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The energy levels of laterally coupled parabolic double quantum dots are calculated for varying interdot
distances. Electron-electron interaction is shown to dominate the spectra: In the diatomic molecule limit of
large interdot separation, the two nearly degenerate singlet and triplet ground states are followed by a narrow
band of four singlet and four triplet states. The energy spacing between the ground state and the first band of
excited states scales directly with the confinement strength of the quantum wells. Similar level separation and
band structure are found when the double dot is exposed to a perpendicular magnetic field. Conversely, an
electric field parallel to the interdot direction results in a strong level mixing and a narrow transition from a
localized state to a covalent diatomic molecular state.
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I. INTRODUCTION

Coupled quantum dots typically containing a few “active”
electrons have set a new scene for research in molecular
physics and have, in many contexts, been named “artificial
molecules.”1 Electron tunneling from one well to another
typically occurs on nanosecond time scales, which opens for
precise manipulation and measurement of electronic states.2

Two coupled quantum dots containing two electrons thus de-
fine a two-dimensional analog to the H2 molecule. The sys-
tem allows for fundamental quantum experiments not acces-
sible in real molecules with the further prospect of quantum
control of the electronic properties. Such devices may thus
serve as building blocks for future quantum processors.3

Since the discovery of single-dot shell structures,4 elec-
tronic properties and many-body effects of electrons con-
fined in two-dimensional parabolic quantum dots have been
studied from many different theoretical perspectives and
with a great variety of methodological approaches.5 The first
calculations which uncovered the role of the electron-
electron interaction were performed in a single dot as early
as 1990 and 1991.6,7 Coupled quantum dots have recently
received increasing attention triggered by the experimental
verification of controlled qubit operations induced by elec-
tromagnetic switches.3,8 The parabolic coupled quantum dot
systems were introduced by Wensauer et al.9 and used for
calculating energy levels with the spin-density-functional
theory. Based on exact diagonalization techniques, it was
later shown that the two-electron ground state exhibits a
phase transition from a singlet to a triplet state at finite
magnetic-field strengths10,11 and for interdot distances up to
10 nm. Recently, the stability diagram of a one- and two-
electron double quantum dot was calculated for much larger
interdot separations �30 and 60 nm� in a related exponential
double-well potential.12

In this work, we describe the electronic structure of a
laterally coupled two-electron quantum dot molecule for dif-
ferent confinement strengths and for varying interdot separa-
tions and external electromagnetic fields. The energy spectra
and the associated eigenstates are obtained from exact diago-

nalization of the Hamiltonian in a Hermite polynomial basis
set. Some advantages of these basis states are that they form
an orthonormal basis set, all matrix elements can be calcu-
lated analytically, and the Hamiltonian matrix becomes rela-
tively sparse. Convergence is ensured by comparison with a
cylindrical basis expansion method as well as a Fourier split-
step operator method based on imaginary time propagation
of the four-dimensional Schrödinger equation.12 The behav-
ior of the spectra when the system is exposed to electric and
magnetic fields is then investigated. In the next section, we
outline the theoretical methods. The results and their impli-
cation for experiments are discussed in Sec. III followed by
concluding remarks in Sec. IV.

II. THEORY

The Hamiltonian describing two electrons parabolically
confined in a two-dimensional double quantum dot is written
as

H = h�r1� + h�r2� +
e2

4��r�0r12
, �1�

with the single-particle Hamiltonian h�ri� given as

h�x,y� = −
�

2

2m*�
2 +

1

2
m*

�
2 min��x −

d

2
�2

+ y2,�x +
d

2
�2

+ y2� +
e2

8m*B2�x2 + y2�

+
e

2m*BLz + g* e

2me
BSz + eEx . �2�

Here, ri= �xi ,yi�, i=1,2, are the single-particle coordinates in
two dimensions, r12�	r1−r2	, m* is the effective mass of the
electron, � is the confining trap frequency of the harmonic
wells, and d is the interdot separation. Furthermore, E is an
electric field applied parallel to the interdot axis and B is a
magnetic field applied perpendicular to the dot. In the
present work, we apply GaAs material parameters with m*
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=0.067me, relative permittivity �r=12.4, and an effective g
factor g*=−0.44. The potential in Eq. �2�, used also in pre-
vious studies,9–11 has a cusp for x=0. We have also tested a
more realistic smooth barrier and found that no significant
changes occur.

It is worth noting that for d=0 and in the absence of
external fields, the two-electron Hamiltonian can be written
in center-of-mass, R= 1

2 �r1+r2�, and relative motion, r= �r1

−r2�, coordinates as14,15

H = −
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The total wave function then becomes separable as ��r ,R�
=�R

N,M�R��r
n,m�r�, where �R

N,M�R� is an eigenfunction to the
center-of-mass part of Eq. �3� and �r

n,m�r� is an eigenfunc-
tion to the relative motion part of Eq. �3�, and each is further
separable in a radial and an angular part with quantum num-
bers n�N� and m�M� referring to the radial and angular de-
grees of freedom, respectively. A state is thus characterized
by the four quantum numbers �N ,M ,n ,m� with �n ,N
=0,1 , . . . � and �m ,M =0, ±1, . . . �, and the total energy can
be written as

E�N,M,n,m� = �2N + 	M	 + 1��� + �2n + 	m	 + 1���

+ Er�n,m� , �4�

where the first term originates from the center-of-mass part
of Eq. �3�, the second term originates from the harmonic
oscillator part of the relative motion in Eq. �3�, and Er�n ,m�
accounts for the electron-electron interaction contribution to
the energy. The spatial symmetry of the total wave function
under exchange of particle 1 and particle 2 is given by the
parity of �r

n,m�r�, and thus the spin singlets �triplets� will
have even �odd� m. For a more complete description, see,
e.g., Taut14 and Zhu et al.15 In the following, the different
calculational schemes used here are outlined.

A. Calculation in Cartesian coordinates

The fact that a large part of the one-electron Hamiltonian

Eq. �2��, without external fields, is diagonal in a harmonic
oscillator basis set,

h�x,y�	i�x,y� = ���nx + ny + 1 +
m*

�

2�
�d

2
�2�	i�x,y�

±
m*

�
2

2
xd	i�x,y� , �5�

suggests that a basis representation consisting of products of
such one-electron states will be a convenient basis in the
diagonalization procedure. We therefore expand the spatial
wave function in symmetrized states, which can be associ-
ated with the spin singlet and triplet states as

	��r1,r2�� = 

j
i

nmax

cij	ij� � 	S� , �6�

where

�r1,r2	ij� = �
1
�2


	i�r1�	 j�r2� + �− 1�S
	 j�r1�	i�r2�� , i � j

	i�r1�	 j�r2� , i = j ,
�

the cij’s are the expansion coefficients, and 	S� denotes the
spin singlet or triplet state, i.e., 	0�, 	1�. Operating with Eq.
�1� on Eq. �6� and projecting onto a specific total spin lead to
the matrix equation Mc=Ec. The coupling matrix elements
related to the basis 
Eq. �6�� with the Hamiltonian 
Eq. �2��
then become a sum of analytical one-electron matrix ele-
ments defined by Eq. �5� and matrix elements involving the
two-electron interaction,

MK,L = �	Ki
	Kj

	
1

r12
		Li

	Lj
� . �7�

To solve this integral for arbitrary quantum numbers, we first
express the electron-electron interaction as the Bethe
integral,17

1

r12
=

1

2�
2 � d3s

s2 eis·r1e−is·r2. �8�

We carry out the integration in the sz direction and thereafter
put z1=z2=0,

1

r12
=

1

2�
2 � d2seis·�r1−r2��

−�

�

dsz
eisz�z1−z2�

s2 + sz
2

=
1

2�
� d2s

s
eis·r1e−is·r2, �9�

where the scalar products �including s2� now refer to the
two-dimensional space. The integral of Eq. �7� can thus be
expressed as

MK,L =
1

2�
� d2s

s
� d2r1	Ki

�r1�	Li
�r1�eis·r1

�� d2r2	Kj
�r2�	Lj

�r2�−is·r2. �10�

Introduction of the scaled Hermite polynomials Hn�x�
=2n/2Hen��2x� and the scaling s̃=s�2��−1/2 gives each of the
four Fourier transforms the generic form18

�
0

�

dvHen�v�Hen+2m�v�e−v2/2 cos�s̃v�

=��

2
n!�− 1�ms̃2me−s̃2/2Ln

2m�s̃2� ,
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�
0

�

dvHen�v�Hen+2m+1�v�e−v2/2 sin�s̃v�

=��

2
n!�− 1�ms̃2me−s̃2/2Ln

2m+1�s̃2� , �11�

with La
b a Laguerre polynomial and v= �2��1/2x. Here, x de-

notes any of the variables x1, y1, x2, and y2 and s̃ denotes
s̃x , s̃y. When the operations described by Eqs. �7�–�11� are
carried out for four arbitrary one-electron basis states, the
result is a combination of four Laguerre polynomials,

MK,L =
1

2�
� d2s

s
� d2s̃

s̃
s̃x

2�Ki+Li�s̃y
2�Kj+Lj�
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2�La4

b4�s̃y
2�e−v2

. �12�

In total, this shows that the integral is a sum of terms of the
form

MK,L 
� d2s̃

s̃
s̃x

ns̃y
me−s̃2

= �
0

�

ds̃s̃n+me−s̃2�
0

2�

d	 cosm
	 sinn

	 ,

�13�

which are well-known integrals.
By collecting all �-dependent terms of the potential and

the basis functions, one can easily show that the integral
scales with the confinement strength as �1/2. The one-
electron integral, cf. Eq. �5�, has one term linear in � �the
first diagonal term�, one quadratic in � �the second diagonal
term�, and one term that depends on �3/2 �the nondiagonal
term�. All matrix elements are thus calculated only once for
�=1 and rescaled for every step in the diagonalization pro-
cess.

In order to compute the field-dependent matrix elements,
we need to recall some of the basic properties of Hermite
polynomials. To compute the matrix elements for the
case with the electric field along the x axis, we need
to evaluate single-particle contributions of the form
�nxmy	Ex	nx�my��. Remembering that our single-particle basis
functions are �setting �=1, m*=1� given by 	�x ,y�

=
��

�1/2�n!m!2n2m Hn���x�e−�/2�x2+y2�Hm���y�, we readily obtain

�nm	Ex	n�m�� =�n� + 1

2�
E�m,m�

�n,n�+1

+� n�

2�
E�m,m�

�n,n�−1. �14�

These contributions from each of the two electrons are sub-
sequently added together. For magnetic fields, we take into
account both the narrowing of the confining potential arising
from the diamagnetic term 


1
8B2r2 and the Zeeman term


BLz. The matrix elements for the Zeeman term are com-
puted similarly to those for the electric field,

�nm	Lz	n�m�� = − i�n�m + 1�
B

2
�m,m�−1�n,n�+1

+ i�m�n + 1�
B

2
�m,m�+1�n,n�−1. �15�

To account for the diamagnetic term, we notice that the con-
finement strength of the harmonic oscillator changes from �

to �ef f =��2+�C
2 , where �C is the cyclotron frequency eB

2m* .
By making the substitution �→�ef f in the basis functions,
we obtain the correct energy for the case with B�0. Thus,
the diagonal term scales as �ef f, the electron-electron inter-
action term scales as ��ef f, and the d-dependent term scales
as �2 /��ef f. For GaAs parameters, the gyromagnetic ratio is
rather small and thus only the Sz=0 terms are shown in the
results for clarity.

B. Calculation in cylindrical coordinates

To validate the calculations, we have also treated the
single quantum dot with an alternative method where the
radial wave functions are expressed in the so-called B
splines. The solutions to the single-particle Hamiltonian 
Eq.
�2�� with d=0 and E=0 can be written as

	�nmms
� = 	unmms

�r��	eim	�	ms� , �16�

where the radial parts of the wave functions are expanded in
B-splines,19

	unmms
�r�� = 


i=1
ci	Bi�r�� , �17�

on a so-called knot sequence and they form a complete set in
the space defined by the knot sequence and the polynomial
order.19 Here, we have typically used 40 points in the knot
sequence, distributed linearly in the inner region and then
exponentially further out. The last knot, defining the box size
to which we limit our problem, is placed at a distance of
about 400 nm from the center. The polynomial order is 6 and
combined with the knot sequence this yields 33 radial basis
functions unmms

�r� for each combination �m ,ms�. The basis
functions associated with lower energies are physical states,
here thus two-dimensional harmonic oscillator eigenstates,
while those associated with higher energies are determined
mainly by the box. The unphysical high-energy states are,
however, still essential for the completeness of the basis set.
Equations �16� and �17� imply that the Schrödinger equation
can be written as a matrix equation Hc=�Bc, where Hij
= �Bie

im�	h	Bje
im�� and Bij = �Bi 	Bj�. This equation is a gener-

alized eigenvalue problem that can be solved with standard
numerical routines. The integrals are calculated with Gauss-
ian quadrature yielding essentially no numerical error since
B-splines are piecewise polynomials.

The eigenstates of the matrix equation form a complete
orthogonal basis set for each pair of quantum numbers m, ms
which can be used to diagonalize the two-particle Hamil-
tonian 
Eq. �1��. We then get matrix elements of the form
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Hij = ��ab�i	h�1� + h�2� +
1

r12
	�cd� j� , �18�

where the last term refers to the last term in Eq. �1�. Each
single-particle state is of the form of Eq. �16�, and we use the
multipole expansion suggested by Cohl et al.20 to get an
explicit expression for the last term,

�ab	
1

r12
	cd� =

e2

4��r�0
�ua�ri�ub�rj�	

Qm−1/2���

��rirj

	uc�ri�ud�rj��

��eima	ieimb	j	 

m=−�

�

eim�	i−	j�	eimc	ieimd	j�

��ms
a	ms

c��ms
b	ms

d� . �19�

Here, Qm−1/2���, with �=
r1

2+r2
2+�z1−z2�2

2r1r2
, are Legendre functions

of the second kind and half-integer degree. We evaluate them
using a modified21 version of software DTORH1.F described
by Segura and Gil.22 The matrix is diagonalized for a given
value of ML=m�1�+m�2�, including up to 	m	�6, and MS

=ms�1�+ms�2�. For zero magnetic field, the S=0,1 states are
characterized by symmetric and antisymmetric spatial wave
functions, respectively. The dimension of the matrix to diag-
onalize is, with the choice of 40 points in the knot sequence,
up to �14 000�14 000. To compare with the solutions in
Cartesian coordinates, we limit the number of basis states in
the same way as in the Cartesian case, but we have also
compared these results to what is obtained when the com-
plete B-spline basis set is used.

C. Imaginary time propagation

To provide yet another reference value for the singlet
ground-state energy, we have also performed a calculation
based on imaginary time propagation.13 Consider the formal
solution to the time-dependent Schrödinger equation for a
time-independent system expanded in the eigenstates,

	��t�� = e−iHt/�	��0�� = 

j

cje
−iEjt/�		 j� . �20�

When the substitution �=−it is performed and 	����� is
propagated in a standard time propagator, all states with
higher energy than the ground state will be damped expo-
nentially compared to the ground state. Therefore,
	����� /������ 	����� will converge toward the ground state.
Furthermore, when the solution has converged, the ground-
state energy is obtained from

E0 = −
1

2��
log� ���� + ���	��� + ����

�����	�����
� , �21�

where �� is the time step used in the propagation. In the
calculations, a four-dimensional Cartesian Fourier split-step
propagator is used, with which convergence was found em-
ploying a grid of size �100�50�� �100�50�, 8 nm grid
spacing, and propagation time step ��=44 fs. By applying
this method, we obtain the singlet ground-state energy as a
function of dot separation d.

D. Validation of method

A weakness of all single-center expansions is the large
number of basis states required to describe the spectrum ac-
curately for large interdot distances. As a convergence check,
we show in Fig. 1 a comparison between the distance-
independent imaginary time method and various basis sizes
of the Cartesian basis for a double well with confining
strength ��=3 meV. Increasing d is seen to require increas-
ing nmax to obtain convergence of the ground state: While for
nmax=5 the calculation breaks down already at 60 nm, nmax
=10 is seen to work satisfactory up to 100 nm. In the fol-
lowing, the calculations are thus based on nmax=10 with
some selected control calculations with nmax=15. The latter
amount to a 50 625�50 625 matrix, which is diagonalized
with an ARPACK sparse matrix solver.23 With the nmax=15
basis, the truncation error is kept small for interdot distances
up to about 140 nm when considering the lower part of the
energy spectrum ���=3 meV�.

For the case of noninteracting particles, we have tested
the effect of having a smooth potential barrier between the
coupled dots, see Fig. 2. The inset gives a close-up view of
the barrier for d=52 nm, either in form of a cusp or in a
smoother version. The ground-state energies for both cases
are also shown, and they can hardly be distinguished. Figure
2 also shows the ground state as a function of d. As expected,
the difference in ground-state energy is largest when the en-
ergy level is close to the barrier height �around d=50 nm�,
but still it is everywhere on the subpercentage level. We con-
clude that the qualitative properties of the coupled dots will
not be affected by the cusp and a better modeling is only
justified when experimental information on the barrier is
available.

The spectra of the cylindrical and Cartesian basis calcu-
lations have also been compared, and the results for d=0 are
shown in Tables I and II for B=0 and B=3 T, respectively.
For d=0, we note that in both cases, the energy spacing
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FIG. 1. Ground-state energy for different Cartesian basis sizes
as function of interdot distance compared with the results from
imaginary time propagation. Dotted line: nmax=5. Dashed-dotted
line: nmax=7. Full line with crosses: nmax=10. Circles: nmax=15.
Solid black line: Imaginary time propagation. The confinement
strength ��=3 meV.
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between the two lowest states equals �� for the singlet as
well as for the triplet series. The first-order energy contribu-
tion is identical for the two lowest singlets and the two low-
est triplet states, which implies that the energy spacing be-
tween the lowest levels to first order is exactly ��. This is
the expected spacing for confinement strengths �� larger
than 1 meV when the energy level ordering is largely deter-
mined by the harmonic potential. For weaker confinement
strengths, the electron-electron interaction will play a larger
role, and the �� splitting will no longer be observed.15

The tabulated Cartesian coordinate values are calculated
with nmax=10. With the cylindrical coordinate method, both
	m	max and the number of radial basis functions �nr� are ad-
justed to include the same physical states as used with the
Cartesian coordinate method. For this, we use the relations
nr=nx+ny −max�nx ,ny� and m=nx−ny. The energies are in
very satisfactory agreement, with a relative difference of less
than 1% for all considered levels. With the B-spline basis, it
is also possible to saturate the radial basis set and compare
the results to the truncated ones. We then use 	m	�6 and the
full set of 33 radial basis functions �for a knot sequence of 40
points�. The ground state then changes from
11.147 to 11.140 meV, and the last tabulated state changes
from 15.4069 to 15.4065 meV, which shows that the basis-
set expansion is indeed converged to within less than 1%.

III. RESULTS

A. Field-free case

Figure 3 shows the 12 lowest-energy levels as a function
of interdot distance in the case of two noninteracting par-
ticles �with ��=3 meV� and in the case of interacting elec-
trons with three different confinement strengths, ��=1, 3,
and 6 meV. The spectra with and without electron interac-
tion are seen to differ strongly: In the case of ��=3 meV,
the ground-state energy increases from 6 to 11.15 meV for
d=0 and to 7.5 meV for d=80 nm. Comparing the spectra
for the three confinement strengths, we discover some com-
mon features. At d=0, the first excited energy level consists,
for the case of noninteracting particles, of four degenerate
states, i.e., two singlet and two triplet states. However, when
the particle interaction is taken into account, the singlet and
triplet levels split in energy in the same manner as the energy

FIG. 2. �Color online� The ground-state energy for a single elec-
tron in a double dot ���=3 meV� as a function of interdot distance
d. The solid �red� line shows the result with a sharp boundary be-
tween the two dots, while the dashed �black� line shows the result
when the boundary is smoothed. The difference in ground-state en-
ergy is largest when the ground-state energy is close to the barrier
height, around d=50 nm, but still it is everywhere on the subper-
centage level. The inset shows the sharp �solid red line� and the
smoothed �dashed black line� barrier for d=52 nm with the corre-
sponding ground-state energies indicated by the horizontal lines.

TABLE I. Ten lowest-energy levels �given in meV�, azimuthal
quantum number, and total spin for the confinement strength ��

=3 meV, d=0, and B=0.

Energy
�meV� State

Cartesian basis Cylindrical basis ML S

11.155 11.147 0 0

12.408 12.407 1 1

12.408 12.407 −1 1

14.158 14.149 1 0

14.158 14.149 −1 0

14.682 14.681 2 0

14.682 14.681 −2 0

15.409 15.407 −2 1

15.409 15.407 2 1

15.408 15.407 0 1

TABLE II. Twelve lowest-energy levels �given in meV�, azi-
muthal quantum number, and total spin for the confinement strength
��=3 meV, d=0, and B=3 T. At this field strength, the total spin
is still an approximately good quantum number and each state can
be assigned a specific total spin.

Energy
�meV� State

Cartesian basis Cylindrical basis ML S

13.262 13.261 −1 1

13.774 13.740 −2 0

14.063 14.052 0 0

14.635 14.634 −2 1

14.670 14.670 −3 1

15.147 15.146 −3 0

15.440 15.427 −1 0

15.732 15.732 −4 0

16.009 16.007 −3 1

16.043 16.042 −4 1

16.520 16.519 −4 0

16.817 16.803 −2 0
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levels of atomic helium split into parahelium �singlet� and
orthohelium �triplet� levels, with the triplet state always lying
lower in energy than the corresponding singlet state. The first
excited state becomes a degenerate triplet state, correspond-
ing to cylindrical basis states with conserved quantum num-
bers M = ±1. For a more detailed discussion of the spectrum
of the two- and three-dimensional harmonic oscillator con-
taining two electrons, we refer to Zhu et al.15 and Drouvelis
et al.16

At finite d�0, the rotational symmetry is broken and,
correspondingly, the first excited doubly degenerate triplet
level split, with one level gradually decreasing in energy
toward the singlet ground-state energy and becoming virtu-
ally degenerate with it at large inter-dot distances. This gives
rise to a ground-state energy band. In Table III, we list the 32
lowermost states in groups for d=80 nm. Above the nearly
degenerate ground-state level, there is a group of eight ex-
cited states that are seen to constitute a narrow band of sin-
glet and triplet states for large interdot distances. The energy
spacing between the ground-state band and the second band
is seen to be of the order ��.

In Fig. 4, the configuration interaction �CI� one-electron
probability density ��r1�=�d2r2	��r1 ,r2�	2 is shown for the
ten lowest states at d=80 nm and ��=3 meV. These are

obtained from a straightforward analytical integration �to
unity or zero� of the basis multiplied with the relevant weight
of each eigenvector component. The ground states are domi-
nantly described by combinations of two ground states of
each harmonic oscillator, representing one electron in each
well. The states of the excited band is seen to consist of
combinations of dipolar two-center states oriented parallel or
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FIG. 3. Energy spectrum as a function of d for the two lowest bands of states and for varying confinement strengths ��. Full lines:
Singlet states. Broken lines with crosses: Triplet states.

TABLE III. Energy levels �given in meV� and spin �in paren-
theses� of the 32 lowest states for d=80 nm and ��=3 meV,
grouped into five bands.

Band number Energy �spin�

1 7.3127�0� 7.3124�1�

2 10.253�0� 10.253�1� 10.313�0� 10.313�1�

10.376�0� 10.404�1� 10.507�0� 10.530�1�

3 11.240�0� 11.245�0�

4 12.413�1� 12.416�1� 12.417�1� 12.450�1�

5 13.205�0� 13.205�1� 13.253�0� 13.253�1�

13.313�0� 13.313�1� 13.331�0� 13.354�1�

13.377�0� 13.403�1� 13.425�0� 13.442�1�

13.508�0� 13.530�1� 13.515�0� 13.672�1�
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perpendicular to the interdot direction. Very little differences
in shape of the singlets vs triplets are observed. The energy
ordering is, however, different between the singlets and the
triplets.

The upbuilding of the two lowest bands at large d’s are
readily understood in terms of a Heitler-London ansatz: The

two states in the first band are constructed from the spatially
symmetric and antisymmetric combinations of single-
electron ground states in each well,

�±�r1,r2� 
 	00�r1L�	00�r2R� ± 	00�r2L�	00�r1R� , �22�

forming the so-called covalent states. The subscripts on the
vectors refer to particle number and well, i.e., riL=ri+

1
2d and

riR=ri−
1
2d, i=1,2. The energy of these two states is asymp-

totically given as E0=2��+ e2

4��r�0

1
d , since the exchange en-

ergy will vanish, and the wave function in each well be-
comes pointlike when observed from the other well. Within
this model, the contribution from the Coulomb energy
amounts to about 1.5 meV at 80 nm and the total energy
would then be 7.5 meV for a ��=3 meV double dot. Thus,
this simple model generates an energy within 3% of the CI
energy of 7.3 meV �see Table III�. Such a model of the two
lowest-energy states was also considered by Wensauer et
al.,9 where the energy expectation value was calculated using
perturbation theory.

Continuing the procedure of Eq. �22�, we now build up
the states in the second band from excited two-center har-
monic oscillator states, with one electron located in each dot,

	ij�r1L�	kl�r2R� , �23�

where one of i, j, k, and l is equal to 1 and the others zero.
These product states are combined to yield correctly symme-
trized wave functions, with even or odd parity. This gives
rise to totally eight different states, of which four are singlets
and four are triplets. For example, the first excited singlet
state in the energy spectrum, which has odd parity, would be

��r1,r2� 
 	10�r1L�	00�r2R� + 	00�r1L�	10�r2R�

+ 	10�r1R�	00�r2L� + 	00�r1R�	10�r2L� ,

�24�

with the energy asymptotically given by E=3��+ e2

4��r�0

1
d .

In Fig. 5, the CI one-electron probability density is ex-
posed in more detail for the first excited singlet state �left
column, second row� of Fig. 4. Also shown is the corre-
sponding one-electron density corresponding to the ansatz
state of Eq. �24�, as well as one-dimensional slices or condi-
tional densities11 of the respective wave functions. These are
produced by finding the maxima of the wave function and
evaluating it there for all but one degree of freedom. The two
curves in panels 3 and 4 depict one out of the four maxima in
the wave function, evaluated for both electrons. The overall
agreement between the model and the CI densities is in gen-
eral, very good. This is also the case for any of the other
states of the first excited band. We clearly see that the two
electrons indeed occupy separate wells. In addition, we ob-
serve in the CI figure a small probability for the electrons to
be situated in the same well, a feature not present in the
model figure.

In contrast to the two lowest bands, the third band con-
taining two singlet states has a high probability of having
both electrons in the same well, forming the so-called ionic
states. The energy of these states will, with increasing inter-
dot distance, converge toward the single-dot two-electron

FIG. 4. �Color online� CI single-particle electron probability
density distributions for the two lowest-energy bands at d=80 nm.
Singlet states are in the left column, triplets in the right. The states
are ordered with energies increasing from top to bottom.
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ground state. When considering higher bands, we see that the
situation becomes more complex which is due to the fact that
the states approach the cusp energy and are thus a complex
mixture of states with two electrons in a single well and one
electron in each well. At even higher energies far above the
cusp, the spectrum will gradually approach the level struc-
ture of a single harmonic oscillator.16

The present results can be compared to previous studies
with spin-density-functional theory �SDFT�.9 For larger dot
separations, the results obtained there differ from those pre-
sented here; the band structure found here cannot be inferred
from the results in Ref. 9, and, in addition, the SDFT calcu-
lation yields a triplet ground state for dot separations larger
than �45 nm while the present ground state is of the ex-
pected singlet symmetry for all distances. It is argued in Ref.
9 that the polarized ground state is an artifact of the self-
energy within the SDFT scheme, i.e., that it stems from the
unphysical interaction of a single electron with its own Cou-
lomb field. According to the results shown in Figs. 3 and 4 of
Ref. 9, this affects the long-range energies of a ��=3 meV
double dot at least on the 1 meV level. The approximate

exchange and correlation used in DFT calculations is appar-
ently not enough to ensure correct separation energies of the
two dots, and the fact that the band structure is not found in
Ref. 9 is thus probably due to this deficiency.

An interesting aspect is to what extent the present band
structure is general for all two-center potentials, and whether,
for example, quadratic or exponential double-well potentials
will also reproduce similar upbuilding. This is a relevant
issue with respect to the very simple level structure behind
the modeling applied by Petta et al.2

B. Structure with electromagnetic fields

The response of the electronic structure and dynamics to
magnetic fields has been studied in a number of recent
works.5,10,11,24 We show in Fig. 6 the lowest part of the en-
ergy spectrum as a function of magnetic-field strength for
three different values of d. The upper figure for d=0 shows
virtually identical results with those of Helle et al.11 and also
the singlet-triplet ground-state transition at around B=2 T,
which was pointed out by these authors. In addition, we note

CI: Model:

FIG. 5. �Color online� The CI one-electron probability density exposed in more detail for the state on the left column, second row of Fig.
4. Also shown is the corresponding one-electron density of the Heitler-London model. The lower panels show the conditional densities of
each electron and their positioning relative to the potential �dotted line�.

POPSUEVA et al. PHYSICAL REVIEW B 76, 035303 �2007�

035303-8



8.2 Structure of lateral two-electron quantum dot molecules in electromagnetic fields 71

the strong variation of the energy levels with magnetic-field
strength following from the competition between the linear
�Zeeman� and quadratic �diamagnetic� terms in Eq. �2�: For
strong enough field strengths, the diamagnetic term gives rise
to a linear increase in the energy as it modifies the effective
confinement strength �→��2+ 
eB / �2m*��2. At weak fields,
the Zeeman term dominates which effectively modifies each
state energy by e�B /2m*M. Thus, states with negative �posi-

tive� M quantum number decrease �increase� in energy with
increasing B field which, in total, leads to a series of
�avoided� crossings until the diamagnetic term becomes sig-
nificant.

In the middle and lower parts of the panel, we plot the
energy spectrum for d=30 and d=60 nm. At these distances,
the Zeeman term is less pronounced, since angular momen-
tum is not conserved. Each state consists of several angular
momentum components which contribute differently to the
energy and tend to wash out a strong dependence. However,
the states of the first excited band groups have a positive or
negative angular momentum expectation value. Thus, the
eight state bands split into two subbands each containing
four states. The band structure is, however, not destroyed by
the magnetic field, and thus, in some sense, magnetic effects
are less pronounced at large interdot distances than at small
distances. At higher field strengths, the diamagnetic term is
seen to cause an increase in energy for all levels, but level
ordering is determined by the Zeeman term.

Several recent experiments2,8 apply electric fields to guide
the electron loading into one of the dots as well as to steer
the electron between selected quantum states. In this context,
controlled dynamics requires understanding of the nature of
the time evolution of the quasiadiabatic states and potential
avoided crossings with respect to the switching times,24 as
well as various couplings to the environment, such as spin-
spin coupling between the electron spins and the �106

nuclear spins from the surrounding material, typically
GaAs.2

In Fig. 7, we display the energy spectrum as a function of
electric-field strength for an electric field directed along the
interdot axis. For all panels, we observe a nondegenerate
singlet state as ground state for large fields since the Pauli
principle prevents a two-electron one-center triplet ground
state. At d=0 �top panel�, the electric field is seen to only
shift the spectrum up or down, i.e., the energy differences
between states are not influenced by the electric field. At
larger interdot distances, the situation, in contrast to the mag-
netic case, becomes more complex. The bottom of both po-
tential wells will now be shifted spatially and changed in
energy. One will be lifted and shifted toward the origin,
while the other is lowered and shifted away from the origin,
depending on the sign of the electric field. When the electric
field becomes very strong, there will, in effect, be only one
well centered far away from the origin. Consequently, the
spectrum approaches that of two interacting electrons in a
single harmonic oscillator potential. This can be seen by
comparing the lowest panel in Fig. 7 with Fig. 3.

As an example, we plot in Fig. 8 the single-particle elec-
tron probability density for the lowest singlet state at d
=60 nm for selected field strengths. Around 	E 	
�−0.1 mV/nm �upper panel�, the electronic density distri-
bution is seen to be localized in one of the wells. At E
=−0.05 mV/nm �middle panel�, we see a small fraction of
the density occupying the second well. Finally �bottom�, a
fully delocalized two-center state is shown for E=0. The
transition from a one-well state to a two-center state goes
through a single or a series of avoided crossings. In experi-
ments where an initial electric field is applied to load two
electrons into a single-well ground state, followed by a fast
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FIG. 6. Energy spectrum as a function of B, for interacting
electrons, with d=0 nm �upper�, d=30 nm �middle�, and d
=60 nm �lower�. ��=3 meV in all panels. Full lines: Singlet states.
Full lines with crosses: Triplet states.
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switch of the field, there may thus be a sizable probability for
transfer from the lowest to the first excited singlet state while
the system traverses avoided crossings. The part of the sys-
tem which follows the ground state is shown by Petta et al.2

to mix strongly with the triplet state through spin-spin cou-
plings with the surrounding nuclei. By alternatively applying
electromagnetic switches which guide the system via diaba-
tic transitions, the singlet-triplet mixing may be suppressed.

IV. CONCLUDING REMARKS

In the present paper, we have developed a method for
diagonalizing the Schrödinger equation of two electrons in a
parabolically confined two-center quantum dot. The method
is verified by comparison with related basis-set and grid-
based calculations. The particular analytical properties of the
Cartesian basis method allow for rapid and accurate calcula-
tion of energy spectra of the quantum dot two-center system
with basis sizes above 50 000states.

Diagonalization of the Hamiltonian for increasing well
separation shows that above the degenerate singlet and triplet
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FIG. 7. Energy spectrum as a function of electric-field strength
E for the two interacting electrons with d=0 nm �top�, d=30 nm
�middle�, and d=60 nm �bottom�. The confinement strength ��

=3 meV in all panels. Full lines: Singlet states. Full lines with
crosses: Triplet states.

FIG. 8. �Color online� Single-particle electron probability den-
sity for three different electric-field strengths E=−0.08 mV/nm
�top�, E=−0.06 mV/nm �middle�, and E=0 �bottom�. The confine-
ment strength ��=3 meV, and d=60 nm.
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ground states, there is a narrow band of four singlet and four
triplet states. The energy spacing between the ground state
and the first excited band scales directly with the confine-
ment strength of each quantum well. From symmetry consid-
erations, this structure is expected for any two-dimensional
two-center potentials which are asymptotically spherical and
with similar relative strength of the electron-electron interac-
tion. Calculations of the energy levels for large interdot dis-
tances in the presence of magnetic fields show that this band
structure dominates for any magnetic-field strength. In con-
trast, an electric field parallel to the interdot direction results
in strong level mixing, and the transition from a localized

“ionic” state to a covalent state occurs in a narrow range of
electric-field strengths.
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