.4.1 Variational form for the heat equation

We start out with the heat equation,

O· (kOu) = C, u ∈ Ω

u = C, u ∈ ∂Ω ,

with k constant. We then use a test function v ∈ C0, which gives us∫
Ω

[O· (kOu)− C]vdx =∫
Ω
O· (kO(u))vdx−

∫
Ω
Cvdx
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� Green's

∫
Ω
kOuOvdx−

∫
∂Ω

∂u

∂n
vdS −

∫
Ω
Cvdx =∫

Ω
kOuOvdx− C

∫
Ω
vdx ,

as v is zero on the boundary ∂Ω.
We choose

a(u, v) =

∫
Ω

kOuOvdx (4.1)

L(v) = C

∫
Ω

vdx , (4.2)

which gives us a discrete problem that leads to a linear system, which can be solved
numerically.

4.5 Finite di�erence methods

The integral �nite di�erence methods (FDM), are numerical methods for approxi-
mating solutions to di�erential equations (DE). It is used both to approximate so-
lutions in ordinary di�erential equations (ODEs) and partial di�erential equations
(PDEs). A FDM uses �nite di�erence equations, to approximate the derivatives.
A �nite di�erence equation is of the form

∆f(x) = f(x+ b)− f(x− b) .

Finite di�erence equations are divided into forward, backward and central di�er-
ences. In our thesis only forward and backward di�erence equations is used. A
forward di�erence is of the form

∆hf(x) = f(x+ h)− f(x) ,

whereas a backward di�erence has the form

∆hf(x) = f(x)− f(x− h) .

We use a FDM to resolve the transport equation, equation (3.14). We use an
upstream FDM, which switches between using forward and backward di�erence,
depending on the direction of the �ow �eld. When calculating f(x) it will use
f(x+ h) if the direction of the �ow �eld at x is in the negative x-direction. If the
�ow �eld is in the positive x-direction, f(x − h) will be used. This is called the
upstream principle, and is often used when modeling �ow in porous media.
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4.6 Initial and boundary conditions

In Chapter 3 we choose the initial conditions for the enthalpy to be equal every-
where in the reservoir, starting with the same enthalpy in all grid points. We
have

hi = C ∀ i ≤ (N + 2)2 ,

where C is a set constant.
We saw in the previous chapter that the surrounding boundary of the reservoir

was constant. As we use a FEM to discretize the di�usive term, the boundary
condition will be on the boundary. We have chosen

hsb = C ,

where C is the same constant as in the initial condition and the sb index means
all the grid points on the boundary surrounding the reservoir. We also stated in
Section 3.3 that there would be taken out enthalpy in the producing well, at the
same rate for the whole of the production time. To model this numerically, we
have chosen to take out the same amount of enthalpy in each time step. This is
realistic, as it is likely that there is a requirement of a set amount of energy to be
produced for the owner of the producing well. To model a production well, we use
a Dirac delta distribution. This will only make sense when we divide the reservoir
up into REV s and integrate over all of them. We will then have

q =

∫
sδ(x− x0) = s , (4.3)

where x0 is the location of the production well, and s is a constant. The higher
the constant s, the higher the enthalpy produced in the well at each time step, and
the colder the reservoir gets. How much a well in a geothermal reservoir in nature
can produce, are very much dependent on the �ow �eld (that again is dependent
on the pressure) in the reservoir. It is common to model �nd this �ow �eld with a
pressure solver. As this is not the part of the simulations that we are focusing on,
we have chosen to neglect this dependency. Therefore the enthalpy that is taken
out is independent of the �ow �eld.

4.7 Numerical solution of the model equations

In Chapter 3 we saw that our mathematical model is based on conservation of
enthalpy. Our model equations are based upon a local and a reservoir scale con-
servation law, equations (3.1) and (3.11). We still use enthalpy as de�ned in Sec-
tion 2.3 in the reservoir mechanics chapter, with a similar proportionality constant
between water and enthalpy, in both the water and in the block layers.
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We have a numerical solver that solves all the �ux terms with explicit time
discretization, and three solvers that solve one �ux term with explicit time dis-
cretization. When we use a discrete partial derivative of time, the reservoir scale
conservation law in the water phase takes the form

φ0
hn+1 − hn

∆t
− O· (κ0Oh

α
0 ) + O· (vhβ0 ) = c0(hγ1 − h

γ
0)− q , (4.4)

where α, β, γ = n, n + 1 depending on the terms being solved with implicit or
explicit time discretization. Recall that ϕ0 is a volume density, a fraction between
0 and 1, that express how much of the total volume that are in this layer and that
v is the �ow velocity of the water phase. q is the sinks/sources that are inside the
volume we model.

In the block layers the global conservation law will take the form

φi
hn+1 − hn

∆t
− O· (κiOhαi ) = ci−1(hγi−1 − h

γ
i ) + ci(h

γ
i+1 − h

γ
i )− q , (4.5)

with α, γ = n, n+ 1.

4.7.1 All terms implicit

If every term is solved with implicit time discretization, our combined equation for
the water phase is

[ϕ0I−∆tD+ ∆t c0I− 2
∆t

∆x
vI]hn+1

i=0,k

−∆t c0h
n+1
i=1,k +

∆t

∆x
v[hn+1

i=0,k±1 + hn+1
i=0,k±(N+2)] =

ϕ0h
n
i=0,k ,

where k is the index for the grid point, i is the index for the layer, n is the index for
the time step and ∆t is the time step. We use a approximation matrix D instead
of the di�usion term, and I is the identity matrix. We have altered all terms with
time step n+ 1 on the left hand side of the equation, and with n on the right hand
side. For the block layers, our combined equation is

[ϕiI−∆tD+ ∆t ci−1I+ ∆t ciI]h
n+1
i,k

−∆t ci−1h
n+1
i−1,k −∆t cih

n+1
i+1,k =

ϕih
n
i,k ,

where i ≥ 1.
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4.7.2 Heat exchange term explicit

If we solve the heat exchange term explicitly, we get this equation for the block
layers

[ϕiI−∆tD]hn+1
i,k =

[ϕi −∆t ci−1 −∆t ci]h
n
i,k + ∆t ci−1h

n
i−1,k + ∆t cih

n
i+1,k ,

and correspondingly for the water layer.

4.7.3 Di�usion term explicit

If we solve the di�usion term explicitly, we get this equation for the block layers

[ϕiI+ ∆t ci−1I+ ∆t ciI]h
n+1
i,k

−∆t ci−1h
n+1
i−1,k −∆t cih

n+1
i+1,k =

[ϕi −∆tD]hni,k ,

and correspondingly for the water layer.

4.7.4 Transport term explicit

If we solve the transport term explicitly, the equation for the water phase is

[ϕ0I−∆tD+ ∆t c0I]h
n+1
i=0,k

−∆t c0h
n+1
i=1,k =

[ϕ0 + 2 ∆t
∆x
vI]hni=0,k − ∆t

∆x
v[hni=0,k±1 + hni=0,k±(N+2)]

where v is the �ow velocity of the water phase. For the block layers we get the
same equations as with all terms implicit.

4.7.5 Special cases with only one �ux term

When only on �ux term is transferring enthalpy in the model, we end up with
three equations. Which equation we end up with is dependent on which �ux term.

Heat equation

In the special case that only the di�usion �ux is transferring enthalpy in the model,
we end up with the heat equation,

φi
hn+1
i − hni

∆t
− O· (κiOhα) = 0 . (4.6)
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Using a FEM, we use an approximation matrix D instead of the di�usion term.
We then get

ϕi
hn+1
i,k − hni,k

∆t
−Dhαi,k = 0 , (4.7)

with α either equal to n+ 1 or n.
If we solve the heat equation with implicit time discretization in the di�usion

term, equation (4.7) becomes

ϕiIh
n+1
k −∆tDhn+1

k = ϕih
n
k ,

where we have multiplied throughout with ∆t, and I is the identity matrix. Adding
the matrices together we get

[ϕiI−∆tD]hn+1
k = ϕih

n
k . (4.8)

We can solve the whole equation numerically, only using one matrix. If we solve
the heat equation with explicit time discretization in the di�usion term, equation
(4.7) we get

ϕih
n+1
k = [ϕiI+ ∆tD]hnk . (4.9)

Heat exchange equation

In the special case, where only the heat exchange �ux is transferring enthalpy in
our model, we get a heat exchange equation. If the heat exchange equation (3.15),
is solved with implicit time discretization in the heat exchange term we get

ϕi
hn+1
i,k − hni,k

∆t
= ci−1(hn+1

i−1,k − h
n+1
i,k ) + ci(h

n+1
i+1,k − h

n+1
i,k ) . (4.10)

Multiplying by ∆t and gathering the terms with time step n+ 1 on the left hand
side, and the term with time step n on the right hand side we get

[ϕi + ∆t ci−1 + ∆t ci]h
n+1
i,k −∆t ci−1h

n+1
i−1,k −∆t cih

n+1
i+1,k = ϕih

n
i,k . (4.11)

Equation (4.11) is solved using a block matrix system, as seen in �gure 4.4.
Having hi−1, hi, and hi+1 in the upper, middle and �nal third of the enthalpy
vectors, will ensure that the matrix system calculate the enthalpy transfer in from
the layers i−1 and i+ 1 to layer i implicitly. We need to place weighted diagonals
on both sides of Ai and weights on the diagonal in Ai to calculate the enthalpy
transfers. The weights on the diagonals will be decided by the coe�cients ±∆t ck,
where k = i, i− 1 or i+ 1, which comes from equation (4.11).

If the equation is solved with explicit time discretization in the heat exchange
term, we get

ϕih
n+1
i,k = ∆t[ci−1(hni−1,k) + cih

n
i+1,k] + [ϕi − 2∆tci−1]hni,k . (4.12)
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Figure 4.4: A block matrix, used to solve the heat exchange equation.

Transport equation

In the special case where only the advection term is transferring enthalpy in our
solver we get a heat transport equation. When solving the heat transport equation
numerically, we use a upstream FDM. The equation has the form

∂h

∂t
− O· (vh) = 0 ,

where we can move the �ow �eld vector v, outside the divergence sign, since a
divergence free �ow �eld is used. This gives us

hn+1 −∆tv[
∂hβx
∂x

+
∂hβy
∂y

] = hn , (4.13)

with no z direction, as we have a 2D numerical model. We have either β = n or
β = n+ 1, dependent on the time discretization in the transport term.

Using �nite di�erences for the partial derivatives in equation (4.13), gives us

ϕ0h
n+1
i,k −∆t v[

hβi,k − hi,k±1

∆x

β

+
hi,kβ − hβi,k±(N+2)

∆y
] = ϕ0hi,kn .

But ∆x = ∆y, as we have a uniform grid, and we get

ϕ0h
n+1
k − ∆t

∆x
v[2hβk − h

β
k±1 − h

β
k±(N+2)] = ϕ0h

n
k .
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Solving the equation with implicit time discretization in the transport term gets
us

[ϕ0 − 2
∆t

∆x
v]hn+1

k +
∆t

∆x
v[hn+1

k±1 + hn+1
k±(N+2)] = ϕ0h

n
k ,

whereas explicit time discretization gives us

ϕ0h
n+1
k = −∆t

∆x
v[hnk±1 + hnk±(N+2)] + [ϕ0 + 2

∆t

∆x
v]hnk .

Flow �eld

We have chosen a radial �ow �eld, where the water �ow transports the enthalpy
with the water �ow to the production well. When a production well is drilled into
a geothermal reservoir in nature, some water will be taken out and the pressure
will sink near the well. Then the rest of the water will �ow to the well, and the
hot water will transport enthalpy. This is what we approximate with a radial �ow
�eld. The closer a grid point are to the well, the higher is the velocity in the �ow
�eld. The �ow velocity is inverse proportional to the distance from the well, and
we have

vk ∝
1

|k − p|
,

where k is the index of a grid point in the layer, p is the index of the grid point
where the production well lies, and |k − p| is the distance between those two grid
points. It is common to �nd this �ow �eld with a pressure solver based on Darcy's
equation and mass conservation, but we have chosen to have a analytical �ow
�eld instead as the focus is on the numerical methods and discretization of the
equations.

4.7.6 Courant�Friedrichs�Lewy condition

The Courant�Friedrichs�Lewy condition, from now on referred to as the CFL
condition, is a necessary stability condition for convergence while solving partial
di�erential equations with explicit time discretization, as we have done above. A
consequence of solving it explicitly, is that the time step must be less than a certain
time to get a stable solution. When solving the equations, there will be di�erent
CFL conditions, depending on which of the terms that are solved explicitly. In
table 4.1, the CFL conditions when solving one of our equation terms explicitly is
listed.



42 CHAPTER 4. NUMERICAL MODEL

Solved explicitly CFL condition

Di�usion term
max(κi)∆t

φi(∆x)2
< Cdiff , 0 ≤ i ≤ k

Heat exchange term
max(ci + ci+1)∆t

φi
< Cexch, 0 ≤ i < k

Transport term
max(v)∆t

φ0

< Ctrans

Table 4.1: The CFL conditions if a term is solved explicitly.In the table the index
k stands for the number of layers, and i stands for the ith layer. The volume
density of layer i is φi, the di�usion constant in layer i is κi, and v is the �ow
velocity of the water phase. The constants Cexch, Cdiff , and Ctrans depends on how
the terms are solved numerically.

No di�usion in the inner block layers

In our local conservation law for enthalpy there is no enthalpy transfer between
the inner block layers and the water phase in the fractures between the blocks.
The enthalpy �rst has to be transferred to the utmost layer, and then to the
water. The di�usion �ux is similar to the heat exchange �ux. The di�erence is
that the di�usion �ux transfer enthalpy between the di�erent blocks, while the
heat exchange �ux transfer enthalpy between the di�erent layers. It is a logical
assumption that the enthalpy transfer driven by the di�usion �ux, needs to go
through the utmost block layer before it is transferred to the other blocks. We
have therefore chosen to have no di�usion term in the inner block layers in our
simulations. There will still be a heat exchange �ux between these layers.
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Results

In this chapter, we will present our simulation results with the di�erent solution
methods. First we set the coe�cients that we use in the simulations, and the
CFL conditions that are set as a consequence of these. The CFL conditions give
a restriction on the time step when one equation term is solved with explicit time
discretization. When we do this, a term is solved at the start of each time step.
Using implicit discretization, a term is solved at the end of each time step. When
resolving the equations with explicit discretization, operator splitting is used.

The term that is solved explicitly is solved on its own, not in the same matrix
as the rest of the equation, and the memory use and complexity of the system is
reduced. In the simulations we use a grid that has closer grid points inside each
block layer than the grid points in the di�erent layers are. This will give a stricter
CFL condition in the di�usion term than in the heat exchange term, and it is
reasonable to try to solve the heat exchange term explicitly. The �ow �eld we
use, does not give a strict CFL condition in the transport term, and therefore it
is reasonable to solve the transport term explicitly as well. We develop a general
adaptive strategy, which decides which terms that should be solved explicitly under
di�erent CFL conditions.

Next, an evaluation of our results with di�erent solvers is conducted. To evalu-
ate the results we will use norms and plots with the relative errors of the enthalpy
in the simulation results. We will show that our di�erent methods converge, and
that the results from simulations with the same solver using di�erent amount of
grid points also converge. We compare the results with the the L1 norm. To have
something to compare with, we use the heat explicit solver with many grid points
as a reference solution. In addition to comparing the norms of the results and the
plots with relative error of the enthalpy, we also compare the simulation time of

43
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the solvers.
The objective of this chapter is to show that using the adaptive strategy, and

thus run some of the terms explicitly, will be a good choice. When we follow the
strategy, the heat exchange and the transport terms should be solved explicitly.
We compare the solution from the all terms implicit solver, with the solution from
solvers that does one term explicitly.

5.1 Coe�cients and the subsequent CFL condi-

tions

To model geothermal heat extraction, we need parameters and coe�cients that
re�ects a speci�c depth and rock type. As we focus on the discretization of the
equations, realistic parameters are not the priority in our model.

Coe�cients that are used in the simulations has to be set to a certain value,
such that the results from the di�erent numerical solvers can be compared. In
table 5.1 the coe�cients that are used in the simulations are listed. In table 5.2,
we see how large the coe�cients (ci) in the heat exchange term will be in our
model, when two block layers and di�erent block sizes are used. The coe�cients
in table 5.2 is used to determine the heat exchange �ux Ji from layer i+ 1 to layer
i in equation (3.16). Table 5.3 lists the CFL conditions for the di�erent terms with
the coe�cients chosen as in the table 5.1.

Recall that the enthalpy is de�ned as in section 2.3, with the same proportional
constant between temperature and enthalpy in the water and in the block layers.
With the initial level of enthalpy the same in the water and in the layers, the initial
temperature is also the same. This enthalpy level corresponds to approximately
300�. When deep geothermal reservoirs is modeled this initial temperature will be
below the boiling point for water, because of the pressure at such depths (several
kilometers down).
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Coe�cient Value
Di�usion const. (κ0) water 0.0573
Di�usion const. (κ1) block layer 1 0.1585
Di�usion const. (κ2) block layer 1 0
Enthalpy initially 1.26· 106

Enthalpy taken out each time step in the well
in the water phase 750 ·∆t
Enthalpy taken out each time step in the well
in rock layer 1 2463 ·∆t
Enthalpy taken out each time step in the well
in rock layer 2 2463 ·∆t
Volume density water 0.015
Volume density block layer 1 and 2 0.4925
Number of block layers 2

Table 5.1: Coe�cients used in the simulations.

Block diameter / i Water and Block layer Block layer
block layer 1 1 and 2 2 and 3

Gravel 0.9601· 10−10 0.9822· 10−10 0.2770· 10−10

1 meter 0.3662· 10−6 0.3747· 10−6 0.1057· 10−6

10 meter 0.3662· 10−3 0.3747· 10−3 0.1057· 10−3

100 meter 0.3662 0.3747 0.1057

Table 5.2: The heat exchange coe�cients when the blocks in the reservoir is gravel
with diameter 0.064 m, blocks with diameter 1 meter, 10 meter and 100 meter.
We have used 10 meter in the simulations. There are three block layers in the
table, and the coe�cients determine the enthalpy �ux between the layers. In our
simulations we have only used two block layers.

Solved explicitly CFL condition
Di�usion term 0.0025
Heat exchange term 0.6667
Transport term 0.8

Table 5.3: The time step that is used in the simulations when a term is solved
with explicit time discretization, due to the CFL conditions. The coe�cients in
the table 5.1 is used, and N = 23. (Recall that N is the number of internal nodes
in our grid, as we de�ned in Section 4.2.)
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5.1.1 Physical interpretation of the grid and layers

The solvers gives the user the choice to use as many layers and as many grid points
in each layer as desired. The number of grid points in one grid layer is higher than
the number of layers in our simulations. The physical interpretation of more grid
points inside each layer than number of layers, is that the resolution inside each
layer is higher than the resolution of layers. Because of this it could be argued that
the di�usion term could be solved for each block and each fracture, because there
are enough grid points to do this. If it is not known exactly how the reservoir that
is modeled look, this is impossible. (In most cases it is not known exactly how it
looks.) Therefore we use a statistical approach, where the variables for each layer
are averages. As the gradients near a fracture will be large, there is a need of high
resolution in and near the fractures.

We have chosen to set the volume densities of all the block layers to be the
same, with

ϕ1 = ϕ2 = ... = ϕk. (5.1)

As we have chosen the block layers to have the same volume density, the area they
cover will be equal in our 2D representation. As a consequence of this, the grid
points will lay closer near the surface of the block layers and we see this in �gure
4.3. The surface of a layer will be larger the nearer is is to the water phase. This
make physical sense, as there will be more heat �ow and interaction with the water
phase at the surface of the blocks.

5.2 Adaptive strategy

Our aim is to show that using explicit discretization for some of the �ux terms,
will be a better strategy than using implicit discretization for all the terms. The
main arguments for solving some of the terms explicit are:

� Because of complexity and memory use, there has to be a good reason to
choose implicit discretization for all the equation terms.

� The transport term is the hyperbolic part of our equation. Hyperbolic terms
is often solved explicitly in modeling, although there are scientists that prefer
to solve it implicitly. In this thesis we have used a linear transport term, and
it is trivial to solve the term either explicitly or implicitly. If a non linear
term is used, it will be more complex to solve the term implicitly. To solve it
explicitly will still be trivial. Therefore it is more common to solve the term
with explicit time discretization. If the transport term is solved explicitly,
then it is a good strategy to also solve the terms that have less strict CFL
conditions explicitly. The time step limit due to the CFL conditions for the
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terms in the model equations are Cdiff , Ctrans, and Cexch for the di�usion
term, transport term, and heat exchange term respectively. For example if
Cdiff << Ctrans << Cexch, it will make sense to resolve the heat exchange
explicitly. This will not make the CFL conditions on the time step any
stricter, and the complexity of the system and memory use will be reduced.

� It is a natural next step to implement a domain decomposition (DD) solver.
The strategy behind DD is to divide the layers into di�erent domains, and
solve them in parallel. This would be hard with a implicit discretization,
so if there are no loss of regularity, solving some of the terms with explicit
discretization would make sense.

If the transport term is solved explicitly, our adaptive strategy is to solve the
other terms that have less strict CFL conditions explicitly. The transport term
will as mentioned, more often than not be solved explicitly when the transport
term is non linear. This is also often done when it is linear. The complexity of
the problem, the memory use, and thus the simulation time will go down when we
follow this strategy. The CFL condition will stay the same, and the same time step
can be used. There may also be simulation cases where the condition is stricter for
another term, but it still would be better to solve the term in question explicitly.
The evaluation of the discretization to use in such a case, is the same evaluation
that would have been done if the transport term is solved implicitly.

If the transport term is solved implicitly, our adaptive strategy will also be to
solve the term(s) with CFL condition(s) that are not strict explicitly. In this case
it is not as straight forward as if the transport term is solved explicitly. When the
time step that is used does not break the CFL condition for one term, the strategy
will be to solve the term explicitly. If it would require a slightly smaller time step,
the same holds. When the CFL condition demands a much smaller time step, a
individual evaluation would have to be done.

5.3 Evaluation of results

To evaluate the results, we use norms and relative error. To compare the norms
the results have to be interpolated, such that they have the same amount of grid
points. Here follows a description of the norms that we have used and how we
have interpolated. Then we will see how the di�erent methods converge and we
will compare the results from three of our solvers, the heat exchange explicit solver,
the transport term explicit solver, and the all implicit solver.
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5.3.1 Norms

A norm is a function that gives a positive length from one vector to another, but
norms are de�ned in di�erent ways. Two norms that are commonly used in the
world of mathematics are the L1 and L2 norms. The discrete de�nition of the
norms is:

L1 norm

||x||1 = Σn
i=1|x(i)|, (5.2)

L2 norm

||x||2 = (Σn
i=1[x(i)]2)1/2, (5.3)

where n is the number of elements in the vector [13].
From a physical perspective, the L1-norm should be used when discussing pre-

served quantities, such as enthalpy. The L1-norm tells us exactly how much the
di�erence between the two vectors (that contains a conserved quantity) are. When
discussing quantities that are not preserved, such as speed, it is more natural to
use the L2-norm. Since we are using enthalpy in our model, we use the L1-norm.

5.3.2 Interpolation

To use norms to compare two solutions, the same number of grid points has to
be used. There are two ways to do this, either to interpolate the solution with
the fewest grid points such that both solutions have the same amount, or to just
use some of the grid points in the solution with the most grid points. As some of
the point of doing simulations with more grid points is to get a better solution, it
seems better to interpolate the solution with the fewest grid points.

To do this we use linear interpolation of the solution in the old grid points
to create the solution in the new grid points. A linear interpolation has its lim-
its, therefore the solution with the fewest grid points will have some error when
compared to the solution with the most, even if the solution is the same in the
common grid points of the solutions.

5.3.3 Convergence

To know if the di�erent solvers are stable and give approximately the same solu-
tions, a convergence test has to be done. How many grid points, block layers, and
which solver that is used should be irrelevant, all the solutions should converge.
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Late time asymptotic

When we run di�erent solvers with the production well open for the whole simu-
lation, the solution shall in theory not change after being run for a long time. The
solution has reached equilibrium. This is in fact also what we observe when we
run our solvers with di�erent running time. As an example of this observation, we
have plotted the enthalpy versus the time in one grid point, in �gure 5.1. In the
comparison section, we use norms to see that equilibrium is reached after some
time.
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Figure 5.1: Here we plot the enthalpy in one grid point (x=0.6,y=0.5) against
time.

Re�nement

Running the solvers with di�erent amount of grid points converge to one solution.
The smaller grid cells we are using, the higher accuracy the solution has. In theory
we should get the same solution in common grid points. In the �gures 5.2, and 5.3
we see that the solution from the implicit solver converges when we use di�erent
sized grid cells, in the water phase and �rst block layer respectively. The plots are
only examples that shows that the solvers converge.
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Figure 5.2: The solution in the water phase solved with di�erent amount of grid
points converges. In the plot the all implicit solver with N = 11, 23, 47 is used.
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Figure 5.3: The solution in the �rst block layer solved with di�erent amount of
grid points converges. In the plot the all implicit solver with N = 11, 23, 47 is
used.
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Di�erent solvers

If a solver discretizes a term explicitly or implicitly it should in theory give ap-
proximately the same result. In the plot 5.4, we observe that the di�erent solvers
obtains approximately the same solutions. When we later in this chapter compare
the relative errors in the solvers, we will also observe that they produce approxi-
mately the same solutions.
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Figure 5.4: The solution in the water phase solved with the di�erent solvers. In
the plot N = 23 is used.

5.3.4 Solution plots

In the plots 5.5 and 5.6 we see the shape of our solution. The solution has a
singularity in the production well. We see that the enthalpy levels sink towards
the well, as there is taken out enthalpy there.
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Figure 5.5: Solution with N = 11.
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Figure 5.6: Solution with N = 95.



5.3. EVALUATION OF RESULTS 53

5.3.5 Comparison of the solvers

With the coe�cients as in table 5.1, the CFL conditions for the di�usion term
are stricter than for the heat exchange and the transport terms. If we follow our
adaptive strategy it is clear that the heat exchange term and/or the transport
term should be solved explicitly, as this will not give a strict CFL condition. In
this comparison we will only compare the results from simulations where one of
the heat explicit and transport terms is solved explicitly, and when all the terms
are solved implicitly. We have to verify that the strategy is good, and to do this
the �rst step is to check if the solution looses regularity when a term is solved
explicitly.

To check the regularity of the solutions we compare the results from the simula-
tions to the reference solution. The heat exchange explicit solver with N = 95 has
been used as the reference solution. The three solvers are run with N = 11, 23, 47,
with di�erent simulation time for all solvers, and di�erent time steps in the im-
plicit solver. The simulation time is the observation time, for which we observe
the heat distribution in the reservoir.

The simulations we have done starts after the injection time, so the produc-
tion well is open for the whole simulation. The solution from each simulation is
interpolated, such that it gets as many grid points as the one with N = 95. To
compare the solutions, the L1 norm is calculated. We also compare plots of the
relative error along the line x = 0.5, for some of the simulations. The calculation
times of the three solvers are also discussed.

L1 norm calculations

In the tables 5.4, 5.5, 5.6, 5.7, and 5.8 the L1-norms for simulations with di�er-
ent simulation times are listed. The CFL condition and the total simulation time
decides the time step in the heat exchange explicit and in the transport solvers.
The time step will be the largest possible time step that is allowed by the CFL
condition that goes up in the simulation time, such that it is run for the same time
as the implicit solver. The time step in the implicit solver will be di�erent from
simulation to simulation, to see how the results vary.
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Solver

All implicit Heat exchange explicit Transport explicit

N Water phase Rock layer 1 Water phase Rock layer 1 Water phase Rock layer 1

11 1.6062· 106 0.8174· 106 0.8086· 106 1.4187· 106 0.6329· 106 1.0438· 106

23 1.1285· 106 0.6117· 106 0.5545· 106 1.2099· 106 0.5323· 106 0.9521· 106

47 0.5373· 106 0.3050· 106 0.3350· 106 0.5811· 106 0.5383· 106 0.7955· 106

Table 5.4: The L1-norms for the results from the three solvers, when the production
well is open for the whole simulation time, and the simulation is run for 10 time
steps with time step 0.2 in the all implicit solver.

Solver

All implicit Heat exchange explicit Transport explicit

N Water phase Rock layer 1 Water phase Rock layer 1 Water phase Rock layer 1

11 4.0275· 106 3.5750· 106 0.8086· 106 1.4187· 106 0.6329· 106 1.0438· 106

23 4.3888· 106 3.6872· 106 0.5545· 106 1.2099· 106 0.5323· 106 0.9521· 106

47 4.5640· 106 3.7884· 106 0.3350· 106 0.5811· 106 0.5383· 106 0.7955· 106

Table 5.5: The L1-norms for the results from the three solvers, when the production
well is open for the whole simulation time, and the simulation is run for 1 time
steps with time step 2 in the all implicit solver.

Solver

All implicit Heat exchange explicit Transport explicit

N Water phase Rock layer 1 Water phase Rock layer 1 Water phase Rock layer 1

11 3.1195· 106 0.9798· 106 2.9367· 106 1.0014· 106 3.0727· 106 0.9818· 106

23 2.4088· 106 0.6127· 106 2.4062· 106 0.6184· 106 2.3712· 106 0.6186· 106

47 1.0957· 106 0.1708· 106 1.0967· 106 0.1714· 106 1.0804· 106 0.1778· 106

Table 5.6: The L1-norms for the results from the three solvers, when the production
well is open for the whole simulation time, and the simulation is run for 25 time
steps with time step 0.2 in the all implicit solver.

Solver

All implicit Heat exchange explicit Transport explicit

N Water phase Rock layer 1 Water phase Rock layer 1 Water phase Rock layer 1

11 1.7487· 106 1.2402· 106 2.9378· 106 1.0014· 106 3.0727· 106 0.9818· 106

23 1.1314· 106 0.9880· 106 2.4076· 106 0.6182· 106 2.3712· 106 0.6186· 106

47 0.3043· 106 0.6680· 106 1.0981· 106 0.1710· 106 1.0804· 106 0.1778· 106

Table 5.7: The L1-norms for the results from the three solvers, when the production
well is open for the whole simulation time, and the simulation is run for 2 time
steps with time step 2.5 in the all implicit solver.
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Solver

All implicit Heat exchange explicit Transport explicit

N Water phase Rock layer 1 Water phase Rock layer 1 Water phase Rock layer 1

11 3.1785· 106 0.9780· 106 3.1785· 106 0.9780· 106 3.1785· 106 0.9780· 106

23 2.4488· 106 0.6071· 106 2.4488· 106 0.6071· 106 2.4488· 106 0.6071· 106

47 1.1049· 106 0.1669· 106 1.1049· 106 0.1669· 106 1.1049· 106 0.1669· 106

Table 5.8: The L1-norms for the results from the three solvers, when the production
well is open for the whole simulation time, and the simulation is run for 100 time
steps with time step 0.2 in the all implicit solver.

In the simulations that produce the norms that are given in the tables 5.4-5.8
the production well is open for the whole simulation time. The initial condition
for the enthalpy was set to 1.26· 106 (Not joules, because we use an inaccurate
proportionality constant between temperature and enthalpy, but another 'entity'
that we do not give a name.), and that is the reason why the norms produce such
high numbers. The interpolated solutions have 9801 grid points, and if the norms
are divided with the number of grid points, then we see that if the norm is 0.5· 106

(it is around this level in many cases), then the error on average is only 51 per
grid point. This will only be 0.15 percent of the di�erence between the maximum
and minimum value in the reference solution.

Overall the results seem to be about the same with the three solvers. We see
in the table 5.8 that when the simulation is run for a long time, the three solvers
gives exactly the same results. This has to do with equilibrium being reached when
the simulation time is long enough. In table 5.5 wee observe that with a long time
step in the implicit solver, the solution does not converge. The reason behind this
is that the error due to the time discretization is dominant over the error due to
the spatial discretization. We observe in the table 5.7 that when the simulation
time is longer, the results will converge even with a long time step. The solution
will be closer to equilibrium, and because of this and the fact that two time steps
is used, the error due to the time discretization will not dominate.
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Relative error

We have used two methods to determine the relative error, and the �rst steps in
them are:

� We choose the common grid points from the reference solution and the so-
lution we compare with.

� We have interpolated the solution we compare with the reference solution,
such that it has as many grid points.

The second step in both is to divide by the di�erence between maximum and
minimum of the reference solution,

rel. error =
difference of solutions

max(ref. solution)−min(ref. solution)
· 100 percent . (5.4)

All the plots of the relative error are of the enthalpy in the water phase along
x = 0.5, and the simulation time is the same in all the plots. In the plots 5.7
and 5.8 we see plots of the relative error for simulations with the heat exchange
explicit solver. In plot 5.7 we see the relative error when the common grid points
are used. In plot 5.8, we see the relative error when the solutions are interpolated
to have as many grid points as the reference solution. As we have a singularity
in the well, there is large relative error near it. Therefore we have produced the
plots 5.9 and 5.10 that plots the solution on the one side of the singularity. In
both the plots the relative error is below 3 percent until we reach the singularity,
with both the methods. We also observe that the relative error is smaller when
we use the common grid points. This is natural, as there will be an interpolation
error when we interpolate the solutions. Another observation is that the relative
error is smaller when more grid points are used.

In the plots 5.11 and 5.12, the relative error from simulations with three di�er-
ent solvers are compared. We again see that the relative error are below 3 percent.
The solutions from the di�erent solvers are slightly di�erent, but approximately
the same.
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Figure 5.7: The relative error of the solution with the heat exchange explicit solver
with di�erent sized grid cells, when it is compared to the reference solution. The
common grid points in the reference solution and the simulation solution have been
plotted.
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Figure 5.8: The relative error of the solution with the heat exchange explicit solver
with di�erent sized grid cells, when it is compared to the reference solution. The
solutions have been interpolated linearly, such that they have the same grid points
as the reference solution.
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Figure 5.9: The relative error of the solution with the heat exchange explicit solver
with di�erent sized grid cells, when it is compared to the reference solution. The
common grid points in the reference solution and the simulation solution have been
plotted. Only the left side of the reservoir has been plotted, such that the well is
excluded.
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Figure 5.10: The relative error of the solution with the heat exchange explicit
solver with di�erent sized grid cells, when it is compared to the reference solution.
The solutions have been interpolated linearly, such that they have the same grid
points as the reference solution. Only the left side of the reservoir has been plotted,
such that the well is excluded.
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Figure 5.11: The relative error of the solution with the heat exchange explicit
solver, the transport explicit solver and the implicit solver with N = 47, when it
is compared to the reference solution. The common grid points in the reference
solution and the simulation solution have been plotted. Only the left side of the
reservoir has been plotted, such that the well is excluded.
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Figure 5.12: The relative error of the solution with the heat exchange explicit
solver, the transport explicit solver and the implicit solver with N = 47, when it is
compared to the reference solution. The solutions have been interpolated linearly,
such that they have the same grid points as the reference solution. Only the left
side of the reservoir has been plotted, such that the well is excluded.
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Calculation time

Between the heat exchange explicit solver and the all implicit solver there is sub-
stantial di�erence in calculation time unless the time steps in the implicit solver
are very large. The transport explicit solver lies somewhere in between. In table
5.9 we see the calculation time compared between the solvers with set simulation
time, time step, and di�erent amount of grid points.

The solvers we have created and used for the simulations are not the most
e�cient. We have used Matlab's programming language, which is not the fastest
programming language to solve large matrix systems in, and the numerics are
not optimized. The calculation time of the simulations can therefore be a bit
misleading, and it is di�cult to conclude that the one solver is substantially faster
than the other. However, the indications are that the heat exchange explicit solver
is faster than the all implicit solver. It is reasonable to assume that some of the
reason behind this is that we get a more sparse matrix when solving the equations.

N Heat exchange All implicit Transport explicit
11 8.70 10.37 9.47
23 16.38 28.07 20.34
47 77.97 250.47 160.74

Table 5.9: Calculation time in seconds for the three solvers when the time step is
0.2, and the simulation is run for 10 time steps in the implicit solver.

We do not lose regularity when a term is solved with explicit time discretization.
The terms with slight CFL conditions should have explicit time discretization, as
the calculation time is reduced when we do so. Operator splitting has ensured that
the matrix(es) that is(are) solved is(are) less complex, and the memory use has
gone down. Thus the adaptive strategy is a good one, and there are no reasons
not to follow it.



Chapter 6

Summary and conclusion

In this chapter, we summarize this master thesis. We come to a conclusion of our
research, and point at possible improvements that can be done to our model.

6.1 Summary

In this master thesis we have used background knowledge from geothermal energy
and reservoir mechanics, to both create a mathematical model and a numerical
model for geothermal energy extraction. We model a reservoir �lled with blocks
of rock and fractures, that is �lled with water, between them. The mathematical
model is based on a local and a reservoir scale conservation law for enthalpy. The
local conservation law models enthalpy conservation in one block and the fractures
next to it.

To model the local conservation law, we introduced layers in the blocks. The
local conservation law transfers enthalpy between these layers. The reservoir scale
conservation law models conservation of enthalpy inside a REV. The �ux term
in the reservoir scale conservation law consists of three �uxes, a di�usive �ux, a
advective �ux and a heat exchange �ux. The di�usion term and the heat exchange
term are both di�usive �uxes, but while the di�usion term transfer enthalpy inside
each block layer, the heat exchange transfer enthalpy between the di�erent block
layers. The heat exchange �ux is based on the local conservation law.

This mathematical model was then developed into numerical models, that mod-
eled the reservoir scale conservation law. We made four numerical models. In all of
them we used a FEM for spatial discretization of the di�usion term, and a FDM
for spatial discretization of the transport term. The �rst numerical model had
implicit time discretization in all the equation terms. The three other solvers had
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one term each that was solved with explicit time discretization.
We created an adaptive strategy that decide which terms that should be com-

puted explicitly, when the model equations are solved numerically. We then fol-
lowed this strategy, in our simulations. To test the di�erent numerical solvers
against each other we made a simple test case, with one production well in the
middle of the reservoir.

6.2 Conclusion

The comparison of the solutions with the di�erent solvers shows that our adaptive
strategy when only one term is solved explicitly works. In the simulations we have
only tested the strategy using explicit time discretization for one term at a time,
and this reduces the complexity of the problem and the memory use goes down.
The strategy in that case was to solve the term with the slightest CFL condition
explicitly.

If the transport term is solved with explicit time discretization, and it often
is, then our strategy was to also solve the terms that do not have stricter CFL
conditions than the transport term explicitly. If the transport term is solved im-
plicitly or there are no terms that do not have stricter conditions, the terms with
the slightest conditions should be done explicitly. It needs to be individually de-
termined how many terms that should be done explicitly. A natural next research
step would be to create solvers that do more terms with explicit time discretization.

There is no loss of regularity in the solutions when we do one term with explicit
time discretization. In addition the calculation time is reduced, when a term with
slight CFL condition is done explicitly. This implies that doing terms explicitly
saves calculation time. If several terms are solved explicitly, the complexity of the
problem will be further reduced. Therefore, our adaptive strategy is a good one.

With implicit time discretization, a very large time step has to be used to bring
the calculation time down to the same level that the explicit solvers use. Using
a large time step usually implies that the error due to the time discretization is
the dominant error. There is no point in doing a grid re�nement, when the time
discretization error is dominant.

When all the terms are solved implicitly, the terms are combined into a large
block matrix that is used to calculate the enthalpy. Solving a term with explicit
discretization is done with operator splitting. The problem is split into smaller
matrices, and the complexity and memory use is reduced. This also ensures that
the di�erent terms do not smoothen each other out, as is the case if all the terms
are solved in one large matrix.

There is no reasonable argument that backs up the idea to always solve equa-
tions with implicit time discretization. Only in some special cases, where the CFL
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conditions in all terms are very strict, an implicit time discretization in all terms
can be defended, for this is the exception and not the rule.

6.3 Possible additions

One of the natural additions to our model is to build solvers that do several of
the terms explicit at once, and that solve the di�usion and the transport term
with explicit time discretization in some layers and implicit in others. The last
part would require much implementation. To save further calculation time a Do-
main Decomposition method could be used, and the calculations could be done
in parallel for the layers. It would also be a natural improvement to implement a
pressure solver that is used to create the �ow �eld in the transport term. To use
a non-linear temperature distribution, where the temperature rises above or sinks
below the boiling point for water could also be interesting.
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