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Preface

This thesis is submitted for the degree of Philosophical Doctor in applied math-
ematics at the Department of Mathematics, University of Bergen, Norway. This
work started in August 2005 and is a part of the project Nonhydrostatic Ocean Cir-
culation Models founded by The Research Council of Norway through the MARE
programme grant 164501/S40. My working place has been at the Computational
Mathematical Unit (CMU), Bergen Center for Computational Science (BCCS) at
UNIFOB. My main supervisor has been Prof. Jarle Berntsen at the Mathematical
Department and my second supervisor Prof. Guttorm Alendal at CMU.

The main objective of this thesis has been to study the implementation of
nonhydrostatic pressure in numerical ocean models and the influence of nonhy-
drostatic pressure effects on physical phenomena in ocean and lakes. Focusing on
the processes involved in the generation, propagation, and degeneration of internal
waves, the influence of nonhydrostatic pressure with a varying grid resolution has
been studied. These studies may serve as a more general understanding of how
nonhydrostatic pressure effects may influence the results in a numerical ocean
model.

The thesis contains a general background in Part I and articles and reports in
Part II. In Part I, I have tried to set the main objectives of this thesis in a context of
the challenges that the humans, and more specific ocean scientists and numerical
modellers, are facing in the near future. Part II consists of focused studies of the
main objectives and are presented in two papers and one report,

Paper A: Numerical studies of wind forced internal waves with a nonhydrostatic
model. J. Bergh and J. Berntsen. Accepted for publication in Ocean
Dynamics, 2009.

Paper B: The surface boundary condition in nonhydrostatic ocean models. J.
Bergh and J. Berntsen. Under revision for publication in Ocean Dynamics,
2009.

Paper C: Numerical studies of nonhydrostatic pressure effects on wind forced
boundary layer dynamics. J. Bergh and J. Berntsen. BCCS Technical report
series, Report No.25, October 2009.

These papers have been written under supervision from, and in collaboration with,
Prof. Jarle Berntsen.
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Figure 1.1: Overlooking the ocean from a cave in Mosselbay, South Africa, where
findings from Humans indicate an early use of marine resources [McBrearty and
Stringer, 2007]. The foto is taken from the Mosselbay Archaeology Project, Ari-
zona State University.

1.1 The human and the ocean

Since the early stages in the human evolution, the ocean and ocean resources
have been essential. Exploiting marine resources are together with producing
complex technology and manipulating symbols all symptomatic of modern human
activity [McBrearty and Stringer, 2007]. During the Middle Stone Age, some
285 to 45 thousand years (kyr) ago, the modern human Homo sapiens evolved in
Africa. With the predominantly glacial stage in the period from 195 kyr ago to
130 kyr ago, the African continent was much cooler and drier. There are evidence
that humans expanded their diet to include marine resources during this period,
probably due to the tough inland climate [Marean et al., 2007]. The early Homo
sapiens was most probably dependent on sea food, rich on polyunsaturated fatty
acids, to develop a large, complex, metabolically expensive brain [Broadhurst
et al., 2002]. Also later, the human has been highly dependent on the prevailing
climate state and the related mean sea level of the world ocean. In the beginning
of the last ice age, around 50 kyr ago, the mean sea level of the world ocean was
much lower than today. The first Homo sapiens are believed to have migrated from
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the African continent during this period, crossing the Gate of Grief in the Red Sea
when the sea level was 70m lower than today. The slowing rate of the sea level
rise around 7000 years BP, following the last deglaciation, made it possible for the
early civilisations to settle in lowland coastal regions, river-lands, and estuaries.

Today the modern societies are focused around water resources and especially
in coastal areas. Approximately half of the worlds population live within 60km
from the coast and more than half of the 30 larges cities are situated at the coast.
With an accelerating world population and increasing urbanisation, the manage-
ment of the coastal land and sea areas are crucial for the future of humanity.

1.2 Climate change

The world is facing an indisputable climate change. The last IPCC (Intergovern-
mental Panel on Climate Change) report [Solomon et al., 2007] state that the total
temperature increase from 1850-1899 to 2001-2005 is 0.76◦C (0.57◦C to 0.95◦C)
and that the warming trend increases. The temperature in the second half of the
20th century was likely the highest in at least the past 1300 years. Observations
since 1961 show that the average temperature of the global ocean above 3000m
has increased and that the ocean is absorbing more than 80% of the heat added
to the climate system. Thermal expansion of the ocean, due to increased mean
temperature, together with melting glaciers lead to a sea level rise. The global sea
level rose at an average of 1.8mm (1.3mm to 2.3mm) per year over the period
from 1961 to 2003, accelerating over the last 10 years. The IPCC projections of
future climate change indicate a warming in the atmosphere of 0.1◦C to 0.2◦C
per decade for the next two decades. The projections also predict a sea level rise
at the end of the 21st century (2090-2099) in the range from 0.2m to 0.6m. The
projections of the sea level rise do not include rapidly dynamical changes in the
ice flow. Resent research indicate that dynamical thinning on the margins of the
Greenland and Antarctic ice sheets are extensive, see for instance Pritchard et al.
[2009]. Even if these processes are poorly understood, they have the potential
to accalerate the sea level rise predicted by the last IPCC report. With 10% of
the world population (634 million people) living in coastal regions at elevations
lower than 10m, the projections predicted by IPCC will have a dramatical im-
pact on the human population [FitzGerald et al., 2008]. Rising sea level lead to
flooding and salt intrusion of low-laying costal areas, but also increase the dam-
age of storm surges, tsunamis and extream tides. The largest impact may be in
developing countries with dense and poor populations in coastal areas, and for
some countries (e.g. Vietnam, Egypt and The Bahams) the consequences are even
potentially catastrophic [Dasgupta et al., 2007].
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1.3 The energy budget of the ocean

Quantifying the energetics of the general ocean circulation is a key component in
the understanding of the current climate system. The mechanically forcing by the
wind and the tides are transformed into both kinetic, but mainly, potential energy
in the large scale ocean circulation.

The meridional overturning circulation describes a major part of the ocean
circulation. Heated warm surface water at low latitudes are transported towards
higher latitudes. The water is mixed on the way and cooled in sub-polar re-
gions, where dense cold bottom water is formed through convection [Marshall
and Schott, 1999] in the North Atlantic and near Antarctica. The dense bottom
water spreads towards lower latitudes and forms the deep water in the abyssal
ocean.

The meridional overturning circulation has been a controversy in the scientific
community. Early studies refer to this circulation as the thermohaline circula-
tion or Sandström’s theorem [Kuhlbrodt, 2008]. Later the thermohaline forcing of
this circulation has been strongly criticised due to energy budget concerns [Munk,
1966, Munk and Wunsch, 1998, Wunsch and Ferrari, 2004]. These authors claim
that the large amount of energy needed to drive the circulation outrank thermoha-
line forcing.

It was stated by Munk and Wunsch [1998] that: ”Without deep mixing, the
ocean would turn...into a stagnant pool of cold salty water”. Assuming a constant
climate state, the ocean stratification and circulation can be seen as a statistically
steady state. The meridional overturning circulation and large eddy generation
”steal” energy from the large scale ocean circulation. The potential energy stored
in the stratified ocean is decreased. Energy is needed to mix deep dense water
through the pycnocline, in the interior of the ocean, to keep the steady state strat-
ification. The main agent, or maybe the only one, for mixing in the interior of the
ocean is the internal wave field [Wunsch and Ferrari, 2004].

Internal waves can be generated directly from wind forcing at the ocean sur-
face or indirect via fluctuations of the stratification and nonlinear interactions of
surface gravity waves. Also flow in the interior, currents, tidal or eddy generated,
can generate internal waves when interacting with either bottom topography in the
deep oceans or the rough topography in shelf seas. A lot of work has been done
since the statement in Munk and Wunsch [1998], in describing and quantifying
different sources of energy supply for internal mixing. Still today there is a de-
bate on the importance of thermohaline circulation [Huang et al., 2006, Kuhlbrodt,
2008, Hughes and Griffiths, 2008] and the importance of different sources for mix-
ing [Ivey et al., 2008]. The transportation of energy from large scale barotropic
eddies, via the internal wave field, to irreversible mixing, is suggested to be an
important source for diapycnal mixing in the interior of the ocean, even if this
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pathway of energy is still not fully understood [Ferrari and Wunsch, 2009]. There
are also questions concerning the importance of processes in the interior of the
ocean for the global heat transport [Boccaletti et al., 2005].

The lack of understanding of the generation mechanisms and the mixing pro-
cesses of the internal wave field is a disadvantage when the parametrisation of
mixing in global ocean models and coupled climate models is formulated. Run-
ning these models for a past or future climate scenario, the sources of internal
mixing in the ocean may be different than today, and the parametrisation a source
of error. The last IPPC report [Bindoff et al., 2007] conclude that there are large
variations in the circulation but no clear indication that the meridional overturn-
ing circulation in the Atlantic has changed over the modern instrumental record.
However, there are indications that the wind energy input to the world oceans has
significantly increased during the last two centuries [Huang et al., 2006]. The ki-
netic energy transformation from large geostrophic scales towards smaller scales
and the possibilities of either feedback to larger scales or the transformation into
irreversible mixing need to be further investigated [Ferrari and Wunsch, 2009].

1.4 Strategies in ocean science

Observing and measuring the ocean for a long time has revealed different meth-
ods to analyse physical processes in the ocean. Most of these methods can be
described as models, a mathematical description of the dynamics of the ocean.
Generally, models can be divided into theoretical and data-based models [Green,
2004]. The theoretical models are based on the principal physical processes in
the ocean and can be divided into process-based and hydrodynamic models. The
process-based models focus on a limited amount of physical processes and result
in a robust and controlled model. In the hydrodynamic models, the equations of
motion have to be solved and we need relevant simplifications to either solve the
equations analytically or numerically. Data-based models use statistics to model
a specific phenomena or area and may be connected to a theoretical model. In
the present thesis, a numerical ocean model that solves the equations of motion is
the main method applied for different problems. The results from the numerical
model will be compared to theory, measurements, and results from other numeri-
cal models.

1.5 Towards higher resolution

The available computer capacity together with the numerical models efficiency
limit the possible resolution in a numerical study of the ocean.
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Both within science studies and engineer related investigations there is a need
to use numerical ocean models in high resolution studies. Following the discus-
sion above, about the importance of diapycnal mixing in the overturning circula-
tion, high resolution modelling of these phenomena is necessary. First to under-
stand the processes involved and second to be able to parametrise these effects in
a model with a less dense grid resolution. Also with increasing demand in the
management of the coastal areas, high resolution studies of shelf seas, estuaries
and fjord systems are necessary in for instance environmental, construction and
pollution studies.

Most numerical ocean models that are used today were originally constructed
for studies with a horizontal grid scale of tens of kilometres. When applying
these models to studies with a grid scale of about 1km and less, smaller scale
physical phenomena and high frequency motions may be filtered out. Increasing
computer capacity in the near future will make it possible for ocean models to
be applied with higher resolution than today [Fringer, 2009]. Though, several
aspects concerning the simplifications done in the numerical ocean models have
to be reconsidered when applying these models in high resolution studies. Some
of these aspects are addressed in the present work.



Chapter 2

Numerical ocean models



10 Numerical ocean models

In this Chapter the general background for ocean models are presented. To
formulate useful hydrodynamic equations that are applicable to ocean situations,
it is common to apply different approximations, like the Boussinesq (including
incompressibility), hydrostatic, shallow ocean or rigid lid approximation [Gill,
1982, Kundu, 1990, Haidvogel and Beckmann, 1999, Griffies, 2004, Griffies and
Adcroft, 2008]. The applied approximations will limit the models capacity to
resolve physical processes and phenomena. The purpose of the model, for in-
stance climate, ocean circulation or coastal studies, set the range for the spatial
and temporal resolutions that have to be resolved, see Fig. 2.1. The focus in this
work is on the hydrostatic approximation and the introduction of nonhydrostatic
correction methods, and will be presented in Chapter 3.

2.1 Navier Stokes Equation

A short description of the Navier Stokes Equation will be given here, for a more
comprehensive derivation of the Navier Stokes equation see for instance Kundu
[1990]. The law of conservation of mass requires that an increase of mass within
a fixed volume equals the rate of inflow through the boundaries. This result in the
continuity equation that may be written

1
ρ

Dρ
Dt

+∇ ·u = 0 . (2.1)

where ρ is the density, D/Dt is the material derivative, and u = ui is the velocity
vector where the index i = 1,2,3 indicate the components in the three Cartesian
coordinate directions. If the density within the fixed volume may be regarded as
constant even if there are changes in the pressure, the fluid is called incompressible
and the continuity equation simplifies to

∇ ·u = 0 . (2.2)

The Navier Stokes equations describe the motion of a fluid and is the most
common starting point for any type of approach when studying physical processes
in fluids. With the assumption of a Newtonian fluid, incompressibility and small
temperature differences, the Navier Stokes equation of motion may be written in
vector form as

ρ
Du
Dt

=−∇p+ρg+μ∇2u , (2.3)

where p is the pressure, g is the gravitational acceleration, μ is the dynamic viscos-
ity, and ∇2u is the Laplacian of u. Together with Eq. 2.3, the continuity equation
(Eq. 2.2), conservation criteria, and information about boundary conditions form
a solvable set of equations.
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2.2 Boussinesq approximation

The Boussinesq approximation is valid in many type of fluid studies, and may be
summarised in two statements. First that the density changes in the fluid may be
neglected except when they are coupled to the gravitational acceleration. Second
that the properties of the fluid, such as the dynamic viscosity, thermal conduc-
tivity and specific heat, may be regarded as constants. These approximations are
described for an ocean by Gill [1982], Kundu [1990], Griffies [2004] and more
thoroughly for an atmospheric condition by Spiegel and Veronis [1960].

Assuming a static reference state with a constant density ρ0, the density and
the pressure may be written in the form of a reference and a deviation from the
reference state as ρ = ρ0+ρ′

respectively p = p0+ p
′
. When using this definition

in Eq. 2.3, removing the static reference state, −∇p0 = ρ0g, and divide by ρ0, the
term ρ′

/ρ0 will appear in the equation. This term may be regarded as small except
in the gravitational term. Further omitting the influence from the Earth’s rotation
(the Coriolis effect), the momentum equations under the Boussinesq approxima-
tion may be written in compressed form as

Du
Dt

=− 1
ρ0

∇ ·p+
ρ
ρ0

gk̂+ν∇2u , (2.4)

where k̂ is the unit vector in the vertical direction and ν = μ/ρ0 is the kinematic
viscosity. The Boussinesq approximation filter out sound and shock waves and
does not allow for large vertical scales of the flow that may create large changes
in density. A fluid parcel under the Boussinesq approximation maintains the same
volume, and without volume sources the volume of a Boussinesq ocean remains
constant. This may be regarded as a good quality in ocean models in general.
Though, for instance, the Boussinesq approximation fail to predict an increased
mean temperature effect on the sea surface height (steric effect), that may be an
important issue in climate studies [Griffies, 2004].

2.3 Earth Rotation

A traditional way to study the effect of the Earth’s rotation on a fluid, is to assume
a local Cartesian system (x,y,z) on a tangent plane at the surface of the Earth,
with the coordinates x eastward, y northward and z upward [Kundu, 1990]. The
related velocity components are (u,v,w). The influence of the angular velocity of
the Earth, Ω, in the local Cartesian system is called the Coriolis force and may be
written as

2Ω×u = 2Ω
(
î(wcosθ− vsinθ)+ ĵ (usinθ)+ k̂ (ucosθ)

)
(2.5)
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where î, ĵ, k̂ are the unit vectors in the x,y,z directions. The cos-term in the k̂ direc-
tion may be regarded as small compared to other terms in the vertical momentum
equation and with the assumption that w � v, the cos-term in the î direction may
also be neglected. The Coriolis parameter may then be defined as f = 2Ωsinθ
and only act in the horizontal plane, −v f in the î direction respectively f u in the
ĵ direction. Though, for instance on large scale studies close to the equator, the
cos-terms may not be regarded as small and the assumption fails. The assumption
discussed above is related to the hydrostatic approximation, where the horizontal
scales of motion are regarded as much larger then the vertical scales of motion,
see Chapter 3. This is further discussed in Marshall et al. [1997b], where a quasi-
hydrostatic ocean model is defined to include the cos-terms. This problem will
not be further discussed in the present work, even though it may be an important
aspect when formulating a nonhydrostatic ocean model.

2.4 Model types

The hydrodynamic equations and the approximations described above, will be
used to categorise different numerical models of fluid dynamics, see Fig. 2.1.

Figure 2.1: Schematic figure describing the length scales of some physical phe-
nomena, hydrostatic and nonhydrostatic physics, and the different types of numer-
ical models. The grey zone describe the transition from hydrostatic length scales
to nonhydrostatic length scales Marshall et al. [1997b].
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Within engineering studies of dynamical fluid systems, it is common to use
the Navier Stokes equation in Direct Numerical Simulation (DNS) models. When
using a DNS model for a turbulent fluid, as the ocean or the atmosphere, all tur-
bulent length scales have to be modelled down to the Kolmogorov length scale.
At the Kolmogorov microscale the turbulent energy is dissipated into heat using
molecular values of viscosity ν and thermal diffusivity κ. The Kolmogorov length
scale may be estimated to be in the order of a millimetre in the ocean [Kundu,
1990]. With the limiting factor of the computer capacity, it is only possible to
study very small spatial domains with a DNS model, in the order of 1m3 in a
three dimensional model.

The formulation of Large Eddy Simulation (LES) models is based on the self
similarity theory [Lesieur, 1997]. In a LES model, the large eddies in the turbulent
flow are solved for, while smaller eddies are assumed to be self-similar and a
turbulent model is applied to calculate the influence from the small eddies on the
large eddies. Deriving the LES from the Navier Stokes equation, see for instance
[Lesieur, 1997], new terms appear in the stress term (last term on the right hand
side of equation Eqn. 2.3). The new terms may be described by a subgrid scale
tensor such as

Ti j = uiu j −uiu j

(
uiu

′
j +u ju

′
i

)
−u′

iu
′
j , (2.6)

where u describe the resolved velocities and u
′
describe the unresolved, subgrid

scale fluctuations. The first term on the right hand side of Eqn. 2.6 may be taken
from the resolved velocity field, while the other terms have to be calculated in
a subgrid scale turbulent model. To make the assumption of self similarity, a
uniform grid scale of about 1m has to be applied in ocean conditions. A less
dense grid is needed in a LES model, compared to a DNS model, though the
formulation of a valid subgrid scale turbulent model is not trivial and complex
turbulent models may be demanding in computer capacity. An advantage with
the LES models is that the model reverts to DNS with high enough resolution
[Fringer, 2009].

For numerical studies on ocean scale, it is common to use the Reynolds Av-
eraged Navier Stokes equations (RANS). Based on the Reynolds averaged meth-
ods, the flow variables are divided into a mean part and a deviation from the mean
part, for the velocity u = u + ú, for the density ρ = ρ + ρ́, and for the pressure
p = p + ṕ. Averaging over all terms in the Navier Stokes equation, the Reynolds
stress, ρúiú j, appears in the averaged momentum equation. This is the rate of
mean momentum transfer by turbulent flow and may be interpreted as the influ-
ence from the local fluctuation on the mean motion. Compared to the subgrid
scale tensor in LES, Eqn. 2.6, only the last Reynolds stress term is included in
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the RANS equations [Lesieur, 1997]. In studies on ocean scale and in numeri-
cal ocean models, it is common to assume that the molecular stress term is much
smaller than the turbulent stress term, given by the Reynolds stresses. Though,
studying systems on small scales or over a long time, the molecular stress term
may be of importance and should be considered. In the two dimensional Carte-
sian coordinates (x,z, t), where x is in the horizontal direction, z is in the positive
upwards vertical direction, and t is the time, the Reynolds averaged momentum
equations using the Boussinesq approximation and assuming no rotational effects
may be written

∂U
∂t

+U
∂U
∂x

+W
∂U
∂z

=− 1
ρ0

∂p
∂x

+
∂
∂x

(AM
∂U
∂x

)+
∂
∂z
(KM

∂U
∂z

) , (2.7)

∂W
∂t

+U
∂W
∂x

+W
∂W
∂z

=− 1
ρ0

∂p
∂z

− gρ
ρ0

+
∂
∂x

(AM
∂W
∂x

)+
∂
∂z
(KM

∂W
∂z

) . (2.8)

In the equations above U and W are the horizontal and vertical velocity com-
ponents respectively. Together with the continuity equation, Eqn. (2.2), density
conservation equation, and values/models for the horizontal and vertical eddy vis-
cosity parameters, AM and KM respectively, and eddy diffusivity parameters, AH
and KH respectively, the set of equations form a solvable system. In the ocean it is
common to exchange the density conservation equation with conservation equa-
tion for salt and temperature together with an equation relating the density with
the pressure, salt and temperature (the equation of state).

2.5 Discretisation

To solve the hydrodynamic equations numerically, the equations have to be dis-
cretised on a grid system. The grid have to be specified in the three dimensional
space and the most intuitive way to describe the grid is in Cartesian coordinates
(x,z,y). Spatial descretisation methods are used to solve the equations within the
grid and temporal descretisation methods are applied to step the solution forward
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in time. Together with the descretisation methods, the applied grid size and time
steps further limit the possible temporal and spatial scales that can be resolved in
the model.

One way to characterise numerical ocean models, is by the choice of the ver-
tical coordinate. The most common vertical coordinates are shortly described
below, together with some advantages and disadvantages. Description of differ-
ent vertical and horizontal coordinates may be found in Haidvogel and Beckmann
[1999], Kantha and Clayson [2000], Griffies [2004]. During the last years also hy-
brid or generalised vertical coordinates are introduced, combining the advantages
with the different coordinates into varying coordinates in space [Griffies, 2004].

The z−coordinate models have a vertical coordinate that is fixed in space and
time. Often evenly spaced, but may also be focused to the vertical layer of in-
terest, for instance the surface layer. Non-Boussinesq and nonhydrostatic terms
can be included together with the full equation of state. The regular grid make the
z−coordinate simple to implement and to control for instance stability and conser-
vation. A disadvantage is the step wise representation of the bottom. Some of the
z-coordinate ocean models today try to solve this problem, by for instance intro-
ducing ”shaved cells”, that may highly improve the representation of the bottom
[Adcroft et al., 1997].

In a σ− or s−coordinate model a terrain following coordinate is introduced.
With a constant number of vertical coordinates, stretching from the static depth H
to the free surface η, the transformation from Cartesian-coordinates (x,y,z) to the
new bottom following σ−coordinate may be described by

σ =
z−η
H +η

, (2.9)

where the total depth D ≡ H+η gives a σ-coordinate ranging from σ = 0 at z = η
to σ = −1 at z = −H(x,y). The terrain following σ−coordinate is popular in
coastal ocean models, with its smooth representation of the bottom topography
and the advantage of increased resolution in shallow areas. It is also possible to
focus the grid at the boundary layers, in both the surface and the bottom. The
main disadvantage with a terrain following coordinate is the representation of the
internal pressure gradients. In areas with steep topography, the skewness in the
grid system may introduce pressure gradient errors. It is accordingly important to
choose accurate methods for the estimation of the internal pressure gradients in
such models, see for instance [Berntsen and Oey, 2009].

The isopycnal coordinate has favourably been used in large scale ocean studies
as climate studies. Under adiabatic and statically stable conditions, the density
will be a monotonic function in the vertical and a natural choice of coordinate.
The main advantage with the isopycnal coordinate is the Lagrangian treatment
of the vertical motion. Advection only have to be calculated for in the horizontal
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and numerical diffusion in the vertical is avoided. Moreover, the isopycnal models
have a good representation of the bottom and conserves volume of density classes.
Though, it is not possible to include nonhydrostatic dynamics or the full equation
of state and isopycnal models have problems to represent mixing processes in
boundary layers.

2.6 Subgrid scale closure

Physical processes that are not resolved within this grid system, subgrid scale pro-
cesses, have to be parametrised. The ocean fluid is in general turbulent [Thorpe,
2005], and this have to be accounted for when formulating the parametrisation.
All numerical models describe a mean value of the state of the fluid [Griffies,
2004], except fully resolving DNS. Statistical methods are then used to formulate
a turbulent subgrid scale closure. The subgrid scale parametrisation is a funda-
mental problem in numerical ocean models [Griffies, 2004] and have to be treated
carefully. Even if a physical phenomenon, such as eddies or internal waves, are
resolved, all dynamical processes of the phenomenon may not be resolved and the
unresolved physical processes have to be parametrised. This may be problematic
when trying to formulate general parametrisation models that are case indepen-
dent.

In ocean modelling, local closure schemes are prevalent. Depending on the
numerical model, the special case study, and the resolution, the closure schemes
vary from first order gradient theory models (as eddy coefficients) to more so-
phisticated higher order schemes based on turbulent theory (as the Smagorinsky
formulation or K − ε theory). From an energetic point of view, the subgrid scale
parametrisation of the Reynolds stresses in a RANS model, appear as a sink term
in the kinetic energy budget equation, energy is dissipated to subgrid scale turbu-
lence. This energy cascade is one way directed, from resolved physical processes
in the model to parametrised unresolved subgrid scale physical processes, and
prohibit feedback processes transporting energy from smaller scales back to larger
scales. In LES there may be interactions between resolved and unresolved scales,
and ”back scattering” from the subgrid scale model may be allowed [Davidson,
2009].

2.7 Mode splitting

The models capacity to capture a signal in the model, will be limited by the applied
spatial, Δx, and temporal, Δt, resolution.

To be able to resolve fast travelling surface gravity waves at the same time as
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small scale processes in the interior of the fluid, it is common in numerical ocean
models to apply mode splitting. The calculation is splitted into an external mode
and an internal mode. The depth averaged momentum equation are propagated
with a fast time step in the external mode and the full equations are calculated
with longer time steps capturing the internal mode. The external mode basically
solves the shallow water equations, where the depth averaged horizontal velocities
and the free surface are propagated in time. This is described for a σ−coordinate
model in Blumberg andMellor [1987]. With the mode splitting scheme, the model
is able to solve for a wider range of scales with the same cost in computer capacity.

Even if the idea behind the mode splitting is intuitive, the detailed implemen-
tation may differ substantially between models. The specific choice of algorithm
may affect the quality of the numerical results, see Ezer et al. [2002]. However,
from the numerical evidence so far it is difficult to identify a best approach. For a
more detailed description of mode splitting, see Kowalik and Murty [1993].

2.8 Boundary conditions

In numerical ocean models it is common to assume a no-flow condition at the
closed boundaries. At the free surface, wind effects may be introduced using drag
laws. The effects of bottom friction may also be parametrised through drag laws,
see for instance Blumberg and Mellor [1987].

The boundary conditions at open lateral boundaries require very careful treat-
ment. The user has to consider both incoming and outgoing signals and barotropic
and baroclinic processes may have to be treated differently. Numerical artifacts
may easily appear in the solution near open boundaries and there is accordingly
a large literature on the topic, suggesting practical solution techniques, see for
instance Engquist and Majda [1977], Garrett and Greenberg [1977], Røed and
Smedstad [1984], Martinsen and Engedahl [1987], Gartling [1990], Johnsen and
Lynch [1994], Guo and Zeng [1995].





Chapter 3

Nonhydrostatic pressure
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Most numerical ocean models today are hydrostatic. With increasing com-
puter power and with the introduction of multiprocessor capacity, today’s hydro-
static models are applied with higher and higher resolution. Important questions
to ask is then, when can we expect the hydrostatic approximation to fail, how
do we implement nonhydrostatic pressure effects, and how may nonhydrostatic
pressure effects influence the model results?

3.1 What is nonhydrostatic pressure

At a point in a fluid at rest, the pressure is the weight of the fluid above that point.
This is the hydrostatic pressure and form the base for the hydrostatic approxima-
tion. When the hydrostatic approximation is applied to the vertical momentum
equation, Eqn. 2.7, the acceleration and the eddy viscosity terms for the verti-
cal velocity component are assumed to be much smaller than the gravitational
acceleration term, and can thus be neglected. The hydrostatic approximation is a
common simplification in numerical ocean models, and makes the set of equations
considerably more efficient to solve. In the hydrostatic equations the vertical ve-
locity will be a diagnostic parameter and is calculated directly from the continuity
equation, Eqn. 2.2. When a fluid is in motion, the vertical pressure gradient is
also influenced by the vertical acceleration and friction, and in the following this
will be described as nonhydrostatic pressure effects.

To understand the physical background of the nonhydrostatic pressure, one
may go back to Bernoulli’s principle. Bernoulli’s principle relate the velocity and
the pressure in a fluid, and may be derived from the principle of energy conserva-
tion. In a barotropic and inviscid fluid Bernoulli stated that

p+
1
2

ρu2+ρgh = constant (3.1)

along a streamline in a steady flow, where h is the elevation. With the assumption
that the streamline follows a constant gravitational potential (ρgh = constant) and
defining p as the ”static pressure” and q = 1/2ρu2 as the ”dynamical pressure”,
then p+q = constant or

”static pressure” + ”dynamical pressure” = constant.

If q increase along that streamline, then p will decrease accordingly. In other
words, if the velocity increase along the streamline, then the pressure in the fluid
will decrease due to the ”dynamical pressure”. The ”dynamical pressure” can not
be described as a real pressure. The ”dynamical pressure” may rather be described
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as the decrease in the pressure due to velocities in the fluid. In a hydrostatic nu-
merical ocean model ”dynamical pressure” effects will be excluded and velocities
and advection of water have to be compensated for in the hydrostatic pressure.

To justify the hydrostatic approximation, one may perform a scale analysis on
the momentum equations [Gill, 1982, Marshall et al., 1997b]. The scale analysis
show that the validity of the hydrostatic approximation is directly proportional to
the ratio of the vertical (H) to the horizontal (L) length scales of the motion. In
large scale ocean studies, the horizontal scales of motion is much larger than the
vertical scales and the hydrostatic approximation is valid. In ocean studies with a
horizontal resolution less than 1−10km, the hydrostatic approximation may not
be valid and the influence of nonhydrostatic pressure effects have to be consid-
ered [Marshall et al., 1997b], see Fig. 2.1. In a stratified water mass, the vertical
scale of motion will further be dependent on the stability in the density stratifi-
cation. This stability may be described by the buoyancy period and in Marshall
et al. [1997b] it was stated that ”If the advective timescale is short relative to the
buoyancy period, the nonhydrostatic effects can not be neglected”.

There are many phenomena in the ocean where the nonhydrostatic pressure
effects are of importance. One of these phenomena, that is well studied during
the last years, is nonlinear internal waves. Internal waves are believed to play
an important role in the energy budget of the world oceans, and the nonlinear
form of internal waves may be more common than earlier believed. Nonlinear
internal waves have been found in many places in the world oceans [Apel et al.,
2006] and there are several numerical ocean studies that try to model these waves,
see for instance Legg and Adcroft [2003], Moum and Smyth [2006], Moum and
Nash [2008], Moum et al. [2008]. Negative buoyancy production in the surface,
due to cooling at high latitudes or evaporation at low latitudes, may cause deep
convection and vertical accelerations [Marshall and Schott, 1999]. Large scale
convection at high latitudes are believed to be important for the production of
deep water and to play a key role in the meridional over turning circulation. Other
phenomena that are connected to strong buoyancy forcing and nonlinear physical
processes are bottom density currents. Also bottom density currents are important
in the formation and transportation of dense bottom water at high latitudes, in
both the southern and northern hemisphere. Bottom density currents may also be
essential for the renewal of the stagnant bottom water in semi-enclosed oceans
and fjord systems [Stigebrandt, 1987, Arneborg et al., 2007]. There are several
numerical investigations of bottom density currents, see for instance Özgökmen
et al. [2006] and references herein. One may also find density driven flows at
the surface, in the form of gravity plumes generated by freshwater discharge from
large rivers. To capture the rotating head in the plume front and the generation
of nonlinear waves, nonhydrostatic pressure effects are essential, see for instance
Nash and Moum [2005], Orton and Jay [2005], Stashchuk and Vlasenko [2009],
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Pan and Jay [2009]. Front instabilities in the open ocean may be important for
the mixing of water masses and are studied in Mahadevan [2006], Mahadevan and
Tandon [2006]. There are many situations of super critical flows over topography
in the ocean, and these flows are connected to strong nonlinearities. This may be
due to strong forcing in sill regions in fjords and inlets [Farmer and Armi, 1999a,
Moum et al., 2003, Xing and Davies, 2006a,b, 2007, Berntsen et al., 2008], but
may also be due to strong tidal forcing over steep topography in the deep oceans
[Legg and Klymak, 2008].

To capture all the important features in the phenomena mentioned above, non-
hydrostatic pressure effects are essential.

3.2 Nonhydrostatic pressure correction methods

When solving for the total pressure in incompressible fluids, in for instance DNS
or LES models, it is common to apply fractional-step algorithms to implicitly
solve for a divergence free velocity field. In a first step advancing the momentum
equation without the non-divergence constraint and in a second step the divergent
part is removed to retain a divergence free fluid. The divergent part take the form
of a Poisson equation that has to be solved. Some of the methods to solve the
Poisson equation are presented and analysed in Armfield and Street [2002], and
classified as; projection methods, correction methods, and iterative methods. The
iterative methods are the only ones that may, in theory, give exact solutions to
the descretised Navier Stokes equation [Armfield and Street, 2002]. Though, the
iterative methods tend to be computational demanding and a level of accuracy is
often introduced to limit the number of iterations.

Most of the numerical ocean models used today are RANS type of models
built on a hydrostatic platform. Some of these models are well established and
have large user groups. When formulating a nonhydrostatic ocean model, it may
be beneficial to introduce nonhydrostatic capacities in these well established and
well tested hydrostatic models. For ocean scale applications, one may expect that
even if the fluid is influenced by nonhydrostatic pressure effects, the major part of
the total pressure field will still be hydrostatic. Taking advantage of this relation,
the pressure field may be decomposed into a hydrostatic, Ph, and a nonhydrostatic,
Pnh, part. The hydrostatic part includes the pressure from the surface elevation, Pη
and the internal pressure, Pint , so that Ph = Pη +Pint . The total pressure may be
described as

P(x,z, t) = Pη(x, t)+Pint(x,z, t)+Pnh(x,z, t), (3.2)

where Pη = gρ0η(x, t) and Pint = g
R 0

z ρ(x, ź, t)dź.
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When introducing nonhydrostatic pressure into these models, the concept of
the fractional-step methods, described above, are used to correct for nonhydro-
static pressure. The hydrostatic part of the models are used in a first step to cal-
culate a provisional hydrostatic velocity field (Ũ , Ṽ , W̃ ) and correction methods
are used in a second step to achieve a non-divergent nonhydrostatic velocity field
(U,V,W ). In the second step, momentum equations for the nonhydrostatic pres-
sure, Pnh, have to be solved together with the continuity equation, and may be
expressed in two dimensional Cartesian coordinates, (x,z, t), as

∂(U −Ũ)
∂t

= − 1
ρ0

∂Pnh

∂x
,

∂(W −W̃ )
∂t

= − 1
ρ0

∂Pnh

∂z
, (3.3)

∂U
∂x

+
∂W
∂z

= 0 .

In RANS models applied for ocean scale problems, the pressure split method
described above is much more efficient than to directly solve for the full three
dimensional pressure field [Kanarska and Maderich, 2003]. Several nonhydro-
static models are listed and categorised in Kanarska and Maderich [2003]. Some
of these models divide the pressure into a hydrostatic and a nonhydrostatic part,
and other solve for the full pressure. For ocean application, the numerical ocean
model should allow for a free surface and for baroclinicity. There would further
be an advantage to perform a mode split, described in Section 2.7, to be able to
calculate for a wider range of horizontal scales. Nonhydrostatic pressure effects
have been included in the MITgcmmodel [Marshall et al., 1997b,a]. The MITgcm
use z-coordinates in the vertical and spherical coordinates in the horizontal. The
Princeton Ocean Model (POM) has been applied with nonhydrostatic pressure ca-
pacity [Kanarska and Maderich, 2003]. Nonhydrostatic pressure effects have also
been introduced in the ROMS model [Kanarska et al., 2007]. The ROMS model
apply terrain following coordinates in the vertical and curve linear coordinates in
the horizontal. In recent years several numerical models with a unstructured grid
system have been developed. An unstructured grid model, designed for coastal
oceans and with nonhydrostatic pressure capacity is described in Fringer et al.
[2006].

In the present work the Bergen Ocean Model (BOM) with the capacity to
calculate nonhydrostatic pressure have been used. The BOM have a similar plat-
form as the POM, with terrain following coordinates in the vertical and a Carte-
sian regular grid in the horizontal [Mellor, 2003]. The implementation of non-
hydrostatic pressure in BOM follows the ideas with pressure correction meth-
ods presented in Casulli [1999], Marshall et al. [1997b], Kanarska and Maderich
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[2003]. Nonhydrostatic pressure was first introduced in BOM [Heggelund et al.,
2004] in a similar manner as in Kanarska and Maderich [2003], where the non-
hydrostatic pressure equations in Eqn. 3.4 are transformed into a σ−coordinate
system. This transformation complicate the equations, and it was suggested in
Berntsen and Furnes [2005] to calculate the nonhydrostatic pressure directly in
the σ−coordinate system. The solution methods in Berntsen and Furnes [2005]
have been compared to the solution methods in Kanarska and Maderich [2003] in
a recent work by Keilegavlen and Berntsen [2009].

3.3 Elliptic solver and boundary condition

Combining the momentum equations and the continuity equation for the nonhy-
drostatic pressure in Eqn. 3.4 above, an elliptic Poisson equation may be formu-
lated in Cartesian coordinates as

∂2Pnh

∂x2
+

∂2Pnh

∂z2
=

ρ0

Δt

(
∂Ũ
∂x

+
∂W̃
∂z

)
, (3.4)

where the nonhydrostatic pressure is driven by the velocity gradients in the provi-
sional velocity field. Different methods may be applied to solve the elliptic equa-
tion. In the present model iterative methods are applied, starting from the non-
hydrostatic pressure field from the last time step. A Successive Over-Relaxation
method (SOR) is applied to solve the elliptic equation [Wachspress, 1966]. In
most of the calculations in the present work a constant number of iterations are
performed. It has been tested that the numerical results are robust to an increase
in the number of iterations.

To solve the elliptic equation for the nonhydrostatic pressure, proper boundary
conditions are needed. Since no flow are allowed through the bottom and through
closed lateral boundaries, a zero pressure gradient condition towards the boundary
have to be applied here giving a homogeneous Neumann condition (∂Pnh/∂n = 0).
At open lateral boundaries, different boundary conditions may be applied, both
Neumann and Dirichlet condition, and will be dependent on the forcing and re-
laxation methods used at the open boundaries. At the free surface, two different
boundary conditions may be found in the literature. One may argue for a Dirichlet
condition, Pnh = 0at z = η, that will make sure that the total pressure becomes
equal to the atmospheric pressure at the free surface, since the hydrostatic pres-
sure will be zero at the free surface. In the present work we argue for a Neumann
condition for the nonhydrostatic pressure at the free surface. With a homogeneous
Neumann condition at the surface the nonhydrostatic pressure field will be diver-
gent free, and will not influence the free surface elevation. This is consistent with
the mode splitting idea, see Section 2.7, and is further discussed in Paper B.
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In this Chapter nonlinear internal waves will be presented, with the purpose to
give a background for a discussion on the importance of nonhydrostatic pressure
for this type of waves. A simple, weakly nonlinear theory for internal waves
is presented to show the differences between a hydrostatic and a nonhydrostatic
numerical ocean model.

4.1 General aspects of internal waves

Internal waves are common in all stratified fluids, oceans, lakes, and in coastal
brackish waters. Mechanical energy from an external source, as the wind or the
tide, is needed to start disturbances of the stratified water mass. There are many
types of internal waves, and there is a diverse literature on general wave and in-
ternal wave theory, see for instance Thorpe [1975], Garrett and Munk [1979], Gill
[1982], Kundu [1990], Pedlosky [2003], Helfrich and Melville [2006], Apel et al.
[2006].

In summertime the heating from the sun creates a well established warm sur-
face layer and a sharp thermocline is often found in oceans and in lakes. This
creates a system with a shallow surface layer and a deep bottom layer. In winter
time, enhanced mixing due to strong winds and storms can create deep mixing,
and in coastal areas and in shelf seas a pycnocline may be generated close to the
bottom. This creates a system with a thick surface layer and a thin bottom layer
[Moum et al., 2008]. Also in restricted systems, as fjords and inlets, it is common
to find a pycnocline that separates the well mixed surface layer from the stagnant
bottom layer. When a large freshwater discharge enters the ocean, a halocline will
separate the fresh surface water from the salt ocean water below.

To cover all aspects of internal waves, a theory of internal waves that stretch
from the large scale forcing mechanism, as tidal waves and weather systems with
length and time scales of hundreds of kilometres and days, down to the turbulent
dissipation scale, with length and time scales of millimetre and seconds, would
be necessary. This is not possible, so, experiments, measurements, and theories
usually cover parts of these length and time scales. Some of these aspects on
internal waves are discussed in Thorpe [1975].

4.2 Nonlinear internal waves

The theory of linear internal waves is well known and well studied. With modern
in situ and remote sensors a more detailed picture of the interior and the surface
of the ocean has revealed new knowledge of internal waves, and that nonlinear
internal waves may be a more pronounced phenomenon than was earlier believed
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[Jackson and Apel, 2002]. Nonlinear wave theory from the end of the 19th cen-
tury, in the 1870s by Boussinesq and Releigh and in 1895 by Korteweg and De
Wries, was reborn during the 1960s and 1970s and the interest and the knowledge
of nonlinear internal waves, and more specifically nonlinear internal waves of
soliton character, have been growing since, see for instance Helfrich and Melville
[2006], Apel et al. [2006], Grue [2006], Morozov [2006].

Nonlinear waves at the Origon Shelf are well studied during the last years,
in summertime as surface trapped waves and in winter time as bottom trapped
waves, see Moum et al. [2003], Klymak and Moum [2003], Moum and Smyth
[2006], Moum and Nash [2008], Moum et al. [2008]. Nonlinear internal waves
may also be generated at the sill in fjord systems as in the Knights Inlet [Farmer
and Armi, 1999a,b, Cummins et al., 2003] or in the Loch Etive [Inall et al., 2004].
There are also many places in the open ocean where strong tidal motions create
large amplitude solitary waves when passing over topography, for instance in the
South China Sea [Zhao et al., 2004, Lien et al., 2005, Klymak et al., 2006, Shaw
et al., 2009]. Most of the areas in the ocean where internal solitary waves are
found regularly are collected in Jackson and Apel [2002].

Lakes form a controlled volume of water, and may be easily accessible for
measurements. Several measurements and theoretical studies of internal waves in
lakes have been performed. Some aspects of the nonlinearity of these waves may
be found in Farmer [1978], Horn et al. [1986], Boegman et al. [2003], Hodges
et al. [2000].

There are several studies of internal waves in laboratory tank experiments.
In the laboratory one may repeat the experiments in a controlled environment,
and the influence from different initial conditions and strength of the forcing may
be detected. The tilted tank experiments presented in Horn et al. [1999, 2001,
2002] are well known and has inspired several similar studies. The energetics for
different wave types in this system is calculated and discussed in Boegman et al.
[2005]. A different approach with a shoaling single soliton wave is studied in
Michallet and Ivey [1999].

Numerical experiments of internal waves on laboratory scale have been per-
formed by for instance [Wadzuk and Hodges, 2004, Berntsen et al., 2006, Ka-
narska et al., 2007, Botelho et al., 2009, Keilegavlen and Berntsen, 2009]. Non-
linear effects of the internal tide at the Hebride shelf are studied in a numerical
ocean model in [Xing and Davies, 2001]. Several aspects of wind-induced in-
ternal waves are modelled in Davies and Xing [2004]. The aspects of energy
and mixing of shoaling internal waves are the subject in several numerical stud-
ies [Vlasenko and Hutter, 2002a,b, Bourgault and Kelley, 2003, Legg and Ad-
croft, 2003, Vlasenko and Stashchuk, 2007, Bourgault and Kelley, 2007, Bour-
gault et al., 2007, Shroyer et al., 2008, Thiem and Berntsen, 2009]. There are also
several numerical studies of the generation of nonlinear internal waves at the sill
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in fjords [Vlasenko and Hutter, 2001, Cummins et al., 2003, Lamb, 2004, Xing
and Davies, 2006a,b, 2007, Davies and Xing, 2007, Berntsen et al., 2008, 2009].

4.3 Weakly nonlinear theory

With the assumption of a two-layer system, theories may be developed that de-
scribe the generation, propagation and transformation of internal gravity waves.
With a depth and density in the upper layer, h1 and ρ1, and in the lower layer, h2
and ρ2, the phase speed of linear internal waves under the long wave approxima-
tion may be described by c0 =

√
g′H, where H = h1+ h2 is the total depth, and

g′ = g(ρ2−ρ1)/ρ2 is the reduced gravity.
A widely used theory for weakly nonlinear internal waves is the KdV

(Korteweg-de Vries) theory, describing the interface displacement ζ of a unidi-
rectional progressive wave. In the two-layer system described above, the KdV
equation may be written as

∂ζ
∂t

+ c0
∂ζ
∂x

+αζ
∂ζ
∂x

+β
∂3ζ
∂x3

= 0 , (4.1)

where α = 3/2c0(h1− h2)/h1h2 is the nonlinear parameter and β = c0h1h2/6 is
the nonhydrostatic dispersion parameter. The weakly nonlinearity assumption re-
strict α and β to be comparable and small. Without the two-layer assumption, the
parameters α and β take more general forms [Apel et al., 2006]. The KdV equa-
tion may be derived from the hydrodynamic equations under incompressibility
and the Boussinesq approximation or from the Boussinesq equations [Apel et al.,
2006]. A particular solution to Eqn. 4.1 is the solitary wave

ζ(x− c0t) = asech2
(

x− c0t
λ

)
, (4.2)

where a is the wave amplitude, and the phase speed c and the horizontal length
scale λ of the wave are given by

c = c0+
1
3

α , λ2 = 12
β

aα
. (4.3)

4.4 Basin scale waves

Performing laboratory experiments in a closed tank, analytical wave regimes
partly based on the KdV-theory were developed in Horn et al. [2001]. The regimes
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describe the degeneration of an initial basin scale standing wave into different
wave forms. The different regimes, ”damped linear waves”, ”solitary waves”,
”Kelvin-Helmholtz billows”, ”bores and billows”, and ”super critical flow”, are
restricted by the initial conditions.

For weak initial disturbances, the viscous damping is relatively large, and the
wave take the form of a damped linear wave. With moderate initial disturbances,
the nonlinearities are stronger and the wave initially take the form of an internal
surge and may later degenerate into a package of solitary waves. Initially the dis-
persion effects are small, and the wave may be described by the nonlinear and
non-dispersive wave equation, excluding the last term on the right hand side of
Eqn. 4.1. The strong nonlinearities force the wave to steepen under the balance
between the unsteady term ∂ζ/∂t and the nonlinear term αζ(∂ζ/∂x). A timescale
may be calculated for the initial disturbance of the interface to reach to a verti-
cal position, a steepening timescale Ts = L/αζ0 [Farmer, 1978, Horn et al., 1999,
2001, Boegman et al., 2005]. The wave dispersion becomes stronger closer to Ts,
and the full Eqn. 4.1 is now needed to describe the wave, and finally, the dis-
persion will partly balance the nonlinear steepening and the wave will degenerate
into a package of solitary waves.

Under the hydrostatic approximation, the wave dispersion represented by the
last term on the right hand side of Eqn. 4.1, will be absent [Horn et al., 1999,
Wadzuk and Hodges, 2004]. A hydrostatic numerical ocean model is not able
to represent the solitary waves, and the nonlinear steepening of the internal wave
must then be balanced by numerical or parametrised mixing [Hodges et al., 2006].
In a nonhydrostatic numerical model, the dispersion effects may be present. How-
ever, the strength of the nonhydrostatic pressure will also depend on the grid res-
olution, the numerical viscosity, and the subgrid scale parametrisation. Some of
these issues are described and discussed in Papers A and C.

4.5 Extended KdV theories

The KdV theory describes the development of a single nonlinear internal wave. In
a real situation, the wave motion is a combination of several wave signals on top
of each other. Trying to describe this, theories have been developed to extend the
KdV theory. One may include an extra cubic nonlinear term to the KdV equation,
Eqn. 4.1, to form the eKdV equation [Helfrich and Melville, 2006]. The eKdV
equation is able to give more wave solutions than the KdV equation, and a broad-
ening of the wave is possible. The broadened soliton wave form is common in
the ocean. More developed theories of the KdV type are found in the literature,
see for instance Grue et al. [1997, 2000], Apel et al. [2006], Helfrich and Melville
[2006]. These types of theories all describe a wave motion around the position of
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the undisturbed interface.

4.6 Solitary wave packages

In the ocean and in lakes it is more common to find packages of soliton waves
on top of a propagating front, with the depth of the interface being different be-
fore and after the passage of the wave package. These packages have the largest
wave amplitude in front and decreasing amplitude towards the end of the propa-
gating wave package. These wave packages may for instance be generated due to
a strong and short wind pulse in the ocean or in a lake. Advection of the surface
water generate downwelling or upwelling at the coast and large vertical displace-
ments of the stratified water masses. These large scale depressions or elevations,
respectively, may leave the coast in the form of an internal surge. If the nonlin-
earities are strong, the surge may develop into a package of solitary waves on top
of the surge. This type of solitary wave packages may be described as ”solibores”
[Apel et al., 2006].

Extending the KdV-theory with an Jacobian elliptic function cns(x), a theory to
describe the solibores are developed, and these waves are called ”cnoidal” waves.
Further including a periodic elliptic function, dns(x), a theory to describe the sit-
uation of solibores due to weakly nonlinear internal tide are described in Apel
[2003] and Apel et al. [2006], and these waves are accordingly named ”dnoidal”
waves.

4.7 Rotational effects

For mesoscale processes in the ocean, the influence of the Earth’s rotation be-
comes important. With the restriction of the wave motion to have a frequency in
between, but not too close to, the Coriolis frequency, f , and the Buoyancy fre-
quency, N, both the high and the low dispersion effects are assumed to be small
and a KdV type of theory including the Coriolis effects may be developed. This
theory may be called rotational modified KdV theory, or rKdV theory, and is
shortly described in Apel et al. [2006].
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5.1 Summary

Motions in the ocean stretch from large scale ocean circulation down to molec-
ular scale, and imply a range of scales from thousands of kilometres and years
down to millimetres and seconds. It is not possible to resolve all these scales in
one numerical model. In one end of the range of scales are climate and general
ocean circulation models, typically RANS models with the Boussinesq and the
hydrostatic approximation. These models have been used successfully in ocean
studies with grid scales down to a few kilometres. In the other end of the range
of scales are DNS models solving the Navier Stokes equations directly and need
a grid resolution on millimetre scale. The LES models are in between, but with
the assumption of self similarity a grid resolution on metre scale is needed for
these models. There are many important physical phenomena on kilometre scale,
and trying to study these phenomena in a numerical model one end up in the gap
between traditional ocean circulation models and engineer type of LES and DNS
models. When applying a traditional ocean circulation model for these problems,
a grid scale less than a kilometre is needed, and some of the basic simplifications
in the model may no longer be valid. There are several of the traditional simpli-
fications that are doubtful, but in the present work the focus is on the hydrostatic
approximation. By implementing nonhydrostatic pressure correction methods in
a RANS type of ocean model, the gap between the RANS models and the LES
models may be reduced, see Fig. 2.1.

5.2 Introduction to articles

The strength of the nonhydrostatic pressure and the related pressure gradients will
depend on the resolution in the numerical model. In Paper A the influence of
the nonhydrostatic pressure on the generation and propagation of wind induced
steepening internal waves are studied with a range of grid scales, from 1km down
to 62.5m. A simple form of the KdV equation is also presented in the paper
to describe the differences for a steepening internal wave in a hydrostatic and a
nonhydrostatic model. The numerical model results show that with high enough
resolution nonhydrostatic dispersion effects become important, as indicated by the
KdV theory, and the wave degenerates into a solitary wave package.

When introducing nonhydrostatic pressure into hydrostatic numerical ocean
models it is common to use pressure correction methods, that require the solution
of an elliptic equation for the nonhydrostatic pressure. Two different boundary
conditions at the free surface for the nonhydrostatic pressure are found in the
literature, a Neumann condition and a Dirichlet condition. In Paper B a mode
split σ−coordinate ocean model with pressure correction methods is used, and
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the two boundary conditions described above are applied in the model and tested
in three different experiments. With a Dirichlet condition at the free surface, the
velocity field will not be divergence free and the free surface elevation have to be
adjusted accordingly. In a mode split model, this may influence the solution of the
depth averaged momentum equation in the external time step. The influence of
the two boundary conditions on the results, will depend on the vertical resolution,
the difference between the internal and external time step, and the importance of
nonhydrostatic pressure in the surface layer. Some of these aspects are addressed
in Paper B, and it is argued that the appropriate surface boundary condition for
mode split ocean models is the Neumann condition.

With a horizontal resolution of 62.5m in Paper A the nonhydrostatic pressure
effects were too small to influence the internal wave during the generation phase.
One may expect that the strength of the nonhydrostatic pressure increase further
with higher resolution. In Paper C the same wind forcing is applied as in Paper
A. By introducing an open boundary at the western side, the size of the model
domain may be reduced, and the influence of nonhydrostatic pressure during the
generation phase is studied with higher resolution. The results show that the non-
hydrostatic pressure becomes strong enough with a horizontal grid size of 12.5m
to influence both the density and velocity fields. With this grid size, the solu-
tions are affected by the flow of energy towards the scales of Kelvin-Helmholtz
instabilities and wave like patterns appear near the lateral boundary.

5.3 Future work

In the present work the main focus has been on the influence of nonhydrostatic
pressure on internal waves, even though, there are still many aspects concerning
internal waves and nonhydrostatic pressure that need to be addressed. There are
also many other physical phenomena for which nonhydrostatic pressure effects are
essential. Some of these phenomena, like tidal flow over sills and constrictions,
have been studied with cross sectional models. Other phenomena, especially fully
three dimensional phenomena like vorticies, need more attention.

To be able to fully resolve the nonhydrostatic pressure, a grid resolution of
about 1m is needed, where the vertical and horizontal length scales of motion
are the same. It would be an advantage in the future, when designing new ex-
periments, to restrict the model domain so that an overall grid resolution of 1m
is possible. This approach, will off course limit the largest scales that can be re-
solved in the model, and hence not useful when studying some types of physical
phenomena.

One of the major challenges in numerical ocean modelling is to represent un-
resolved physical processes through subgrid scale parametrisation. The subgrid
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scale parametrisation used in RANS type of ocean models are not designed for
grid resolutions down to a metre.

The validity for these types of parametrisations has to be reconsidered in high
resolution nonhydrostatic studies. With higher resolution the difference between
the vertical and the horizontal scales of motion will be smaller. In hydrostatic
ocean models, it is common to separate the vertical and the horizontal subgrid
scale parametrisation. This may be problematic in a high resolution nonhydro-
static study. The formulation of subgrid scale parametrisation for these types of
studies need to be further investigated, and for this, ideas and influence from the
subgrid scale parametrisation in LES models may be used. In general, more high
resolution studies of nonhydrostatic small scale physical phenomena, may also
form a platform for further developments of subgrid scale parametrisations used
in larger scale models.

The parametrisation used in large scale RANS models are based on the as-
sumptions that are questionable and the parameters involved are typically uncer-
tain. The model outputs are accordingly often sensitive to the choice of sub-
grid scale scheme and/or the parameters involved. A way forward towards better
parametrisations may be to perform high resolution nonhydrostatic simulations of
a range of physical phenomena, and also to record the time mean model fields.
The exercise may be repeated with courser resolution hydrostatic RANS models
to investigate the quality of present parametrisations. Possible mismatches may
hopefully lead to improved parametrisations.
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