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Executive Summary

When it comes to non-trivial networked computer systems, bulletproof security is very
hard to achieve. Over a system’s lifetime new security risks are likely to emerge from e.g.
newly discovered classes of vulnerabilities or the arrival of new threat agents. Given the
dynamic environment in which computer systems are deployed, continuous evaluations
and adjustments are wiser than one-shot efforts for perfection. Security risk management
focuses on assessing and treating security risks against computer systems. In this thesis,
elements from risk management are applied to two real-world systems to identify, evaluate,
and mitigate risks. One of the pinpointed weaknesses is studied in-depth to produce an
exploit against the affected system. In addition, approaches to handle common software
security problems are described.

iii






Acknowledgements

I sincerely thank my supervisor, guru, and friend Professor Kjell Jgrgen Hole for truly
remarkable guidance over the last five years. It has been a privilege to work with you
and your excellent team of researchers in applied computer security. I extend my deepest
gratitude for the all the hard work you have done over these years, and wish you the best
for the future. Many thanks to André N. Klingsheim. I have cherished our joint ventures,
and look forward to turn our great teamwork into a profitable business. Great things
happen when we put our minds together. A big thank you to Yngve Espelid for close
collaboration over the last five years. It has been an outstanding pleasure to work with
you. You have special talent for making and breaking software. You are also very good
at chugging Foggy Bottom Ales. I also thank Khalid Azim Mughal for encouraging and
helpful advice during my PhD studies. Thank you to former and current members of the
NoWires Research Group. I will definitely miss our monthly gatherings. I would also like
to thank co-authors Thomas Tjgstheim and Vebjgrn Moen. In addition, I thank mom
for weekly meals and support; dad for both stressing the importance of a solid education
and sweeping the way for a member of the “curling generation”; my brother for all the
unconditional help; and Mike for adopting and housing a total stranger back in 1997.
In closing, I would like to thank my common-law spouse Kristine for her love, patience,
empathy, and support. You mean the world to me.






Assessing and Mitigating Risks in
Computer Systems






Introduction

Over the last years, a criminal revolution has taken place in cyberspace. Online criminals
now employ basic economic concepts to develop their fraudulent businesses. Malicious
hackers rely on techniques such as specialization of goods and services, examples include
phishermen who create fake websites and botnet herders who manage large collections of
compromised computers; outsourcing of production, exemplified by the growth of auto-
mated crimeware tools; multivariate pricing, best illustrated by credit card fraud schemes,
where factors such as issuing bank, geographic location, and the credit card’s rareness
determine its value; and bulk pricing, demonstrated through offerings of large collections
of e-mail addresses and credit card numbers to discount prices [1, 2].

Secure Computer Systems

The production of secure networked computer systems is a difficult undertaking. A striking
difference from traditional engineering disciplines is the presence of skilled and creative
attackers, who relentlessly try to break systems. Other factors that add to the challenge
of creating secure computer systems include the trinity of trouble [3]:

e The growing connectivity of computers and software. The ongoing push to publish
systems on the Internet results in increased risks, as adversaries find it easier to
launch attacks;

e the increasing degree of program extensibility results in flexible software that can
swiftly accommodate new business needs, but also open up for unwanted malicious
extensions; and

e the rising complexity of computer systems. More lines of code translates to a higher
probability of introducing vulnerabilities.

Systems fail for a number of reasons. In [4], Anderson argues that cryptosystems
fail more often because of implementation faults and managerial issues than because of
insufficient cryptographic primitives. In the case of software security problems, recent
numbers show a 50/50 split between implementation bugs and design flaws [5]. A bug is
an implementation-level programming mistake that most often can be easily fixed. Buffer
overflows are bugs that can usually be removed by introducing proper array bounds check-
ing. A flaw is a weakness introduced at the design-level that cannot normally be fixed
through simple adjustments to the program code. A system redesign is often needed to
remove flaws. Whereas many bugs can be identified by automated tools, finding flaws
typically require manual inspection by trained professionals.

It is widely recognized that the cost of fixing defects increases with each new stage
in the Software Development Life Cycle (SDLC). Studies show that a flaw left unfixed in
the design phase can become more than ten times as expensive to remove during system
maintenance [5]. This suggests that companies are wise to have a strong focus on detecting



and resolving security problems as early as possible in the development process. As a
consequence, identifying design flaws is more attractive from a cost-saving perspective
than discovering implementation bugs.

Security Risk Management

Risk management of system architecture and design has shown great promise in finding
and removing flaws. At Microsoft, this technique has been identified as a critical success
factor for the company’s strides in software security [6]. Risk management involves as-
sessment and treatment. In the risk assessment phase, the risk management team creates
an overview of the system, identifies system threats and vulnerabilities, and evaluates
and ranks threat/vulnerability pairs. The risk treatment phase outlines steps to mitigate
unacceptable risks.

Overview

This thesis consists of a topic introduction and seven papers. Two papers use elements
from risk management of real-world systems to identify and handle system design flaws.
Two additional papers explore a Man-in-the-Middle (MitM)! vulnerability identified in the
risk analysis of the Norwegian banking industry’s newest Internet banking system, called
BankID. One paper presents a pattern for input validation, which enable newcomers to
computer security to quickly understand the basics of this prevalent form of defect. The
two last papers give accounts of the implementation of two security software prototypes.

The rest of the introduction is organized as follows: first, key concepts used throughout
the dissertation are developed; then an overview of risk management in computer security
is given; next is a discussion on trust and its relationship to risk; followed by summaries
of the seven papers in the dissertation; then some brief comments on the societal impact
of the work in this thesis are made; in closing, some remarks on possible future research
are given.

Computer Security

A computer system is the collection of hardware, software, information, and people that an
organization make use of to carry out computing tasks [7]. Computer security concerns the
building of computer systems that continue to function under malice, error, or mischance
[8]. Combined, these definitions hint at the large challenges involved in making secure
systems. Firstly, the broad scope significantly adds to the problem of creating secure
computer systems. Making secure software is a hard problem in itself, but does not
solve the computer security problem alone. Phishing—a scam that tricks end users into
revealing their secret credentials— is a form of attack that deceives the human component
of a system, and cannot be dealt with exclusively in software. Secondly, a thorough
treatment of computer security requires expertise from many disciplines. Examples include
lawyers who can help to ensure that legal requirements are understood and met; economists
who can aid in analyzing and shifting the financial incentives for potential attackers; and
cryptographers who can assist in safe use of cryptographic primitives.

LMiddleperson’ and ‘interposition’ are politically correct terms that refer to the same class of vulnera-
bilities. Published papers in this dissertation use the MitM phrase, and it will therefore be used throughout
the text for consistency.
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Figure 1: Security best practices in the SDLC

In “The Protection of Information in Computer Systems” [9], Salzer and Schroeder de-
scribe security as techniques that control who can use or modify information in a computer
system. In particular, categories for security violations include unauthorized:

e information release,
e information modification, and

e denial of use.

The authors go on to argue that protecting a computer system against security vi-
olations is a difficult undertaking, and that no complete method exists that allows the
construction of secure large general-purpose systems. Instead, they point to eight design
principles to guide developers in creating more secure systems. Examples include keeping
the design as simple as possible, a warning against believing that holding the design secret
will make a system secure, and a recommendation in favor of intuitive and easy to use
interfaces.

Today, over 30 years later, we still rely on best practices when developing all but
the simplest systems. Introductory textbooks in computer security all describe the three
cornerstones of security: confidentiality, integrity, and availability, that cover the same
ground as the three previously described security violations. These are not independent
concepts, as they sometimes exclude one another, and therefore must be carefully balanced.
As an example, encrypted information will only be available to those who possess the
secret(s) needed to decrypt that data. A number of security services have been developed
to realize and extend the three fundamental goals of security. In particular, these concepts
are central in this thesis: Authentication is the process of establishing an understood level
of confidence in the truth of some claim; and non-repudiation provides protection against
someone that falsely denies that a communication took place [10, 11].

Software Security

Software security is the idea of engineering software that remains dependable under ma-
licious attacks [5]. Current methodologies for creating secure software include Microsoft’s
Trustworthy Computing Security Development Lifecycle (SDL) [12], the Open Web Ap-
plication Security Project’s (OWASP) Comprehensive, Lightweight Application Security
Process (CLASP) [13], and McGraw’s software security touchpoints [5]. Fig. 1 summa-
rizes common security best practices shared by the three approaches. The labeled arrows
denote the typical stages of software development, while the best practices are described
in text. Fig. 1 does not favor any particular development methodology, it simply captures



a relationship, depicted with lines, between best practices and the stage of development
where they typically occur.

The security requirements best practice from Fig. 1 involves identifying and planning
security features demanded by the customer, as well as incorporating requirements man-
dated by industry standards and regulations. Risk analysis concerns pinpointing and
assessing weaknesses that could potentially be exploited. The next section discusses this
activity in detail. Static analysis involves using tools to locate software bugs. 'Findbugs’
is one such tool developed to inspect Java source code [14]. Code review entails manual
and dynamic code inspection. The first involves using programmers to review the code
by hand, while the latter relies on automated tools to check the behavior of executing
code. The runtime functioning of applications that use the HTTP(S) protocols can be
examined in the "Webscarab’ framework [15]. Penetration testing seeks to break software
by simulating attacks on the system. Different approaches exist, ranging from black box
testing, in which testers are told to evaluate the system from an external point of view; to
white box testing, in which the hired guns get detailed system information. The release
review seeks to determine if the software is ready to be delivered to customers. Security
response is about planning for failure by deciding how to gather and handle reported soft-
ware weaknesses in the future. The constant evolution of threats and vulnerabilities will
most likely require actions to improve the security of the system after release.

In applying the security best practices, external review can be a useful principle. This
practice entails using people outside the development team to assess deliverables from
the SDLC. Microsoft relies on a central security team that conducts release reviews and
continuously improves the individual security best practices.

Security challenges

A report addressed to the US President [16] in 2005, pointed out a shortage of security
researchers and practicians in the US, and called for urgent measures to remedy the situ-
ation. Elements in the call to arms were increased spending on cyber security education
and larger emphasis on technology transfer to the private sector. Inspired by this challenge
and having experienced the difficulties involved in engineering secure server-client systems
in Java, we created a prototype aiming to reduce the making of secure networking code in
Java to a matter of configuration. The thought behind the project was to make it easier
for Java developers to create more secure applications. Our effort is described in Paper
VI in this thesis [17].

According to OWASP, the most prevalent web application vulnerability in 2004 was
unvalidated input [18]. Frequent weaknesses at the time included SQL injection and Cross-
site Scripting (XSS) attacks. Successful exploits alter application behavior by forcing a
parser context switch, after which metacharacters can be supplied to make a program
behave in unintended ways [19]. These attacks can be defended against through inspec-
tion and filtering of input and output passed to subsystems. Paper V and VII in this
dissertation address the validation problem [20, 21].

Security Patterns

A pattern offers proven solutions to recurring problems. Patterns follow a template de-
scription that allow readers to get quickly familiarized with the topic at hand. Security
patterns describe reappearing security problems and their well-tested solutions. Patterns
show great promise in capturing and conveying security knowledge, as they go beyond
describing problem solutions [22]. The context of the problem, forces likely to affect a
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possible solution, and common pitfalls and consequences are important parts of a pattern.
Paper V in this thesis presents a security pattern for validation of input [20].

Risk Management

Risk can be viewed simply as the possibility of suffering harm or loss. This type of risk
is often referred to as a pure or non-speculative risk. Examples include uncontrollable
events such as natural catastrophes. A speculative risk on the other hand involves a
conscious choice that could lead either to a gain or a loss, e.g. investing in stocks [23].
This thesis deals solely with risks from which only a loss can occur. Proper management
of non-speculative risks can control and minimize the negative effects of unwanted events.

According to NIST [24], risk management is the process of identifying risks, assessing
risks, and taking steps to reduce risks to an acceptable level. At a bird’s-eye view, risk
management can be divided into risk assessment and risk treatment. Fig. 2 presents an
overview of the risk management process.

Risk Assessment

The risk assessment phase involves

System description: This first step sets the scope for the risk management process.
System information and assets— such as hardware, software, network topology, and
users of the system—are identified.

Threat identification: Aims to single out entities who may (accidentally or intention-
ally) exploit a vulnerability in the system. Examples include organized crime, script
kiddies, and insiders.

Vulnerability identification: The task of creating a list of system flaws and weaknesses
that could allow threats to break the system’s security.

Risk evaluation Based on the likelihood of occurrence and the resulting impact, each
threat /vulnerability pair is assigned a risk level.

Risk Treatment

Risk treatment concerns finding ways to deal with the identified threat/vulnerability pairs
and their associated risk levels. A risk acceptance criterion signifies how much risk someone
is willing to tolerate. If a given threat/vulnerability pair carries a risk below this threshold,
it is left untreated and accepted as is. Risks that do not fall into the accept category can
be handled in three ways:

e control the risks by introducing countermeasures to reduce the risks down to a
tolerable level;

e reject the risks and use workarounds to avoid the identified problems; or

e transfer the risks to other parties through for example insurance.
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The Risk Management Process

Fig. 2 shows the steps and activities involved in the risk management process. Note that
steps 2 and 3 can be executed in parallel. However, they are closely related and must be
paired in the risk evaluation phase. A vulnerability for which there does not exist threats
that can exploit the given weakness, does not constitute a risk against a system, and
should therefore be excluded. An identified threat with no matching vulnerability should
be treated in the same manner.

Risk evaluations are based on the likelihood of occurrence and the negative impact
resulting from a threat exercising a given vulnerability. Risks can be assessed quantitatively
or qualitatively. A quantitative approach relies on mathematics to exactly express risks.
Threat/vulnerability pairs are assigned probabilities of occurrence and impact values.
An example is annual loss expectancies that can be derived by multiplying a potential
monetary loss with the probability of occurrence during a year. It can be very difficult to
quantify risks. An example is the challenge of accurately estimating loss of reputation.

Medium High Very high

Medium High

pooyiii

Very low Medium

Impact

Figure 3: Five-level Risk Matrix

A qualitative approach describes risks using a hierarchical scale. As an example, likeli-
hood of occurrence can be approximately described through three categories: low, medium,
and high. A similar approach can be applied to impact estimation. Fig. 3 shows a risk
matrix based on the example three categories for likelihood and impact. The illustration
demonstrates a possible five-level risk matrix derived from the various combinations of
likelihood and impact. In order for the risk evaluation results to be reproducible, the
different risk levels must be defined. The assessments in this thesis follow the qualitative
approach. In light of the choice of qualitative risk analysis, an appropriate definition is to
define risk as the negative impact of the exercise of a vulnerability, considering both the
likelihood and the impact of occurrence [24].

As illustrated in Fig. 2, the results of the risk evaluation phase is a set of threat/
vulnerability pairs with an associated risk level. The identified risks can then be ranked
and compared to the risk acceptance criterion. Different methods exist for selecting this
criterion. One approach is to set a limit against which all risks are contrasted. Those
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ranked above the limit are subject to risk mitigation techniques. The As Low As Reason-
ably Practicable (ALARP) principle requires all risks to be mitigated to the point where
the costs of applying further risk treatment grossly outweighs the expected benefits. This
latter form of criterion has been successfully applied in the oil industry [25]. Systems
in that industry involve risks with low likelihood and very high impact that should be
avoided.

Residual Risks

It is important to note that all risks cannot be removed in a non-trivial system. Plans
should be devised to handle these residual risks. An important task in this regard is to
assign ownership of the remaining risks. Some system owners assume this responsibility
themselves. An example is credit card companies that cover customers’ losses from card
misuse, as long as the bureaus themselves cannot trace the reported misuse back to the
affected client. Another approach is to split the cost between the system owner and users,
as widely adopted by the insurance industry in the form of individual shares. Yet another
alternative is to communicate the remaining risks to customers, and let them bear the
costs when losses occur. This approach is frequently used in amusement parks, where
customers get risk warnings prior to entering rides.

The numbers on costs of fixing software defects, mentioned in the introduction of
this dissertation, indicate that risk management is most effective early in the SDLC.
However, it should be revisited and updated at later stages of development. Failure to do
so may lead to uninformed decision making, as new threats and/or vulnerabilities surface,
rendering previous risk analyses inaccurate or obsolete. A good risk management regime
therefore plans for changes and continuously updates its evaluation of risks as threats and
vulnerabilities evolve.

Risk Case Studies

Two of the papers in this thesis, “Open Wireless Networks on University Campuses” [26]
and “Risk Assessment of Services in a National Security Infrastructure” [27], use elements
of risk management on deployed systems, which translates to the maintenance phase in
Fig. 1.

Open wireless networks

The human mind processes risk in two ways: either based on intuition, emotions, and
experience; or analytically, using probability and statistics to make informed decisions
[28]. In particular, fear is a powerful emotion that cause people to overestimate risks.
The billions of dollars spent fighting terrorism after 9/11 is an often used example of bad
decision-making based on dread. Perceived versus actual risk is a recurring theme in Bruce
Schneier’s monthly Crypto-Gram newsletter [29].

Upon floating the idea of an open wireless network on the University of Bergen campus,
the IT department’s knee-jerk reaction was fear of misuse. One of the risks highlighted
was the horrifying scenario of pedophiles downloading child pornography. Another con-
cern was related to illegal downloads of music and movies. Paper I [26] examines these and
other risks introduced by an open wireless network, and suggests steps to curb unwanted
behavior. The article argues that universities can miss out on good opportunities by
distrusting employees, students, and citizens. A particularly interesting benefit is the in-
creased availability of open networks versus networks that require authentication. Among
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the three fundamental goals of security, availability is the least investigated. For those
who consider deploying an open wireless network, an important consideration is whether
the increased availability and improved usability outweigh the added risks.

Internet banking

The results from the online banking risk management process make a case for the impor-
tance of risk management throughout the SDLC. The Internet threat and vulnerability
landscape has changed drastically from BankID’s start around 1999. While it may have
been reasonable to conclude that our phishing/MitM vulnerability along with an orga-
nized crime threat did not constitute a significant risk against BankID in the beginning
of the noughties, it is now safe to conclude that the identified risk was unnecessarily high
during most of 2007. Attacks against similar banking systems in 2006 and 2007 support
this claim [30]. The BankID community acknowledged this and took steps to remove the
phishing/MitM vulnerability in November 2007 and January 2008.

NOTHING
HAPPENS MAJOR ATTACK
MONOCULTURE win big it’s all over
DIVERSITY wasted money | survive and gloat

Figure 4: Monoculture versus Diversity

A comparison of Internet banking in Norway before and after BankID leads to an
interesting observation. Prior to BankID, many different banks provided a variety of
Internet banking solutions. Customers could do their banking with a financial institution
that provided what they thought to be the best trade-off between security and usability.
BankID is currently turning this diversity into a monoculture for Internet banking in
Norway, as most Norwegians are expected to become BankID customers shortly. Fig.
4 shows the relationship between a diverse system and a monoculture, as described by
security guru Dan Geer [31]. Following this line of thought, one way to improve the
security of Internet banking in Norway would be to shut down BankID and revive the old
online banking systems. Since BankID is not going away any time soon, other options for
improvement must be considered. Fig. 4 illustrates that the security of Internet banking
in Norway as a whole depends on the presence of several banking solutions in the market.
If BankID later becomes the only Internet banking option available, an increase in security
can be realized by attracting new businesses into the online banking market.
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Trust

Trust is a positive expectation regarding the behavior of someone or something in a situa-
tion that entails risk to the trusting party [32]. Trust is not a binary concept, but involves
many levels ranging from complete distrust to complete trust [33]. Distrust can be qualified
with the same wording as the definition of trust, except that it is a negative expectation.
The halfway point between these two concepts is untrust, a term that describes situations
without sufficient information to either be trusting or distrusting. Another related notion
is mistrust, which refers to circumstances where someone decides to trust a party that
later turns out to be untrustworthy, or vice versa: a position of distrust is favored in a
relationship with someone that is trustworthy. The latter version of mistrust translates to
missed opportunities, whereas the first variant exposes the trusting party to an outright
loss.

An understanding of the risks associated with a computer system is a pre-requisite
for good trust management. In a risk-free environment there is no room for trust, as the
actors have complete information and do not rely on others’ behavior to achieve their
goals. As mentioned earlier, there will always be remaining risks after a risk management
process involving a non-trivial system.

Misplaced trust plays a central role in several papers in this dissertation. The online
banking papers in this thesis [27, 34, 35] describe a situation where the Norwegian banking
industry trusted people not to modify their client software. First in the form of two
unprotected HTML parameters, later an unguarded protocol version number. It would
have been wiser to distrust the users and mitigate the risks. In the end, the banks rejected
the risks posed by our exploits through modifying BankID.

A position of distrust against trustworthy users of wireless networks can lead to fore-
gone opportunities. An open network can introduce a higher degree of usability, as stu-
dents, faculty, and visiting guests do not have to deal with authentication mechanisms.

Failure to properly handle and validate input and output passed to subsystems is an-
other example of mistrust. Developers who do so rely on a position of trust in dealing with
potentially untrustworthy clients. Attackers who take advantage of this can become very
costly for system owners. The recommended course of action is to apply risk mitigation,
and introduce validation mechanisms such as the content validation framework described
in Paper VII [21].

Thesis Summary

Paper I: Open Wireless Networks on University Campuses [26]

Paper I argues that it is reasonable for universities to consider giving access to wireless
networks without authentication of end users. A risk assessment and risk mitigation
of a generic network model supports the claim. An open wireless network comes with
the benefit of increased usability, availability, and possibly improved privacy, as network
operators will find it more difficult to track users’ movements and activities on campus.
Our work points out several potential areas for increased risk as a result of introducing
an open network: illegal downloads, attacks on the local network, anonymous attacks on
remote networks, bad press, and problems related to legal requirements. Steps can be
taken to mitigate the identified risks, such as filtering and monitoring of network traffic,
and to establish good relationships to the media. Experience with an open wireless network
at our own department shows that it is indeed possible to mitigate the risks related to
misuse. It should be noted that the future legal status of open wireless networks in the EU
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and US is unclear. Authentication of users may become mandatory for all public networks
in these regions.

Paper II: Risk Assessment of Services in a National Security Infrastruc-
ture [27]

Paper II uses elements from risk management to discuss the Norwegian financial industry’s
Public Key Infrastructure (PKI) for Internet banking, called BankID, from an external
point of view. The authors provide a PKI primer and give an overview of the BankID
architecture and design. The paper then looks at risks associated with customer authen-
tication and discuss non-repudiation in BankID. In short, the paper finds that BankID
is vulnerable to particularly efficient Distributed Denial-of-Service (DDoS) attacks on the
application layer; bank customers are exposed to significant risks related to combined
phishing/MitM attacks; and the absence of an independent third party gives the banking
community an advantage in future non-repudiation conflicts. A number of steps suggest
how to mitigate the identified risks: (i) PINs and passwords should be used only locally,
(ii) vulnerabilities to well-known attacks such as phishing and MitM should be addressed
immediately, and (iii) the true level of non-repudiation should be determined by indepen-
dent lawyers and security experts prior to adoption on a national level.

Paper III: A Proof of Concept Attack against Norwegian Internet Bank-
ing Systems [34]

Paper III explores the combined phishing/MitM attack mentioned in Paper II. By inserting
a proxy in the BankID log-in procedure, an attacker could let a bank customer complete
the authentication protocol and subsequently steal the Internet banking session. The
main weaknesses that allowed the attack were two unprotected Java applet parameters
and an unprotected URL authorization token. Proof of concept code was developed and
demonstrated for the Financial Supervisory Authority of Norway to show the feasibility
of the approach. The exploit gave access to a customer account in two randomly chosen
Internet banks based on BankID. The paper suggests that BankID’s security could be
much improved by moving to a traditional PKI solution, where private-public key pairs are
stored and managed solely by customers. The authors acknowledge that such a transition
may not be economically viable for the Norwegian financial industry.

Paper IV: Robbing Banks with Their Own Software—an Exploit against
Norwegian Online Banks [35]

Paper IV revisits and improves the attack described in Paper III. The starting point was
to reverse engineer BankID’s log-in procedure, both in terms of protocol design and Java
source code. The reverse code engineering exercise revealed a possible vulnerability in the
generation of random numbers, affecting customers relying on Java prior to version 1.4.
The combined phishing/MitM attack was updated to circumvent fixes introduced by the
BankID community in November '07. A version rollback vulnerability allowed the creation
of a new exploit. The paper goes on to argue that the outlined attack is particularly
dangerous, as BankID’s own Java Applet is used unmodified, thereby allowing an attacker
to capitalize on one of the trust points in the Internet banking system. A description of
our disclosure process demonstrates the Norwegian banking industry’s inability to quickly
address security problems pointed out by independent researchers. In closing, the paper
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recommends a through analysis of BankID. More weaknesses in BankID has recently been
pointed out in a paper by Gjgsteen [36].

Paper V: Security Pattern for Input Validation [20]

The input validation pattern addresses the problem of attacks hidden in message content.
The pattern uses the template format established in [22]. The offered solution involves
performing syntactical and semantical checks of all sources of input. Known uses include
Stinger [37], an input validation engine for HTTP requests. The pattern features a pencil
drawing of an airport security checkpoint, which is intended to serve as a Gestalt for input
validation. The goal is to use simple building blocks to convey something that is more
than the sum of its parts. An excellent example and inspiration for this attempt to create
wholeness is the medieval village in the ’Single Access Point’ pattern [22].

Paper VI: Simplifying Client-Server Application Development with Se-
cure Reusable Components [17]

Paper VI describes a software prototype that was implemented to reduce the complexi-
ties involved in developing secure client-server applications. The initial observations that
spurred the project was the intricacies involved in creating secure networked applications
in Java Standard Edition, version 1.4.2. Common network programming issues, such as
choosing to act as client or server, choosing a thread model, and transport mechanism
selection, were implemented and offered to other developers as a matter of configuration.
The idea was to encourage reuse and offer secure networking in Java to programmers
without a security background. An example on how to develop an HTTP server using
the communication component is included in the paper for illustrational purposes. Paper
VI also comments on the importance of openness and simplicity in order for developers of
security software to be trusted by other developers and end users.

Paper VII: A Reflection-Based Framework for Content Validation [21]

In 2004, OWASP ranked unvalidated input as the most common web application vulnera-
bility. Paper VII addresses this problem with a software prototype for validation of input
and output in object-oriented systems. XML and the Java reflection API provide a flexible
solution that can easily be updated to accommodate changes in the underlying risks to a
particular system. The framework comes with five pre-defined categories of content vali-
dation rules, and also allows developers to specify their own rules. The paper includes an
example of how to use the framework for setting up validation of a bill payment web form.
The walk-through shows how to set up validation rules using ranges, regular expressions,
and custom logic.

Societal Impact

Our work on BankID has been referenced and commented by many media outlets (see
http://www.nowires.org/Press/Press.html). We have received both roses and thorns for
our discoveries. Supporters include The Data Inspectorate and the Minister of Government
Administration and Reform. They have publicly stressed the importance of independent
research on national security infrastructures. The Norwegian Post and Telecommunica-
tions Authority and the Norwegian Financial Services Association have not been equally
amused. Unfortunately, much of the public debate has centered around the legality of
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our exploits, and not on how to produce more secure computer systems. The patching of
the version rollback vulnerability shows that the Norwegian financial industry can benefit
from working closer with security researchers to improve security.

What Lies Ahead?

Given the broad scope of computer security problems, interesting results surface in the
cross-section between research disciplines. A recent example is security economics, where
results from microeconomics and game theory have been successfully applied to computer
security problems. Successes include the use of information asymmetry to explain the
prevalence of poor security in the software market, as consumers find it hard to evaluate the
level of security in different products; insights from conflict theory suggest that companies
should hire fewer programmers and more software testers; economic research on public
goods suggests that government interaction is the most effective way of stopping viruses
and spam [8]. These success stories indicate that new exciting breakthroughs in computer
security can be found by working closely with other disciplines. Promising candidates
include economy, law, and psychology.

Given the Norwegian courts historical tendency to rule in favor of the Norwegian bank-
ing community—a practice described in [38]—Norwegian bank customers are wise to pay
attention if BankID is to become a national security infrastructure. Current weaknesses
in BankID hint at the challenges involved in designing such infrastructures. In particular,
adequate privacy seems to be to achieve, a theme that was briefly explored in [39]. A
study from the US National Research Council strongly recommends strict scrutiny and
in-depth deliberation long before deploying or designing a nationwide identity system [40].
The report also stresses the importance of seeking input from all stakeholders. BankID
is a proprietary system owned by the Norwegian banking community that was developed
for Internet banking purposes. Given the challenges involved in designing a nationwide
identity system from scratch, it will be extremely difficult to retrofit BankID into a sound
national security infrastructure, if not impossible. Studies of BankID’s future successes
and failures can provide useful insights for national security infrastructure researchers.

In terms of nationwide identity systems, it could be interesting to look into the appli-
cability and effects of different risk acceptance criteria. Assume that BankID is chosen to
become Norway’s new national security infrastructure for services across a wide range of
industries. Should individual banks be allowed to choose a criterion aligned with their own
risk appetite, or are customers better off if the Norwegian Government mandate treatment
of all risks above a certain threshold? It could also be interesting to look into the appli-
cability of the ALARP principle in conjunction with national security infrastructures.
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