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Abstract

The ensemble Kalman filter (EnKF) is a Monte Carlo method for data assimilation
and assessment of uncertainties during reservoir characterization and performance
forecasting. The method is based on a low-rank approximation to the system co-
variance matrix calculated from an ensemble which may be orders of magnitude
smaller than the number of state variables. In practical applications, the ensemble
size has to be kept relatively small. This may lead to poor approximation of the
cross-covariance matrix, and sampling errors can result in spurious correlations and
incorrect changes in the state variables. Also, since the rank of the covariance ma-
trix cannot be larger than the number of ensemble members, the number of degrees
of freedom may be too low when a large number of measurements are assimilated,
such as with 4D seismic data. In this work, we have investigated the shortcomings of
a straightforward EnKF implementation for small ensemble size, relative to a large
number of measurements. This is done by considering a single update of a simple
linear model and comparing the EnKF update to the traditional Kalman filter (or
Kriging) solution, which in this case is exact. The quality of the EnKF update is
assessed by considering the mean and variance of the updated state variable, as
well as various error norms and the eigen-spectrum of the covariance matrix. Even
for this simple model, spurious long-range correlation, ensemble collapse, etc. are
clearly seen as the number of measurements increases for a given ensemble size. For
a traditional implementation of EnKF, the ensemble size have to be much larger
than the number of measurements to obtain an accurate solution, and the solution
gets worse when the measurement uncertainty is reduced.
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Introduction

The ensemble Kalman filter (EnKF) [3] has been increasingly popular in recent years
for updating reservoir simulation models, and the method has been introduced to the
petroleum engineering literature as a way to estimate uncertain reservoir properties and
states [10, 1]. Because of computational limitations, the ensemble size needs to be small
for practical field applications, and a straightforward approximation to the covariance
matrix may lead to severe problems like spurious correlations (causing changes in the
state variable in regions of no real influence) and rank deficiency/ensemble collapse.
The latter problem is most significant for problems with large amounts of independent
data, such as 4D seismic [1]. To avoid these problems, several approaches for covariance
localization have been suggested, see e.g. [6, 7, 5, 4]. Skjervheim et al. [11] apply a simple
local anaysis to assimilate 4D seismic data with the EnKF.

Here, we investigate the accuracy of the traditional covariance estimate with a large
number of measurements. No localization schemes are applied. We demonstrate that the
ensemble size has to be much larger than the number of measurements in order to obtain
an accurate solution, and that the problem becomes more severe when the measurement
uncertainty decreases, indicating that some kind of localization may have to be applied
more often than previously believed. First we give a brief presentation of the Kalman
filter (KF) and ensemble Kalman filter (EnKF). Then we investigate, using a simple
linear model, the relation between ensemble size, number of measurements, measurement
uncertainty, and the accuracy of the estimated covariance and updated state variable.
In our case, the KF update is the true reference case as for linear problems, KF is the
best approximation. We compare the performance of the EnKF update with the KF
update. An analysis of the eigenvalues and eigenvectors of the KF and EnKF covariance
matrices has also been performed in order to investigate the spurious correlation effect.

In the last section we summarize our results and present some concluding remarks.

Kalman Filter and Ensemble Kalman Filter

In 1960 the Kalman filter was developed for estimating the state of a discrete-time
controlled process governed by linear stochastic difference equations [8]. Let Θf ∈ Rn

represent the unobserved (forecast) state variable, and let d ∈ RNd denote a new set of
observations. The data and the state are related by the state-to-observation operator,
H. Using the Kalman filter formula, the updated (analyzed) state is

Θa = Θf + K(d − HΘf ), (1)

and the updated error covariance matrix is

Ca = (I − KH)Cf . (2)

Here I is the identity matrix, Cf is the prior model covariance matrix for Θ, and K is
the Kalman gain matrix given by

K = CfH(HCfHT + Cd)−1,

where Cd is the measurement error covariance matrix.
The EnKF assumes a sample of size Ne from the forecast distribution. We denote

the sample {Θf
k}. Then, given a forecast ensemble member Θf

k , the EnKF algorithm
generates a corresponding ensemble of synthetic data (by adding random perturbations,
εk to the data, d, by drawing from a normal distribution with mean zero and covariance
matrix Cd), and updates Θf

k according to

Θa
k = Θf

k + K(d + εk − HΘf
k). (3)
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Figure 1: Reference field

Parameter Name Value
System dimension, n 2500 (50 × 50 grid)
Model uncertainty, σ2

m 0.03
Variogram model Spherical
Correlation length 25 grid cells

Table 1: Input data

In EnKF a sample estimate of prior covariance, Cf based on {Θf
i } is used, and the

update step (3) is implemented by replacing K by a sample Kalman gain matrix, Ke.
The approximation of the analyzed error covariance matrix with mean state Θa can be
expressed as

Ca =
1

(Ne − 1)
{
(Θa

1 − Θa) . . . (Θa
Ne

− Θa)
}{

(Θa
1 − Θa) . . . (Θa

Ne
− Θa)

}T
. (4)

It is seen that the EnKF may be considered as a Gaussian simulation with Kriging
update. The method has been extended to solve the combined parameter and state
estimation problem by expanding the state vector to include also the unknown parame-
ters to be estimated like porosity or log-permeability in petroleum applications, see e.g.
Refs. [3, 1, 10].

If Cf is a consistent estimator of Cf , Slutzky’s theorem can be used to show that the
EnKf converges to Kalman filter as the ensemble size Ne approaches infinity, see e.g., [4].
However, for small Ne and large system dimension, Cf will likely be a poor estimate of
Cf , and the influence of sample variability in Cf will adversely affect the sample-based
EnKf update and hence, spurious correlation effect may occur.

Description of Synthetic Experiments

We have performed a systematic study of the validity on the standard EnKF update by
considering a single update of a very simple linear model. A “reference” model and a
“forecast” model is taken as two realizations of a Gaussian random field with mean zero
and covariance matrix Cf = σ2

m ×R, where σ2
m is model error variance. The correlation

matrix, R, is based on a sperical variogram. An example field is shown in Fig. 1. Then
measurements are taken from the reference model and used to update the forecast model
using both KF and EnKF. The problem then corresponds to a traditional, simple Kriging,
and H will contain only zero’s and one’s, with one’s at measurement locations and zero
elsewhere. The prior ensemble for EnKF is generated by adding realizations of the same
Gaussian field to the forecast model. The measurement perturbations are generated
from a Gaussian random field with mean zero and covariance matrix Cf = σ2

d × R. To
make sure that the measurements are consistent, the same correlation model was used
as for the model covariance. All the measurements are located in the lower left corner
of the grid for easier investigation of the long-range correlations. Input data are listed
in Table 1.

In order to quantify the numerical findings, we have compared the updated states
(equation no. 1 and 3) and updated covariance matrices (equation no. 2 and 4) for both
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Figure 2: Updated fields vs. Nd and Ne. σd = 0.001. The same color bar is used in all
plots

Kalman filtering and EnKF update using the root mean square (RMS) error norm

‖Θ‖rms =

√√√√ n∑
i=1

(
Θa(i) − Θa(i)

)
/n, (5)

and the Frobenius matrix norm

‖C‖frob =

√√√√ n∑
i=1

n∑
j=1

(
Ca(ij) − Ca(ij)2

)
/n2. (6)

Results

Fig. 2 delineates the degradation of the updated property fields with increased number of
measurements. The measurement error is kept constant equal to 0.001. Each column of
the figure show updated fields for a given value of Nd, where the first row shows the results
with Kalman filtering, and the other rows show the variation with Ne. Measurements
locations are marked with black dots. For Nd = 4, the updated field is reasonably
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Figure 3: Posterior variances vs. Nd and Ne. σd = 0.001. The same color bar is used in
all plots

accurate even with Ne = 50, which is considerably less than the “standard” ensemble
size, Ne = 100. However, the scenario starts to change when Nd increases. For Nd = 40,
we clearly see that the field far from the measurement locations has been incorrectly
updated due to spurious correlations. In general, based on these and other cases not
shown, we observe that the number of ensemble members has to be much larger (ten
times or more) than the number of measurements to avoid the spurious correlations and
obtain a good solution.

The posterior variances (given by the diagonal elements of the updated covariance)
are plotted in Fig. 3, similarly. Considering the Kalman filter variance, we see that,
as expected, there is very low uncertainty at the measurement locations. On the other
hand, the variance approaches the model uncertainty, which in this case is equal to
0.03, far from the measurement locations. With EnKF, the estimated variance around
the measurement locations seems OK, but far from the measuremts, again a very large
number of ensemble members are needed to obtain the correct variance. For smaller
ensemble size, the estimated variances are typically too small.

The relative RMS norm, i.e., the norm of the difference between the EnKF and KF
updates normalized with the KF update, is plotted versus the ensemble size, Ne, for an
increasing number of measurements, Nd, in Fig. 4(a). Here the values for small Ne is
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Figure 4: Relative Error Norms vs. ensemble size for different number of measurements,
σ2
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Figure 5: Eigen-spectrum of Covariance Matrices, Nd = 128

influenced by the random seed and should be disregarded. In accordance with Figs. 2
and 3, the RMS norm quickly approaches a very small value as we increase Ne when
the number of measurements is low, e.g., Nd = 1, 4. In the EnKF literature there has
been a considerable focus on the loss of rank which may occur when there are more
measurements than ensemble members (Nd ≥ Ne) [9, 3]. However, here we clearly see
that the problem with spurious correlations and an incaccurate update will occur for a
much lower number of measurements, and no clear transition in the accuracy is seen at
Ne = Nd in neither the updated fields, Fig. 2, nor the estimated variance, Fig. 3. When
Nd increases, a very large ensemble size (Ne 	 Nd) is needed to obtain a low relative
RMS value. For Nd = 128 and 256, the relative norm is still above 0.5 for an ensemble
size of 2500.

Fig. 4(b) shows the relative Frobenius norm of the difference between the updated
covariances matrix for Kalman filter and EnKF. Again, we see that a very large ensemble
is needed to reach convergence. However, as opposed to the RMS plot, the curves are not
sensitive to the number of measurements. The reason for this is not clear, but it indicates
that the Frobenius norm is not a good measure on the accuracy of the covariance matrix
estimate for the purpose of EnKF.

Fig. 5 shows the eigen-spectrum of the covariance matrix. The largest 15 eigenvalues
are plotted in Fig. 6. Investigations have been performed with all the cases Nd =
1, 4, 40, 64, 128, 256, but we report here the case with Nd = 128 as all other cases show
the similar pattern of results.

Fig. 5 clearly shows how the smaller eigenvalues deviates from the exact spectrum
and drops to zero (from Eq. 4 it is clear that the rank cannot be larger than Ne−1). The
low rank approximation to the covariance matrix results in a reduction of variance for
EnKF, insufficient projection of the variance in the direction of the trailing eigenvectors,
and a reducion of the search space of the model parameters. This may lead to poor
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Figure 6: 15 largest eigenvalues, Nd = 128
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Figure 7: Relative Error Norms vs. ensemble size for different measurement error, Nd =
128.

parameter estimation and potentially filter divergence [2]. As expected, the approximate
spectrum approaches the true spectrum when the ensemble size increase. The long-range
correlations are determined by the largest eigenvector-eigenvalue pairs. It is interesting to
note, however, that although the largest eigenvalues are well approximated for Ne = 250,
spurious long-range correlations are still cleary seen in the corresponding plot of Figs. 2
and 3. Although not shown, we have also checked the eigenvectors, and also the largest
eigenvectors seem to be well approximated in this case.

Fig. 7 shows the relative RMS error and the associated relative Frobenius matrix
norm of the updated covariance matrix vs. ensemble size for different value of the
measurement error. We report here only the case with Nd = 128 as the other cases
show almost similar trends in result. As expected, the error is larger for smaller σ2

d, and
again a very large ensemble is needed to reach a convergence of the RMS. Note that the
behavior of the Frobenius norm is opposite to the RMS plot, i.e., the smaller the σ2

d, the
larger the Frobenius norm, again indicating that this norm is not a good measure of the
accuracy of the covariance matrix with respect to EnKF update.

Fig. 8 is intended to show the ensemble collapse effect with small measurement un-
certainty. The top row of the each of the sub-plots shows the ensemble of property
estimates in a row of grid cells far from the measurement locations; the bottom row
shows estimates in a row of grid cells through the measurement locations. Also we have
plotted in each case the true Kalman filter update (red line) along with the ensemble
mean (green line). We see that as the measurement error is reduced (for a given ensemble
size), all the ensemble members tend to collapse into a single solution with almost no
spread, i.e., no random variation at all. This situation may be avoided by increasing the
ensemble size. However, we see that by increasing σ2

d, we may retain the variability of
the ensemble members and still obtain a reasonably good estimate of the mean. This
shows that ensemble collapse can be avoided if we have large enough σ2

d. Although the
estimated variance will be incorrect, the mean may still be OK.
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Figure 8: Ensemble Members on Grids: Nd = 128, Ne = 100, Exp. 2

Concluding Remarks

We have performed a series of numerical experiments with a simple, linear model in
order to investigate the validity of the straightforward EnKF algorithm with an increased
number of measurements. All the experiments clearly demonstrated that EnKF solution
gets worse with increased number of measurements and Ne 	 Nd is required for an
accurate solution. Spurious, long range correlations are cleary seen when the number
of measurements increases. Also ensemble collapse is demonstrated in cases with small
measurement uncertainty.
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