©2010 IEEE. Personal use of this material is permitted.

Permission from IEEE must be obtained for all other users, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted components of this work in
other works.

2010 Fifth International Conference on Internet and Web Applications and Services

The SHIP Validator: An Annotation-based Content-Validation Framework for Java
Applications

Federico Mancini, Dag Hovland, Khalid A. Mughal
Department of Informatics
University of Bergen
Bergen, Norway
{federico.mancini,dag.hoviand khalid.mughal} @ii.uib.no

Abstract—In this paper, we investigate the use of Java
annotations for software security purposes. In particular, we
implement a framework for content validation where the
validation tests are specified by annotations. This approach
allows to tag what properties to validate directly in the
application code and eliminates the need for external XML
configuration files. Furthermore, the testing code is still kept
separate from the application code, hence facilitating the
creation and reuse of custom tests. The main novelty of this
framework consists in the possibility of defining tests for
the validation of multiple and interdependent properties. The
flexibility and reusability of tests are also improved by allowing
composition and boolean expressions. The main result of the
paper is a flexible framework for content-validation based on
Java annotations.

Keywords-validation; annotations; java; content-validation

I. INTRODUCTION

The OWASP Top Ten Project [1] lists the lack of proper
input validation as the most prevalent cause of critical
software vulnerabilities. For this reason, it is important to
check that all input satisfies the criteria under which it is
safe to execute the program. As an example, take a Java [2]
program performing integer division. Integer division by 0 is
an illegal operation, resulting in a runtime exception. Hence
the value of the divisor should always be validated.

Carefully designing the application can alleviate problems
caused by incorrect input. However, this alone will not
prevent problems that might arise when a bad input is either
passed on to other subsystems like databases, or manipulated
and returned to the user.

Standard input validation mechanisms should make sure
that all input is validated for length, type, syntax, and
business rules before accepting the data to be displayed,
stored or used [1]. This task can be repetitive and tedious
for a programmer, and this is is the primary motive for
implementing frameworks for input validation (Commons
Validator [3], Struts 2 [4], Hibernate Validator [5] and
Heimdall [6]). Such frameworks make it easier to maintain
and execute the testing code by decoupling the application
logic from the validation logic.

For object-oriented languages like Java, the challenge is
to validate specific properties of an object representing the

978-0-7695-4022-1/10 $26.00 © 2010 IEEE
DOI 10.1109/ICIW.2010.26

122

input, without writing validation code in the object itself.
Historically, XML configuration files have been used to
achieve this separation of concerns, by explicitly storing the
names of the properties to be tested and that of the tests
to be performed. At runtime, reflection [7] or Servlet filters
(listener or interceptors) [4] would then used to actually run
the tests on the target methods.

An alternate solution based on annotations, which were
introduced in Java 5.0 [7], has gradually emerged. Ap-
proaches for input validation based on this new technology
are described in [8]-[10], and employed, for instance, by
Struts 2 [4] and Hibernate Validator [5].

Our approach is inspired by Heimdall [6], but adopts
annotations instead of XML configuration, and provides
more extensive and powerful tools for the creation of custom
validation tests. The reasons to prefer annotations over XML
configuration files have been well motivated in [9], and here
we show in practice how far annotations can be pushed for
input validation purposes. Although some technical solutions
we use are also found in [8]-[10], we offer a simpler and
more powerful way of creating custom tests, with focus
on reusability. Furthermore, we propose a way of defining
validation constraints over multiple properties of an object
simultaneously, rather than just single properties. This allows
the user to validate the relationship between interdependent
properties, which, to our knowledge, is not possible with any
other validation framework based on annotations or XML.
For this purpose we distinguish between property-tests and
cross-tests. A property-test is used for the validation of
a single object property (for instance, JavaBean properties
accessible through getter-methods), whereas a cross-test is
concerned with constraints involving multiple properties.

A full version of this paper with more technical de-
tails can be found at [11], while the latest version of its
implementation is available from [12]. The next section
shows a simple example of how annotations can be used
for validation. This running example is gradually extended
to show more advanced features of our framework. A more
formal description of how new annotations can be created
and used is given in Section III. Finally, we compare our
work to the other framework we mentioned previously in

IEEE
computer
® psouety

IBAN

BIC BICCODE

Account

Clearing-code AB1232342

Amount €/10000 J10 ¢

Pay international bill

Figure 1: Web form for international bank transfer.

this section, and draw some conclusions.

II. A RUNNING EXAMPLE

In this section, we introduce the running example used
throughout the paper, and show how annotations can be used
to define tests on single properties of an object.

We will use the web form for international money trans-
fers from a hypothetical Internet bank (see Figure 1). IBAN
(International Bank Account Number) is the standard for
identifying bank accounts internationally (not in USA).
Some countries have not adopted this standard, and for
money transfer to these countries, a special clearing code
is needed in combination with the normal account number
of the beneficiary. BIC (Bank Identifier Code), also known
as SWIFT. It is needed to identify the beneficiary’s bank
uniquely.

We assume that the object representing the form is created
in Java, and that each field in the web form is represented
by a property of this object. Fields where the user does
not enter a value, are in this example represented by the
null value. A partial implementation of this Java object is
shown in Figure 2. Here every annotation represents a test
to be run on the return value of the method it is applied to.
In our framework, annotations representing tests are called
validation-annotations. This categorization is further split
into property-annotations, which represent property-tests,
and cross-annotations, which represent cross-tests. All the
annotations in Figure 2 are property-annotations, i.e., they
involve checking a single specific property.

We use property-tests to check whether basic format-
ting rules are respected. For example, the annotation
@IntRange (min=0,max=10000) represents a test that
checks whether the value of amountEuro is non-negative
and not greater than 10000. The property-annotation
@IntRange (min=0,max=99) represents a test to check
whether amountCents is between 0 and 99. The property-
annotation @ValidateBIC represents a property-test for
BIC codes, and @Required means that the field cannot be
left empty.

The annotations only specify what tests should be run
on each value. To actually run the tests, an object must
be passed to a validator. The validator inspects the object
through reflection, extracts the annotations and the return

123

@ValidateBIC

@Required

public String getBIC()
{ return BIC; }

@IntRange (min=0,max=10000)
public Integer getAmountEuro ()
{ return amountEuro; }

@IntRange (min=0,max=99)
public Integer getAmountCents ()
{ return amountCents; }

Figure 2: Example code using the property-annotations to
test input from the web form in Figure 1.

@vValidation
@Retention (RetentionPolicy.RUNTIME)
@Target ({ElementType.ANNOTATION_TYPE,
ElementType .METHOD})
public @interface IntRange {
int min();
int max();
public static class Tester
implements IPropertyTester<IntRange,
Integer> {
public boolean runTest (IntRange r,
Integer v) {
&& v <= r.max());

return(v >= r.min ()

P}

Figure 3: Example of property-annotation.

values from the getter-methods, and invokes the correspond-
ing tests. This process is discussed in details in [11].

III. VALIDATION ANNOTATIONS AND TESTS

In this section we discuss the reasons for distinguishing
between property-tests and cross-tests, and provide details
of how they are implemented and used.

A. Property-annotations and Property-tests

Creating a property-annotation is fairly straightforward.
As an example we use the declaration of @IntRange
shown in Figure 3.

A fundamental part of the declaration is the meta-
annotation @Validation, which works as a marker. With-
out it, our framework would not be able to distinguish a
property-annotation from other annotations. There are other
solutions to this problem, but such marker-annotations are
a standard way to compensate for the lack of inheritance in
annotations [8]-[10].

The @Retention meta-annotation must be present
such that the property-annotation is accessible at
runtime. The annotation @Target has the wusual

public interface IPropertyTester
<A extends Annotation,I> {
public boolean runTest (A an,
throws ValidationException;

I o)

}

Figure 4: The interface for the classes implementing
property-tests.

meaning, and it will be clear in Sect. III-C why we
need ElementType.ANNOTATION_TYPE besides
ElementType.METHOD. The annotation declaration
itself is fairly standard and can be annotated with any
number of other annotations.

Finally, we require a public inner class which must
contain the code of the property-test associated with this
property-annotation. This class must implement the interface
shown in Figure 4 in order to ensure that it provides
the implementation of the method runTest (), which is
invoked by the framework to run the test. Another possible
approach for associating a test to an annotation is explained
in [8].

The test corresponding to the property-annotation
@IntRange is defined in the inner class Tester, as
shown in Figure 3. The method runTest () is called
by reflection and takes as parameters an instance of the
annotation and the object to test (that is, the return value of
the method). We allow only one inner class implementing
IPropertyTester in the annotation declaration.

1) Handling null values: Many validation frameworks
provide an annotation @Required which indicates that a
certain property should not be null [4]-[6]. However, no
annotation seems to be provided for handling a property that
can be null.

To understand why this might be useful, let us assume
that we allowed the field BIC in Figure 1 to be left empty
by the user, i.e., the method getBIC () in Figure 5 was
annotated with NotRequired instead. This means that
a null return value from the method getBIC () should
not lead to a NullPointerException being thrown
during the validation process. To achieve this, either the test
represented by @validateBIC must be able to correctly
handle a null value in this situation, or the framework
should prevent any test to be run when BIC has the value
null. In the first case the burden of treating this special case
is left to the programmer, who must consider the possibility
that any test he or she designs might be run on a null
value. However, tests are supposed to be reusable and cannot
account for all possible ways of treating a null value in
different situations. The same problem arises when, in the
absence of a @Requi red annotation, the framework should
decide how to interpret a null value, at the risk of masking
a possible error or causing one.

To avoid these problems, the

we provide

124

@Required
public String getBIC ()
{ return BIC; }

@ExactlyOneNull

@NotRequired

public String getIBAN()
{ return IBAN; }

@ExactlyOneNull

@A110rNoneNull

@NotRequired

public String getAccount ()
{ return account; }

@A110rNoneNull

@NotRequired

public String getClearingCode ()
{ return clearingCode; }

Figure 5: Examples of cross-annotations.

@NotRequired annotation, which can be used to
specify that a null return value is valid, and that in this
case no other tests should be run on the value. If neither
a @Required nor a @NotRequired annotation is
specified, the framework will simply run the other tests on
the method, even if the return value is null. Therefore, by
default, our framework does not give any special treatment
to null values, and the programmer can design reusable
tests, by handling a null value in an independent way. In
this setting, any NullPointerException will properly
signal a programming error.

B. Cross-annotations

Recall the specifications of international bank transfers
mentioned in Section II. All transfers require the BIC code
of the receiving bank, and in addition either the IBAN or
both clearing code and the account number. This means that
there is a mutual dependency between some fields of the
web form. Therefore, in order to check such constraints in
the corresponding object, it is not enough to consider the
return values of the involved methods independently. For this
purpose we introduce a new type of validation-annotation
which we have called cross-annotations. These allow a
programmer to create tests involving multiple properties of
an object, i.e., cross-tests.

In Figure 5, we extend the example shown in Figure
2 to show how it is possible to annotate the web form
object in order to enforce the constraints mentioned earlier.
Each cross-test is represented by a cross-annotation, which
is applied to all methods whose return values are involved in
the test. All annotations in the example are cross-annotations
with the exception of @Required and @NotRequired.

The property-annotations from Figure 2 are not shown in
order to keep the example simple.

The cross-test represented by @ExactlyOneNull,
which is applied to the return values of IBAN and
clearingCode, ensures that exactly one of them has not
been filled in the web form. Furthermore, the cross-test
represented by @A110rNoneNull makes sure that either
all or none of the methods marked with it return null.
Thus, we are able to check that either the IBAN is used, or
both the account number and the clearing-code are specified,
but not all three.

Cross-annotations can be declared in almost the same way
as property-annotations, as shown in Figure 6. Only the
marker-annotation, @CrossValidation, and the inter-
face of the inner test class, shown in Figure 7, are different.

@CrossValidation
public @interface Al110rNoneNull {
public static class Tester implements
ICrossTester<AllOrNoneNull, String> {
public boolean runTest (
All0OrNoneNull c,
ArrayList<String> v) {

P}

Figure 6: Example of cross-annotation declarations.

As can be seen in Figure 7, a cross-test takes as parameter
the corresponding cross-annotation and all the return values
involved in the test as a single ArrayList. This means
that the return values are not differentiated according to what
method they come from, hence limiting the type of cross-
tests that can be developed in the current framework. These
limitations are discussed in the next section.

C. Boolean composition

Another novelty of our approach is that we can combine
validation-annotations with boolean operators in order to
create new validation-annotations. These composed annota-
tions can be created by declaring a new validation-annotation
which is annotated with the validation-annotations we
want to compose. In addition, the special meta-annotation
@BoolTest can also be used in the composition. Its
single element is of type public enum BoolType{OR,

public interface ICrossTester
<A extends Annotation, V> {
public boolean runTest
(A a, ArrayList<v> v)
throws ValidationException;

}

Figure 7: The interface for cross-tests.

@Validation

@BoolTest (BoolType.AND)
@PatMatch ("\\w{8} |\\w{11l}")
@AdditionalTest

public @interface ValidateBIC{}

Figure 8: Definition of the annotation @ValidateBIC,
used in Figure 2.

@AmountCheck
public Integer getAmountEuro ()
{ return amountEuro; }

@AmountCheck
public Integer getAmountCents ()
{ return amountCents; }

Figure 9: Examples of cross-annotations.

AND, ALLFALSE}, with the usual semantics. By default,
specifying a list of annotations without the @BoolTest
annotation represents the conjunction of the corresponding
tests, thus BoolType .AND is not strictly necessary.

Figure 8 shows the declaration of the annotation
@validateBIC which we first introduced in
Figure 2. This annotation is created by composing
@PatMatch ("\\w{8} [\\w{11l}"), which is a
common annotation for string-matching tests, and the one
represented by @AdditionalTest, which represents
some other possible test that we do not specify here. Since
the annotation @BoolTest (BoolType.AND) is also
specified, the test represented by @ValidateBIC will
succeed only if both the tests represented by the two other
property-annotations succeed.

Boolean composition can also be applied with cross-
annotations. For example, if we in the web form above want
to check that the overall amount transferred is greater than
0.00, but not greater than 10000.00, we can use the cross-
annotation @AmountCheck as shown in Figure 9, since
the fields for Euros and cents are represented as different
properties in the web form object.

In Figure 10, we see that @AmountCheck is a com-
position of two other cross-annotations: @ SumMin (1) and
@MaxAmount. The first represents a test checking that the
sum of amountEuro and amountCents is greater than 0.
The second is in turn a composed cross-annotation, which
by checking that either one of the two values is smaller
than 1, or both are smaller than 10000, can guarantee that
the total amount they represent together is at most 10000.00
(the logical structure is shown in Figure 12). This example
also shows that composition is recursive. This allows the
encapsulation of a complicated validation policy into a
single annotation, thus improving readability, usage, and
reusability.

// MaxAmount declaration
@CrossValidation

@BoolTest (BoolType.OR)
@OneLessThan (1)

@AllLessThan (10000)

public @interface MaxAmount {}

//BAmountCheck declaration
@CrossValidation

@BoolTest (BoolType.AND)
@SumMin (1)

@MaxAmount

public @interface AmountCheck {}

Figure 10: Composition of cross-annotations.

Table I: Examples of each of the four types of tests.

Basic Tests Composed Tests
Property- @IntRange @vValidateBIC
Tests
Cross- @A110rNoneNull @AmountCheck
Tests

Now that we introduced composition, it might become
clearer why we imposed the limitations discussed in the
previous section on cross-tests. If we allowed elements in
cross-annotations which could be associated to a particular
return value, for instance to identify the method they came
from, composition would become more involved.

However, elements that are used to configure the test
represented by the annotation, as in @SumMin, are allowed.
Furthermore, since this parameter should be the same for
each instance of the cross-annotation appearing in the object,
it is a good practice to encapsulate the annotation with the
specific element value into a new cross-annotation without
any elements.

As a last observation, it might be convenient to use
existing property-annotations to create cross-annotations.
The reason is that the returned values involved in a cross-
test are not differentiated by the method that generated them,
and are often of the same type. The idea is that many cross-
tests only check how many of the returned values have a
certain property, or whether some combination, e.g., the sum,
the product, or the average, has a certain property. In other
words, either a single property-test is applied to a certain
combination of the return values, or a property-test is applied
to each return values and we count how many passed it.
Hence, a cross-annotation can be constructed by combining
property-annotations with special annotations that allow the
user to define either the amount of return values which has
to satisfy the property (all, none, at least n, exactly n),
or an operator to combine them (addition, multiplication,
concatenation, etc.). This has been implemented and more
details are available in [11].

126

:Application ‘ ‘ v:Validator ‘
L

getTéstResuIt() !

success:boolean

Figure 11: Sequence diagram of the validation process.

IV. VALIDATION SUMMARY

The technical implementation details of the framework
can be found in [11]. Here we give only a high level
description of the parts that the user interacts with.

In Figure 11, we show the sequence diagram of the
validation process as it is seen by the user. Only a few lines
of code needs to be inserted into the application in order
to use the framework. Namely, a new Validator object
has to be created, and its validation method validate ()
has to be invoked on an annotated object o to validate it. A
ValidationSummary object is returned, containing the
results of the validation tests for the object o.

A validation summary has a tree-like structure which
mimics the boolean composition of the validation-
annotations involved in the test (see figure 12). This is
necessary due to the presence of boolean operators, as
the failure of one single test is not enough anymore to
declare that a property failed the validation. Only the boolean
combination of the results of all partial tests can give the
correct final answer. Since the set of tests responsible for
the failure of the validation can be large and deeply nested,
it is also possible to print out the content of the validation
summary with the desired level of details, i.e., tree levels.
An example printout of a validation summary is shown in
Figure 13.

V. RELATED WORK

Mancini, Hovland, and Mughal [13] use the framework
presented in the present paper to study the challenges and
possibilities when using annotations for input validation.

There are other ways of tackling the input validation
problem, but they are fundamentally different from our
approach. For instance, there are static analysis tools [14]
which provide support for tainting [15], [16] or tools that
provide specific solutions for particular input validation
vulnerabilities like the AntiSamy project for XSS [17].

Our framework is designed to allow the user to easily
define and integrate custom validation tests in the applica-
tion. Replacing the XML configuration files with annotations
retains most of the advantages of having an external con-
figuration file, like decoupling of validation logic from the
application logic, and reusable tests. In addition, methods

©@AmountCheck

I
AND

(FAIL)

INPUT
Euro=10000
Cents=10

(PASS)

@MaxAmount (FAIL)

\

OR

T~

‘@OneLessThan (1)‘

‘@AllLessThan(lOOOO)

(FAIL)

(FAIL)

Figure 12: Diagram showing the tree structure of a ValidationSummary object containing the validation results of the
validation test corresponding to @AmountCheck on the input given in Figure 1.

The value "BICCODE" returned by
"getBIC ()" has not passed the
following property-test:
-Test: @ValidateBIC() because of:

| -Test: @PatMatch (value=\w{8} |\w{ll})

The following cross-tests have failed:
—-Test: @AmountCheck () because of:
|-Test: @MaxAmount () because of:
| -Test: @OnelLessThan (value=1)
|-Test: @AllLessThan(value=10000)
-Test: @A110rNoneNull ()
—-Test: @ExactlyOneNull () because of:
|-Test: @ExactlyNNull (value=1)

Figure 13: Printout of the ValidationSummary shown
in figure 12.

and classes do not need to be referred by string references
any more, which is very error prone and requires additional
maintenance. One disadvantage of switching to annotations,
might be that runtime changes are not possible anymore.
However, being forced to recompile after making changes
helps to ensure the type safety of the application.

Additional advantages of using annotations instead of
XML configuration files are discussed in Holmgren [9]
and Hookom [8]. Both papers also include some technical
solutions for using annotations to validate object properties,
but only provide some basic illustrative code, rather than a
fully functional framework. However, it seems like the ideas
in [8] are the starting point for the work in [10], on which
the the Hibernate Validator [5] is based.

Many basic technical solutions we use are similar to
those provided in [8] and [10]. For example, using special
meta-annotations as markers to allow the creation of custom
validation-annotations and the way of associating tests to
annotations. However, it must be said that these are standard

127

solutions when annotations are involved.

When it comes to running the actual validation, we are
close to the solutions proposed in [8], [10], which allow
complete decoupling between validation and application
code. In contrast, the solution in Holmgren involves inserting
extra code inside the method to be validated. Although this
approach allows tests on methods without return values, i.e.,
setter methods or methods with parameters, it makes the test
code and the application code more interdependent, which
is what we have tried to avoid.

Composition is also proposed in [10], but only conjunc-
tion of annotations is considered. In this case composition
is simply a way of collecting annotations together, not of
creating new constraints.

What is called a multi-valued constraint in [10], i.e., ap-
plying the same annotation with different element values to
the same property, can easily be achieved in our framework
by encapsulating each instance in another annotation as in
Figure 3.

Struts 2 [4] and Stripes [18] also provide validation
through annotations. Both frameworks offer a limited set of
standard annotations, with no possibility of creating custom
tests. As new annotations cannot be created, composition
is not possible and the only way to add custom tests is
to use a @CustomValidator annotation which takes as
argument the name of the test. This is then associated to
the corresponding class in an XML configuration file. In
other words, despite the use of annotations, classes are still
referenced by string names.

Most importantly, none of the mentioned related work
seems to consider the possibility of validating multiple prop-
erties. We consider our cross-annotations a natural extension
of validation-annotations which can add expressive power
to the validation-tests that the user can design. Besides,
we manage to keep most of the technicalities involved
in cross-validation hidden inside the framework, so that
there is almost no difference between property- and cross-
annotations from a user point of view, and usability is not

compromised.

Finally, most of these frameworks are mainly designed
to work with JavaBeans, and make strong assumptions
about the type of applications that can utilize them. Our
framework, as Heimdall, does not assume much about the
application, and should be easy to integrate with any Java
project.

VI. CONCLUSION AND FUTURE WORK

We have implemented a flexible content-validation frame-
work [12] based on Java annotations, which can easily
be integrated into existing applications. The main idea in
the design of this framework has been that it should be
easy to create libraries of custom validation-annotations,
and that these tests should be highly reusable. We have
tried to provide simple, yet powerful means for doing this,
for example, using boolean composition. Besides, we have
pushed the limits of annotations by allowing constraints
involving interdependent properties, which have not been
addressed in any work we are aware of.

For future work, we intend to extend the library of pre-
defined annotations by creating new tests aimed at specific
input validation vulnerabilities and improve the validation
summary to support specific queries.

REFERENCES

[1] (2009, May) OWASP Top Ten project. [On-
line]. Available: http://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project

[2] (2009, September) Java 6. Sun. [Online]. Available:
http://java.sun.com/javase/
[3] (2009, May) Commons validator. Apache. [Online].

Available: http://commons.apache.org/validator/
[4] (2009, May) Struts. [Online]. Available: http://struts.apache.
org
[5] (2009, September) Hibernate validator. Hibernate. [Online].
Available: https://www.hibernate.org/412.html
[6] L.-H. Netland, Y. Espelid, and K. A. Mughal, “A reflection-
based framework for content validation,” in ARES. IEEE
Computer Society, 2007, pp. 697-706.
[7]1 K. Arnold, J. Gosling, and D. Holmes, The Java Programming
Language, Fourth Edition. Addison-Wesley, 2006.
[8] J. Hookom, “Validating objects through metadata,” O’Reilly,
January 2005. [Online]. Available: http://www.onjava.com/

Ipt/a/5572

[9] A. Holmgren, “Using annotations to add validity
constraints to javabeans properties,” Sun, March
2005. [Online]. Available: http://java.sun.com/developer/

technical Articles/J2SE/constraints/annotations.html

128

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

E. Bernard and S. Peterson, “Jsr 303: Bean validation,” Bean
Validation Expert Group, March 2009. [Online]. Avail-
able: http://jcp.org/about]ava/communityprocess/pfd/jsr303/
index.html

D. Hovland, F. Mancini, and K. A. Mughal, “The SHIP
validator: An annotation-based content-validation framework
for java applications,” Department of Informatics, University
of Bergen, Tech. Rep. 389, September 2009.

——. (2010, February) SHIP validator. [Online]. Available:
http://shipvalidator.sourceforge.net

F. Mancini, D. Hovland, and K. A. Mughal, “Investigating the
limitations of java annotations for input validation,” in SecSE.
IEEE Computer Society, 2010, in press.

B. Chess and J. West, Secure programming with static anal-
ysis. Addison-Wesley Professional, 2007.

W. Pugh, “Jsr 305: Annotations for software defect
detection,” September 2006. [Online]. Available: http:
/ljcp.org/en/jsr/detail 2id=305

V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propa-
gation for java,” in ACSAC. IEEE Computer Society, 2005,
pp- 303-311.

(2009, May) OWASP AntiSamy project. OWASP. [On-
line]. Available: http://www.owasp.org/index.php/Category:
OWASP_AntiSamy_Project

(2010, February) Stripes framework. [Online]. Available:
http://www.stripesframework.org

